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Introduction

Let k0 be a finite algebraic number field in a fixed algebraic closure Ω and ζn denote
a primitive n-th root of unity ( n ≥ 1). Let k∞ be the maximal cyclotomic extension of
k0, i.e. the field obtained by adjoining to k0 all ζn ( n = 1, 2, ...). Let M and L be the
maximal abelian extension of k∞ and the maximal unramified abelian extension of k∞
respectively. The Galois groups Gal(M/k∞) and Gal(L/k∞) are, as profinite abelian
groups, both isomorphic to the product of countable number of copies of the additive
group of Ẑ. Here, Ẑ denotes the profinite completion of the ring of rational integers Z.
In fact, more generally, if Msol and Lsol denote the maximal solvable extension of k∞
and the maximal unramified solvable extension of k∞ respectively, the Galois groups
Gal(Msol/k∞) and Gal(Lsol/k∞) are both isomorphic to the free prosolvable group on
countably infinite generators ( Iwasawa[2], Uchida[5]).

On the other hand, as M and L are both Galois extensions of k0, the cyclotomic
Galois group Gal(k∞/k0) acts on Gal(M/k∞) and Gal(L/k∞) naturally. The structure
of these Galois groups with this action, however, does not seem to be known.

Let k1 be the field obtained by adjoining ζ4 and ζp for all odd prime p to k0 and
consider the subgroup g = Gal(k∞/k1) of Gal(k∞/k0). It is easy to see that g is
isomorphic to the additive group of Ẑ. Now, as Gal(M/k∞) and Gal(L/k∞) are profinite
abelian groups, they are naturally Ẑ-modules and g acts on them. Therefore, they can
be regarded as A-modules, where A denotes the completed group algebra of g over Ẑ.
Our main result is the following

Theorem. The Galois groups Gal(M/k∞) and Gal(L/k∞) are, as A-modules, both

isomorphic to
∞∏

N=1

A, the direct product of countable number of copies of A.

We shall explain the method of the proof of Theorem. Unlike the Iwasawa algebra,
we have neither a good presentation of the algebra A nor the structure theorem of A-
modules. Our first task is to find a criterion whether a given A-module is isomorphic to
∞∏

N=1

A or not. In his paper[2], Iwasawa gives a characterization of the free pro-S group

on countably infinite generators in terms of the solvability of embedding problems of
finite S-groups. ( S is a category of finite groups satisfying some conditions. ) We shall
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use an A-module version of this result ; a profinite A-module X with at most countable

open A-submodules is isomorphic to
∞∏

N=1

A if and only if every embedding problem of

finite A-modules for X has a solution ( Theorem 1.2 ).
We apply this criterion to A-modules Gal(M/k∞) and Gal(L/k∞). There are two

cases for the exact sequence of finite A-modules of embedding problems ; split cases
and non-split cases.

The non-split case seems to be more difficult. There are two points in solving em-
bedding problems in this case. We shall briefly explain them in the case of Gal(L/k∞).
A group theoretical point is that g is a free profinite group ( of rank 1 ) so that the pro-
jection Gal(L/k1) → g splits. By using this, the solvability of the embedding problem
for the A-module Gal(L/k∞) can be reduced to that of the embedding problem for the
profinite group Gal(L/k1). It can be further reduced to that of the embedding problem
for the group Gal(L̃/k1), where L̃ denotes the maximal unramified Galois extension of
k∞.

An arithmetical point is that the Galois group Gal(L̃/k1) is projective. In Uchida[5],
for an infinite algebraic number field K satisfying a certain condition such as k1, it is
shown that the Galois group Gal(Kur/K) is projective. Here Kur denotes the maximal
unramified Galois extension of K. Though ramification occurs in the subextension k∞
of L̃/k1, by a slight modification of his proof, we can show that Gal(L̃/k1) is projective.
From this the solvability of the embedding problem follows.

The author first obtained the above mentioned A-module version of Iwasawa’s theo-
rem. Then Professor Shoichi Nakajima pointed out that one can give its more general
version, which gives a characterization of the free pro-S group on countably infinite
generators with operator domain Γ̂, where Γ̂ denotes the profinite completion of an
arbitrary group Γ. In the case that S is the category of finite abelian groups and Γ is
an infinite cyclic group, this version gives the above mentioned A-module version. In §1
we shall formulate this generalized version. We shall also give a necessary and sufficient
condition in order that every embedding problem of finite A-modules has a solution. In
§2 we shall prove that the Galois group Gal(L̃/k1) is projective. In §3 we shall give the
proof of Theorem.

As noticed above, for our methods of the proofs of several results, we owe much to
Iwasawa[2] and Uchida[5]. We have given the details of the proofs of theorems, since
an application of embedding problems to the study of the cyclotomic Galois action on
Gal(M/k∞) and Gal(L/k∞) has not been appeared.

The author expresses his sincere gratitudes to Professor Shoichi Nakajima for valuable
comments, especially for suggesting a generalization of a theorem of Iwasawa.

§1. Embedding problems of A-modules

(1-1) Let Γ be a group and x1, x2, ... be a countable number of letters. Let F be the
free group generated by the symbols (γλ, xi) (γλ ∈ Γ, i ≥ 1). The group Γ operates on
F via γ(γλ, xi) = (γγλ, xi) (γ ∈ Γ). Let S be a category of finite groups whose object
satisfy the following conditions ;

(i) any subgroup of an object of S is an object of S,
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(ii) any quotient group of an object of S is an object of S,
(iii) the direct product of two objects of S is an object of S.

The projective limit of finite groups which are objects of S is called a pro-S group. We
define the pro-S group FS by

FS = lim
←−

F/N,

where N runs over all index finite normal Γ-subgroups containing all (γλ, xi) except for
a finite number such that F/N is an object of S. As the cardinality of such subgroups
is at most countable, the cardinality of open subgroups of FS is at most countable.

The profinite completion Γ̂ of Γ operates naturally on the group FS . In fact, let
AN denote the image of the homomorphism Γ → Aut(F/N) induced by the operation
of Γ on the quotient F/N . ( Aut ∗ : the automorphism group of the group ∗. ) As
{Γ → AN}N is a projective system, we have a homomorphism lim

←−
Γ → lim

←−
AN , i.e.

Γ → lim
←−

AN . Since AN is a finite group and lim
←−

AN can be regarded as a subgroup of
AutFS , this induces a homomorphism

Γ̂ → lim
←−

AN ⊂ AutFS .

This shows that Γ̂ operates on FS .
We call the group FS the free pro-S Γ̂-group generated by x1, x2, ... .

(1-2) Recall that an embedding problem for a profinite group X is a diagram

(P )

X
yϕ

1 −−−−→ A −−−−→ B
α−−−−→ C −−−−→ 1,

where the horizontal sequence is an exact sequence of profinite groups and ϕ is a surjec-
tive homomorphism. A weak solution of this problem is a homomorphism ϕ̃ : X → B
such that αϕ̃ = ϕ. If, moreover, ϕ̃ is surjective, then ϕ̃ is called a proper solution, or
simply a solution. When A,B, C and X are profinite groups with operator domain Γ̂
and homomorphisms of the diagram are Γ̂-homomorphisms, then a ( weak ) solution is
also assumed to be a Γ̂-homomorphism.

Now we have the following theorem, which is a version of Iwasawa’s theorem in the
case of the free pro-S Γ̂-group.

Theorem 1.1. Let X be a pro-S Γ̂-group with at most countable open Γ̂-subgroups.
Then X is isomorphic to FS as Γ̂-groups if and only if every embedding problem (P)
has a solution, where the horizontal sequence is an exact sequence of finite S-groups
with operator domain Γ̂.

When Γ is the trivial group, this is a theorem of Iwasawa[2, Th.4]. The proof of this
theorem is done step by step in the same way as that of [2, Th.4], hence is omitted.
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(1-3) Now we shall restrict ourselves to the case that Γ is an infinite cyclic group, hence
Γ̂ ' g, and S is the category of finite abelian groups. Let A denote the completed group
algebra of g over the profinite completion Ẑ of the ring of integers Z, i.e.

A = lim
←
Z/(m)[g/h],

where the projective limit is taken with respect to all integers m and all index finite
subgroups h of g. Then, as FS is a profinite abelian g-group, it is naturally an A-
module. As can be easily verified, FS is, as A-modules, isomorphic to the direct product

of countable number of copies of A ; FS '
∞∏

N=1

A.

Let X be a profinite A-module and consider the following embedding problem :

(PA)

X
yϕ

0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0.

Here, the horizontal sequence is an exact sequence of finite A-modules and ϕ is a
surjective A-homomorphism. In this case, Theorem 1.1 is formulated as the following

Theorem 1.2. Let X be a profinite A-module with at most countable open A-submodules.

Then X is isomorphic to
∞∏

N=1

A if and only if every embedding problem (PA) has a so-

lution.

(1-4) We shall give conditions on the solvability of the embedding problem (PA) in
(1-3). To state these, we introduce certain finite A-modules. For each n ≥ 1, let Cn

denote the unique quotient of g such that Cn is cyclic of order n. Let p be a prime and
Fp[Cn] denote the group algebra of Cn over the prime field Fp of characteristic p. Via
the projection g → Cn, Fp[Cn] is naturally regarded as a g-module, hence an A-module.
We denote this module by En(p).

Now we have the following theorem, which is the A-module counterpart of [2, Th.
1]. ( Cf. also Serre[3, I, 3.4, Ex.1].)

Theorem 1.3. Let X be a profinite A-module. In order that every embedding problem
(PA) has a solution, it is necessary and sufficient that for every prime number p, the
following conditions (Ip) and (IIp) are satisfied ;

(Ip) : Every embedding problem (PA) has a weak solution whenever A, B and C are
finite A-modules with p-power orders.

(IIp) : For any m,n ≥ 1, there exists an open A-submodule Y of X such that X/Y

is isomorphic to En(p)⊕m.

(1-5) For the proof of Theorem 1.3, we need several lemmas.
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Lemma 1.1. Let X be a profinite A-module. In order that every embedding problem
(PA) has a solution, it is necessary and sufficient that for every prime number p, it has
a solution whenever A, B and C are finite A-modules with p-power orders.

Proof. It is enough to show that the condition is sufficient. Let (PA) be a given embed-
ding problem and let Ap, Bp and Cp be the p-Sylow subgroups, hence A-submodules,
of A, B and C respectively. Let ϕ̄ be the composite of ϕ and the projection C → Cp

and consider the embedding problem

X
yϕ̄

0 −−−−→ Ap −−−−→ Bp −−−−→ Cp −−−−→ 0,

where the horizontal sequence is induced from that of (PA). Let γp : X → Bp be a
solution of this problem. Define an A-homomorphism γ : X → B = ⊕Bp by γ(x) =
(γp(x))p. Then it is immeadiately verified that γ is a solution of the problem (PA).

Lemma 1.2. Let X be a profinite A-module. In order that every embedding problem
(PA) has a solution, it is necessary and sufficient that it has a solution whenever A is
an irreducible A-module.

Proof. It is enough to show that the condition is sufficient. Let (PA) be a given
embedding problem and let A1 be a maximal A-submodule of A. Then, as A/A1 is
irreducible, the embedding problem

X
yϕ

0 −−−−→ A/A1 −−−−→ B/A1 −−−−→ C −−−−→ 0

has a solution ψ1. Let A2 be a maximal A-submodule of A1. Again, the embedding
problem

X
yψ1

0 −−−−→ A1/A2 −−−−→ B/A2 −−−−→ B/A1 −−−−→ 0

has a solution ψ2. After iterating this process finitely many times, we obtain a solution
ψ of the embedding problem (PA).

The following lemma is easily proved.

Lemma 1.3. Let

0 −−−−→ A −−−−→ B
α−−−−→ C −−−−→ 0

be an exact sequence of finite A-modules. Assume that A is irreducible. Then we have
the following two cases.
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(i) Any A-submodule B′ of B such that α(B′) = C coincides with B.
(ii) The sequence splits, hence B ' A⊕ C as A-modules.

We shall now consider the embedding problem (PA) in the case that A, B, and C
are finite A-modules with p-power orders, p being a prime. In this case we denote the
embedding problem by (Pp).

Lemma 1.4. Let X be a profinite A-module. In order that every embedding prob-
lem (Pp) has a solution, it is necessary and sufficient that the following conditions are
satisfied ;
(i) Every embedding problem (Pp) has a weak solution.
(ii) For any open A-submodule X ′ of X with a p-power index and any finite irreducible
A-module A with a p-power order, there exists an open A-submodule Y of X such that
X/Y ' A and X = X ′ + Y .

Proof. We shall first show that the conditions (i) and (ii) are necessary. That (i) is
necessary is obvious. To show that (ii) is necessary, let C = X/X ′ and consider the
embedding problem

X
yϕ

0 −−−−→ A −−−−→ A⊕ C −−−−→ C −−−−→ 0,

where ϕ is the projection. Let ψ : X → A⊕C be a solution of this embedding problem.
Let pr1 : A ⊕ C → A be the projection and Y be the kernel of pr1ψ. Then Y satisfies
the condition in (ii).

We shall next show that the conditions (i) and (ii) are sufficient. We may assume,
by Lemma 1.2, that A is an irreducible A-module. By Lemma 1.3, we have two cases.

Case (a) : By the condition (i), the embedding problem (Pp) has a weak solution,
which is automatically a solution.

Case (b) : Let X ′ be the kernel of ϕ. Let Y be an open A-submodule of X satisfying
the condition in (ii). Then we have isomorphisms X/X ′ ∩ Y ' X/Y ⊕X/X ′ ' A⊕ C.
Composing this with the projection X → X/X ′∩Y , we obtain a solution ψ : X → A⊕C.

(1-5) Proof of Theorem 1.3. We shall first show that the conditions are necessary. It is
obvious that, for every prime number p, (Ip) is necessary. To see that (IIp) is necessary,
consider the embedding problem (Pp) in the case that A = B = En(p)⊕m, C = 0 and
ϕ is the trivial homomorphism. Since this embedding problem has a solution, for every
prime number p, the condition (IIp) is necessary.

We shall show that the conditions are sufficient. It suffices to show that, for every
prime number p, the conditions (i) and (ii) in Lemma 1.4 are satisfied. Obviously, (i)
is satisfied. To see that (ii) is satisfied, assume that an open A-submodule X ′ of X
with a p-power index and a finite irreducible A-module A with a p-power order are
given. As A is finite, the action of g on A factors through some Cn. As A is irreducible,
pA = {0}, hence A is regarded as an Fp[Cn]-module. Moreover, by the irreducibility, it
is isomorphic to a quotient of En(p). Therefore, it suffices to show that there exists an
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open A-submodule Y1 of X such that X/Y1 ' En(p) and X = X ′ + Y1. To show this,
consider the set

{X ′′ : open A− submodule | X ′ ⊂ X ′′ ⊂ X}
and let s be its cardinality. By the condition (IIp), there exist open A-submodules
X1, ..., Xs+1 such that X/Xi ' En(p) and Xi + Xj = X (i 6= j). Then one verifies at
once that at least for one i = i1, we have X ′ + Xi1 = X. Putting Y1 = Xi1 , we obtain
the desired A-submodule.

§2. Projectivity of Galois groups

(2-1) Let k0 be a finite algebraic number field. As in the introduction, let k1 be the
field obtained by adjoining ζ4 and ζp for all odd prime p to k0. Let k∞ be the maximal
cyclotomic extension of k0, i.e. the field obtained by adjoining to k0 all ζn (n ≥ 1). Let
L̃ denote the maximal unramified Galois extension of k∞.

What we shall need for the proof of Theorem is the fact that the Galois groups
Gal(L̃/k1) and Gal(k̄1/k1) are both projective. ( For projective profinite groups, cf.
e.g. [3, I, 5.9].) It is not so difficult to verify that Gal(k̄1/k1) is projective. ( See
Corollary in (2-4) below.) A little harder is to show the following

Theorem 2.1. The Galois group Gal(L̃/k1) is a projective profinite group.

In [5], Uchida has proved that, for an infinite algebraic number field K satisfying a
certain condition, the Galois group Gal(Kur/K) is projective, where Kur denotes the
maximal unramified Galois extension of K. His result can be applied to, e.g. K = k∞
or K = k1. Since ramification occurs in the subextension k∞ of L̃/k1, his theorem
cannot by applied directly to Gal(L̃/k1). But its proof can be applied with a slight
modification. The proof of his theorem is terse and a little complicated in order to be
applied to a wider class of ground fields. We shall give, in our simpler case that the
ground field is k1, a detailed proof for the sake of completeness.

(2-2) We shall first reduce the proof of Theorem 2.1, as in the arguement of [5, Th.1],
to showing the projectivity of the maximal pro-p quotient of Gal(L̃/k1).

Let G be an arbitrary profinite group and p be a prime number. We denote by
cdG and cdpG the cohomological dimension and the p-cohomological dimension of G
respectively. We also denote by G(p) the maximal pro-p quotient of G.

Lemma 2.1. Let G be a profinite group with at most countable open subgroups. Assume
that G satisfies the following condition for every prime number p.

(∗p) For any open subgroup U of G, cdpU(p) ≤ 1.

Then we have cdG ≤ 1, i.e. G is projective.

Proof. For a prime number p, let Gp be a p-Sylow subgroup of G. Then, there exists a
family of open subgroups {Un}∞n=1 of G such that
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G = U1 ⊃ U2 ⊃ ... ⊃ Un ⊃ Un+1 ⊃ ...,

∞⋂
n=1

Un = Gp.

It is easy to see that the composite ϕn of the inclusion homomorphism Gp → Un and
the projection Un → Un(p) is surjective. These ϕn (n = 1, 2, ...) induce an isomorphism
Gp ' lim

←−
Un(p).

By the condition (∗p), we have

H2(Gp : Fp) = lim
−→

H2(Un(p) : Fp) = {0}.
Thus it follows that cdpGp ≤ 1 ([3, I, Prop.2]). Since cdpG = cdpGp ([3, I, Prop.14])
and p is arbitrary, it follows that cdG ≤ 1.

We shall apply the above lemma to the Galois group G = Gal(L̃/k1). Let U =
Gal(L̃/F1) be an open subgroup of G, where F1 is a finite extension of k1. It is easy
to see that there exists a finite algebraic number field F0 such that F1 = F0(ζ4, ζp; p ≥
3) and that L̃ is the maximal unramified Galois extension of F∞ = F0(ζn; n ≥ 1).
Therefore, the proof of Theorem 2.1 is reduced to showing that for every prime number
p, cdpG(p) ≤ 1, or equivalently, G(p) is a free pro-p group ([3, I, 4.2]).

Let L(p) denote the maximal pro-p extension of k1 contained in L̃. Then we have
G(p) = Gal(L(p)/k1) and L(p) contains k1(ζpm ;m ≥ 1). Then we have

Lemma 2.2. The field L(p) is the maximal unramified pro-p extension of k1(ζpm ; m ≥
1).

Proof. Let vp be a p-place of k1(ζpm ;m ≥ 1), i.e. a finite place of k1(ζpm ; m ≥ 1)
which is an extension of the p-adic place of Q. Then it is unramified in L̃, hence in
L(p). Let vl be an l-place of k1(ζpm ; m ≥ 1), where l is a prime different from p. The
inertia group of vl in k∞/k1(ζpm ; m ≥ 1) is a pro-l group and L̃ is unramifed over k∞.
Therefore, as L(p) ⊂ L̃, the inertia group of any extension of vl to L(p) is a pro-l group.
Thus it is the trivial group as G(p) is a pro-p group. This shows that vl is unramified
in L(p). Therefore L(p) is unramified over k1(ζpm ; m ≥ 1). The maximality of L(p) is
immeadiately verified.

By Lemmas 2.1 and 2.2, the proof of Theorem 2.1 is reduced to verifying the following

Theorem 2.2. For a prime number p, let L(p) be the maximal unramified pro-p exten-
sion of k1(ζpm ; m ≥ 1). Then the Galois group Gal(L(p)/k1) is a free pro-p group.

(2-3) In the rest of this section, we shall give the proof of Theorem 2.2. Let us consider
an embedding problem

(P )

G(p)
yϕ

1 −−−−→ Cp −−−−→ E −−−−→ H −−−−→ 1,
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where G(p) = Gal(L(p)/k1), E is a finite p-group and Cp is a cyclic group of order p.
Then, in order that cdpG(p) ≤ 1, it is necessary and sufficient that every embedding
problem (P ) has a weak solution ([3, I, Prop.16, 20]). In the case that the exact sequence
is split, the embedding problem has obviously a weak solution. On the other hand, in
the case that the sequence is non-split, its weak solution, if it exists, is automatically a
solution. Thus, to prove Theorem 2.2, it suffices to show that every embedding problem
(P ) has a solution in the case that the exact sequence is non-split.

Let F be the subextension of L(p)/k1 corresponding to the kernel of ϕ. To find a
solution of the embedding problem (P ) is equivalent to find a Galois extension F̃ of k1

containing F such that the following conditions hold ;

(1) The diagram

1 −−−−→ Gal(F̃ /F ) −−−−→ Gal(F̃ /k1) −−−−→ Gal(F/k1) −−−−→ 1
y

y
y

1 −−−−→ Cp −−−−→ E −−−−→ H −−−−→ 1

is commutative.

(2) F̃ is contained in L(p).

(2-4) First we find an extension F̃ satisfying the condition (1). It is based on the
following

Proposition 2.1. For each prime l, k1Ql contains the maximal unramified extension
of Ql.

For the proof, cf. e.g. [5, Lemma 1]. ( The field k1 contains the field Q(1) in [5].)
By Proposition 2.1, as k1 is totally imaginary, we obtain the following

Corollary. The Galois group Gal(k̄1/k1) is projective.

Cf. e.g. [3, II, Prop.9].
Let ϕ̃ : Gal(k̄1/k1) → H be the composite of ϕ and the projection Gal(k̄1/k1) →

G(p). Consider the embedding problem (P̃ ) obtained from (P ) by replacing G(p) and
ϕ with Gal(k̄1/k1) and ϕ̃ respectively. By the above corollary, the embedding problem
(P̃ ) has a solution. The field F̃ corresponding to it satisfies the condition (1).

(2-5) As k1 contains ζp, F̃ is of the form F (p√µ), where µ is an element of F . Since E
is a central extension of H, it follows immeadiately that µσ ≡ µ mod (F ∗)p for every
σ ∈ Gal(F/k1) and that any field of the form F (p

√
µβ) (β ∈ k1) gives a solution of

the same embedding problem. We shall find an element β ∈ k1 such that F (p
√

µβ) is
contained in L(p).

As F (p√µ)/k1 is a finite extension, there exist finite algebraic number fields k0 and
F0 such that F0(p√µ) ∩ k1 = k0 and F0(p√µ)k1 = F (p√µ).

The following lemma is easily proved by using Proposition 2.1.
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Lemma 2.3. There exists a finite subextension k′ of k1/k0 such that any p-place of
F0k

′ is of degree one over k′.

By Lemma 2.3, we may and shall assume that any p-place of F0 is of degree one over
k0.

Lemma 2.4. There exists an element a of k∗0 such that µa is prime to p and every
p-place of F0 splits completely in F0(p√µa).

Proof. Let p1, ..., pr be all prime ideals of F0 lying above p. Let N1, ..., Nr be positive
integers such that any element x of F ∗0 satisfying x ≡ 1 mod pNi

i is a p-th power in
the pi-adic completion F0,pi

of F0. As every pi is of degree one over k0, there exists an
element a of k∗0 such that

a−1 ≡ µ mod pNi
i (1 ≤ i ≤ r).

Then µa is a p-th power in F0,pi so that p1, ..., pr split completely in F0(p√µa).

(2-6) By Lemma 2.4, we can take, as the field corresponding to a solution of the embed-
ding problem (P̃ ), the field of the form F0(p√µ), where µ ∈ F ∗0 is prime to p and every
p-place of F0 splits completely in F0(p√µ). In the following, we assume that F0(p√µ)
has been taken as such. Furthermore, as F/k1 is unramified outside p by Lemma 2.2,
we may assume, by taking k0 sufficiently large, that F0/k0 is unramified outside p.

Lemma 2.5. There exist an ideal m of k0 and an ideal a of F0 such that (µ) = map.

Proof. As noted above, we have, for every σ ∈ H = Gal(F0/k0), µσ ≡ µ mod (F ∗0 )p.
Thus the ideal (µ) is H-invariant modulo Ip, where I denotes the ideal group of F0.
Since F0/k0 is unramified outside p and µ is prime to p, the lemma follows.

Let N be an arbitrary positive integer and consider the ideal class group of k0 defined
modulo pN . By the density theorem, there exists a prime ideal q of k0 whose absolute
degree is one and belongs to the class of m. This means that there exists an element
β of k0 such that q = m(β) and β ≡ 1 mod pN . We take N sufficiently large so that
every p-place of F0 splits completely in F0(p

√
µβ). This field also gives a solution of

the embedding problem and, as (µβ) = (µ)(β) = qap, the extension F0(p
√

µβ)/F0 is
unramified outside q.

Lemma 2.6. Let q = q ∩ Z. Then the extension F0(ζq,
p
√

µβ)/F0(ζq) is unramified.

Proof. First we note that, as Q(ζp) ⊂ k0 and the absolute degree of q is one, the
prime q splits completely in Q(ζp), i.e. q ≡ 1 mod p. Since k0 ∩ Q(ζq) = Q, we have
[k0(ζq) : k0] = q − 1. As k1 ∩ F0(p

√
µβ) = k0, we have F0(ζq) ∩ F0(p

√
µβ) = F0.

Let q̃ be any prime ideal of F0 lying above q. Since q is totally and tamely ramified
in k0(ζq) and unramified in F0, q̃ is totally and tamely ramified in F0(ζq). As the
extension degree p of F0(p

√
µβ)/F0 divides the ramification index q − 1 of q̃ in F0(ζq),

by Abhyanker’s lemma (cf. e.g. Cornell[1]), the prime ideal of F0(ζq) lying above q̃ is
unramified in F0(ζq,

p
√

µβ).

By Lemma 2.6, it follows that the extension F (p
√

µβ)/F is unramified, hence
F (p

√
µβ) is contained in L(p). Thus the proof of Theorem 2.2 is completed.
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§3. Proof of Theorem.

(3-1) The Galois groups Gal(M/k∞) and Gal(L/k∞) are both profinite A-modules with
countable open A-submodules. Therefore, by Theorem 1.2, it is enough to verify that,
for every prime p, these Galois groups satisfy the conditions (Ip) and (IIp) in Theorem
1.3.

We first show that the condition (Ip) is satisfied. Let us first consider X =
Gal(L/k∞). Let

(Pp)

X
yϕ

0 −−−−→ A −−−−→ B
α−−−−→ C −−−−→ 0

be an embedding problem of A-modules, where A,B and C are finite A-modules with
p-power orders. Taking the semi-direct product with g = Gal(k∞/k1), we have the
following embedding problem of profinite groups ;

(P̃p)

g ·X
yϕ̃

1 −−−−→ A −−−−→ g ·B α̃−−−−→ g · C −−−−→ 1.

Here, α̃ and ϕ̃ are defined as α̃(σb) = σα(b) and ϕ̃(σx) = σϕ(x) (σ ∈ g, b ∈ B, x ∈ X)
respectively.

Since g is a free profinite group, the exact sequence

1 −−−−→ X −−−−→ Gal(L/k1) −−−−→ g −−−−→ 1
splits so that g ·X is identified with the Galois group Gal(L/k1).

As before, let L̃ denote the maximal unramified Galois extension of k∞. Let
Φ : Gal(L̃/k1) → g · C be the composite of ϕ̃ and the projection Gal(L̃/k1) →
Gal(L/k1). Since Gal(L̃/k1) is projective by Theorem 2.1, there exists a homomor-
phism Ψ : Gal(L̃/k1) → g ·B such that α̃Ψ = Φ.

We claim that Ψ factors through Gal(L/k1). Indeed, as Φ−1(C) = Gal(L̃/k∞), we
have

Ψ−1(B) = Ψ−1(α̃−1(C)) = Gal(L̃/k∞).

Since B is abelian, we have Ψ(Gal(L̃/L)) = {1}, i.e. Ψ factors through Gal(L/k1).
Therefore, Ψ induces a weak solution ψ̃ of the embedding problem (P̃p). As can be

easily verified, the restriction of ψ̃ to X gives a weak solution of the embedding problem
(Pp) so that the condition (Ip) is satisfied for X.

That (Ip) is satisfied for Gal(M/k∞) can be proved in the same way by using, instead
of Theorem 2.1, Corollary of Proposition 2.1.

(3-2) It remains to show that the condition (IIp) of Theorem 1.3 is also satisfied. As
the A-module Gal(L/k∞) is a quotient of Gal(M/k∞), it suffices to prove the following

11



Proposition 3.1. Let m and n be any positive integers. Then there exists a finite
unramified abelian extension F of k∞ which is a Galois extension of k1 such that the
Galois group Gal(F/k∞) is isomorphic to En(p)⊕m as A-modules.

Proof. For each n ≥ 1, let kn be the unique subextension of k∞/k1 such that [kn : k1] =
n. The Galois group Cn = Gal(kn/k1) is a cyclic group of order n. Let k0 be a finite
algebraic number field containing ζp and K0 be a cyclic extension of k0 of degree n such
that k1 is cyclotomic over k0 and that k1 ∩K0 = k0 and k1K0 = kn.

Fix an integer q > 1. By the theorem of primes in arithmetic progressions, there exists
a prime l such that l ≡ 1 mod q and that l is unramified in k0. Since Gal(k0(ζl)/k0) is a
cyclic group of order l− 1, there exists a subextension K of k0(ζl)/k0 such that k0(ζl) is
a cyclic extension of K of degree q. Here we change the notations and denote the fields
k0(ζl) and K0(ζl) by k0 and K0 respectively. Thus we have

K ⊂ k0 ⊂ K0 ⊂ k∞.

Let p1, ..., pg be all prime ideals of K0 lying above p. Let Ni (1 ≤ i ≤ g) be a positive
integer such that every element α of K0 satisfying α ≡ 1 mod pNi

i is a p-th power in the
pi-adic completion of K0. Let m be an integral ideal such that pNi

i divides m and that
m is invariant by the action of Gal(K0/k0).

By the density theorem, there exist principal prime ideals Li = (αi) (1 ≤ i ≤ m) of
K0 satisfying

(i) αi ≡ 1 mod m.
(ii) the absolute degree of Li is one and Li is unramified in K0.
(iii) the prime ideal Li ∩Q = (li) (1 ≤ i ≤ m) are distinct.

Let Fi be the field obtained by adjoining to K0 p-th roots of ασ
i (1 ≤ i ≤ m),

where σ runs over every element of Cn. Then Fi is a Kummer extension of K0 with
exponent p and is a Galois extension of k0. By the conditions (i), (ii) and (iii), the
primes p1, ..., pg split completely in Fi and the extension Fi/K0 is unramified outside
Lσ

i (σ ∈ Cn). It is easy to see that Gal(Fi/K0) is, as A-modules, isomorphic to En(p).
Since ασ

i (1 ≤ i ≤ m, σ ∈ Cn) are multiplicatively independent in K∗
0/(K∗

0 )p, F1, ..., Fm

are linearly disjoint over K0. Therefore, the Galois group Gal(F/K0) is isomorphic to
En(p)⊕m, where F is the composite of F1, ..., Fm.

We shall show that F ∩ k∞ = K0. Let K ′ = F ∩ k∞ and assume, on the contrary,
that K ′ 6= K0. Then there exists at least one prime Lσ

i of K0 which is ramified in K ′.
Let l = Lσ

i ∩ K and l0 = Lσ
i ∩ k0.

As l splits completely in K0, there exists a prime l′0 of k0 such that l0 6= l′0. By the
condition (iii), every prime ideal of K0 lying above l′0 is, over k0, neither conjugate to
Li nor to Lj (j 6= i). Therefore l′0 is unramified in K ′. As l0 is ramified in K ′ and K ′

is a cyclotomic, hence a Galois extension of K, this is a contradiction. Thus we have
F ∩ k∞ = K0.

Now we see that Fi(ζli) is unramified over K0(ζli). This can be verified completely
in the same way as the proof of Lemma 2.6 by noting that li ≡ 1 mod p, i.e. li splits
completely in the subfield Q(ζp) of K0.

Therefore, it follows that the extension Fk∞/k∞ is unramified and the Galois group
Gal(Fk∞/k∞) is isomorphic to En(p)⊕m.
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