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Abstract

The purpose of this paper is to understand greedily solvable linear programs in a
geometric way. Such linear programs have recently been considered by Queyranne,
Spieksma and Tardella, Faigle and Kern, and Krüger for antichains of posets, and by
Frank for a class of lattice polyhedra, and by Kashiwabara and Okamoto for extreme
points of abstract convex geometries. Our guiding principle is that solving linear
programs is equivalent to finding a normal cone of a polyhedron which contains a
given cost vector. Motivated by this observation, we introduce and investigate a
class of simplicial subdivisions, called greedy fans, whose membership problem can
be greedily solvable. Our approach sheds a new perspective on greediness and sub-
modularity in terms of theory of regular triangulations. Furthermore we introduce
a well-behaved special class of greedy fans, named acyclic greedy fans, which can be
obtained by some poset. In particular, its close relationship to reverse lexicographic
triangulations is revealed. We show that the set of acyclic greedy fans on fixed
vertices can be naturally regarded as a certain kind of a polyhedral subdivision like
secondary fans. We establish the relationship between our approach and Frank’s
and Kashiwabara and Okamoto’s models.

Keywords: submodularity, greedy algorithms, regular triangulations

1 Introduction

In this paper, given a finite set V , a nonempty family A ⊆ 2V and a function f : A → R,
we consider the following dual pair of linear programs

P(A,f,w) : D(A,f,w) :

max .
∑

e∈V

w(e)x(e) min .
∑

A∈A

λ(A)f(A)

s.t.
∑

e∈A

x(e) ≤ f(A) (A ∈ A), s.t.
∑

A∈A:e∈A

λ(A) = w(e) (e ∈ V ),

x ∈ RV , λ(A) ≥ 0 (A ∈ A).
(1.1)

Since many combinatorial optimization problems can be reduced to this form, it is impor-
tant to characterize efficiently solvable classes of LPs of this type. One of fundamental
examples of such classes is a polymatroid [3]; linear programs over polymatroids can be
greedily solved.
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Since recent works by Queyranne, Spieksma and Tardella [27] and Faigle and Kern [5],
several researchers [7], [21], [6], [1], [19], [10] have investigated greedily solvable linear
programs, where so-called dual greedy algorithms construct a dual optimal solution in
a greedy way. Such a system of linear inequalities is called a dual greedy system and a
polyhedron associated with a dual greedy system is called a dual greedy polyhedron [10].

In particular, Krüger [21] extended Faigle and Kern’s dual greedy algorithm [5] for
antichains of arbitrary posets and gave a kind of the submodularity condition (see also
[1]). Kashiwabara and Okamoto [19] extended Krüger’s dual greedy system for ex-
treme points of abstract convex geometries (see also [10]). These frameworks can be
understood as a common generalization of the dual greedy algorithm for a submodular
polyhedron [23] and the Monge algorithm for the assignment problem with Monge cost
matrices [15].

On the other hand, Frank [7] considered a similar dual greedy algorithm for a class of
lattice polyhedra [16]. Frank’s dual greedy algorithm can be understood as an extension
of the two-phase greedy algorithm for the minimum spanning arborescence problem by
Fulkerson [11].

A common feature of these dual greedy algorithms is to construct a dual optimal
solution λ : A → R by the following simple greedy procedure using some oracle Φ :
2V → 2A:

Set n = #V , X ← V , λ(A)← 0 (A ∈ A).
For each i = 1, . . . , n, repeat the following process:

Take Ai ∈ Φ(X) and ei ∈ Argmin{w(e) | e ∈ Ai}.
Set λ(Ai)← w(ei), X ← X \ {ei} and w(e)← w(e) − λ(Ai) for e ∈ Ai.

The main purpose of this paper is to understand these dual greedy systems in a
geometric way. Our guiding principle is the following fundamental fact.

Solving this dual linear program D(A,f,w) is equivalent to finding a normal
cone of the primal feasible polyhedron which contains a given cost vector w.

This is a membership problem of the normal fan of a polyhedron. Motivated by this
observation, we introduce a special class of simplicial fans whose membership problem
can be greedily solved. We call such a simplicial fan a greedy fan. Our approach is
closely related to theory of regular triangulations [13, Chapter 7]. From this view point,
we shed a new light on these dual greedy systems and submodularity conditions.

This paper is organized as follows. In Section 2, we introduce the concept of greedy
fans and investigate its properties. In Subsection 2.2, we try to construct a polyhedron
whose normal fan coincides with a given greedy fan ∆. This problem is closely related
to the regularity of simplicial subdivision ∆, where ∆ is regular if there exists some
polyhedron whose normal fan coincides with ∆. We define ∆-submodular inequalities
and show that a function f satisfies ∆-submodular inequalities strictly if and only if
the normal fan of its associated polyhedron P (f) coincides with ∆. Consequently, linear
programs over this polyhedron P (f) can be greedily solved. In Subsection 2.3, we discuss
algebraic meaning of ∆-submodularity inequalities with connection to toric ideals and
Gröbner bases. This argument throws a new perspective to the submodularity. In
Subsection 2.4, we give a nontrivial characterization of greedy fans, using a certain
multiple-choice function, which is a natural extension of choice functions [24].

In Section 3, we introduce and investigate a well-behaved special class of greedy
fans, called acyclic greedy fans, which can be represented by some posets. We show that
every acyclic greedy fan is reverse lexicographic triangulation and therefore is regular
(Theorem 3.5). This argument clarifies a geometric structure of dual greedy polyhedra
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(Figure 4). Furthermore we give a remarkable structure theorem that the set of all
acyclic greedy fans on a fixed set of vertices forms a certain kind of a polyhedral fan
(Theorem 3.12), which is an analogue of the secondary fan of regular triangulations [13,
Chapter 7]. We call this polyhedral fan the secondary greedy fan. Furthermore, we see
that if this secondary greedy fan is regular, it coincides with the normal fan of the base
polyhedron associated with some (ordinary) submodular function (Corollary 3.15). In
Subsections 3.2, 3.3, and 3.4, we investigate special classes of acyclic greedy fans. In
particular, we establish the relationship between our approach and dual greedy systems
by Kashiwabara and Okamoto [19] and by Frank [7], and give another systematic proof
of the validity of their greedy algorithms.

It should be noted that a similar approach is given in Sohoni’s Ph.D. thesis “shapes
of polyhedra in combinatorial optimization” [29], where Sohoni considered a certain kind
of the normal fan of polyhedra, called shape, in a more general setting. We emphasize
that we are interested in the interplay between the structure of normal fans and the dual
greediness of algorithms.

2 Greedy Fans

In this section, motivated by dual greedy algorithms, we introduce the concept of a greedy
fan. We need some basic notation. Let V be a (nonempty) finite set with #V = n. R
and R+ denote the set of real numbers and of nonnegative real numbers, respectively.
Similarly, let Z and Z+ denote the set of integer numbers and of nonnegative integer
numbers, respectively For a function f : A → R on a set A, the support suppf is
defined by {A ∈ A | f(A) 6= 0}. For a subset A ⊆ V , the characteristic vector χA ∈ RV

is defined as

χA(e) =

{

1 if e ∈ A,

0 otherwise,
(e ∈ V ). (2.1)

For a set of vectors V ⊆ RV , the conical hull coneV of V is defined by

coneV = {
m
∑

i=1

λivi | v1, v2, . . . , vm ∈ V, λ1, λ2, . . . , λm ∈ R+}. (2.2)

We need to recall the basic definitions of polyhedral geometry; see [36] for details. A set
of polyhedral cones ∆ is said to be a polyhedral fan if every face of every P ∈ ∆ is in ∆,
and the intersection of each two members P,Q ∈ ∆ is the common face of P and Q. We
denote by |∆| the union of all members of ∆. ∆ is also called a polyhedral subdivision
of |∆|. If every member of ∆ is a simplicial cone, we call ∆ a simplicial subdivision or
a triangulation. For a polyhedron P ⊆ Rn and a point x ∈ P , the normal cone of P at
x is defined to be the set of vector {w ∈ Rn | x ∈ Argmaxy∈P 〈w, y〉}, where 〈·, ·〉 is the
standard inner product of Rn. The normal fan of P is the collection of normal cones of
P . A simplicial subdivision ∆ is said to be regular if there exists a polyhedron P such
that the normal fan of P coincides with ∆. For two polyhedral subdivisions ∆ and ∆ ′,
∆ is said to be a coarsening of ∆′ if for each member C ∈ ∆, {C ′ ∈ ∆′ | C ′ ⊆ C} is a
polyhedral subdivision of C.

2.1 Greedy Fans and Dual Greedy Algorithms

We consider a simplicial subdivision ∆ of RV
+ with the following additional property,

where we call a 1-dimensional cone a vertex.

Each vertex of ∆ can be expressed by R+χA for some nonempty set A ⊆ V .
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Let A = A∆ ⊆ 2V be a nonempty family defined as

A = {A ⊆ V | R+χA is a vertex of ∆ }.

In particular, ∆ can be regarded as an abstract simplicial complex on the vertex set A,
which is denoted by ∆̂ ⊆ 2A. We shall often identify ∆ with ∆̂. For a nonempty subset
X ⊆ V , we define the restriction ∆X by {C ∈ ∆ | C ⊆ RX

+}. Note that ∆X is a simplicial
subdivision of RX

+ .
We define greedy fans recursively. If #V = 1, the trivial simplicial subdivision of

RV
+ is defined to be greedy. Now we suppose that we have already defined the set of

all greedy fans of RU
+ with #U < #V . A simplicial subdivision ∆ of RV

+ is said to be
greedy if there exists a nonempty subset A ⊆ V such that

(G1) every maximal cone of ∆ contains R+χA as a vertex and

(G2) for any e ∈ A, a restriction ∆V \{e} is a greedy fan of R
V \{e}
+ .

We call a vertex satisfying (G1) and (G2) of a greedy fan ∆ a center vertex. We consider
the following membership problem:

Given a nonnegative vector w, find C ∈ ∆ with w ∈ C.

In fact, this membership problem can be solved in a greedy way as follows.

Theorem 2.1. For a greedy fan ∆ and a nonnegative vector w, consider the following
process:

Set X ← V and w′ ← w.
For each i = 1, . . . , n, repeat the following process:

Take a center vertex Ai of ∆X and ei ∈ Argmin{w′(e) | e ∈ Ai}.
Set λi = w′(ei), w′ ← w′ − λiχAi

and X ← X \ {ei}.

Then we have w =
∑n

i=1 λiχAi
and w ∈ cone{χAi

}ni=1 ∈ ∆.

Proof. By construction, we have λAi
≥ 0 and w =

∑n
i=1 λAi

χAi
. Hence it suffices to show

cone{χAi
}ni=1 ∈ ∆. This immediately follows from the definition of a greedy fan.

Example 2.2. We draw greedy fans of dimension 2 and 3 in Figure 1, where each trian-
gulation is the intersection of a greedy fan and the hyperplane {x ∈ RV |

∑

e∈V x(e) =
1}, where we simply denote {1, 2} by 12. The center vertices for each 3-dimensional
example are given as follows: (a) 1, 2, 3, (b) 3, 12, (c) 12, (d) 123, (f) 123, (g) 123.

Every restriction of a greedy fan is greedy.

Lemma 2.3. For a greedy fan ∆ of RV
+ and a nonempty subset X ⊆ V , the restriction

∆X is greedy.

Proof. We use induction on #V . Suppose that this statement holds for any greedy fan
on V with #V < k. Now consider a greedy fan ∆ on V with #V = k. By definition,
there exists a center vertex A of ∆ such that ∆V \{e} is greedy for e ∈ A. By induction,
any subset U ⊆ V \ {e} is greedy. Hence it suffices to show that for any e′ ∈ V \ A

∆V \{e′} is greedy. Clearly A is also contained by every maximal cone of ∆V \{e′} as a
vertex. Since V \ {e, e′} ⊆ V \ {e}, ∆V \{e,e′} is greedy for e ∈ A. Hence A satisfies (G1)
and (G2) for ∆V \{e′}.

From this lemma, we have the following nonrecursive characterization of greedy fans.
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Figure 1: Greedy fans of dimension 2 (left) and dimension 3 (right)

Proposition 2.4. A simplicial subdivision ∆ of RV
+ is greedy if and only if for each

nonempty subset X ⊆ V there exists A ⊆ X such that every maximal cone of ∆X

contains A as a vertex.

We define a map Φ∆ : 2V → 2A as

Φ∆(X) = {A ⊆ V | A is a center vertex of ∆X} (X ⊆ V, X 6= ∅) (2.3)

and Φ∆(∅) = ∅ for convenience. Using this map Φ = Φ∆, the process in Theorem 2.1
can be rephrased as follows.

Procedure: Dual Greedy

Input: A vector w ∈ RV
+.

Output: λ ∈ RA
+ with w =

∑

A∈A λ(A)χA.

Initialization: w′ ← w, X ← V , λ(A)← 0 (∀A ∈ A).

step1: If X = ∅, then stop.

step2: Pick arbitrary A∗ ∈ Φ(X) and e∗ ∈ Argmin{w′(e) | e ∈ A∗}.

step3: Put λ(A∗)← w′(e∗) and w′ ← w′ − w′(e∗)χA∗ .

step4: Put X ← X \ {e∗} and go to step1.

It is convenient for subsequent arguments to consider the following variant of Dual Greedy.

Procedure: Dual Greedy*

Input: A vector w ∈ RV
+.

Output: λ ∈ RA
+ with w =

∑

A∈A λ(A)χA.

Initialization: w′ ← w, λ(A)← 0 (∀A ∈ A).

step1: If w′ = 0, then stop.

step2: Pick arbitrary A∗ ∈ Φ(suppw′).

step3: Put λ(A∗)← min(w′(e) | e ∈ A∗) and w′ ← w′ − λ(A∗)χA∗ .

step4: Go to step1.

For a greedy fan ∆, Dual Greedy and Dual Greedy* return the same output.
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2.2 ∆-Submodular Functions Associated with Greedy Fan ∆

Here, we try to construct a polyhedron whose normal fan coincides with a given greedy
fan ∆ with vertex set A ⊆ 2V \{∅}. In the argument of this subsection, the greediness of
∆ is not essential. By slight modification, we can apply subsequent arguments (except
Corollary 2.10) to any simplicial subdivision.

For a function f : A → R, we define a polyhedron P (f) as

P (f) = {x ∈ RV |
∑

e∈A

x(e) ≤ f(A) (A ∈ A)}. (2.4)

Note that P (f) is the feasible region of P(A,f,w) in (1.1). Let (∆̂)∗ ⊆ 2A be a family
defined as

(∆̂)∗ = {F ⊆ A | F 6∈ ∆̂, F ′ ⊂ F ⇒ F ′ ∈ ∆̂}. (2.5)

Namely, (∆̂)∗ is the set of minimal nonmembers of ∆̂. For F ∈ (∆̂)∗, let λF : A → Z+

be defined by the output of Dual Greedy for input vector w =
∑

A∈F χA, or equivalently,

λF is a nonnegative vector satisfying suppλF ∈ ∆̂ and
∑

A∈F χA =
∑

A∈A λF (A)χA.
Note that such λF is uniquely determined. We define ∆-submodularity inequalities as

∑

A∈F

f(A) ≥
∑

A∈A

λF (A)f(A) (F ∈ (∆̂)∗). (2.6)

Note that LHS of (2.6) depends only on abstract simplicial complex ∆̂ and RHS of (2.6)
depends on its geometric realization ∆. A function f : A → R is said to be ∆-submodular
if it satisfies ∆-submodularity inequalities (2.6). f is said to be strictly ∆-submodular if
it satisfies ∆-submodularity inequalities (2.6) with strict inequality.

Theorem 2.5. Suppose that there exists a strict ∆-submodular function. Then, f is
∆-submodular if and only if Dual Greedy produces an optimal dual solution of D(A,f,w)

for every nonnegative cost vector w.

Proof. The if part follows from the definition of ∆-submodularity inequalities (2.6). We
show the only-if part. We can take a strict ∆-submodular function g. Consider linear
program D(A,f,w) with a ∆-submodular function f and a cost vector w ∈ RV

+. Since
both P(A,f,w) and D(A,f,w) are feasible, D(A,f,w) has an optimal solution.

We take an optimal solution λ∗ of D(A,f,w) which minimizes the value
∑

A∈A λ∗(A)g(A).

We claim suppλ∗ ∈ ∆̂. If so, λ∗ must be the output of Dual Greedy. Suppose that
suppλ∗ 6∈ ∆̂. Then there exists F ∈ (∆̂)∗ such that F ⊆ suppλ∗. Let λ̃ be defined as

λ̃(A) =







λ∗(A)− µ if A ∈ F ,

λ∗(A) + µλF (A) if A ∈ suppλF ,

λ∗(A) otherwise,
(A ∈ A), (2.7)

where µ = min{λ∗(A) | A ∈ F} > 0. From
∑

A∈F χA =
∑

A∈A λF (A)χA, λ̃ is also feasi-
ble to D(A,f,w). Furthermore, by ∆-submodularity of f , the objective value of D(A,f,w)

for λ̃ is given by

∑

A∈A

λ̃(A)f(A) =
∑

A∈A

λ∗(A)f(A)− µ

(

∑

A∈F

f(A)−
∑

A∈A

λF (A)f(A)

)

≤
∑

A∈A

λ∗(A)f(A). (2.8)
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Hence λ̃ is also optimal to D(A,f,w). Similarly, we have

∑

A∈A

λ̃(A)g(A) =
∑

A∈A

λ∗(A)g(A) − µ

(

∑

A∈F

g(A) −
∑

A∈A

λF (A)g(A)

)

<
∑

A∈A

λ∗(A)g(A). (2.9)

This contradicts the definition of λ∗.

This is a standard proof technique in combinatorial optimization; see Remark 2.15
for further discussion. It follows from the proof of Theorem 2.5 that D(A,f,w) has the
unique optimum if and only if f is strict ∆-submodular. From this we have the following.

Corollary 2.6. A function f is a strict ∆-submodular if and only if the normal fan of
P (f) coincides with ∆. In particular, ∆ is regular if and only if there exists a strict
∆-submodular function.

Corollary 2.7. Suppose that ∆ is regular. If f is ∆-submodular, the normal fan of
P (f) is a coarsening of ∆.

A primal optimal solution can be obtained by the backward iteration as follows.

Proposition 2.8. Suppose that ∆ is regular and f : A → R is ∆-submodular. For a
nonnegative cost vector w ∈ RV

+, let {(Ai, ei)}
n
i=1 be the sequence of pairs (A∗, e∗) chosen

by step 2 of Dual Greedy for input vector w. Then, x∗ ∈ RV defined by

x∗(ei) = f(Ai)−
∑

k:k>i,ek∈Ai

x∗(ek) (i = 1, . . . , n) (2.10)

is optimal to P(A,f,w).

Proof. The following argument is essentially the same as the proof of [10, Theorem 2.1].
For any nonnegative vector w, we define a continuous piecewise linear function f̂ as

f̂(w) =
∑

A∈A

λw(A)f(A), (2.11)

where λw is the output of Dual Greedy for w. Note that f̂ is well-defined and coincides
with the interpolation of f with respect to ∆. By Theorem 2.5 and the duality theorem
of linear programming, f̂ coincides with the support function of P (f), which is convex.
Then x∗ ∈ RV defined by (2.10) coincides with the gradient vector of f̂ at cone{χAi

}ni=1 ∈
∆. Convexity of f̂ implies that

∑

e∈V x∗(e)w′(e) ≤ f̂(w′) for any w′ ∈ RV
+. In particular,

we have
∑

e∈V x∗(e)χA ≤ f̂(χA) = f(A) for A ∈ A. This implies that x∗ is feasible to
P(A,f,w). Furthermore, by construction, x∗ has the same objective value of D(A,f,w) at
λw. Hence x∗ is optimal to P(A,f,w).

Remark 2.9. If we use Dual Greedy*, we cannot directly obtain a primal optimal
solution.

Recall that a dual optimal solution can be taken as integral for any integral cost
vector by the construction of Dual Greedy.

Corollary 2.10. For a ∆-submodular function f of a regular greedy fan ∆ with vertex
set A, the system of linear inequalities

∑

e∈A x(e) ≤ f(A) (A ∈ A) is totally dual integral.
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Figure 2: A nonregular greedy fan

Unfortunately, not every greedy fan is regular.

Example 2.11. We give an example of a 4-dimensional nonregular greedy fan. Figure 2
illustrates (the boundary complex of) the hyperplane section of a 4-dimensional greedy
fan. A center vertex is given by 123. The set of strict submodularity inequalities for this
greedy fan contains

f(14) + f(2) > f(24) + f(1),

f(24) + f(3) > f(34) + f(2),

f(34) + f(1) > f(14) + f(3).

Summing these three inequalities leads to a contradiction. Hence, this greedy fan is
nonregular.

Remark 2.12. For a ∆-submodular function f with a regular greedy fan ∆, we have
f(A) = max{

∑

e∈A x(e) | x ∈ P (f)} for A ∈ A. In particular, f is polyhedral tight in the
sense of Narayanan [25].

Remark 2.13. For a simplicial subdivision ∆ with vertex set P ⊆ Rn, the secondary
cone for ∆ is defined by

{f : P → R | f̂ is convex }, (2.12)

where f̂ is a piecewise linear function interpolating f with respect to ∆. Sohoni [29] call
(2.12) the set of functions admitting for ∆. Usually, the defining inequalities (admittance
inequalities for ∆ in Sohoni’s sense) of this secondary cone are given by

det
(

a1 · · · an

)

det

(

a1 a2 · · · an b

f(a1) f(a2) · · · f(an) f(b)

)

≥ 0 (2.13)

for {a1, a2, . . . , an} ∈ ∆̂ and b ∈ P \{a1, a2, . . . , an}; see [29], [13, Chapter 7], [18, Lemma
14]. For a regular greedy fan ∆, the set of ∆-submodular function is the same as the
secondary cone for ∆ by Theorem 2.5. However, our defining set of inequalities (2.6) is
different to (2.13). In the case of a nonregular greedy fan, we do not know whether the
cone of ∆-submodular functions coincides with the secondary cone for ∆. In particular,
we do not know whether Theorem 2.5 holds without the regularity assumption.

2.3 Algebraic Meaning of ∆-Submodularity

In this subsection, we give an algebraic meaning of ∆-submodularity inequalities. Through-
out this subsection, we assume the regularity of greedy fan ∆. Similarly as in the pre-
vious subsection, greediness of ∆ is not essential. By slight modifications, we can apply
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the subsequent arguments to any simplicial subdivision each of whose members with
maximal dimension has unimodular integral vectors as vertices.

We use basic terminology of Gröbner bases and toric ideals; see [33] for details. Let
k be any field and k[u] = k[uA : A ∈ A] the polynomial ring in #A indeterminates. The

monomials in k[u] are denoted by uλ =
∏

A∈A u
λ(A)
A for λ ∈ ZA

+. Every vector λ ∈ ZA

can be written uniquely as λ = λ+ − λ−, where λ+ and λ− are nonnegative and have
disjoint support. Consider the toric ideal

IA = 〈uλ+
− uλ−

: λ ∈ ZA,
∑

A∈A

χAλ(A) = 0〉 (2.14)

of the vectors {χA | A ∈ A}. We can take a sufficiently generic, positive, strict ∆-
submodular function f . Then, f induces a term order <f of the monomials in k[u]
as

uλ <f uµ def
⇐⇒

∑

A∈A

f(A)λ(A) <
∑

A∈A

f(A)µ(A) (λ, µ ∈ ZA
+). (2.15)

For any non-zero polynomial p ∈ k[u], we define the initial monomial in<f
p by the

maximum monomial in p with respect to <f . The initial ideal in<f
IA is defined by

〈in<f
p : p ∈ IA〉. A finite subset of polynomials G ⊆ IA is called a Gröbner base for

IA with respect to <f if in<f
IA is generated by {in<f

(g) | g ∈ G}. Gröbner base G is
said to be reduced if, for any two distinct elements g, g ′ ∈ G, no term of g′ is divisible by
in<f

(g). Then the following holds.

Theorem 2.14. For a regular greedy fan ∆, the set of polynomials

G =
{

uχF − uλF

∣

∣

∣
F ∈ (∆̂)∗

}

(2.16)

is the reduced Gröbner base for IA with respect to <f for a generic positive strict ∆-
submodular function f .

Proof. Since λF is a nonnegative integral vector, uλF is well-defined. From
∑

A∈F χA =
∑

A∈A λF (A)χA, we have G ⊆ IA and 〈in<f
G〉 ⊆ in<f

IA. Suppose that this inclusion is

strict. Then there exists uλ̃ − uµ̃ ∈ IA such that
∑

A∈A λ̃(A)f(A) >
∑

A∈A µ̃(A)f(A)

and uλ̃ 6∈ 〈in<f
G〉. The latter implies supp λ̃ ∈ ∆̂. This implies that λ̃ is optimal to

the linear program D(A,f,w) for w =
∑

A∈A χAλ̃(A) =
∑

A∈A χAµ̃(A). This contradicts
∑

A∈A λ̃(A)f(A) >
∑

A∈A µ̃(A)f(A). Hence (2.16) is a Gröbner base. By construction,
(2.16) is reduced.

Remark 2.15. The proof of Theorem 2.5 is based on a standard technique to show
TDI-ness of linear inequality systems related to submodular functions; see [28, Chapter
60] for example. We point out that the updating λ∗ to λ̂ in (2.7) corresponds to the
division of uλ by the Gröbner base uχF − uλF . In addition, the totally dual integrality
of the dual greedy system (Corollary 2.10) corresponds to the square-freeness of the
Gröbner base (2.16); see [17] for the relationship between totally dual integrality and
square-free Gröbner base.

Example 2.16 (The barycentric subdivision). Consider the following simplicial
subdivision

∆ = {cone{χA1 , χA2 , . . . , χAm} | ∅ 6= A1 ⊂ A2 ⊂ · · · ⊂ Am ⊆ V }. (2.17)
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Figure 3: Barycentric subdivisions of 2-simplex(left) and 3-simplex(right)

Then ∆ is the barycentric subdivision of simplex; see Figure 3. We can easily verify that

A = 2V \ {∅}, (2.18)

Φ∆(X) = {X} (X ⊆ V ), (2.19)

∆̂ = {{A1, A2, . . . , Am} | ∅ 6= A1 ⊂ A2 ⊂ · · · ⊂ Am ⊆ V }, (2.20)

∆̂∗ = {{A,B} | A 6⊆ B,B 6⊆ A}. (2.21)

By χA + χB = χA∪B + χA∩B , ∆-submodularity inequalities are given as

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) ({A,B} ∈ (∆̂)∗ : A ∩B 6= ∅),

f(A) + f(B) ≥ f(A ∪B) ({A,B} ∈ (∆̂)∗ : A ∩B = ∅).
(2.22)

(2.22) coincides with ordinary submodularity inequalities by putting f(∅) = 0 and P (f)
coincides with a submodular polyhedron [9]. In particular, ∆ is regular greedy; see
Example 3.26. Dual Greedy using this Φ coincides with the dual greedy algorithm for a
submodular polyhedron [23],[9]. The corresponding Gröbner base is given as

uAuB − uA∪BuA∩B ({A,B} ∈ (∆̂)∗ : A ∩B 6= ∅),

uAuB − uA∪B ({A,B} ∈ (∆̂)∗ : A ∩B = ∅).
(2.23)

2.4 Greedy Multiple-Choice Functions

In this subsection, we discuss properties of the map Φ∆, defined by (2.3), associated with

greedy fan ∆ and try to define greedy fans by means of a certain map Φ : 2V → 22V
.

Our main purpose here is to derive conditions of Φ which determine a greedy fan. First,
we see that Φ∆ has the following properties.

Proposition 2.17. For a greedy fan ∆ with vertex set A, the map Φ = Φ∆ : 2V → 2A

has the following properties.

(C1) for a nonempty X ⊆ V , Φ(X) is nonempty and ∅ 6∈ Φ(X).

(C2) for X ⊆ V and A ∈ Φ(X), we have A ⊆ X.

(M1) for X,Y ⊆ V and A ∈ Φ(X), if A ⊆ Y ⊆ X, then we have A ∈ Φ(Y ).

(M2) for X ⊆ V and A,B ∈ Φ(X), we have A = B or A ∩B = ∅.

Proof. (C1) and (C2) follow from the definition of Φ. (M1) follows from the observation
that if A is a center vertex of the greedy fan ∆X , A is also a center of ∆Y for A ⊆
Y ⊆ X. We show (M2). Suppose that A and B have nonempty intersection. Consider
Dual Greedy for the greedy fan ∆X and input vector χA∪B. Then the solution is not
unique. This is a contradiction.
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If a function Φ : 2V → 22V
satisfies (C1) and (C2), we call Φ : 2V → 22V

a

multiple-choice function. Given a multiple-choice function Φ : 2V → 22V
, we can ap-

ply Dual Greedy for any nonnegative input vector. However, the output λ depends
on the choices of A∗ and e∗ in step 2. Next we discuss the uniqueness of outputs of
Dual Greedy for general multiple-choice functions. For a multiple-choice function Φ and
an input vector w ∈ RV

+, a sequence {(Ai, ei)}
n
i=1 ⊆ 2V × V is said to be feasible to w if

Ai = A∗ and ei = e∗ can be chosen in step 2 of the ith iteration step for input vector
w. Then we see the following.

Lemma 2.18. If a sequence {(Ai, ei)}
n
i=1 is feasible to some input vector, then it is also

feasible to any vector in cone{χAi
}ni=1.

Let ∆Φ be a set of simplicial cones defined as

∆Φ = {cone{χA}A∈supp λ | λ is an output for some w ∈ RV
+}. (2.24)

Lemma 2.18 above implies that any face of any member of ∆Φ is also contained by
∆Φ. Hence, if the output λ is uniquely determined for any w ∈ RV

+, ∆Φ forms a
simplicial subdivision of RV

+. In fact, the conditions (M1) and (M2) are sufficient for
this uniqueness as follows.

Proposition 2.19. If a multiple-choice function Φ : 2V → 22V
satisfies the conditions

(M1) and (M2), for any nonnegative input vector w, the solution of Dual Greedy is
determined independently of the choices A∗ and e∗ in step 1.

Proof. We use induction on the number of the nonzero support of nonnegative input
vectors. For any w ∈ RV

+ with # suppw ≤ 1, the statement clearly holds. Consider
a nonnegative input vector w with # suppw > 1. Let {(Ai, ei)}

n
i=1 and {(Bi, di)}

n
i=1

be two feasible sequences to w. Let λ and µ be outputs for w using feasible sequences
{Ai, ei}

n
i=1 and {Bi, di}

n
i=1, respectively. We define Xi and Yi as

X1 = Y1 = V, Xi+1 = Xi \ {ei}, Yi+1 = Yi \ {di} (2.25)

for i = 1, . . . , n. We show λ = µ. Let i be the smallest number satisfying λ(Ai) > 0.
Similarly, let j be the smallest number satisfying µ(Bj) > 0. Then we have Ai ⊆
suppw ⊆ Xi and Bj ⊆ suppw ⊆ Yj. By (M1), we have Ai, Bj ∈ Φ(suppw). Hence, it
follows from (M2) that Ai = Bj or Ai∩Bj = ∅. If Ai = Bj , then we have λ(Ai) = µ(Bj).
If Ai ∩Bj = ∅, then we have Ai ⊆ suppw \ {dj} ⊆ Xi and Bj+1 ⊆ suppw \ {dj} ⊆ Yj+1.
Similarly we have Ai = Bj+1 or Ai ∩ Bj+1 = ∅. Repeating this process, there exists
some number k such that Ai = Bj+k or Ai = suppw \ {dj , dj+1, . . . dj+k−1}. In the
latter case, we have Bj+k ∈ Φ(Ai). Hence Bj+k = Ai holds by Lemma 2.20 below.
Since Ai ∩ Bj+1 = Ai ∩ Bj+2 = · · · = Ai ∩ Bj+k−1 = ∅, we have λ(Ai) = µ(Bj+k).
We define a modified input vector w′ = w − λ(Ai)χAi

= w − µ(Bj+k)χBj+k
. Then

we have # suppw′ < #suppw. Two sequences {(Ai, ei)}
n
i=1 and {(Bi, di)}

n
i=1 are also

feasible to the modified input vector w′ by Lemma 2.18. Let λ′ and µ′ be two outputs of
Dual Greedy for input vector w′ using feasible sequences {(Ai, ei)}

n
i=1 and {(Bi, di)}

n
i=1,

respectively. Then we have

λ′(A) =

{

0 if A = Ai = Bj+k

λ(A) otherwise
, µ′(A) =

{

0 if A = Ai = Bj+k

µ(A) otherwise

for A ⊆ V . By induction, we have λ′ = µ′. This implies λ = µ.
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For a function Φ : 2V → 22V
, we define the image ImΦ ⊆ 2V as

ImΦ = {A ⊆ V | ∃ nonempty X ⊆ V, A ∈ Φ(X)}. (2.26)

Lemma 2.20. Let Φ be a multiple-choice function Φ satisfying (M1) and (M2). For
A ∈ ImΦ, we have {A} = Φ(A).

Proof. If A ∈ ImΦ, then there exists X ⊆ V such that A ∈ Φ(X) and A ⊆ X by (C2).
By (M1), we have A ∈ Φ(A). By (C1) and (M2), we have {A} = Φ(A).

A multiple-choice function is said to be greedy if it satisfies (M1) and (M2). Hence,
we obtain a greedy fan by a greedy multiple-choice function as follows.

Theorem 2.21. For a greedy multiple-choice function Φ : 2V → 22V
, ∆Φ is a greedy

fan of RV
+ with vertex set ImΦ and satisfies

Φ(X) ⊆ { center vertices of ∆X
Φ } (X ⊆ V ). (2.27)

Conversely, every greedy fan ∆ can be represented as ∆ = ∆Φ for some greedy multiple-
choice function Φ.

Proof. Indeed, ∆Φ is a simplicial subdivision of RV by Proposition 2.19. We show
the greediness and (2.27). It suffices to show that for any X ⊆ V , A ∈ Φ(X), and
w ∈ RV

+ with suppw = X, the output λ of Dual Greedy for w satisfies λ(A) > 0. Let
{(Ai, ei)}

n
i=1 be a feasible sequence to w and {Xi}

n
i=1 a sequence defined by (2.25). If

A1 6⊆ X, then λ(A1) = 0 and A ⊆ X ⊆ X2. If A1 ⊆ X, then we have A1 ∈ Φ(X)
by (M1), and A1 = A or A1 ∩ A = ∅ by (M2). If A1 = A, then λ(A1) = λ(A) > 0 as
desired. If A1 ∩ A = ∅, then for each e ∈ A, w′(e) is invariant in step 3 and we have
A ⊆ X2. Repeating this process, we have A = Ak or A = Xk for some k. In the latter
case, we have A = Ak by Lemma 2.20. Since w′(e) is invariant for each e ∈ A in this
process, we obtain λ(A) = λ(Ak) > 0 as desired. Final part of this theorem follows from
Proposition 2.17.

Corollary 2.22. For a greedy multiple-choice function Φ, Dual Greedy and Dual Greedy*

return the same output.

The proof of Proposition 2.19 gives the following useful criterion to test whether two
greedy multiple-choice functions produce the same greedy fan.

Proposition 2.23. For two greedy multiple-choice functions Φ1,Φ2 : 2V → 22V
, the

following two statements are equivalent.

(1) ∆Φ1 = ∆Φ2 .

(2) for any X ⊆ V , A ∈ Φ1(X), and B ∈ Φ2(X), we have A = B or A ∩B = ∅.

Remark 2.24. A multiple-choice function Φ with #Φ(X) = 1 for X ⊆ V can be
regarded as a choice function; a choice function is a function φ : 2V → 2V satisfying
φ(X) 6= ∅ if X 6= ∅ and φ(X) ⊆ X for X ⊆ V . See [24] for choice functions and also see
[10] for the relationship to dual greedy algorithms.

3 Acyclic Greedy Fans

In this section, we investigate a certain class of greedy fans which can be represented
by some posets. This approach is motivated by the dual greedy system by Frank [7]. In
Subsection 3.1, we introduce acyclic greedy fans and investigate their geometric prop-
erties. In the subsequent subsections, we study some special cases of acyclic greedy
fans.
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3.1 Acyclic Greedy Fans

Here, we introduce a special class of greedy fans, named acyclic greedy fans, and study
its geometric properties. Our main purpose here is to show the following:

• Acyclic greedy fans are regular and obtained by successive stellar subdivisions (The-
orem 3.5).

• The set of all acyclic greedy fans on a fixed set of vertices forms a kind of a
polyhedral fan, named the secondary greedy fan (Theorem 3.12).

Throughout this subsection, we assume that A is a subset of 2V \ {∅}. A pair A,B ⊆ V

is said to be intersecting if it satisfies A ∩ B 6= ∅, A 6⊆ B, and B 6⊆ A. Let P = (A,≤)
be a poset on A. We define a function ΦP : 2V → 2A associated with P as

ΦP(X) = {A ∈ A | A ⊆ X,B > A⇒ B 6⊆ X (B ∈ A)} (X ⊆ V ), (3.1)

that is, ΦP(X) is the set of maximal members of A contained in X. Such a function
ΦP was used by Frank [7] in his dual greedy algorithm. We easily see the following
properties of ΦP .

Lemma 3.1. Let P = (A,≤) be a poset on A. Then we have the following.

(1) ΦP is a multiple-choice function if and only if {e} ∈ A for e ∈ V .

(2) ΦP satisfies (M1).

(3) ImΦP = A if and only if A 6> B for each pair of A,B ∈ A with A ⊆ B.

(4) ΦP satisfies (M2) if and only if for each pair of A,B ∈ A having nonempty in-
tersection, there exists C ∈ A with C ⊆ A ∪ B such that A < C or B < C (or
both).

A poset P = (A,≤) is said to be greedy if ΦP is a greedy multiple-choice function
and satisfies ImΦP = A (or ImΦP = A\{∅} in the case {∅} ∈ A). Hence, from a greedy
poset P, we obtain a greedy fan, which is denoted by ∆P . A greedy fan ∆ is said to be
acyclic if there exists a greedy poset P such that ∆ = ∆P .

For two posets P1 = (A,≤1) and P2 = (A,≤2), P2 is a refinement of P1 if it satisfies

A ≤1 B ⇒ A ≤2 B (A,B ∈ A). (3.2)

A greedy poset (A,≤) is a refinement of poset (A,⊆) as follows.

Lemma 3.2. Let P = (A,≤) be a greedy poset. For any A,B ∈ A, if A ⊆ B, then
A ≤ B.

Proof. ImΦP = A and Lemma 2.20 imply {B} = ΦP(B). Suppose A 6≤ B. Then A and
B are incomparable by Lemma 3.1 (3). Then there exists C ∈ A such that C 6= B and
C ∈ ΦP(B). This is a contradiction.

Furthermore, from the condition of Proposition 2.23, we have the following.

Proposition 3.3. Let P is a greedy poset. Then, any refinement P ′ of P is greedy and
satisfies ∆P = ∆P ′.

Proof. It follows from ΦP ′(X) ⊆ ΦP(X) and Proposition 2.23.
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For a poset P = (A,≤), a linear extension (A,≤∗) of P is a totally ordered set which
refines P. Then we have the following.

Lemma 3.4. If A contains every singleton, then any linear extension of (A,⊆) is greedy.

Next, we give a geometric interpretation of this linear extension. For this, we in-
troduce stellar operations (or pulling operations) of simplicial fans; see [4], [22] for stel-
lar/pulling operations. For a simplicial fan ∆ and a point p ∈ |∆|, the stellar subdivision
stp∆ by p is obtained by the following process:

Set stp∆ = ∅.
For each member C ∈ ∆, repeat the following:

if p 6∈ C, then stp∆← stp∆ ∪ {C}.
if p ∈ C, then, for each face F of C not containing p,

stp∆← stp∆ ∪ {cone(p ∪ F )}.

Let ∆0 be a simplicial fan consisting of the nonnegative orthant and its faces. Then
the following theorem implies that acyclic greedy fans can be obtained by successive stel-
lar operations from the trivial subdivision ∆0 with respect to some order which refines ⊆.
This implies that every acyclic greedy fan is a reverse lexicographic triangulation; see
[22], [32], [33] for reverse lexicographic triangulations.

Theorem 3.5. Let P = (A,≤) be a greedy poset and ≤∗ an arbitrary linear extension
of ≤. Then we have

∆P = stχAm
◦ · · · ◦ stχA1

(∆0), (3.3)

where A = {A1, . . . , Am} and Am <∗ Am−1 <∗ · · · <∗ A1.

Proof. First, we note that for any simplicial subdivision ∆′ of RV
+ and any singleton

e ∈ V we have stχe(∆
′) = ∆′. We use induction on #A. Since A contains every

singleton, #A ≥ #V holds. If #A = #V , we have ∆P = ∆0. Since stχ{e}
(∆0) = ∆0

holds for every singleton e ∈ V , the statement is true. Suppose #A > #V . Then there
exists A = {e1, e2, . . . , ek} ∈ A with #A > 1 such that any element A′ ∈ A with A′ <∗ A

is a singleton. Consider the greedy poset (A \ {A},≤∗) and its associated greedy fan
∆(A\{A},≤∗). By induction, it suffices to show

∆(A,≤∗) = stχA
(∆(A\{A},≤∗)). (3.4)

By Dual Greedy* for ∆(A\{A},≤∗), the unique minimal member of ∆̂(A\{A},≤∗) containing
χA in the relative interior of its conical hull is {{e1}, {e2}, . . . , {ek}}. Hence the element
F of ∆̂(A\{A},≤∗) containing χA in its conical hull is given by

{Ai1 , Ai2 , . . . , Aih , {e1}, {e2}, . . . , {ek}} (3.5)

for some Ai1 , Ai2 , . . . , Aih ∈ A \ {A}. Then we show that both sides of (3.4) contain

{A} ∪ F \ {{ej}} (1 ≤ j ≤ k). (3.6)

Indeed, LHS of (3.4) contains (3.6) by the definition of the stellar operation. Similarly, we
can show by Dual Greedy* that RHS of (3.4) also contains (3.6); consider Dual Greedy*

for ∆(A,≤∗) and a cost vector w = χAi1
+ · · ·+χAih

+b1χe1 + · · ·+bkχek
for b1, . . . , bk > 0.

Finally, we verify that any F ′ ∈ ∆(A\{A},≤∗) not containing χA is contained in both sides
of (3.4). This is also immediate from Dual Greedy* and the definition of the stellar
subdivision.
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Figure 4: stellar subdivisions (down) and their dual (up)

∆0 is the normal fan of the nonpositive orthant. In particular, ∆0 is regular. Recall
that a stellar subdivision corresponds to cutting a corner of the dual polyhedron [4]. This
implies that a polyhedron whose normal fan is acyclic greedy is obtained by successive
cutting corners of nonpositive orthant according to a certain order; see Figure 4. This
gives a construction of dual greedy polyhedra. Thus, we have the following.

Corollary 3.6. Acyclic greedy fans are regular.

Hence, we can apply arguments in Subsection 2.2 and 2.3 to acyclic greedy fans.

Remark 3.7. Regularity of acyclic greedy fan ∆ can be shown by the existence of
a strict ∆-submodular function. Indeed, for a greedy poset (A,≤), consider a linear
extension ≤∗ ordering A = {A1, A2, . . . , Am} as

Am <∗ Am−1 <∗ · · · <∗ A1, (3.7)

and define f : A → R as
f(Ai) = −εi (Ai ∈ A), (3.8)

where ε ∈ R+ is a sufficiently small positive real. Then f satisfies ∆-submodularity
inequalities strictly. In particular, the corresponding term order of the polynomial ring
k[uA : A ∈ A] coincides with the reverse lexicographic term order with respect to <∗,
where the degree of each indeterminate uA (A ∈ A) is defined by #A (see [32], [33]).

Problem 3.8. We have

{ acyclic greedy fans } ⊆ { regular greedy fans }. (3.9)

Is the inclusion strict?

Next, we show that for fixed A, the set of all acyclic greedy fans forms a kind of
polyhedral fan. For two posets P1 = (A,≤1) and P2 = (A,≤2) with a common ground
set A, we define meet P1 ∧ P2 = (A,≤1∧2) as

A ≤1∧2 B
def
⇐⇒ A ≤1 B and A ≤2 B (A,B ∈ A). (3.10)

The next proposition shows that if two greedy posets define the same greedy fan, then
their meet is also greedy and defines the same one.
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Figure 5: H(A) for A = {12, 23, 31, 1, 2, 3} and corresponding acyclic greedy fans

Proposition 3.9. Let P1 = (A,≤1) and P2 = (A,≤2) be greedy posets on A. If ∆P1 =
∆P2 , P1 ∧ P2 is greedy and satisfies ∆P1∧P2 = ∆P1 = ∆P2 .

Proof. From the definitions of ΦP and the meet P1 ∧ P2, we see

ΦP1∧P2(X) ⊇ ΦP1(X) ∪ ΦP2(X) (X ⊆ V ). (3.11)

By Proposition 2.23, it suffices to show that ΦP1∧P2 satisfies (M2). Suppose that there
exist distinct A,B ∈ ΦP1∧P2(X) such that A ∩ B is nonempty. Then we have A,B ∈
ΦP1∧P2(A ∪B) by (M1) and Lemma 3.1 (2). Then A or B is not contained by ΦP1(A∪
B) ∪ ΦP2(A ∪ B). We assume A 6∈ ΦP1(A ∪ B) ∪ ΦP2(A ∪ B). Then there exists
C ∈ ΦP1(A ∪B) such that C ≥1 A. We claim that A and C are disjoint. Suppose that
A and C intersect. By (M1) we have C ∈ ΦP1(A ∪ C). We show A 6∈ ΦP2(A ∪ C) and
C 6≥2 A. The former follows from ∆P1 = ∆P2 and Proposition 2.23. The latter follows
from C 6≥1∧2 A. Hence there exists D ∈ ΦP2(A∪C) such that D ≥2 A and D 6= C. Then
D ∩ C = ∅ and hence D ⊂ A (strict inclusion). By Lemma 3.2, we have D <2 A, which
contradicts D ∈ ΦP2(A ∪ C). Hence we have A ∩ C = ∅ and C ⊂ B (strict inclusion).
By Lemma 3.2, we have C <1 B. This contradicts C ∈ ΦP1(A ∪B).

From this proposition, we have the following.

Theorem 3.10. For a family A which contains every singleton, there exists a set of
greedy posets H(A) satisfying the following properties.

(1) for P1,P2 ∈ H(A), ∆P1 = ∆P1 if and only if P1 = P2.

(2) for any greedy poset P ′ on A, there uniquely exists P ∈ H(A) such that P ′ is a
refinement of P.

Example 3.11. Figure 5 illustrates H(A) for A = {12, 23, 31, 1, 2, 3}. H(A) consists of
three greedy posets.

For a poset (A,≤) we define an order cone C(A,≤) ⊆ RA as

C(A,≤) = {z ∈ RA | z(A) ≤ z(B) (A,B ∈ P, A ≤ B)}. (3.12)

The order cone is a conical version of the order polytope; see [31], [8, Section 3.3] for
order polytopes. The set of polyhedral cones consisting of order cones {CP | P ∈ H(A)}
and their faces is denoted by N (A). In fact, N (A) forms a polyhedral fan as follows.
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Theorem 3.12. For a family A which contains every singleton, N (A) is a polyhedral
subdivision of order cone C(A,⊆).

To prove this theorem, we use the following lemma, where we simply denote ∆(A,≤),
Φ(A,≤) and C(A,≤) by ∆≤, Φ≤, and C≤, respectively, and A l B means that A < B and
there is no element C such that A < C < B.

Lemma 3.13. Let (A,≤) be a greedy poset. Let A,B ∈ A be a pair satisfying A l B,
A 6⊆ B, and B 6⊆ A. For two linear extensions ≤1 and ≤2 of ≤ such that A l1 B and
A l2 B, consider the modified linear extensions ≤∗

1 and ≤∗
2 obtained by interchanging A

and B in ≤1 and ≤2, respectively. Then we have ∆≤∗
1

= ∆≤∗
2
.

Proof. We prove two claims given below.
(Claim 1). We have

Φ≤∗
1
(X) =

{

{A} if A ∪B ⊆ X and {B} = Φ≤1(X),
Φ≤1(X) otherwise,

(X ⊆ V ). (3.13)

Consider X ⊆ V with {B} = Φ≤1(X). Note that Φ≤∗
1
(X) = {A} or {B}. Suppose

A ∪ B 6⊆ X. Then A 6⊆ X implies Φ≤∗
1
(X) = {B} = Φ≤1(X). Suppose A ∪ B ⊆ X.

Then we have Φ≤∗
1
(X) = {A}. Hence we obtain (3.13).

(Claim 2). If A∪B ⊆ X and {B} = Φ≤1(X), for C with {C} = Φ≤2(X) we have B = C

or A ∩ C = B ∩ C = ∅.
Suppose B 6= C. Then B∩C = ∅ follows from Proposition 2.23. We show A∩C = ∅.

Suppose A ∩ C 6= ∅. Consider Φ≤(A ∪ C). If A ∈ Φ≤(A ∪ C), then A > C holds and
contradicts {C} = Φ≤2(X). Hence, there exists D ∈ Φ≤(A ∪ C) such that D 6= B and
A < D. By A l B, we have A <1 B <1 D. This contradicts {B} = Φ≤1(X).

From Claims 1 and 2 above, we can verify ∆≤∗
1

= ∆≤∗
2

by Proposition 2.23.

Proof of Theorem 3.12. The order cone C(A,≤) has the following properties [31] (see also
[8, Section 3.3]):

(1) C(A,≤) is triangulated by order cones of linear extensions

{C(A,≤∗) | ≤
∗ is a linear extension of ≤}. (3.14)

(2) Each facet defining inequality of C(A,≤) is given by z(A) ≤ z(B) for A,B ∈ A with
A l B.

Theorem 3.10 and (1) imply C(A,⊆) =
⋃

{CP | P ∈ H(A)} and that for each pair of
(A,≤1), (A,≤2) ∈ H(A), C≤1 and C≤2 have no common interior points. By the Gruber-
Ryshkov theorem [14], it suffices to show that if C≤1 ∩C≤2 has codimension one, i.e., C≤1

and C≤2 are adjacent, then C≤1 ∩ C≤2 is the common facet of C≤1 and C≤2 .
Suppose that C≤1 ∩ C≤2 has codimension one. By (2), there uniquely exists the pair

of A,B ∈ A with A l1 B and B l2 A such that the linear hull of C≤1 ∩ C≤2 is given by
HA,B := {z ∈ RA | z(A) = z(B)}. By (1) and (2), the corresponding facets of C≤1 and
C≤2 are given as

HA,B ∩ C≤1 = HA,B ∩
⋃

{C≤∗
1
| ≤∗

1 is a linear extension of ≤1 with A l
∗
1 B},

HA,B ∩ C≤2 = HA,B ∩
⋃

{C≤∗
2
| ≤∗

2 is a linear extension of ≤2 with B l
∗
2 A}.

Take a sufficiently generic point z ∈ C≤1 ∩ C≤2 , then z is ordered as

z(A1) < z(A2) < . . . < z(Ak−1) < z(A) = z(B) < z(Ak+2) < . . . < z(Am).
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From this, we define two linear orders ≤∗
1 and ≤∗

2 as

A1 <∗
1 A2 <∗

1 . . . <∗
1 Ak−1 <∗

1 A <∗
1 B <∗

1 Ak+2 <∗
1 . . . <∗

1 Am,

A1 <∗
1 A2 <∗

2 . . . <∗
2 Ak−1 <∗

2 B <∗
2 A <∗

2 Ak+2 <∗
2 . . . <∗

2 Am.

Then ≤∗
1 and ≤∗

2 are linear extensions of ≤1 and ≤2, respectively. By Lemma 3.13,
for any linear extension ≤∗∗

1 of ≤1 with A l
∗∗
1 B, the modified linear extension ≤∗∗

2

obtained by interchanging A and B of ≤∗∗
1 is a linear extension of ≤2. This implies

HA,B ∩ C≤1 ⊆ HA,B ∩ C≤2 . Similarly, we have HA,B ∩ C≤2 ⊆ HA,B ∩ C≤1 . Hence
C≤1 ∩ C≤2 = HA,B ∩ C≤1 = HA,B ∩ C≤2 is the common facet of C≤1 and C≤2 .

We call this polyhedral fan N (A) the secondary greedy fan of A, which is an analogue
of the secondary fan [13]. So it is natural to ask the following question.

Problem 3.14. Dose there exist some polyhedron P ⊆ RA whose normal fan coincides
with N (A) ?

This problem is open. If such a polyhedron P exists, each edge vector of P is parallel
to χ{A} − χ{B} for some A,B ∈ A. A well-known characterization of base polyhedra
by edge directions [34], [12] implies that P is a base polyhedron associated with some
(ordinary) submodular function defined on the set of upper ideals of the poset (A,⊆)
(see [9]).

Corollary 3.15. If N (A) is regular, then it is the normal fan of the base polyhedron
with respect to some submodular function defined on the set of upper ideals of the poset
(A,⊆).

Remark 3.16. A set of posets on a common ground set whose associated set of order
cones forms a polyhedral subdivision is called a holometry, which was introduced by
Tomizawa [35] in 1983 as a combinatorial abstraction of normal fans of base polyhedra.
Therefore H(A) is a holometry. In other words, N (A) is a coarsening of a subfan of the
braid arrangement. It is shown in [30] that not every coarsening of the braid arrangement
is regular.

Example 3.17. We give an example of holometryH(A) for A = {12, 23, 34, 41, 1, 2, 3, 4}

and its realization of a base polyhedron. We consider the projection of N (A) into RÃ

for Ã = {12, 23, 34, 41} by deleting every singleton, and draw its dual polyhedron in
Figure 6. Note that this operation does not lose the original information of N (A).

We give a characterization of a member of H(A).

Proposition 3.18. Let P = (A,≤) be a greedy poset. Then the following conditions are
equivalent.

(1) P ∈ H(A).

(2) {linear extensions of P} = {linear extension P ∗ of (A,⊆) | ∆P∗ = ∆P}.

(3) Each pair A,B ∈ A with A l B satisfies A ∩B 6= ∅ and {B} = ΦP(A ∪B).

Proof. (1) ⇔ (2) follows from Theorem 3.10.
(2) ⇒ (3). For A,B ∈ A with A l B, A 6⊆ B, and B 6⊆ A, we choose some linear

extension ≤∗ of ≤ satisfying

· · · <∗ A <∗ B <∗ · · · . (3.15)
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Figure 6: Holometry H(A) and its representation of a base polyhedron

Then we have ∆≤ = ∆≤∗ by Proposition 3.3. Consider a linear order ≤∗∗ by interchang-
ing A and B of ≤∗ as

· · · <∗∗ B <∗∗ A <∗∗ · · · . (3.16)

By construction, ≤∗∗ is not a linear extension of ≤. Suppose that A and B are disjoint.
For any X ⊆ V with {B} = Φ≤∗(X), we have Φ≤∗∗(X) = {B} or {A}. Hence, Propo-
sition 2.23 implies ∆≤∗∗ = ∆≤∗ = ∆≤. This is a contradiction. Suppose that A and B

intersect and there exists C ∈ Φ≤(A∪B) with C 6= B. Then C and B are incomparable
or B < C. We can take the linear orders <∗ and <∗∗ above as

· · · <∗ A <∗ B <∗ · · · <∗ C <∗ · · · , (3.17)

· · · <∗∗ B <∗∗ A <∗∗ · · · <∗∗ C <∗∗ · · · . (3.18)

For any X ⊆ V with {B} = Φ≤∗(X), we have A 6⊆ X. Indeed, A ⊆ X implies C ⊆ X and
this contradicts {B} = Φ≤∗(X). Hence we have {B} = Φ≤∗∗(X). From Proposition 2.23,
we have ∆≤∗∗ = ∆≤∗ = ∆≤. This is a contradiction.

(3) ⇒ (2). Suppose that there exists a linear extension ≤∗ of ⊆ such that ∆≤ = ∆≤∗

and ≤∗ is not a linear extension of ≤. Then there exist a pair of A,B ∈ A such that
A l B and B <∗ A. By the assumption, we have A ∩ B 6= ∅ and {B} = Φ≤(A ∪ B).
Suppose {C} = Φ≤∗(A ∪ B). Proposition 2.23 implies that C = B or C ∩ B = ∅.
Furthermore, the nonemptiness of A∩B implies A 6= C, and therefore we have A <∗ C.
Hence, we have C ∩ B = ∅ and C ⊂ A (strict inclusion). However, C ⊂ A contradicts
A <∗ C (Lemma 3.2).

The condition (3) of Proposition 3.18 implies that each codimension 1 face of N (A)
is given by the hyperplane HA,B := {z ∈ RA | z(A) = z(B)} for some pair of A,B ∈ A
having nonempty intersection. Consider the intersection graph (A, E) of A with its
edge set E defined by {{A,B} | A,B ∈ A, A ∩ B 6= ∅}. Then the set of hyperplane
{HA,B | {A,B} ∈ E}, so-called the graphic arrangement of (A, E), subdivides the order
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cone C(A,⊆). This subdivision is denoted byN0(A). Then there exists a bijection between
the set of full dimensional members of N0(A) and the set of acyclic orientations of (A, E)
satisfying the following condition:

(∗) for each A,B ∈ A with A ⊂ B, the orientation of the edge {A,B} is A← B.

See [26, Section 2.4] for graphic arrangements. From the arguments above, we have the
following.

Corollary 3.19. N (A) is a coarsening of N0(A). In particular, the number of ele-
ments in H(A) is bounded by the number of acyclic orientations of (A, E) satisfying the
condition (∗) above.

For subsequent subsections, we need the following lemma. A poset (A,≤) has the
consecutive property if for A,B,C ∈ A with A < B < C we have A ∩ C ⊆ B.

Lemma 3.20. Let P = (A,≤) be a greedy poset. {A1, A2, . . . , Am} ∈ (∆̂P)∗ satisfies
the following conditions.

(1) There exists C ∈ A such that we have C ⊆
⋃m

i=1 Ai, C > Ai and Ai ∩ C 6= ∅ for
1 ≤ i ≤ m.

(2) If P has the consecutive property, {A1, A2, . . . , Am} is pairwise incomparable.

In particular, (∆̂P)∗ consists of minimal sets satisfying above conditions.

Proof. For {A1, A2, . . . , Am} ⊆ A, a vector
∑m

i=1 χAi
can be uniquely represented as

m
∑

i=1

χAi
=
∑

A∈A

λ(A)χA (3.19)

for nonnegative function λ ∈ ZV
+ satisfying suppλ ∈ ∆̂P . Then {A1, A2, . . . , Am} is not

a member of ∆̂P if and only if suppλ 6= {A1, A2, . . . , Am}.
We show (1). Suppose that {A1, A2, . . . , Am} ∈ (∆̂P)∗. Take C ∈ ΦP(A1∪A2∪ · · ·∪

Am). If C = Ak for some k, then we have λ(Ak) > 1 by Dual Greedy*. Subtracting
χAk

from both sides of (3.19), we see that {A1, . . . , Am} \ {Ak} is not a member of
∆P . This contradicts the minimality of (∆̂P)∗. Hence C 6= Ai holds for i ∈ {1, . . . ,m}.
Next we show C ∩ Ai 6= ∅ for i ∈ {1, . . . ,m}. If C ∩ Ak = ∅ for some k, then we have
C ∈ ΦP(

⋃

i6=k Ai) by (M1). Similarly, {A1, . . . , Am} \ {Ak} is not a member of ∆P .
This contradicts the minimality. Finally we show C > Ai for i ∈ {1, . . . ,m}. Suppose
that there exists k with C 6> Ak. Consider ΦP(C ∪ Ak). Then, by (M1), we have
C ∈ ΦP(C ∪ Ak). The nonemptiness of C ∩ Ak implies that Ak 6∈ ΦP(C ∪ Ak). By
C 6> Ak, there exists D ∈ ΦP(C ∪ Ak) such that D 6= C and D > Ak. Hence, by (M1)
we have D ∩ C 6= ∅. This implies D ⊂ Ak. This is a contradiction. Hence we have (1).

Next we show (2). Suppose that P has the consecutive property. If A1 > A2 holds,
then C > A1 > A2 implies C ∩A2 ⊆ A1. This implies C ⊆ A1 ∪A3 ∪A4 ∪ · · · ∪Am and
C ∈ ΦP(A1 ∪A3 ∪A4 ∪ · · · ∪Am). Hence {A1 ∪A3 ∪A4 ∪ · · · ∪Am} is not a member of
∆̂P . This contradicts the minimality of (∆̂P)∗.

It would be interesting to characterize the case where ∆̂P for a greedy poset P
coincides with the order complex of P. Recall that the order complex of P is the collection
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of chains of P. Then, ∆P is a geometric realization of the order complex of P. In this
case, ∆̂P and (∆̂P)∗ are given as

∆̂P = {{A1, A2, . . . , Am} ⊆ A | A1 < A2 < · · · < Am}, (3.20)

(∆̂P)∗ = {{A,B} ⊆ A | A and B are incomparable}. (3.21)

In particular, LHS of ∆P -submodularity inequalities consists of two terms.
Faigle and Kern [6] considered a general framework for dual greedy algorithms whose

resulting output corresponds to a chain of a poset. The following characterization can
be understood as an adaptation of [6, Theorem 6.1] to our approach.

Proposition 3.21. Let P be a greedy poset on A satisfying the following condition:

(1) #ΦP(X) = 1 for any nonempty X ⊆ V .

(2) P has the consecutive property.

Then ∆̂P coincides with the order complex of P.

Proof. We show (3.21). Since each element of (∆P)∗ is pairwise incomparable by (2)
and Lemma 3.20, it suffices to show that any incomparable pair {A,B} is not a member
of ∆̂. Consider ΦP(A ∪ B). If A ∈ ΦP(A ∪ B), then we have {A} ∈ ΦP(A ∪B) by (1).
Hence we obtain A > B. This is a contradiction. Therefore we have A,B 6∈ ΦP(A∪B).
By an argument similar to that in the proof of Lemma 3.20, we conclude that {A,B} is
not a member of ∆̂.

Remark 3.22. If P is a greedy poset satisfying the conditions (1) and (2) of Propo-
sition 3.21, then any feasible sequence {(Ai, ei)}

n
i=1 of Dual Greedy using ΦP has the

following property:

If ei ∈ Aj for j ≤ i, then ei ∈ Ak for k with j ≤ k ≤ i.

This property is called the consecutive 1’s property of a dual greedy basis matrix (χAi
|

1 ≤ i ≤ n) in [10]. In this case, we see in Subsection 3.3 that this greedy poset P
coincides with the poset of the set of extreme points of some convex geometry.

Remark 3.23. The converse direction of Proposition 3.21 is not true. Figure 7 illus-
trates an example of a nonconsecutive greedy poset P whose ∆̂P coincides with the order
complex of P. Note that 13 < 34 < 1234 violates the consecutive property.

3.2 Greedy Fans by Set Systems

Here, we discuss the case where (A,⊆) is a greedy poset, or equivalently, the associated
holometry H(A) is a singleton, i.e., H(A) = {(A,⊆)}. By Lemma 3.1, we obtain the
following simple characterization.

Proposition 3.24. (A,⊆) is greedy if and only if it satisfies the following two conditions:

(S0) for any e ∈ V , we have {e} ∈ A.

(S1) for any intersecting pair A,B ∈ A, we have A ∪B ∈ A.

The condition (S1) implies that Φ(A,⊆)(X) forms the unique maximal partition of

X, where “unique maximal” means that any partition Π ⊆ 2A of X is a refinement of
Φ(A,⊆)(X), that is, for any C ∈ Π there exists C ′ ∈ Φ(A,⊆)(X) such that C ⊆ C ′. Clearly
(A,⊆) has the consecutive property. As an easy consequence of Lemma 3.20, the set
of minimal nonmembers (∆̂(A,⊆))

∗ and ∆(A,⊆)-submodularity inequalities are explicitly
given as follows.
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Figure 7: A nonconsecutive greedy poset P whose ∆̂P coincides with the order complex
of P

Theorem 3.25. Let (A,⊆) be a greedy poset. The set of minimal nonmembers (∆̂(A,⊆))
∗

consists of
{{A,B} ⊆ A | A and B are intersecting} (3.22)

and

{F ⊆ A | F is a minimal pairwise disjoint set satisfying
⋃

A∈F A ∈ A}. (3.23)

∆(A,⊆)-submodularity inequalities are given by

f(A) + f(B) ≥ f(A ∪B) +
∑

C∈Φ(A,⊆)(A∩B)

f(C) (A,B ∈ A : intersecting) (3.24)

and
∑

A∈F

f(A) ≥ f(
⋃

A∈F

A) (F ⊆ A in (3.23)). (3.25)

Example 3.26. In the case of A = 2V \ {∅}, A clearly satisfies (S0),(S1). Then ∆(A,⊆)-
submodularity inequalities coincide with the ordinary submodularity inequalities

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (A,B ∈ A), (3.26)

where we put f(∅) = 0 for convenience; see Example 2.16.

In fact, f : A → R satisfying (3.24) and (3.25) in Theorem 3.25 can be extended
to an ordinary submodular function f̃ : 2V → R. In addition, the polyhedron P (f)
coincides with a submodular polyhedron P (f̃). This implies that ∆(A,⊆) is a coarsening
of the barycentric subdivision; see Example 2.16.

Proposition 3.27. Let (A,⊆) be a greedy poset and f : A → R a ∆(A,⊆)-submodular

function. Then a function f̃ : 2V → R defined as

f̃(X) =
∑

C∈Φ(A,⊆)(X)

f(C) (X ∈ 2V ) (3.27)

is an ordinary submodular function on 2V . In particular, we have P (f) = P (f̃).
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Proof. By definition, for X,Y ⊆ V , we have

f̃(X) + f̃(Y ) =
∑

C∈Φ(A,⊆)(X)

f(C) +
∑

D∈Φ(A,⊆)(Y )

f(D). (3.28)

Let C be a multiset which is the union (as a multiset) of Φ(A,⊆)(X) and Φ(A,⊆)(Y ). If
there exists an intersecting pair of C ′, C ′′ ∈ C, by (3.24) we have

(3.28) =
∑

C∈C

f(C) ≥
∑

C∈(C\{C′ ,C′′})∪{C′∪C′′}∪Φ(C′∩C′′)

f(C). (3.29)

Put C ← (C \{C ′, C ′′})∪{C ′∪C ′′}∪Φ(C ′∩C ′′). Repeat this process to C. After finitely
many steps, there is no intersecting pair in C. Then C is the union (as a multiset) of a
partition C1 of X ∩ Y and a partition C2 of X ∪ Y . By (3.25), we have

(3.28) ≥
∑

C∈C1

f(C) +
∑

D∈C2

f(D) ≥ f̃(X ∩ Y ) + f̃(X ∪ Y ). (3.30)

Remark 3.28. The construction f → f̃ of (3.27) can be understood as a variant of the
Dilworth truncation for submodular functions; see [28, Chapter 48].

3.3 Greedy Fans by Abstract Convex Geometries

In this subsection, we establish the relationship between our acyclic greedy fan ap-
proach and dual greedy systems on convex geometry considered by Kashiwabara and
Okamoto [19], and give another systematic proof of validity of their dual greedy algo-
rithm.

First, we introduce some basic definitions of theory of convex geometries; see [2] and
[20] for details. Let V be a finite set. A family L ⊆ 2V is said to be a convex geometry
if it satisfies

(CG1) ∅, V ∈ L,

(CG2) X,Y ∈ L ⇒ X ∩ Y ∈ L, and

(CG3) X ∈ L \ {V } ⇒ ∃e ∈ V \X,X ∪ {e} ∈ L.

From conditions (CG1) and (CG2), we can define the closure operator τ : 2V → L as

τ(X) =
⋂

{Y ∈ L | X ⊆ Y } (X ∈ 2V ). (3.31)

The extreme operator ex : L → 2V is defined as

ex(X) =
⋃

{e ∈ X | X \ {e} ∈ L} (X ∈ L). (3.32)

Then the following property is fundamental; see [2] and [20].

Lemma 3.29. τ ◦ ex(X) = X for X ∈ L and ex ◦τ(A) = A for A ∈ ex(L).

In particular, τ is a bijection between L and ex(L). Hence, we can define a poset
(ex(L),≤) as

A ≤ B
def
⇐⇒ τ(A) ⊆ τ(B) (A,B ∈ ex(L)). (3.33)

We give a characterization of the poset (ex(L),≤) in terms of greedy posets as follows,
which can be understood as a refinement of [10, Theorem 3.2].
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Proposition 3.30. Let P be a poset on A ⊆ 2V with {∅} ∈ A. Then P coincides with
(ex(L),≤) for some convex geometry L if and only if P is a greedy poset satisfying the
conditions (1) and (2) of Proposition 3.21.

For the proof of this, we need some lemmas.

Lemma 3.31 ([19, Lemma 2.2]). For A ∈ ex(L) and B ⊂ A, we have B ∈ ex(L) and
B < A.

From this lemma and (CG3), we see that ex(L) has every singleton of V . Further-
more, the multiple-choice function associated (ex(L),≤) is given as follows.

Lemma 3.32. Φ(ex(L),≤)(X) = {ex ◦τ(X)} (X ⊆ V ).

Proof. Take any A ∈ ex(L) with A ⊆ X. Then we have τ(A) ⊆ τ(X). From Lemma 3.29,
we have A = ex ◦τ(A) ≤ ex ◦τ(X) ⊆ X. This implies Φ(ex(L),≤)(X) = {ex ◦τ(X)}.

Lemma 3.33. (ex(L),≤) has the consecutive property.

Proof. Suppose that A,B,C ∈ L with B ⊆ C ⊆ A. We show that if e ∈ ex(A) ∩ ex(B),
then e ∈ ex(C). By e ∈ ex(B), we have e ∈ C. From this, we have (A \ e) ∩ C =
(A ∩ C) \ e = C \ e ∈ L. Hence we obtain e ∈ ex(C).

Proof of Proposition 3.30. The only-if part has done. Since ΦP can be regarded as a
choice function by Lemma 3.32, the if part follows from [10, Theorem 3.2] and the
consecutive 1’s property of ΦP (Remark 3.22).

In particular, for convex geometry L, (ex(L),≤) is greedy. Therefore, ∆(ex(L),≤) is an
acyclic greedy fan and Dual Greedy using Φ(ex(L),≤) coincides with the dual greedy algo-

rithm using ex ◦τ considered by Kashiwabara and Okamoto [19]. Since ∆̂(ex(L),≤) coin-

cides with the order complex of (ex(L),≤), the set of minimal nonmembers (∆̂(ex(L),≤))
∗

and ∆(ex(L),≤)-submodularity inequalities are given as follows.

Proposition 3.34. The set of all minimal nonmembers (∆̂(ex(L),≤))
∗ is given as

(∆̂(ex(L),≤))
∗ = {{A,B} | A,B ∈ ex(L), A and B are incomparable } (3.34)

and ∆(ex(L),≤)-submodularity inequalities are given by

f(A) + f(B) ≥ f(C1) + · · ·+ f(Ck) (A,B ∈ ex(L) : incomparable), (3.35)

where C1, C2, . . . Ck ∈ ex(L) are pairwise comparable and satisfy

χA + χB = χC1 + χC2 + · · ·+ χCk
. (3.36)

In particular, Dual Greedyworks for D(ex(L),f,w) if and only if f is ∆(ex(L),≤)-submodular.
In general, ∆(ex(L),≤)-submodularity inequalities are redundant. Kashiwabara and Okamoto [19]
gave a fewer number of inequalities which guarantee ∆(ex(L),≤)-submodularity as fol-
lows, where we define three binary operators A ∨ B := ex(τ(A) ∪ τ(B)), A u B :=
(A ∪B) ∩ ex(τ(A) ∩ τ(B)), and A �B := (A ∩B) \ A ∨B.

Theorem 3.35 ([19]). For a function f : ex(L)→ R, Dual Greedy using ex ◦τ solves
the linear program D(ex(L),f,w) for any nonnegative cost vector w if and only if f satisfies

f(A) + f(B) ≥ f(A ∨B) + f(A uB) + f(A � B) (3.37)

for A,B ∈ ex(L) satisfying χA +χB = χA∨B +χAuB +χA�B, where f(∅) = 0 is assumed.
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Note that we have A ∨ B,A u B,A � B ∈ ex(L) by Lemma 3.31. Furthermore
[19, Lemma 2.5] shows A ∨ B ≥ A u B ≥ A � B for A,B ∈ ex(L). Therefore, the
inequalities (3.37) are contained in (3.35). Here, we prove that a further fewer number
of inequalities guarantee submodularity as follows.

Theorem 3.36. f : ex(L)→ R is ∆(ex(L),≤)-submodular if and only if f satisfies (3.37)
for each pair A,B ∈ ex(L) satisfying

A = ex(X ∪ {i}), B = ex(X ∪ {j}) (3.38)

for some X ∈ L and i, j ∈ V \X with X ∪ {i}, X ∪ {j}, X ∪ {i, j} ∈ L.

Proof. For any function f : ex(L)→ R, consider the continuous piecewise linear function
f̂ defined by (2.11). Recall that f is ∆(ex(L),≤)-submodular if and only if Dual Greedy

using ex ◦τ solves linear program D(ex(L),f,w) for every nonnegative cost vector w. The

latter condition is equivalent to the convexity of f̂ ; see the proof of Proposition 2.8 and
[10, Theorem 2.1]. The convexity of this piecewise linear function f̂ can be guaranteed by
the local convexity condition [18, Lemma 14] that for each two adjacent full dimensional
simplices {A1, A2, . . . An−1, An}, {A1, A2, . . . , An−1, B} ∈ ∆̂(exL,≤), f satisfies

det
(

χA1 · · · χAn

)

det

(

χA1 · · · χAn χB

f(A1) · · · f(An) f(B)

)

≥ 0. (3.39)

These inequalities (3.39) and ∆(ex(L),≤)-submodular inequalities (3.35) define the same
full dimensional polyhedral cone. Hence, the common inequalities contain all facets of
the cone of ∆(ex(L),≤)-submodular functions. Note that the coefficient of the inequality
(3.39) coincides with a linear dependence vector of {χA1 , . . . , χAn , χB}, which is uniquely
determined up to constant multiple.

The inequality (3.35) is contained in (3.39) if and only if A,B,C1, C2, . . . in (3.35) are
contained in the union of some two adjacent simplices of ∆̂(ex(L),≤). Indeed, the only-if
part is obvious. The if part follows from the fact that the coefficients of ∆(ex(L),≤)-
submodularity inequalities is also a linear dependence vector of {χA, χB , χC1 , χC2 , . . .}.
Since two adjacent full dimensional simplices of ∆(exL,≤) correspond to two adjacent
maximal chains of (ex(L),≤), the common inequalities of (3.35) and (3.39) are given by
(3.35) for A,B ∈ ex(L) as (3.38).

Finally we show χA + χB = χA∨B + χAuB + χA�B. For this, we show the following.

A ∨B = ex(X ∪ {i, j}), (3.40)

(A ∩B) ∪ {i, j} ⊇ ex(X ∪ {i, j}), (3.41)

(A ∪B) \ {i, j} ⊆ ex(X). (3.42)

Indeed, (3.40) is obvious. We show (3.41). If f ∈ ex(X ∪ {i, j}) \ {i, j}, we have
(X ∪ {i, j} \ {f}) ∩ (X ∪ {i}) = (X ∪ {i}) \ {f} ∈ L and (X ∪ {i, j} \ {f}) ∩ (X ∪
{j}) = (X ∪ {j}) \ {f} ∈ L. Hence we have f ∈ A ∩ B. We show (3.42). Take
g ∈ A ∪ B \ {i, j}. If g ∈ A \ B, we have (X ∪ {i} \ {g}) ∩ (X ∪ {j}) = X \ {g} ∈ L.
This implies g ∈ ex(X). Similarly, if g ∈ B \ A, we have e ∈ ex(X). If g ∈ A ∩ B,
(X ∪ {i} \ {g}) ∩ (X ∪ {j} \ {g}) = X \ {g} ∈ L. This implies g ∈ ex(X). Hence we
have (3.42) and therefore AuB = (A∪B) \ {i, j}. We obtain χA + χB = χ(A∩B)∪{i,j} +
χ(A∪B)\{i,j} = χA∨B + χ(A∩B)∪{i,j}\A∨B + χAuB = χA∨B + χA�B + χAuB , where the
second equality follows from (3.41) and A u B = (A ∪ B) \ {i, j}, and the third follows
from i, j ∈ A ∨B.
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If L is union closed, then L is a distributive lattice. In this case, (3.35) is explicitly
written and coincides with the b-submodularity inequality in the sense of Krüger [21],
which is obtained by the relation χA + χB = χA∨B + χAuB; see [1, Fig.1] for binary
operators A ∨B, A uB.

Proposition 3.37 ([21], see also [19]). If L is a distributive lattice, ∆(ex(L),≤)-
submodularity inequalities (3.35) are given by

f(A) + f(B) ≥ f(A ∨B) + f(A uB) (3.43)

for each incomparable pair A,B ∈ ex(L), where we assume f(∅) = 0.

Remark 3.38. If L is a distributive lattice, it can be represented as the set of ideals
of some poset. Then the resulting greedy fan ∆(ex(L),≤) is essentially the same as the
canonical triangulation of the chain polytope of this poset given by Stanley [31, Section
5].

Remark 3.39. Consider the case L = 2V . Then (ex(L),≤) = (2V ,⊆) and (3.35)
coincides with (ordinary) submodularity inequalities (3.26). In this case, the inequalities
for (3.38) in Theorem 3.36 coincide with the local submodularity inequalities

f(X ∪ {i}) + f(X ∪ {j}) ≥ f(X) + f(X ∪ {i, j}) (3.44)

for X ⊆ V and i, j ∈ V \X. It is well-known that the local submodularity guarantees
submodularity. Hence, the condition (3.38) in Theorem 3.36 can be understood as a
generalization of the local submodularity condition.

3.4 Dual Greedy System by Frank

In this subsection, we analyze Frank’s dual greedy system [7], establish a connection to
acyclic greedy fans and give another proof of the validity of his dual greedy algorithm.

First, we briefly summarize Frank’s model [7]. Let (F ,�) be a poset on a nonempty
finite set F . A pair of a, b ∈ F is said to be intersecting if a and b are incomparable and
there exists a member c ∈ F such that c ≺ a and c ≺ b.

Two binary operations ∨, ∧ are defined on comparable pairs and on intersecting
pairs, with the following properties.

(F1) If a ≺ b, then a ∧ b = a, a ∨ b = b.

(F2) If a and b are intersecting, then a ∧ b ≺ a, b and a ∨ b � a, b.

In addition, we are given a set V and a function φ : F → 2V satisfying

(F3) If a ≺ b ≺ c, then φ(a) ∪ φ(b) ⊆ φ(c),

(F4) If a, b are intersecting, and then φ(a ∨ b) ∪ φ(a ∧ b) ⊆ φ(a) ∪ φ(b).

(F5) If φ(a) ∩ φ(b) 6= ∅, then A,B are intersecting or comparable.

A nonnegative function f : F → R+ is intersecting supermodular if f satisfies

f(a) + f(b) ≤ f(a ∨ b) + f(a ∧ b) (3.45)

for intersecting pair of a, b with f(a) > 0, f(b) > 0. Function f is said to be decreasing
if a � b implies f(a) ≥ f(b).
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We consider the following dual pair of linear programs for a function f and a non-
negative cost vector w ∈ RV

+.

P′ : D′ :

min .
∑

e∈V

w(e)x(e) max .
∑

a∈F

λ(a)f(a)

s.t.
∑

e∈φ(a)

x(e) ≥ f(a) (a ∈ F), s.t.
∑

a∈F

λ(a)χφ(a) ≤ w,

x(e) ≥ 0 (e ∈ V ), λ(a) ≥ 0 (a ∈ F),

(3.46)

where for feasibility of [P′] we assume that φ(a) is nonempty for a ∈ F with f(a) > 0.
We define a multiple-choice function Φ associated with (F ,≤) and f as

Φ(X) = {φ(a) | a ∈ F is a minimal element satisfying φ(a) ⊆ X and f(a) > 0} (3.47)

for X ⊆ V . Using this Φ, we modify step1 of Dual Greedy as

step1’: If Φ(X) is empty, then stop.

Then Frank [7] shows the following.

Theorem 3.40 ([7]). If f is intersecting supermodular and decreasing, the modified
Dual Greedy with step1’ gives an optimal solution to D′ for any nonnegative cost vector
w ∈ RV

+.

In the following, we reduce Frank’s model to our framework and give another proof
of Theorem 3.40. For a decreasing function f , we define subsets F+,F ′ ⊆ F as

F+ = {a ∈ F | f(a) > 0}, (3.48)

F ′ = {a ∈ F+ | ∀b ∈ F+ : b ≺ a⇒ φ(b) 6⊆ φ(a)}. (3.49)

Lemma 3.41. The restriction φ|F ′ of φ to F ′ is injective.

Proof. If there exist distinct a, b ∈ F ′ such that φ(a) = φ(b), then by (F5) a and b are
intersecting or comparable. If a and b are comparable, this contradicts the definition of
F ′. If a and b are intersecting, then (F4), (F2), and the decreasing property of f imply
a, b � a ∧ b ∈ F+ and φ(a ∧ b) ⊆ φ(a) = φ(b). This also contradicts the definition of
F ′.

From this, we can define a poset P = (A,≤) as

A = φ(F ′), A ≤ B
def
⇐⇒ (φ|F ′)−1(A) � (φ|F ′)−1(B) (A,B ∈ A). (3.50)

By construction, we have Φ = Φ(A,≤). Furthermore, elements of Φ(A,≤)(X) are disjoint
for X ⊆ V . Indeed, if A,B ∈ Φ(A,≤)(X) intersect, then (F4), (F5), and decreasing
property of f imply that a := (φ|F ′)−1(A) and b := (φ|F ′)−1(B) satisfy a ∧ b ∈ F+

and φ(a ∧ b) ⊆ A ∪ B. Then there exists c ∈ F ′ such that c � a ∧ b � a, b and
φ(c) ⊆ φ(a ∧ b) ⊆ A ∪B ⊆ X. This inclusion contradicts A,B ∈ Φ(A,≤)(X).

Hence, extending (A,≤) to (A,≤) by adding singletons not contained in A as

A = A∪ {{e} | e ∈ V, {e} 6∈ A}, {e} < A
def
⇐⇒ {e} 6∈ A, A ∈ A : e ∈ A, (3.51)

we have the following.

Lemma 3.42. (A,≤) is greedy.
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Let f : A → R be defined by

f(A) =

{

f((φ|F ′)−1(A)) if A ∈ A,

0 otherwise.
(3.52)

Then we consider the linear programs P(A,−f,w) and D(A,−f,w). By construction and
decreasing property of f , we can easily check that P(A,−f,w) and D(A,−f,w) are equivalent

to P′ and D′. Since Φ(X) ⊆ Φ(A,≤)(X) for nonempty X ⊆ V , Dual Greedy with step1’

using Φ works for D′ if and only if Dual Greedy using Φ(A,≤) works for D(A,−f,w). We

show that −f satisfies ∆(A,≤)-submodularity inequalities. For this, we investigate the

set of minimal nonmembers (∆̂(A,≤))
∗.

Lemma 3.43. The set of minimal nonmembers (∆̂(A,≤))
∗ consists of the following type

of sets:

type 1 {φ(a), φ(b)} for intersecting pair a, b ∈ F ′.

type 2 {A, {e1}, . . . , {ej}} for some A ∈ A and added singletons {ei} 6∈ A.

type 3 {{e1}, . . . , {ek}} for some added singletons {ei} 6∈ A.

Proof. Note that by (F3) and the construction, (A,≤) has the consecutive property.
If C ∈ (∆̂(A,≤))

∗ contains two elements A,B ∈ A, then A,B are incomparable and

have a common upper bound by Lemma 3.20. In particular, a := (φ|F )−1(A) and
b := (φ|F )−1(B) are intersecting. By (F4) and the decreasing property of f , we have
a ∧ b ∈ F+, a ∧ b ≺ a, b and φ(a ∧ b) ⊆ A ∪ B. Hence there exists C ∈ Φ(A,≤)(A ∪ B)

such that C ⊆ φ(a∧ b) ⊆ A∪B and C > A,B. Hence {A,B} is not a member of ∆̂(A,≤)

and coincides with C.

Finally, we verify that −f satisfies ∆(A,≤)-submodularity inequalities (2.6) corre-
sponding to type 1, 2, and 3. For ∆(A,≤)-submodularity inequalities corresponding to
type 2 and 3, we can easily check them by the nonnegativity and the decreasing property
of f and f({e}) = 0 for added singleton {e}.

Consider ∆(A,≤)-submodularity inequalities for type 1. The LHS of (2.6) is given

by −f(φ(a)) − f(φ(b)) = −f(a) − f(b) for intersecting pair a, b ∈ F ′. We show that
there exist terms f(C ′) and f(C ′′) in RHS of (2.6) such that f(a ∧ b) ≥ f(C ′) and
f(a ∨ b) ≥ f(C ′′). By nonnegativity and intersecting supermodularity of f , this implies
∆(A,≤)-submodularity of −f .

By (F5), we have φ(a ∧ b) ⊆ φ(a) ∪ φ(b). Then there exists C ′ ∈ Φ(A,≤)(φ(a) ∪ φ(b))

such that (φ|F ′)−1(C ′) � a ∧ b. By the consecutive property, we have C ′ ⊆ φ(a ∧ b).
Consider Dual Greedy* for w = χφ(a) + χφ(b). Then in the first iteration, we can take

A∗ = C ′ and λ(C ′) = 1 in step 2. Hence −f(C ′) appears in RHS of (2.6) and satisfies
f(C ′) ≤ f(a ∧ b) by the decreasing property.

By C ′ ⊆ φ(a ∧ b), the consecutive property, and (F5), we have χφ(a) + χφ(b) − χC′ −
χφ(a∨b) ≥ χφ(a) + χφ(b) − χφ(a∧b) − χφ(a∨b) ≥ 0. In particular, z := χφ(a) + χφ(b) − χC′

satisfies φ(a∨ b) ⊆ supp z. By consecutive property and the definition of F ′ there exists
c ∈ F ′ with c � a∨ b such that φ(c) ⊆ φ(a∨ b) and φ(c) ∈ Φ(A,≤)(supp z). In the second

iteration of Dual Greedy*, we can choose φ(c) = A∗ in step 2 such that λ(φ(c)) ≥ 1.
Hence −f(φ(c)) appears in RHS of (2.6) and satisfies f(φ(c)) = f(c) ≥ f(a ∨ b) by
decreasing property of f .
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