ON THE TRUNCATED SMALL FUNCTION THEOREM IN
NEVANLINNA THEORY

KATSUTOSHI YAMANOI

1. INTRODUCTION

The main purpose of this paper is to prove the theorem below, which improves upon
a result of [Y] by eliminating the hypothesis that b : B — M is Zariski dense and by
establishing the independence of the constant C' from g : Y — X. As we shall see later,
this theorem unifies two main results of [Y]: the truncated g-small function theorem, and
the height inequality for curves over function fields conjectured by P. Vojta [V2]. To state
our theorem explicitly, we need one definition.

Definition of the exceptional locus . Let X and M be smooth complex projective
varieties, and let p : X — M be a surjective morphism where the relative dimension
of X over M is equal to one. Let D C X be a reduced divisor. The exceptional locus
Z(X,M,p, D) is a proper Zariski closed subset of M defined as follows: Let U be the set
of all Zariski open subsets U on M such that (1) the restriction p|y : p~'(U) — U is a
smooth morphism, and (2) the restriction of the divisor D on the fiber p~!(z) is a reduced
divisor for every point x € U. Put

Z=Z(X,M,p,D)=M\|]JU.
veu
Then, since X is smooth and D is reduced, this Z is a proper Zariski closed subset of M.

Now we state our main result. (The notation in the theorem concerning Nevanlinna
theory will be given in the body of this paper.)

Theorem . Let X, M, p and D be the same as above. We denote by Kx;n = Kx —p* Ky
the relative canonical line bundle. Let L and E be ample line bundles on X and M,
respectively, and let € > 0. Then there exists a positive constant C' = C(X,M,p, D, L, E,¢)
with the following property: Let Y and B be Riemann surfaces with proper, surjective
holomorphic maps my :' Y — C and ng : B — C. Assume that my factors through g,
i.e., there exists a proper, surjective holomorphic map m :Y — B such that my = mgom.
Consider the following commutative diagram of holomorphic maps where g is non-constant.

y 24— X
FJ( J/p
B — M
Assume that b(B) ¢ Z(X, M,p, D) and g(Y') ¢ supp D. Then we have

(1.0.1) T(r,g, Kx/m(D)) < N(r,g, D) + Nyamy (1)
+eT(r,g, L)+ C(T(r,b, E) + Neamnp(r)) + O(1) ||



Here the symbol “||” means that the stated estimate holds for r > 0 outside some
exceptional interval with finite Lebesgue measure. Our theorem has a non-trivial conclusion
even for the case that g and b are not transendental. Namely, we have the following

Corollary 1. Let X, M, p, D, L and E be the same as the theorem, and let € > 0. Then
there is a positive constant C' = C(X, M,p, D, L, E, €) with the following property: LetY
and B be compact Riemann surfaces with a proper, surjective holomorphic map 7 : Y — B.
Consider the following commutative diagram of holomorphic maps where g is non-constant.

y 4. X

Wl lp

Assume that b(B) ¢ Z(X, M,p, D) and g(Y') ¢ supp D. Then we have

deg " Kx/m (D) <7(g, D,Y)+2genus(Y) + e deg gL
+ C(degm) (deg b*E + genus(B) + 1) .

Here we denote by 7(g, D,Y’) the cardinal number of the finite set {z € Y;g(z) € D}.
If we apply this corollary to the case that M is a compact Riemann surface, B = M and
b = id,s, we immediately get the height inequality for curves over function fields, which is
a special case of a conjecture proposed by Vojta [V2]. See also [Y, Section 9].

The proof of the theorem basically follows the procedure of the proof of [Y, Corollary
3], where the estimate (1.0.1) is proved under the additional condition that b(B) is Zariski
dense in M. Also the independence of the constant C' from Y, B, 7, g and b is our new
observation.

The plan of this paper is the following. In section 2, we introduce notation and prelim-
inary results. In section 3, we prove two lemmas which will be needed for the theorem.
In section 4, we prove the theorem. In section 5, we derive Corollary 1 from the theorem.
Our theorem implies the truncated g-small function theorem very simply. We shall explain
this in section 6.

Correction to the literature [Y]. On the last sentence of page 226, the condition

“when r ¢ E for some exceptional set £ C R+(”
should be
“when r > 2 and r ¢ E for some exceptional set £ C R+5”.

While we have estimated the exceptional interval E by | dloglogr < oo in [Y], we shall
estimate E by [, dr < oo in this paper.

2. NOTATION AND PRELIMINARIES

2.1. Notation. Let Y be a Riemann surface, and let {2 C Y be a relatively compact open
subset. Let X be a smooth projective variety, and let D be an effective divisor. Given a
holomorphic map ¢ : Y — X such that ¢g(Y) ¢ supp D, we put

n(g,D,Q) = Z min{1, ord, ¢*D} = card (2 Nsupp ¢* (D)) .
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Let w be a smooth (1,1)-form on X. We put

A(g,Q,w):/g*w.

Q

Let B be another Riemann surface, and let ' be a relatively compact open subset of B.
Given a proper, surjective holomorphic map 7 : Y — B, we put

disc(m, Q) = Z ord,(ram ).
zem—1(QY)
Here we denote by ram 7 the ramification divisor of 7w, which is a divisor on Y.
Now we introduce the notation of Nevanlinna theory. We consider the case B = C; this

means that we consider a proper, surjective holomorphic map 7 : ¥ — C and a holomorphic
map g : Y — X. For r > 0, we put C(r) = {z € C; |2| <r} and Y(r) = 7~ }(C(r)). We

set Dy
— 1 "n t
N(r,g9,D) = / n(g, D,Y( ))dt,
degm J; t
1 " Ag,Y(t
I(r,g,w) = / 9, Y(0), ) 4
degm J; t
and 1 c
1 " di t
Nams() = o [ A2y,
degm J; t
Let L be a line bundle on X. Let ||-|]; and || - ||2 be two Hermitian metrics on L. Let
wy and wy be the curvature forms of || - ||; and || - ||2, respectively. Then we have

T(r,g,w1) =T(r,g,w2) +O(1) when r — oo,

which follows by Jensen’s formula (cf. [LC, IV.2.1]). Therefore we define the characteristic
function T'(r, g, L) by
T(r,g,L) =T(r,g,w1)+O(1),
which is well-defined up to bounded function on r.
In this paper, the following Nevanlinna inequality will be used repeatedly (cf. [Y, p.
242]): Given an effective divisor D C X and a holomorphic map ¢ : Y — X such that
g(Y) ¢ D, we have

(2.1.1) N(r,g,D) < T(r,g,[D]) +O(1)

where [D] is the associated line bundle for D. Note that the left hand side of (2.1.1) is
non-negative for r > 1.

2.2. Preliminary results. We introduce two results from [Y] without proofs. For this pur-
pose, we need some notations from moduli theory (cf. [K]). For more details, the reader
is refered to [Y].

Given an integer ¢ > 3, we use the following notation.

Mo, : the moduli space of g-pointed stable curves of genus 0, where M, is a smooth
projective variety.

M, ¢ the Zariski open subset in M, whose points correspond to smooth curves.

Z, : Moy,\Mo,, where Z, is a divisor on M.

Up, — My, : the universal curve, where Uy, is a smooth projective variety and w,
is a proper flat morphism.



o1, -+ ,0, ¢ the universal sections of w,, where o;(Mo,) No;(Mo,) = 0 for i # j.
D, : the divisor on Uy, determined by Y7 0;:(Mo,).
w, * a fixed Kihler form on Uy,
n, ¢ a fixed Kihler form on M.
kq: the curvature form of a fixed smooth Hermitian metric on Ky 3, (D).
J =J?: theset {(i,j,k);1 <i<j<k<q}
(Given o = (i, 5, k) € J)
¢o : the contraction map Uy, — Uz ~ P! obtained by forgetting all the markings
except i, J, k.
Now we state the result of [Y, Theorem 4].

Proposition 1. Let ¢ > 3 be an integer. For all € > 0, there exists a positive constant
C(q,e) > 0 with the following property: LetY and B be Riemann surfaces, and letm:Y —
B be a proper, surjective holomorphic map. Let R C B be a relatively compact, connected
open subset whose boundary consists of piecewise analytic curves, and put F = 7= Y(R).
Consider the following commutative diagram.

Y L) Uo,q

ﬂl le

B —b) MO,q

Assume that b(B) ¢ 2, and that the meromorphic functions p,0g on'Y are non-constant
for all « € J. Then we have

A(gv F’ “q) Sﬁ(gv an F) + diSC(T{', R) + EA(g, Fa Wq)
+ C(g,e)(degm) (A(b, R, mg) +7(b, Z4, R) + p (R) + {(g, OF,w,)) .

Here we denote by £(g, OF,w,) the length of the arc g|sr : OF — Uy, with respect to the
associated Kéhler metric of w,, and we put p*(R) = max{0, —(Euler characteristic of R)}.

Next we state one lemma from [Y, Lemma 5]. Let £ be the unique line bundle on P!
whose degree is equal to one.

Lemma 1. Let o € J. Then there exist a line bundle E, on Mo,q and a divisor =, on
Uo,, such that w,(supp Z,) C supp Z, and

(q - 2)90:»4‘6 = Kﬂo,q/ﬂo,q (Dq) + w;EO! + [Ea’]

We note that the lemma above is stated only for the case a = (1,2, 3) in [Y, Lemma 5].
However the conclusion is obviously valid for all a € J.

3. TWO LEMMAS FOR THE PROOF OF THEOREM

Let V and W be smooth projective varieties, and let 7 : V' — W be a morphism. Let
W, be a non-empty Zariski open subset of W, and put Vo = 771(Wy). Let L; and L, be
line bundles on V', and let £ be an ample line bundle on W. Let Y be the same as the
theorem, and let g : Y — V be a holomorphic map such that g(Y) ¢ V\V,. Under these
situations, we have the following two lemmas.



Lemma 2. Assume that the restrictions Li|y, and Lo|y, are isomorphic on Vy. Then there
is a positive constant C = C(V,W,7,Wy, Ly, La, E) which does not depend on Y and g
such that

|T(r,g,L1) —T(r,g,Ls)| < CT(r,70g,E)+ O(1).

Lemma 3. Assume that the restriction Ly|y, is ample on Vi and that Ly admits a smooth
Hermitian metric whose curvature form is semi-positive on V. Then there is a positive
constant C = C(V, W, 1, Wy, L1, Ly, E) which does not depend on'Y and g such that

T(r,g.Ls) < C(T(r,g,L1) + T(r,7 0 g, E)) + O(1).
Remarks 1. (1) The lemmas above are also true if V is replaced by a finite disjoint union

of smooth projective varieties. To generalize Lemma 2 (resp. Lemma 3) to this case, we
decompose V' into the connected components V1, ..., V,,, and put

C(V7VI/77-7 W07L17L27E) = 112,a<X C(‘/HWT VNW(]uLl

VwE)a

where the constant in the right hand side is obtained in Lemma 2 (resp. Lemma 3). For
a holomorphic map g : Y — V with g(Y) ¢ V\Vy, where Vo = 771 (Wy) as before, we take
a connected component V; such that g(Y') C V; and apply Lemma 2 (resp. Lemma 3) to
the induced map Y — V; to deduce our assertion. Note that the characteristic functions
T(r,g,Ly) and T(r, g, Ls) are defined in the obvious way for our case.

(2) If Ly admits a smooth Hermitian metric whose curvature form is semi-positive, then
we have

(3.0.1) 0 < T(r,g,L1) + O(1).

(8) Assume that there is a morphism & : V. — V' where V' is a smooth projective
variety, and that Ly = &L with some ample line bundle L' on V'. Then Ly admits a
smooth Hermitian metric whose curvature form is semi-positive.

VmL2

Proof of Lemma 2. Since Ly, and Ls|y, are isomorphic, there is a divisor G on V such
that [G] = Ly — Ly and supp G C V\V;. Since FE is ample, we may take linearly equivalent
divisors Hy, ..., H,, on W such that:

e [H)|=---=[H,) =nFE for some positive integer n,
e supp H; N---Nsupp H,, = W\W,,
e 7"H; — G and 7*H; + G are effective divisors on V for alli=1,...,m.

Since g(Y) ¢ V\Vpy, we may take some i such that g(Y) ¢ supp 7*H; Usupp G. Hence by
the Nevanlinna inequality (cf. (2.1.1)), we have
0<T(r,g,[7""H; = G]) + O(1) =nT(r,70g,E) = T(r,g,[G]) + O(1),
and
0<T(r,g [T"Hi+ G])+OQ1) =nT(r,70g,E)+T(r,g,[G]) + O(1).
Thus we obtain
|T(Tvg7 Ll) - T(r7g7 L2)| = |T(T‘,g, [G])| + 0(1) S nT(Ta TOog, E) + 0(1)

This proves our lemma. (Put C'=n.) O
Proof of Lemma 3. Since L1y, is ample, there is a positive integer n such that nLq|y, —
Lsly, is very ample on V. We may take effective divisors Hy, ..., H,, on V such that:
o [Hily] == [Hnlw| = nLily, — La|w,
e supp Hyly, N---Nsupp H,, |y, = 0.



We denote by C7 the positive constant
C(V,W, 7, Wy, [Hi],nLy — Ly, E)

obtained in Lemma 2. Put C" = max;<;<,, Cj, which is a positive constant independent of
Y and g. Since g(Y) ¢ V\Vy, we may take some i such that ¢(Y) ¢ supp H;. Applying
the Nevanlinna inequality (cf. (2.1.1)) and Lemma 2, we get

0<T(r,g,[Hi])+0(1) <T(r,g,nLy — Ly) + C'T(r,70 g, E) + O(1).
Put C' = max{n, C'} to conclude the proof. Here we note the estimate (3.0.1). [

4. PROOF OF THE THEOREM

The proof divides into four steps (from Caim 1 to Claim 4).

4.1. Step 1. We first prove the theorem in the following special case.

Claim 1. 1f (X, M, p, D) = (U4, Mo4, @4, Dy), ¢ > 3, then our theorem is true.

Proof. Note that Z(Uo 4, Moy, @4, D,) = Z,. Hence the non-degeneracy condition on b
assumed in the theorem reads b(B) ¢ Z,. Let L (resp. E) be an ample line bundle on
Uo,q (resp. Mo,q), and let ¢ > 0. Let Y, B, m, g and b be the objects for which we want
to prove Claim 1. (We assume the non-degeneracy conditions b(B) ¢ Z, and g(Y') ¢ D,.)
We consider the following two cases.

Case 1: The functions ¢, o g are non-constant for all « € J. In this case, we first
decompose B(r) = 75" (C(r)), r > 0, into connected components By(r), ..., B,, (r). Then,
we apply Proposition 1 to the case R = B;(r) and add over i = 1,...,u, to obtain

A(g,Y(r), k) <T(g, Dy, Y (r)) + disc(m, B(r)) + eA(g, Y(r), w,)
+ C(q,¢)(degm) <A(b,B(T),nq) +n(b, Z,, B(r +Zp )+ €(g,0Y (r),w )) .

Here C(q,¢) is the constant which appears in Proposition 1. After dividing by r deg 7y,
we integrate the inequality and put

A Sy U UICO PR Sy b > AL 1A

deg Ty t

Then we get
(4.1.1) T(r,g,kq) < N(r,9,Dy) + Neammy (1) — Neam,, () +€T(r, g, w,)

+ C(q,¢) (T(r, b,n,) + N(r,b, Z,) + J(r) + (deg W)L(T‘))
for r > 1. Here we note that ram 7y = 7*(ram7p) + ram 7. Hence we have

disc(my, C(r)) = (deg ) disc(mg, C(r)) + disc(m, B(r))

and
1 " disc(m, B(t))
4.1.2 Nram = — Niam = dt.
(112) ) = N ) = o [
Now we have
Subclaim: The following inequalities hold:
(4.1.3) J(r) < Namrg (1) for r > 1,



(4.1.4) L(r)y=o(T(r,g,wq)) || asr— 0.

Proof of Subclaim. We first prove (4.1.3). We apply Hurwitz’s formula to the proper
i () Bi(r) — C(r) to get

p(Bi(r)) = (deg(msl5,r)) p(C(r)) + disc(mp| ), C(r)).
Here we put p(B;(r)) = —[Euler characteristic of B;(r)], and similarly for p(C(r)). Since
p(C(r)) = —1 and p(B;(r)) > —1, we have
p* (Bi(r) < disc(ml 0y, C(r).
Hence we have Y\ pT(B;(r)) < disc(mp, C(r)), and (4.1.3).

Next we prove (4.1.4) following the method of [M]. In this proof, we denote the covering
map 7wy : Y — C by p to avoid the confusion with the ratio of the circumference 7. Put

gw, = @G’de A dp, where G is a C*-function on Y\{z € Y; p/(z) = 0} with G > 0.
Then we have

Ur) :=0(g,0Y(1),w,) = / Gr dargp
oY (r)

Ar) = Ag, Y (r),w,) = /0 ' ( /a » G2t dargp) dt.

Put 6 = degp. Using the Schwarz inequality, we have the following estimates:

and

d
((r)* < 257rr/ G?*r dargp = 20mr— A(r).
) dr

Again by the Schwarz inequality, we have, for r > 1,

L) = & \/g / S
(4.1.5) ﬁ/ i
<% ([ i/fidt)%(/ﬁ@dt)%
= V2m\/log A(r) — log A(1)\/T(r

Here we put T'(r) = T'(r, g,w,). Let € be a subset of [2,00) defined by
E={nrT(r)* <T'(r)}.

< T'(t) 1
/gdrg/2 T(t)th: @) < 0

Furthermore, for r > 2 and r € £, we have

Then we have

(4.1.6) log A(r) = log (6rT'(r)) < logd + logr + 2log T'(r).
First, if ¢ is transcendental, then
logr
li =0.
AT



Hence, outside the set £ with [, dr < oo, we have, by (4.1.5) and (4.1.6),

L(r)
1m =
r—00,r&& T(’T’)

Next, if g is not transcendental, then

lim A(r) < 0.

Thus we have, by (4.1.5),

lim L(r)

=0.
r—00 T(T)

Hence, we have L(r) = o(T(r)) ||, which proves our assertion. [
We combine (4.1.1) and the subclaim above to get

(4.1.7) T(r, 9. Ky, j7,,(Dq) < N(r,9,Dy) + Neamny (1) + 26T (7, g,w,)
+C(q,¢) (T<T7 b, 77q) + N(T, b, Zq) + NramwB <T>) +0(1) ||

Since L (resp. E) is an ample line bundle on Uy, (resp. My,), we have the following
estimates:

T(r,b,n,) < QT(r,b, E)+ O(1),

T(r,g,wy) < QT(r,9,L)+ O(1),

N(rb,Z,) <QsT(r,b,E) +O(1)  (cf. (2.1.1)),
where (01, Q2 and ()3 are positive constants which depend on ¢, L and M, but do not
depend on Y, B, 7, g, b and €. Hence combining the estimates above with (4.1.7), and
replacing £ with /2@, we obtain the estimate
(4.1.8) T(r, g9, Ky, /i, (D)) < N(r,9,Dy) + Neamny (1) +T(r, g, L)

+Q(T(r,b, E) + Nyam,, (1)) + O(1) ||,

where @ = C(q,¢/2Q2) max{Q1 + @3, 1}. Thus we obtain our assertion in the first case
that the functions ¢, o g are non-constant for all o € 7.

Case 2: Next we consider the other case, i.e., the function ¢, o g is constant for some
a € J. In this case, we have

(4.1.9) T(r,¢a0g,L)=0(1).
By Lemma 1, we have

(4.1.10) (¢=2)T(r,par0g,L) =T(r, 9, Ky, sa1,,(DPg)) + T (1,0, Ear) +T(r, g, [Ear]) +O(1)

for all o € J, where E, is a line bundle on Mo,q, and =, is a divisor on Uo,q with
wy(suppZEn) C Z,. We may take a positive integer m such that mE + E, is an ample
line bundle for every o’/ € J. Then we have

—T(r,b, Ey) <mT(r,b, E)+O(1) foralld' € J.
We denote by ()%, the positive constant
C(Uo,qa Mo,qa Wy, MO,qa Qﬂo’(ﬂ [Eo/]7 E)



obtained in Lemma 2, where Oy . is the trivial line bundle on U 0,4- Since Oy . and [Z,/]
are isomorphic on w, ' (Mog,), and b(B) ¢ Z,, we may apply Lemma 2 to get

~T(r,g,[E]) < Q.LT(r,b, E) + O(1) foralla’ € J.

Put Q" = m + maxycs Q,, which is a positive constant independent of Y, B, 7, g and b.
Then we have

(4.1.11) —T(r,b,Ey) —T(r,g,[2a]) < QT(r,b,E) + O(1) foralla' € J.
Combining (4.1.9), (4.1.10) and (4.1.11), we conclude the following estimate
(4.1.12) T(r,9, Kz, /7,,(Pq)) < QT (r,b, E) + O(1).

Now we go back to the original situation of Claim 1 and combine two cases above. Put
C = max{Q,Q’'}. Then C is a positive constant which depends on ¢, L, F and ¢, but
does not depend on Y, B, 7, g and b. By (4.1.8) and (4.1.12), we get the estimate (1.0.1),
which conclude the proof of Claim 1. [

4.2. Step2. We go back to the general situation of the theorem; let X, M, p and D be the
same as the theorem. To reduce the proof of the theorem to Claim 1, it is convenient to
make the following definition:

Definition 1. A special correspondence € is a commutative diagram:

w

X —/— X' Uo,
(421) pJ/ p’J{ J/wq
M —— M Mo,

with a smooth projective variety M' and a finite disjoint union of smooth projective varieties
X' provided:
(C1) dim M’ = dim¢(M’).
(C2) t(M') ¢ Z(X,M,p,D) and u(M') ¢ Z,.
(C3) p'(X") = M’ for every connected component X" of X'.
(C4) There are a non-empty Zariski open subset U C M’ and an effective divisor G of
X' such that:
(C4a) The restriction p'|y : (p/)"H(U) — U is the base change of p: X — M to U.
(C4b) (T*D + G)|(p’)*1(U) = (w*Dq)red|(p’)*1(U)-
(Cde) (7" Kxpni(D) +[G)) o)) = w*Eag, 71, , (Do)l o)1 )

Remark 2 . By (C2), (C3) and (Cja), we see that T7(X") ¢ supp D for every connected
component X" of X', i.e., 7D is a divisor on X'. Hence by (C3) and (C4b), w*D, is also
a divisor on X'.

If a special correspondence € exists, then we may ”pull-back” the estimate of Claim 1;
we prove the following.

Claim 2. Let X, M, p, D, L, E, and ¢ be the same as the theorem. Let € be a special
correspondence. Then there are a proper Zariski closed subset S = S(X,M,p, D,€) C
t(M'"), and a positive constant C’ = C'(X, M,p, D, L, E, e, €) with the following property:



Let Y, B and 7 be the same as the theorem. Consider the following commutative diagram
of holomorphic maps where ¢ is non-constant.

y . Xx

(4.2.2) di E

Assume that b(B) C t(M’), b(B) ¢ S and g(Y') ¢ supp D. Then we have

(4.23) T(r,9, Kxu(D)) < N(r,9, D) + Neamny () + T (r, g, L)
+ C'(T(r,0, E) 4+ Nramrp(r)) + O(1) |[[.

Proof. We use the notations in Definition 1. The outline of the proof is as follows: We
construct a lifting of (4.2.2):

/

Y’ g X'

b

BI N MI
b/
where Y’ and B’ are finite ramified covering surfaces of Y and B, respectively, and 7’ is
a proper, surjective holomorphic map. Then we apply Claim 1 to the holomorphic maps
wog Y — Uy, and uob : B — My, Finally we compare the terms 7'(r,w o

9, Ky, q/ﬂoq(Dq))v N(r,wo ¢ ,D,), etc., which appear in the resulting estimate, with the

terms T'(r, g, Kx/m (D)), N(r,g, D), etc. to conclude the proof.
In this proof, we denote by

/ / /
Q17Q27Q37”'7 1» 27Q37.'.

positive constants which depend on X, M, p, D, L, E, and €, but do not depend on ¢, Y,
B, 7, g and b.

First we shall find S. Replacing U by a smaller non-empty Zariski open subset, we may
assume the following conditions on U in addition to (C4a), (C4b) and (C4c).

(U1) There is a Zariski open subset Uy C t(M’) such that U = t~!(Uj), and that the
induced map U — Uj is finite and étale. (Note that the induced map M’ — t(M’)
is generically finite by (C1).)

(U2) Let = be an irreducible component of (w*Dy)red|p)-1(v), Which is a divisor on
(p')"Y(U). Then = is smooth, and the restriction p’|= : Z — U is a finite morphism.
(Note that the relative dimension of p'|y : (p')~1(U) — U is equal to one by (C2)
and (C4a).)

(U3) u(U) C My, (cf. (C2))

(U4) M"\U is a divisor.

Put

S =t(M"\t(U).
Then S C t(M’) is a proper Zariski closed subset, which depends on X, M, p, D and €.
We note that, by (U1l),

(4.2.4) tH(M\S) = U.

10



Now let Y, B, m, g and b be the objects in Claim 2 such that b(B) C t(M') and b(B) ¢ S.
We shall prove the estimate (4.2.3), where the constant C” will be found below.

Lemma 4. There exist liftings ¢' : Y' — X' and V' : B' — M’ which fit into the following
commutative diagram:

where 7wy, o and w' are proper, surjective holomorphic maps of Riemann surfaces. Moreover
wy: 1Y — Cand g : B — C, where my: = wyomy and g = wpoTy, satisfy the following
estimates:

(4.2.5) Nram g (1) < Neamy (1) + Q1 T(r, 0, E) + O(1),

(4.2.6) Neam g (1) < Nramr (1) + QoT'(r,b, E) + O(1).

Proof of Lemma 4. We first construct the lifting &’ : B — M’. Let W C M be the
Zariski closure of the image b(B) and let C(W) be the rational function field of W. Let K5
be the field of all meromorphic functions on B. Then we have the injection ¢ : C(W) — Rp
of fields, which is naturally defined by b. By the assumptions b(B) C t(M') and b(B) ¢ S,
we have W C ¢(M’) and W ¢ S. Let W’ C M’ be an irreducible component of ¢t~ (W).
By (4.2.4) and (Ul), we observe that the restriction ¢|y : W/ — W is generically finite.
Hence the function field C(WW') is a finite extension of C(W) with respect to the natural
inclusion C(W) C C(W') defined by ¢|y-.

Let R5 be an algebraic closure of Rz. We consider the fields &, C(W) and C(W') as
subfields of Rz. Then the composite field F' = &g-C(W’) is a finite extension of Rz. Hence
there exist a Riemann surface B’ and a proper, surjective holomorphic map 75 : B' — B
such that the field Kp is isomorphic to F'. We also have the holomorphic map 3 : B’ — W'
where the given inclusion C(W’) C F' is induced from this 3. Let b’ be the composition of 3
and the injection W' — M’. Thus we have constructed B’, b’ and 7. By this construction
we have

(4.2.7) degmy < Q3,

where we denote by Qs the degree of the finite map U — Uy (cf. (U1)).

Next we construct the lifting ¢’ : Y’ — X’. Since the meromorphic function field Ky
is a finite extension of &5 with respect to m, we consider Ry as a subfield of K. Let
" = Ry - R be the composite field. Then F” is a finite extension of Ky and K. Thus
there exist a Riemann surface Y’, where Ky is isomorphic to F’, and proper, surjective
holomorphic maps 71 : Y — Y and 7’ : Y’ — B’. Note that we have a holomorphic map

(gom,bon’): Y — X xpy M'.

11



Taking into account the facts (C4a), (4.2.4) and b(B) ¢ S, we naturally get the holomorphic
map ¢ : Y — X' from the above map (g o 7,0 o 7’). Thus we have obtained the
commutative diagram of the lemma.

We shall prove (4.2.6). By the definitions of B’ and ¥/, the multi-valued morphism
Vomy! : B — M’ defines the distinct morphism on each branch of 7, '. Hence by the
property (Ul) above, we observe that the restriction

ol -1y = (V)N (U) — B
is unramified. Thus we get
supp(ram 72) C supp (')~ (M"\U)),

which yields the estimate

1 " disc(me, B(t)) —
42, dt < (degm)N(r,b/, M
(128) o [ < e N Y MD)

for r > 1 (cf. (U4)). Here we note that ord,(rammy) < degms for z € B’.

Now we shall apply Lemma 2 for the map ¢ : M’ — M to estimate the right hand side
of (4.2.8). Note that the two line bundles O,,, and [M'\U] are isomorphic on U, where
O, is the trivial line bundle on M’. Here, by (U4), we note that M'\U is a divisor on
M'. Taking into account (4.2.4), we denote by Q4 the positive constant

C(M', M,t, M\S,O,,, [M'\U], E)

obtained in Lemma 2. Then we have

N(r, b, M\U) <T(r,t/,[M'\U]) + O(1) (cf. (2.1.1))
< QT (r,tol,E)+ O(1) (cf. Lemma 2)
= Q,T(r,b, E) + O(1).
Hence by (4.2.8) and (4.2.7), we get

1 " disc(ms, B(t)) o
dt < (d N(r, v/, M'\U
(4.2.9) deg Tp [ n = ( €g 772) (T \ )
= Q39,T(r,b, E) + O(1).
Thus by
1 " disc(me, B(t))
N - N = f. (4.1.2
ram 7 g (T) ramnpg (T) deg T /1 ; dt (C ( ))’

we get (4.2.6). (Put Qs = Q39,.)

Next we prove (4.2.5). By the definitions of Y’, 7’ and 7, the multi-valued morphism
m'on; ' 1Y — B’ defines the distinct morphism on each branch of 7r;*. Since m : B’ — B
is unramified over B’\ supp(ram my), we observe that the restriction

71| (e =1 (B supp(ram m2)) * (7') " (B'\ supp(ram m3)) — Y

is unramified. Thus we get

supp(ram ;) C (7)™ (supp(ram 7)),

12



which yields the following estimate for r > 1:

1 /r disc(my, Y (¢ ))dt < degm [" #{Y'(t) Nsupp(ram Wl)}dt
1

deg my t deg 7y t
< deg m #{B ) N supp(ram 7T2)}dt
deg g t
< deg / disc(my, B(t >>dt.
deg g/ t
Here we note that ord,(ramm;) < degm for z € Y. Hence we get
1 " disc(my, Y (1))
Nramw ’ - Nramw - dt f. (4.1.2
) = Ny (1) = g [ ST, (ef. (4.1.2)
< deg m; /r disc(m, B(t))dt
degmp J; t

= Qy(degm )T (r,b, E) + O(1) (cf. (4.2.9)).
Since by the construction of m; and (4.2.7),we have
degm < degmy < Qs.

Thus we get (4.2.5), which proves our lemma. (Put Q; = Q30Q;3.) O
Now we go back to the proof of the claim. We consider the following two cases.
Case 1: wo ¢'(Y') C D,. In this case, we are going to prove the estimate

where Qs will be given below. Let :1, ..., Zg be irreducible components of (w*D, )red|(p ) L)
For i = 1,...,k, we denote by Z; the Zariski closure of Z; in X', and by & :Z; — Z; a

desingularizatlon of Z;. By (U2), Z; is smooth. Thus by leonaka s theorem, we may
assume that & '(Z;) is isomorphic to Z;, where Z; is a Zariski 1 open subset of Z;. Let
&l =, — X’ be the composition of & and the closed immersion Z; — X'.

We look at the morphism top' o0&l : =, — M. Let Q. be the positive constant

C(E, M,top o0&, M\S, (top 0 &) E, (10 &) Kxm(D), E)

obtained in Lemma 3. Here we note the following three facts to ensure the assumption of
Lemma 3:

(1) (top o) ' (M\S) = (po&) '(U)=¢& ().

(4.2.4)

(2) By (Ul) and (U2), the induced morphism &; '(Z;) — M is a composition of the finite
morphism & (Z;) — Uy and the immersion Uy — M. Thus the restriction of the line
bundle (t o p' 0 &)*E on & 1(Z;) is ample.

(3) (top'o&l)* E admits a smooth Hermitian metric whose curvature form is semi-positive
(cf. Remarks 1 (3)).

Put Qs = 2maxi<;<;x Q,. We note that there is some i such that ¢’(Y') C Z; and

g (Y'") ¢ E)\Z;. Hence there is a holomorphic map §’ : Y’ — Z; such that & o g = ¢’
Applymg Lemma 3, we get

T(r,g,(to&) Kxm(D)) < QsT(r,b, E) + O(1).
Since T o0&l 0§’ = gom, we get (4.2.10).
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Case 2: wo ¢g'(Y') ¢ D,. In this case, we are going to prove the following estimate

(4211) T<Ta g, KX/M(D)) S N(T7 g, D) + Nramﬂy (T) + €T<T7 g, L)
+C"(T(r,0, E) + Nram,, (1)) +O(1) ||
where C” is a positive constant given below. Let L’ and E’ be ample line bundles on

Up,, and M, respectively. Let ¢’ be a positive constant. We denote by C” the positive
constant

C(Uo,q, Mo,q, Wy, an Lla Mla 5,)
obtained in Claim 1. By (U3), we may apply Claim 1 to get

(4'2'12> T(T’, wo 9/7 Kgo,q/mo,q (DQ)) < N(T, wo g/v DQ> + Nram“w <T) + ng(T’ wo gl’ L/)
+ C” (T(T, uo b/, El) + NramﬂB/(r)) + O(l) ||

Next we shall estimate the terms on (4.2.12).
Subclaim. We have the following estimates:
(4.2.13)
T(r,g, Kxym(D))+T(r, ¢, [G]) <T(r,wog, Ky, /70, (Dg)) + QT (r,b, E) + O(1),

(4.2.14) N(r,wog',D,) < N(r,g,D)+ N(r,g',G) + Q:;T(r,b, E) + O(1),
(4.2.15) T(r,wog', L') < Qs(T(r,g,L) +T(r,b,E)) + O(1),
(4.2.16) T(r,uol,E") < QT (r,b, E) + O(1).

Proof of (4.2.13). Taking into account (C4c), we denote by Qg the positive constant
C(X', M, top', M\S,w"Kg, x7,,(Dg), 7" Kx/m(D) + [G], E)
obtained in Lemma 2, where we note that (¢ o p')"'(M\S) = (p') 1 (U) (cf. (4.2.4)). Then
by
T(Ta g/7 7_*-[(X/M(l))) - T(Tv g, KX/M(D)) + 0(1)7
we get our estimate (4.2.13) as a direct consequence of Lemma 2.
Proof of (4.2.14). Put F = supp ((w*Dy)rea — 7D — G), which is an effective divisor on
X' (cf. Remark 2). Taking into account (C4b), we denote by Q7 the positive constant
C(X/a M,tOpI,M\S, [F]7QX’7E)
obtained in Lemma 2, where O, is the trivial line bundle on X’. Then we have
N(r,wog',D,) — N(r,g,7*D) — N(r,¢',G) < N(r,¢", F) (for r > 1)
<T(r,¢,[F])+0(1) (cf. (2.1.1))
< Q;T(r,b, E)+ O(1) (cf. Lemma 2).
Hence by
N(r,¢g',7*D) < N(r,g,D) (for r > 1),

we get (4.2.14).
Proof of (4.2.15). By (C4a) and (U1), the induced morphism (p')~*(U) — p~1(Up) is
finite and étale. Since the induced morphism (p')~}(U) — X is a composition of this finite
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morphism (p')~*(U) — p~}(Uy) and the immersion p~'(Uy) — X, the restriction of 7*L on
(p')~1(U) is an ample line bundle. Let Qg be the positive constant

C(X',M,top', M\S, 7*L,w*L’ | F)

obtained in Lemma 3 (cf. Remarks 1 (3)). Then our estimate (4.2.15) is a direct conse-
quence of Lemma 3.

Proof of (4.2.16). Since the induced morphism U — M is a composition of the finite
morphism U — Uy (cf. (Ul)) and the immersion Uy — M, the restriction of t*E on U is
an ample line bundle. Let Qg be the double of the positive constant

C(M',M,t, M\S,t"E, u"E', E)

obtained in Lemma 3 (cf. Remarks 1 (3)). Then our estimate (4.2.16) is a direct conse-
quence of Lemma 3. This conclude the proof of the subclaim. [J

We continue to estimate the terms of (4.2.12). Using (4.2.5), (4.2.6), the subclaim above
and the estimate

N(r,g,G) <T(r,¢d,[G]) +0() (cf. (2.1.1)),

and letting ¢’ = £/Qg, we obtain the desired estimate (4.2.11) where C" is the constant
C" =max{C" e+ Q1 + C"Qy + Qs + Q7 + C" Qo }.

Now we complete the proof of Claim 2 by combining the two cases above. Put C' =
max{Qs, C""}, which is a positive constant independent of Y| B, 7, g and b. Then, by
(4.2.10) and (4.2.11), we obtain the estimate (4.2.3). This conclude the proof of our claim.
0

4.3. Step 3. We may construct many special correspondences by the following.

Claim 3. Let X, M, p and D be the same as the theorem. Let V' C M be an irreducible
Zariski closed subset with V' ¢ Z(X, M,p, D). Then there is a special correspondence €
such that V' = t(M').

Proof. Let v be the generic point of V' in the sense of scheme theory. Since V ¢ Z|
we have v € M\Z. Put k = C(V). Let X, be the fiber of p : X — M over v, and let
D, C X, be the restriction of D. Since v € M\Z, we note that X, is a finite disjoint
union of smooth projective curves over k and that D, is a reduced divisor.

Let o : X, — P; be a finite morphism over k. We shall construct a desired special
correspondence € from « by taking models.

Put F' = ram«, which is a divisor on X,. Let H C P} be a reduced divisor such that
a(supp(D, + F)) € H and deg H > 3. Then since D, is reduced, there is an effective
divisor GGy C X, such that

(4.3.1) (a*(H)).., = Dv+ Go.
By the ramification formula, we have

(4.3.2) Kx,(Dy + Go) = a” Ky (H).
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Note that there is a finite extension &’ of k such that H ®; k' C P}, is a union of &’-rational
points. Then by the moduli-space property, we have the following commutative diagram

/
%) -—
]P)]i,/ ? Z/{(],q

| J=

Spec k' — Mo,

such that the scheme theoretical point uo(Spec k') is contained in M ,, and that:
(433 (W) Dy = H@ K, () Ky, iny (Do) = Koy (H) 4 K.

Put wy = ujoa’, where o’ : X, ®; k' — Py, is induced from « by the field extension. Then
we get the following commutative diagram:

X & X,k 2 Uy,

(4.3.4) pl pk/l lwq

M — Speck! —— Mo,
0 uo

where tg is the natural map induced from v, py is the base change of p to Speck’, and 7,
is the natural map. Using (4.3.1), (4.3.2) and (4.3.3), we have

(4.3.5)  (wgDy)rea = (Dy + Go) @i k', wiKy, xa,,(Po) = (Kx, (Do + Go)) @5 K.

Now, using Hironaka’s theorem, we may take a model of (4.3.4), i.e., a smooth projective
variety M’, a finite disjoint union of smooth projective varieties X', and a morphism
p': X' — M’ such that:

e C(M" =K.
e The generic fiber of p’ is isomorphic to py : X, ®x k' — Speck’.
e X’ M’ and p/ fit into the commutative diagram (4.2.1) where the morphisms w, u,

7 and t are the extensions of wy, ug, 79 and ty, respectively.
e The property (C3) holds.
Then we can easily check that this model of (4.3.4) satisfies the conditions (C1), (C2),
(C3) and (C4a). Define a divisor G on X’ by the Zariski closure of Gy ®; k. Then the
conditions (C4b) and (C4c) are consequences of (4.3.5). Thus we have constructed a special
correspondence € which has the desired property ¢(M’) = V. This proves our claim. O

4.4. Step 4. We shall finish the proof of the theorem. Let X, M, p, D, L, E and ¢
be the objects in the theorem. For each irreducible Zariski closed subset V' C M with
V & Z(X,M,p, D), we denote by €y the special correspondence constructed in Claim 3,
and by Sy the proper Zariski closed subset S(X, M,p, D, €y ) of V' constructed in Claim
2. Let V be the set of irreducible Zariski closed subsets V' C M with V' ¢ Z. We define

the sequence
Vi,Va,. ..
of subsets of V by the following inductive rule. Put V; = {M}. Define V;;; from V; by

Vie1 = U {V € V; V is an irreducible component of Sy }.
Viey;
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Since the number of the irreducible components of Sy is finite for all V' € V, each V; is a
finite set. Since dim Sy < dim V for all V' € V, we have V; = ) for ¢ > dim M + 2. Put

1<i<dim M+1
Then V is a finite set. Put

C(X,M,p,D,L,E,e) =maxC'(X,M,p,D, L, E,¢,Cy),
vey
where the constant C” in the right hand side is obtained in Claim 2.
Now for the objects Y, B, m, g and b for which we want to prove (1.0.1), we may take
a minimal V € V among the elements in V which have the property b(B) C V. Then by
b(B) ¢ Z, we have b(B) ¢ Sy. Hence we may apply Claim 2 to get the estimate (1.0.1).
This proves our theorem. [

5. PROOF OoF COROLLARY 1

In this section, we prove Corollary 1. We use the notation of the corollary.
By the Riemann-Roch theorem, we may take a finite map mp : B — P! such that

(5.0.1) degmp < genus(B) +1 (cf. [H, IV Ex.1.6]).

Put 7y = mgom, By = 15" (C) and Yy = 7, (C), where we consider C C P! as a Zariski
open subset. Then By and Y, are Zariski open subsets of B and Y, respectively. Put
B, = TB|B, : Bo — C and 7y, = 7my|y, : Yo — C. Let by : By — M be the restriction of b,
and let gy : Yo — X be the restriction of g.

We shall apply Nevanlinna theory for by and go. By the definitions of the functions

N(r, g0, D), ]\fmmﬁB0 (r), etc., we get the following estimates:

lim N(r7907D) < 'I’L(g,D,Y)

r—oo  logr —  degmy
Neam,, (1) dj P! 2 B) -2
lim 5 1 diselmp, P) _ 2genus(B) =2 o e g o g)),
r—oo  logr deg g deg g
Neamg, (1) dj P 2 Y) -2
lim ) disclry, B) _ Zeenus(Y) =2 o 1y o),
r—oo  logr deg Ty deg Ty
lim T(r, g0, Kx/mu(D)) _ degg”Kxn(D)
r—00 log r deg Ty
. T(T,go,L) degg*L
lim = ,
r—oo  logr deg 7y
. T(r,by, E) degb*FE
lim = .
r—oo  logr deg g

Now we apply the theorem to Yy, By, 7|y, : Yo — By, go and by. Multiplying the both
hand sides of the resulting estimate by degmy /logr, taking the limit r — oo, and using
the estimates above, we get the estimate

deg " Kx/m(D) <7(g,D,Y) + (2genus(Y') — 2) + 2(deg 7) deg 7
+edegg”L + C(degm) (degb*E + (2 genus(B) — 2) + 2deg7p) .
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Here C' is the positive constant obtained in the theorem. We use (5.0.1) to conclude the
proof. (Replace C' by max{C,4C + 2}.) O

6. THE TRUNCATED ¢-SMALL FUNCTION THEOREM

In this section, we observe that our theorem implies the truncated ¢-small function
theorem very simply.

Let 7 : Y — C be a proper, surjective holomorphic map and let f be a meromorphic
function on Y. We denote by T'(r, f) the spherical characteristic function of f, i.e.,

T(r, f) = delgﬂ/lr (/Y(t) f*wpl) <

!

1
dw N dw
I+ wp)? 2

is the Fubini-Study form on the projective line P'. Since wp: is the curvature form of the
Fubini-Study metric on the line bundle £, we have

T(r, f)=T(r f,L£)+ O(1).

Here, on the right hand side, we consider the meromorphic function f as a holomorphic
map f:Y — P We also put

where

wp1 =

N(r, ) =N(r, f,(c0)),
which counts the number of poles of f without counting multiplicities.

Corollary 2. Let Y, B, m be the same as the theorem. Recall that Kg s the field of
all meromorphic functions on B. Let ®(z) = Y1  a;x" € Kglz] be a polynomial in one
variable with coefficients in Kp. Assume that the equation ®(x) = 0 has no multiple
solutions in an algebraic closure of Kg. Let f be a non-constant meromorphic function on
Y such that ® o f # 0 as elements in Ry, where ® o f is a meromorphic function on'Y
defined by

q

2o f(2) = Y alw(2)(f(2)

=0

Then for all € > 0, there exists a positive constant C() > 0 such that

(q—2—e)T(r,f) <N (r, <I> i f) + Nramy (1) +C(€) (Nramm('r’) + ZT('/’, al-)) +0(1) ||.

=0

Remark 3 . The proof will show that the constant C(e) depends only on € and q. It is an
interesting open problem to find an explicit upper bound for C(e).

Proof. Put P, =P x --- x P! and let 7, : P, — P! be the i-th projection. Put
—_———

q factors

q
L,= Z 7 L,
i=1
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which is an ample line bundle on P,. Let x be the inhomogeneous coordinate of P! =
C U {oo}. We define a rational function ¥, on P, by

q

U, = Z(:L’ 0 Tip1)(T 0 Tyn)"

=0

We denote by D, the zero locus of ¥,, which is a reduced divisor on P,;5. We apply the
theorem to the following case:

X = P+27 M = P+17 p= (Tla--'77q+1)7 D:Dq7
L=1Ly2 E=Ls1, g=(aom,...,a,0m, [), b="(ag,...,a,).
Note that the condition

( >¢Z( q+2> Q+17<7-17"'7TQ+1>7DQ)

is equivalent to the fact that ®(x) has no multiple solutions in an algebraic closure of Kg.
Then by the theorem, we get

(6.0.2) T(r,g, KX/M(Dq)) < N(T, 9: Dyg) + Nrammy (1) +€T(r, g, Lg12)
+ C(T(r,b, Lgt1) + Nramrp (1)) + O(1) [,

where C' is the positive constant obtained in the theorem. Put

W = Pq+2\ (Ug;r11751<00) U qurll(o)) .

Then the restriction of ¥, on W gives a holomorphic map ¥ |y : W — P!. Hence by
V,0g9=®o f, we conclude

N(r,g,Dq)§N< ! )JrZNral +N<rai)+0()

"®o f q
(6.0.3)
— 1
<N <r, o f) + 2;T(r, a;) + O(1).
Since [Dy] = q7;, 5L + S L and Kx/n = =27, L, we have
q
(6.04) T(r.g. Kxppa(Dy)) = (0 = 2T(r, f) + D T(r.a:) + O(1).
=0
We also note the following two estimates:
q
(605) T<T7 g, Lq+2) = T(T‘, f) + ZT(T7 ai) + O(l)v
i=0
q
(6.0.6) T(r,b, Lys1) = _T(r,a;) + O(1).

1=0
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Now by (6.0.2)-(6.0.6), we get

(q -2 - 5>T(T, f) < N (T, (I)Lof) + Nramﬂy(r)

+2+C+¢) <i T(r, ai)> + CNiamps (1) + O(1) |

We replace C' by max{C, 2+ C + ¢} to conclude the proof. [

Corollary 3. Let ai(2),...,a4(2) and f(z) be distinct meromorphic functions on C. As-
sume that T(r,a;) = o(T(r, f)) || asr — oo fori=1,...,q. Then we have

(- 1-97(. 1) <K )+ 38 (r 52— ) +0) |

for all e > 0.

Proof. By post-composing f,ay,...a, with a suitable rotation of P!, we may assume
that a;(z) £ 0,00 for all i = 1,...,q. We put by(2) =0, bi(z) = 1/a;(2),i=1,...,q, and
g(z) =1/f(z). Now we apply Corollary 2 for ®(x) = (x — bo(2))(x — b1(2)) - - - (x — by(2))
to get

(0= 1-7() < (1 o)+ o(T(r9) + 001 |

Since

T(r,g) =T(r, [)

and
q

¥ (g ) =5+ 53 o) ot

i=1

we get our corollary. [
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