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Abstract. A Γ-cone for a graph Γ is, by the definition in §1, a
connected component of the complement of a union of a system
of hyperplanes attached to the edges of Γ in the real vector space
of type A#Γ−1. It is subdivided into chambers of type A#Γ−1. If
Γ is a tree, we introduce the principal Γ-cone EΓ and characterize
it by the maximality of the number of chambers contained in it.
A formula for the maximal number is obtained by a finite sum of
hook length formulae, and is explained by the block decomposition
of the principal Γ-cone. The generating functions of the maximal
numbers for the series Al, Dl and El are given in Appendix.

The principal Γ-cone, when Γ is a Coxeter diagram Γ(W ) of a finite
Coxeter group W , is introduced in [S1] in the study of real bifurcation
set. The principal Γ-cone for any tree Γ, introduced in the present
paper, is its generalization. As we shall see, the characterization of the
principal Γ-cone (§3 Theorem), the enumeration of the chambers in
the principal Γ-cone (§4 Theorem) and the block decomposition of the
principal Γ-cone (§5 Theorem) can be formulated and proven only in
terms of the tree Γ but not of the group W . Even a classical principal
Γ(W )-cone decomposes into blocks which are non-classical (i.e. non-
Coxeter) Γ-cones (e.g. §5 Example). Therefore, we publish the general
combinatorial frame work separately from [S1] in the present paper.

The contents of the present paper are as follows. In §1, we fix the
basic notation related to Γ-cones for oriented graphs. In §2, we prepare
two assertions to count the number of chambers in a Γ-cone. In §3, we
introduce the principal Γ-cone EΓ for a tree Γ, and prove the first main
Theorem of the present paper which states that the principal Γ-cone is
the Γ-cone containing strictly maximal number of chambers. In §4, as
the second main Theorem, we give the formula enumerating chambers
in the principal Γ cone in terms of Γ. The formula is a finite sum of
terms where each term resembles the classical hook length formula for
a rooted tree even though the cone EΓ does not corresponds to a rooted
tree. This is explained in §5 by decomposing the principal Γ-cone EΓ

into blocks, where each block is a cone attached to a rooted tree and the
hook length formula is available. In §6, we explain the motivation for
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the study of principal Γ-cones, which arises from a study of bifurcation
set [S1]. At the end of §6, we compare Γ-cones with somewhat similar
concept: Springer cones [Ar1][Sp], and clarify the relationship between
them. The generating functions for the series of types Al (l ≥ 1), Dl

(l≥3) and El (l≥4) are explicitly calculated by Sano in Appendix.
The author is grateful to Timothy Logvinenko for a careful read-

ing of the manuscript and for several useful advises of improvements.
He thanks also to Victor Reiner for suggestions to adjust the original
version of the paper to standard terminology in combinatorics and for
information on their references.

1. The Γ-cones and their chamber decomposition

For a finite graph Γ, we introduce Γ-cones in the real vector space
of type A#Γ−1, which are subdivided into chambers of the type A#Γ−1

(see [B, chap.5] for terminologies). These geometric objects naturally
correspond to some combinatorial structures on the graph Γ (e.g. [G-Z],
[St1]). We fix notation and dictionary between the two subjects.

Let Π be a finite set with #Π= l ∈ Z≥1. Consider a vector space:

(1) VΠ := ⊕α∈ΠRvα/R · vΠ

of rank l− 1, where {vα}α∈Π is a generator system of VΠ satisfying
a single relation vΠ = 0 with vΠ :=

∑
α∈Π vα. The permutation group

S(Π) acts on {vα}α∈Π fixing vΠ, and, hence, the action extends linearly
on VΠ (the reflection group action of type Al−1). Let {λα}α∈Π be the
dual basis of {vα}α∈Π, so that the difference λαβ :=λα−λβ for α, β∈Π is
a well defined linear form on VΠ, forming the root system of type Al−1.
The zero locus Hαβ of λαβ (α 6=β) in VΠ is a reflection hyperplane of the
reflection action induced by the transposition (α, β). The union of Hαβ

for all α, β ∈Π with α 6= β cuts VΠ into (#Π)! connected components,
called chambers of type Al−1. The set of chambers is naturally bijective
to the set Ord(Π) of all linear orderings on the set Π:

c := {α1 <c . . .<c αl} ∈ Ord(Π) ↔ Cc := ∩l−1
i=1{v ∈ VΠ | λαiαi+1(v)<0}.

Here, the order-relation with respect to c is denoted by <c, and the cor-
responding chamber is denoted by Cc. If we denote by −c the reversed
ordering of c, then one has C−c = −Cc.

A graph Γ on Π is a one-dimensional simplicial complex whose set
of vertices is Π. An edge connecting vertices α and β (if it exists) is
denoted by αβ = βα. The set of all edges of Γ is denoted by Edge(Γ).
By an abuse of notation, we shall sometimes denote the set of vertices
by |Γ|, and write “a vertex α ∈ |Γ|” instead of “a vertex α ∈ Π”.

Definition. A Γ-cone is a connected component of VΠ\∪αβ∈Edge(Γ)Hαβ.
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The Γ-cones and the set of chambers contained in a Γ-cone are de-
scribed in terms of combinatorics on Γ as follows: by an orientation o on
Γ, we mean a collection of orientations α<o β for all edges αβ∈Edge(Γ)
such that the oriented graph (Γ, o) must not contain an oriented cycle
(in natural sense). Such orientation is called acyclic (c.f. [St2]). Put

(2) Or(Γ) := {all acyclic orientations on Γ}.
The following dictionary is an immediate consequence of the definition.

Assertion 1.1. 1. For an orientation o ∈ Or(Γ), define a cone:

(3) Eo := ∩αβ∈Edge(Γ) oriented as α<oβ{v ∈ VΠ | λαβ(v)<0}.
Then Eo is a Γ-cone. The correspondence o 7→ Eo induces a bijection

(4) Or(Γ) ' {Γ-cones}.
2. A chamber Cc for c ∈ Ord(Π) is contained in the Γ-cone Eo for

o ∈ Or(Γ) if and only if c is a linear extension of o, i.e. o = c|Edge(Γ).

Proof. 1. For any o ∈ Or(Γ), let us show that Eo 6= ∅, that is: there
exists a map v : Π → R such that v(α) < v(β) if α <o β. This
is achieved by an induction on #Π. Since there is no oriented cycle
in (Γ, o), there exists a minimal vertex α ∈ Π, that is: for any edge
αβ ∈ Edge(Γ), one has α <o β. Put Π′ := Π \ {α}. Then clearly
o′ := o|Π′ is an orientation on the graph Γ′ := Γ|Π′ . Therefore, by the
induction hypothesis, there exists a map v′ : Π′ → R preserving the
sub-orientation o′. Then, v is defined by an extension of v′ by choosing
the value v(α) from the non-empty set R \ ∪β∈Π′,αβ∈Edge(Γ)[v

′(β),∞).
Conversely, for a given Γ-cone E, define the orientation α <E β on

the edge αβ ∈ Edge(Γ) if λαβ|E < 0. This defines the orientation oE

on Γ. These establish the bijection (3).
2. The inclusion Cc⊂Eo is equivalent to the inclusions Cc⊂{λαβ <

0} ⇔ α<c β for any oriented edge αβ with α<o β. ¤
According to the previous assertion, we put

(5) Σ(o) := { c ∈ Ord(Π) | o = c|Edge(Γ) },
and identify Σ(o) with the set of chambers contained in Eo. Let us
introduce a numerical invariant for the orientation o ∈ Or(Γ):

(6) σ(Eo) := σ(o) := #Σ(o) = #{chambers contained in Eo}.
If we denote by −o the reversed orientation of o, one has E−o = −Eo

and, therefore, Σ(−o) = −Σ(o) and σ(−o) = σ(o).
If #Π = 1, then VΠ = {0} has only one chamber O := {0}. There is

only one graph (tree) structure on Π, denoted by Γ(A1), which admits
only a trivial orientation denoted by oA1 : Σ(oA1)={O} and σ(oA1)=1.
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In order to obtain the smallest oriented graph giving the same cone,
we introduced the reduced oriented graph ored, or Hasse diagram: an
oriented edge α<o β of the oriented graph o is called removable if there
is a sequence α0 = α, α1, · · · , αk−1, αk = β ∈ Π for some k ∈ Z>1 such
that αi−1<oαi for i=1,· · ·, k. We define the reduction of o by

ored := the oriented graph obtained from o by deleting
all removable edges = Hasse diagram of o.

One easily observes that i) the associated cones coincides: Eo =Eored
,

ii) there is a natural 1:1 correspondence of the edges of ored and the l−2-
dimensional faces of Eo =Eored

. As a consequence of them, one has:
iii) Eo =Eo′ for oriented graphs o and o′ on Π, if and only if ored =o′red.

Remark 1. As we have described, the geometry of the chambers and
the Γ-cones in VΠ has natural correspondence with the combinatorics
(partially ordered structures) on the set Π. The problem of enumera-
tion of σ(o) is the basic problem of enumeration of linear extension of
a partially ordered set in combinatorics (e.g., see [St1]).

On the other hand, the Γ-cone with the subdivision into chambers
appears naturally in the study of finite Coxeter group W as follows,
where Π stands for a simple generator system of W and a linear ordering
α1<cα2<c· · ·<cαl of Π defines a Coxeter element α1 · · ·αl ∈W . Two
Coxeter elements coincide if the corresponding chambers belong to the
same Γ(W )-cone for the Coxeter-Dynkin diagram Γ(W ) on Π. The
principal Γ(W )-cone EΓ(W ), which we shall introduce in §3, has the
particular geometric significance, for which we refer to [S1] (see §7).

It may be also worthwhile to mention that a choice of the orientations
on Γ(W ) plays often an important role in the studies related to the
reflection group W or the Artin group and their representations (e.g.
Auslander-Reiten quiver [K-S-T], the quantized Toda equations [E]).

Remark 2. Two chambers are said to be adjacent if they have a common
l−2-dimensional face. The reflection hyperplane containing the face is
called a wall of the chambers. The adjacency relation defines a graph
structure on the set Ord(Π) (i.e. two elements are connected by an edge
if the corresponding two chambers are adjacent). The set Σ(o)(' the
set of chambers contained in Eo) naturally inherit the graph structure.
The graph structure is important in the application (see §7 or [S1]).
However in the present paper, we shall not go into any details of the
subject, except for the following trivial description:

Assertion 1.2. Let c, c′ ∈ Ord(Π) such that α1 <c α2 <c · · ·<c αl and
β1 <c′β2<c′· · ·<c′βl. Then the chambers Cc and Cc′ are adjacent if and
only if there exists 1≤ i<l such that αi=βi+1, αi+1=βi and αj =βj for
j 6= i, i + 1. The common face is supported in the wall Hαiαi+1

.
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2. A decomposition formula

We prepare two Assertions which are to calculate σ(o). They are used
in the proof of the Theorems in §3,4 and 5. The idea is to divide (Γ, o)
into the right and left sides of a base point α∈Γ. Some readers might
consider postponing reading this section until it becomes necessary.

For any o ∈ Or(Γ), α ∈ Π and r ∈ Z≥0, we put

Σ(o, α, r) := {c ∈ Σ(o) | #{β ∈ Π | α <c β} = r},(7)

σ(o, α, r) := #Σ(o, α, r).(8)

Obviously, one has the disjoint decomposition Σ(o) =
∐l−1

r=0 Σ(o, α, r)

for any α ∈ Π so that σ(o) =
∑l−1

r=0 σ(o, α, r).
1. Suppose that the complement Γ \ {α} of Γ at a vertex α ∈ Π

decomposes into components. More precisely, let Γ1, · · · , Γk be graphs,
which contain the same named vertex α. Let us denote by

(9) Γ1

∐
α · · ·

∐
α Γk,

a graph obtained by the disjoint union of the graphs Γi (i = 1, · · · , k)
up to an identification of the common vertex α.

Assertion 2.1. Let Γ = Γ1

∐
α · · ·

∐
α Γk be a decomposition as above.

For an orientation o∈Or(Γ), put oi :=o|Γi
∈Or(Γi) (i = 1, · · · , k) and

li :=#Γi (i=1, · · ·, k). Then, for any r∈Z≥0, one has a formula:
(10)

σ(o, α, r) =
∑

r1,··· ,rk∈Z≥0
r1+···+rk=r

σ(o1, α, r1) · · ·σ(ok, α, rk)(
r1+···+rk
r1,··· ,rk

)( l−1−r1−···−rk
l1−r1−1,··· ,lk−rk−1),

where (r1+···+rk
r1,··· ,rk

) :=(r1+· · ·+rk)!/r1! · · · rk! is the multinomial coefficient.
By summing the formula (10) for all r ∈ Z≥0, one has a formula:
(11)

σ(o) =
∑

r1,··· ,rk∈Z≥0

σ(o1, α, r1) · · ·σ(ok, α, rk)(
r1+···+rk
r1,··· ,rk

)( l−1−r1−···−rk
l1−r1−1,··· ,lk−rk−1).

Proof. It is sufficient to prove only (10).
Consider the projection Σ(o)→ Σ(o1)×· · ·×Σ(ok), c 7→ (c|Γi

)i=1,··· ,k.
The projection decomposes into projections

(12) Σ(o, α, r)→
∐

r1,··· ,rk∈Z≥0
r1+···+rk=r

Σ(o1, α, r1)× · · · × Σ(ok, α, rk)

for r ∈ Z≥0. Let us see that the cardinality of the inverse image of
a point (c1, · · · , ck) ∈ Σ(o1, α, r1) × · · · × Σ(ok, α, rk) depends only on
(r1, · · · , rk). Put Γ+

i := {β ∈ |Γi| | α <ci
β} and Γ−i := {β ∈ |Γi| |
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β <ci
α}. Then, an ordering c ∈ Σ(o, α, r) is in the inverse image, if c

defines the ordering of r=r1+· · ·+rk elements qk
i=1Γ

+
i in RHS of α and

the ordering of l−r−1=(l1−r1−1)+· · ·+(lk−rk−1) elements qk
i=1Γ

−
i in

LHS of α, which satisfies the condition: the sub-orderings on each Γ±i
is pre-fixed by c±i := ci|Γ±i for i = 1, · · · , k where c±i defines a linearly

ordered graphs structure on Γ±i . The condition on c is equivalent to
that c belongs to Σ(qk

i=1c
+
i )× Σ(qk

i=1c
−
i ), where qk

i=1c
±
i is the partial

ordering structure on Γ± := qk
i=1Γ

±
i . Since Σ(qk

i=1c
+
i ) is just the set

of shuffles of the sets of elements of r1,. . . ,rk, its cardinality is given
by the combination number: σ(qk

i=1c
+
i )= (r1+···+rk

r1,··· ,rk
). Similarly, one has

σ(qk
i=1c

−
i ) = ( l−1−r1−···−rk

l1−r1−1,··· ,lk−rk−1). Both are independent of (c1, · · · , ck).
¤

2. A vertex α ∈ Π is called maximal (resp. minimal) with respect
to o ∈ Or(Γ), if β<o α (resp. α<o β) for any edge αβ ∈ Edge(Γ) at α.

Assertion 2.2. If α is maximal with respect to o, then one has
σ(o, α, 0) ≥ σ(o, α, 1) ≥ · · · ≥ σ(o, α, l−2) ≥ σ(o, α, l−1).

If α is minimal with respect to o, then one has
σ(o, α, 0) ≤ σ(o, α, 1) ≤ · · · ≤ σ(o, α, l−2) ≤ σ(o, α, l−1).

If α is non-isolated in Γ, the smallest terms in the sequences are zero.

Proof. We show only the first case. The latter case is shown similarly.
It is sufficient to show that there is an injection map Σ(o, α, r) →

Σ(o, α, r−1) for r > 0. In fact the map is constructed as follows: let
c = {A <c α <c β <c B} ∈ Σ(o, α, r) where β ∈ Π and A and B are
such linear sequence of inequalities of elements of Π that the length
of B is equal to r − 1 (this is possible since r ≥ 1). Then we set
c′ := {A <c β <c α <c B} ∈ Σ(o, α, r−1) where c′ is well defined since
α is maximal. The correspondence c 7→ c′ is clearly injective.

If α is non-isolated, then the set Σ(o, α, l−1) is empty, since there
exists a vertex β ∈ Π such that βα ∈ Edge(Γ) and β <o α and hence
for any c ∈ Σ(o) one has β <c α and c 6∈ Σ(o, α, l − 1). ¤

3. Principal Γ-cones

A graph Γ is called a tree if it is connected and simply connected.
For a tree Γ, we introduce particular Γ-cones (unique up to a sign),
called the principal Γ-cones. The first main result of the present paper,
formulated in Theorem (3.2), is to characterize the principal Γ-cones.

The following is a characterization of trees in terms of Γ-cones.

Assertion 3.1. Let Γ be a graph on Π. Then, {Hαβ}αβ∈Edge(Γ) forms
a system of coordinate hyperplanes of VΠ if and only if Γ is a tree.
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Proof. For each edge αβ of Γ, we choose one of λαβ or λβα. Then, it is
immediate that i) {λαβ}αβ∈Edge(Γ) is linearly independent if and only if

Γ does not contain a cycle, and ii) {λαβ}αβ∈Edge(Γ) spans the dual space
of VΠ if and only if Γ is connected. ¤

From now on in the present paper, we shall assume that Γ is a tree
on Π. Then the system of coordinate hyperplanes {Hαβ}αβ∈Edge(Γ) cuts

the vector space VΠ into 2#Π−1-number of quadrants, each of which is
a Γ-cone. Therefore, the Γ-cones are simplicial (i.e. are cones over
simplices). The size of the decomposition vector for a tree Γ is equal
to 2l−1. The other distinguishing property of the decomposition vector
for a tree is that it contains a unique (up to an involution, c.f. below)
maximal entry (=the principal entry), which we explain now.

If Γ is a tree, which is not of type A1, then there is a decomposition,
unique up to a transposition, of the set Π of vertices into two parts:

(13) Π = Π1 q Π2

such that each Πi is totally disconnected in Γ.

Definition. Let Γ be a tree. If Γ 6= Γ(A1), a principal orientation on
Γ is an element in Or(Γ) which is either equal to

(14) oΠ1,Π2 :={ α <oΠ1,Π2
β for αβ∈Edge(Γ) with α∈Π1, β∈Π2}.

or to oΠ2,Π1 =−oΠ1,Π2 . A principal Γ-cone is the Γ-cone attached to a
principal orientation. That is: it is one of the following two cones:

(15) EΠ1,Π2 := EoΠ1,Π2
and EΠ2,Π1 := EoΠ2,Π1

.

Since oΠ2,Π1 =−oΠ1,Π2 and EΠ2,Π1 =−EΠ1,Π2 , two principal Γ-cones
are isomorphic to each other as abstract cones. The isomorphisms class:

(16) EΓ := EΠ1,Π2 ' EΠ2,Π1

is called the principal Γ-cone.
If Γ = Γ(A1), the trivial orientation oA1 on Γ(A1) is called the prin-

cipal orientation on Γ(A1). Thus the sole principal cone EΓ(A1) = {0}
consists of a single chamber O, i.e. Σ(oA1) = {O} and σ(oA1) = 1.

The following first main theorem of the present paper characterizes
the principal Γ-cone.

Theorem 3.2. Let Γ be a tree on Π. The principal Γ-cone is the Γ-
cone which contains strictly maximal number of chambers. That is: a
Γ-cone Eo for o ∈ Or(Γ) is principal if and only if σ(o) = σ(Γ), where

(17) σ(Γ) := max{σ(p) | p ∈ Or(Γ)}.
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Proof. With the results established in §2, the proof is straight forward:
suppose o ∈ Or(Γ) is not principal, that is: there exist α, β, γ ∈ Π
with γ <o α <o β. Actually, Γ decomposes as Γ = Γ+

∐
α Γ−, where

Γ+ (resp. Γ−) is a full subgraph of Γ containing α and any connected
component of Γ \ {α} which contains a vertex β s.t. α <o β (resp.
α >o β). By the assumption on o, one has Γ± 6= ∅.

Put o+ := o|Γ+ ∈ Or(Γ+) and o− := o|Γ− ∈ Or(Γ−).

Assertion 3.3. Define a new orientation õ ∈ Or(Γ) by the following
rule: õ agrees with o+ on Γ+ and with −o− on Γ−. Then σ(õ) > σ(o).

Proof. For a proof of the Assertion, we apply the formula (11) in As-
sertion 2.1 to the decomposition Γ = Γ+

∐
α Γ−and to o, õ ∈ Or(Γ):

σ(o) =

l+∑
r+=0

l−∑
r−=0

σ(o+, α, r+)σ(o−, α, r−)Cr+,r−Cl+−r+,l−−r− ,

σ(õ) =

l+∑
r+=0

l−∑
r−=0

σ(o+, α, r+)σ(o−, α, r−)Cr+,l−−r−Cl+−r+,r− ,

where l+ := #Γ+ − 1 > 0 and l− := #Γ− − 1 > 0.
We want to calculate the difference σ(õ) − σ(o) term-to-term. Ob-

serve that the terms for r+ = l+/2 (if l+ is even) and the terms for
r− = l−/2 (if l− is even) in the two formulae give the same value and
so cancel each other in the difference. Therefore, we decompose the
region [0, l+] × [0, l−] of the summation index (r+, r−) into 4 regions
according to whether r+ is larger or less than l+/2 and whether r− is
larger or less than l−/2.

For an index (r+, r−) in the region [0, l+/2) × [0, l−/2), we consider
4 indices (r+, r−), (r+, r∗−), (r∗+, r−) and (r∗+, r∗−) in the 4 regions simul-
taneously, where r∗+ := l+ − r+ and r∗− := l− − r−. Let us explicitly
write down the difference between these 4 terms in σ(õ) and in σ(o):

σ(r+)σ(r−)Cr+,r∗−Cr∗+,r− + σ(r+)σ(r∗−)Cr+,r−Cr∗+,r∗−
+ σ(r∗+)σ(r−)Cr∗+,r∗−Cr+,r− + σ(r∗+)σ(r∗−)Cr∗+,r−Cr+,r∗−
− σ(r+)σ(r−)Cr+,r−Cr∗+,r∗− − σ(r+)σ(r∗−)Cr+,r∗−Cr∗+,r−
− σ(r∗+)σ(r−)Cr∗+,r−Cr+,r∗− − σ(r∗+)σ(r∗−)Cr∗+,r∗−Cr+,r− ,

where we used the simplified notation σ(r+) := σ(o+, α, r+), σ(r∗+) :=
σ(o+, α, r∗+), σ(r−) := σ(o−, α, r−) and σ(r∗−) := σ(o−, α, r∗−).

Miraculously, one can factorize this difference as follows:

(σ(r+)− σ(r∗+))(σ(r∗−)− σ(r−))(Cr+,r−Cr∗+,r∗− − Cr+,r∗−Cr∗+,r−).

Let us examine the sign of the factors and demonstrate that the
product turns out to be non-negative. First, recall that the vertex α
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is minimal in Γ+ and maximal in Γ− by definition. Note also that
r+ < l+/2 < r∗+ and r− < l−/2 < r∗−. Therefore, applying §2 Assertion
2.2, we observe that (σ(r+∗) − σ(r+))(σ(r−) − σ(r∗−)) ≥ 0. Next, let
us examine the last factor. For this purpose, we use the proportion of
the two terms in the last factor:

Cr+,r−Cr∗+,r∗−

Cr+,r∗−Cr∗+,r−
=

(r∗+ + r∗−)!

(r+ + r∗−)!
· (r+ + r−)!

(r∗+ + r−)!
.

Using the fact that r+ < r∗+, one has r∗+ + r∗− > r+ + r∗− and r+ + r− <

r∗+ + r−. Hence, the expression can be reduced to
∏r∗+

k=r++1

r∗−+k

r−+k
, where

each factor is larger than 1 since r−+k < r∗−+k and the number of the
factors is r∗+ − r+ > 0 so that the result is always larger than 1. These
together imply that the difference of the 4 terms is non-negative.

By summing up terms for all indices (r+, r−) in the region [0, l+/2)×
[0, l−/2), we see that the difference σ(õ)−σ(o) is non-negative. To show
that it is strictly positive, let us calculate the term for (r+, r−) = (0, 0).
Then, §2, Assertion 2.2 again, one has σ(r+)=σ(r∗−)=0. Since l+, l− >
0 (non-principality of σ), one obtains a rather big number:

σ(o+, α, l+)σ(o−, α, 0)(Cl+,l−− 1) 6=0.
This completes the proof of the Assertion. ¤
The Assertion says that if an orientation o on Γ is not principal, it

can not attain the maximal value σ(Γ) of σ(o) for o∈Or(Γ). In fact,
starting from any orientation o∈Or(Γ), and by a successive application
of the construction in the Assertion, one arrives at one of the principal
orientations. Since EΠ1,Π2 ' EΠ1,Π2 , one has σ(oΠ1,Π2) = σ(oΠ1,Π2).
This number gives the maximal value σ(Γ).

This completes the proof of the Theorem. ¤
Remark 3. Some particular cases of Theorem 3.2 was known already.

If Γ is a linear graph of type Al, then the (principal) Γ-cones coincide
with the (principal) Springer cone of type Al−1 (see [Ar],[Sp] and the
latter half of §7 of the present paper). In that case, the result is shown
[Sp, Prop.3]. [S-Y-Z, Theo.1.2., (2)], [N],[B]

Remark 4. Let Γ=qk
i=1Γi be the decomposition of a forest into trees.

For an orientation o on Γ, put oi :=o|Γi
. Since σ(o)=Πiσ(oi)(

P
#Γi

#Γ1,··· ,#Γk
),

the maximal number of chambers in a Γ-cone is attained by the orien-
tations o such that each oi is a principal orientation on Γi.

A question of interest is a characterization of the decomposition vec-
tor: (σ(o))o∈Or(Γ) for a tree Γ. One, obviously, has

∑
o∈Or(Γ) σ(o) = l!.

Even though the vector is algorithmically determined from the graph
Γ, it is non-trivial to calculate the vector in general.
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Example. The principal cone EΓ(D4) consists of 6 chambers forming a
hexagon. The decomposition vector is (σ(o))o∈Or(Γ(D4)) = 2(6, 2, 2, 2).

The principal cone EΓ(A4) consists of 5 chambers forming a spoon
graph. The decomposition vector is (σ(o))o∈Or(Γ(A4)) = 2(5, 3, 3, 1).

Let Γ be a cyclic graph of 4 vertices. Even though Γ is not a tree,
the decomposition vector contains the maximal entry: (σ(o))o∈Or(Γ) =
2(4, 2, 2, 1, 1, 1, 1), where the maximal is attained by the Γ-cone corre-
sponding to the partial ordering defined by the decomposition of Π of
the form (13). Conjecturely, this may happen for any connected graph
Γ which admits the principal decomposition (13) (c.f. Remark below).

Remark 5. Let us call the decomposition (13) for a graph (which may
not necessarily be a tree) the principal decomposition. Then, we have
the following [S2]: assume that a connected graph Γ admits a principal
decomposition. consider the lattice LΓ spanned by Π with the symmet-
ric bilinear form as in the usual convention in a theory of root systems.
Then the “Coxeter element”defined as the product of reflections at-
tached to the vertex in the order of a principal order (recall Remark 1.)
is i) semi-simple of finite order, or ii) quasi-unipotent if and only if i) Γ
is one of the Coxeter-Dynkin diagram for a finite Coxeter group or ii)
Γ is either i) or one of the affine Coxeter-Dynkin diagram, respectively.

4. Enumeration of chambers in the principal Γ cone

As the second main result of the present paper, we give an enumer-
ation formula (19) for the principal number σ(Γ). It is formulated as
i) a sum whose summation index runs over certain equivalence classes

Õrd(Π1) of all linear orderings on Π1 and ii) each summand is the quo-
tient of (#Π)! by a product of cardinalities of certain subgraphs. Thus,
each summand resembles the hook length formula of Knuth [K2,p70].
This may cause a puzzle since the hook length formula is an enumer-
ation of chambers in a Γ-cone for rooted forests, but the principal
orientations and the rooted forests are, in some sense, the most con-
trasting orientations on forests. We shall find an answer in §5 that the
principal Γ-cone decomposes into a union of Γ-cones for certain rooted
trees. Thus, we present two proofs of the formula (19): the proof in
this section is based on the principal Γ-ordering on Π and the proof in
§5 is based on the newly introduced rooted tree structures on Π.

We start with the definition of the equivalence ∼ on the set Ord(Π1).

Let d ∈ Ord(Π1) be an ordering on Π1. For v ∈ Π1, put

(18)
Γd,v := the connected component of Γ\{w∈Π1 | w<d v}

containing v.
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In particular, one has Γd,v = Γ for the smallest element v of Π1.

Definition. Two orderings d, d′ ∈ Ord(Π1) are called equivalent if

Γd,v = Γd′,v for all v ∈ Π1. The equivalence class of d is denoted by d̃

and the set of all equivalence classes is denoted by Õrd(Π1).

Theorem 4.1. Let Γ be a tree on Π. Choose the decomposition (13).
Then the principal number σ(Γ) (17) is given by

(19) σ(Γ) = (#Γ)!
∑

d̃∈gOrd(Π1)

1∏
v∈Π1

#Γd,v

,

where the terms in RHS is well-defined since Γd,v depends only on the

equivalence class d̃ of d ∈ Ord(Π1) and on v ∈ Π1.

Proof. Before we start with the proof of the formula, we reformulate
the equivalence ∼ in terms of the partial orderings on the set Π1.

Fact i) For any two indices v, v′ ∈ Π1, one has three cases:

Γd,v ∩ Γd,v′ =





∅
Γd,v

Γd,v′ .

Fact ii) If Γd,v ∩ Γd,v′ = Γd,v then v′ ≤d v.

Fact iii) The next three conditions are equivalent:
a) Γd,v ∩ Γd,v′ = Γd,v, b) Γd,v ⊂ Γd,v′ , c) v ∈ Γd,v′ .

Proof. i) Since d is a linear ordering, we may assume v′ <d v. The fact
that Γ\{w ∈ Π1 | w <d v} ⊂ Γ\{w ∈ Π1 | w <d v′} implies that the
component Γd,v is either contained in the component Γd,v′ or they are
disjoint. Accordingly, the intersection is either Γd,v or an empty set.

ii) Suppose the contrary v′ 6≤d v. Then the totally orderedness of
d implies v′ >d v. Then, by the construction, Γd,v′ cannot contain v.
This contradicts to the assumption Γd,v ∩ Γd,v′ = Γd,v.

iii) The implications: a) ⇒ b) ⇒ c) are trivial. Assume c). This
implies Γd,v ∩ Γd,v′ 6= ∅. Suppose, further, Γd,v ∩ Γd,v′ 6= Γd,v. Then i)
implies Γd,v ∩Γd,v′ = Γd,v′ 6= Γd,v, and, hence, Γd,v′ ⊂6= Γd,v. This mean
that Γd,v′ is a connected component by deleting strictly more vertices
than those for Γd,v. This is possible only when v <d v′. Then, v 6∈ Γd,v′ .
A contradiction to the assumption c) ! ¤
Definition. To the equivalence class d̃ in Õrd(Π1) of d ∈ Ord(Π1), we
attach a partial ordering on Π1: for v, v′ ∈ Π1, put

(20)
v′ ≤d̃ v

def⇔ the three equivalent conditions a), b) and c) in Fact iii).
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In the other words, there is no order relation between v, v′ ∈ Π1 if
Γd,v∩ Γd,v′ =∅, otherwise the order relation of d̃ agrees with d.

Fact iv) Consider the partial ordering on Π1 for d̃∈Õrd(Π1). For any

v∈Π1, the set of predecessors {w∈Π1 | w<d̃ v} is totally ordered by d̃.

Proof. Suppose wi <d̃ v (i = 1, 2). This means v ∈ Γd,wi
(Fact iii) c)),

and hence Γd,w1 ∩ Γd,w2 6= ∅. Then, Fact i) implies that either w1≤d̃ w2

or w1≥d̃ w2 occurs. ¤

We obtain the following characterization of the partial ordering <d̃.

Assertion 4.2. For two orderings d, d′ ∈ Ord(Π1), the following two
conditions are equivalent.

a) One has the equality Γd,v = Γd′,v for all v ∈ Π1, i.e. d ∼ d′.
b) The partial orderings <d̃ and <d̃′ on the set Π1 coincide.

Proof. We have only to show that the partial ordering <d̃ determine
the set Γd,v for v∈Π1. First, we show that the set Γd,v is given by

Γd,v =
(
Γd,v ∩ Π1

) ∪
⋃

w∈Γd,v∩Π1

Nbd(w)

from the set Γd,v ∩Π1, where Nbd(w) :={u∈Π |∃ wu ∈ Edge(Γ)}⊂Π2.

(Proof. The inclusion ⊂ follows from the connectivity of Γd,v. The
opposite inclusion Γd,v⊃Nbd(w) for w∈Γd,v∩Π1 follows also from the
connectivity of Γd,v.¤) On the other hand, due to Fact iii) c), one has

Γd,v ∩ Π1 := {w ∈ Π1 | v ≤d̃ w}.
Thus, Γd,v, as a set, is determined from the partial ordering d̃. ¤

Finally, let us show Γd,v = Γd̃,v for v ∈ Π1, where

(21)
Γd̃,v := the connected component of Γ \ {w∈Π1 | w<d̃ v}

containing v.

Proof. Since the partial ordering d̃ is rough than the total ordering d,
one has the inclusion Γd,v ⊂ Γd̃,v. To show the opposite inclusion, it is
sufficient to show that if v 6≤d̃ w, then w does not belong to Γd̃,v.

We may assume w 6≤d̃ v, otherwise w 6∈ Γd̃,v is trivial. Let u0 be the
unique maximal element of the (non-empty by assumptions) totally
ordered set {u ∈ Π1 | u <d̃ w, u <d̃ v} (c.f. Fact iv)). By definition, v
and w belong to the connected component Γd,u0 ⊂ Γd̃,u0

. However, since
they belong to different components of Γd,u0 \{u0}, they also belong to
different components of Γd̃,u0

\ {u0} (since Γd̃,u0
is a tree). ¤
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Let us return to the proof of the Theorem. The formula (19) is shown
by the induction on #Γ. We first prepare an induction formula.

Let Γ be a tree. For a given decomposition {Π1, Π2} and an attached
principal orientation oΠ1,Π2 , we want to enumerate the set Σ(oΠ1,Π2).

By definition, for any total ordering d ∈ Σ(oΠ1,Π2), the smallest
element belongs to Π1. Therefore, we have a decomposition:

Σ(oΠ1,Π2) =
∐
v∈Π1

Σ(oΠ1,Π2 , v <)

where Σ(oΠ1,Π2 , v <) := {d ∈ Σ(oΠ1,Π2) | v is the smallest element in d.}.
Put σ(oΠ1,Π2 , v <) := #Σ(oΠ1,Π2 , v <) so that one has

σ(Γ) := σ(oΠ1,Π2) =
∑
v∈Π1

σ(oΠ1,Π2 , v <).

For w ∈ Nbd(v), let us denote by Γvw the connected component of Γ \
{v} containing w. One has the decomposition Γ\{v} =

∐
w∈Nbd(v) Γvw.

Applying (10) in Assertion 2.1 for α=v and r=#Γ−1=
∑

w∈Nbd(v)rw,

rw := #Γvw, we obtain: σ(oΠ1,Π2, v <) = (#Γ− 1)!
∏

w∈Nbd(v)
σ(Γvw)
(#Γvw)!

.

Summing over all vertices v∈Π1, we obtain the induction formula:

(22)
σ(Γ)

(#Γ)!
=

1

#Γ

∑
v∈Π1

∏

w∈Nbd(v)

σ(Γvw)

(#Γvw)!
.

By the induction hypothesis, for any v ∈ Π1 and w ∈ Nbd(v), we
have already the formula for Γvw:

∗) σ(Γvw)

(#Γvw)!
=

∑

d̃w∈gOrd(Γvw∩Π1)

1∏
u∈Γvw∩Π1

#(Γvw)d̃w,u

.

The substitution of ∗) into RHS of (22) gives a formula summing the
terms: 1

#Γ

∏
w∈Nbd(v)

1Q
u∈Γvw∩Π1

#(Γvw)d̃w,u
, where the summation index

v×{d̃w}w∈Nbd(v) runs in the set
⋃

v∈Π1

(
v×∏

w∈Nbd(v)(Õrd(Γvw∩Π1))
)
.

For the index v × {d̃w}w∈Nbd(v), we attach the partial ordering d̃ of

the set Π1 defined by the rule a) v is the smallest element, b) d̃ agrees

with d̃w on the set Γvw ∩ Π1 for w ∈ Nbd(v), and c) there is no order
relation between Γvw ∩ Π1 and Γvw′ ∩ Π1 for different w, w′∈Nbd(v).

This correspondence v × {d̃w}w∈Nbd(v) 7→ d̃ gives a bijection:
⋃

v∈Π1

(
v ×

∏

w∈Nbd(v)

(Õrd(Γvw ∩ Π1))
) ' Õrd(Π1),

where the opposite correspondence is given by the restriction map.
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On the other hand, the term 1
#Γ

∏
w∈Nbd(v)

1Q
u∈Γvw∩Π1

#(Γvw)d̃w,u
for

the index v × {d̃w}w∈Nbd(v) coincides with the term 1Q
u∈Π1

#Γd̃,u
in (19)

given by the corresponding partial ordering d̃. This means that the
substitution of ∗) into RHS of (22) gives RHS of the formula (19).

This completes the proof of the Theorem. ¤

5. Block decomposition of the principal Γ-cone

As the third main result of the present paper, we introduce the block
decomposition of a principal Γ-cone EoΠ1,Π2

, where each block is a sim-
plicial cone associated to a rooted tree. Since the number of chambers
in a cone associated to a rooted tree is well know by the hook length
formula, this reproduce an alternative proof of the formula (19).

Definition. An oriented graph (Γ, o) is called a rooted tree if
i) There exists the unique minimal vertex vo ∈ Γ with respect to o.
ii) Any vertex ( 6= vo) of Γ has a unique immediate predecessor.

The smallest vertex v0 is called the root of (Γ, o). It is easy to see that
the definition implies that (Γ, o) is a tree (hence, is reduced). On the
contrary, a pair of a tree Γ and a vertex v of Γ determines a unique
rooted tree structure (Γ, ov) having v as its root.

We return to the setting in §4, where Γ is a tree on Π, Π1 is the first

component of the decomposition (13), and Õrd(Π1) is a set of partial
orderings on Π1 (recall §4 Definition (20) and the equivalence of a) and

b) in Assertion 4.2). We identify the partial ordering d̃∈Õrd(Π1) with

its naturally defined reduced oriented graph d̃= d̃red on the set Π1 (=
the Hasse diagram, whose oriented edges are primitive pairs α<d̃ β of

the order relation d̃. See the last paragraph of §1).
Recollect some facts which were already implicitly used in §4.

Fact. a) Any partial ordering d̃ ∈ Õrd(Π1) defines a rooted tree struc-
ture on Π1. We shall denote by vd̃ its root.
b) For any total ordering d ∈ Ord(Π1), there exists an unique partial

ordering d̃ ∈ Õrd(Π1) such that d is a linear extension of d̃.
c) The system {Ed̃}d̃∈gOrd(Π1) is a simplicial cone decomposition of VΠ1.

Proof. a) The smallest element vd̃ exists because of the connectivity of
Γ. The uniqueness of the predecessor follows from Fact iv) in §4.

b) This follows from the definition in §4 of Õrd(Π1), where any total

ordering d belongs to the unique equivalence class d̃. ¤
We “sharpen” the Fact c) by “pull-back” of the decomposition to the

principal Γ-cone EΠ1,Π2 . Precisely, we mean the following Theorem.
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Theorem 5.1. Let the setting be as in Theorem 4.1. For any partial

ordering d̃ ∈ Õrd(Π1), consider the reduced oriented graph on Π:

(23) õd := (oΠ1,Π2 ∪ d̃)red,

(see Proof. for a precise explanation of this notation). Then one has

1) The õd defines a rooted tree structure on Π whose root is equal to
vd̃. Let us call the associated simplicial cone Eõd a block.

2) The closure of the principal cone EΠ1,Π2 decomposes into a disjoint
union (up to identifications of faces) of the closures of the blocks:

(24) EΠ1,Π2 =
∐

d̃∈gOrd(Π1)

E õd.

Proof. The notation oΠ1,Π2 ∪ d̃ means the oriented graph obtained by

the union of oriented edges of oΠ1,Π2 and d̃ (in order this to be well-
defined, we check that it is acyclic (recall §1). But this is trivial, since

any element of Π2 is maximal with respect to oΠ1,Π2∪d̃ so that it cannot

be a part of any oriented cycle. The remaining part d̃ on Π1 is a tree
(Fact a)) and does not contain a cycle). The notation (∗)red means
the reduction of ∗, i.e. the oriented graph obtained by deleting all the
removable edges from ∗ (called the Hasse diagram, recall §1).

1) First, we observe that any oriented edge in d̃ is un-removable in

oΠ1,Π2 ∪ d̃, since any vertex( 6= vd̃) in Π1 has only one predecessor.
In general, if an oriented graph o is connected, then ored is connected.

Since oΠ1,Π2 ∪ d̃ is connected then õd is connected. In particular, any

vertex β ∈ Π2 has at least one predecessor (in Π1) with respect to õd.
In fact, there is a unique predecessor, which we determine now.

∗) For any element β ∈ Π2, the set Nbd(β) :={α∈Π | αβ∈Edge(Γ)}=
{α∈Π1 | α<oΠ1,Π2

β} ⊂ Π1 is totally ordered by the partial ordering d̃.

Before the proof of ∗), recall the notation Γd̃,v (21) and the fact that
if Γd̃,v contains a vertex α∈Π1, then it contains also the neighborhood
of α: Nbd(α)⊂Γd̃,v (the formula ∗) in the proof of §4 Assertion 4.2).
Proof of ∗). Consider α1, α2 ∈ Nbd(β) ⊂ Π1 with α1 6= α2. Since Γd̃,αi

contains Nbd(αi), one has β ∈ Γd̃,αi
for i = 1, 2. That is Γd̃,α1

∩Γd̃,α2
6=

∅. Then, due to §4 Fact i) and ii), either Γd̃,α1
⊃ Γd̃,α2

or Γd̃,α1
⊂ Γd̃,α2

occurs, and, hence, one has either α1 <d̃ α2 or α1 >d̃ α2. ¤ of ∗)
As a consequence of ∗), we obtain:

∗∗) Let β∈Π2. If α∈Nbd(β) is not the largest with respect to d̃, then

the oriented edge α<oΠ1,Π2
β is removable in the oriented graph oΠ1,Π2∪d̃.
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Proof of ∗∗). Let α ∈ Nbd(β) be not the largest, i.e. ∃α′ ∈ Nbd(β)
which is larger than α due to ∗). Then α <d̃ α′ <oΠ1,Π2

β implies that
the oriented edge α<oΠ1,Π2

β is removable (recall §1). ¤ of ∗∗)
2) Eõd is simplicial since õd is a tree (Assertion 3.1). By definition

(23), one has Eõd =EoΠ1,Π2
∪d̃⊂EoΠ1,Π2

=EΠ1,Π2 . The decomposition (24)

follows, since for any d∈Σ(oΠ1,Π2), there exists a unique d̃∈ Õrd(Π1)

such that d is a linear extension of oΠ1,Π2∪ d̃ (Factb) and c)). Thus,

(25) Σ(oΠ1,Π2) =
∐

d̃∈gOrd(Π1)

Σ(õd).
¤

Remark 6. The block decomposition (24) of the principal Γ-cone EΓ

depends on a choice of the principal ordering oΠ1,Π2 . In fact, the block
decompositions for oΠ1,Π2 and for oΠ2,Π1 are often quite different.

As a corollary to the block decomposition (24) of the principal cone,
let us give an alternative proof of the formula (19). This is achieved by
two steps. The first step is to recall the well known hook length formula
of Knuth enumerating the chambers in a Γ-cone for a rooted tree (it is
an immediate consequence of the decomposition formula (11)).

Lemma 5.2. (Knuth [K2,p70]) Let (Γ, o ∈ Or(Γ)) be a rooted tree.
Then one has

(26) σ(o) =
(#Γ)!∏

v∈Π #Γo,v
where

(27)
Γo,v := the connected component of Γo \ {w ∈ Π | w <o v}

containing v.

Note. There is an unfortunate discrepancy between the two notations
Γd̃,v (18) and Γo,v (27). The underlying oriented graph structure in Γd̃,v

is the principal orientation oΠ1,Π2 and that for Γo,v is the rooted tree o.
They are, in a sense, the most contrasting orientations. However, we
show in the following a “numerical coincidence” of them.

The second step of the alternative proof of (19) is as follows. Apply

(26) to σ(õd) to count the number of chambers in Eõd. Comparing (19)
and (24), let us show the equality:

(28)
(#Γ)!∏

v∈Π #Γõd,v

=
(#Γ)!∏

v∈Π1
#Γd̃,v

for d̃ ∈ Õrd(Π1). We note that the region of the running index v in
LHS of (28) can be shrunken from Π to Π1 = Π\Π2, since for v ∈ Π2
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one has #Γõd,v =1 because of the fact that v is maximal with respect

to oΠ1,Π2∪d̃. Therefore, we have only to show the formula

(29) #Γd̃,v = #Γõd,v

for v ∈ Π1. We show that the vertex sets |Γd̃,v| and |Γõd,v| coincide
(even though the graph structures are quite different, see Example).

Note the inclusion relation: oΠ1,Π2⊂(oΠ1,Π2∪ d̃)⊃ õd among oriented
graphs and the equality among the vertex sets: A := {w ∈ Π1 | w <d̃

v} = {w ∈ Π | w <oΠ1,Π2
∪d̃ v} = {w ∈ Π | w <õd v}. Thus, one has

relation: Γd̃,v⊂ΓoΠ1,Π2
∪d̃,v⊃Γõd,v among the connected components of

the complements of A containing v. The sets |Γd̃,v| and |ΓoΠ1,Π2
∪d̃,v|

coincide, since, if v<d̃ w for w∈Π1 then w∈Γd̃,v. The sets |ΓoΠ1,Π2
∪d̃,v|

and |Γõd,v| coincide, since, if an element w∈Π2 is connected with v in

ΓoΠ1,Π2
∪d̃,v then w is connected with v by õd.

This completes the proof of the equality (29), and hence the alter-
native proof for (19) is completed.

Example. We illustrate the block decompositions of type A7 and the
calculations of the formula (19).

I. Let the principal decomposition (13) of Γ(A7) and the principal
ordering oA7 := oΠ1,Π2 be fixed by

Π2 : ◦ ◦ ◦ ◦
oA7 : ↖ ↗ ↖ ↗ ↖ ↗

Π1 : ◦ ◦ ◦ .

There are 5 partial orderings d̃ ∈ Õrd(Π1) and, accordingly, 5 associ-

ated rooted trees õd. Three of them are illustrated as follows:

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
oA7∪ d̃1 : ↖ ↗ ↖ ↗ ↖ ↗ red−→ ˜od1 : ↖ ↖ ↖ ↗◦ −→ ◦ −→ ◦ ◦−→ ◦−→ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
oA7∪ d̃2 : ↖ ↗ ↖ ↗ ↖ ↗ red−→ ˜od2 : ↖ ↖ ↗ ↗◦ ◦ ←− ◦ ◦ ◦ ←−◦−→−→−→−→ −→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
oA7∪ d̃3 : ↖ ↗ ↖ ↗ ↖ ↗ red−→ ˜od3 : ↖ ↗ ↖ ↗◦ ←− ◦ −→ ◦ ◦ ←− ◦−→ ◦
Two more rooted trees are obtained from ˜od1 and ˜od2 by the action of
the left-right involutive diagram automorphism of Γ(A7). Therefore,
the enumeration formula (19) for the type A7 turns out to be

σ(A7) = 2σ( ˜od1) + 2σ( ˜od2) + σ( ˜od3) = 2 7!
7·5·3 + 2 7!

7·5·3 + 7!
7·3·3

= 272.
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II. The principal decomposition of Γ(A7) opposite to (13) and the
opposit principal ordering −oA7 := oΠ2,Π1 are given by

Π1 : ◦ ◦ ◦−oA7 : ↗ ↖ ↗ ↖ ↗ ↖
Π2 : ◦ ◦ ◦ ◦.

There are 14 partial orderings d̃ ∈ Õrd(Π2) and, accordingly, 14 asso-

ciated rooted trees õd. Seven of them are illustrated as follows:

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃1 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd1 : ↖ ↖ ↖◦ −→ ◦ −→ ◦ −→ ◦ ◦−→ ◦−→ ◦−→ ◦

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃2 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd2 : ↖ ↖ ↗◦ −→ ◦ ◦ −→ ◦ ◦−→ ◦ ◦ ←− ◦−→−→−→−→ −→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃3 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd3 : ↖ ↗ ↖◦ ◦ ←− ◦ −→ ◦ ◦ ◦ ←− ◦−→ ◦−→−→−→−→ −→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃4 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd4 : ↖ ↖ ↗◦ ◦ −→ ◦ ◦ ◦ ◦ −→ ◦ ◦←−←−←−←− ←−←−←−←−−→−→−→−→−→−→−→ −→−→−→−→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃5 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd5 : ↖ ↗ ↗◦ ◦ ←− ◦ ←− ◦ ◦ ◦ ←− ◦ ←− ◦−→−→−→−→−→−→−→ −→−→−→−→−→−→−→

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃6 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd6 : ↗ ↖ ↖◦ ←− ◦ −→ ◦ −→ ◦ ◦ ←−◦−→ ◦−→ ◦

◦ ◦ ◦ ◦ ◦ ◦
−oA7∪d̃7 : ↗ ↖ ↗ ↖ ↗ ↖ red−→ õd7 : ↗ ↖ ↗◦ ←− ◦ ◦ ←− ◦ ◦ ←−◦ ◦ ←−◦−→−→−→−→ −→−→−→−→

The remaining seven more rooted trees are obtained from the above
seven trees by the action of the left-right involutive diagram automor-
phism of Γ(A7). Therefore, the enumeration formula (19) for the type
A7 turns out to be

σ(A7) = 2
(
σ( ˜od1)+σ( ˜od2)+σ( ˜od3)+σ( ˜od4)+σ( ˜od5)+σ( ˜od6)+σ( ˜od7)

)

= 2
(

7!
7·6·4·2 + 7!

7·6·4·3 + 7!
7·6·3·2 + 7!

7·6·5·3 + 7!
7·6·5·3 + 7!

7·4·2·2 + 7!
7·4·3·2

)

= 272.

Note. Even the starting diagram Γ(A7) is linear, the blocks of the
principal cones correspond to non-linear (non-Coxeter) diagrams.
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6. Geometric backgrounds

We recall briefly a theorem [S1§3], which combines the principal
Γ-cones with some geometry of real bifurcation set in case of Γ is a
Coxeter graph of finite type. For details, one is refereed to [ibid].

Let W be a finite reflection group acting irreducibly on an R-vector
space V of rank l. Due to Theorem of Chevalley, the quotient variety
SW :=V//W, as a scheme, is a smooth affine variety,which contains the
discriminant divisor DW consisting of irregular orbits. The integration
τ =exp(D) of the lowest degree vector field D on SW , which is unique
up to a constant factor and is called the primitive vector field, defines a
Ga-action on SW . The quotient TW :=SW //τ(Ga) is an l−1-dimensional
affine variety. The restriction to DW of the projection map SW→TW is
a l-fold flat covering, whose ramification divisor in TW is denoted by BW

and calledthe bifurcation divisor. TheBW decomposes into the ordinary
part BW,2 andthehigherpartBW,≥3 according to the ramification index.

Depending on ε∈{±1}, there are real forms T ε
W,R,B

ε
W,2,R and Bε

W,≥3,R
of these schemes. There is a distinguished real half axis AOε ' R>0

(arising from eigenspaces of Coxeter elements, see [S1] for details) em-
bedded in T ε

W,R \Bε
W,≥3,R. The connected component of T ε

W,R \Bε
W,≥3,R

containing AOε is denoted by Eε
W and is called the central region.

Let Pl be a largest degree coordinate of SW . Consider the l-valued

algebraic correspondence TW→DW

Pl|DW→ A. Its l branches at the base
point AOε can be indexified by the set of a simple generator system
Π of W . Let us denote them by {ϕα}α∈Π as a system of algebroid
functions on TW (which are branching along BW,≥3). Then, one has:

Theorem 6.1. The correspondence bW :=
∑

α∈Π ϕα·vα induces a semi-
algebraic homeomorphism:

(30) bW : E
ε

W ' EΓ(W )

from the closure of the central region of W to the closure of the principal
cone for the Coxeter graph Γ(W ) of Won Π, and a homeomorphism:

(31) bW : E
ε

W ∩BW,2,R ' EΓ(W ) ∩
( ∪αβ∈Π Hαβ

)
.

That is: the central region Eε
W is a simplicial cone isomorphic to the

principal Γ(W )-cone and the connected components of Eε
W\BW,2,R are in

one to one correspondence with the set Σ(Γ(W )) of chambers contained
in the principal Γ(W )-cone EΓ(W ).

The theorem (in a more precise form) has several important impli-
cations in the study of the topology of the configuration space SW .
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Note. 1. The correspondence bW is, up to a scaling factor, unique and
does not depend on a choice of Pl (a largest degree coordinate of SW ).
Proof. Since the largest exponent of W is unique, any other largest
degree coordinate P̃l of SW is of the form a·Pl+Q for a scaling constant
a and a polynomial Q of lower degree coordinates. Then, ϕ̃α =a ·ϕα+Q
(α∈Π), whose second term is independent of α, and, so, b̃W =a · bW . ¤

2. The principal cone in RHS of (*) depends only on the graph
structure of the diagram Γ(W ) and not on the labels on the edges.
The graphs Γ(W ) (forgetting the labels) of types Al, Bl, Cl, F4, G2,
H3, H4 and I2(p) are linear. Hence, the central regions EW for them
are homeomorphic to the principal cones of type A.

Finally in the present paper, we compare the concept of Γ-cones with
somewhat similar concept, the Springer cones, which we explain below.
Definition ([Ar1]). Let VW be a real vector space with an irreducible
action of a finite reflection group W . The reflection hyperplanes of W
divides VW into chambers. Let {Hα}α∈Π be the system of the walls of
a chamber. A connected component of VW\∪α∈ΠHα is called a Springer
cone. A Springer cone containing the maximal number of chambers
(unique up to sign [Sp1]) is called a principal Springer cone. This
maximal number is called the Springer number. The Springer number
has been calculated by the authors ([So],[Sp1], [Ar1]).

There are some formal similarities between the (principal) Springer
cones in VW and the (principal) Γ-cones in VΠ (see Table below). A
result similar to Theorem 3.2 is proven for Springer cones [Sp1, Prop.3].

Springer cone Γ-cone
The ambient VW with W -chambers VΠ with A#Π−1-chambers
vector space (depending on the group W ) (depending on the set Π)
The cutting {Hα}α∈Π (indexed by {Hαβ}αβ∈Edge(Γ) (indexed by

hyperplanes the vertices of Γ(W )) the edges of the tree Γ )

Roughly and symbolically speaking, the principal Springer cones deal
with the generators of the Artin groups, whereas the principal Γ-cones
deal with the (non-commutative) braid relations of the Artin groups.

The only cases when a Γ-cone decomposition is simultaneously a
Springer cone decomposition are listed by the following.

Assertion 6.2. For a forest Γ, the following i)–iii) are equivalent.
i) The Γ-cone decomposition of VΠ is isomorphic to the Springer cone

decomposition of VW for some finite Coxeter group W .
ii) The smallest number of chambers contained in a Γ-cone is equal

to 1, i.e. inf{σ(o) | o ∈ Or(Γ)} = 1.
iii) The Γ is a linear graph of type Al, and W =W (Al−1) for l>1.



PRINCIPAL Γ-CONE 21

Proof. i) ⇒ ii): This follows from the definition of the Springer cone.
ii) ⇒ iii): if a Γ-cone consists of a single chamber C :={λα1≤· · ·≤

λαl
}, then Γ is a linear graph α1-α2-· · · -αl (of type Al) on Π.
iii) ⇒ i): If Γ is a linear graph α1-α2-· · · -αl, then the orientation

α1 < α2 <· · ·< αl on Γ corresponds to the Γ-cone consisting only of a
single chamber C :={λα1≤· · ·≤λαl

} of type Al−1 in VΠ = VAl−1
. ¤

Remark 7. Assertion is not true if Γ is not a forest (see §3 Example),
since the argument ii) ⇒ iii) fails.

Due to Assertion, σ(Al) :=σ(Γ(Al)) is equal to the Springer number
al−1 of type Al−1. Since the Springer number an of type An is given by
the generating function: 1+

∑∞
n=1

an

n!
xn = 1

1−sin(x)
([Sp1,3.]), one has

(32) 1 +
∞∑

n=1

σ(An)

n!
xn = 1 +

∫ x

0

1

1− sin(x)
dx = tan(

x

2
+

π

4
).

This formula was found repeatedly (e.g. [St2, Exercise 43(c)]). A direct
proof is given in the Appendix.
Question. By an analogy to §3 Theorem, consider any system of l-
reflection hyperplanes in VW forming coordinate hyperplanes and ask
a question: is there a unique (up to a sign) quadrangle of VW , cut out
by the hyperplanes, which contains the maximal number of chambers.
The answer is apparently positive for the type Al and I2(p) for odd
p ∈ 2Z>0, and negative for the types Bl, Cl and I2(p) for even p ∈ 2Z>0.

7. Appendix: Generating functions for the series of
types Al, Dl and El

By Yoshio Sano

We give the generating functions for the series σ(Al), σ(Dl) and
σ(El) of numbers of types Al (l ≥ 1), Dl (l ≥ 3) and El (l ≥ 4).

1. Al-type.

Let Γ(Al) be the tree of type Al (l ≥ 1) given as follows:

◦−−−◦−−−◦−− · · · −−◦−−−◦−−−◦
where l is the number of vertices of the graph. Put σ(An) := σ(Γ(An)).

Formula.

(33) 1 +
∞∑

n=1

σ(An)

n!
xn = tan(

x

2
+

π

4
).
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Proof. We put σ(A0) := 1, and prove a formula:

(34) σ(An+1) =
1

2

n∑
i=0

(
n
i

)
σ(Ai) · σ(An−i) (n ≥ 1)

Proof of (40). We apply the formula (10) in §3 and obtain, according
to whether l is even or odd:

σ(A2k) =
∑k

i=1

(
2k − 1
2i− 1

)
σ(A2i−1) · σ(A2k−2i),

σ(A2k+1) =
∑k

i=1

(
2k
2i− 1

)
σ(A2i−1) · σ(A2k−2i+1) ¤.

Put fA(x) :=
∑∞

n=0
σ(An)

n!
xn. Then, (40) implies the differential equa-

tion

f ′A =
1

2
(f 2

A + 1).

Given the initial condition: fA(0) = 1, the solution is:

fA(x) = tan(
x

2
+

π

4
). ¤

Remark 8. The formula (39) agrees with the formula (38) in §4.

2. Dl-type.

Let Γ(Dl) be the tree of type Dl (l ≥ 3) given as follows:

◦−−−◦−−−◦−− · · · −−◦−−−◦−−−◦
|
◦

where l is the number of vertices of the graph. Put σ(Dn) := σ(Γ(Dn)).

Formula.

(35)
∞∑

n=3

σ(Dn)

n!
xn = 2(x− 1) tan(

x

2
+

π

4
) + 2− 2x2.

Proof. We put σ(D2) := 2, σ(D1) := 0 and σ(D0) := 2, and prove a
formula:

(36) σ(Dn+1) =
1

2

n∑
i=0

(
n
i

)
σ(Ai) · σ(Dn−i) (n ≥ 2)

Proof of (42). We apply the formula (10) in §3 and obtain, according
to whether l is even or odd:

σ(D2k) =
∑k−1

i=1

(
2k − 1
2k − 2i− 1

)
σ(D2i) · σ(A2k−2i−1),

σ(D2k+1) =
∑k

i=1

(
2k
2k − 2i

)
σ(D2i) · σ(A2k−2i) ¤.
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Put fD(x) :=
∑∞

n=0
σ(Dn)

n!
xn. Then, (42) implies the differential equa-

tion

f ′D =
1

2
fDfA + x− 1.

Given the initial condition: fD(0) = 2, the solution is:

fD(x) = 2(x− 1) tan(
x

2
+

π

4
) + 4. ¤

Remark 9. Using the relation: fD(x) = 2(x− 1)fA(x) + 4, one obtains

(37) σ(Dn) = 2(nσ(An−1)− σ(An)) (n ≥ 1).

3. El-type.

Let Γ(El) be the tree of type El (l ≥ 4) given as follows:

◦−−−◦−−−−◦−−· · · −−◦−−−◦−−−◦
|
◦

where l is the number of vertices of the graph. Put σ(En) := σ(Γ(En)).

Formula.

(38)
∞∑

n=4

σ(En)

n!
xn = (

1

2
x2 − 2x + 3) tan(

x

2
+

π

4
)− 3x3 − x− 3.

Proof. We put σ(E3) := 3, σ(E2) := 0, σ(E1) := 3 and σ(E0) := −1,
and prove a formula:

(39) σ(En+1) =
1

2

n∑
i=0

(
n
i

)
σ(Ei) · σ(An−i) (n ≥ 5).

Proof of (45). Apply the formula (10) in §3 and obtain according to l
is even or odd:

2σ(E2k) = σ(A2k−1) + σ(D2k−1) +
(

2k − 1
1

)
σ(A2k−2)

+
∑2k−1

i=3

(
2k − 1
i

)
σ(Ei) · σ(A2k−i−1),

2σ(E2k+1) = σ(A2k) + σ(D2k) +
(

2k
1

)
σ(A2k−1)

+
∑2k

i=3

(
2k
i

)
σ(Ei) · σ(A2k−i)

Eliminate the σ(Dn) term by the use of , we obtain (45). ¤.

Put fE(x) :=
∑∞

n=0
σ(En)

n!
xn. Then, (45) implies the differential equa-

tion

f ′E =
1

2
fEfA +

1

4
x2 − x +

7

2
.
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Given the initial condition: fE(0) = −1, the solution is:

fE(x) = (
1

2
x2 − 2x + 3) tan(

x

2
+

π

4
) + 2x− 4. ¤

Remark 10. Using the relation: fE(x) = (1
2
x2 − 2x + 3)fA(x) + 2x− 4,

one obtains

(40) σ(En) =
n(n− 1)

2
σ(An−2)− 2nσ(An−1) + 3σ(An) (n ≥ 2).
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