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Abstract

This article is intended to a refinement and a generalization of the
paper [Ki05]. We shall investigate the (biregular) structures of affine al-
gebraic threefolds X from a point of view of 3-dimensional Log Minimal
Model Program (LMMP)3. For this purpose, we need to take a com-
pactification X ↪→ (V, D) and perform (LMMP)3, which starts with the
dlt pair (V, D), describing how the inside affine part X changes via the
process of (LMMP)3. We succeed in this attempt in the case where the
linear system |D| contains a Du Val member.

1. Introduction

Throughout the present article we work over the field of complex numbers
C. The theory of affine algebraic surfaces has been developed around 1980’s
due to S. Iitaka, M. Miyanishi, T. Sugie, Y. Kawamata, T. Fujita, F. Sakai and
so on (cf. [Kaw79], [Mi-Su80], [Fuj79, Fuj82], [Sak87], [Miy81, Miy01]). This
development is indebted to the concept of log Kodaira dimension defined by
S. Iitaka (cf. [Ii77]) and making use of the classification theory of projective
surfaces. More precisely to say, in order to investigate the biregular structure
on a smooth affine algebraic surface Y , taking a compactification Y ↪→ (W,B)
into a smooth projective surface W with a simple normal crossing (= SNC, for
short) boundary divisor B, and applying the minimal model theory of surfaces
to obtain the data on W and B are the crucial steps. On the other hand, since
there exists a powerful theory (Mori theory, (Log) Minimal Model Program)
for the birational classification of projective threefolds (with boundaries) with
certain kinds of singularities (cf. [Mori88], [Sho93], [FA], [Ko-Mo98]), it seems
to be natural that 3-dimensional Log Minimal Program (= (LMMP)3, for short)
plays the substantial roles for the study of affine algebraic threefolds. Namely,
the framework of the idea is stated as follows:
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Let X be a smooth affine algebraic threefold. We embed X into a smooth
projective threefold V in such a way that the (reduced) boundary divisor D
is SNC. By virtue of the framework of (LMMP)3 (cf. [Sho93],[FA],[Ko-Mo98]),
starting with this dlt pair (V,D) ∈ (Dlt)3, we perform (LMMP)3, say:

(∗) φ : (V, D)
φ0

· · · → (V 1, D1)
φ1

· · · → · · · · · · → (V s−1, Ds−1)
φs−1

· · · → (V s, Ds),

where the final object (V ′, D′) := (V s, Ds) is either a Log Mori fiber space
(= (LMfs)3, for short) or a log minimal model, i.e., KV ′ + D′ is nef, according
to the value of log Kodaira dimension κ(X) of X. Set X ′ := V ′\Supp (D′).
Usually, since (V ′, D′) has a distinguished simple structure compared with the
original pair (V,D), we expect that we are able to analyze the structure of
X ′ in detail. Hence, if we can compare X with X ′, then we obtain the data
on X from those on X ′. But, in general, there occur some crucial obstacles
in this strategy. These obstacles are caused by the difference of the points of
view of Birational Geometry and Affine Algebraic Geometry. Namely, since the
main interest in Birational Geometry lies in birational properties of algebraic
varieties, the existence and termination of flips and the Abundance are the most
important problems. Once these three are established, the birational properties
on projective varieties can be reduced to those on more simple varieties (i.e.,
(log) Mori fiber spaces or (log) minimal models). On the other hand, since the
main interest in Affine Algebraic Geometry lies in biregular properties of affine
algebraic varieties, we have to investigate all divisorial contractions and (log)
flips, which do not take place in the boundary parts, appearing in the process
of (Log) Minimal Model Program, that is, we have to describe how exceptional
divisors and flipping/flipped curves intersect the boundary parts. Thus, the
obstacles occuring when we try to compare X with X ′ are summarized as
follows:

OBSTACLE Each of the birational maps φi : (V i, Di) · · · → (V i+1, Di+1)
appearing in (∗) above is either a log-divisorial contraction or a log-flip. Let
Di denote the proper transform of D on V i, and let Xi := V i\Supp (Di) be
the complement (0 ≤ i ≤ s). Then:

(1) In the case where φi is of log-divisorial type and the exceptional divisor
Ei := Exc(φi) is NOT contained in the boundary Supp (Di), then Xi+1 is
strictly smaller than the previous one Xi. If we were to describe the contraction
φi and how Ei meets Di explicitly, then we can recover the data on Xi from
those on Xi+1 in principle. But this seems to be hopeless in general.

(2) In the case where φi is of log-flipping type, if we were to know that
all the flipping curves (resp. flipped curves) are contained in the boundary
Supp (Di) (resp. Supp (Di+1)), then there exists no difference between Xi and
Xi+1. But, this expectation does not always hold true, namely, some of flipping
curves or flipped curves may not be contained in the boundary. As a result,
we can not compare Xi and Xi+1 explicitly and, in addition to this, Xi (resp.
Xi+1) may be no longer affine even if Xi+1 (resp. Xi) is affine.
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This is why there seems to be no clear principle to compare Xi with Xi+1.
Hence, even if we can analyze X ′ concretely, it is usually impossible to recover
the data on the original X from those on X ′.

The main interest in this article lies in how to control the process (∗) of
(LMMP)3 starting with (V, D) being anxious about the changes of the inside
affine threefold X under a certain condition (\). Our condition is geometric in
nature:

(\) The linear system |D| contains a Du Val member, say S ∈ |D|.
Remark 1. In the previous paper [Ki05], we investigated the process

(∗) of (LMMP)3 starting with (V, D) under the more specific assumption that
the linear system |D| is nef and contains a smooth member. In fact, under these
numerical and geometrical assumptions, we can describe explicitly how inside
affine threefold X changes via the process (∗) by making use of the theory of
]-MMP due to M. Mella [Me02]. Moreover, we are able to choose the process
(∗) in such way that the first half process of (∗) are composite of (ordinary)
flips, and the latter half are composed of terminal divisorial contractions (cf.
[Ki05]). Whereas, as the present condition (\) above is more general compared
with that in [Ki05], we can not apply the ]-MMP and the consideration makes
more complicated. Indeed, the log-flips may occur in (∗), and the varieties V i

are no longer in the category of terminal singularities in general.

As said in Remark 1, the process (∗) of (LMMP)3 starting with (V,D)
is difficult to handle in general. In fact, we do not know about the explicit
description of (∗) itself. Nevertheless, we can understand the description as
long as the process (∗) is restricted onto the complements to the divisors Di.
Namely, our main result is stated as in the following fashion:

Theorem 1.1. Let X be a smooth affine algebraic threefold. Suppose
that X is embedded into a pair (V, D) consisting of a smooth projective threefold
V containing X as a Zariski open subset and the SNC (reduced) boundary
divisor D = V \X satisfying the condition (\). Then, for any (LMMP)3 starting
with (V, D) (i.e., (KV + D)-MMP), say:

(∗) φ : (V, D)
φ0

· · · → (V 1, D1)
φ1

· · · → · · · · · · → (V s−1, Ds−1)
φs−1

· · · → (V s, Ds),

the following properties (1) ∼ (6) hold true.

Notation. Let Ri = R+[li] ⊂ NE (V i) be an extremal ray associated to which
the birational map φi : (V i, Di) · · · → (V i+1, Di+1) is obtained. Let Di and Si

be the proper transforms of D and S on V i respectively, and let Xi := V i\Di

denote the complement for 0 ≤ i ≤ s.
(1) Di and Si are Cartier divisors on V i and Di ∼ Si. Moreover, Si is a

Du Val member of |Di|.
(2) If (KV i · li) ≥ 0, then ϕi is a log-flip. All the flipping curves (resp.

flipped curves) are contained in the boundary Di (resp. Di+1). In particular,
we have Xi ∼= Xi+1.
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(3) If (KV i · li) < 0 and φi is a flip, then all the flipping curves (resp.
flipped curves) are contained in the boundary Di (resp. Di+1). In particular,
we have Xi ∼= Xi+1.
Assume that φi is a divisorial contraction (hence then (KV i · li) < 0 by (2)),
and let Ei denote the exceptional divisor. Then:

(4) If Ei is contained in Supp (Di), we have Xi ∼= Xi+1.
(5) If Ei is not contained in Supp(Di), then φi contracts Ei onto a smooth

point P := φi(Ei) ∈ V i+1, and φi is realized as a weighted blow-up at P with
respect to wts = (1, 1, b) for some b ∈ N. Moreover, Xi is obtained as the
half-point attachment to Xi+1 of type (b, k) for some 1 ≤ k ≤ b (cf. Definition
1.1). In particular, Xi+1 is an open affine subset of Xi such that Xi\Xi+1 ∼=
C(k−1)∗ × A1.

(6) The final object (V ′, D′) := (V s, Ds) in the process (∗) satisfies one of
the following according to the log Kodaira dimension κ(X):

(i) If κ(X) = −∞, then (V ′, D′) is a (LMfs)3, say (V ′, D′)/W . More-
over, we can describe (V ′, D′)/W in detail (see §3 for the detailed
description of (V ′, D′)/W ).

(ii) If κ(X) ≥ 0, then (V ′, D′) is a Log Minimal Model, i.e., KV ′ + D′

is nef and κ(V ′; KV ′ + D′) = κ(X).

We shall prepare the definiton of half-point attachments used in Theorem
1.1 (5)．

Definition 1.1 (cf. [Ki05]). Let Z be a normal quasi-projective three-
fold and let Z ↪→ V be a compactification into a normal projective threefold
V with the boundary V \Z = Supp (B). Let P ∈ Supp (B) be a point where
V is smooth. Let f : V → V be the weighted blow-up at the point P ∈ V
with weights wts = (1, 1, b), where b ∈ N. Let E ∼= P(1, 1, b) ∼= Fb,0 denote
the exceptional divisor of f . Assume that the proper transform B of B by f
intersects E in such a way that B|E =

∑k
j=1 mj lj , where lj ’s are the mutually

distinct generators of rulings on E ∼= Fb,0 and mj ∈ N with
∑k

j=1 mj = b.
Then the complement Z := V \Supp (B) is said to be a half-point attachment
to Z of (b, k)-type. It follows, by the definition, that Z\Z ∼= C(k−1)∗ × A1.

By making use of Theorem 1.1, the classification of certain kinds of polar-
ized Q-Fano threefolds with % = 1 (cf. [C-F93]) and Log Abundance Theorem
of dimension three (cf. [K-M-M94]), we can investigate the structure of the
original affine algebraic threefold X in detail for the cases κ(X) = −∞, 1 or 2
(see §3 and §4).

This article is organized as follows: In §2, we shall give the proof of Theo-
rem 1.1. As said in Remark 1, in the previous paper [Ki05], we have succeeded
in the explicit description of the process (∗) under the assumption that |D|
is nef and contains a smooth member. Indeed, we then are able to apply the
theory of ]-MMP (cf. [Me02]). Roughly speaking, the ]-MMP guarantees the
existence of a ”good” (ordinary) (MMP)3 which starts with V . Here ”good”
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means that we are able to describe the process (MMP)3 very explicitly in neigh-
borhoods of the proper transforms of a smooth member of |D|. In this strategy,
we need the nefness and the existence of a smooth member of |D| in the crucial
parts (see [Me02] for the detailed mechanism for ]-MMP). On the other hand,
in our present condition (\), we assume neither the nefness nor the existence
of a smooth member of |D|. Instead of them, we assume the existence of a Du
Val member S ∈ |D|. Distinct from the case mentioned above (cf. [Ki05]), the
situation makes more subtle and it is hard to handle the process (∗) of (KV +D)-
MMP itself. But, once we restrict ourselves to the inside affine parts, we can
obtain the explicit description. The key points are investigating : what are
the proper transforms of the normal member S ∈ |D| like, and how appearing
exceptional divisors and flipping/flipped curves intersect the boundary parts
via the process (∗), in the inductive way.

It is well known, in the theory of affine surfaces, that a smooth affine
algebraic surface Y with log Kodaira dimension κ(X) = −∞ (resp. 1) has a
structure of an A1-fibration (resp. a C∗-fibration) (cf. [Mi-Su80, Miy81, Miy01],
[Kaw79]). In the sections §3 and §4, we shall consider the three-dimensional
version of these results, namely, we investigate the structures of affine alge-
braic threefolds X with log Kodaira dimension κ(X) = −∞, 1 or 2 under the
condition (\) by applying Theorem 1.1 (cf. Theorems 3.1 and 4.1).

We employ the following notation in this article.

Notation and Convention.
• ∼ : linear equivalence;
• ≡ : numerical equivalence;
• An : the n-dimensional affine space;
• Pn : the n-dimensional projective space;
• P(a, b, c) : the weighted projective plane with weights wts = (a, b, c);
• Fb : the Hirzebruch surface of degree b (b ≥ 0);
• Fb,0 : the normal surface obtained from Fb by contracting the minimal section;
• C(k)∗ : the affine line with k-point(s) punctured. We write C(0)∗ = A1 and
C(1)∗ = C∗ for the simplicity;
• Exc(f) : the exceptional set of a given birational morphism f ;
• NE (V ) : the closure of the cone of effective 1-cycles on V modulo ≡;
• NonSing(V ) : the smooth locus of V ;
• Diff∗(·) : the difference (see [FA, Chapters 16 and 17]);
• (Terminal)d (resp. (Canonical)d, (Dlt)d) : the set of all pairs (W,B)
consisting of a normal projective variety W of dimension d and the the bound-
ary B on W (B may be empty) such that (W,B) has terminal singularities
(resp. canonical singularities, divisorial log-terminal singularities). See [FA] or
[Ko-Mo98, Chapters 2 and 5] for the definitions and the some (local and global)
properties on these classes of singularities.

The projective birational morphism f : V → W from a normal threefold
V with only Q-factorial singularities is said to be a divisorial contraction if its
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exceptional set E := Exp(f) is a prime divisor on V . f is said to be of (2, 0)-type
(resp. (2, 1)-type) if E is contracted to a point (resp. to a curve).
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2. The Proof of Theorem 1.1

2.1. Strategy of the Proof and Preliminaries

In this section, we shall give the proof of Theorem 1.1. Let X be an affine
algebraic threefold, and ι : X ↪→ (V, D) an SNC compactification of X, that is,
V is a smooth projective threefold containing X as a Zariski open subset such
that the boundary D := V \ι(X) is a reduced SNC divisor on V . Assume that
(V, D) satisfies (\), i.e., the linear system |D| associated with D contains a Du
Val member, say S ∈ |D|. As mentioned in §1, the essential for investigating
the structure on X from a point of view of Birational Geometry lies in how
to understand the behavior about changes of the inside affine threefold X via
the process of (LMMP)3 starting with the dlt pair (V, D) ∈ (Dlt)3 (that is
(K + D)-MMP), say:

(∗) φ : (V, D)
φ0

· · · → (V 1, D1)
φ1

· · · → · · · · · · → (V s−1, Ds−1)
φs−1

· · · → (V s, Ds),

where Di are the proper transforms of D on V i, and the final object (V ′, D′) :=
(V s, Ds) is either a (LMfs)3 or a log minimal model. We need to observe how the
exceptional divisors of divisorial contractions (resp. flipping/flipped curves of
log-flips) appearing in the process (∗) intersect the proper transforms Di ⊂ V i

of the boundary D. More precisely to say, we shall proceed inductively with
emphasis on the following matters in the process (∗):

(A) In the case where φi : (V i, Di) · · · → (V i+1, Di+1) is a (ordinary) flip,
we have to understand where all the flipping/flipped curves are located.

(B) In the case where φi : (V i, Di) · · · → (V i+1, Di+1) is a log-flip (a flip-
ping curve li intersects KV i +Di negatively, but does KV i non-negatively), we
have to investigate not only the location of flipping/flipped curves but also the
analytic types of singularities along flipped curves for the subsequent inductive
arguments. For this purpose, we shall cite the result in [Ki].

(C) In the case where φi : (V i, Di) → (V i+1, Di+1) is a divisorial contrac-
tion that do not take place in the boundary part Di, we have to investigate
what kind of exceptional divisor is and how an exceptional divisor intersects
the boundary Di explicitly. For this purpose, we shall make use of the result in
[Ki05] concerning special kinds of terminal divisorial contractions. This needs
the result due to M. Kawakita crucially (cf. [Ka01]).
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(D) Via the (log-)flips and divisorial contractions appearing in (∗), we
shall observe how inside affine threefold X changes in consideration of the data
obtained in (A), (B) and (C) above. In this strategy, we use the notion of
half-point attachments (cf. Definition 1.1).

Remark 2.
(1) Distinct from the case treated in the previous paper [Ki05] (cf. Remark

1), since we only assume the existence of a Du Val member of |D| at present,
we can not apply the ]-MMP to our situation. This obstacle predicts that we
can no longer stay in (Terminal)3 in general. In addition to this, we have to
take good care of log-flips.

(2) The ]-MMP is useful to find a good (MMP)3 starting with V provided
that |D| is nef and contains a smooth member (cf. [Me02], [Ki05]). Meanwhile,
although we can not make use of the ]-MMP now, our argument performed
below in this section shows that we obtain an explicit description as stated in
Theorem 1.1 for every (LMMP)3 starting with (V,D) ∈ (Dlt)3.

Let Si be the proper transform of S on V i for 0 ≤ i ≤ s. First of all, we
note the following:

Lemma 2.1. We have the following concerning the singularities of V i,
Si and irreducible components of Di for 0 ≤ i ≤ s.

(1) (V i, Si) has canonical singularities, and V i has terminal singularities
along Si.

(2) DiffSi(0) = 0 and Si has at Du Val singularities.
(3) For each irreducible component Di

j of Di, we have (Di
j , ∆

i
j) ∈ (Dlt)2,

where ∆i
j := DiffDi

j
(Di −Di

j).

Proof. Since S has at most Du Val singularities in a smooth threefold V , it is
easy to see that (V, S) ∈ (Canonical)3. On the other hand, the process (∗) of
(K +D)-MMP coincides with that of (K +S)-MMP as S is linearly equivalent
to D. Hence (V i, Si) ∈ (Canonical)3. This implies the assertion (1). Since
(V i, Si) ∈ (Canonical)3, we know that Si is normal and (Si, DiffSi(0)) ∈
(Canonical)2 (cf. [Ko-Mo98, Propositions 5.46, 5.51]). Since V i is terminal
along Si as seen just above, we have DiffSi(0) = 0 (cf. [FA, Chapters 16 and
17]). Hence Si has at most Du Val singularities. Since (V i, Di) ∈ (Dlt)3, the
assertion (3) is obtained by [Ko-Mo98, Prop. 5.59]. ¤

Lemma 2.2. If κ(X) = −∞, then KV + D is not nef.

Proof. Assume to the contrary that KV +D is nef, i.e., (V, D) is a log minimal
model in (Dlt)3. Hence, we have Bs |m(KV + D)| = ∅ for a sufficiently large
m >> 0 (cf. [K-M-M94]). This is obviously a contradiction. ¤

On the other hand, in case of κ(X) ≥ 0, we ask whether or not KV + D
is nef. If KV + D is already nef, then we have nothing to do in order to obtain
Theorem 1.1. Hence, in what follows, we may and shall assume that KV + D
is not nef. Since (V, D) ∈ (Dlt)3 and KV + D is not nef, there exists an
extremal ray, say R0 = R+[l0], contained in NE (V )(KV +D)<0, and we denote
by φ0 : V · · · → V 1 the rational map associated to the contraction of R0 (cf.
[Ko-Mo98]). φ0 is either a (LMfs)3 or a birational map.
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Lemma 2.3. If κ(X) ≥ 0, then φ0 is birational.

Proof. Assume to the contrary that φ0 gives rise to a (LMfs)3 provided that
κ(X) ≥ 0. Since κ(X) = κ(V ; KV + D) ≥ 0 and φ0 is a fibration onto a lower
dimensional variety, we have (KV + D ·R0) ≥ 0. This is a contradiction as R0

is (KV + D)-negative. ¤
If φ0 gives rise to a (LMfs)3 (this never occurs when κ(X) ≥ 0 by Lemma

2.3), then we have nothing to do with in order to obtain Theorem 1.1. Hence
we may and shall assume that φ0 : V · · · → V 1 is birational in the sequel.

2.2. The first step of the process of (LMMP)3
From now on for the time being, we shall observe this birational map

φ0 : (V, D) · · · → (V 1, D1) with emphasis on (A), (B), (C) and (D) in detail.
We consider according as (KV · l0) ≥ 0 or (KV · l0) < 0, separately.

2.2.1. CASE (I) (KV · l0) ≥ 0.

At first, we consider the case of (KV · l0) ≥ 0. Then:

Lemma 2.4. φ0 is a log-flip.

Proof. In fact, assume that φ0 is of divisorial type, and let E denote the
exceptional divisor. Since R0 is (KV + D)-negative and KV -nonnegative, we
have (D · l0) < 0. This implies that E ⊂ Bs |D|, in particular, E is contained
in the fixed part of the linear system |D|. But, since |D| contains a Du Val
member S, the possibility is that E and S coincide with D, |D| consists of D
only and D itself is Du Val. Note that since V \D is affine, D is connected.
Hence, D is irreducible. After the divisorial contraction φ0 : V → V 1, we have
a new compactification X ↪→ V 1 such that V 1\X = φ0(E). As X is affine and
codimV 1φ0(E) ≥ 2, this is a contradiction. ¤

Thus we may assume that φ0 is a log-flip. Since R0 is (KV + D)-negative,
it follows that (D · l0) < 0, so that l0 ⊂ D. Simultaneously, since S ∼ D, we
have (S · l0) < 0 and l0 ⊂ S. Concerning the explicit description of the log-flip
φ0, we have the following:

Lemma 2.5 (cf. [Ki]). Assume that φ0 : (V, D) · · · → (V 1, D1) is a
log-flip with (KV · l0) ≥ 0. Then we have:

(1) There exists exactly one flipping curve l0.
(2) The flipping curve l0 is a double curve of two irreducible components

of D, i.e., l0 = Dj0 ∩Dj1 for suitable components Dj0 and Dj1 of D.
(3) Put d0 := −(l0)2Dj0

and d1 := −(l0)2Dj1
. Then d0, d1 > 0.

(4) We may assume that d0 ≥ d1. Then φ0 : V · · · → V 1 is obtained as
the Euclidean log-flips associated to (d0, d1) (see [Ki, §2] for the construction
of Euclidean log-flips). In particular, for a general point P on the flipped curve
l0

+, we have:

(P ∈ l0
+ ⊂ V 1) ' o ∈ (x = y = 0) ⊂ (

C2 (x, y)/Zd(1, 1)
)× C,

where d := gcd(d0, d1).
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(5) The flipped curve l0
+ is contained in the boundary D1.

Proof. See [Ki]. ¤
In order to obtain more detailed information about the log-flip φ0, we

need to investigate the birational map ψ0 := φ0|S : S · · · → S1 obtained by
restricting φ0 onto S.

Lemma 2.6. Let the notation be the same as above. Then:
(1) ψ0 : S · · · → S1 contracts l0 to a smooth point Q := l0

+ ∩ S1 on S1.
(2) Q is a smooth on V 1.
(3) S1 is contained in the smooth locus of V 1. In particular, S1 (and D1

also) is a Cartier divisor on V 1.

Proof. Our Proof consists of several steps.
Step 1. First of all, we claim the following:
Claim 1. l0

+ 6⊂ S1.
Proof of Claim 1. Assume to the contrary that l0

+ ⊂ S1. Since DiffS1(0) = 0
(cf. Lemma 2.1), we have (KV 1 + S1 · l0+) = (KS1 · l0+)S1 . Then we have
(KS · l0)S < 0 and (KS1 · l0+)S1 > 0, hence it is obvious that ψ0 is not an
isomorphism. Let S

p←− Ŝ
q−→ S1 be the common resolution. Let {êk} exhaust

all the p and q-exceptional curves. Then Exc(p) = (∪ êk) ∪ l̂0
+

and Exc(q) =

(∪ êk)∪ l̂0, where l̂0 (resp. l̂0
+
) is the proper transform on Ŝ of l0 (resp. l0

+).
Write:

KbS ≡ p∗(KS) +
∑

αkêk + αl̂0
+ ≡ q∗(KS1) +

∑
βkêk + βl̂0,

where all of the α, β, αk’s and βk’s are non-negative as S and S1 has at most
Du Val singularities (cf. Lemma 2.1 (2)). Rewrite the above relation as:

q∗(KS1)− p∗(KS) + βl̂0 ≡
∑

(αk − βk)êk + αl̂0
+
.

Note that q∗(KS1)−p∗(KS) is p-nef and βl̂0 is p-effective. Moreover, q∗(KS1)−
p∗(KS) is positive along the curve l̂0

+
. Hence, we have αk ≤ βk and α < 0 by

the Nagativity Lemma (cf. [FA],[Cor94]). This contradicts to the fact α ≥ 0.
¤
Step 2. Since (S1 · l0+) > 0 and l0

+ 6⊂ S1, the flipped curve l0
+ intersects S1.

Moreover, ψ0 : S → S1 is just the contraction of l0 to a point Q := l0
+ ∩ S1.

In fact, we have the following:
Claim 2. Q is a smooth point of S1.
Proof of Claim 2. If S is smooth along l0, then l0 is a (−1)-curve, and the
assertion is obvious to see. Hence we may and shall assume that S has Du Val
singularities on l0. Let p : Ŝ → S be the minimal resolution with exceptional
curves {êk}, and let q := ψ0 ◦ p : Ŝ → S1 be the induced morphism. It is
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clear that Exc(q) coincides with Exc(p) ∪ l̂0, where l̂0 is the proper transform
on Ŝ of l0. Since (KbS · l̂0) = (KS · l0) < 0, l̂0 is a (−1)-curve on Ŝ. Thus
Exc(q) is composed of the (−1)-curve l̂0 and the (−2)-curves {êk}. In order to
contract Exc(q) to a point Q ∈ S1, the only possibility of the configuration of
Exc(q) is that Exc(p) = ∪ êk is a linear chain of (−2)-curves and l̂0 intersects
one of the terminal components of Exc(p) at a single point transversally. As a
consequence, Q is a smooth point of S1 as desired. ¤
Step 3. Since V 1 has at most canonical singularities (cf. Lemma 2.1), one of
the following three cases (a), (b) and (c) occurs concerning the singularities of
V 1 near the point Q ∈ V 1 (cf. [Ko-Mo98, Chapter 5]). Let (Q̃ ∈ Ṽ 1) → (Q ∈
V 1) denote the index one covering:

(a) (Q̃ ∈ Ṽ 1) is not cDV.

(b) (Q̃ ∈ Ṽ 1) is cDV but not isolated.

(c) (Q̃ ∈ Ṽ 1) is cDV and isolated, i.e., (Q ∈ V 1) is a terminal singularity.
In fact, we have the following:

Claim 3. The case (c) occurs.
Proof of Claim 3. Assume that the case (a) does occur. Then there exist a
projective birational morphism g : U → V 1 and an exceptional divisor E ⊆
Exc(g) such that KU ≡ g∗(KV 1) and g(E) = {Q} (cf. [Ko-Mo98, Theorem
5.35]). Then we have a(E; KV 1 + S1) = −multQS1, which is negative as Q
is contained in S1. This is a contradiction because (V 1, S1) has canonical
singularities (cf. Lemma 2.1). Assume now that the case (b) occurs. Then
V 1 is singular along the flipped curve l0

+. By [Ko-Mo98, Theorem 6.27], there
exist a projective birational morphism g : U → V 1 and an exceptional divisor
E ⊆ Exc(g) such that KU ≡ g∗(KV 1) and g(E) = l0

+. Note that as S1 does
not contain l0

+ it is generically Cartier along l0
+. Since D1 ≡ S1, it follows

that D1 is also generically Cartier along l0
+. On the other hand, we have

(V 1, D1) ∈ (Dlt)3 (cf. Lemma 2.1). By the definition of divisorial log-terminal
singularities (cf. [Ko-Mo98, Chapter 2]) and noting that V 1 has singularities
along l0

+, we have a(E;KV 1 + D1) > −1. But, since D1 contains l0
+ and is

generically Cartier along l0
+, we have:

a(E; KV 1 + D1) = a(E; KV 1)−multl0+ D1 = −multl0+ D1 ≤ −1,

which is a contradiction. Thus we have the case (c) as desired. ¤
Step 4. Thus Q ∈ V 1 is a terminal singularity. Since a Q-Cartier divisor S1

contains Q as a smooth point (cf. Claim 2), we know that Q is a smooth point
of V 1 (cf. [FA]). Hence we have S1 ⊂ NonSing(V 1) and, in particular, S1

(hence D1 also) is a Cartier divisor on V 1. ¤

2.2.2. CASE (II) (KV · l0) < 0.

Next, we consider the case of (KV · l0) < 0, i.e., R0 is an extremal ray
in an ordinary sense. Since V is a smooth threefold the case where φ0 is a
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flip does not occur (cf. [C-K-M88]).*1 Hence we may assume that φ0 : V →
V 1 is a (terminal) divisorial contraction, let E denote the exceptional divisor.
Note that the classification of divisorial contractions from smooth threefolds
are completed by S. Mori, which consists of five types (E1), (E2), (E3), (E4)
and (E5) (cf. [Mori82], [Ko-Mo98]). The length of the extremal ray R0:

µ(R0) := min { (−KV · l) | l ⊂ V and [l] ∈ R0 }

is equal to 1 (resp. 2) when φ0 is of type (E1), (E3), (E4), (E5) (resp. (E2)).
We may assume that this minimal value is obtained by l0, that is, µ(R0) =
(−KV · l0). Let ψ0 : S → S1 denote the restriction of φ0 onto S. We can easily
verify the following:

Lemma 2.7. Let the notation be the same as above. Then:
(1) If φ0 is of type (E1), (E3), (E4) or (E5), then E is contained in D.
(2) If φ0 is of type (E2) and E is not contained in D, then D intersects E

in such a way that D|E ∈ |OP2(1)|.
(3) The intersection S ∩ E is composed of mutually disjoint curves on S

(if it is not empty at all), and ψ0 : S → S1 contracts these curves to smooth
points of S1.

(4) S1 is contained in the smooth locus of V 1. In particular, S1 (hence D1

also) is a Cartier divisor on V 1.

Proof. Since R0 is (KV + D)-negative, we have (D · l0) < µ(R0). Note that
(D · l0) ≥ 0. In fact, assume to the contrary that (D · l0) < 0, which implies
that the exceptional divisor E of φ0 is contained in the fixed part of the linear
system |D|. Then we obtain a contradiction by the same argument as in the
proof of Lemma 2.4. We consider according to the types of φ0, separately.

Case (i): φ0 is of (2, 0)-type with µ(R0) = 1. This case corresponds to
(E3), (E4) and (E5). Then we have (D ·l0) = (S ·l0) = 0. Since the complement
V \D = X is affine, (D · l0) = 0 implies that E is contained in D. Moreover,
(S · l0) then implies that S ∩ E = ∅. Hence the assertions are easy to see.

Case (ii): φ0 is of (2, 1)-type with µ(R0) = 1. This corresponds to (E1).
As in Case (i) above, we then have (D · l0) = (S · l0) = 0 and E is contained in
D. Moreover, since φ0|E : E → φ0(E) is a P1-bundle, (S · l0) = 0 implies that
S|E (which may be empty) is composed of several fibers of φ0|E . Let L ⊆ S∩E

be one of such fibers (provided that S ∩E 6= ∅). Let p : Ŝ → S be the minimal
resolution of singularities on L, and let q : Ŝ → S1 be the induced morphism.
Note that Exc(p) consists of (−2)-curves (unless S is smooth along L). Since
(KbS · L̂) = (KS ·L) = (KV + S ·L) < 0, we know that L̂ is a (−1)-curve on Ŝ,
where L̂ is the proper transform on Ŝ of L. On the other hand, since q contracts
Exc(p) ∪ L̂ to a point φ0(L) ∈ S1, the only possibility of the configuration of
Exc(p) is a linear chain of (−2)-curves and the (−1)-curve curve L̂ intersects

*1But, for the inductive arguments in what follows, since the varieties V i are not necessarily
smooth, we need to consider the flip case.
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one of the terminal components of Exc(p). Thus φ0(L) ∈ S1 is a smooth point.
(At the same time, we know that S has at most one singularity along L, and
it is of A∗-type.) Then the assertions are not difficult to see.

Case (iii): µ(R0) = 2. This corresponds to (E2). We have (D · l0) = (S · l0) =
0, 1. If (D · l0) = 0, then we can verify the assertions by the same argument
as in Case (i). Suppose that (D · l0) = 1. Then (S · l0) = 1 means that the
intersection S ∩ E consists of exactly one curve which is a (−1)-curve on S.
Hence ψ0 : S → S1 contracts S ∩ E to a smooth point φ0(E) ∈ S1. ¤

Summarizing the arguments performed in CASE (I) and (II), we have:

(A)1 (V 1, D1) ∈ (Dlt)3, (V 1, S1) ∈ (Canonical)3 and S1 has at most Du Val
singularities (cf. Lemma 2.1).

(B)1 S1 ⊂ NonSing(V 1), S1 and D1 are linearly equivalent Cartier divisors on
V 1 (cf. Lemmas 2.6 and 2.7).

(C)1 The complement X1 := V 1\D1 is an open affine subset of X. If X1 6∼= X,
then X is obtained from X1 via the half-point attachment of (1, 1)-type (cf.
Definition 1.1, Lemma 2.7).

(D)1 κ(X) = κ(V 1;KV 1 + D1).

2.3. The inductive strategy for the Proof of Theorem 1.1

We shall proceed in the inductive way from now on. Suppose that, after
the i-th step φi−1 : (V i−1, Di−1) · · · → (V i, Di) in the process (∗) of (LMMP)3
starting with the pair (V,D) ∈ (Dlt)3, we obtain the following data:

(A)i (V i, Di) ∈ (Dlt)3, (V i, Si) ∈ (Canonical)3 and Si has at most Du Val
singularities (cf. Lemma 2.1).

(B)i Si ⊂ NonSing(V i), Si and Di are linearly equivalent Cartier divisors on
V i.

(C)i The complement Xi := V i\Di is an open affine subset of Xi−1 :=
V i−1\Di−1. If Xi 6∼= Xi−1, then Xi−1 is obtained from Xi via the half-point
attachment of (bi, ki)-type for some positive integers 1 ≤ ki ≤ bi (cf. Definition
1.1).

(D)i κ(X) = κ(V i; KV i + Di).

First of all, we ask whether or not KV i + Di is nef. (Note that it is
never nef in the case of κ(X) = −∞.) If it is already nef, then we have
nothing to do for the proof of Theorem 1.1. Hence we may and shall assume
that KV i + Di is not nef in what follows, and we consider the (i + 1)-th step
φi : (V i, Di) · · · → (V i+1, Di+1) in the process (∗) of (K + D)-MMP. We shall
prove the following:

Proposition 2.1. Assuming the properties (A)i, (B)i, (C)i and (D)i, we
obtain those (A)i+1, (B)i+1, (C)i+1 and (D)i+1 concerning V i+1, Di+1 and Si+1

via the (i + 1)-th step φi : (V i, Di) · · · → (V i+1, Di+1) of the process (∗) of
(K + D)-MMP.
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Let Ri = R+[li] ⊂ NE (V i) be the (KV i + Di)-negative extremal ray
associated to which the birational map φi is obtained. We prove Proposition
2.1 according to (KV i · li) ≥ 0 or not, separately. The argument is somewhat
similar to that performed in Lemmas 2.5 and 2.6. But, since V i is not smooth
in general, we need more subtle treatments about appearing (log-)flips and
divisorial contractions.

2.3.1. CASE (I)i (KV i · li) ≥ 0.

At first, we shall deal with the case of (KV i · li) ≥ 0. Then we have:

Lemma 2.8. φi is a log-flip.

Proof. We can verify the assertion by the same argument as in Lemma 2.4. ¤
Let l1, · · · , lt (resp. l′1, · · · , l′r) exhaust all the flipping curves (resp. flipped

curves)*2. Since Ri is (KV i + Di)-negative, we have (Di · lk) = (Si · lk) <
(−KV i ·lk) ≤ 0. This means that the flipping curves lk’s are contained in Bs|Di|.
Since Si ∈ |Di| is contained in NonSing(V i), it follows that lk ⊂ NonSing(V i).
Now we wish to get the information about the log-flip φi. But, as remaked,
the variety V i has canonical singularities and is no longer smooth in general.
This is why it seems to be hopeless to obtain the descriptions as explicitly
as in Lemma 2.5. However, the most necessary information for our inductive
procedure lies in investigating where the flipping/flipped curves are located,
more precisely to say, whether or not flipping/flipped curves are contained in
the boundary Di / Di+1. We have already seen that all the flipping curves
are contained in Di. Concerning the location of flipped curves, we can easily
obtain the following:

Lemma 2.9. All the flipped curves are contained in the boundary Di+1.
In particular, we have Xi ∼= Xi+1.

Proof. Assume to the contrary that some of flipped curves, say l′j1 , · · · , l′ja
,

are not contained in Di+1. Note that since the ray Ri, which is composed of
flipping curves, is nagative on Di, the corresponding flipped curves are positive
on Di+1. Thus l′j1 , · · · , l′ja

intersect Di+1. Then we have Xi = V i\Di ∼=
V i+1\(Di+1∪ l′j1 ∪· · ·∪ l′ja

). Thus the affine algebraic threefold Xi is embedded
into a normal projective threefold V i+1 as the complement of Di+1∪l′j1∪· · ·∪l′ja

,
which is not of pure codimension one. This is a contradiction. ¤

Let ψi := φi|Si : Si · · · → Si+1 denote the restriction of φi onto Si. Then
we have the following result which is one of the core part of our inductive
procedure:

Lemma 2.10. Let the notation be the same as above. Then:
(1) The curves l1, · · · , lt are mutually disjoint, and ψi : Si · · · → Si+1

contracts these l1, · · · , lt to smooth points on Si+1.
*2The number t of flipping curves may be different from that r of flipped curves.
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(2) The points on Si+1, which are obtained by the contraction of the curves
l1, · · · , lt, are smooth points on V i+1.

(3) Si+1 is contained in the smooth locus of V i+1. In particular, Si+1 (and
hence Di+1 also) is a Cartier divisor on V i+1.

Proof. Our proof consists of several steps and is somewhat similar to that in
Lemma 2.6. But different from the description of the first log-flip (cf. Lemma
2.5), since we do not get the explicit description about the log-flip φi, we have
to take care of a little bit.

Step 1. First of all, we claim the following:

Claim 1. All the flipped curves are not contained in Si+1.

Proof of Claim 1. Assume to the contrary that some of flipped curves are
contained in Si+1, say l′1, · · · , l′a. Note that we have DiffSi+1(0) = 0 (cf.
Lemma 2.1). Let Si p←− Ŝi q−→ Si+1 denote the common resolution, and
let {êk} exhaust all the p and q-exceptional curves. As DiffSi+1(0) = 0, we
have (KV i+1 + Si+1 · l′j) = (KSi+1 · l′j)Si+1 > 0. Hence it is not difficult to
see that the proper transform of at least one of the curves l1, · · · , lt (resp.
the curves l′1, · · · , l′a) is q-exceptional (resp. p-exceptional). We may assume
that l1, · · · , lb0 (resp. l′1, · · · , l′a0

) exhaust the flipping curves (resp. the flipped
curves) such that their proper transforms on Ŝi are q-exceptional (resp. p-
exceptional). Write:

KbSi ≡ p∗(KSi) +
∑

αlêl +
a0∑

j=1

γj l̂
′
j ≡ q∗(KSi+1) +

∑
βlêl +

b0∑

k=1

δk l̂k,

where l̂k (resp. l̂′j) is the proper transform on Ŝi of lk (resp. l′j). Since Si and
Si+1 has at most Du Val singularities (cf. Lemma 2.1 (2)), all of the αl’s, βl’s,
γj ’s and δk’s are non-negative. Rewrite as:

q∗(KSi+1)− p∗(KSi) +
b0∑

k=1

δk l̂k ≡
∑

(αl − βl)êl +
a0∑

j=1

γj l̂
′
j .

Note that q∗(KSi+1) − p∗(KSi) is p-nef (and positive along l̂′1, · · · , l̂′a0
), and∑b0

k=1 δk l̂k is p-effective. Therefore we have αl ≤ βl and γl < 0 by the Nagativity
Lemma (cf. [FA], [Cor94]). This is absurd. ¤
Step 2. Thus we may assume that all the flipped curves l′1, · · · , l′r intersect
Si+1 but not contained in Si+1 by noting that (Si+1 · l′j) > 0 and Claim 1.
Hence ψi : Si · · · → Si+1 is just the contraction of the flipping curves l1, · · · , lt.
More precisely to say, we have the following:

Claim 2. The curves lk’s are mutually disjoint, and ψi contracts each lk to a
smooth point of Si+1.
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Proof of Claim 2. Let p : Ŝi → Si be the minimal resolution with the excep-
tional curves {êl} (which are (−2)-curves as Si has at most Du Val singulari-
ties), and let q := ψi ◦ p : Ŝi → Si+1 denote the induced morphism. Let l̂k be
the proper transform on Ŝi of lk. Since (KbSi · l̂k) = (KSi · lk) < 0, we know
that lk’s are (−1)-curves on Ŝi. On the other hand, q contracts (∪ êl) ∪ (∪l̂k)
to several points. This is possible only if the flipping curves lk’s are mutually
disjoint, and Si has at most one A∗-type Du Val singularity along lk such that
the dual graph of the connected component of Exc(p) which meets l̂k is a linear
chain of (−2)-curves and l̂k meets one of the terminal components of this chain.
Thus we have the assertion as desired. ¤
Step 3. Let Qk := ψi(lk) be the point on Si+1 obtained by the contraction
of the curve lk. From now on we shall investigate the class of singularities
Qk’s as points in the ambient variety V i+1. Anyway, we know that V i+1

has at most canonical singularities (cf. Lemma 2.1 (1)). Hence one of the
following three cases (a), (b) and (c) occurs concerning the index one covering
(Q̃k ∈ Ṽ i+1) → (Qk ∈ V i+1) (cf. [Ko-Mo98, Chapter 5]):

(a) (Q̃k ∈ Ṽ i+1) is not cDV.

(b) (Q̃k ∈ Ṽ i+1) is cDV but not isolated.

(c) (Q̃k ∈ Ṽ i+1) is cDV and isolated, i.e., (Qk ∈ V i+1) is a terminal
singularity.

In fact, we have the following:
Claim 3. The case (c) occurs.
Proof of Claim 3. We can verify the assertion by the same argument as in the
proof of Claim 3 in Lemma 2.6, hence we shall omit the detail. In this strategy,
we have to note that the pair (V i+1, Di+1) is in (Dlt)3 (cf. Lemma 2.1). ¤

Thus Qk ∈ V i+1 is a terminal singular point. On the other hand, since a Q-
Cartier divisor Si+1 contains Qk as a smooth point (cf. Claim 2), it follows that
Qk is a smooth point of V i+1 (cf. [FA]). Hence the surface Si+1 is contained
in the smooth locus of V i+1, in particular, Si+1 is a Cartier divisor on V i+1.
Thus we complete the proof. ¤

Thus we can verify the assertion of Proposition 2.1 when (KV i · li) ≥ 0.

2.3.2. CASE (II)i (KV i · li) < 0.

Next we shall consider the case where the ray Ri intersects the canonical
class KV i negatively. Distinct from the first step φ0 : V · · · → V 1, since the
variety V i is no longer smooth in general, we need to deal with the flipping case
also. We divide the situation into two sub-cases according as (−KV i · li) ≤ 1
or not.

Sub-Case (II)i-(i): (−KV i · li) ≤ 1. Assume that there exists an extremal
rational curve li ∈ Ri such that (−KV i · li) ≤ 1. We can easily see the following
results:
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Lemma 2.11. Let the assumptions be the same as above. Suppose that
φi : V i · · · → V i+1 is a flip. Then:

(1) All the flipping curves (resp. flipped curves) are contained in the bound-
ary Di (resp. Di+1).

(2) The surface Si is disjoint from flipping curves. In particular, the proper
transform Si+1 on V i+1 is contained in the smooth locus of V i+1.

(3) We have Xi ∼= Xi+1.

Lemma 2.12. Let the assumptions be the same as above. Suppose that
φi : V i → V i+1 is a divisorial contraction with the exceptional divisor E. Then:

(1) E is contained in the boundary Di.
(2) If φi is of (2, 0)-type, then Si is disjoint from E.
(3) If φi is of (2, 1)-type, then the intersection Si∩E, which may be empty,

is composed of several smooth fibers of the P1-fibration φi|E : E → φi(E).
(4) The proper transform Si+1 on V i+1 is contained in the smooth locus

of V i+1.
(5) We have Xi ∼= Xi+1.

Proof of Lemmas 2.11 and 2.12 Since the ray Ri = R+[li] is (KV i + Di)-
negative, we have (Di · li) = (Si · li) < (−KDi · li) ≤ 1. Since Di is Cartier
by (B)i, this inequality implies that (Di · li) = (Si · li) ≤ 0. Assume now that
we have (Di · li) < 0, which means that the exceptional set of φi (the union
of flipping curves or the exceptional divisor) is contained in the base points set
of the linear system |Di|. In the case where φi is of divisorial type, we can
deduce a contradiction by the same argument as in the proof of Lemma 2.4 in
consideration of the affineness of Xi. On the other hand, if φi is a flip, then all
the flipping curves are contained in Si as (Si · li) < 0. Since Si ⊂ NonSing(V i)
by (B)i, the flipping curves are in the smooth locus of V i+1. This is absurd
(cf. [C-K-M88]). Thus we may and shall assume that (Di · li) = 0. Since
the complement Xi = V i\Di is affine, we know that exceptional set of φi is
contained in Di. Moreover, in the case of a flip, we see that all the flipped
curves are contained in Di+1 by the similar argument as in Lemma 2.9. Thus
we obtain the assertions (1), (3) in Lemma 2.11, and (1), (5) in 2.12. For the
assertions (2) in Lemma 2.11 and (2), (3), (4) in Lemma 2.12, we shall consider
separately.

If φi is a flip, then (Si · li) = 0 implies that each flipping curve is either
disjoint from Si or contained in it. But, as the flipping curves pass through
the singularities on V i and Si ⊂ NonSing(V i), the former occurs. Hence it is
obvious that the flipped curves are disjoint from the proper transform Si+1.

Suppose that φi is a divisorial contraction of (2, 0)-type. Then (Si · li) = 0
implies that Si ∩ E = ∅ certainly.

Let us consider the case that φi is a divisorial contraction of (2, 1)-type.
Note that the restriction φi|E : E → φi(E) is a P1-bundel in a neighborhood
of the surface Si (unless Si ∩ E = ∅) because of Si ⊂ NonSing(V i). Hence
the resulting threefold V i+1 is smooth at the points φi(Si ∩E). Moreover, the
equality (Si · li) = 0 means that Si ∩E is composed of several smooth fibers of
φ1|E (unless Si ∩ E = ∅).
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In any case as above, we can verify that the proper transform Si+1 on
V i+1 is contained in NonSing(V i+1). We thus complete the proof. ¤

Thus we verify Proposition 2.1 in the case of 0 < (−KV i · li) ≤ 1.

Sub-Case (II)i-(ii): (−KV i · li) > 1. Assume that any extremal rational
curve li in the ray Ri satisfies (−KV i · li) > 1. Then we have the following:

Lemma 2.13. φi is a divisorial contraction of (2, 0)-type.

Proof. We can see the assertion by the same argument as in [C-F93, Lemma 2.1].
Although the proof in [C-F93, Lemma 2.1] is performed under the assumption
that the variety has Q-factorial and terminal singularities, the same can be
applied to the present situation that V i is Q-factorial and canonical. ¤

Let E denote the exceptional divisor of φi, and let Q := φi(E) ∈ V i+1 be
the point obtained by the contraction of E.

Lemma 2.14. Let the notation and the assumptions be the same as
above. Then we have:

(1) (Di · li) = (Si · li) ≥ 0.
(2) If (Di · li) = 0, then the exceptional divisor E is contained in the

boundary Di. Moreover, Si is disjoint from E, and the proper transform Si+1

on V i+1 is contained in the smooth locus of V i+1.

Proof. Both assertions can be verified by the same argument as in the former
half of the proof of Lemmas 2.11 and 2.12. ¤

In the case of (Di · li) > 0, we have to observe the restricted birational
morphism ψi := φi|Si : Si → Si+1 in order to get the more detailed information
about the divisorial contraction φ : V i → V i+1.

Lemma 2.15. Let the notation be the same as above. Suppose that
(Di · li) > 0. Then Si ∩E is an irreducible curve and ψi : Si → Si+1 contracts
Si ∩ E to a smooth point of Si+1.

Proof. Since (Si · li) > 0, the surface Si intersects E. Let Si ∩ E = ∪Cl be
a decomposition into irreducible components. Let p : Ŝi → Si be the minimal
resolution with an exceptional set Exc(p) = ∪ êk, and let q := ψi◦p : Ŝi → Si+1

denote the induced morphism. Since Si has at most Du Val singularities, the
curve ek’s are (−2)-curves. Since (KbSi · Ĉl) = (KSi ·Cl) = (KV i + Si ·Cl) < 0,
Ĉl is a (−1)-curve on Ŝi, where Ĉl is the proper transform on Ŝi of Cl. Since
q : Ŝi → Si+1 contracts (∪ Ĉl) ∪ (∪ êk) to a point Q := φi(E), we know that
C := Si ∩ E is irreducible and the configuration of Exc(p) is a linear chain
of (−2)-curves, furthermore, Ĉ intersects one of the terminal components of
Exc(p). As a result, Q is a smooth point of Si+1, as desired. ¤

Lemma 2.16. The point Q = φi(E) is a smooth point of V i+1. In
particular, the surface Si+1 is contained in the smooth locus NonSing(V i+1).
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Proof. Note that (V i+1, Si+1) ∈ (Canonical)3, and so V i+1 is terminal along
Si+1 (cf. Lemma 2.1 (1)), in particular, Q ∈ V i+1 is a terminal singular point.
As the surface Si+1 contains Q as a smooth point, it follows that Q is, in fact,
a smooth point of V i+1 (cf. [FA]). ¤

By making use of Lemmas 2.15 and 2.16, we can describe φi explicitly as
follows:

Lemma 2.17. Let the notation be the same as above. Then we have:
(1) φi : V i → V i+1 is realized as the weighted blow-up at the smooth point

Q ∈ V i+1 (cf. Lemma 2.16) with weights wts = (1, 1, b) for some positive
integer m > 0.

(2) The exceptional divisor E is isomorphic to Fb,0 and V i has one singular
point v along E, which coincides with the vertex of E ∼= Fb,0, of analytic type
(v ∈ V i) ' 1

b (1, 1,−1).
(3) (Di · li) = (Si · li) = 1, where li is a generator of the rulings on the

cone E ∼= Fb,0.
(4) If Xi 6∼= Xi+1 (i.e., if E is not contained in Di), then Xi is obtained as

a half-point attachment to Xi+1 of (b, k)-type for some 1 ≤ k ≤ b (cf. Definition
1.1).

Proof. Our proof consists of several steps.

Step 1. We have (V i, Di) ∈ (Dlt)3, (V i, ∅) ∈ (Canonical)3 and Di is a
Cartier divisor on V i (cf. Lemma 2.1 and (B)i). Then the similar argument as
in the proof of Claim 3 in Lemma 2.6 says that V i has terminal singularities
along the boundary Di. Furthermore, since the complement Xi = V i\Di

is an open affine subset of the original smooth affine algebraic threefold X
by construction of our inductive procedure, Xi is smooth. Hence V i itself is
terminal.

Step 2. By Lemma 2.15, the exceptional divisor E of φi : V i → V i+1 is
contracted to a smooth point Q = φi(E) ∈ V i+1. Then, by virtue of the
remarkable result due to M. Kawakita (cf. [Ka01]), φi is obtained as the
weighted blow-up at Q ∈ V i+1 with weights wts(x, y, z) = (1, a, b), where
(x, y, z) are the suitable system of local analytic coordinates at Q ∈ V i+1 and
b ≥ a > 0 are positive integers such that gcd(a, b) = 1. Note that the excep-
tional divisor E of φi is isomorphic to the weighted projective plane P(1, a, b)
and KV i ≡ φi∗(KV i+1) + (a + b)E. In fact, we can restrict the possibility of
the weights wts = (1, a, b) as follows:

Claim. a = 1 and (−KV i · li) = 1+(1/b), where li is a generator of the rulings
on the cone E ∼= P(1, 1, b) = Fb,0.

Proof of Claim. Let li be the curve on E ∼= P(1, a, b) which is numerically
equivalent to the class OP(1). Then we have (−KV i · li) = (a+b)

ab . Noting that
(−KV i · li) > 1, we know that the integer a is equal to 1 as desired. ¤
Step 3. Since the ray Ri = R+[li] is (KV i +Di)-negative and Di is Cartier, we
have (Di ·li) = 1. This means that Di|E ≡ bli. If the curve Di∩E does not pass
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through the vertex v of the cone E ∼= Fb,0, then Xi = V i\Di contains v, which is
of analytic type (v ∈ V i) ' 1

b (1, 1,−1). This is a contradiction as Xi is smooth.
Thus the scheme-theoretic intersection Di|E is written as Di|E =

∑k
l=1 mlCl,

where Cl’s are distinct generators of the rulings on E ∼= Fb,0 and ml’s are
positive integers such that

∑k
l=1 ml = b. Hence Xi is obtained as a half-point

attachment to Xi+1 of (b, k)-type (cf. Definition 1.1). Thus we complete the
proof. ¤

Thus we can ascertain Proposition 2.1 in the case of (−KV i · li) > 1.

2.3.3. Conclusion

Summarizing the arguments performed in 2.3.1 and 2.3.2 above, we ob-
tain the assertions stated in Proposition 2.1. The inductive argument then
concludes the assertions in Theorem 1.1. Note that our proof given above is
valid for every process (∗) of (LMMP)3 starting with the pair (V,D). Hence we
obtain the desired explicit descriptions as in Theorem 1.1 for every (LMMP)3
which starts with the dlt pair (V, D).

3. Affine Threefolds with κ(X) = −∞

In this section, we shall deal with the structure of smooth affine algebraic
threefolds X with log Kodaira dimension κ(X) = −∞ satisfying the condition
(\). Since the statement and the proof for it are very similar to those in [Ki05,
§3], we shall only sketch the proof. The essential lies in the combination of
Theorem 1.1 with the result due to F. Campana and H. Flenner (cf. [C-F93])
concerning the classification of Q-Fano threefolds containing certain kinds of
surfaces having at most Du Val singularities in the smooth loci*3. Namely, our
result is stated as follows:

Theorem 3.1 (cf. [C-F93]). Let X be a smooth affine algebraic three-
fold with log Kodaira dimension κ(X) = −∞. Suppose that X can be embedded
into a smooth projective threefold (V, D) satisfying the condition (\). Then the
process (∗) of (LMMP)3 starting with the dlt pair (V, D) brings it to a (LMfs)3,
say π : (V ′, D′) → W , and X is obtained from X ′ := V ′\D′ via the com-
posite of suitable half-point attachments unless X ∼= X ′ (cf. Theorem 1.1,
Definition 1.1). More precisely, one of the following types occurs concerning
π : (V ′, D′) → W :

C2-type: π : V ′ ∼= P(E) → W is a P1-bundle over a smooth projective surface
W , where E := π∗OV ′(D′) is a rank 2 vector bundle on W , and D′ ∼ O(1).

D′
2-type: π : V ′ → W is a quadric bundle over a smooth curve W with a general

fiber (F,D′|F ) ∼= (P1×P1,OP1×P1(1, 1)), and with at most finitely many singular
fibers G ∼= Q2

0 and the vertex of each G sits in a hypersurface singularity of
*3This classification in [C-F93] is performed under the more specific assumption that a

Q-Fano threefold contains a smooth del Pezzo surface in the smooth locus. But, the same
proof can be applied to the present situation. We shall comment on this matter in the sequel.
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analytic type o ∈ (xy + z2 + tk = 0) ⊂ C4 : (x, y, z, t) for k ≥ 1, where
Q2

0 ↪→ P3 is a quadric cone. π is obtained as the restriction of the P3-bundle
V ′ ⊂ P(E) → W , where E := π∗OV ′(D′) is a rank 3 vector bundle over W .

D3-type: π : V ′ ∼= P(E) → W is a P2-bundle over a smooth curve W with a
fiber (F,D′|F ) ∼= (P2,OP2(1)), where E := π∗OT ](D]) is a rank 3 vector bundle
over W .

D′
3-type: π : V ′ → W is a P2-fibration over a smooth curve W with a general

fiber (F, D′|F ) ∼= (P2,OP2(2)) and with at most finitely many singular fibers
G ∼= S4 and the vertex of G sits in a hyper-quotient singularity of analytic type
o ∈ (xy + z2 + tk = 0) ⊂ C4 : (x, y, z, t)/Z2(1, 1, 1, 0) for k ≥ 1, where S4 ⊂ P5

is a cone over the quartic normal rational curve ⊂ P4.*4

Q-Fano: V ′ is a Q-Fano threefold with the Picard number %(V ′) = 1. More
precisely, the classification of the pair (V ′, D′) up to deformations is given as
in the following fashion:

(i) (P(1, 1, 2, 3),O(6));
(ii) ((6) ⊂ P(1, 1, 2, 3, a), {x4 = 0} ∩ (6)) with a ∈ {3, 4, 5};
(iii) ((6) ⊂ P(1, 1, 2, 2, 3), {x3 = 0} ∩ (6));
(iv) ((6) ⊂ P(1, 1, 1, 2, 3), {x0 = 0} ∩ (6));
(v) (P(1, 1, 1, 2),O(c)) with c ∈ {2, 4};
(vi) ((4) ⊂ P(1, 1, 1, 1, 2), {x0 = 0} ∩ (4));
(vii) ((4) ⊂ P(1, 1, 1, 2, a), {x4 = 0} ∩ (4)) with a ∈ {2, 3};
(viii) (P3,OP3(c)) with c ∈ {1, 2, 3}, (Q3,OQ(c)) with c ∈ {1, 2};
(ix) ((3) ⊂ P(1, 1, 1, 1, 2), {x4 = 0} ∩ (3));
(x) ((3) ⊂ P4,O(1));
(xi) ((2) ∩ (2) ⊂ P5,O(1));
(xii) (B5,O(1)), where B5 ↪→ P6 is a linear section of the Grassmann

variety Gr(2, 5) ↪→ P9 parametrizing lines in P4;

Sketch of the Proof of Theorem 3.1 Let X be an affine algebraic threefold with
log Kodaira dimension κ(X) = −∞. Assume that X has an SNC compacti-
fication X ↪→ (V,D) satisfying the condition (\). Then, by Theorem 1.1, we
have the process (∗) of (LMMP)3 starting with (V, D) ∈ (Dlt)3:

(∗) φ : (V, D)
φ0

· · · → (V 1, D1)
φ1

· · · → · · · · · · φs−1

· · · → (V s, Ds) = (V ′, D′),

in such a way that (V ′, D′) ∈ (Dlt)3 has a structure of (LMfs)3, say π :
(V ′, D′) → W , and X is constructed from the complement X ′ := V ′\D′ via
the composite of suitable half-point attachments (cf. Definition 1.1). More
precisely to say, the morphism π is obtained as the contraction of an extremal
ray R′ ⊂ NE (V ′) which intersects KV ′ + D′ negatively. Since X ′ is affine by

*4In fact, a Mori fiber space of D′3-type is constructed from that of D3-type via the simple
kinds of elementary links explicitly in the framework of Sarkisov Program (cf. [Me02]).
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construction, the general curves l′ from the ray R′ intersects the boundary D′

but are not contained in it. Hence (D′ · l′) ∈ N. (Note that D′ is a Cartier
divisor on V ′.) Since (KV ′ + D′ · l′) < 0, we have (−KV ′ · l′) > 1. Hence the
type of this Mori fiber space π : V ′ → W and the value (D′ · l′) are described
as one of the following:

C2-type: π : V ′ → W is a conic bundle structure over a normal surface W and
(D′ · l′) = 1, where l′ is a smooth fiber of π.

D′
2-type: π : V ′ → W is a quadric bundle over a smooth curve W and (D′ · l′) =

1, where l′ is a generator of rulings on a general fiber F ∼= P1 × P1 of π.

D3, D′
3-type: π : V ′ → W is a P2-fibration over a smooth curve W and 1 ≤

(D′ · l′) ≤ 2, where l′ is a line on a general fiber F ∼= P2 of π.

Q-Fano: V ′ is a Q-Fano threefold with %(V ′) = 1 of Fano index greater than
one. (Indeed, as D′ is Cartier and KV ′ + D′ is negative on V ′, the Fano index
of V ′ is greater than one.)

Then, for the C2, D′
2, D3 and D′

3-types, we have the desired assertions by
the same argument as in [Me02, 5.7.1, 5.7.2, 5.7.3, 5.7.4]. Hence we shall deal
with the case of Q-Fano in what follows. By construction, S′ is a Cartier divisor
on V ′ such that the anti-canonical divisor −KV ′ is written as −KV ′ ≡ ρS′ for
some rational number ρ > 1. Then, by virtue of the result due to V.A. Alexeev
[Al89], we can find a smooth member in the linear system |D′|, say T ′. It
is obvious that T ′ is contained in the smooth locus NonSing(V ′). Hence, the
argument in [C-F93, §4] then can be applied to the present situation without
any modification to obtain the description of the pair (V ′, D′) as stated in
Theorem 3.1.

4. Affine Threefolds with κ(X) ≥ 0

In this section, we shall treat affine algebraic threefolds X with non-
negative Kodaira dimension κ(X) ≥ 0 satisfying (\). Recall that a smooth
affine algebraic surface Y with log Kodaira dimension κ(Y ) = 1 has the struc-
ture of a C∗-fibration over a curve (cf. [Kaw79]). As the three-dimensional
analogue of this result, we are especially interested in the case where κ(X) is of
intermediate dimension, i.e., the case of κ(X) = 1 or 2. The result is stated be-
low (cf. Theorem 4.1). Once we obtain Theorem 1.1, it is not difficult to prove
Theorem 4.1 by making use of Log Abundance Theorem (cf. [K-M-M94]).

Theorem 4.1. Let X be a smooth affine algebraic threefold with non-
negative log Kodaira dimension κ(X) ≥ 0. Suppose that X can be embedded
into a smooth projective threefold (V, D) satisfying the condition (\). Then
the process (∗) of (LMMP)3 starting with the dlt pair (V, D) brings it to a
log minimal model, say (V ′, D′), and X is obtained from X ′ := V ′\D′ via
the composite of suitable half-point attachments unless X ∼= X ′ (cf. Theorem
1.1, Definition 1.1). Moreover, we have the following concerning the fibration
structure on X in case of κ(X) = 1 or 2.
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(1) If κ(X) = 1, then there exists a morphism ψ : X → B onto a smooth
curve B such that a general fiber of ψ is an open algebraic surface with log
Kodaira dimension κ = 0.

(2) If κ(X) = 2, then there exists a C∗-fibration ψ : X → B onto a normal
quasi-projective surface B.

Proof of Theorem 4.1 Let X be an affine algebraic threefold with non-negative
log Kodaira dimension κ(X) ≥ 0. Suppose that X has an SNC compactifi-
cation X ↪→ (V,D) which satisfies (\). The former half of the assertions is
contained in Theorem 1.1. Hence we have only to prove the assertions (1) and
(2). Since KV ′ + D′ is nef and κ(X) = κ(V ′; KV ′ + D′) by Theorem 1.1, Log
Abundance Theorem (cf. [K-M-M94]) implies that the morphism Φ : V ′ → P
defined by the base point free complete linear system |N(KV ′ + D′)| yields a
morphism Ψ : V ′ → W with connected fibers onto a normal projective variety
W of dim (W ) = κ(X) via the Stein factorization. We consider the restriction
ψ′ := Ψ|X′ : X ′ → B of Ψ onto the open affine subset X ′ = V ′\D′. On the
other hand, as the original affine threefold X is constructed from X ′ via the
composite of suitable half-point attachments, we may assume that X is ob-
tained as the complement X = Ṽ \D̃, where Ṽ is reached via the composite of
suitable weighted blow-ups at smooth points (the weights of weighted blow-ups
here are determined by the types of appearing half-point attachments), say
σ : Ṽ → V ′, with centers contained in the proper transforms of D′, and D̃ is
the proper transform on Ṽ of D′. Let ψ := (Ψ ◦ σ)|X : X → B denote the
restriction of Ψ ◦ σ onto the complement X = Ṽ \D̃. It is then obvious that
a general fiber of ψ coincides with that of ψ′. In what follows, we consider
according to κ(X) = 1 or 2, separately.

Case: κ(X) = 1. Then W is a smooth projective curve and a general fiber
F ′ of Ψ is a smooth projective surface with (KV ′ + D′)|F ′ = KF ′ + D′|F ′ = 0.
Since (V ′, D′) is a three-dimensional dlt pair, we have (D′

j , ∆
′
j) ∈ (Dlt)2 for an

irreducible component D′
j of the boundary D′, where ∆′

j := DiffD′
j
(D′−D′

j) (cf.
[Ko-Mo98, Chapter 5]). More precisely, as V ′ is terminal (see the argument
in Step 1 in the proof of Lemma 2.17), we have ∆′

j = (
∑

k 6=j D′
k)|D′

j
. In

particular, the boundary components D′
j ’s are normal and intersect normally

to each other. Hence we may assume that D′|F ′ is a reduced SNC divisor on
F ′. We then have κ(F ′0) = κ(F ′; KF ′ + D′|F ′) = 0, where F ′0 := F ′\(D′ ∩ F ′)
is the complement. Thus it follows that a general fiber F ′0 of ψ : X → B is a
smooth open algebraic surface with log Kodaira dimension κ = 0.

Case: κ(X) = 2. In this case, W is a normal projective surface. Let
C ⊂ W be a general smooth curve, G := Ψ∗(C) ⊂ V ′ the pull-back of C,
and l a general fiber of Ψ|G : G → C. If (D′ · l) ≤ 0, then the affineness of
X ′ implies that l ⊂ D′. This is absurd. Hence we have (D′ · l) > 0. Then
(−KG · l)G = (−KV ′ · l) = (D′ · l) > 0, thus we know that l is isomorphic
to P1 and (D′ · l) = 2. Therefore, it follows that ψ : X → B gives rise to a
C∗-fibration over a normal quasi-projective surface as desired.

Thus we complete the proof of Theorem 4.1. ¤
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