
BOTTOM TANGLES AND UNIVERSAL INVARIANTS
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Abstract. A bottom tangle is a tangle in a cube consisting only of arc com-
ponents, each of which has the two endpoints on the bottom line of the cube,
placed next to each other. We introduce a subcategory B of the category of
framed, oriented tangles, which acts on the set of bottom tangles. We give a
finite set of generators of B, which provides an especially convenient way to
generate all the bottom tangles, and hence all the framed, oriented links, via
closure. We also define a kind of “braided Hopf algebra action” on the set of
bottom tangles.

Using the universal invariant of bottom tangles associated to each ribbon
Hopf algebra H, we define a braided functor J from B to the category ModH

of left H–modules. The functor J, together with the set of generators of B,
provides an algebraic method to study the range of quantum invariants of
links. The braided Hopf algebra action on bottom tangles is mapped by J to
the standard braided Hopf algebra structure for H in ModH .

Several notions in knot theory, such as genus, unknotting number, ribbon
knots, boundary links, local moves, etc. have new algebraic definitions in the
setting involving the category B. The functor J provides a convenient way to
study the relationships between these notions and quantum invariants.

1. Introduction

The notion of category of tangles [83, 79] plays a crucial role in the study of
the quantum link invariants. One can define most quantum link invariants as
braided functors from the category of (possibly colored) framed, oriented tangles to
another braided category which is algebraically defined. An important class of such
functorial tangle invariants is introduced by Reshetikhin and Turaev [73]: Given a
ribbon Hopf algebraH over a field k, there is a canonically defined functor F : TH →

Mod
f
H of the category TH of framed, oriented tangles colored by finite-dimensional

representations of H into the category Mod
f
H of finite-dimensional left H–modules.

The Jones polynomial [29] and many other polynomial link invariants [11, 70, 5, 28,
34] can be understood in this setting, where H is a quantized enveloping algebra of
simple Lie algebra.

One of the fundamental problems in the study of quantum link invariants is to
determine the range of a given invariant over a given class of links. So far, the
situation is far from satisfactory. For example, the range of the Jones polynomial
for knots is not completely understood yet.
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Figure 1. (a) A 3–component bottom tangle T = T1 ∪ T2 ∪ T3.
(b) The closure cl(T ) = L1 ∪ L2 ∪ L3 of T .

The purpose of the present paper is to provide a useful algebraic setting for the
study of the range of quantum invariants of links and tangles. The main ingredients
of this setting are

• a special kind of tangles of arcs, which we call bottom tangles,
• a braided subcategory B of the category T of (uncolored) framed, oriented

tangles, which “acts” on the set of bottom tangles by composition, and
provides a convenient way to generate all the bottom tangles,

• for each ribbon Hopf algebraH over a commutative, unital ring k, a braided
functor J : B→ ModH from B to the category of left H–modules.

1.1. Bottom tangles. When one studies links in the 3–sphere, it is often useful
to represent a link as the closure of a tangle consisting only of arc components. In
such an approach, one first study tangles, and then obtains results for links from
those for tangles, via the closure operation. The advantage of considering tangles
of arcs is that one can paste tangles together to obtain another tangle, and such
pasting operations produce useful algebraic structures. For example, the set of
n–component string links, up to ambient isotopy fixing endpoints, forms a monoid
with multiplication induced by vertical pasting.

Bottom tangles, which we will study in the present paper, are another kind of
tangles of arcs. An n–component bottom tangle T = T1∪· · ·∪Tn is a framed tangle
consisting of n arcs T1, . . . , Tn in a cube such that all the endpoints of T are on
a line at the bottom square of the cube, and for each i = 1, . . . , n the component
Ti runs from the 2ith endpoint on the bottom to the (2i − 1)st endpoint on the
bottom, where the endpoints are counted from the left. The component Ti is called
the ith component of T . For example, see Figure 1 (a).

For n ≥ 0, let BTn denote the set of the ambient isotopy classes, relative to
endpoints, of n–component bottom tangles. (As usual, we will often confuse a
tangle and its ambient isotopy class.)

There is a natural closure operation which transforms an n–component bottom
tangle T into an n–component framed, oriented, ordered link cl(T ), see Figure 1
(b). This operation induces a function

cln = cl : BTn → Ln,

where Ln denotes the set of the ambient isotopy classes of n–component, framed,
oriented links in the 3–sphere. It is clear that cln is surjective, i.e., for any link L
there is a bottom tangle T such that cl(T ) = L. Consequently, one can use bottom
tangles to represent links. In many situations, one can divide the study of links
into the study of bottom tangles and the study of the effect of closure operation.

Remark 1.1. The notion of bottom tangle has appeared in many places in knot
theory, both explicitly and implicitly, and is essentially equivalent to the notion of
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based links, as is the case with string links. We will establish a specific one-to-one
correspondence between bottom tangles and string links in Section 13.

1.2. An approach to quantum link invariants using universal invariants

of bottom tangles.

1.2.1. Universal link invariants associated to ribbon Hopf algebras. For each ribbon
Hopf algebra H , there is an invariant of links and tangles, which is called the
universal invariant associated to H , introduced by Lawrence [44, 45] in the case
of links and quantized enveloping algebras. Around the same time, Hennings [26]
formulated link invariants associated to quasitriangular Hopf algebras which do not
involve representations but involve trace functions on the algebras. Reshetikhin
[71, Section 4] and Lee [47] considered universal invariants of (1, 1)–tangles (i.e.,
tangles with one endpoint on the top and one on the bottom) with values in the
center of a quantum group, which can be thought of as the (1, 1)–tangle version of
the universal link invariant. Universal invariants are further generalized to more
general oriented tangles by Lee [48, 49, 50] and Ohtsuki [64]. Kauffman [35] and
Kauffman and Radford [38] defined functorial versions of universal tangle invariant
for a generalization of ribbon Hopf algebra which are called “(oriented) quantum
algebra”.

The universal link invariants are defined at the quantum group level and they
do not require any representations. The universal link invariant have a universal-
ity property that colored link invariants can be obtained from the universal link
invariants by taking traces in the representations attached to components. Thus,
in order to study the range of the representation-colored link invariants, it suffices,
in theory, to study the range of the universal invariant.

1.2.2. Universal invariant of bottom tangles and their closures. Here, we will briefly
describe the relationship between the colored link invariants and the universal in-
variants, using bottom tangles.

Let H be a ribbon Hopf algebra over a commutative ring k with unit. For
an n–component bottom tangle T ∈ BTn, the universal invariant JT = JH

T of T
associated to H takes value in the n–fold tensor product H⊗n of H . Roughly
speaking, JT ∈ H

⊗n is obtained as follows. Choose a diagram D of T . At each
crossing of D, place a copy of universal R–matrix R ∈ H⊗2, which is modified in
a certain rule using the antipode S : H → H . Also, place some grouplike elements
on the local maxima and minima. Finally, read off the elements placed on each
component of H . An example is given in Figure 18 in Section 7.3. For a more
precise and more general definition, see Section 7.3.

For each n ≥ 0, the universal invariant defines a function

J : BTn → H⊗n, T 7→ JT .

In this section we do not give the definition of the universal invariant of links,
but it can be obtained from the universal invariant of bottom tangles, as we explain
below. Set

(1.1) N = Spank{xy − yS
2(x) | x, y ∈ H} ⊂ H.

The projection

trq : H → H/N
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is called the universal quantum trace, since if k is a field and V is a finite-dimensional
left H–module, then the quantum trace trV

q : H → k in V factors through trq .

The universal link invariant JL ∈ (H/N)⊗n for an n–component framed link
L ∈ Ln, which we define in Section 7.3, satisfies

JL = tr⊗n
q (JT ),

where T ∈ BTn satisfies cl(T ) = L.

1.2.3. Reduction to the colored link invariant. Suppose k is a field, and let V1, . . . , Vn

be finite-dimensional left H–modules. Then the quantum invariant JL;V1,...,Vn
of

an n–component colored link (L;V1, . . . , Vn) can be obtained from JL by

JL;V1,...,Vn
= (t̄r

V1

q ⊗ · · · ⊗ t̄r
Vn

q )(JL).

where t̄r
Vi

q : H/N → k is induced by the quantum trace trVi
q : H → k. Hence if

cl(T ) = L, T ∈ BTn, we have

JL;V1,...,Vn
= (trV1

q ⊗ · · · ⊗ trVn

q )(JT ).

These facts can be summarized into a commutative diagram:

(1.2) BTn
J

//

cln

��

H⊗n

Nn
i=1 tr

Vi
q

((P

P

P

P

P

P

P

P

P

P

P

P

P

P

tr⊗n
q

��

Ln
J

// (H/N)⊗n
Nn

i=1 t̄r
Vi
q

// k.

Given finite-dimensional left H–modules V1, . . . , Vn, we are interested in the
range of JL;V1,...,Vn

∈ k for L ∈ Ln. Since cln is surjective, it follows from (1.2) that

{JL;V1,...,Vn
| L ∈ Ln} = (t̄r

V1

q ⊗ · · · ⊗ t̄r
Vn

q )(J(Ln))

= (trV1
q ⊗ · · · ⊗ trVn

q )(J(BTn)).
(1.3)

Hence, to determine the range of the representation-colored link invariants, it suf-
fices to determine the images J(BTn) ⊂ H⊗n for n ≥ 0 and to study the maps
trVi

q .

1.3. A category B acting on bottom tangles. To study bottom tangles, and,
in particular, to determine the images J(BTn) ⊂ H⊗n, it is useful to introduce a
braided subcategory B of the category T of (uncolored) framed, oriented tangles
which acts on bottom tangles by composition.

Here we give a brief definition of B, assuming familiarity with the braided cate-
gory structure of T . For the details, see Section 3.

The objects of B are the expressions b⊗n for n ≥ 0. (Later, b is identified with
an object b =↓ ⊗ ↑ in T .) For m,n ≥ 0, a morphism T from b⊗m to b⊗n is the
ambient isotopy class relative to endpoints of a framed, oriented tangle T satisfying
the following.

(1) There are 2m (resp. 2n) endpoints on the top (resp. bottom), where the
orientations are as ↓↑ · · · ↓↑.

(2) For any m–component bottom tangle T ′, the composite TT ′ (obtained by
stacking T ′ on the top of T ) is an n–component bottom tangle.
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(a) (b) (c)

T

T’

Figure 2. (a) A morphism T ∈ B(3, 2). (b) A bottom tangle
T ′ ∈ BT3. (c) The composite TT ′ ∈ BT2.

It follows that T consists of m+ n arc components and no circle components. For
example, see Figure 2 (a). The set B(b⊗m, b⊗n) of morphisms from b⊗m to b⊗n in
B will often be denoted simply by B(m,n). The composite of two morphisms in B

is pasting of two tangles vertically, and the identity morphism 1b⊗m =↓↑ · · · ↓↑ is
a tangle consisting of 2m vertical arcs. The monoidal structure is given by pasting
two tangles side by side. The braiding is defined in the usual way; i.e., the braiding

for the generating object b ∈ Ob(B) and itself is given by ψb,b = . For each
n ≥ 0, we can identify BTn with B(0, n). The category B acts on BT =

∐

n≥0 BTn

via the functions

B(m,n)× BTm → BTn, (T, T ′) 7→ TT ′.

One may regard this action as a functor

BT
B = B(1,−) : B→ Sets

from B to the category Sets of sets, which maps an object b
⊗n into BTn.

1.4. A braided functor J : B → ModH . Let ModH denote the category of left
H–modules, with the standard braided category structure. Unless otherwise stated,
we regard H as a left H–module with the left adjoint action.

We study a braided functor

J : B→ ModH ,

which is roughly described as follows. For the details, see Section 8. For objects, we
set J(b⊗n) = H⊗n, where H⊗n is given the standard tensor product left H–module
structure. For T ∈ B(m,n), the leftH–module homomorphism J(T ) : H⊗m → H⊗n

maps x =
∑

x1 ⊗ · · · ⊗ xm ∈ H⊗m to the element J(T )(x) in H⊗n obtained as
follows. Set

ηb = ∈ B(0, 1),

and set for m ≥ 0

ηm = η⊗m
b

= · · · ∈ B(0,m).

Consider a diagram for the composite Tηm, and put the element xi on the ith
component (from the left) of ηm for i = 1, . . . ,m, and put the copies of universal
R–matrix and the grouplike element on the strings of T as in the definition of JT .
Then the element J(T )(x) ∈ H⊗n is read off from the diagram. (See Figure 21 in
Section 8.2 to get a hint for the definition.) We will see in Section 8.2 that J(T ) is
a left H–module homomorphism, and J is a well-defined braided functor.
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1.5. Generators of the braided category B. Recall that a (strict) braided
category M is said to be generated by a set X ⊂ Ob(M) of objects and a set
Y ⊂ Mor(M) of morphisms if every object of M is a tensor product of finitely
many copies of objects from X , and if every morphism of M is an iterated ten-
sor product and composite of finitely many copies of morphisms from Y and the
identity morphisms of the objects from X . In the category T , “tensor product and
composite” is “horizontal and vertical pasting of tangles”.

Theorem 1 (Theorem 5.16). As a braided subcategory of T , B is generated by the
object b and the morphisms

ηb = , µb = , v+ = , v− = , c+ = , c− = .

Consequently, any bottom tangle can be obtained by horizontal and vertical
pasting from finitely many copies of the above-listed tangles, the braidings ψb,b, ψ

−1
b,b

and the identity 1b =↓ ↑. Theorem 1 implies that, as a category, B is generated by
the morphisms

f(i,j) = b
⊗i ⊗ f ⊗ b

⊗j

for i, j ≥ 0 and f ∈ {ηb, µb, v±, c±, ψ
±1
b,b}. Theorem 1 provides a convenient way to

generate all the bottom tangles, and hence all the links via closure operation.
We can use Theorem 1 to determine the range J(BT) = {JT | T ∈ BT} of the

universal invariant of bottom tangles as follows. Theorem 1 and functoriality of J

implies that any morphism f in B is the composite of finitely many copies of the
left H–module homomorphisms

(1.4) J(f(i,j)) = 1⊗i
H ⊗ J(f)⊗ 1⊗j

H ,

for i, j ≥ 0 and f ∈ {ηb, µb, v±, c±, ψ
±1
b,b}. Hence we have the following characteri-

zation of the range of J for bottom tangles.

Theorem 2. The set J(BT) is equal to the smallest subset of
∐

n≥0H
⊗n con-

taining 1 ∈ k = H⊗0 and stable under the functions J(f(i,j)) for i, j ≥ 0 and

f ∈ {ηb, µb, v±, c±, ψ
±1
b,b}.

See Section 9.1 for some variants of Theorem 2, which may be more useful in
applications than Theorem 2.

1.6. Hopf algebra action on bottom tangles. Let 〈H〉 denote the free strict
braided category generated by a Hopf algebra H, see Sections 2.2 and 6.1 for more
details. We will construct a left action of 〈H〉 on the set BT of bottom tangles in
the following sense. For each m,n ≥ 0, we construct a function

(1.5) 〈H〉(H⊗m,H⊗n)× BTm → BTn

As in the case of B–action on BT, we may regard this action as a functor

BT
〈H〉 : 〈H〉 → Sets,

which maps H⊗n into BTn.

The two functors BT
B : B→ Sets and BT

〈H〉 : 〈H〉 → Sets are related as follows.
Let 〈A〉 denote the braided category freely generated by an algebra A. Note that
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the morphisms µb : b⊗2 → b and ηb : 1 → b in B define an algebra structure for
the object b. Consider the following diagram

〈A〉
iB,b

−−−−→ B

i〈H〉,H





y





yBT
B

〈H〉 −−−−→
BT〈H〉

Sets.

Here the two arrows iB,b and i〈H〉,H are the unique braided functors that map the
algebra structure for A into those of b and H, respectively. Both iB,b and i〈H〉,H are
faithful. The above diagram turns out to be a commutative diagram of braided
functors. In other words, the action of the algebra structure in B on BT extends to
an action by a Hopf algebra structure on BT.

Remark 1.2. The action of 〈H〉 on BT mentioned above extends to an action of a
category B of “bottom tangles in handlebodies” which we will shortly explain in
Section 14.4. Also, the above Hopf algebra action is closely related to the Hopf
algebra structure in the category C of cobordisms of connected, oriented surfaces
with boundary parameterized by a circle [8, 40], and also to the Hopf algebra
properties satisfied by claspers [21].

Now we explain the relationship between the Hopf algebra action on BT and the
braided functor J : B→ ModH . Let H be a ribbon Hopf algebra, hence in particular
H is quasitriangular. Recall that the transmutation H of a quasitriangular Hopf
algebra H is a braided Hopf algebra structure in ModH defined for the object H
with the left adjoint action in the braided category ModH , with the same algebra
structure and the same counit as H but with “twisted” comultiplication ∆: H →
H ⊗H and antipode S : H → H . For the details, see [54, 55] or Section 8.1. The
transmutation H yields a braided functor FH : 〈H〉 → ModH , which maps the Hopf
algebra structure of H into that of H . Via FH , the category 〈H〉 acts on the H⊗n

as

〈H〉(H⊗m,H⊗n)×H⊗m → H⊗n, (f, x) 7→ FH(f)(x).

We have the following commutative diagram

〈H〉(H⊗m,H⊗n)× BTm −−−−→ BTn

id×J





y





y
J

〈H〉(H⊗m,H⊗n)×H⊗m −−−−→ H⊗n.

This means that the Hopf algebra action on the bottom tangles is mapped by
the universal invariant maps J : BTn → H⊗n into the Hopf algebra action on
the H⊗n, defined by transmutation. This fact may be considered as a topological
interpretation of transmutation.

1.7. Local moves. The setting of bottom tangles and the category B is also useful
in studying local moves on bottom tangles, and hence on links. Recall that a type
of local move can be defined by specifying a pair of tangles (t, t′) in a 3–ball with the
same set of endpoints and with the same orientations and framings at the endpoints.
Two tangles u and u′ in another 3–ball B are said to be related by a (t, t′)–move
if u′ is, up to ambient isotopy which fixes endpoints, obtained from u by replacing
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Figure 3. The Borromean tangle B.

a “subtangle” t in u with a copy of t′. Here, by a subtangle of a tangle u in B we
mean a tangle u ∩ B′ contained in a 3–ball B′ ⊂ intB.

In the following, we restrict our attention to the case where both the tangles t and
t′ consist only of arcs. In this case, we can choose two bottom tangles T, T ′ ∈ BTn

such that the notion of (t, t′)–move is the same as that of (T, T ′)–move.
The following result implies that the notion of (T, T ′)–move for bottom tangles,

where T, T ′ ∈ BTn, can be formulated in a totally algebraic way within the category
B.

Theorem 3 (Consequence of Proposition 5.5 and a special case of Theorem 5.8).
Let T, T ′ ∈ BTm and U,U ′ ∈ BTn with m,n ≥ 0. Then U and U ′ are related
by a (T, T ′)–move if and only if there is W ∈ B(m,n) such that U = WT and
U ′ = WT ′.

The setting of bottom tangles and the category B is useful in studying local moves
on bottom tangles. In Section 5, we formulate in algebraic terms the following
typical questions in the theory of local moves, under some mild conditions.

• When are two bottom tangles related by a sequence of a given set of local
moves? (Proposition 5.11.)

• When are two bottom tangles equivalent under the equivalence relation
generated by a given set of local moves? (Proposition 5.12.)

• When is a bottom tangle related to the trivial bottom tangle ηn by just
one local move of a given type? (Theorem 5.14.)

• When is a bottom tangle equivalent to ηn under the equivalence relation
generated by a given set of local moves? (Corollary 5.15.)

It is easy to modify the answers to the above questions for bottom tangles into those
for links, via closure. Some of the algebraic formulations of the above questions are
combined with the functor J in Section 9.1.

A remarkable application of the algebraic formulation of local moves is the fol-
lowing. A delta move [58], or a Borromean transformation [56], can be defined
as a (η3, B)–move, where B ∈ BT3 is the Borromean tangle depicted in Figure 3.
An n–component link has a zero linking matrix if and only if it is related to the
n–component unlink by a sequence of delta moves [58]. Using the obvious variation
of this fact for bottom tangles, we obtain the following.

Theorem 4 (Part of Corollary 9.13). A bottom tangle with zero linking matrix is
obtained by pasting finitely many copies of 1b, ψb,b, ψ

−1
b,b , µb, ηb, γ+, γ−, B, where

γ+ = , γ− = ∈ B(1, 2).

For applications of Theorem 4 to the universal invariant of bottom tangles with
zero linking matrix, see Corollary 9.15, which states that the universal invariant
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associated to a ribbon Hopf algebra H of n–component bottom tangles with zero
linking matrix is contained in a certain subset of H⊗n. The case of the quantized
enveloping algebra Uh(g) of simple Lie algebra g will be used in future publications
[24] (for g = sl2) and [25] (for general g) to show that there is an invariant of integral
homology spheres with values in the completion lim

←−n
Z[q]/((1−q)(1−q2) · · · (1−qn))

studied in [23], which unifies the quantum g invariants at all roots of unity, as
announced in [22], [66, Conjecture 7.29].

1.8. Other applications. The setting of bottom tangles, the category B and the
functor J can be applied to the following notions in knot theory: unknotting num-
ber (Section 9.2), Seifert surface, knot genus and boundary links (Section 9.3), un-
oriented spanning surface, crosscap number and Z2–boundary links (Section 9.4),
clasper moves (Section 9.6), Goussarov–Vassiliev finite type invariants (Section 9.7),
twist moves and Fox’s congruence (Section 9.8), ribbon knots (Section 11.2), and
the Hennings 3–manifold invariants (Section 12).

1.9. Organization of the paper. Here we briefly explain the organization of the
rest of the paper. Section 2 provides some preliminary facts and notations about
braided categories and Hopf algebras. In Section 3, we recall the definition of the
category T of framed oriented tangles, and define the subcategory B of T . In
Section 4, we study a subcategory B0 of B, which is used in Section 5, where we
study local moves on tangles and give a set of generators of B. Section 6 deals with
the Hopf algebra action on bottom tangles. In Section 7, we recall the definition
of the universal tangle invariant and provide some necessary facts. In Section 8,
we define and study the braided functor J : B → ModH . In Section 9, we give
several applications of the results in the previous sections to the values of the
universal invariant. In Section 10, we modify the functor J into a braided functor
J̃ : B → ModH , which is useful in the study of the universal invariants of bottom
knots. In Section 11, we define a refined version of the universal link invariant by
giving a necessary and sufficient condition that two bottom tangles have the same
closures. In Section 12, we reformulate the Hennings invariant of 3–manifolds in
our setting, using an algebraic version of Kirby calculus. In Section 13, we relate
the structure of the sets of bottom tangles to the sets of string links. Section 14
gives some remarks.

Remark 1.3. Very recently, a paper by Bruguières and Virelizier [6], part of which
is closely related to part of the present paper, appeared. The present paper is
independent to [6] (except this Remark 1.3).

The notion of bottom tangle is equivalent to that of “ribbon handle” in [6].
Theorem 1 is related to [6, Theorems 1.1 and 3.1]. Section 12 is related to [6,
Section 5]. Section 13 is closely related to [6].

2. Braided categories and Hopf algebras

In this section, we fix some notations concerning monoidal and braided cate-
gories, and braided Hopf algebras.

If C is a category, then the set (or class) of objects in C is denoted by Ob(C),
and the set (or class) of morphisms in C is denoted by Mor(C). For a, b ∈ Ob(C),
the set of morphisms from a to b is denoted by C(a, b). For a ∈ Ob(C), the identity
morphism 1a ∈ C(a, a) of a is sometimes denoted by a.
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2.1. Monoidal and braided categories. We use the following notation for monoidal
and braided categories. See [53] for the definitions of monoidal and braided cate-
gories. If M is a monoidal category (also called tensor category), then the tensor
functor is denoted by ⊗M and the unit object by 1M. We omit the subscript M
and write ⊗M = ⊗ and 1M = 1 if there is no fear of confusion. If M is a braided
category, then the braiding of a, b ∈ Ob(M) is denoted by

ψM
a,b = ψa,b : a⊗ b→ b⊗ a

for a, b ∈ Ob(M).
Definition of monoidal category involves also the associativity and the unitality

constraints, which are functorial isomorphisms

a⊗ (b⊗ c)
'
→ (a⊗ b)⊗ c, 1⊗ a

'
→ a, a⊗ 1

'
→ a.

A monoidal category is called strict if these constraints are identity morphisms. In
what follows, a strict monoidal category is simply called a “monoidal category”.
Similarly, a strict braided category is called a “braided category”. Also, we some-
times need nonstrict monoidal or braided categories, such as the category of left
modules over a Hopf algebra. When this is the case, we usually suppress the asso-
ciativity and the unitality constraints, and we argue as if they are strict monoidal
or braided categories. This should not cause confusion.

A strict monoidal functor from a (strict) monoidal category M to a (strict)
monoidal categoryM′ is a functor F : M→M′ such that

F⊗ = ⊗(F × F ) : M×M→M′,

F (1M) = 1M′ .

That is, a strict monoidal functor is a functor which (strictly) preserves ⊗ and
1. Unless otherwise stated, a “monoidal functor” will mean a strict monoidal
functor. A braided functor from a braided categoryM to a braided categoryM′ is a
monoidal functor F : M→M′ such that F (ψM

a,b) = ψM′

F (a),F (b) for all a, b ∈ Ob(M).

A monoidal category M is said to be generated by a set X ⊂ Ob(M) of objects
and a set Y ⊂ Mor(M) of morphisms if every object of M is a tensor product of
finitely many copies of objects from X , and every morphism of M is an iterated
tensor product and composite of finitely many copies of morphisms from Y and
the identity morphisms of the objects from X . A braided category M is said to
be generated by X ⊂ Ob(M) and Y ⊂ Mor(M) if M is generated as a monoidal
category by X and Y ∪ {ψ±1

x,y | x, y ∈ X}.

2.2. Algebras and Hopf algebras in braided categories. Here we fix the
notations for algebras and Hopf algebras in a monoidal or braided category. We
refer the reader to [54, 55] for the details.

An algebra (also called monoid) in a monoidal category M is an object A
equipped with morphisms µ : A ⊗ A → A (multiplication) and η : 1 → A (unit)
satisfying

µ(µ⊗A) = µ(A⊗ µ), µ(η ⊗A) = 1A = µ(A⊗ η).

A coalgebra C in M is an object C equipped with morphisms ∆: A → A ⊗ A
(comultiplication) and ε : A→ 1 (counit) satisfying

(∆⊗A)∆ = (A⊗∆)∆, (ε⊗A)∆ = 1A = (A⊗ ε)∆.
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Figure 4. A tangle T : ↓ ⊗ ↓ ⊗ ↑→↑ ⊗ ↓ ⊗ ↓.

A Hopf algebra in a braided category M is an object H in M equipped with
an algebra structure µ, η, a coalgebra structure ∆, ε and a morphism S : A → A
(antipode) satisfying

εη = 11, ∆η = η ⊗ η, εµ = ε⊗ ε,

∆µ = (µ⊗ µ)(A⊗ ψA,A ⊗A)(∆⊗∆),

µ(A⊗ S)∆ = µ(S ⊗A)∆ = ηε.

Later, we sometimes use the notations µA = µ, ηA = η, ∆A = ∆, εA = ε,
SA = S, to distinguish structure morphisms from different Hopf algebras.

A Hopf algebra (in the usual sense) over a commutative, unital ring k can be
regarded as a Hopf algebra in the symmetric monoidal category of k–modules.

If A is an algebra in M, then let µ
[n]
A = µ[n] : A⊗n → A (n ≥ 0) denote the

n–input multiplication defined by µ[0] = η, µ[1] = 1A, and

µ[n] = µ(µ⊗ 1) · · · (µ⊗ 1⊗(n−2))

for n ≥ 2. Similarly, if C is an coalgebra, then let ∆
[n]
C = ∆[n] : C → C⊗n denote

the n–output comultiplication defined by ∆[0] = ε, ∆[1] = 1C and

∆[n] = (∆⊗ 1⊗(n−2)) · · · (∆⊗ 1)∆

for n ≥ 2.

3. The category T of tangles and the subcategory B

In this section, we first recall the definition of the category T of framed, oriented
tangles. Then we give a precise definition of the braided subcategory B of T .

In the rest of the paper, an “isotopy” between two tangles will mean “ambient
isotopy fixing endpoints”. Thus, two tangles are said to be “isotopic” if they are
ambient isotopic relative to endpoints.

3.1. The category T of tangles. Here we recall the definition of the braided
category T of framed, oriented tangles, and fix the notations. For details, see
[83, 79, 10, 77, 80, 31, 85].

The objects in the category T are the tensor words of symbols ↓ and ↑, i.e.,
the expressions x1 ⊗ · · · ⊗ xn with x1, . . . , xn ∈ {↓, ↑}, n ≥ 0. The tensor word of
length 0 is denoted by 1 = 1T . The morphisms T : w → w′ between w,w′ ∈ Ob(T )
are the isotopy classes of framed, oriented tangles in a cube [0, 1]3 such that the
endpoints at the top are described by w and those at the bottom by w′, see Figure 4
for example. We will use the blackboard framing convention in the figures. In what
follows, by “tangles” we mean framed, oriented tangles unless otherwise stated. As
usual, we will systematically confuse a morphism in T and a tangle representing it.
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The composite gf of a composable pair (f, g) of morphisms in T are obtained
by placing g below f , and the tensor product f ⊗ g of two morphisms f and g is
obtained by placing g on the right of f . Graphically,

gf =

...

...

...

f

g
, f ⊗ g =

...

...
f

...

...
g

.

The braiding ψw,w′ : w ⊗ w′ → w′ ⊗ w for w,w′ ∈ Ob(T ) is the positive braiding
of parallel families of strings. For w ∈ Ob(T ), the dual w∗ ∈ Ob(T ) of w is defined
by 1∗ = 1, ↓∗=↑, ↑∗=↓, and

(x1 ⊗ · · · ⊗ xn)∗ = x∗n ⊗ · · · ⊗ x
∗
1 (x1, . . . , xn ∈ {↓, ↑}, n ≥ 2).

For w ∈ Ob(T ), let

evw : w∗ ⊗ w → 1, coevw : 1→ w ⊗ w∗

denote the duality morphisms. For each object w in T , let tw : w → w denote the
positive full twist defined by

tw = (w ⊗ evw∗)(ψw,w ⊗ w
∗)(w ⊗ coevw) =

w

w .

It is well known that T is generated as a monoidal category by the objects ↓, ↑
and the morphisms

ψ↓,↓ = , ψ−1
↓,↓ = , ev↓ = , ev↑ = , coev↓ = , coev↑ = .

3.2. The braided subcategory B of T . Two tangles T, T ′ ∈ T (w,w′), w,w′ ∈
Ob(T ), are said to be homotopic (to each other) if there is a homotopy between T
and T ′ which fixes the endpoints, where the framings are ignored. We write T ∼

h
T ′

if T and T ′ are homotopic. Note that two tangles are homotopic if and only if they
are related by a finite sequence of isotopies, crossing changes, and framing changes.

Now we define a braided subcategory B of T . Set Ob(B) = {b⊗m | m ≥ 0} ⊂
Ob(T ), where we set b =↓ ⊗ ↑∈ Ob(T ). Set

ηb = coev↓ = ∈ T (1, b)

and

ηn = η⊗n
b
∈ T (1, b⊗n) for n ≥ 0.

For m,n ≥ 0, set

B(b⊗m, b⊗n) = {T ∈ T (b⊗m, b⊗n) | Tηm ∼
h
ηn}.

If T ∈ B(b⊗l, b⊗m) and T ′ ∈ B(b⊗m, b⊗n), then we have T ′Tηl ∼
h
T ′ηm ∼

h
ηn, hence

T ′T ∈ B(b⊗l, b⊗n). Clearly, we have 1b⊗n ∈ B(b⊗n, b⊗n). Hence Ob(B) and the
B(b⊗m, b⊗n) form a subcategory of T .

If T ∈ B(b⊗m, b⊗n) and T ′ ∈ B(b⊗m′

, b⊗n′

), then we have

(T ⊗ T ′)ηm+m′ = (Tηm)⊗ (T ′ηm′) ∼
h
ηn ⊗ ηn′ = ηn+n′ .

We also have 1 ∈ Ob(B). Hence B is a monoidal subcategory of T .
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We have ψ±1
b,bη2 = η2, hence ψ±1

b,b ∈ B(b⊗2, b⊗2). Since the object b generates

the monoid Ob(B), it follows that ψb⊗m,b⊗n ∈ B(b⊗(m+n), b⊗(m+n)). Hence B is a
braided subcategory of T .

For simplicity of notation, we set

B(m,n) = B(b⊗m, b⊗n)

for m,n ≥ 0. We use the similar notation for subcategories of B defined later.
For n ≥ 0, we have

B(0, n) = {T ∈ T (1, b⊗n) | T ∼
h
ηn}.

Hence we can naturally identify B(0, n) with the set BTn of isotopy classes of n–
component bottom tangles.

4. A subcategory B0 of B

In this section, we introduce a braided subcategory B0 of B, and give a set of
generators of B0. The category B0 is used in Section 5.

4.1. Definition of B0. Let B0 denote the subcategory of B with Ob(B0) = Ob(B)
and

B0(m,n) = {T ∈ B(m,n) | Tηm = ηn}

for m,n ≥ 0. It is straightforward to check that the category B0 is well-defined and
it is a braided subcategory of B. Note that we have B0(0, n) = {ηn}.

Set

γ+ = (↓ ⊗ψb,↑ψ↑,b)(coev↓ ⊗ b) = ∈ B0(1, 2),

γ− = (↓ ⊗ψ−1
↑,bψ

−1
b,↑)(coev↓ ⊗ b) = ∈ B0(1, 2),

t+− = t↓ ⊗ t
−1
↑ ∈ B0(1, 1).

Note that t+− is an isomorphism.
The purpose of this section is to prove the following theorem, which is used in

Section 5.

Theorem 4.1. As a braided subcategory of B, B0 is generated by the object b and
the morphisms µb, ηb, γ+, γ−, t+−, t

−1
+−.

The proof of Theorem 4.1 is given in Section 4.3, after giving a lemma on string
links in Section 4.2.

4.2. A clasper presentation for string links. To prove the case of “doubled
string links” of Theorem 4.1 (see Section 4.3.1), we need a lemma which presents
an n–component string link as the result of surgery on 1↓⊗n along some claspers
[17, 21]. In this and the next subsections (but not elsewhere in this paper), a
“clasper” means a “strict tree clasper of degree 1” in the sense of [21], i.e., a clasper
consisting of two disc-leaves and one edge which looks as depicted in Figure 5 (a).
One can perform surgery on a clasper as depicted in Figure 5 (b), see [21, Remark
2.4]. We also use the fact that the result of surgery on another clasper C ′ depicted
in Figure 5 (c) is as depicted in Figure 5 (d).
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surgery
along C

(b) (c)

C’
surgery
along C’

(d)

C

(a)

Figure 5. Here each string may be replaced with parallel strings.

’

(b)

β
β

(c) (d)(a)

Figure 6

For n ≥ 0, let SLn denote the submonoid of T (↓⊗n, ↓⊗n) consisting of the isotopy
classes of the n–component framed string links. Thus we have

SLn = {T ∈ T (↓⊗n, ↓⊗n) | T ∼
h
↓⊗n}.

Lemma 4.2. If T ∈ SLn, then there are mutually disjoint claspers C1, . . . , Cr

(r ≥ 0) for 1↓⊗n satisfying the following properties.

(1) The tangle T is obtained from 1↓⊗n by surgery along C1, . . . , Cr and framing
change.

(2) 1↓⊗n and C1, . . . , Cr is obtained by pasting horizontally and vertically finitely
many copies of the following:

, edge , edge , edge, edge, edge,

edge

.

Proof. In this proof, we can ignore the framings.
As is well known, we can express T as a “partially closed braid” in the sense

that there is an integer p ≥ 1 and a pure braid β ∈ T (↓⊗np, ↓⊗np) of np strings
such that

T = (↓⊗n ⊗ev↑⊗n(p−1))(ψ↓⊗n(p−1) ,↓⊗nβ⊗ ↑⊗n(p−1))(↓⊗n ⊗coev↓⊗n(p−1)),

see Figure 6 (a). By isotopy, T can be expressed as in Figure 6 (b), where β ′ =
((t↓⊗n)⊗(p−1)⊗ ↓⊗n)β is a pure braid, and where the upward parts of the strings
run under, and are not involved in, the pure braid β′. We express β′ as the product
of copies of generators Ai,j (1 ≤ i < j ≤ np) of the np–string pure braid group and
their inverses. Here Ai,j is as depicted in Figure 7 (a). (See [2] for the generators of

the pure braid group.) Using claspers, we can express A±1
i,j as depicted in Figure 7

(b), (c). Let T0 denote the string link obtained from the tangle depicted in Figure
6 (b) by replacing the pure braid β′ by 1↓⊗np . There are claspers C ′

1, . . . , C
′
r (r ≥ 0)
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np1 i j

=i,jA ... ...
...

...

np1 i j

=i,jA ... ...
...

...

...

np1 i j

=Ai,j
−1 ...

...

...

(a) (b) (c)

Figure 7

for T0 corresponding to the generators and inverses involved in β ′ such that surgery
on T0 along C ′

1, . . . , C
′
r yields T , see e.g. Figure 6 (c). We can isotop T0, C

′
1, . . . , C

′
r

to the identity braid 1↓⊗n and claspers C1, . . . , Cr satisfying the desired properties,
as is easily seen from Figure 6 (d). �

The rest of this subsection is not necessary in the rest of the paper, but seems
worth mentioned. Let S denote the monoidal subcategory of T generated by the
objects ↓, b and the following morphisms

t↓, t
−1
↓ : ↓→↓, ψ↓,b : ↓ ⊗b→ b⊗ ↓, ψ−1

↓,b : b⊗ ↓→↓ ⊗b,

δ+ = , δ− = : ↓→↓ ⊗b, α = : b⊗ ↓→↓ .

Proposition 4.3. For n ≥ 0, we have SLn = S(↓⊗n, ↓⊗n).

Proof. The inclusion SLn ⊂ S(↓⊗n, ↓⊗n) easily follows from Lemma 4.2. We prove
the other inclusion S(↓⊗n, ↓⊗n) ⊂ SLn. Let S0 denote the monoidal subcategory
of T generated by the objects ↓, b and the morphisms ψ↓,b, ψ

−1
↓,b, ↓ ⊗ηb, α. We

can prove that S0(↓
⊗n, ↓⊗n) = {1↓⊗n}. Since any morphism in S is homotopic to

a morphism in S0, the assertion follows. �

Proposition 4.3 may be useful in studying quantum invariants of string links.
For another approach to string links, see Section 13.

4.3. Proof of Theorem 4.1. In this subsection we prove Theorem 4.1. Let B′
0

denote the braided subcategory of B generated by the object b and the morphisms

ηb, µb, γ+, γ−, t+−, t
−1
+−, tb, t

−1
b
, γ′+, γ

′
−,

where

γ′+ = , γ′− = : b→ b
⊗2.

Since these morphisms are in B0, it follows that B′
0 is a subcategory of B0. Since

t±1
b

= µbγ∓t
∓1
+−, γ′± = ψ±1

b,bγ∓,

it follows that B′
0 is generated as a braided subcategory of B by the object b and the

morphisms µb, ηb, γ+, γ−, t+−, t
−1
+−. Hence it suffices to prove that any morphism

in B0 is in B
′
0.
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surgery isotopysurgery isotopy

Figure 8

4.3.1. The case of doubled string links. We here prove that if T ∈ B0(n, n) is ob-
tained from a framed string link T ′ ∈ SLn by doubling each component, then we
have T ∈ B′

0(n, n).
By Lemma 4.2, there are disjoint claspers C1, . . . , Cr (r ≥ 0) for 1b⊗n and integers

l1, . . . , ln ∈ Z satisfying the following properties.

(1) T̃ = T (tl1
b
⊗ · · · ⊗ tln

b
) is obtained from 1↓⊗n by surgery along C1, . . . , Cr.

(2) 1↓⊗n and C1, . . . , Cr is obtained by pasting horizontally and vertically
finitely many copies of the following:

, edge , edge , edge, edge, edge,

edge

.

Surgery on each Ci moves the band intersecting the lower leaf of Ci and let it clasp
with the band intersecting the upper leaf of Ci, and we can isotop the result of
surgery to the tangle representing a morphism in B′

0 as depicted in Figure 8. Hence

it follows that T̃ is in B′
0. Since tl1

b
⊗ · · · ⊗ tln

b
∈ B′

0, we have T ∈ B′
0.

4.3.2. The general case. Suppose that a tangle T in the cube [0, 1]3 represents a
morphism T ∈ B0(m,n). We also assume that the endpoints of T are contained in
the two intervals { 1

2} × [0, 1]× {ξ}, ξ = 0, 1.

For i = 1, . . . ,m, let ci denote the interval in { 1
2} × [0, 1]× {1} bounded by the

(2i− 1)st and the 2ith upper endpoints of T . Set c = c1 ∪ · · · ∪ cm. Similarly, for
j = 1, . . . , n, let dj denote the interval in { 1

2}× [0, 1]×{0} bounded by the (2j−1)st
and the 2jth lower endpoints of T . Set d = d1∪· · ·∪dn. Note that T ∪ c consists of
n disjoint arcs e1, . . . , en, such that ∂ej = ∂dj for j = 1, . . . , n. Set e = e1∪· · ·∪en.

Consider Tηm, which is regarded as a tangle in [0, 1]2 × [0, 2], where the lower
cube [0, 1]2× [0, 1] contains T and the upper cube [0, 1]2 × [1, 2] contains ηm. Note
that e ⊂ [0, 1]2 × [0, 2] can be regarded as a tangle, and is equivalent to Tηm, and
hence, by the assumption, equivalent to ηn (after identifying [0, 1]3 and [0, 1]2×[0, 2]
in a natural way). Hence for j = 1, . . . , n, ej ∪dj bounds a disc Dj in [0, 1]2× [0, 2],
where D1, . . . , Dn are disjoint. Here each Di is chosen so that the framing of ei∪di

induced by Di is the same as the framing of ei ∪ di induced by that of T . (Here we
use the convention that the framing of oriented tangle component is given by the
blackboard framing convention, see Figure 9.) Set D = D1 ∪ · · · ∪Dn.

Let π : [0, 1]2 × {1} → [0, 1]2 denote the projection. Using a small isotopy if
necessary, we may assume that for small ε > 0 we have the following.

• N = π(c)× [1− ε, 1] is a regular neighborhood of c in D.
• e \N ⊂ [0, 1]2 × [0, 1− ε).
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c i c i’ c i’’

d j

......

... ... ... ...

Figure 9. Here the small arrows determines the framing of e ∪ d
near c ∪ d

For i = 1, . . . ,m, let Ui denote a small regular neighborhood of ci in [0, 1]2×{1}.
Using an isotopy of [0, 1]2 × [0, 2] fixing [0, 1]3, we can assume that for each i =
1, . . . ,m, we have

(

π(Ui)× (1, 2]
)

∩D = π(Ui)× {pi,1, . . . , pi,li},

where 1 < pi,1 < · · · < pi,li < 2, li ≥ 0. Define a piecewise-linear homeomorphism
f : [0, 2]→ [0, 1] by

f(t) =

{

t, if 0 ≤ t ≤ 1− ε,
εt+(1−ε)

1+ε
, if 1− ε ≤ t ≤ 2.

Let f̃ : [0, 1]2 × [0, 2] → [0, 1]3 by f̃(x, y, t) = (x, y, f(t)) for x, y ∈ [0, 1], t ∈ [0, 2].

(Thus f̃ fixes [0, 1]2 × [0, 1− ε], and maps [0, 1]2 × [1− ε, 2] onto [0, 1]2 × [1− ε, 1]
linearly.) Set

D′ = f̃(D \N) ∪N.

Note that D′ is a union of n immersed discs whose only singularities are ribbon
singularities

π(ci)× {f(pi,k)} for 1 ≤ i ≤ m, 1 ≤ k ≤ li.

For j = 1, . . . , n, let D′
j ⊂ D

′ denote the unique immersed disc containing dj . Note
that ∂D′

j = ej ∪ dj .
We prove the assertion by induction on the number l = l1 + · · · + lm of ribbon

singularities. There are two cases.
Case 1. l = 0, i.e., there are no ribbon singularities in D′. In this case, we claim

that T is equivalent to

(µ
[m1]
b
⊗ · · · ⊗ µ

[mn]
b

)σβ,

where mj is the number of arcs ci contained in D′
j for j = 1, . . . , n, σ is a doubled

braid, and β is a doubled string link. This claim can be proved as follows. Choose
points xi ∈ int ci for i = 1, . . . ,m, and yj ∈ int dj for j = 1, . . . , n. For each
i = 1, . . . ,m, let bi denote a proper arc in D′ which connects xi and yj(i), where
j(i) is such that xi and yj are in the same component of D′. Set b = b1∪· · ·∪bm. We
may assume that for i 6= i′ the intersection bi ∩ bi′ is either empty if y(i) 6= y(i′),
or the common endpoint yj if y(i) = y(i′). By small isotopy, we may assume
that for sufficiently small ε′ > 0 the intersection ([0, 1]2 × [0, ε′]) ∩ b consists of
“stars” rooted at y1, . . . , yn. Here each star at yj consists of mj line segments,
and each b′i = ([0, 1]2 × [ε′, 1]) ∩ bi is an arc. Let D′′ be a sufficiently small regular
neighborhood of c∪b∪d inD′ so that D′′∩([0, 1]2×[ε′, 1]) consists of disjoint bicollar



18 KAZUO HABIRO

neighborhoods of b′1, . . . , b
′
m. There is an isotopy of [0, 1]3 which fixes c ∪ b ∪ d and

deforms D′ to D′′. Set T ′ = ∂D′′ \ (int c ∪ int d), which is a tangle isotopic to T .
By an isotopy fixing [0, 1]2×{ε′} as a set, we may assume that ([0, 1]2× [0, ε′])∩T ′

is a tangle of the form µ
[m1]
b
⊗ · · · ⊗ µ

[mn]
b

, and ([0, 1]2 × [ε′, 1]) ∩ T ′ is a a tangle of
the form σβ, as desired. Hence we have the claim.

It follows from Section 4.3.1 that β is a morphism in B′
0. Obviously, σ and

µ
[m1]
b
⊗ · · · ⊗ µ

[mn]
b

are morphisms in B′
0. Hence T is in B′

0.
Case 2. l ≥ 1, i.e., there is at least one ribbon singularity in D′. Suppose

i ∈ {1, . . . ,m} with li ≥ 1. Using isotopy of [0, 1]3 fixing (π(c) × [1− ε, 1]) ∪ d, we
see that T is equivalent to

(4.1) T ′(b⊗(i−1) ⊗ γ± ⊗ b
⊗(n−i)),

where T ′ ∈ T (b⊗(m+1), b⊗n). Here the ribbon singularity π(ci)× {f(pi,li)} of D is
isotoped to the obvious ribbon singularity involved in the copy of γ± in (4.1). Since
we have

T ′ηm+1 = T ′(b⊗(i−1) ⊗ γ± ⊗ b
⊗(n−i))ηm = Tηm = ηn,

it follows that T ′ ∈ B0(m + 1, n). Note that T ′ bounds ribbon discs with less
singularities than T by 1. By the induction assumption, it follows that T ′ is in B

′
0.

Hence we have T ∈ B′
0(m,n).

This completes the proof of Theorem 4.1.

5. Local moves

In this section, we explain how the category B can be used in the study of local
moves on links and tangles.

5.1. Monoidal relations and monoidal congruences. In this subsection, we
recall the notions of monoidal relations and monoidal congruences in monoidal
categories.

Two morphisms in a monoidal categoryM are said to be compatible if they have
the same source and the same target.

A monoidal relation in a monoidal categoryM is a binary relationR ⊂ Mor(M)×
Mor(M) on Mor(M) satisfying the following conditions.

(1) If (f, f ′) ∈ R, then f and f ′ are compatible.
(2) If (f, f ′) ∈ R and a ∈ Ob(M), then (a⊗f, a⊗f ′) ∈ R and (f⊗a, f ′⊗a) ∈ R.
(3) If (f, f ′) ∈ R, g ∈ Mor(M) and target(f) = source(g) (resp. source(f) =

target(g)), then (gf, gf ′) ∈ R (resp. (fg, f ′g) ∈ R).

For any relation X ⊂ Mor(M) × Mor(M) satisfying the condition (1) above,
there is the smallest monoidal relation RX containing X , which is called the
monoidal relation in M generated by X . If X = {(f, f ′)}, then RX is also said to
be generated by the pair (f, f ′).

Suppose f, f ′ ∈ M(a, b) and g, g′ ∈M(c, d) with a, b, c, d ∈ Ob(M). Then g and
g′ are related by the monoidal relation generated by (f, f ′), if and only if there are
z, z′ ∈ Ob(M) and morphisms h1 ∈ M(c, z ⊗ a ⊗ z′), h2 ∈ M(z ⊗ b ⊗ z′, d) such
that

(5.1) g = h2(z ⊗ f ⊗ z
′)h1, g′ = h2(z ⊗ f

′ ⊗ z′)h1.
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Lemma 5.1. Let M be a braided category and let (f, f ′) ∈ M(1, b), b ∈ Ob(M).
Then g, g′ ∈M(c, d) (c, d ∈ Ob(T )) are related by the monoidal relation generated
by (f, f ′) if and only if there is h ∈M(c⊗ b, d) such that

g = h(c⊗ f), g′ = h(c⊗ f ′).

Proof. The “if” part is obvious. We prove the “only if” part. By assumption, there
are z, z′ ∈ Ob(M) and h1 ∈ M(c, z ⊗ z′), h2 ∈ M(z ⊗ b ⊗ z′, d) satisfying (5.1).
Set h = h2(z ⊗ ψz′,b)(h1 ⊗ b). Then we have the assertion. �

A monoidal congruence, also called four-sided congruence, in a monoidal category
M is a monoidal relation inM which is an equivalence relation. If ∼ is a monoidal
congruence in a monoidal (resp. braided) categoryM, then the quotient category
M/ ∼ is equipped with a monoidal (resp. braided) category structure induced by
that of M.

Example 5.2. The notion of homotopy (see Section 3.2) for morphisms in T is a
monoidal congruence in T generated by {(ψ↓,↓, ψ

−1
↓,↓), (1↓, t↓)}.

5.2. Topological and algebraic definitions of local moves. In this subsection,
we first recall a formulation of local moves on links and tangles, and then we
reformulate it in the setting of the category T .

Informally, a “local move” is an operation on a link (or a tangle) which replaces
a tangle in a link (or a tangle) contained in a 3–ball B with another tangle. The
following is a precise definition of the notion of local moves.

Definition 5.3. Two tangles t and t′ in a 3–ball B are said to be compatible if we
have ∂t = ∂t′ and t and t′ have the same framings and the same orientations at
the endpoints. Let (t, t′) be a compatible pair of tangles in B. For two compatible
tangles u and u′ in another 3–ball D, we say that u and u′ are (t, t′)–related, or u′ is
obtained from u by a (t, t′)–move, if there is an orientation-preserving embedding
f : B ↪→ intD and a tangle u′′ in D isotopic to u′ such that

(5.2) f(t) = u ∩ f(B), f(t′) = u′′ ∩ f(B), u \ int f(B) = u′′ \ int f(B),

where the orientations and framings are the same in the two 1–submanifolds in each
side of these three identities.

Now we give an algebraic formulation of local moves.

Definition 5.4. Let (T, T ′) be a compatible pair of morphisms in T . Let R(T,T ′)

be the monoidal relation generated by the pair (T, T ′). For two morphisms U and
U ′ in T , we say that U and U ′ are (T, T ′)–related, or U ′ is obtained from U by a
(T, T ′)–move, if (U,U ′) ∈ R(T,T ′).

The following shows that we can reduce the study of local moves defined by
compatible pairs of tangles in a 3–ball B to the study of local moves defined by
compatible pairs of morphisms in T .

Proposition 5.5. Let (t, t′) be a compatible pair of tangles in a 3–ball B, and let
C be a compatibility class of tangles in another 3–ball D. Then there is a compati-
ble pair (T, T ′) of morphisms in T and an orientation-preserving homeomorphism
g : D ∼= [0, 1]3 such that two tangles u, u′ ∈ C are (t, t′)–related if and only if the
morphisms in T represented by g(u) and g(u′) are (T, T ′)–related as morphisms in
T .
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Proof. We choose an orientation-preserving homeomorphism h : B ∼= [0, 1]3 such
that we have h(∂t) = h(∂t′) ⊂ { 1

2}×(0, 1)×{0, 1} so that the tangles h(∂t), h(∂t′) ⊂

[0, 1]3 represents (compatible) morphisms in T . Similarly, we choose an orientation-
preserving homeomorphism g : D ∼= [0, 1]3 such that for any u ∈ C we have g(∂u) ⊂
{ 1

2}×(0, 1)×{0, 1} so that for u ∈ C the tangle g(u) ⊂ [0, 1]3 represents a morphism

in T . Set T = h(t), T ′ = h(t′) ⊂ [0, 1]3, which are regarded as morphisms in T .
It is easy to verify the “if” part. We prove the “only if” part below. Suppose

u, u′ ∈ C are (t, t′)–related. By the definition, there is an orientation-preserving
embedding f : B ↪→ D and a tangle u′′ ∈ C isotopic to u′ satisfying (5.2). We can
assume without loss of generality that u′′ = u′. Set f ′ = gfh−1 : [0, 1]3 ↪→ [0, 1]3.
Then g(u) and g(u′), as tangles in [0, 1]3, are related by a (T, T ′)–move via f ′. By
applying an appropriate self-homeomorphism of [0, 1]3 fixing boundary to both g(u)
and g(u′), we have in T

g(u) = W2(z ⊗ T ⊗ z
′)W1, g(u′) = W2(z ⊗ T

′ ⊗ z′)W1,

where z, z′ ∈ Ob(T ), W1 ∈ T (source(g(u)), z ⊗ source(T ) ⊗ z′), W2 ∈ T (z ⊗
target(T )⊗ z′, target(g(u))). This shows that g(u) and g(u′) are (T, T ′)–related as
morphisms in T . �

Definition 5.6. Two compatible pairs (T1, T
′
1) and (T2, T

′
2) of morphisms in T are

said to be equivalent if there is an orientation-preserving self-homeomorphism φ
(not necessarily fixing the boundary) of the cube [0, 1]3 such that φ(T1) = T2 and
φ(T ′

1) = T ′
2.

Note that if (T1, T
′
1) and (T2, T

′
2) are equivalent pairs of mutually compatible

morphisms in T , then the notions of (T1, T
′
1)–move and (T2, T

′
2)–move are the same,

i.e., two tangles U and U ′ are (T1, T
′
1)–related if and only if U and U ′ are (T2, T

′
2)–

related.

5.3. Local moves defined by pairs of bottom tangles. In the following we
restrict our attention to local moves defined by pairs of mutually homotopic tangles
T and T ′ consisting only of arc components. Let us call such a local move an arc
local move. Arc local moves fit nicely into the setting of the category B.

The following implies that, to study the arc local moves, it suffices to study the
local moves defined by pairs of bottom tangles.

Proposition 5.7. Let (T, T ′) be a pair of mutually homotopic morphisms in T ,
each consisting of n arc components and no circle components. Then there is a pair
(T1, T

′
1) of mutually homotopic n–component bottom tangles which is equivalent to

(T, T ′).

Proof. Set a = source(T ) and b = target(T ). There is a (not unique) framed braid
β ∈ T (b ⊗ a∗, b⊗n) such that T1 = β(T ⊗ a∗)coeva and T ′

1 = β(T ′ ⊗ a∗)coeva are
bottom tangles. Clearly, the two pairs (T, T ′) and (T1, T

′
1) are equivalent, and T1

and T ′
1 are homotopic to each other. Hence we have the assertion. �

We are in particular interested in arc local moves on bottom tangles. The fol-
lowing theorem implies that the study of arc local moves on tangles in B is reduced
to the study of monoidal relations in B generated by pairs of bottom tangles.

Theorem 5.8. For T, T ′ ∈ BTn and U,U ′ ∈ B(k, l), the following conditions are
equivalent.
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(1) U and U ′ are (T, T ′)–related.
(2) U and U ′ are “(T, T ′)–related in B”, i.e., related by the monoidal relation

in B generated by (T, T ′).
(3) There is a morphism W ∈ B(k + n, l) such that

(5.3) U = W (b⊗k ⊗ T ), U ′ = W (b⊗k ⊗ T ′).

Proof. By Lemma 5.1, (2) and (3) are equivalent. It is obvious that (2) implies (1).
We show that (1) implies (3). By assumption, U and U ′ are (T, T ′)–related. By
Lemma 5.1, there is W ∈ T (b⊗(k+n), b⊗l) satisfying (5.3). We have

Wηk+n = W (b⊗k ⊗ ηn)ηk ∼
h
W (b⊗k ⊗ T )ηk = Uηk ∼

h
ηl,

where we used the fact that T is a bottom tangle and U is a morphism in B. Hence
we have W ∈ B(k + n, l). �

5.4. Admissible local moves. An n–component tangle t in a 3–ball B is said to
be admissible if the pair (B, t) is homeomorphic to the pair ([0, 1]3, ηn). (In the
literature, such a tangle is sometimes called “trivial tangle”, but here we will not
use this terminology, since it may give an impression that a tangle is equivalent to
a “standard” tangle such as ηn.)

A compatible pair (t, t′) of tangles in a 3–ballB is called admissible if both t and t′

are admissible. A local move defined by admissible pair is called an admissible local
move. In this subsection, we translate some well-known properties of admissible
local moves into our category-theoretical setting.

It follows from the previous subsections that, to study admissible local moves on
morphisms in B, it suffices to study the monoidal relations in B generated by pairs
of admissible bottom tangles with the same number of components.

For n ≥ 0, let ABTn denote the subset of BTn consisting of admissible bottom
tangles. We set

ABT =
⋃

n≥0

ABTn ⊂ BT .

Lemma 5.9. If T, T ′ ∈ ABTn, then there is V ∈ ABTn such that the two pairs
(T, T ′) and (ηn, V ) are equivalent.

Proof. Since T ∈ ABTn, there is a framed pure braid β ∈ T (b⊗n, b⊗n) of 2n–strings
such that βT = ηn. Setting V = βT ′, we can easily verify the assertion. �

Lemma 5.9 above implies that, to study admissible local moves on morphisms
in B, it suffices to study the admissible local moves defined by pairs (ηn, T ) for
T ∈ ABTn. Hence it is useful to make the following definition. If two tangles U
and U ′ in B are (ηn, T )–related, then we simply say that U and U ′ are T–related,
or U ′ is obtained from U by a T–move.

Now we consider sequences of admissible local moves.

Proposition 5.10. Let T1, . . . , Tr ∈ ABT, r ≥ 0, and let U,U ′ ∈ B(k, l) be two
morphisms in B. Then the following conditions are equivalent.

(1) There is a sequence U0 = U,U1, . . . , Ur = U ′ of morphisms in B from U to
U ′ such that, for i = 1, . . . , r, the tangles Ui−1 and Ui are Ti–related.

(2) U and U ′ are (T1 ⊗ · · · ⊗ Tr)–related.
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Proof. Obviously, (2) implies (1). We show that (1) implies (2). It is well known
(see, for example, [21, Lemma 3.21]) that if there is a sequence from a tangle U to
another tangle U ′ of admissible local moves, then T ′ can be obtained from T by
simultaneous application of admissible local moves of the same types as those ap-
pearing in the sequence. Hence, after suitable isotopy of [0, 1]3 fixing the boundary,
there are disjoint small cubes C1, . . . , Cr in [0, 1]3 such that

• for i = 1, . . . , r, the tangle Ci ∩ U in Ci is equivalent to ηni
, where we set

ni = |Ti|,
• the tangle obtained from U by replacing the copy of ηni

in Ci with a copy
of Ti for all i = 1, . . . , r is equivalent to U ′.

Using an isotopy of [0, 1]3 fixing the boundary which move the cubes C1, . . . , Cr to
the upper right part of [0, 1]3, we can express U and U ′ as

U = W (b⊗k ⊗ ηn1+···+nr
), U ′ = W (b⊗k ⊗ T1 ⊗ · · · ⊗ Tr),

where W ∈ T (b⊗(k+n1+···+nr), b⊗l). One can easily verify that Wηk+n1+···+nr
∼
h
ηl,

and hence W ∈ B(k + n1 + · · ·+ nr, l). Hence we have the assertion. �

In the study of local moves, it is often useful to consider the relations on tangles
defined by several types of moves. Let M ⊂ ABT be a subset. For two tangles U
and U ′ in B, we say that U and U ′ are M–related, or U ′ is obtained from U by an
M–move, if there is T ∈M such that U and U ′ are T–related.

For M ⊂ ABT, let M∗ denote the subset of ABT of the form T1 ⊗ · · · ⊗ Tr with
Ti ∈ M for i = 1, . . . , r, r ≥ 0. Note that M∗ ⊂ ABT. The following immediately
follows from Proposition 5.10.

Proposition 5.11. Let M ⊂ ABT. Then U,U ′ ∈ B(k, l) are related by a finite
sequence of M–moves if and only if U and U ′ are M∗–related.

For M ⊂ ABT, the M–equivalence is the equivalence relations on tangles gener-
ated by the M–moves. Note that, for morphisms in B, the M–equivalence is the
same as the monoidal congruence in B generated by the set {(η|T |, T ) | T ∈M}.

A subset M ⊂ ABT is said to be inversion-closed if for each T ∈ M , there is
a sequence of M–moves from T to η|T |. In this case, two tangles U and U ′ are
M–equivalent if and only if there is a sequence of M–moves from U to U ′.

Given any subset M ⊂ ABT, one can construct an inversion-closed subset M ′ ⊂
ABT such that any two morphisms U and U ′ in B are M–equivalent if and only if
there is a sequence from U to U ′ ofM ′–moves. For example, M ′ = M∪{T̄ | T ∈M}
satisfies this condition, where T̄ = β−1ηn with n = |T | and β ∈ B(n, n) a (not
unique) framed pure braid such that T = βηn. (Note that the pair (T̄ , ηn) is
equivalent to (ηb, T ).)

By Proposition 5.11, we have the following.

Proposition 5.12. Let M ⊂ ABT be inversion-closed. Then U,U ′ ∈ B(k, l) are
M–equivalent if and only if they are M ∗–related.

5.5. Tangles obtained from ηn by an admissible local move. Let B̌0 de-
note the braided subcategory of B0 generated by the object b and the morphisms
µb, ηb, γ+, γ−, and let T denote the monoidal subcategory of B0 generated by the
object b and the morphisms t+− and t−1

+−. It is easy to see that for n ≥ 0 we have

T(n, n) = {tk1
+− ⊗ · · · ⊗ t

kn

+− | k1, . . . , kn ∈ Z},
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and T(m,n) is empty if m 6= n.

Lemma 5.13. For any morphism T ∈ B0(m,n), m,n ≥ 0, there are T ′ ∈ B̌0(m,n)
and T ′′ ∈ T(m,m) such that T = T ′T ′′. (The decomposition T = T ′T ′′ is not
unique.)

Proof. Using Theorem 4.1 and the identities

tk+−µb = µb(t
k
+− ⊗ t

k
+−), tk+−ηb = ηb, (tk+− ⊗ t

l
+−)γ± = γ±t

l
+−,

for k, l ∈ Z, we can easily prove the assertion. �

Theorem 5.14. Let T ∈ ABTm and U ∈ BTn. Then U is obtained from ηn by
one T–move if and only if there is W ∈ B̌0(m,n) such that U = WT .

Proof. The “if” part is obvious. We prove the “only if” part. Suppose that ηn

and U ∈ BTn are T–related. By Theorem 5.8, there is W ′ ∈ B(m,n) such that
ηn = W ′ηm and U = W ′T . The first identity means that W ′ ∈ B0(m,n). By
Lemma 5.13, we have W ′ = WV , where W ∈ B̌0(m,n) and V ∈ T(m,m). It is
easy to see that V T = T . Hence we have U = W ′T = WV T = WT . �

For M ⊂ ABT, a bottom tangle T ∈ BTn is said to be M–trivial if T is M–
equivalent to ηn. The following immediately follows from Proposition 5.12 and
Theorem 5.14.

Corollary 5.15. Let M ⊂ ABT be inversion-closed, and let U ∈ BTn. Then U is
M–trivial if and only if there are T ∈M ∗ and W ∈ B̌0(|T |, n) such that U = WT .

5.6. Generators of B. Here we use the results in the previous subsections to
obtain a simple set of generators of B. Define morphisms v± ∈ BT1 and c± ∈ BT2

by

v± = (t∓1
↓ ⊗ ↑)ηb, c± = (↓ ⊗(ψ↓,↑ψ↑,↓)

±1⊗ ↑)(ηb ⊗ ηb).

Graphically, we have

v+ = , v− = , c+ = , c− = .

Note that a v±–move is change of framing by 1, and a c±–move is a cross-
ing change. Hence two morphisms in B are homotopic if and only if they are
{v+, v−, c+, c−}–equivalent.

Theorem 5.16. As a braided subcategory of T , B is generated by the object b and
the morphisms µb, ηb, v+, v−, c+, c−.

Proof. Let B′ denote the braided subcategory of T generated by the object b and
the morphisms µb, ηb, v+, v−, c+, c−. It suffices to show that a tangle U ′ ∈ B(m,n)
is a morphism in B′.

Choose a tangle U ∈ B0(m,n) which is homotopic to U ′, i.e., {v+, v−, c+, c−}–
equivalent to U ′. Since {v+, v−, c+, c−} is an inversion-closed subset of ABT, it
follows from Theorem 5.8 and Proposition 5.12 that there is T ∈ {v+, v−, c+, c−}

∗

and W ∈ B(m+ |T |, n) such that we have

U = W (b⊗m ⊗ η|T |),(5.4)

U ′ = W (b⊗m ⊗ T ).(5.5)
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Figure 10. An example of T with n = 5, (p1, . . . , p5) =
(−2, 1, 2,−1, 0), (j1, . . . , j5) = (3, 1, 0, 2, 2), and l+ = l− = 2.

Since U is a morphism in B0, (5.4) implies that W is a morphism in B0. The
generators of B0 given in Theorem 4.1 are in B′, since we have

γ± = (µb ⊗ b)(b⊗ ψ±1
b,b)(b⊗ µ

[3]
b
⊗ b)(c± ⊗ b⊗ c∓),

t±1
+− = µ

[3]
b

(v∓ ⊗ b⊗ v±).

Hence W is in B′. Since b⊗p⊗T is in B′, it follows from (5.5) that U ′ is in B′. This
completes the proof. �

Remark 5.17. The set of generators of B given in Theorem 5.16 is not minimal. One
can show, for example, that B is minimally generated as a braided subcategory of
T by the object b and the morphisms µb, v+, c+ and c−.

Theorem 5.16 implies that each bottom tangle can be obtained as a result of hor-
izontal and vertical pasting of finitely many copies of 1b, ψ

±1
b,b , µb, ηb, v+, v−, c+, c−.

In the following we give several corollaries to Theorem 5.16.
The following notation will be useful in the rest of the paper. For f ∈ B(m,n)

and i, j ≥ 0, set

f(i,j) = b
⊗i ⊗ f ⊗ b

⊗j ∈ B(i+m+ j, i+ n+ j).

The following corollary to Theorem 5.16 is sometimes useful.

Corollary 5.18. As a subcategory of T , B is generated by the objects b⊗n, n ≥ 0,
and the morphisms

(ψb,b)(i,j), (ψ
−1
b,b)(i,j), for i, j ≥ 0,

f(i,0) for f ∈ {µb, ηb, v±, c±}, i ≥ 0.

Proof. By Theorem 5.16, B is generated as a subcategory of T by the morphisms
f(i,j) with f ∈ {ψ±1

b,b , µb, ηb, v±, c±}, i, j ≥ 0. For f 6= ψ±1
b,b , we can express f(i,j) as

a conjugate of f(i+j,0) by a doubled braid. (Here a doubled braid means a morphism
in the braided subcategory of B generated by the object b.) This implies the
assertion. �

Corollary 5.19. (1) Each T ∈ BTn can be expressed as

(5.6) T = (tp1

+0 ⊗ · · · ⊗ t
pn

+0)(µ
[j1]
b
⊗ · · · ⊗ µ

[jn]
b

)β(c
⊗l+
+ ⊗ c

⊗l−
− )

with t+0 = t↓⊗ ↑ (= µb(v−⊗b)) ∈ B(1, 1), p1, . . . , pn ∈ Z, j1, . . . , jn ≥ 0, l+, l− ≥ 0,
2(l+ + l−) = j1 + · · ·+ jn, and β ∈ B(2(l+ + l−), 2(l+ + l−)) a doubled braid. (For
example, see Figure 10.)
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(2) Each T ∈ BTn can be expressed up to framing change as

(5.7) T = (µ
[j1]
b
⊗ · · · ⊗ µ

[jn]
b

)β(c
⊗l+
+ ⊗ c

⊗l−
− )

with j1, . . . , jn ≥ 0, l+, l− ≥ 0, 2(l+ + l−) = j1 + · · · + jn, and β ∈ B(2(l+ +
l−), 2(l+ + l−)) a doubled braid.

Proof. Note that composing b⊗(i−1) ⊗ tpi

+0 ⊗ b⊗(n−i) from the left to T ∈ BTn just
changes the framing of the ith component of T by pi. Hence we have only to prove
(2). In the following we ignore the framing. It suffices to prove that if T is as in
(5.7), and U = f(r,s) with f ∈ {ψ±1

b,b , µb, ηb, c±} and r, s ≥ 0 such that UT is well

defined, then UT has a decomposition similar to (5.7). In the following we use the
notation

µ
[a1,a2,...,ak]
b

= µ
[a1]
b
⊗ µ

[a2]
b
⊗ · · · ⊗ µ

[ak]
b

.

for a1, . . . , ak ≥ 0.
The case f = ψb,b follows from

(ψb,b)(r,s)µ
[j1,...,jn]
b

= µ
[j1,...,jr,jr+2,jr+1,jr+3,...,jn]
b

(ψ
b
⊗jr+1 ,b

⊗jr+2 )(j1+···+jr ,jr+3+···+jn).

The case f = ψ−1
b,b is similar. The cases f = µb, ηb follow from

µ(r,s)µ
[j1,...,jn]
b

= µ
[j1,...,jr,jr+1+jr+2,jr+3,...,jn]
b

,

η(r,s)µ
[j1,...,jn]
b

= µ
[j1,...,jr ,0,jr+1,...,jn]
b

.

For f = c±, we have

f(r,s)µ
[j1,...,jn]
b

β(c
⊗l+
+ ⊗ c

⊗l−
− )

=µ
[j1,...,jr,1,1,jr+1,...,jn]
b

(1⊗(j1+···+jr) ⊗ ψ
b
⊗(jr+1+···+jn),b⊗2)(β ⊗ b

⊗2)(c
⊗l+
+ ⊗ c

⊗l−
− ⊗ f).

If f = c−, then we are done. The other case f = c+ follows from

c
⊗l+
+ ⊗ c

⊗l−
− ⊗ c+ = (b⊗l+ ⊗ ψ

b⊗2,b⊗2l− )(c
⊗(l++1)
+ ⊗ c

⊗l−
− ).

�

Remark 5.20. In Corollary 5.19 (1), we may assume that p1, . . . , pn ∈ {0, 1}. This

follows from the identity t±2
+0 = µ

[3]
b

(c∓ ⊗ b). In particular, it follows that if each
component of T ∈ BTn is of even framing, then T can be expressed as in Corollary
5.19 (1) with p1 = · · · = pn = 0. This fact is used in Section 14.2.5.

Let A denote the braided subcategory of B generated by the object b and the
morphisms µb and ηb. (A is naturally isomorphic to the braided category 〈A〉 freely
generated by an algebra A, defined later in Section 6.2, but we do not need this
fact.) Clearly, A is a subcategory of B̌0 (and hence of B0). We will need the
following corollary later.

Corollary 5.21. Any T ∈ BTn can be expressed as a composite T = T ′T ′′ with
T ′ ∈ A(m,n) and T ′′ ∈ {v±, c±}

∗ ∩ BTm, m ≥ 0.

Proof. This is easily proved using Theorem 5.16, similarly to Corollary 5.19. �
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6. A Hopf algebra action on bottom tangles

6.1. The braided category 〈H〉 freely generated by a Hopf algebra H. Let
〈H〉 denote the braided category freely generated by a Hopf algebra H. In other
words, 〈H〉 is a braided category with a Hopf algebra H such that ifM is a braided
category and H is a Hopf algebra in M, then there is a unique braided functor
FH : 〈H〉 → M that maps the Hopf algebra structure of H into that of H . Such
〈H〉 is unique up to isomorphism.

A more concrete definition of 〈H〉 (up to isomorphism) is sketched as follows.
Set Ob(〈H〉) = {H⊗n | n ≥ 0}. Consider the expressions obtained by compositions
and tensor products from copies of the morphisms

11 : 1→ 1, 1H : H→ H, ψ±1
H,H : H

⊗2 → H
⊗2, µH : H

⊗2 → H, ηH : 1→ H,

∆H : H→ H
⊗2, εH : H→ 1, SH : H→ H,

where we understand 1 = H⊗0 and H = H⊗1, and define an equivalence relation
on such expressions generated by the axioms of braided category and Hopf algebra.
Then the morphisms in 〈H〉 are the equivalence classes of such expressions.

Note that if F : 〈H〉 → M is a braided functor of 〈H〉 into a braided category
M, then F (H) ∈ Ob(M) is equipped with a Hopf algebra structure

(F (µH), F (ηH), F (∆H), F (εH), F (SH)).

Conversely, if H is a Hopf algebra in M, then there is a unique braided functor
F : 〈H〉 → M such that F maps the Hopf algebra structure of H into that of H .
Hence there is a canonical one-to-one correspondence between the Hopf algebras in
a braided categoryM and the braided functors from 〈H〉 toM.

For f ∈ 〈H〉(H⊗m,H⊗n) (m,n ≥ 0) and i, j ≥ 0, set

f(i,j) = H
⊗i ⊗ f ⊗ H

⊗j ∈ 〈H〉(H⊗(m+i+j),H⊗(n+i+j)).

Note that 〈H〉 is generated as a category by the objects H⊗i, i ≥ 0, and the mor-
phisms f(i,j) with f ∈ {ψH,H, ψ

−1
H,H, µ, η,∆, ε, S} and i, j ≥ 0. In the following, we

write (ψ±1
H,H)(i,j) = ψ±1

(i,j).

Lemma 6.1. As a category, 〈H〉 has a presentation with the generators f(i,j) for

f ∈ {ψH,H, ψ
−1
H,H, µ, η,∆, ε, S} and i, j ≥ 0, and the relations

f(i,j+q′+k)g(i+p+j,k) = g(i+p′+j,k)f(i,j+q+k),(6.1)

ψ(i,j)ψ
−1
(i,j) = ψ−1

(i,j)ψ(i,j) = 1H⊗(i+j+2) ,(6.2)

(ψp′,1)(i,j)f(i,j+1) = f(i+1,j)(ψp,1)(i,j), (ψ1,p′)(i,j)f(i+1,j) = f(i,j+1)(ψ1,p)(i,j),

(6.3)

µ(i,j)η(i,j+1) = µ(i,j)η(i+1,j) = 1H⊗(i+j+1) , µ(i,j)µ(i,j+1) = µ(i,j)µ(i+1,j),(6.4)

ε(i,j+1)∆(i,j) = ε(i+1,j)∆(i,j) = 1H⊗(i+j+1) , ∆(i,j+1)∆(i,j) = ∆(i+1,j)∆(i,j),(6.5)

ε(i,j)η(i,j) = 1H⊗(i+j) , ε(i,j)µ(i,j) = ε(i,j)ε(i+1,j), ∆(i,j)η(i,j) = η(i+1,j)η(i,j),
(6.6)

∆(i,j)µ(i,j) = µ(i+1,j)µ(i,j+2)ψ(i+1,j+1)∆(i,j+2)∆(i+1,j),(6.7)

µ(i,j)S(i,j+1)∆(i,j) = µ(i,j)S(i+1,j)∆(i,j)η(i,j)ε(i,j),(6.8)
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for i, j, k ≥ 0 and f, g ∈ {ψH,H, ψ
−1
H,H, µ, η,∆, ε, S} with f : H⊗p → H⊗p′

, g : H⊗q →

H⊗q′

. Here, (ψp,1)(i,j) and (ψ1,p)(i,j) for p = 0, 1, 2 and i, j ≥ 0 are defined by

(ψ0,1)(i,j) = (ψ1,0)(i,j) = 1H⊗(i+j+1) , (ψ1,1)(i,j) = ψ(i,j),

(ψ2,1)(i,j) = ψ(i,j+1)ψ(i+1,j), (ψ1,2)(i,j) = ψ(i+1,j)ψ(i,j+1).

Proof. We only give a sketch proof, since a detailed proof is long though straight-
forward. The relations given in the lemma are the ones derived from the axioms
for braided category and Hopf algebra, hence valid in 〈H〉. We have to show, con-
versely, that all the relations in 〈H〉 can be derived from the relations given in the

lemma. It suffices to show that the category 〈H〉
′
with the presentation given in the

lemma is a braided category with a Hopf algebra H. The relation (6.1) implies that
〈H〉′ is a monoidal category, since we can define the monoidal structure for 〈H〉′ by

f(i,j) ⊗ f
′
(i′,j′) = f(i,j+i′+n′+j′)f

′
(i+m+j+i′,j′)

for f, f ′ ∈ {ψH,H, ψ
−1
H,H, µ, η,∆, ε, S}, f : H⊗m → H⊗n, f ′ : H⊗m′

→ H⊗n′

. The

relations (6.2), (6.3) imply that 〈H〉
′
is a braided category, and the other relations

imply that H is a Hopf algebra in 〈H〉
′
. �

6.2. External Hopf algebras in braided categories. Let 〈A〉 denote the braided
category freely generated by an algebra A = (A, µA, ηA). For a braided categoryM
and an algebra A in M, let iM,A : 〈A〉 → M denote the unique braided functor
that maps the algebra structure of A into the algebra structure of A.

Definition 6.2. An external Hopf algebra (H,F ) in a braided category M is a
pair of an algebra H = (H,µH , ηH) in M and a functor F : 〈H〉 → Sets into the
category Sets of sets and functions such that we have a commutative square

〈A〉
iM,H

−−−−→ M

i〈H〉,H





y





y

M(1,−)

〈H〉 −−−−→
F

Sets.

Remark 6.3. The functor i〈H〉,H : 〈A〉 → 〈H〉 is faithful. Hence we can identify 〈A〉
with the braided subcategory of 〈H〉 generated by H, µH and ηH . However, we do
not need this fact in the rest of the paper.

Remark 6.4. To each Hopf algebra H in a braided categoryM, we can associate an
external Hopf algebra in M as follows. Let FH : 〈H〉 →M be the braided functor
which maps the Hopf algebra H into H . Then the pair ((H,µH , ηH ),M(1, FH(−)))
is an external Hopf algebra in M. Therefore, the notion of external Hopf algebra
inM can be regarded as a generalization of the notion of Hopf algebra in M.

6.3. An external Hopf algebra structure in B. In this subsection, we define
an external Hopf algebra (b, Fb) in B. First note that (b, µb, ηb) is an algebra in B.
(This algebra structure of b cannot be extended to a Hopf algebra structure in B

in the usual sense, since there is no morphism ε : b→ 1 in B.)
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T S   (T)∆ (T)
(i,j) (i,j)

T’ T’’’

1 ... i+1 ... i+j+1

ε (T)
(i,j)

T’’

Figure 11

For i, j ≥ 0 and T ∈ BTi+j+1, set

∆̌(i,j)(T ) = (b⊗i ⊗ (↓ ⊗ψb,↑)⊗ b
⊗j)T ′,

ε̌(i,j)(T ) = T ′′,

Š(i,j)(T ) = (b⊗i ⊗ ψ↑,↓(↑ ⊗t↓)⊗ b
⊗j)T ′′′,

where T ′ ∈ T (1, b⊗i⊗ ↓ ⊗ ↓ ⊗ ↑ ⊗ ↑ ⊗b⊗j) is obtained from T by duplicating the
(i+ 1)st component of T , T ′′ ∈ T (1, b⊗(i+j)) is obtained from T by removing the
(i+ 1)st component of T , and T ′′′ ∈ T (1, b⊗i⊗ ↑ ⊗ ↓ ⊗b⊗j) is obtained from T by
reversing orientation of the (i+ 1)st component of T , see Figure 11. We have

∆̌(i,j)(T ) ∈ BTi+j+2, ε̌(i,j)(T ) ∈ BTi+j , Š(i,j)(T ) ∈ BTi+j+1 .

Hence there are functions

∆̌(i,j) : BTi+j+1 → BTi+j+2,

ε̌(i,j) : BTi+j+1 → BTi+j ,

Š(i,j) : BTi+j+1 → BTi+j+1 .

Theorem 6.5. There is a unique external Hopf algebra ((b, µb, ηb), Fb) in B with
Fb : B→ Sets satisfying

Fb(∆(i,j)) = ∆̌(i,j), Fb(ε(i,j)) = ε̌(i,j), Fb(S(i,j)) = Š(i,j)(6.9)

for i, j ≥ 0.

Proof. We claim that there is a functor Fb : 〈H〉 → Sets satisfying (6.9) and

Fb(ψ
±1
(i,j)) = (ψ±1

b,b)(i,j)(−),

Fb(µ(i,j)) = (µb)(i,j)(−),

Fb(η(i,j)) = (ηb)(i,j)(−),

for i, j ≥ 0. If this claim is true, then one can easily check that Fb is unique and
(b, Fb) is an external Hopf algebra in B.

To prove the above claim, it suffices to check that each relation in Lemma 6.1
are mapped into a relation in B. For example, the relation (6.7) is mapped into

∆̌(i,j)((µb)(i,j)g) =(µb)(i+1,j)(µb)(i,j+2)(ψb,b)(i+1,j+1)∆̌(i,j+2)∆̌(i+1,j)(g)
(

=((µb ⊗ µb)(b⊗ ψb,b ⊗ b))(i,j)∆̌(i,j+2)∆̌(i+1,j)(g)
)(6.10)

for g ∈ BTi+j+2. This can be proved graphically as follows. If g = i+1 i+21 i+j+2

... ...

,
then the left and the right hand sides of (6.10) are as depicted in Figure 12 (a)
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i+1 i+21 i+j+2

... ...
... ...

i+1 i+21 i+j+2

(a) (b)

Figure 12

(a) (b) (c)

Figure 13. Here only the ith component is depicted in each figure.

and (b), respectively. As another example, (6.8) is mapped into the equivalence of
Figure 13 (a), (b), and (c). It is straightforward to check the other relations, and
we leave it to the reader. (The detail is to a certain extent similar to the proof
of the existence of the Hopf algebra in the category of cobordisms of surfaces with
connected boundary [8, 40], and also to the proof of the Hopf algebra relations
satisfied by claspers [21]. See also Section 14.4.) �

Theorem 6.5 implies that there is a Hopf algebra action on the bottom tangles
as we mentioned in Section 1.6.

6.4. Adjoint actions and coactions. In this subsection, we consider the image
by Fb of the left adjoint action and the left adjoint coaction of H, which we need
later.

Let adH : H⊗2 → H denote the left adjoint action for H, which is defined by

adH = µ
[3]
H

(H⊗ ψH,H)(H⊗ SH ⊗ H)(∆H ⊗ H).

For i, j ≥ 0 and T ∈ BTi+j+2, we have

Fb((adH)(i,j))(T )

=Fb((µ
[3]
H

(H⊗ ψH,H)(H⊗ SH ⊗ H)(∆H ⊗ H))(i,j))(T )

=(µ
[3]
b

)(i,j)(b⊗ ψb,b)(i,j)Fb((H⊗ SH ⊗ H)(i,j))(Fb((∆H ⊗ H)(i,j))(T )).

Hence Fb((adH)(i,j)) maps T ∈ BTi+j+1 to a bottom tangle as depicted in Figure
14 (a). By isotopy, we obtain a simpler tangle as in Figure 14 (b). (Note that the
closures cl(T ) and cl(Fb((adH)(i,j))(T )) are isotopic. This fact is used in Section
11.)

Let coadH : H→ H⊗2 denote the left adjoint coaction defined by

coadH = (µH ⊗ H)(H⊗ ψH,H)(H⊗ H⊗ SH)∆
[3]
H
.
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(b)(a)

Figure 14. (a) The tangle Fb((adH)(i,j))(T ) ∈ BTi+j+1, with only
the (i+1)st component depicted. The dotted lines denote (parallel
copies of) the (i+1)st and (i+2)nd components of T . (b) A tangle
isotopic to (a).

(c)(b)(a) (d) (e)

Figure 15. (a) The tangle Fb((coadH)(i,j))(T ) ∈ BTi+j+2, with
only the (i+1)st and (i+2)nd components depicted. (b) A tangle
isotopic to (a), which is (γ+)(i,j)T . (c) Another tangle isotopic
to (a), which is Fb((H ⊗ adH)(i,j))((c+ ⊗ b)(i,j)T ). (d) The tangle
(γ−)(i,j)T with only (i + 1)st component depicted. (e) A tangle
isotopic to (d).

For i, j ≥ 0 and T ∈ BTi+j+1, we have

Fb((coadH)(i,j))(T )

=Fb(((µH ⊗ H)(H⊗ ψH,H)(H⊗ H⊗ SH)∆
[3]
H

)(i,j))(T )

=(µb ⊗ b)(i,j)(b⊗ ψb,b)(i,j)Fb((H⊗ H⊗ SH)(i,j))(Fb((∆
[3]
H

)(i,j))(T )).

Hence Fb((coadH)(i,j)) maps T ∈ BTi+j+1 to a (i+j+2)–component bottom tangle
as depicted in Figure 15 (a). Since it is isotopic to Figure 15 (b) and (c), we have

(6.11) Fb((coadH)(i,j))(T ) = (γ+)(i,j)T = Fb((H⊗ adH)(i,j))((c+ ⊗ b)(i,j)T ).

Since Figure 15 (d) and (e) are isotopic, we have

(6.12) (γ−)(i,j)T = Fb((SH ⊗ H)(i,j))((γ+)(i,j)T ).

7. Universal invariant of tangles associated to a ribbon Hopf

algebra

In this section, we give a definition of a universal tangle invariant associated to
ribbon Hopf algebra.
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7.1. Ribbon Hopf algebras. In this subsection, we recall the definition of ribbon
Hopf algebra [73].

Let H = (H,µ, η,∆, ε, S) be a Hopf algebra over a commutative, unital ring k.
A universal R–matrix for H is an invertible element R ∈ H⊗2 satisfying the

following properties:

R∆(x)R−1 = PH,H∆(x) for all x ∈ H,(7.1)

(∆⊗ 1)(R) = R13R23, (1⊗∆)(R) = R13R12.(7.2)

Here PH,H : H⊗2 → H⊗2, x ⊗ y 7→ y ⊗ x, is the k–module homomorphism which
permutes the tensor factors, and

R12 = R⊗ 1 ∈ H⊗3, R13 = (1⊗ PH,H)(R12) ∈ H
⊗3, R23 = 1⊗R ∈ H⊗3.

A Hopf algebra equipped with a universal R–matrix is called a quasitriangular Hopf
algebra.

In what follows, we freely use the notations R =
∑

α⊗β and R−1 =
∑

ᾱ⊗ β̄(=
(S ⊗ 1)(R)). We also use the notations

R =
∑

αi ⊗ βi, R−1 =
∑

ᾱi ⊗ β̄i,

where i is any index, used to distinguish several copies of R±1.
A ribbon element for (H,R) is a central element r ∈ H such that

r2 = uS(u), S(r) = r, ε(r) = 1, ∆(r) = (R21R)−1(r⊗ r),

where R21 = PH,H (R) =
∑

β ⊗ α and u =
∑

S(β)α. Since u is invertible, so is r.
The triple (H,R, r) is called a ribbon Hopf algebra.

The element κ = ur−1 is grouplike, i.e., ∆(κ) = κ⊗ κ, ε(κ) = 1. We also have

κxκ−1 = S2(x) for all x ∈ H.

In what follows, we often use the Sweedler notation for comultiplication. For
x ∈ H , we write

∆(x) =
∑

x(1) ⊗ x(2),

∆[n](x) =
∑

x(1) ⊗ · · · ⊗ x(n) for n ≥ 1.

7.2. Adjoint action and universal quantum trace. We regard H as a left
H–module with the (left) adjoint action

ad = . : H⊗2 → H, x⊗ y 7→ x . y,

defined by

x . y =
∑

x(1)yS(x(2)) for x, y ∈ H.

Recall that ad is a left H–module homomorphism.
The function

H⊗2 → H, x⊗ y 7→ x . y − ε(x)y,

is a left H–module homomorphism. Hence the image

N = Spank{x . y − ε(x)y | x, y ∈ H} ⊂ H

is a left H–submodule of H . Note that H/N , the module of coinvariants, inherits
from H a trivial left H–module structure.

The definition of N above is compatible with (1.1) as follows.
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κ1
1 κ -1α β

α
_

β
_

Figure 16. How to place elements in H on the strings in the
tangle T

β α S(  )β S(  )βS(  )αS(  )α
α
_

β
_

S(   )α
_

S(   )α
_

S(   )β
_

S(   )β
_

Figure 17. The cases of crossings with upward strings

Lemma 7.1. We have

N = Spank{xy − yS
2(x) | x, y ∈ H}.

Proof. The assertion follows from

x . y − ε(x)y =
∑

(

x(1)yS(x(2))− yS(x(2))S
2(x(1))

)

,

xy − yS2(x) =
∑

(

x(1) . yS
2(x(2))− ε(x(1))yS

2(x(2))
)

,

for x, y ∈ H . �

As in Section 1.2.2, let trq : H → H/N denote the projection, and call it the
universal quantum trace for H . If k is a field and V is a finite-dimensional left
H–module, then the quantum trace in V

trV
q : H → k

factors through trq. Here trV
q is defined by

trV
q (x) = trV (ρ(κx)) for x ∈ H,

where ρ : H → Endk(V ) denotes the left action of H on V , and trV : Endk(V )→ k

denotes the trace in V .

7.3. Definition of the universal invariant. In this subsection, we recall the
definition of the universal invariant of tangles associated to a ribbon Hopf algebraH .
The definition below is close to Ohtsuki’s one [64], but we use different conventions
and we make some modifications. In particular, for closed components, we use the
universal quantum trace instead of the universal trace.

Let T = T1∪· · ·∪Tl∪L1∪· · ·∪Lm with l,m ≥ 0 be a (framed, oriented) tangle in
a cube, consisting of l arc components T1, . . . , Tl and m ordered circle components
L1, . . . , Lm. First, assume that T is given by pasting copies of the tangles ↓, ↑, ψ±1

↓,↓,

ev↓, ev↑, coev↓ and coev↑. (Later we consider a more general case.) We formally
put elements of H on the strings of T according to the rule depicted in Figure 16.
We define

(7.3) JT =
∑

J(T1) ⊗ · · · ⊗ J(Tl) ⊗ J(L1) ⊗ · · · ⊗ J(Lm) ∈ H
⊗l ⊗ (H/N)⊗m

as follows. For each i = 1, . . . , l, we formally set J(Ti) to be the product of the
elements put on the component Ti obtained by reading the elements using the
order determined by the opposite orientation of Ti and writing them down from
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1
1

κ

κ

S (     )a

S (     )b

T1

L1

α
_
c

α
_

d

α
_
e

β
_

c

β
_

d

β
_

e

αb

βaα

β

Figure 18. For the tangle T = T1 ∪ L1, we have JT =
∑

ᾱeβ̄dᾱc1S(αa)S(βb)κβ̄eᾱdβ̄c ⊗ trq(κ
−1καbβa1), where R =

∑

αa ⊗ βa =
∑

αb ⊗ βb, and R−1 =
∑

ᾱc ⊗ β̄c =
∑

ᾱd ⊗ β̄d.

α S(  )β
α
_

β
_

κ

κ-1

T T’

Figure 19

left to right. For each j = 1, . . . , s, we define J(Lj) by first obtaining a word w by
reading the elements put on Lj starting from any point on Lj , and setting formally
J(Lj) = trq(κ

−1w). (Here, it should be noted that each of the J(Ti) and the J(Lj)

has only notational meaning and does not define an element of H or H/N by itself.)
For example, see Figure 18.

Now we check that JT does not depend on where we start reading the elements
on the closed components. Let Lj be a closed component of T and let x1, . . . , xr be
the elements read off from Lj . Then we have formally J(Lj) = trq(κ

−1x1x2 · · ·xr).
If we start from x2, then the right hand side becomes

trq(κ
−1x2 · · ·xrx1) = trq(S

−2(x1)κ
−1x2 · · ·xr) = trq(κ

−1x1x2 · · ·xr).

It follows that J(Li) does not depend on where we start reading the elements.
Now we can follow Ohtsuki’s arguments [64] to check that JT does not depend

on how we decompose T into the the copies of ↓, ↑, ψ±1
↓,↓, ev↓, ev↑, coev↓ and coev↑,

and that JT defines an isotopy invariant of framed, oriented, ordered tangles.
It is convenient to generalize the above definition to the case where T is given as

pasting of copies of the tangles ↓, ↑, ψ±1
a,b (a, b ∈ {↓, ↑}), ev↓, ev↑, coev↓ and coev↑.

In this case, we put elements of H on the components of T as depicted in Figures
16 and 17. Then JT is defined in the same way as above. We can check that JT is
well defined as follows. For each tangle diagram T in Figure 17, we choose a tangle
diagram T ′ isotopic to T obtained by pasting copies of ↓, ↑, ψ±1

↓,↓, ev↓, ev↑, coev↓

and coev↑. Then we can verify that JT ′ in the first definition, is equal to JT in the
second definition given by Figure 17. For example, consider the second tangle in
Figure 17. Then T and T ′ are as depicted in Figure 19. We have

JT ′ =
∑

ᾱ⊗ κβ̄κ−1 =
∑

α⊗ κS−1(β)κ−1 =
∑

α⊗ S(β) = JT ,
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κ

Ti
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Figure 20

where we used
∑

ᾱ⊗ β̄ =
∑

α⊗S−1(β). The other cases can be similarly proved.

Remark 7.2. To study invariants of tangles, it is sometimes useful to define a functo-
rial invariant. One can modify Kauffman and Radford’s functorial universal regular
isotopy invariant [38] to define a functorial universal invariant defined on T , i.e., a
braided functor F : T → Cat(H) of T into a category Cat(H) defined as in [38].
However, we do not do so here, since in the present paper we are interested in
ordered links. Note that the categories T and Cat(H) do not care about the or-
der of the circle components. One can still define a functorial universal invariant
which distinguishes circle components by using the category of colored tangles, but
it would cause unnecessary complication and we do not take this approach here.

7.4. Effect of closure operation. In Ohtsuki’s definition [64] of his version of the
universal invariant, the universal trace H → H/I , with I = Span

k
{xy− yx | x, y ∈

H}, is used. For our purposes, it is more natural and more useful to use the
universal quantum trace instead of the universal trace. Note that I is not a left H–
submodule of H . The following proposition shows another reason why the universal
quantum trace is more convenient.

Proposition 7.3. If T ∈ BTn, then we have

Jcl(T ) = tr⊗n
q (JT ).

Proof. Set L = cl(T ) = L1 ∪ · · · ∪ Ln. We write

JT =
∑

J(T1) ⊗ · · · ⊗ J(Tn) ∈ H
⊗n,

JL =
∑

J(L1) ⊗ · · · ⊗ J(Ln) ∈ (H/N)⊗n,

For i = 1, . . . , n, the part J(Li) is computed as follows. The diagram of Li is
divided into the diagram of Ti and the diagram of ev↑. See Figure 20. Since we
have Jev↑ = κ, it follows that

J(Li) = trq(κ
−1Jev↑J(Ti)) = trq(κ

−1κJ(Ti)) = trq(J(Ti)).

This implies the assertion. �

In Section 11, we give a definition of a more refined version of the universal
invariants of links.

7.5. Duplication, removal, and orientation-reversing of arc component.

Let T be a tangle and let Ti be an arc component of T . Define a k–module
homomorphism S̃Ti

: H → H by

S̃Ti
(x) = κ−r(Ti)S(x)κs(Ti) for x ∈ H,
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where r(Ti) = 0 if Ti starts at the top and r(Ti) = 1 otherwise, and s(Ti) = 0 if Ti

ends at the bottom, and s(Ti) = 1 otherwise. For example, we have

S̃↓(x) = S(x), S̃↑(x) = κ−1S(x)κ = S−1(x),

S̃ (x) = S̃ (x) = S(x)κ, S̃ (x) = S̃ (x) = κ−1S(x)

for x ∈ H .
We need the following result, which is almost standard.

Lemma 7.4. Let T = T1 ∪ · · · ∪ Tn be a tangle with n arcs with n ≥ 1. For
i = 1, . . . , n, let ∆i(T ) (resp. εi(T ), Si(T )) denote the tangle obtained from T by
duplicating (resp. removing, orientation-reversing) the ith component Ti. Then we
have

J∆i(T ) = (1⊗(i−1) ⊗∆⊗ 1⊗(n−i))(JT ),(7.4)

Jεi(T ) = (1⊗(i−1) ⊗ ε⊗ 1⊗(n−i))(JT ),(7.5)

JSi(T ) = (1⊗(i−1) ⊗ S̃Ti
⊗ 1⊗(n−i))(JT ).(7.6)

Proof. The cases of ∆i(T ) and εi(T ) are standard. We prove the case of Si(T ),
which may probably be well known to the experts but does not seem to have
appeared in a way as general as here.

We can easily check (7.6) for T = ψb,b, ψ
−1
b,b , , , , .

For the general case, we express T as an iterated composite and tensor product

of finitely many copies of the morphisms ↓, ↑, ψ±1
↓,↓, , , , . We may assume

that Ti involves at least one crossing or critical point, since otherwise the assertion
is obvious.

We decompose the component Ti into finitely many intervals Ti,1, . . . , Ti,p with
p ≥ 1, where

• if one goes along Ti in the opposite direction to the orientation, then one
encounter the intervals in the order Ti,1, . . . , Ti,p, and

• for each j = 1, . . . , p, there is just one crossing or critical points in Ti,j .

For each j = 1, . . . , p, let xj = J(Ti,j) denote the formal element put on the
interval Ti,j in the definition of JT . Then we have J(Ti) = x1x2 · · ·xp. Let
−Ti,j denote the orientation reversal of Ti,j . Then it follows from the cases of

T = ψb,b, ψ
−1
b,b , , , , that the formal element put on −Ti,j in the definition

of JSi(T ) is S̃Ti,j
(xj). Hence we have J(−Ti) = x′p · · ·x

′
1, where

x′j = J(−Ti,j) = S̃Ti,j
(xj) = κ−r(Ti,j)S(xj)κ

s(Ti,j )

for j = 1, . . . , p. We have s(Ti,j) = r(Ti,j−1) for j = 2, . . . , p. We also have
s(Ti,1) = s(Ti) and r(Ti,p) = r(Ti). Hence it follows that

J(−Ti) = x′px
′
p−1 · · ·x

′
1

= (κ−r(Ti,p)S(xp)κ
s(Ti,p))(κ−r(Ti,p−1)S(xp−1)κ

s(Ti,p−1)) · · · (κ−r(Ti,1)S(x1)κ
s(Ti,1))

= κ−r(Ti)S(xp)S(xp−1) · · ·S(x1)κ
s(Ti)

= κ−r(Ti)S(x1 · · ·xp−1xp)κ
s(Ti)

= κ−r(Ti)S(J(Ti))κ
s(Ti)

= S̃Ti
(J(Ti)).
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Now the assertion immediately follows. �

8. A braided functor J : B→ ModH

In this section, we fix a ribbon Hopf algebra H over a commutative, unital ring
k.

8.1. The category ModH of left H–modules. In this subsection, we recall some
algebraic facts about the category ModH of left H–modules. For details, see [54, 55].

Let ModH denote the category of left H–modules and left H–module homo-
morphisms. The category ModH is equipped with a (nonstrict) monoidal category
structure with the tensor functor ⊗ : ModH×ModH → ModH given by tensor prod-
uct over k with the usual left H–module structure defined using comultiplication.
The unit object is k with the trivial left H–module structure. The braiding ψV,W

and its inverse of two objects V and W is given by

ψV,W (v ⊗ w) =
∑

βw ⊗ αv, ψ−1
V,W (v ⊗ w) =

∑

ᾱw ⊗ β̄v,(8.1)

for v ∈ V , w ∈W .
We regardH as a left H–module using the left adjoint action ad = . : H⊗2 → H .

By (8.1), the braiding ψH,H : H⊗2 → H⊗2 and its inverse is given by

ψH,H(x⊗ y) =
∑

(β . y)⊗ (α . x), ψ−1
H,H(x⊗ y) =

∑

(ᾱ . y)⊗ (β̄ . x)

for x, y ∈ H .
The transmutation [54, 55] of a quasitriangular Hopf algebra H is a Hopf algebra

H = (H,µ, η,∆, ε, S) in the braided category ModH , which is obtained by modifying
the Hopf algebra structure of H as follows. The algebra structure morphisms µ
and η, and the counit ε of H are the same as those of H . The comultiplication
∆: H → H⊗2 and the antipode S : H → H are defined by

∆(x) =
∑

x(1)S(β)⊗ (α . x(2)),(8.2)

S(x) =
∑

βS(α . x),(8.3)

for x ∈ H . The morphisms µ, η,∆, ε, S are all left H–module homomorphisms, and
H is a Hopf algebra in the braided category ModH .

Define cH± ∈ H
⊗2 by

(8.4) cH± = (S ⊗ 1)((R21R)±1).

By abuse of notation, we denote by cH± the k–module homomorphism k → H⊗2

which maps 1 to cH± .
Using ∆(x)R21R = R21R∆(x), x ∈ H , one can verify

(8.5) cH± ∈ ModH(k, H⊗2).

8.2. Definition of J : B→ ModH . In this subsection, we define a braided functor

(8.6) J : B→ ModH ,

which maps b ∈ Ob(B) to H ∈ Ob(ModH).
For T ∈ B(m,n) with m,n ≥ 0, we define a k–module homomorphism

J(T ) : H⊗m → H⊗n

as follows. Consider a tangle diagram of Tηm, see Figure 21. Given an element
∑

x1⊗· · ·⊗xm ∈ H
⊗m, we put xi on the ith component in ηm for each i = 1, . . . ,m.
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Figure 21. For the tangle T = (µb⊗µb)(µb⊗c+⊗b) : b⊗3 → b⊗2

depicted, and
∑

x1⊗x2⊗x3 ∈ H
⊗3, we have J(T )(

∑

x1⊗x2⊗x3) =
∑

x1x2S(α)S(β′)⊗ α′βx3, where R =
∑

α⊗ β =
∑

α′ ⊗ β′.

Moreover, we put elements in H to the components in T as in the definition of JT .
Then we obtain a tangle diagram consisting of n arcs, decorated with elements of
H . For i = 1, . . . , n, let yi denote the word obtained by reading the elements on
the ith component of Tηm. Then we set

J(T )
(

∑

x1 ⊗ · · · ⊗ xm

)

=
∑

y1 ⊗ · · · ⊗ yn.

Clearly, J(T ) is a k–module homomorphism, and does not depend on the choice of
the diagram of T . Note that if m = 0, then we have

J(T )(1) = JT .

It is also clear that J is associative, i.e., J(TT ′) = J(T )J(T ′) for any two composable
pair of morphisms T and T ′ in B, and that J(1⊗n

b
) = 1H⊗n . This means that the

correspondence T 7→ J(T ) defines a functor

Jk : B→ Modk,

where Modk denotes the category of k–modules and k–module homomorphisms.
We give the category Modk the standard symmetric monoidal category structure.
Then we can easily check that Jk is a monoidal functor.

To prove that Jk lifts along the forgetful functor ModH → Modk to a monoidal
functor (8.6), it suffices to show that if T is a morphism in B, then J(T ) is a
left H–module homomorphism. By Theorem 5.16, we have only to check this
property for T ∈ {ψ±1

b,b , µb, ηb, v±, c±}. This follows from Proposition 8.1 below,

since η, v±1, cH± , µ, ψ
±1
H,H are left H–module homomorphisms. Proposition 8.1 also

shows that J is a braided functor.

Proposition 8.1. We have

J(ηb) = η, J(v±) = r±1, J(c±) = cH± , J(µb) = µ, J(ψb,b)
±1 = ψ±1

H,H ,

for x, y ∈ H. Here we denote by r±1 the corresponding morphism in ModH(k, H)
by abuse of notation.

Proof. For T = ηb, v±, c±, µb, the homomorphism J(T ) are easily computed using
Figure 22 (a)–(f).
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Figure 22

The case T = ψH,H is computed using Figure 22 (g), where
x  y

means
x y

.
We have

J(ψb,b)(x⊗y) =
∑

β(1)yS(β(2))⊗α(1)xS(α(2)) =
∑

(β.y)⊗(α.x) = ψH,H(x⊗y),

where we write (∆ ⊗∆)(R) =
∑

α(1) ⊗ α(2) ⊗ β(1) ⊗ β(2). We can similarly check

the case T = ψ−1
b,b . �

An easy consequence of the braided functor J is the following, which is essentially
well known.

Proposition 8.2 (Cf. [39, Corollary 12]). If T ∈ BTn, then JT ∈ ModH(k, H⊗n).
In particular, if T ∈ BT1, then JT ∈ H is central.

8.3. The functor J as a morphism of external Hopf algebras. Note that, by
Remark 6.4, the Hopf algebra structure of the transmutation H = (H,µ, η,∆, ε, S)
of H determines an external Hopf algebra ((H,µ, η), FH ) in the canonical way.

Theorem 8.3. The braided functor J : B→ ModH maps the external Hopf algebra
(b, Fb) in B into the external Hopf algebra (H,FH ) in ModH in the following sense.

(1) J maps the algebra (b, µb, ηb) into the algebra (H,µ, η).
(2) By defining J′

H⊗m = J : BTm → ModH(k, H⊗m) for m ≥ 0, we obtain a
natural transformation J′ : Fb ⇒ FH .

Proof. The condition (1) follows immediately from Proposition 8.1.
The condition (2) is equivalent to that, for any morphism f : H⊗m → H⊗n in

〈H〉, the diagram

(8.7)

BTm
J

−−−−→ ModH(k, H⊗m)

Fb(f)





y





y

FH (f)

BTn
J

−−−−→ ModH(k, H⊗n)

commutes. We have only to prove (8.7) for f in a set of generators of 〈H〉 as a
category. Hence we can assume f = g(i,j) with g ∈ {ψH,H, ψ

−1
H,H, µH, ηH,∆H, εH, SH}

and i, j ≥ 0. The condition (1) implies that we have (8.7) if g = ψ±1
H,H, µH or ηH.

To prove the cases g = ∆H, εH, SH, it suffices to prove

J∆̌(i,j)(T ) = (1⊗i ⊗∆⊗ 1⊗j)(JT ),(8.8)

Jε̌(i,j)(T ) = (1⊗i ⊗ ε⊗ 1⊗j)(JT ),(8.9)

JŠ(i,j)(T ) = (1⊗i ⊗ S ⊗ 1⊗j)(JT )(8.10)

for T ∈ BTi+j+1, i, j ≥ 0. Note that (8.9) follows from Lemma 7.4.
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We write

JT =
∑

J(T1) ⊗ · · · ⊗ J(Ti+j+1) =
∑

y ⊗ x⊗ y′,

where x = J(Ti+1) ∈ H , y = J(T1) ⊗ · · · ⊗ J(Ti) ∈ H⊗i and y′ = J(Ti+2) ⊗ · · · ⊗

J(Ti+j+1) ∈ H
⊗j . By Figure 23, we have

J∆̌(i,j)(T ) =
∑

y ⊗ x(1)S(β)⊗ α(1)x(2)S(α(2))⊗ y
′

=
∑

y ⊗ x(1)S(β)⊗ (α . x(2))⊗ y
′

=
∑

y ⊗∆(x) ⊗ y′

= (1⊗i ⊗∆⊗ 1⊗j)(JT ),

and

JŠ(i,j)(T ) =
∑

y ⊗ βκα(2)κ
−1S(x)S(α(1))⊗ y

′

=
∑

y ⊗ βS2(α(2))S(x)S(α(1))⊗ y
′

=
∑

y ⊗ βS(α(1)xS(α(2)))⊗ y
′

=
∑

y ⊗ βS(α . x) ⊗ y′

=
∑

y ⊗ S(x) ⊗ y′

= (1⊗i ⊗ S ⊗ 1⊗j)(JT ).

Hence we have (8.8) and (8.10). �

Theorem 8.3 implies the relationship between the Hopf algebra action on the
bottom tangles and the functor J that we mentioned in the latter half of 1.6.

8.4. Topological proofs of algebraic identities. Theorem 8.3 means that, to
a certain extent, the braided Hopf algebra structure of H is explained in terms
of the external Hopf algebra structure in B, which is defined topologically. Thus,
Theorem 8.3 can be regarded as a topological interpretation of transmutation of a
ribbon Hopf algebra. We explain below that Theorem 8.3 can be used in proving
various identities for transmutation using isotopy of tangles.

For a k–module homomorphism f : H⊗m → H⊗n and i, j ≥ 0, we set

f(i,j) = 1⊗i
H ⊗ f ⊗ 1⊗j

H : H⊗(m+i+j) → H⊗(n+i+j).

For f, g ∈ ModH(H⊗m, H⊗n), we write f ≡ g if we have

f(i,j)(JT ) = g(i,j)(JT )
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x
i+2

κ

A

Figure 24. The tangle Fb((adH)(i,j))(T ) with only the (i + 1)st
component is depicted. Here we write JT =

∑

x1 ⊗ · · · ⊗ xi+j+2.
The box A contains

∑

(xi+1)(1) ⊗ κ
−1S((xi+1)(2)).

for all i, j ≥ 0 and T ∈ BTi+j+m. Note that if m = 0, then f ≡ g and f = g are
equivalent.

Remark 8.4. All the formulas of the form “f ≡ g” that appear in what follows can
be replaced by “f = g”. One can prove this fact either by direct computation or
using the functor JB mentioned in Section 14.4 below. In the present paper, we will
content ourselves with the weaker form “f ≡ g”.

Let ad ∈ ModH(H⊗2, H) denote the left adjoint action for H defined by

ad = µ[3](1⊗ ψH,H)((1⊗ S)∆⊗ 1).

It is well known that ad = ad. As a first example of topological proofs, we show
that ad ≡ ad. Since Figure 14 (a) and (b) are isotopic, we see that, for i, j ≥ 0 and
T ∈ BTi+j+2,

JFb((adH)(i,j))(T ) = ad(i,j)(JT )

is calculated using Figure 24. Hence we have

ad(i,j)(JT ) =
∑

x1 ⊗ · · · ⊗ xi ⊗ (xi+1)(1)xi+2S((xi+1)(2))⊗ xi+3 ⊗ · · · ⊗ xi+j+2

=
∑

x1 ⊗ · · · ⊗ xi ⊗ (xi+1 . xi+2)⊗ xi+3 ⊗ · · · ⊗ xi+j+2

= (ad)(i,j)(JT ).

Hence we have ad ≡ ad.
Let coad ∈ ModH(H,H⊗2) denote the left adjoint coaction for H, defined by

coad = (µ⊗ 1)(1⊗ ψH,H(1⊗ S))∆[3].

By taking J of (6.11), we have

coad(i,j)(JT ) = (J(γ+))(i,j)(JT ) = (1H ⊗ ad)(i,j)(c
H
+ ⊗ 1H)(i,j)(JT ),

where we used ad ≡ ad. Hence we have

(8.11) J(γ+) ≡ coad ≡ (1H ⊗ ad)(cH+ ⊗ 1H).

By taking J of (6.12), we have

J(γ−)(i,j)(JT ) = (S ⊗ 1H)(i,j)J(γ+)(i,j)(JT ).

Hence we have

(8.12) J(γ−) ≡ (S ⊗ 1H)coad.
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We also note that the proof of external Hopf algebra axioms in B yields a topo-
logical proof of the weak “≡–version” of the identities in the axiom of Hopf algebra
for H. For example, one can derive the formula

∆µ ≡ (µ⊗ µ)(1H ⊗ ψH,H ⊗ 1H)(∆⊗∆)

from Figure 12, and
µ(1H ⊗ S)∆ ≡ µ(S ⊗ 1H)∆ ≡ ηε

from Figure 13.

9. Values of universal invariants of bottom tangles

In this subsection, we study the set of values of universal invariants of bottom
tangles. In the first subsection 9.1, we give several general results, and in later
subsections we give applications to some specific cases.

We fix a ribbon Hopf algebra H over a commutative, unital ring k.

9.1. Values of JT . We use the following notation. Let K ⊂ H⊗m and L ⊂ H⊗n

be subsets. Set

K ⊗ L = {x⊗ y | x ∈ K, y ∈ L} ⊂ H⊗(m+n).

If x ∈ H , then set

K ⊗ x = K ⊗ {x}, x⊗K = {x} ⊗K.

The category B acts on the left H–modules H⊗n, n ≥ 0, by the functions

jm,n : B(m,n)×H⊗m → H⊗n, (T, x) 7→ Tx = J(T )(x).

If C is a subcategory of B, and if K ⊂
⋃

i≥0H
⊗i, set

C ·K =
⋃

m,n≥0

jm,n(C(m,n)× (K ∩H⊗m)).

Recall that A denotes the braided subcategory of B generated by the object b

and the morphisms µb and ηb.
We have the following characterization of the possible values of the universal

invariants of bottom tangles.

Theorem 9.1. The set {JU | U ∈ BT} of the values of JU for all the bottom
tangles U ∈ BT is given by

(9.1) {JU | U ∈ BT} = A · {JT | T ∈ {v±, c±}
∗}.

Proof. The result follows immediately from Corollary 5.21 and functoriality of J.
�

Using Theorem 9.1, we obtain the following, which will be useful in studying the
universal invariants of bottom tangles.

Corollary 9.2. Let Ki ⊂ H
⊗i for i ≥ 0, be subsets satisfying the following.

(1) 1 ∈ K0, 1, v±1 ∈ K1, and cH± ∈ K2.
(2) For m,n ≥ 0, we have Km ⊗Kn ⊂ Km+n.
(3) For p, q ≥ 0 we have

(ψ±1
H,H)(p,q)(Kp+q+2) ⊂ Kp+q+2,

µ(p,q)(Kp+q+2) ⊂ Kp+q+1.
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Then for any U ∈ BTn, n ≥ 0, we have JU ∈ Kn.

Proof. By (1) and (2), the Ki contain JT for T ∈ {v±, c±}
∗. By (1), (2) and (3),

the Ki are invariant under the action of A. Hence have the assertion. �

Using Theorem 5.14, we see that, for T ∈ ABT, the set of the values of the
universal invariant of bottom tangles obtained from ηn (n ≥ 0) by one T–move

is equal to B̌0 · {JT }. Similarly, by Corollary 5.15, we see that, for M ⊂ ABT

inversion-closed, the set of the values of the universal invariant of the M–trivial
bottom tangles is equal to B̌0 · {JU | U ∈ M

∗}. From these observations we have
the following results, which will be useful in applications.

Corollary 9.3. Let T ∈ ABTm, and let Ki ⊂ H⊗i for i ≥ 0 be subsets satisfying
the following conditions.

(1) JT ∈ Km.
(2) For p, q ≥ 0 and f ∈ {ψ±1

H,H , η, µ, coad, (S ⊗ 1)coad} with f : b⊗i → b⊗j ,
we have

f(p,q)(Kp+q+i) ⊂ Kp+q+j .

Then for any U ∈ BTn obtained from ηn by one T–move, we have JU ∈ Kn.

Proof. We have to show that B̌0 · {JT } ⊂
⋃

nKn. Since JT ∈ Km, it suffices to

show that
⋃

nKn is stable under the action of generators of B̌0. Since B̌0 is as a
category generated by f(p,q) with p, q ≥ 0 and f ∈ {µb, ηb, γ+, γ−}, the condition

(2) implies that
⋃

nKn is stable under the action of B̌0. Here we use (8.11) and
(8.12) with ≡ replaced by =. (See Remark 8.4.) �

Corollary 9.4. Let M ⊂ ABT be inversion-closed, and let Ki ⊂ H⊗i for i ≥ 0 be
subsets satisfying the following conditions.

(1) 1 ∈ K0 and 1 ∈ K1.
(2) For V ∈M , we have JV ∈ K|V |.
(3) If k, l ≥ 0, then we have Kk ⊗Kl ⊂ Kk+l.
(4) For p, q ≥ 0 and f ∈ {ψ±1

H,H , µ, coad, (S⊗1)coad} with f : H⊗i → H⊗j , we
have

f(p,q)(Kp+q+i) ⊂ Kp+q+j .

Then for any M–trivial U ∈ BTn, we have JU ∈ Kn.

Proof. It suffices to check the conditions in Corollary 9.3, where T is an element of
M∗. The condition (1) in Corollary 9.3, i.e., JT ∈ K|T |, follows from (1), (2) and
(3). The condition (2) in Corollary 9.3 with f 6= η follows from (4). The condition
(2) with f = η in Corollary 9.3 follows from (1), (3), and (4), since we have

η(p,q)(Kp+q) = (1⊗p ⊗ ψH⊗q ,H)(Kp+q ⊗ 1).

�

The following will be useful in studying the set of M–equivalence classes of
bottom tangles for M ⊂ ABT.

Corollary 9.5. Let M ⊂ ABT, not necessarily inversion-closed. Let Ki ⊂ H
⊗i for

i ≥ 0 be Z–submodules satisfying the following conditions.

(1) For each T ∈M we have JT − 1⊗|T | ∈ K|T |.
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(2) For i ≥ 0, we have

Ki ⊗ 1 ⊂ Ki+1, Ki ⊗ v
±1 ⊂ Ki+1, Ki ⊗ c

H
± ⊂ Ki+2.

(3) For p, q ≥ 0, we have

(ψ±1
H,H)(p,q)(Kp+q+2) ⊂ Kp+q+2,(9.2)

µ(p,q)(Kp+q+2) ⊂ Kp+q+1.(9.3)

Then, for any pair U,U ′ ∈ BTn of M–equivalent bottom tangles, we have JU ′−JU ∈
Kn. Hence there is a well-defined function

BTn /(M–equivalence)→ H⊗n/Kn, [U ] 7→ [JU ]

for each n ≥ 0.

Proof. Since Kn ⊂ H
⊗n are Z–submodules for n ≥ 0, we may assume without loss

of generality that U and U ′ are related by one T–move for T ∈M . Set r = |T |. By
Theorem 5.8, there is W ∈ B(r, n) such that U = Wηr and U ′ = WT . Hence we
have

JU ′ − JU = J(W )(JT − 1⊗r) ∈ J(W )(Kr),

Therefore we have only to prove that J(W )(Kr) ⊂ Kn. By the assumptions, this
holds for each generator W of B as a subcategory of T , described in Corollary 5.18.
Hence we have the assertion. �

9.2. Unknotting number. A positive crossing change is a local move on a tangle
which replaces a negative crossing by a positive crossing. A negative crossing change
is the inverse operation. In our terminology, a positive (resp. negative) crossing
change is equivalent to a c−–move (resp. c+–move).

A bottom knot is a 1–component bottom tangle.

Corollary 9.6. Let n+, n− ≥ 0, and let Ki ⊂ H
⊗i, i ≥ 1, be subsets satisfying the

following conditions.

(1) (cH+ )⊗n− ⊗ (cH− )⊗n+ ∈ K2(n++n−).

(2) For p, q ≥ 0 and f ∈ {ψ±1
H,H , η, µ, coad, (S ⊗ 1)coad} with f : b

⊗i → b
⊗j ,

we have

f(p,q)(Kp+q+i) ⊂ Kp+q+j .

Then, if a bottom knot T ∈ BT1 of framing 0 is obtained from ηb by n+ positive
crossing changes and n− negative crossing changes up to framing change, we have
JT ∈ r2(n+−n−)K1.

Proof. The result follows from Corollary 9.3, since T is obtained from ηb by a

(c
⊗n−

+ ⊗ c
⊗n+

− )–move and framing change by −2(n+ − n−). �

Corollary 9.6 can be used to obtain an obstruction for a bottom knot T to be
of unknotting number at most n, since a bottom knot is of unknotting number n
if and only if, for some n+, n− ≥ 0 with n+ + n− = n, we have the situation in the
statement of Corollary 9.6. Also, we can use Corollary 9.6 to obtain an obstruction
for a bottom tangle to be positively unknottable, i.e., obtained from ηb by finitely
many positive crossing change up to framing change.

In the literature, versions of unknotting numbers with respect to various kinds
of admissible local moves are studied, see e.g. [57, 58]. For M ⊂ ABT, a bottom
knot T ∈ BT1 is said to be of “M–unknotting number n” if T can be obtained
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(b) (c) (d)

i+1

(e)

= =

i+1 i+1

surgery

i+1i+2i+1
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Figure 25. (a) An (i + j + 2)–component bottom tangle T . (b)
The (i + j + 1)–component bottom tangle T ′ = F ((YH)(i,j))(T ),
calculated using (9.4). (c) T ′ calculated using (9.5). (d) Another
picture of T ′, in which the (i + 1)st component bounds a Seifert
surface of genus 1. (d) A presentation of T ′ using a clasper.

from η1 by n applications of M–moves. One can easily modify Corollary 9.6 to give
obstructions for a bottom knot to be of M–unknotting number≤ n.

9.3. Commutators and Seifert surfaces. For any Hopf algebra A in a braided
categoryM, we define the commutator morphism [21, Section 8.1] YA ∈ M(A⊗2, A)
by

YA = µ
[4]
A (A⊗ ψA,A ⊗A)(A⊗ SA ⊗ SA ⊗A)(∆A ⊗∆A).(9.4)

Using adjoint action, we obtain a simpler formula, which is sometimes more useful:

YA = µA(adA ⊗A)(A ⊗ SA ⊗A)(A ⊗∆A).(9.5)

The function

Fb((YH)(i,j)) : BTi+j+2 → BTi+j+1

transforms a bottom tangle into another as illustrated in Figure 25.
For a ribbon Hopf algebraH , a (relatively) simple formula for the left H–module

homomorphism YH is as follows.

Proposition 9.7. For
∑

x⊗ y ∈ H⊗2, we have

YH

(

∑

x⊗ y
)

=
∑

(

x . βS((α . y)(1))
)

(α . y)(2),

where ∆(α . y) =
∑

(α . y)(1) ⊗ (α . y)(2).

Proof. By computation, we have

(9.6) (S ⊗ 1)∆(y) =
∑

βS((α . y)(1))⊗ (α . y)(2)

for y ∈ H . Hence we have by (9.5)

YH

(

∑

x⊗ y
)

=µ(ad⊗H)(1⊗ (S ⊗ 1)∆)
(

∑

x⊗ y
)

=
∑

(x . βS((α . y)(1)))(α . y)(2).

�

Remark 9.8. Proposition 9.7 holds also for the transmutation of a quasitriangular
Hopf algebra H which are not ribbon.
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Figure 26

A Seifert surface of a bottom knot T in a cube [0, 1]3 is a compact, connected,
oriented surface F in [0, 1]3 such that ∂F = T ∪γ and F ∩ ([0, 1]2×{0}) = γ, where
γ ⊂ [0, 1]2×{0} is the line segment with ∂γ = ∂T . Note that a Seifert surface of a
bottom knot T determines in the canonical way a Seifert surface of the closure of
T .

Recall that a link L in S3 is boundary if the components of L bounds mutually
disjoint Seifert surfaces. Similarly, a bottom tangle T ∈ BTn is said to be boundary
if the components of T are of framing 0 and bound mutually disjoint Seifert surfaces
in [0, 1]3.

Theorem 9.9. Let Ki ⊂ H
⊗i, i ≥ 0, be as in Corollary 9.2. Then, for any bound-

ary bottom tangle T = T1 ∪ · · · ∪Tn bounding disjoint Seifert surfaces F1, . . . , Fn of
genus g1, . . . , gn, we have

JT ∈ (µ[g1] ⊗ · · · ⊗ µ[gn])Y
⊗(g1+···+gn)
H (K2(g1+···+gn)).

In particular, if a bottom knot bounds a Seifert surface of genus g, then we have

JT ∈ µ
[g]Y ⊗g

H (K2g).

Proof. Set g = g1 + · · ·+ gn. By isotopy, we can arrange F1, . . . , Fn as depicted in
Figure 26, where D(T ′) ∈ T (1, b⊗4g) is obtained from a bottom tangle T ′ ∈ BT2g

by doubling the components. (The surfaces bounded by the components of T should
be obvious from the figure.) We have

T = Fb((µ
[g1]
H
⊗ · · · ⊗ µ

[gn]
H

)Y ⊗g
H

)(T ′).

Hence

JT = FH((µ
[g1]
H
⊗ · · · ⊗ µ

[gn]
H

)Y ⊗g
H

)(JT ′ )

= (µ
[g1]
H ⊗ · · · ⊗ µ

[gn]
H )Y ⊗g

H (JT ′)

By Corollary 9.2, we have JT ′ ∈ K2g. Hence we have the assertion. �

It is easy to verify that a link L is boundary if and only if there is a boundary
bottom tangle T such that the closure of T is equivalent to L. (However, there are
many non-boundary bottom tangles whose closures are boundary.) Hence we can
use Theorem 9.9 to obtain JL for boundary links L. Also, the latter part of Theorem
9.9 can be used to obtain an obstruction for a knot from being of genus≤ g.

9.4. Unoriented spanning surfaces. Here we consider the “unorientable ver-
sion” of the previous subsection.

The crosscap number [7] (see also [59]) of an unframed nontrivial knot K is the
minimum number of the first Betti numbers of unorientable surfaces bounded by
K. The crosscap number of an unknot is defined to be 0.
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Proposition 9.10. Let T be a 0–framed bottom knot of crosscap number c ≥ 0
(i.e., the closure of T is of crosscap number c). Then there is T ′ ∈ BTc such that

(9.7) JT = r4w(T ′)(µ∆)⊗c(JT ′),

where w(T ′) ∈ Z is the writhe of the tangle T ′.

Proof. By assumption, the union of the bottom knot T and the line segment
bounded by the endpoints of T bounds a connected, compact, unorientable sur-
face N of genus c in the cube. Here the framing of T which is determined by N
may differ from the 0–framing. (We will ignore the framing until the end of this
proof.) As is well known, N can be obtained from a disc D by attaching c bands
b1, . . . , bc such that, for each i = 1, . . . , c, the union D ∪ bi is a Möbius band, and
between the two components of D ∩ bi there are no attaching region of the other
band, see Figure 27 (a). Here the dotted part is obtained from a c–component
bottom tangle T ′ by replacing the components by bands, using the framings. T
can be isotoped as in Figure 27 (b). Since the framing of the tangle depicted in
Figure 27 (b) is 4w(T ′), we have

T = (t↓⊗ ↑)
−4w(T ′)Fb((µH∆H)⊗c)(JT ′ )

Hence we have the assertion. �

The unorientable version of boundary link is Z2–boundary link [27]. A link L in
S3 is called Z2–boundary if the components of L bounds mutually disjoint possibly
unorientable surfaces. Similarly, a bottom tangle T ∈ BTn is said to be Z2–boundary
if the components of T are of framing 0 and bound mutually disjoint possibly
unorientable surfaces in [0, 1]3. In the above definitions, “possibly unorientable”
can be replaced by just “unorientable”. One can easily modify Theorem 9.9 into
the Z2–boundary case.

9.5. Borromean tangle and delta moves. We consider delta moves [58], or
Borromean transformation [56], on bottom tangles, which we mentioned in Section
1.7. In our setting, a delta move can be defined as a B–move, where B ∈ BT3 is
the Borromean tangle defined in Section 1.7.

The following is an easily verified variant of a theorem of Murakami and Nakan-
ishi [58], which makes delta moves especially useful.

Proposition 9.11 ([58]). Two n–component bottom tangles T and T ′ have the
same linking matrix if and only if there is a sequence of finitely many delta moves
(and isotopies) from T to T ′. (Here the linking matrix of an n–component bottom
tangle T is defined to be the linking matrix of the closure of T .)

Using Proposition 9.11, we obtain the following results.
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Figure 28

Corollary 9.12. For two n–component bottom tangles T and T ′, the following
conditions are equivalent.

(1) T and T ′ have the same linking matrix.
(2) T and T ′ are delta move equivalent, i.e., B–equivalent.
(3) For some k ≥ 0 and W ∈ B(3k, n), we have

T = Wη3k , T ′ = WB⊗k.

Proof. The equivalence of (1) and (2) is just Theorem 9.11. The equivalence of
(2) and (3) follows from Proposition 5.12, since the set {B} is inversion-closed (see
[58]). �

Corollary 9.13. The linking matrix of an n–component bottom tangle T is zero if
and only if there are k ≥ 0 and W ∈ B̌0(3k, n) such that we have T = WB⊗k.

In particular, a bottom tangle with zero linking matrix is obtained by pasting
finitely many copies of 1b, ψb,b, ψ

−1
b,b , µb, ηb, γ+, γ−, B.

Proof. The result follows from Corollary 5.15, since T is of linking matrix 0 if and
only if T is B–trivial. �

In some applications, the following form may be more useful.

Corollary 9.14. The linking matrix of an n–component bottom tangle T is zero if
and only if there are k ≥ 0 and f ∈ 〈H〉(3k, n) such that we have T = Fb(f)(B⊗k).

Proof. The “only if” part follows easily from Corollary 9.13, using

(γ+)(i,j)U = Fb((coadH)(i,j))(U),

(γ−)(i,j)U = Fb(((SH ⊗ H)coadH)(i,j))(U),

for i, j ≥ 0, U ∈ BTi+j+1.
The “if” part follows from the easily verified fact that the set of bottom tangles

with zero linking matrices is closed under the Hopf algebra action. �

Now we apply the above results to the universal invariant. First we give a few
formulas for JB ∈ H

⊗3. Using Figure 3, we can easily see that

(9.8) JB =
∑

S2(α5)β2α6S(β1)⊗ α1β4α2S(β3)⊗ α3S
−2(β6)α4S(β5),

where R =
∑

αi ⊗ βi for i = 1, . . . , 6. By Figure 28, we have

(9.9) B = Fb(YH⊗H⊗H)(c+,2) = Fb(H⊗YH⊗H)((c+)⊗2) = Fb(H⊗H⊗YH)(c+,2),

where c+,2 = (b⊗ c+ ⊗ b)c+ ∈ BT4. By (9.9), it follows that

JB = (YH ⊗ 1⊗2
H )(cH+,2) = (1H ⊗ YH ⊗ 1H)((cH+ )⊗2) = (1⊗2

H ⊗ YH)(cH+,2),

where cH+,2 =
∑

(cH+ )[1] ⊗ c
H
+ ⊗ (cH+ )[2] ∈ H

⊗4 with cH+ =
∑

(cH+ )[1] ⊗ (cH+ )[2].
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One can apply Corollary 9.5 to the case M = {B} to obtain a result about the
difference of the universal invariants of bottom tangles which have the same linking
matrix. We will not give the explicit statement here.

For the bottom tangles with zero linking matrices, we can easily derive the
following result from Corollaries 9.13 and 9.14.

Corollary 9.15. Set either X = {ψ±1
H,H , µ, coad, (S⊗1)coad} or X = {ψ±1

H,H , µ,∆, S}.

Let Ki ⊂ H
⊗i, i ≥ 0, be subsets satisfying the following conditions.

(1) 1 ∈ K0, 1 ∈ K1, and JB ∈ K3.
(2) If k, l ≥ 0, then we have Kk ⊗Kl ⊂ Kk+l.
(3) For p, q ≥ 0 and f ∈ X with f : H⊗i → H⊗j , we have

f(p,q)(Kp+q+i) ⊂ Kp+q+j .

Then, for any U ∈ BTn with zero linking matrix, we have JU ∈ Kn.

As mentioned in Section 1.7, in future publications we will apply Theorem 9.15
to the case where H is a quantized enveloping algebra.

9.6. Clasper moves. In this subsection, we will apply the settings in this paper to
the clasper moves (or Cn–moves) [16, 21], which is closely related to the Goussarov–
Vassiliev finite type link invariants [81, 14, 15, 3, 4, 1].

Recall that a simple Cn–moves in the sense of [21] is a local move on a tangle
T defined as surgery on a strict tree clasper C of degree n (i.e., with n + 1 disc-
leaves) such that each disc-leaf of T intersects transversely with T by one point.
A simple Cn–move is a generalization of a crossing change (n = 1) and a delta
move (n = 2). In this subsection, for simplicity, we slightly modify the definition
of a simple Cn–move so that the sign of the intersection of C (which is defined as a
surface homeomorphic to a disc) and the strings of T are all positive or all negative.
(It is known (see e.g. [20]) that this does not make any essential difference if n ≥ 2.
I.e., the relations on tangles defined by the moves are the same.)

We can use the results in the previous sections in the study of simple Cn–moves,
by redefining a simple Cn–move as an Mn–move, where Mn is an inversion-closed
subset of ABT defined as follows. Define Yn ⊂ 〈H〉(H

⊗n,H) for n ≥ 1 inductively
by Y1 = {1H} and

Yn = {YH(f ⊗ g) | f ∈ Yi, g ∈ Yj , i+ j = n} for n ≥ 2.

Thus Yn is the set of iterated commutators of class n. For example, we have
Y2 = {YH} and Y3 = {YH(YH ⊗ H), YH(H ⊗ YH)}. For n ≥ 1, define Mn ⊂ ABTn+1

by

Mn = {Fb(f ⊗ H
⊗n)(c+,n) | f ∈ Yn},

where we set

c+,n = (b⊗(n−1) ⊗ c+ ⊗ b
⊗(n−1)) · · · (b⊗ c+ ⊗ b)c+ ∈ BT2n

for n ≥ 1. (Here, the fact that each element of Mn is admissible follows from [21,
Lemma 3.20].) In particular, we have M1 = {c+} and M2 = {B}. For example,
Figure 29 shows a clasper C for η5 such that surgery along C yields the tangle

Fb((YH(YH ⊗ H)(YH ⊗ H
⊗2))⊗ H

⊗4)(c+,4) ∈M4.
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C

Figure 29. The upper rectangle corresponds to c+,4 ∈ BT8. The
lower rectangle corresponds to YH(YH ⊗ H)(YH ⊗ H⊗2) ∈ Y4.

i+1 i+2 i+1 i+2 i+1 i+2 i+1 i+2i+1

(a) (b) (c) (d) (e)

Figure 30. (a) An (i + j + 1)–component bottom tangle T . (b)
The (i+j+2)–component bottom tangle T ′ = F ((Y ∗

H
)(i,j))(T ), cal-

culated using (9.10) (upper). (c) T ′ calculated using (9.10) (lower).
(d) Another picture of T ′. (d) A presentation of T ′ using a clasper.

We can also define theMn using the cocommutator morphism [21] Y ∗
H

: H→ H⊗H

defined by

Y ∗
H = (µH ⊗ µH)(H⊗ SH ⊗ SH ⊗ H)(H⊗ ψH,H ⊗ H)∆

[4]
H

= (H⊗ µH)(coadH ⊗ H)(SH ⊗ H)∆H.
(9.10)

Note that the notion of cocommutator is dual to the notion of commutator. For
i, j ≥ 0, the function

Fb((Y
∗
H

)(i,j)) : BTi+j+1 → BTi+j+2

transforms a bottom tangle into another as illustrated in Figure 30. For n ≥ 1,
define Y∗

n ⊂ 〈H〉(H,H
⊗n) inductively by Y∗

1 = {1H} and

Y∗
n = {(f ⊗ g)Y ∗

H
| f ∈ Y∗

i , g ∈ Y
∗
j , i+ j = n} for n ≥ 2.

Then we have for n ≥ 1,

Mn = {Fb(f ⊗ g)(c+) | f ∈ Y∗
i , g ∈ Y

∗
j , i+ j = n+ 1},

which follows by induction using (9.9) and

(9.11) B = Fb(Y
∗
H
⊗ H)(c+) = Fb(H⊗ Y

∗
H

)(c+).

(The above definition of Mn using Y ∗
H

is similar to the definition of local moves in
[20], where we defined a family of local moves without using claspers. See also [78]
for a similar definition.)

One can show that the notion of simple Cn–move and that of Mn–move are the
same.
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Figure 31. (a) A pass-move. (b) A ]–move. (c) A D(∆)–move.
(Here the orientations of strings are arbitrary.) (d) A doubled-delta
move.

Remark 9.16. A general Cn–move, which may not be simple, is obtained by allowing
removal, orientation reversal and parallelization of strings in the tangles which
define the move. Hence it can be redefined as aM ′

n–move, where the set M ′
n ⊂ ABT

is defined by

M ′
n =

{

Fb(

n+1
⊗

i=1

∆
[ci;di]
H

)(f)
∣

∣

∣
c1, . . . , cn+1, d1, . . . , dn+1 ≥ 0, f ∈Mn

}

,

where we set

∆
[c;d]
H

= (H⊗c ⊗ S⊗d
H

)∆[c+d] ∈ 〈H〉(H,H⊗(c+d))

for c, d ≥ 0. As special cases, the following local moves in the literature can be
redefined algebraically:

(1) A pass-move [33] (see Figure 31 (a)), which characterizes the Arf invariant

of knots, is the same as a Fb((∆
[1;1]
H

)⊗2)(c+)–move.

(2) A ]–move [57] (see Figure 31 (b)) is the same as a Fb(∆
⊗2
H

)(c+)–move.
(This is a framed version. In applications to unframed or 0–framed knots,
one should take framings into account.)

(3) A D(∆)–move [62] (see Figure 31 (c)), which preserves the stable equiva-
lence class of the Goeritz matrix [12, 13] of (possibly unorientable) spanning
surfaces of knots, can be redefined by setting

D(∆) = {Fb((∆H)[i;2−i] ⊗ (∆H)[j;2−j] ⊗ (∆H)[k;2−k])(B) | 0 ≤ i, j, k ≤ 2}.

It is known that the D(∆)–equivalence is the same as an oriented version
of it, which can be defined as the Fb(∆

⊗3
H

)(B)–equivalence, i.e., the case
i = j = k = 2.

(4) A doubled-delta move [60] (see Figure 31 (d)), which characterizes the S–

equivalence class of Seifert matrices of knots, can be defined as a Fb((∆
[1;1]
H

)⊗3)(B)–
move, which is the case i = j = k = 1 of D(∆)–move.

We will postpone to future publications a more systematic study of the clasper
moves in a category-theoretical setting, which was announced in [21]. For this
purpose the category B (see Section 14.4 below) is more useful than B.
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9.7. Goussarov–Vassiliev filtrations on tangles. In this subsection, we give
an algebraic formulation of Goussarov–Vassiliev invariants using the setting of the
category B.

9.7.1. Four-sided ideals in a monoidal Ab–category. Here we recall the notion of
four-sided ideal in a monoidal Ab–category, which can be regarded as the linearized
version of the notion of four-sided congruence in a monoidal category.

Let C be a (strict) monoidal Ab–category, i.e., a monoidal category C such that
for each pair X,Y ∈ Ob(C) the set C(X,Y ) is equipped with a structure of a
Z–module, and the composition and the tensor product are bilinear.

A four-sided ideal I = (I(X,Y ))X,Y ∈Ob(C) in a monoidal Ab–category C is a
family of Z–submodules I(X,Y ) of C(X,Y ) for X,Y ∈ Ob(C) such that

(1) if f ∈ I(X,Y ) and g ∈ C(Y, Z) (resp. g ∈ C(Z,X)), then we have gf ∈
I(X,Z) (resp. fg ∈ I(Z, Y )),

(2) if f ∈ I(X,Y ) and g ∈ C(X ′, Y ′), then we have f ⊗ g ∈ I(X ⊗X ′, Y ⊗ Y ′)
and g ⊗ f ∈ I(X ′ ⊗X,Y ′ ⊗ Y ).

By abuse of notation, we denote by I , the union
⋃

X,Y ∈Ob(C) I(X,Y ).

Let S ⊂ Mor(C) be a set of morphisms in C. Then there is the smallest four-
sided ideal IS in C such that S ⊂ IS . The four-sided ideal IS is said to be generated
by S. For X,X ′ ∈ Ob(C), IS(X,X ′) is Z–spanned by the elements

(9.12) f ′(g ⊗ s⊗ g′)f,

where s ∈ S, and f, f ′, g, g′ ∈ Mor(C) are such that the expression (9.12) gives a
well-defined morphisms in C(X,X ′).

For two four-sided ideals I and I ′ in a monoidal Ab–category C, the product
I ′I of I ′ and I is defined to be the smallest four-sided ideal in C such that if
(g, f) ∈ I ′ × I is a composable pair, then gf ∈ I · I ′. It follows that f ∈ I and
g ∈ I ′ implies f ⊗ g, g ⊗ f ∈ I ′I . For X,Y ∈ Ob(C), then we have

I ′I(X,Y ) =
∑

Z∈Ob(C)

I ′(Z, Y )I(X,Z).

For n ≥ 0, let In denote the nth power of I , which is defined by I0 = Mor(C),
I1 = I , and In = In−1I for n ≥ 2.

Lemma 9.17. Let C be a braided Ab–category and let I be a four-sided ideal in
C generated by S ⊂

∏

X∈Ob(C)C(1, X). Then In(X,Y ) (X,Y ∈ Ob(C)) is Z–

spanned by the elements of the form f(X ⊗ s1⊗· · · ⊗ sn), where s1, . . . , sn ∈ S and
f ∈ C(X ⊗ target(s1 ⊗ · · · ⊗ sn)).

Proof. The proof is sketched as follows. Each element of In is a Z–linear combina-
tion of morphisms, each obtained as an iterated composite and tensor product of
finitely many morphisms of C involving n copies of elements s1, . . . , sn of S. By
the assumption, one can arrange (using braidings) the copies s1, . . . , sn involved
in each term of an element of In to be placed side by side as in s1 ⊗ · · · ⊗ sn in
the upper right corner, i.e., we obtain a term of the form f(X ⊗ s1 ⊗ · · · ⊗ sn), as
desired. �

9.7.2. Goussarov–Vassiliev filtration for ZT . Here we recall a formulation of Goussarov–
Vassiliev filtration using the category T of framed, oriented tangles, which is given
by Kassel and Turaev [32].
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Let ZT denote the category of Z–linear tangles. I.e., we have Ob(ZT ) = Ob(T ),
and for w,w′ ∈ Ob(T ), the set ZT (w,w′) is the free Z–module generated by the
set T (w,w′). ZT is a braided Ab–category.

Let I denote the four-sided ideal in ZT generated by the morphism

ψ× = ψ↓,↓ − ψ
−1
↓,↓ ∈ ZT (↓⊗2, ↓⊗2).

For n ≥ 0, let In denote the nth power of I. In is equal to the four-sided ideal in
ZT generated by the morphism (ψ×)⊗n. For w,w′ ∈ Ob(T ), the filtration

(9.13) ZT (w,w′) = I0(w,w′) ⊃ I1(w,w′) ⊃ I2(w,w′) ⊃ · · ·

is known [32] to be the same as the Goussarov–Vassiliev filtration for ZT (w,w’).

Remark 9.18. There is another (perhaps more natural) definition of Goussarov–
Vassiliev filtration for framed tangles, which involves the difference t↓−1↓ of framing
change as well as ψ×. In the present paper, we do not consider this version for
simplicity.

9.7.3. Goussarov–Vassiliev filtration for ZB. Now we consider the case of tangles
in B. The definition of the category ZB of Z–linear tangles in B is obvious. For
i, j ≥ 0, the Goussarov–Vassiliev filtration for the tangles in B(i, j) is given by the
Z–submodules

(ZB ∩ In)(i, j) := ZB(i, j) ∩ In(b⊗i, b⊗j)

for n ≥ 0. Clearly, this defines a four-sided ideal ZB ∩ In in ZB.
Set

c× = η2 − c+ ∈ ZB(0, 2),

and let IB denote the four-sided ideal in ZB generated by c×.
The following result gives a definition of the Goussarov–Vassiliev filtration for

tangles in B, and in particular for bottom tangles, defined algebraically in ZB. Thus
the setting in the present paper is expected to be useful in the study of Goussarov–
Vassiliev finite type invariants.

Theorem 9.19. For each n ≥ 0, we have

(9.14) ZB ∩ In = In
B .

For bottom tangles, we also have

(9.15) In
B
(0,m) = ZB(2n,m)(c×)⊗n

(

= {f(c×)⊗n | f ∈ ZB(2n,m)}
)

Proof. We have

c× = (↓ ⊗ψ↓,↑⊗ ↑)(ψ
×⊗ ↑ ⊗ ↑)coev↓⊗↓ ∈ I(1, b

⊗2),(9.16)

ψ× = (↓ ⊗ ↓ ⊗ev↓⊗↓)(↓ ⊗ψ
−1
↓,↑⊗ ↑ ⊗ ↓ ⊗ ↓)(c

×⊗ ↓ ⊗ ↓).(9.17)

By (9.16), we have IB ⊂ I, and hence In
B
⊂ In for n ≥ 0. Since In

B
⊂ ZB, we have

In
B
⊂ ZB ∩ In.
We will show the other inclusion. Suppose that f ∈ (ZB ∩ In)(l,m). By (9.16)

and (9.17), I is generated by c× as a four-sided ideal in ZT . By Lemma 9.17, we
have

f = g′(b⊗l ⊗ (c×)⊗n),

where g′ ∈ ZT (b⊗(l+2n), b⊗m). We can write

g′ =
∑

h∈T (b⊗(l+2n),b⊗m)

phh, ph ∈ Z.
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t    −move2,1
2

(b)(a)

Figure 32. (a) A t22,1–move. (b) The tangle t22,1 ∈ BT3

Set g =
∑

h∈B(l+2n,m) phh ∈ ZB(l+ 2n,m). If h ∈ T (b⊗(l+2n), b⊗m) \B(l+ 2n,m),

then hηl+2n is not homotopic to ηm, and hence it follows that (g − g′)(b⊗l ⊗
(c×)⊗n) = 0. Hence

f = g(b⊗l ⊗ (c×)⊗n) ∈ In
B
.

Hence we have ZB ∩ In ⊂ In
B
.

The identity (9.15) follows from the above argument with l = 0. This completes
the proof. �

Remark 9.20. It is easy to generalize this subsection to the case of skein modules
[68] involving bottom tangles. Let k be a commutative, unital ring, and consider
the k–linear braided categories kT and kB. A skein element is just a morphism
f ∈ kT (w,w′), w,w′ ∈ Ob(kT ) = Ob(T ). For a set S ⊂ Mor(kT ) of skein
elements, let IS denote the four-sided ideal in kT generated by S. Then the quotient
(k–linear, braided) category kT /IS is known as the skein category defined by S as
the set of skein relations.

Suppose S ⊂
⋃

n≥0 kBTn ⊂Mor(kB). Thus S is a set of skein elements involving

only bottom tangles. Let IB

S denote the four-sided ideal in kB generated by S. Then
we have the following generalization of Theorem 9.19:

kB ∩ IS = IB

S ,

IB

S (0, n) =
∑

l≥0

kB(l, n)(S ∩ kBTl).

Thus, analogously to the case of local moves, it follows that skein theory defined
by skein elements of compatible tangles consisting of arcs can be formulated within
the setting of kB using skein elements of bottom tangles.

9.8. Twist moves. A twist move is a local move on a tangle which performs a
power of full twist on a parallel family of strings. A type of a twist move is deter-
mined by a triple of integers (n, i, j) with i, j ≥ 0, where the move performs n full
twists on a parallel family of i downward strings and j upward strings. Let us call
it a tni,j–move. In our notation, a tni,j–move is the same as a (↓⊗i ⊗ ↑⊗j , tn↓⊗i⊗↑⊗j )–

move. For example, see Figure 32 (a).
Note that a tn1,0–move is just an n–full twist of a string, and is the same as

vn–move, where vn ∈ BT1 is the nth convolution power of v− defined by

vn =

{

µ
[n]
b
v⊗n
− if n ≥ 0,

µ
[−n]
b

v
⊗(−n)
+ if n ≤ 0.

Using an idea similar to the one in Remark 9.16, we see that an tni,j–move is the same

as Fb(∆
[i;j]
H

)(vn)–move. (∆
[i;j]
H

is defined in Remark 9.16.) By abuse of notation,
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set

tni,j = Fb(∆
[i;j]
H

)(vn) ∈ BTi+j ,

which should not cause confusion. Note that tni,j is admissible.

Note that a tni,j–move changes the writhe of a tangle by n(i − j)2. (Here the
writhe of a tangle is the number of positive crossing minus the number of negative
crossings.) In the literature, twist moves are often considered in the unframed
context. The modification to the unframed case is easy. For example, two 0–
framed knots are related by unframed tni,j–move if they are related by a sequence

of a framed tni,j–move and a framed t
−n(i−j)2

1,0 –move. The latter move multiplies the
universal invariant associated to a ribbon Hopf algebra by the factor of the power

rn(i−j)2 of the ribbon element r.
Twist moves have long been studied in knot theory. For a recent survey, see [69].

Here we give a few examples from the literature with translations into our setting.
For simplicity, we only give suitable framed versions of the notions in the literature.

For integers n, k ≥ 0, a framed version of Fox’s notion of congruence modulo
(n, k) [9] (see also [63, 61]) can be defined as the FCn,k–equivalence, where we set

FCn,k = {tni,j | i− j ≡ 0 (mod k)} ⊂ ABT .

For integer n, a framed version of t2n–move (see [67]) can be defined as tn2,0–
move, and a framed version of t̄2n–move can be defined as tn1,1–move. Nakanishi’s
4–move conjecture [63, 61], which is still open, can be restated that any knot is
{t22,0, t

2
1,1}–equivalent to an unknot.

We expect that the above “algebraic redefinitions” of twist moves and equivalence
relations will be useful in the study of these notions in terms of quantum invariants,
by applying the results in Section 9.1.

10. A functor J̃ : B→ ModH and universal invariants of bottom knots

The following idea may be useful in studying the universal invariants of bottom
knots.

10.1. A nonstrict monoidal functor J̃ : B → ModH . Let H be a ribbon Hopf
algebra over a commutative, unital ring k, and let Z(H) denote the center of H .

Let H̃ denote H regarded as a Z(H)–algebra. For n ≥ 0, let H̃⊗n denote the n–fold

iterated tensor product of H̃ , i.e., n–fold tensor product of H over Z(H), regarded

as a Z(H)–algebra. In particular, we have H̃⊗0 = Z(H). Let

ιn : H⊗n → H̃⊗n

denote the natural map, which is surjective if n ≥ 1.
The functor J : B → ModH induces another functor J̃ : B → ModH as follows.

For n ≥ 0, set J̃(b⊗n) = H̃⊗n, which is given the left H–module structure induced

by that of H⊗n. (This left H–module structure of H̃⊗n does not restrict to the

Z(H)–module structure of H̃⊗n.)

For each f ∈ B(m,n), the left H–module homomorphism J̃(f) : H̃⊗m → H̃⊗n is

induced by J(f) : H⊗m → H⊗n as follows. If m > 0, then J̃(f) is defined to be the
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unique map such that the following diagram commutes

(10.1)

H⊗m J(f)
−−−−→ H⊗n

ιm





y





y

ιn

H̃⊗m −−−−→
J̃(f)

H̃⊗n.

If m = 0, then set

(10.2) J̃(f)(z) = zιn(J(f)(1)) for z ∈ Z(H).

Note that commutativity of the diagram (10.1) holds also for m = 0. It is straight-

forward to check that the above defines a well-defined functor J̃.
For m,n ≥ 0, let

ξm,n : H̃⊗m ⊗k H̃
⊗n → H̃⊗(m+n)

denote the natural map. The ξm,n form a natural transformation ξ : J̃(−)⊗ J̃(−)→

J̃(−⊗−) of functors from B× B to ModH .

It is straightforward to see that the triple (J̃, ξ, ι0) is a ordinary braided functor,
i.e. a ordinary monoidal functor which preserves braiding. (By “ordinary monoidal
functor”, we mean a “monoidal functor” in the ordinary sense, see [53, Chapter XI,
Section 2].)

The ιn form a monoidal natural transformation ι : J⇒ J̃ (in the ordinary sense)
of ordinary monoidal functors from B to ModH .

10.2. Universal invariant of bottom knots. Since ι1 : H = H⊗1 → H̃⊗1 = H
is the identity, the functor J̃ can be used in computing JT = J(T )(1) for a bottom
knot T ∈ BT1. For example, we have the following version of Corollary 9.2 for
n = 1.

Proposition 10.1. Let Ki ⊂ H̃⊗i for i ≥ 0, be Z(H)–submodules satisfying the
following.

(1) 1 ∈ K0, 1, v±1 ∈ K1, and ι2(c
H
± ) ∈ K2.

(2) For m,n ≥ 0, we have Km ⊗Z(H) Kn ⊂ Km+n.
(3) For p, q ≥ 0 we have

(ψ̃±1
H,H)(p,q)(Kp+q+2) ⊂ Kp+q+2,

µ̃(p,q)(Kp+q+2) ⊂ Kp+q+1,

where

(ψ̃H,H)(p,q) = J̃((ψb,b)(p,q)) : H̃
⊗(p+q+2) → H̃⊗(p+q+2)

is induced by (ψH,H)(p,q) : H
⊗(p+q+2) → H⊗(p+q+2), and

µ̃(p,q) = J̃((µb)(p,q)) : H̃
⊗(p+q+2) → H̃⊗(p+q+1)

is induced by µ(p,q) : H
⊗(p+q+2) → H⊗(p+q+1).

Then for any bottom knot U ∈ BT1, we have JU ∈ K1.

Proof. This is easily verified using Corollary 9.2. �

Corollaries 9.3, 9.4, 9.5, 9.6 and 9.15 have similar version for bottom knots.

Remark 10.2. One can replace Z(H) in this section by any k–subalgebra of Z(H).
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T=W=

(b)(a) (c)

T’=

Figure 33. (a) A bottom tangle W ∈ BT4. (b) The tangle T =

Fb((εH ⊗ H)⊗2)(W ) ∈ BT2. (c) The tangle T ′ = Fb(ad⊗2
H

)(W ) ∈
BT2.

Remark 10.3. For n ≥ 0, H̃⊗n has a natural Z(H)–module structure induced by
multiplication of elements of Z(H) on one of the tensor factors in H⊗n. For each

f ∈ B(m,n), the map J̃(f) is a Z(H)–module map. One can show that there

is a monoidal functor J̃′(f) : B → ModZ(H) of B into the category ModZ(H) of

Z(H)–modules which maps each object b⊗n into H̃⊗n and each morphism f into

J̃′(f) = J̃(f).

11. Band-reembedding of bottom tangles

11.1. Refined universal invariants of links. As in Section 1.1, for n ≥ 0, let Ln

denote the set of isotopy classes of n–component, framed, oriented, ordered links
for n ≥ 0. There is a surjective function

cl : BTn → Ln, T 7→ cl(T ).

We study an algebraic condition for two bottom tangles to yield the same closure.

Definition 11.1. Two bottom tangles T, T ′ ∈ BTn are said to be related by a
band-reembedding if there is W ∈ BT2n such that

T = Fb((εH ⊗ H)⊗n)(W ), T ′ = Fb(ad⊗n
H

)(W ).(11.1)

See Figure 33 for an example.

If we regard a bottom tangle as a based link in a natural way, then band-
reembedding corresponds to changing the basing.

Proposition 11.2. Two bottom tangles T, T ′ ∈ BTn are related by a band-reembedding
if and only if cl(T ) = cl(T ′).

Proof. Suppose that T and T ′ are related by a band-reembedding with W ∈ BT2n

as in Definition 11.1. Note that the tangle T is obtained from W by removing the
components of W of odd indices, and the tangle T ′ is obtained from the composite
tangle 1⊗n

b
T by reembedding the n bands in 1b⊗n along the components of W of

odd indices. Hence we easily see that cl(T ) = cl(T ′).
Conversely, if cl(T ) = cl(T ′), then we can express T ′ as a result from 1b⊗nT

by reembedding the n bands in 1b⊗n , and we can arrange by isotopy that there is
W ∈ BT2n satisfying (11.1). �

Let H be a ribbon Hopf algebra. Proposition 11.2 implies that if two bottom
tangles T, T ′ ∈ BTn satisfies cl(T ) = cl(T ′), then there is W ∈ BTn such that

JT = (ε⊗ 1H)⊗n(JW ), JT ′ = ad⊗n(JW ),
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If Ki ⊂ H
⊗i for i = 0, 1, 2, . . . are as in Corollary 9.2, then we have

(11.2) JT ′ − JT ∈ (ad⊗n − (ε⊗ 1H)⊗n)(K2n).

Hence we have the following.

Theorem 11.3. Let Kn ⊂ H⊗n for n = 0, 1, 2, . . . be Z–submodules satisfying the
conditions of Corollary 9.2. Set

(11.3) K ′
n = (ad⊗n − (ε⊗ 1H)⊗n)(K2n).

Then for each n ≥ 0 the function

J : BTn → Kn, T 7→ JT ,

induces a link invariant

J̄ : Ln → Kn/K
′
n

Note that if we set Kn = H⊗n in Theorem 11.3, then we get the usual definition
of universal invariant of links.

Remark 11.4. The idea of Theorem 11.3 can also be used to obtain “more refined”
universal invariants for more special classes of links. For example, let us consider
links and bottom tangles of zero linking matrices. Suppose in Proposition 11.2 that
T and T ′ are of zero linking matrices. Note that the tangle W ∈ BT2n satisfying
(11.1) is not necessarily of zero linking matrix, but the n–component bottom tangle
Fb((εH ⊗ H)⊗n)(W ), which is equivalent to T , is of zero linking matrix. Hence we
can replace the conditions for the Kn in Corollary 9.2 with weaker ones. We hope
to give details of this idea in future publications.

11.2. Ribbon discs. We close this section with a result which is closely related to
Proposition 11.2.

A ribbon disc for a bottom knot T is a ribbon disc for the knot T ∪ γ, where
γ ⊂ [0, 1]2 × {0} is the line segment such that ∂γ = ∂T . Clearly, a bottom knot
admits a ribbon disc if and only if the closure cl(T ) of T is a ribbon knot.

Theorem 11.5. For any bottom knot T ∈ BT1, the following conditions are equiv-
alent.

(1) T admits a ribbon disc.
(2) There is an integer n ≥ 0 and a bottom tangle W ∈ BT2n such that

η⊗n
b

= Fb((εH ⊗ H)⊗n)(W ), T = µ
[n]
b
Fb(ad⊗n

H
)(W ).

Proof. A ribbon disc bounded by T can be decomposed into n + 1 disjoint discs
D0, D1, . . . , Dn and n disjoint bands b1, . . . , bn for some n ≥ 0 satisfying the fol-
lowing conditions.

(1) For each i = 1, . . . , n the band bi joins D0 and Di,
(2) D0 is a disc attached to the bottom square of the cube along a line segment,
(3) The only singularities of the ribbon disc are ribbon singularities in Di ∩ bj

for 1 ≤ i, j ≤ n. (We do not allow ribbon singularity in D0.)

For example, see Figure 34 (a). Let T ′ ∈ BTn be the bottom tangle obtained from
T by removing D0 and regarding the rest as an n–component bottom tangle, see
Figure 34 (b). Then cl(T ′) = cl(ηn) is an unlink. It follows from Proposition 11.2

that T ′ and ηn are related by band-reembedding. Since T = µ
[n]
b
T ′, we have the

assertion. �
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2
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(a) (b)

Figure 34. (a) A ribbon bottom knot T and a ribbon disc de-
composed as D0 ∪D1 ∪D2 ∪ b1 ∪ b2. (b) The bottom tangle T ′.

We hope to give in a future paper a (probably better) algebraic characterization
of ribbon bottom knots, which involves the category B mentioned in Section 14.4.

12. Algebraic versions of Kirby moves and the Hennings 3–manifold

invariants

An important application of the universal invariants is to the Hennings invariant
of 3–manifolds and its generalizations. Hennings [26] introduced a class of invariants
of 3–manifolds associated to quantum groups, which use right integrals and no
finite-dimensional representations. The Hennings invariants are studied further by
Kauffman and Radford [37], Ohtsuki [65], Lyubashenko [52], Kerler [39], Sawin [76]
and Virelizier [82], etc. As mentioned in, or at least obvious from, these papers,
the Hennings invariants can be formulated using universal link invariants.

In this section, we reformulate the Hennings 3–manifold invariants using univer-
sal invariants of bottom tangles. For closely related constructions, see Kerler [39]
and Virelizier [82].

For a Hopf algebra A in a braided category, we set

hA = (µA ⊗A)(A⊗∆A) : A⊗2 → A⊗2.

The morphism hA is invertible with the inverse

h−1
A = (µA ⊗A)(A⊗ SA ⊗A)(A⊗∆A).

For the transmutation H of a ribbon Hopf algebra H , we have

hH = (µH ⊗ 1H)(1H ⊗∆),

which should not be confused with

hH = (µH ⊗ 1H)(1H ⊗∆H )

defined for the Hopf algebra H in the symmetric monoidal category Modk.
The following is a version of Kirby’s theorem [43]. Note that each move is

formulated in an algebraic way. Therefore we may regard the following as an
algebraic version of Kirby’s theorem.

Theorem 12.1. For two bottom tangles T and T ′, the two 3–manifolds MT =
(S3)cl(T ) and MT ′ = (S3)cl(T ′) obtained from S3 by surgery along cl(T ) and cl(T ′),
respectively, are orientation-preserving homeomorphic if and only if T and T ′ are
related by a sequence of the following moves.

(1) Band-reembedding.
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1 2 n 1 2 n

stabilization

n+1

U U

... ...

Figure 35. A stabilization move U ↔ U ⊗ v+.

1 2 n 1 2 n

handle slide
... ...

Figure 36. A handle slide move.

1 2 n 1 2 n......

braiding

Figure 37. An example of braiding move

(2) Stabilization: Replacing U ∈ BTn with U ⊗ v± ∈ BTn+1, or its inverse
operation.

(3) Handle slide: Replacing U ∈ BTn (n ≥ 2) with U ′ = Fb(hH⊗H⊗(n−2))(U),
or its inverse operation.

(4) Braiding: Replacing U ∈ BTn with βU , where β ∈ B(n, n) is a doubled
braid.

Proof. First we see the effects of the moves listed above.
(1) A band-reembedding does not change the closure, hence the result of surgery.
(2) The effect of stabilization move U ↔ U ⊗ v+ is depicted in Figure 35. The

case of v− is similar. The closures cl(U) and cl(U ⊗v±) = cl(U)tcl(v±) are related
by Kirby’s stabilization move. Hence they have the same result of surgery.

(3) The effect of handle slide move U ↔ U ′ is depicted in Figure 36. . It is easy
to see that the closures cl(U) and cl(U ′) are related by a Kirby handle slide move
of the first component over the second. Hence they have the same result of surgery.

(4) A braiding move (see Figure 37) just change the order of the components in
the closure level, and hence does not change the result of surgery.

The “if” part of the theorem follows from the above observations. To prove the
“only if” part, we assume that MT and MT ′ are orientation-preserving homeomor-
phic to each other. By Kirby’s theorem, there is a sequence from cl(T ) to cl(T ′)
of stabilizations, handle slides, orientation changes of components, and changes of
ordering. It suffices to prove that if cl(T ) and cl(T ′) are related by one of these
moves, then T and T ′ are related by the moves listed in the theorem.

If cl(T ) and cl(T ′) are related by change of ordering, then it is easy to see that
T and T ′ are related by a braiding move and a band-reembedding.
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for closure
handle slideT= =T’

1 2 1 2

handle slide

T’’=

1 2 1 2

band reembedding isotopy

Figure 38. Here only the first and the second components are
depicted in each figure.
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Figure 39

If cl(T ) and cl(T ′) are related by stabilization, i.e., cl(T ′) = cl(T )tO±, where O±

is an unknot of framing ±1, then T ′ and T⊗v∓ are related by a band-reembedding.
Suppose cl(T ) and cl(T ′) are related by handle slide of a component of cl(T )

over another component of cl(T ). By conjugating with change of ordering, we may
assume that the first component of cl(T ) is slid over the second component of cl(T ).
Then there is T ′′ ∈ BTn such that T ′′ is obtained from T by a band-reembedding,
and T ′ is obtained from T ′′ by a handle slide move or its inverse. For example, see
Figure 38.

Suppose cl(T ) and cl(T ′) are related by orientation change of ith components
with 1 ≤ i ≤ n. It suffices to show that cl(T ) and cl(T ′) are related by a sequence
of handle slides, changes of orientation, changes of ordering and stabilizations. We
may assume i = 1 by change of ordering. Using stabilization, we may safely assume
n ≥ 2. Now we see that change of orientation of the first component can be achieved
by a sequence of handle slides and change of ordering. Suppose that L = L1 ∪ L2

is an 2–component link. There is a sequence of moves L = L0 → L1 → · · · → L4 =
−L1 ∪ L2, with Li = Li

1 ∪ L
i
2 as depicted in Figure 39. (Note here that, in the

move L1 → L2, we can slide the second component over the first by conjugating the
handle slide move by changing of the ordering.) Hence we have the assertion. �
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Lemma 12.2. If f : H → k is a left H–module homomorphism, then we have

(1H ⊗ f)∆ = (1H ⊗ f)∆ = (f ⊗ 1H)∆.

Proof. The lemma is probably well known. We prove it for completeness.
The first identity is proved using 8.2 as follows.

(1⊗ f)∆(x) = (1⊗ f)(
∑

x(1)S(β)⊗ α . x(2))

=
∑

x(1)S(β)⊗ f(α . x(2))

=
∑

x(1)S(β)⊗ ε(α)f(x(2))

=
∑

x(1) ⊗ f(x(2))

= (1⊗ f)∆(x).

The identity (f ⊗ 1)∆(x) = (1⊗ f)∆(x) follows similarly by using the identity

∆(x) =
∑

(β . x(2))⊗ αx(1) for x ∈ H.

�

Now we formulate the Hennings invariant in our setting. If χ : H → k is a left
H–module homomorphism and a left integral onH , then we can define a 3–manifold
invariant. This invariant is essentially the same as the Hennings invariant defined
using the right integral, since left and right integrals interchange under application
of the antipode.

Proposition 12.3. Let χ : H → k be a left H–module homomorphism. Then the
following conditions are equivalent.

(1) χ is a left integral on H, i.e.,

(12.1) (1⊗ χ)∆ = ηχ : H → H.

(2) χ is a two-sided integral on H in ModH , i.e.,

(12.2) (1⊗ χ)∆ = (χ⊗ 1)∆ = ηχ : H → H.

Suppose either (hence both) of the above holds, and also suppose that χ(r±1) ∈ k

is invertible. Then there is a unique invariant τH,χ(M) ∈ k of connected, oriented,
closed 3–manifolds M such that for each bottom tangle T ∈ BTn we have

(12.3) τH,χ(MT ) =
χ⊗n(JT )

χ(r−1)σ+(T )χ(r)σ−(T )
,

where σ+(T ) (resp. σ−(T )) is the number (with multiplicity) of the positive (resp.
negative) eigenvalues of the linking matrix of T , and MT = (S3)cl(T ) denote the

result from S3 of surgery along cl(T ).

Proof. The first assertion follows from Lemma 12.2.
We will see below that the right hand side of (12.3) is invariant under the moves

described in Theorem 12.1.
First we consider the stabilization move. Suppose T ∈ BTn and T ′ = T ⊗ v± ∈

BTn+1. Then one can easily verify τH,χ(MT ) = τH,χ(MT ′) using

χ⊗(n+1)(JT⊗v±) = χ⊗n(JT ) · χ(r±1).
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Since the other moves does not change the number of components and the num-
ber of positive (resp. negative) eigenvalues of the linking matrix, it suffices to verify
that χ⊗n(JT ) = χ⊗n(JT ′) for T, T ′ ∈ BTn related by each of the other moves.

Suppose T and T ′ are related by a band-reembedding. Then there is W ∈ BT2n

satisfying (11.1). Since χ is a left H–module homomorphism, we have

χ⊗n(JT ) = χ⊗n(ε⊗ 1H)⊗n(JW ) = χ⊗nad⊗n(JW ) = χ⊗n(JT ′ ).

Suppose that T and T ′ are related by a handle slide, i.e., T ′ = Fb(hH⊗H⊗(n−2))(T ).
Since χ is a two-sided integral on H , we have

χ⊗n(JT ′) = χ⊗n(hH ⊗ 1
⊗(n−2)
H )(JT )

= χ⊗n((µH ⊗ 1H)(1H ⊗∆)⊗ 1
⊗(n−2)
H )(JT )

= (χµH ⊗ χ
⊗(n−2))(1H ⊗ (1H ⊗ χ)∆⊗ 1

⊗(n−2)
H )(JT )

= (χµH ⊗ χ
⊗(n−2))(1H ⊗ ηHχ⊗ 1

⊗(n−2)
H )(JT )

= χ⊗n(JT ).

Suppose that T and T ′ are related by a braiding move. We may assume that
T ′ = (ψ±1

b,b)(i−1,n−i−1)T with 1 ≤ i ≤ n− 1. Since (χ⊗ χ)ψH,H = χ⊗ χ, it follows
that

χ⊗n(JT ′) = χ⊗n(ψ±1
H,H)(i−1,n−i−1)(JT ) = χ⊗n(JT ).

This completes the proof. �

Remark 12.4. One can verify that the invariant τH,χ(M) is equal (up to a factor
determined only by the first Betti number of M) to the Hennings invariant of M
associated to the right integral χS : H → k.

Remark 12.5. Some results in Section 9 can be used together with Proposition 12.3
to obtain results on the range of values of the Hennings invariants for various class
of 3–manifolds. Recall from [26, 64] (see also [82]) that the sl2 Reshetikhin–Turaev
invariants can be defined using a universal link invariant associated to a finite-
dimensional quantum group Uq(sl2)

′ at a root of unity, and a certain trace function
on Uq(sl2)

′. Hence results in Section 9 can also be used to study the range of values
of the Reshetikhin–Turaev invariants.

13. String links and bottom tangles

An n–component string link T = T1 ∪ · · · ∪ Tn is a tangle consisting n arcs
T1, . . . , Tn, such that for i = 1, . . . , n the ith component Ti runs from the ith upper
endpoint to the ith lower endpoint. In other words, T is a morphism T ∈ T (↓⊗n

, ↓⊗n) homotopic to ↓⊗n. (Here and in what follows, the endpoints are counted
from the left.) The closure operation is as depicted in Figure 40 (a), (b). One can
use string links to study links via the closure operation.

As in Section 4.2, we denote by SLn the submonoid of T (↓⊗n, ↓⊗n) consisting of
the isotopy classes of the n–component framed string links.

Of course, there are many orientation-preserving self-homeomorphisms of a cube
[0, 1]3, which transform n–component string links into n–component bottom tangles
and induces a bijection SLn

∼= BTn. In this sense, one can think of the notion of
string links and the notion of bottom tangles are equivalent. However, SLn and
BTn are not equally convenient. For example, the monoid structure in the SLn can
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(b)(a)

Figure 40. (a) A string link. (b) Its closure.

(a) (b) (d)(c)

= ==

Figure 41. (a) Multiplication µb⊗3 . (b) Unit ηb⊗3 . (c) Associa-
tivity. (d) Unitality.

not be defined in each BTn as conveniently as in SLn, and also that the external
Hopf algebra structure in the BTn can not be defined in the SLn as conveniently as
in the BTn. It depends on the contexts which is more useful.

In the following, we define a preferred bijection

τn : BTn → SLn,

which enables one to translate results about the bottom tangles into results about
the string links and vice versa. We define a monoid structure of each BTn such that
τn is a monoid homomorphism. We also study several other structures on BTn and
SLn and consider the algebraic counterparts for a ribbon Hopf algebra. The proofs
are straightforward and left to the reader.

For n ≥ 0, we give b⊗n ∈ Ob(T ) the standard tensor product algebra structure
(see [54, Section 2])

µb⊗n : b
⊗n ⊗ b

⊗n → b
⊗n, ηb⊗n : 1→ b

⊗n,

induced by the algebra structure (b, µb, ηb), i.e., µb⊗0 = 11, µb⊗1 = µ,

µb⊗n = (µb ⊗ µb⊗(n−1))(b⊗ ψb⊗(n−1),b ⊗ b
⊗(n−1)) for n ≥ 2,

and ηb⊗n = ηn for n ≥ 0. See Figure 41 for example.
We define a monoid structure for BTn with multiplication

µ̃n = ∗ : BTn×BTn → BTn, (T, T ′) 7→ T ∗ T ′

defined by

(13.1) T ∗ T ′ = µb⊗n(T ⊗ T ′) =

T T ’

for T, T ′ ∈ BTn, where the figure in the right hand side is for n = 3. Then the set
BTn has a monoid structure with multiplication µ̃n and with unit ηn.
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(a) (b) (c)

==

Figure 42. (a) Left action α↓⊗3 . (b) Associativity. (c) Unitality.

We give ↓∈ Ob(T ) a left b–module structure defined by the left action

α↓ =↓ ⊗ev↓ = : b⊗ ↓→↓ .

For n ≥ 0, this left b–module structure induces in the canonical way a left b⊗n–
module structure for ↓⊗n

αn : b
⊗n⊗ ↓⊗n→↓⊗n .

I.e., αn is defined inductively by

α↓⊗0 = 11, α↓⊗1 = α,

α↓⊗n = (α↓ ⊗ α↓⊗(n−1))(b⊗ ψb⊗(n−1),↓⊗ ↓
⊗(n−1)) for n ≥ 2.

For example, see Figure 42.
Now we define a function τn : BTn → SLn for n ≥ 0 by

τn(T ) = α↓⊗n(T⊗ ↓⊗n)

for T ∈ BTn. In a certain sense, τn(T ) is the result of “letting T act on ↓⊗n”. For
example, if T ∈ BT3, then

τ3(T ) =

T

=

T

.

The function τn is invertible with the inverse τ−1
n : SLn → BTn given by

τ−1
n (L) = θn(T⊗ ↑⊗n)coev↓⊗n ,

where

θn : ↓⊗n ⊗ ↑⊗n→ b
⊗n

is defined inductively by

θ0 = 11, θn+1 = (↓ ⊗ψb⊗n,↑)(↓ ⊗θn⊗ ↑)

for n ≥ 1. For example, if L ∈ SL3, then

τ−1
3 (L) =

L

=

L

.
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The function τn is a monoid isomorphism, i.e.,

τn(T ∗ T ′) = τn(T )τn(T ′), τn(ηn) =↓⊗n

for T, T ′ ∈ BTn.
As is well known, there is a “coalgebra-like” structure on the SLn. For T ∈ SLn

and i = 1, . . . , n, let ∆i(T ) ∈ SLn+1 (resp. εi(T ) ∈ SLn−1) be obtained from T by
duplicating (resp. removing) the ith component. These operations define monoid
homomorphisms

∆i : SLn → SLn+1, εi : SLn → SLn−1 .

The following diagrams commutes.

(13.2)

BTn

∆̌(i−1,n−i)
−−−−−−−→ BTn+1

τn





y





y

τn+1

SLn −−−−→
∆i

SLn+1

BTn

ε̌(i−1,n−i)
−−−−−−→ BTn−1

τn





y





y

τn−1

SLn −−−−→
εi

SLn−1 .

Thus the “coalgebra-like” structure of the SLn corresponds via the τn to the “coalgebra-
like” structure in the BTn.

Now we translate the above observations into the universal invariant level. Let
H be a ribbon Hopf algebra over a commutative, unital ring k.

Define a k–module homomorphism τ ′n : H⊗n → H⊗n, n ≥ 0, by τ ′0 = 1k, τ ′1 =
1H , and for n ≥ 2

τ ′n = (1
⊗(n−2)
H ⊗ λ2)(1

⊗(n−3)
H ⊗ λ3) · · · (1H ⊗ λn−1)λn,

where λn : H⊗n → H⊗n, n ≥ 2, is defined by

λn(
∑

x1 ⊗ · · · ⊗ xn) =
∑

x1β ⊗ (α(1) . x2)⊗ · · · ⊗ (α(n−1) . xn).

Then the effects of τn on the universal invariants is given by

(13.3) Jτn(T ) = τ ′n(JT ) for T ∈ BTn,

which can be used in translating results about the universal invariant of bottom
tangles into results about the universal invariant of string links.

We denote by H⊗n the n–fold tensor product of H in the braided category
ModH . Thus H⊗n is equipped with the standard algebra structure in ModH , with
the multiplication

µ
n
: H⊗n ⊗H⊗n → H⊗n

given by µ
n

= J(µb⊗n) and with the unit in H⊗n by 1⊗n
H .

τ ′n defines a k–algebra isomorphism

τ ′n : H⊗n → H⊗n,

where H⊗n is equipped with the standard algebra structure. In other words, we
have

τ ′n(µ
n
(x⊗ y)) = τ ′n(x)τ ′n(y)

for x, y ∈ H⊗n, and τ ′n(1⊗n
H ) = 1⊗n

H .
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We have algebraic analogues of the diagrams in (13.2)

H⊗n ∆
i−−−−→ H⊗(n+1)

τ ′
n





y





y

τ ′
n+1

H⊗n −−−−→
∆i

H⊗(n+1)

H⊗n εi−−−−→ H⊗(n−1)

τ ′
n





y





y

τ ′
n−1

H⊗n −−−−→
εi

H⊗(n−1)

where ∆i = 1⊗(i−1) ⊗∆⊗ 1⊗(n−i), ∆i = 1⊗(i−1) ⊗∆⊗ 1⊗(n−i) and εi = 1⊗(i−1) ⊗
ε ⊗ 1⊗(n−i). If n = i = 1, then the commutativity of the diagram on the left,
∆ = τ−1

2 ∆, above coincides (8.2), the definition of the transmuted comultiplication
∆.

14. Remarks

14.1. Direct applications of the category B for representation-colored link

invariants. We have argued that the setting of universal invariants is useful in
the study of representation-colored link invariants. However, it would be worth
describing how to apply the setting of the category B to the study of representation-
colored link invariants without using universal invariants.

Let H be a ribbon Hopf algebra over a field k, and let V be a finite-dimensional
left H–module. Let F T

V : T → ModH denote the canonical braided functor from the
category T of framed, oriented tangles to the category ModH of left H–modules,
which maps the object ↓ to V . Let us denote the restriction of F T

V to B by FV : B→
ModH . Then FV maps the object b into V ⊗ V ∗, which we identify with the k–
algebra E = Endk(V ) of k–vector space endomorphisms of V . As one can easily
verify, the algebra structure of b is mapped into that of E, i.e., FV (µb) = µE , and
FV (ηb) = ηE , where µE : E⊗E → E and ηE : k→ E are the structure morphisms
for the algebra E. Also, the images by FV of the other generating morphisms of B

are determined by

FV (v±)(1k) = ρV (r±1),

FV (c±)(1k) = (ρV ⊗ ρV )(cH± ),

where ρV : H → E denotes the left action of H on V , i.e., ρV (x)(v) = x · v for
x ∈ H , v ∈ V . In fact, we have for each T ∈ BTn

FV (T )(1k) = ρ⊗n
V (JT ).

Many results for universal invariants in the previous sections can be modified
into versions for FV . For example, the following is a version of Corollary 9.2.

Proposition 14.1. Let Ki ⊂ E
⊗i for i ≥ 0, be subsets satisfying the following.

(1) 1k ∈ K0, 1E , ρV (r±1) ∈ K1, and (ρV ⊗ ρV )(cH± ) ∈ K2.
(2) For m,n ≥ 0, we have Km ⊗Kn ⊂ Km+n.
(3) For p, q ≥ 0 we have

(1⊗p ⊗ ψ±1
E,E ⊗ 1⊗q)(Kp+q+2) ⊂ Kp+q+2,

(1⊗p ⊗ µE ⊗ 1⊗q)(Kp+q+2) ⊂ Kp+q+1,

where ψE,E = FV (ψb,b) : E ⊗ E → E ⊗ E is the braiding of two copies of
E in ModH .

Then for any T ∈ BTn, n ≥ 0, we have FV (T ) ∈ Kn.
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Note that ρV can be regarded as a morphism ρV : H → E in ModH . In fact, ρV

is an algebra-morphism, i.e., ρV µH = µE(ρV ⊗ ρV ), ρV ηH = ηE . One can check
that the morphisms ρ⊗i

V : H⊗i → E⊗i, i ≥ 0, form a natural transformation

ρ : J⇒ FV : B→ ModH ,

i.e., the following diagram is commutative for i, j ≥ 0, T ∈ B(i, j)

H⊗i J(T )
−−−−→ H⊗j

ρ
⊗i

V





y





y
ρ
⊗j

V

E⊗i −−−−→
FV (T )

E⊗j .

14.2. Generalizations.

14.2.1. Nonstrict version Bq of B and Kontsevich invariant. Recall that there is a
nonstrict version T q of T , i.e., the category of q–tangles (see [46]), whose objects
are parenthesized tensor words in {↓, ↑} such as (↓ ⊗ ↓)⊗ (↑ ⊗(↓ ⊗ ↑)) and whose
morphisms are isotopy classes of tangles. In a natural way, one can define nonstrict
braided subcategories B

q (resp. B
q
0) of B whose objects are parenthesized tensor

words of b =↓ ⊗ ↑, such as (b ⊗ b) ⊗ b, and the morphisms are isotopy classes of
tangles in B (resp. B0). The results for B and B0 in Sections 4, 5 and 6 can be easily
generalized to results for the nonstrict braided categories Bq and B

q
0. Recall [46]

that the Kontsevich invariant can be formulated as a (nonstrict) monoidal functor
Z : T q → A of Tq into a certain “category of diagrams”. It is natural to expect
that the nonstrict versions of the results for B and B0 in the present paper can be
applied to the Kontsevich invariant and can give some integrality results for the
Kontsevich invariant.

14.2.2. Ribbon Hopf algebras in symmetric monoidal category. Universal invariant
of links and tangles can be defined for any ribbon Hopf algebra H in any symmetric
monoidal categoryM. If T is a tangle consisting of n arcs and no circles, then the
universal invariant JT takes values inM(1M, H⊗n), where 1M is the unit object in
M. Most of the results in Section 8 can be generalized to this setting. In particular,
there is a braided functor J : B → ModH such that J(b) = H , where ModH is the
category of left H–modules inM, and H is given the left H–module structure via
the adjoint action.

We comment on two interesting special cases below.

14.2.3. Complete ribbon Hopf algebras and quantized enveloping algebras. The uni-
versal invariant of tangles can also be defined for any ribbon complete Hopf algebra
H over a linearly topologized, commutative, unital ring k. The construction of uni-
versal invariant can be generalized to ribbon complete Hopf algebras in an obvious
way. This case may be considered as the special case of Section 14.2.2, since H is
a ribbon Hopf algebra in the category of complete k–modules.

An important class of complete ribbon Hopf algebras is that of the h–adic quan-
tized enveloping algebras Uh(g) of a simple Lie algebras g. In future papers [24, 25],
we will consider this case and prove some integrality results of the universal invari-
ants. The case of Uh(g) for super Lie algebra seems also interesting. We plan to
study in a future paper the case of Uh(gl(1|1)), which is known to be related to the
Alexander polynomial.
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14.2.4. Universal invariants and virtual tangles. Kauffman [36] introduced virtual
knot theory (see also [18, 30, 74, 75]). A virtual link is a diagram in a plane similar
to a link diagram but allowing “virtual crossings”. There is a preferred equivalence
relation among virtual links called “virtual isotopy”, and two virtually isotopic
virtual links are usually regarded as the same. There is also a weaker notion of
equivalence called “virtual regular isotopy”, and it is observed in [36] that many
quantum link invariants can be extended to invariants of virtual regular isotopy
classes of virtual links. The notion of virtual links are naturally generalized to that
of virtual tangles. Virtual framed isotopy is generated by virtual regular isotopy
and the move

↔ .

An extreme case of Section 14.2.2 is the case of the symmetric monoidal category
〈Hr〉 freely generated by a ribbon Hopf algebra Hr. The universal tangle invariant
JT in this case is very closely related to virtual tangles. We can construct a canonical
bijection between the set 〈Hr〉(1,H

⊗n
r ) and the set of the virtual framed isotopy

classes of n–component “virtual bottom tangles”. For T ∈ BTn, the universal
invariant JT takes values in ModHr

(1,H⊗n
r ) ⊂ 〈Hr〉(1,H

⊗n
r ). Thus, the universal

invariant associated to Hr takes values in the virtual bottom tangles. For n ≥ 0,
the function

J0,n = J : BTn

(

= B(0, n)
)

→ ModHr
(1,H⊗n

r ), T 7→ J(T ),

is injective. We conjecture that J0,n is surjective. If this is true, then we can regard
it as an algebraic characterization of bottom tangles among virtual bottom tangles.
We can formulate similar conjectures for general tangles and links. This may be
regarded as a new way to view virtual knot theory in an algebraically natural way.
(We also remark here that there is another (perhaps more natural) way to formulate
virtual knot theory in a category-theoretic setting, which uses the tangle invariant
associated to the symmetric monoidal category 〈Hr,V〉 freely generated by a ribbon
Hopf algebra Hr and a left Hr–module V with left dual.) We plan to give the details
of the above in future publications.

14.2.5. Quasitriangular Hopf algebras and even bottom tangles. We can generalize
our setting to a quasitriangular Hopf algebra, which may not be ribbon. For a simi-
lar idea of defining quantum invariants associated to quasitriangular Hopf algebras,
see [76].

It is convenient to restrict our attention to even-framed bottom tangles up to
regular isotopy. Here a tangle T is even-framed if the closure of each component
of T is of even framing, or, in other words, each component of T has even number
of self crossings. Let Bev denote the subcategory of B such that Ob(Bev) = Ob(B)
and Bev(m,n) consists of T ∈ B(m,n) even-framed. Then we have the following.

(1) Bev is a braided subcategory of B.
(2) Bev is generated as a braided subcategory of B by the object b and the

morphism µb, ηb, c+, c−. (This follows from Remark 5.20.)
(3) B

ev inherits from B an external Hopf algebra structure.
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T1

T2

T3T1

T2

T3

V2

(b) (c)(a)

Figure 43. (a) A standard handlebody V2 of genus 2. (b) A 3–
component bottom tangle T = T1 ∪ T2 ∪ T3 in V2. (c) A diagram
for T .

(4) There is a braided functor Jev : Bev → ModH , defined similarly to the rib-
bon case, and we have an analogue of Theorem 8.3. Hence we have a topo-
logical interpretation of transmutation of a quasitriangular Hopf algebra.
If H is ribbon, then J

ev is the restriction of J to B
ev.

14.3. A functor J̌. The functor J : B → ModH is not faithful for any ribbon
Hopf algebra H . For example, we have J(t↓⊗ ↑) = J(↓ ⊗t↑) for any H but we
have t↓⊗ ↑6=↓ ⊗t↑. Using the construction by Kauffman [35], one can construct

a functor J̌ : B → Cat(H), which distinguishes more bottom tangles than J. Here

Cat(H) is the category defined in [35], and J̌ is just the restriction to B of the
functor F : T → Cat(H) defined in [35]. Since each T ∈ B(m,n) consists of m+ n
arc components, J̌(T ) can be defined as an element of H⊗(m+n). If we take H as
the Hopf algebra in the braided category 〈Hr〉 freely generated by a ribbon Hopf
algebra as in Section 14.2.4, then J̌ is faithful.

We have not studied the functor J̌ in the present paper because our aim of
introducing the category B is to provide a useful tool to study bottom tangles. The
functor J : B→ ModH is more suitable than J̌ for this purpose.

14.4. A category B of bottom tangles in handlebodies. In future papers, we
will give details of the following.

Let B denote the category of bottom tangles in handlebodies, which is roughly
defined as follows. For n ≥ 0, let Vn denote a “standard handlebody of genus n”,
which is obtained from the cube [0, 1]3 by adding n handles in a canonical way, see
Figure 43 (a). An n–component bottom tangle in Vn is a framed, oriented tangle
T in Vn consisting of n arc components T1, . . . , Tn, such that, for i = 1, . . . , n, Ti

starts at the 2ith endpoint on the bottom and end at the (2i−1)st endpoint on the
bottom. See Figure 43 (b) for example, which we will usually draw as the projected
diagram as in (c).

The category B is defined as follows. We set Ob(B) = {0, 1, 2, . . .}. For m,n ≥ 0,
the set B(m,n) is the set of isotopy classes of n–component bottom tangles in Vm.
For T ∈ B(l,m) and T ′ ∈ B(m,n), the composite T ′T ∈ B(l, n) is represented by
the l–component tangle in Vn obtained as follows. First let ET denote the “exterior
of T in Vl”, i.e., the closure of Vl \NT , with NT a tubular neighborhood of T in Vl.
Note that ET may be regarded as a cobordism from the connected oriented surfaces
Fl,1 of genus l with one boundary component to Fm,1. Thus there is a natural way
to identify the “bottom surface” of NT with the “top surface” of Vm. By gluing ET

and Vm along these surfaces, we obtain a 3–manifold ET ∪ Vm, naturally identified
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(a) (b) (c)

Figure 44. (a) A bottom tangle T ∈ B(1, 2). (b) A bottom tangle
T ′ ∈ B(2, 3). (c) The composite T ′T ∈ B(1, 3)

ψ1,1 ψ1,112

µB ηB ∆B εB BS

−1

Figure 45. The morphisms 12, ψ1,1, ψ
−1
1,1, µB, ηB, ∆B, εB and SB

in B.

with Vl. The tangle T ′, viewed as a tangle in ET∪Vm
∼= Vl, represents the composite

T ′T . Figure 44 shows an example. For n ≥ 0, the identity morphism 1n : n → n
is represented by the bottom tangle depicted in Figure 45. We can prove that the
category B is well defined. The category B has the monoidal structure given by
horizontal pasting.

There is a functor from ξ : B → B such that ξ(b⊗n) = n, and, for T ∈ B(m,n),
the tangle ξ(T ) ∈ B(m,n) is obtained from T by pasting a copy of the identity
bottom tangle 1b⊗m on the top of T . This functor is monoidal, and the braiding
structure for B induces that for B via ξ, see Figure 45.

Also, there is a Hopf algebra structure HB = (1, µB, ηB,∆B, εB, SB) in the
usual sense for the object 1 ∈ Ob(B). Graphically, the structure morphisms
µB, ηB,∆B, εB, SB for B is as depicted in Figure 45.

The external Hopf algebra structure in B is mapped by ξ into the external Hopf
algebra structure in B associated to HB.

For n ≥ 0, the function

ξ : BTn → B(0, n)

is bijective. Hence we can identify the set B(0, n) with the set of n–component
bottom tangles. (However, ξ : B(m,n)→ B(m,n) is neither injective nor surjective
in general. Hence the functor ξ is neither full nor faithful.) Using Theorem 5.16,
we can prove that B is generated as a braided category by the morphisms

(14.1) µB, ηB,∆B, εB, SB, S
−1
B , vB,+, vB,−,
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C

Figure 46. The cobordism B∗ is obtained from the trivial cobor-
dism ε⊗3

B by surgery along the Y –graph C.

where vB,± = ξ(v±).
There is a natural, faithful, braided functor i : B → C from B into the category

C of cobordisms of surfaces with connected boundary as introduced by Crane and
Yetter [8] and by Kerler [40], independently. The objects of C are the nonnegative
integers 0, 1, 2, . . ., the morphisms from m to n is (certain equivalence classes of)
cobordisms from Fm to Fn, where Fm is a compact, connected, oriented surface of
genus n with ∂Fm

∼= S1. (See also [21, 39, 41, 42, 84] for descriptions of C.) This
functor i maps T ∈ B(m,n) into the cobordism ET defined above. In the following,
we regard B as a braided subcategory of C via i. Recall from [8, 40] that C is a
braided category, and there is a Hopf algebra h = (1, µh, ηh,∆h, εh, Sh) in C with
the underlying object 1, which corresponds to the punctured torus F1.

The category B can be identified with the subcategory of C such that Ob(B) =
Ob(C) and

B(m,n) = {f ∈ C(m,n) | ε⊗n
h
f = ε⊗m

h
}

for m,n ≥ 0. Recall from [41] that C is generated as a braided category by the
generators of B listed in (14.1) and an integral χh of the Hopf algebra h. This
integral χh for h is not contained in B.

For each ribbon Hopf algebra H , we can define a braided functor

J
B : B → ModH

such that J = JBξ. The functor JB maps the Hopf algebra HB in B into the
transmutation H of H . If H is finite-dimensional ribbon Hopf algebra over a field
k, and is factorizable [72] (i.e., the function Homk(H,k) → H , f 7→ (1 ⊗ f)(cH+ ),

is an isomorphism), then JB extends to Kerler’s functorial version of the Hennings
invariant [39]

(14.2) J
C̃ : C̃ → ModH .

An interesting extension of B is the braided subcategory B̄ of C generated by the
objects and morphisms of B and the morphism B∗ ∈ C(3, 0) described in Figure
46. One can show that the category B̄ is the same as the category of bottom
tangles in homology handlebodies, which is defined in the same way as B but the
bottom tangles are contained in a homology handlebody. (Recall that a homology
handlebody can be characterized as a 3–manifold which is obtainable as the result
from a standard handlebody of surgery along finitely many Y –graphs, see [19].) For
each n ≥ 0, the monoid B̄(n, n) contains the Lagrangian submonoid Ln [51] of the
monoid of homology cobordisms [17, 21] of a compact, connected, oriented surface
Σn,1 of genus 1 and with one boundary component, and hence contains the monoid
of homology cylinders (or homologically trivial cobordisms)HCn,1 over Σn,1 and the
Torelli group In,1 of Σn,1. Here the Lagrangian subgroup of H1Σn,1 ' Z

2n, which is
necessary to specify Ln, is generated by the meridians of the handles in Vn. B̄(n, n)
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does not contain the whole mapping class group Mn,1. In fact, B̄(n, n) ∩ Mn,1

is precisely the Lagrangian subgroup of Mn,1. The subgroup B(n, n) ∩ Mn,1 of
B̄(n, n) ∩Mn,1 corresponds to the handlebody group Hn,1, which is the group of
isotopy classes of self-homeomorphisms of handlebody of genus n fixing a disc in
the boundary pointwise.

14.5. Surgery on 3–manifolds as monoidal relation. The idea of identify-
ing the relations on tangles defined by local moves with monoidal relations in the
monoidal category T can be generalized to 3–manifolds as follows. Matveev [56]
defined a class of surgery operation on 3–manifolds called V–surgery. A special
case of V–surgery removes a handlebody from a 3–manifold and reglues it back
in a different way. Here V = (V1, V2) is a pair of two handlebodies V1, V2 of the
same genus with boundaries identified, and determines a type of surgery. We call
such surgery admissible. For each such V , there is a (not unique) pair (f1, f2) of
morphisms f1 and f2 of the same source and target in the monoidal category C of
cobordisms of surfaces with connected boundary [8, 40], see also Section 14.4. For
3–manifolds representing morphisms in C, the equivalence relations of 3–manifolds
generated by V–surgeries is the same as the monoidal relation in C generated by
the pair (f1, f2). Thus, one can formulate the theory of admissible surgeries in an
algebraic way.
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