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1. Introduction

The main purpose of this paper is to prove the theorem below, which improves upon
a result of [Y] by eliminating the hypothesis that b : B → M is Zariski dense and by
establishing the independence of the constant C from g : Y → X. As we shall see later,
this theorem unifies two main results of [Y]: the truncated q-small function theorem, and
the height inequality for curves over function fields conjectured by P. Vojta [V2]. To state
our theorem explicitly, we need one definition.

Definition of the exceptional locus . Let X and M be smooth complex projective
varieties, and let p : X → M be a surjective morphism where the relative dimension
of X over M is equal to one. Let D ⊂ X be a reduced divisor. The exceptional locus
Z(X, M, p, D) is a proper Zariski closed subset of M defined as follows: Let U be the set
of all Zariski open subsets U on M such that (1) the restriction p|U : p−1(U) → U is a
smooth morphism, and (2) the restriction of the divisor D on the fiber p−1(x) is a reduced
divisor for every point x ∈ U . Put

Z = Z(X, M, p, D) = M\
⋃

U∈U
U.

Then, since X is smooth and D is reduced, this Z is a proper Zariski closed subset of M .

Now we state our main result. (The notation in the theorem concerning Nevanlinna
theory will be given in the body of this paper.)

Theorem . Let X, M , p and D be the same as above. We denote by KX/M = KX−p∗KM

the relative canonical line bundle. Let L and E be ample line bundles on X and M ,
respectively, and let ε > 0. Then there exists a positive constant C = C(X, M, p, D, L, E, ε)
with the following property: Let Y and B be Riemann surfaces with proper, surjective
holomorphic maps πY : Y → C and πB : B → C. Assume that πY factors through πB,
i.e., there exists a proper, surjective holomorphic map π : Y → B such that πY = πB ◦ π.
Consider the following commutative diagram of holomorphic maps where g is non-constant.

Y
g−−−→ X

π



y



yp

B −−−→
b

M

Assume that b(B) 6⊂ Z(X, M, p, D) and g(Y ) 6⊂ supp D. Then we have

(1.0.1) T (r, g, KX/M(D)) ≤ N(r, g, D) + Nram πY
(r)

+ εT (r, g, L) + C (T (r, b, E) + Nram πB
(r)) + O(1) ||.
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Here the symbol “||” means that the stated estimate holds for r > 0 outside some
exceptional interval with finite Lebesgue measure. Our theorem has a non-trivial conclusion
even for the case that g and b are not transendental. Namely, we have the following

Corollary 1. Let X, M , p, D, L and E be the same as the theorem, and let ε > 0. Then
there is a positive constant C = C(X, M, p, D, L, E, ε) with the following property: Let Y
and B be compact Riemann surfaces with a proper, surjective holomorphic map π : Y → B.
Consider the following commutative diagram of holomorphic maps where g is non-constant.

Y
g−−−→ X

π



y



yp

B −−−→
b

M

Assume that b(B) 6⊂ Z(X, M, p, D) and g(Y ) 6⊂ supp D. Then we have

deg g∗KX/M (D) ≤ n(g, D, Y )+2 genus(Y ) + ε deg g∗L

+ C(deg π) (deg b∗E + genus(B) + 1) .

Here we denote by n(g, D, Y ) the cardinal number of the finite set {z ∈ Y ; g(z) ∈ D}.
If we apply this corollary to the case that M is a compact Riemann surface, B = M and
b = idM , we immediately get the height inequality for curves over function fields, which is
a special case of a conjecture proposed by Vojta [V2]. See also [Y, Section 9].

The proof of the theorem basically follows the procedure of the proof of [Y, Corollary
3], where the estimate (1.0.1) is proved under the additional condition that b(B) is Zariski
dense in M . Also the independence of the constant C from Y , B, π, g and b is our new
observation.

The plan of this paper is the following. In section 2, we introduce notation and prelim-
inary results. In section 3, we prove two lemmas which will be needed for the theorem.
In section 4, we prove the theorem. In section 5, we derive Corollary 1 from the theorem.
Our theorem implies the truncated q-small function theorem very simply. We shall explain
this in section 6.

Correction to the literature [Y]. On the last sentence of page 226, the condition

“when r 6∈ E for some exceptional set E ⊂ R>0”

should be

“when r > 2 and r 6∈ E for some exceptional set E ⊂ R>2”.

While we have estimated the exceptional interval E by
∫

E
d log log r < ∞ in [Y], we shall

estimate E by
∫

E
dr <∞ in this paper.

2. Notation and Preliminaries

2.1. Notation. Let Y be a Riemann surface, and let Ω ⊂ Y be a relatively compact open
subset. Let X be a smooth projective variety, and let D be an effective divisor. Given a
holomorphic map g : Y → X such that g(Y ) 6⊂ supp D, we put

n(g, D, Ω) =
∑

x∈Ω

min{1, ordx g∗D} = card (Ω ∩ supp g∗(D)) .
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Let ω be a smooth (1,1)-form on X. We put

A(g, Ω, ω) =

∫

Ω

g∗ω.

Let B be another Riemann surface, and let Ω′ be a relatively compact open subset of B.
Given a proper, surjective holomorphic map π : Y → B, we put

disc(π, Ω′) =
∑

x∈π−1(Ω′)

ordx(ram π).

Here we denote by ramπ the ramification divisor of π, which is a divisor on Y .
Now we introduce the notation of Nevanlinna theory. We consider the case B = C; this

means that we consider a proper, surjective holomorphic map π : Y → C and a holomorphic
map g : Y → X. For r > 0, we put C(r) = {z ∈ C; |z| < r} and Y (r) = π−1(C(r)). We
set

N(r, g, D) =
1

deg π

∫ r

1

n(g, D, Y (t))

t
dt,

T (r, g, ω) =
1

deg π

∫ r

1

A(g, Y (t), ω)

t
dt

and

Nram π(r) =
1

deg π

∫ r

1

disc(π, C(t))

t
dt.

Let L be a line bundle on X. Let || · ||1 and || · ||2 be two Hermitian metrics on L. Let
ω1 and ω2 be the curvature forms of || · ||1 and || · ||2, respectively. Then we have

T (r, g, ω1) = T (r, g, ω2) + O(1) when r →∞,

which follows by Jensen’s formula (cf. [LC, IV.2.1]). Therefore we define the characteristic
function T (r, g, L) by

T (r, g, L) = T (r, g, ω1) + O(1),

which is well-defined up to bounded function on r.
In this paper, the following Nevanlinna inequality will be used repeatedly (cf. [Y, p.

242]): Given an effective divisor D ⊂ X and a holomorphic map g : Y → X such that
g(Y ) 6⊂ D, we have

(2.1.1) N(r, g, D) ≤ T (r, g, [D]) + O(1)

where [D] is the associated line bundle for D. Note that the left hand side of (2.1.1) is
non-negative for r > 1.

2.2. Preliminary results. We introduce two results from [Y] without proofs. For this pur-
pose, we need some notations from moduli theory (cf. [K]). For more details, the reader
is refered to [Y].

Given an integer q ≥ 3, we use the following notation.

M0,q : the moduli space of q-pointed stable curves of genus 0, whereM0,q is a smooth
projective variety.

M0,q : the Zariski open subset inM0,q whose points correspond to smooth curves.
Zq : M0,q\M0,q, where Zq is a divisor onM0,q.

U0,q
$q→M0,q : the universal curve, where U 0,q is a smooth projective variety and $q

is a proper flat morphism.
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σ1, · · · , σq : the universal sections of $q, where σi(M0,q) ∩ σj(M0,q) = ∅ for i 6= j.
Dq : the divisor on U 0,q determined by

∑q
i=1 σi(M0,q).

ωq : a fixed Kähler form on U 0,q.
ηq : a fixed Kähler form onM0,q.
κq: the curvature form of a fixed smooth Hermitian metric on KU0,q/M0,q

(Dq).

J = J q : the set {(i, j, k); 1 ≤ i < j < k ≤ q}.
(Given α = (i, j, k) ∈ J )

ϕα : the contraction map U 0,q → U 0,3 ' P
1 obtained by forgetting all the markings

except i, j, k.

Now we state the result of [Y, Theorem 4].

Proposition 1. Let q ≥ 3 be an integer. For all ε > 0, there exists a positive constant
C(q, ε) > 0 with the following property: Let Y and B be Riemann surfaces, and let π : Y →
B be a proper, surjective holomorphic map. Let R ⊂ B be a relatively compact, connected
open subset whose boundary consists of piecewise analytic curves, and put F = π−1(R).
Consider the following commutative diagram.

Y
g−−−→ U0,q

π



y



y$q

B −−−→
b
M0,q

Assume that b(B) 6⊂ Zq and that the meromorphic functions ϕα ◦ g on Y are non-constant
for all α ∈ J . Then we have

A(g, F, κq) ≤n(g,Dq, F ) + disc(π, R) + εA(g, F, ωq)

+ C(q, ε)(deg π)
(
A(b, R, ηq) + n(b,Zq, R) + ρ+(R) + `(g, ∂F, ωq)

)
.

Here we denote by `(g, ∂F, ωq) the length of the arc g|∂F : ∂F → U 0,q with respect to the
associated Kähler metric of ωq, and we put ρ+(R) = max{0,−(Euler characteristic of R)}.

Next we state one lemma from [Y, Lemma 5]. Let L be the unique line bundle on P1

whose degree is equal to one.

Lemma 1. Let α ∈ J . Then there exist a line bundle Eα on M0,q and a divisor Ξα on
U0,q such that $q(supp Ξα) ⊂ suppZq and

(q − 2)ϕ∗
αL = KU0,q/M0,q

(Dq) + $∗
qEα + [Ξα].

We note that the lemma above is stated only for the case α = (1, 2, 3) in [Y, Lemma 5].
However the conclusion is obviously valid for all α ∈ J .

3. Two lemmas for the proof of Theorem

Let V and W be smooth projective varieties, and let τ : V → W be a morphism. Let
W0 be a non-empty Zariski open subset of W , and put V0 = τ−1(W0). Let L1 and L2 be
line bundles on V , and let E be an ample line bundle on W . Let Y be the same as the
theorem, and let g : Y → V be a holomorphic map such that g(Y ) 6⊂ V \V0. Under these
situations, we have the following two lemmas.
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Lemma 2. Assume that the restrictions L1|V0
and L2|V0

are isomorphic on V0. Then there
is a positive constant C = C(V, W, τ, W0, L1, L2, E) which does not depend on Y and g
such that

|T (r, g, L1)− T (r, g, L2)| ≤ CT (r, τ ◦ g, E) + O(1).

Lemma 3. Assume that the restriction L1|V0
is ample on V0 and that L1 admits a smooth

Hermitian metric whose curvature form is semi-positive on V . Then there is a positive
constant C = C(V, W, τ, W0, L1, L2, E) which does not depend on Y and g such that

T (r, g, L2) ≤ C
(
T (r, g, L1) + T (r, τ ◦ g, E)

)
+ O(1).

Remarks 1. (1) The lemmas above are also true if V is replaced by a finite disjoint union
of smooth projective varieties. To generalize Lemma 2 (resp. Lemma 3) to this case, we
decompose V into the connected components V1, . . . , Vm, and put

C(V, W, τ, W0, L1, L2, E) = max
1≤i≤m

C(Vi, W, τ |Vi
, W0, L1|Vi

, L2|Vi
, E),

where the constant in the right hand side is obtained in Lemma 2 (resp. Lemma 3). For
a holomorphic map g : Y → V with g(Y ) 6⊂ V \V0, where V0 = τ−1(W0) as before, we take
a connected component Vi such that g(Y ) ⊂ Vi and apply Lemma 2 (resp. Lemma 3) to
the induced map Y → Vi to deduce our assertion. Note that the characteristic functions
T (r, g, L1) and T (r, g, L2) are defined in the obvious way for our case.

(2) If L1 admits a smooth Hermitian metric whose curvature form is semi-positive, then
we have

(3.0.1) 0 ≤ T (r, g, L1) + O(1).

(3) Assume that there is a morphism ξ : V → V ′, where V ′ is a smooth projective
variety, and that L1 = ξ∗L′ with some ample line bundle L′ on V ′. Then L1 admits a
smooth Hermitian metric whose curvature form is semi-positive.

Proof of Lemma 2. Since L1|V0
and L2|V0

are isomorphic, there is a divisor G on V such
that [G] = L1−L2 and supp G ⊂ V \V0. Since E is ample, we may take linearly equivalent
divisors H1, . . . , Hm on W such that:

• [H1] = · · · = [Hm] = nE for some positive integer n,
• supp H1 ∩ · · · ∩ supp Hm = W\W0,
• τ ∗Hi −G and τ ∗Hi + G are effective divisors on V for all i = 1, . . . , m.

Since g(Y ) 6⊂ V \V0, we may take some i such that g(Y ) 6⊂ supp τ ∗Hi ∪ supp G. Hence by
the Nevanlinna inequality (cf. (2.1.1)), we have

0 ≤ T (r, g, [τ ∗Hi −G]) + O(1) = nT (r, τ ◦ g, E)− T (r, g, [G]) + O(1),

and
0 ≤ T (r, g, [τ ∗Hi + G]) + O(1) = nT (r, τ ◦ g, E) + T (r, g, [G]) + O(1).

Thus we obtain

|T (r, g, L1)− T (r, g, L2)| = |T (r, g, [G])|+ O(1) ≤ nT (r, τ ◦ g, E) + O(1).

This proves our lemma. (Put C = n.) �

Proof of Lemma 3. Since L1|V0
is ample, there is a positive integer n such that nL1|V0

−
L2|V0

is very ample on V0. We may take effective divisors H1, . . . , Hm on V such that:

• [H1|V0
] = · · · = [Hm|V0

] = nL1|V0
− L2|V0

,
• supp H1|V0

∩ · · · ∩ supp Hm|V0
= ∅.
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We denote by C ′
i the positive constant

C(V, W, τ, W0, [Hi], nL1 − L2, E)

obtained in Lemma 2. Put C ′ = max1≤i≤m C ′
i, which is a positive constant independent of

Y and g. Since g(Y ) 6⊂ V \V0, we may take some i such that g(Y ) 6⊂ supp Hi. Applying
the Nevanlinna inequality (cf. (2.1.1)) and Lemma 2, we get

0 ≤ T (r, g, [Hi]) + O(1) ≤ T (r, g, nL1 − L2) + C ′T (r, τ ◦ g, E) + O(1).

Put C = max{n, C ′} to conclude the proof. Here we note the estimate (3.0.1). �

4. Proof of the theorem

The proof divides into four steps (from Caim 1 to Claim 4).

4.1. Step 1. We first prove the theorem in the following special case.
Claim 1. If (X, M, p, D) = (U 0,q,M0,q, $q,Dq), q ≥ 3, then our theorem is true.
Proof. Note that Z(U 0,q,M0,q, $q,Dq) = Zq. Hence the non-degeneracy condition on b

assumed in the theorem reads b(B) 6⊂ Zq. Let L (resp. E) be an ample line bundle on
U0,q (resp. M0,q), and let ε > 0. Let Y , B, π, g and b be the objects for which we want
to prove Claim 1. (We assume the non-degeneracy conditions b(B) 6⊂ Zq and g(Y ) 6⊂ Dq.)
We consider the following two cases.

Case 1: The functions ϕα ◦ g are non-constant for all α ∈ J . In this case, we first
decompose B(r) = π−1

B (C(r)), r > 0, into connected components B1(r), . . . , Bur
(r). Then,

we apply Proposition 1 to the case R = Bi(r) and add over i = 1, . . . , ur to obtain

A(g, Y (r), κq) ≤ n(g,Dq, Y (r)) + disc(π, B(r)) + εA(g, Y (r), ωq)

+ C(q, ε)(deg π)

(

A(b, B(r), ηq) + n(b,Zq, B(r)) +
ur∑

i=1

ρ+(Bi(r)) + `(g, ∂Y (r), ωq)

)

.

Here C(q, ε) is the constant which appears in Proposition 1. After dividing by r deg πY ,
we integrate the inequality and put

L(r) =
1

deg πY

∫ r

1

`(g, ∂Y (t), ωq)

t
dt, J(r) =

1

deg πB

∫ r

1

∑ut

i=1 ρ+(Bi(t))

t
dt.

Then we get

(4.1.1) T (r, g, κq) ≤ N(r, g,Dq) + Nram πY
(r)−NramπB

(r) + εT (r, g, ωq)

+ C(q, ε)
(
T (r, b, ηq) + N(r, b,Zq) + J(r) + (deg π)L(r)

)

for r > 1. Here we note that ram πY = π∗(ram πB) + ram π. Hence we have

disc(πY , C(r)) = (deg π) disc(πB, C(r)) + disc(π, B(r))

and

(4.1.2) Nram πY
(r)−NramπB

(r) =
1

deg πY

∫ r

1

disc(π, B(t))

t
dt.

Now we have
Subclaim: The following inequalities hold:

(4.1.3) J(r) ≤ NramπB
(r) for r > 1,
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(4.1.4) L(r) = o(T (r, g, ωq)) || as r →∞.

Proof of Subclaim. We first prove (4.1.3). We apply Hurwitz’s formula to the proper
covering map πB|Bi(r) : Bi(r)→ C(r) to get

ρ(Bi(r)) =
(
deg(πB|Bi(r))

)
ρ(C(r)) + disc(πB|Bi(r), C(r)).

Here we put ρ(Bi(r)) = −[Euler characteristic of Bi(r)], and similarly for ρ(C(r)). Since
ρ(C(r)) = −1 and ρ(Bi(r)) ≥ −1, we have

ρ+(Bi(r)) ≤ disc(πB|Bi(r), C(r)).

Hence we have
∑ur

i=1 ρ+(Bi(r)) ≤ disc(πB, C(r)), and (4.1.3).
Next we prove (4.1.4) following the method of [M]. In this proof, we denote the covering

map πY : Y → C by p to avoid the confusion with the ratio of the circumference π. Put

g∗ωq =
√
−1
2

G2dp ∧ dp, where G is a C∞-function on Y \{z ∈ Y ; p′(z) = 0} with G ≥ 0.
Then we have

`(r) := `(g, ∂Y (r), ωq) =

∫

∂Y (r)

Gr d arg p

and

A(r) := A(g, Y (r), ωq) =

∫ r

0

(∫

∂Y (t)

G2t d arg p

)

dt.

Put δ = deg p. Using the Schwarz inequality, we have the following estimates:

`(r)2 ≤ 2δπr

∫

∂Y (r)

G2r d arg p = 2δπr
d

dr
A(r).

Again by the Schwarz inequality, we have, for r > 1,

L(r) =
1

δ

∫ r

1

`(t)
dt

t
≤
√

2π

δ

∫ r

1

√

tA′(t)

t
dt

=

√

2π

δ

∫ r

1

√

A′(t)A(t)
√

A(t)t
dt

≤
√

2π

δ

(∫ r

1

A′(t)

A(t)
dt

) 1

2

(∫ r

1

A(t)

t
dt

) 1

2

=
√

2π
√

log A(r)− log A(1)
√

T (r).

(4.1.5)

Here we put T (r) = T (r, g, ωq). Let E be a subset of [2,∞) defined by

E = {r; T (r)2 ≤ T ′(r)}.
Then we have

∫

E
dr ≤

∫ ∞

2

T ′(t)

T (t)2
dt =

1

T (2)
<∞.

Furthermore, for r > 2 and r 6∈ E , we have

(4.1.6) log A(r) = log (δrT ′(r)) ≤ log δ + log r + 2 log T (r).

First, if g is transcendental, then

lim
r→∞

log r

T (r)
= 0.
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Hence, outside the set E with
∫

E dr <∞, we have, by (4.1.5) and (4.1.6),

lim
r→∞,r 6∈E

L(r)

T (r)
= 0.

Next, if g is not transcendental, then

lim
r→∞

A(r) <∞.

Thus we have, by (4.1.5),

lim
r→∞

L(r)

T (r)
= 0.

Hence, we have L(r) = o(T (r)) ||, which proves our assertion. �

We combine (4.1.1) and the subclaim above to get

(4.1.7) T (r, g, KU0,q/M0,q
(Dq)) ≤ N(r, g,Dq) + Nram πY

(r) + 2εT (r, g, ωq)

+ C(q, ε)
(
T (r, b, ηq) + N(r, b,Zq) + NramπB

(r)
)

+ O(1) ||.

Since L (resp. E) is an ample line bundle on U 0,q (resp. M0,q), we have the following
estimates:

T (r, b, ηq) ≤ Q1T (r, b, E) + O(1),

T (r, g, ωq) ≤ Q2T (r, g, L) + O(1),

N(r, b,Zq) ≤ Q3T (r, b, E) + O(1) (cf. (2.1.1)),

where Q1, Q2 and Q3 are positive constants which depend on q, L and M , but do not
depend on Y , B, π, g, b and ε. Hence combining the estimates above with (4.1.7), and
replacing ε with ε/2Q2, we obtain the estimate

(4.1.8) T (r, g, KU0,q/M0,q
(Dq)) ≤ N(r, g,Dq) + Nram πY

(r) + εT (r, g, L)

+ Q
(
T (r, b, E) + NramπB

(r)
)

+ O(1) ||,
where Q = C(q, ε/2Q2) max{Q1 + Q3, 1}. Thus we obtain our assertion in the first case
that the functions ϕα ◦ g are non-constant for all α ∈ J .

Case 2: Next we consider the other case, i.e., the function ϕα ◦ g is constant for some
α ∈ J . In this case, we have

(4.1.9) T (r, ϕα ◦ g,L) = O(1).

By Lemma 1, we have

(4.1.10) (q−2)T (r, ϕα′ ◦g,L) = T (r, g, KU0,q/M0,q
(Dq))+T (r, b, Eα′)+T (r, g, [Ξα′])+O(1)

for all α′ ∈ J , where Eα′ is a line bundle on M0,q, and Ξα′ is a divisor on U 0,q with
$q(supp Ξα′) ⊂ Zq. We may take a positive integer m such that mE + Eα′ is an ample
line bundle for every α′ ∈ J . Then we have

−T (r, b, Eα′) ≤ mT (r, b, E) + O(1) for all α′ ∈ J .

We denote by Q′
α′ the positive constant

C(U0,q,M0,q, $q,M0,q,OU0,q
, [Ξα′], E)
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obtained in Lemma 2, where OU0,q
is the trivial line bundle on U 0,q. Since OU0,q

and [Ξα′ ]

are isomorphic on $−1
q (M0,q), and b(B) 6⊂ Zq, we may apply Lemma 2 to get

−T (r, g, [Ξα′]) ≤ Q′
α′T (r, b, E) + O(1) for all α′ ∈ J .

Put Q′ = m + maxα′∈J Q′
α′ , which is a positive constant independent of Y , B, π, g and b.

Then we have

(4.1.11) −T (r, b, Eα′)− T (r, g, [Ξα′]) ≤ Q′T (r, b, E) + O(1) for all α′ ∈ J .

Combining (4.1.9), (4.1.10) and (4.1.11), we conclude the following estimate

(4.1.12) T (r, g, KU0,q/M0,q
(Dq)) ≤ Q′T (r, b, E) + O(1).

Now we go back to the original situation of Claim 1 and combine two cases above. Put
C = max{Q, Q′}. Then C is a positive constant which depends on q, L, E and ε, but
does not depend on Y , B, π, g and b. By (4.1.8) and (4.1.12), we get the estimate (1.0.1),
which conclude the proof of Claim 1. �

4.2. Step2. We go back to the general situation of the theorem; let X, M , p and D be the
same as the theorem. To reduce the proof of the theorem to Claim 1, it is convenient to
make the following definition:

Definition 1. A special correspondence C is a commutative diagram:

(4.2.1)

X
τ←−−− X ′ w−−−→ U0,q

p



y p′



y



y$q

M ←−−−
t

M ′ −−−→
u
M0,q

with a smooth projective variety M ′ and a finite disjoint union of smooth projective varieties
X ′ provided:

(C1) dim M ′ = dim t(M ′).
(C2) t(M ′) 6⊂ Z(X, M, p, D) and u(M ′) 6⊂ Zq.
(C3) p′(X ′′) = M ′ for every connected component X ′′ of X ′.
(C4) There are a non-empty Zariski open subset U ⊂ M ′ and an effective divisor G of

X ′ such that:
(C4a) The restriction p′|U : (p′)−1(U)→ U is the base change of p : X →M to U .
(C4b) (τ ∗D + G)|(p′)−1(U) = (w∗Dq)red|(p′)−1(U).

(C4c)
(
τ ∗KX/M (D) + [G]

)
|(p′)−1(U) = w∗KU0,q/M0,q

(Dq)|(p′)−1(U).

Remark 2 . By (C2), (C3) and (C4a), we see that τ(X ′′) 6⊂ supp D for every connected
component X ′′ of X ′, i.e., τ ∗D is a divisor on X ′. Hence by (C3) and (C4b), w∗Dq is also
a divisor on X ′.

If a special correspondence C exists, then we may ”pull-back” the estimate of Claim 1;
we prove the following.

Claim 2. Let X, M , p, D, L, E, and ε be the same as the theorem. Let C be a special
correspondence. Then there are a proper Zariski closed subset S = S(X, M, p, D, C) ⊂
t(M ′), and a positive constant C ′ = C ′(X, M, p, D, L, E, ε, C) with the following property:
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Let Y , B and π be the same as the theorem. Consider the following commutative diagram
of holomorphic maps where g is non-constant.

(4.2.2)

Y
g−−−→ X

π



y



yp

B −−−→
b

M

Assume that b(B) ⊂ t(M ′), b(B) 6⊂ S and g(Y ) 6⊂ supp D. Then we have

(4.2.3) T (r, g, KX/M(D)) ≤ N(r, g, D) + Nram πY
(r) + εT (r, g, L)

+ C ′ (T (r, b, E) + Nram πB
(r)) + O(1) ||.

Proof. We use the notations in Definition 1. The outline of the proof is as follows: We
construct a lifting of (4.2.2):

Y ′ g′−−−→ X ′

π′



y



yp′

B′ −−−→
b′

M ′

where Y ′ and B′ are finite ramified covering surfaces of Y and B, respectively, and π ′ is
a proper, surjective holomorphic map. Then we apply Claim 1 to the holomorphic maps
w ◦ g′ : Y ′ → U0,q and u ◦ b′ : B′ → M0,q. Finally we compare the terms T (r, w ◦
g′, KU0,q/M0,q

(Dq)), N(r, w ◦ g′,Dq), etc., which appear in the resulting estimate, with the

terms T (r, g, KX/M(D)), N(r, g, D), etc. to conclude the proof.
In this proof, we denote by

Q1,Q2,Q3, · · · , Q′
1,Q′

2,Q′
3, · · ·

positive constants which depend on X, M , p, D, L, E, and C, but do not depend on ε, Y ,
B, π, g and b.

First we shall find S. Replacing U by a smaller non-empty Zariski open subset, we may
assume the following conditions on U in addition to (C4a), (C4b) and (C4c).

(U1) There is a Zariski open subset U0 ⊂ t(M ′) such that U = t−1(U0), and that the
induced map U → U0 is finite and étale. (Note that the induced map M ′ → t(M ′)
is generically finite by (C1).)

(U2) Let Ξ be an irreducible component of (w∗Dq)red|(p′)−1(U), which is a divisor on
(p′)−1(U). Then Ξ is smooth, and the restriction p′|Ξ : Ξ→ U is a finite morphism.
(Note that the relative dimension of p′|U : (p′)−1(U) → U is equal to one by (C2)
and (C4a).)

(U3) u(U) ⊂M0,q. (cf. (C2))
(U4) M ′\U is a divisor.

Put

S = t(M ′)\t(U).

Then S ⊂ t(M ′) is a proper Zariski closed subset, which depends on X, M , p, D and C.
We note that, by (U1),

(4.2.4) t−1(M\S) = U.
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Now let Y , B, π, g and b be the objects in Claim 2 such that b(B) ⊂ t(M ′) and b(B) 6⊂ S.
We shall prove the estimate (4.2.3), where the constant C ′ will be found below.

Lemma 4. There exist liftings g′ : Y ′ → X ′ and b′ : B′ →M ′ which fit into the following
commutative diagram:

B

Y

M

X

?

π

?

p

-
b

-g

B′

Y ′

M ′

X ′

?
π′

?
p′

-b′

-g′

��	π2

��	
π1

��	t

��	
τ

where π1, π2 and π′ are proper, surjective holomorphic maps of Riemann surfaces. Moreover
πY ′ : Y ′ → C and πB′ : B′ → C, where πY ′ = πY ◦π1 and πB′ = πB ◦π2, satisfy the following
estimates:

(4.2.5) Nram πY ′
(r) ≤ NramπY

(r) +Q1T (r, b, E) + O(1),

(4.2.6) NramπB′
(r) ≤ NramπB

(r) +Q2T (r, b, E) + O(1).

Proof of Lemma 4. We first construct the lifting b′ : B′ → M ′. Let W ⊂ M be the
Zariski closure of the image b(B) and let C(W ) be the rational function field of W . Let KB

be the field of all meromorphic functions on B. Then we have the injection ι : C(W )→ KB

of fields, which is naturally defined by b. By the assumptions b(B) ⊂ t(M ′) and b(B) 6⊂ S,
we have W ⊂ t(M ′) and W 6⊂ S. Let W ′ ⊂ M ′ be an irreducible component of t−1(W ).
By (4.2.4) and (U1), we observe that the restriction t|W ′ : W ′ → W is generically finite.
Hence the function field C(W ′) is a finite extension of C(W ) with respect to the natural
inclusion C(W ) ⊂ C(W ′) defined by t|W ′.

Let KB be an algebraic closure of KB. We consider the fields KB, C(W ) and C(W ′) as
subfields of KB. Then the composite field F = KB ·C(W ′) is a finite extension of KB. Hence
there exist a Riemann surface B ′ and a proper, surjective holomorphic map π2 : B′ → B
such that the field KB′ is isomorphic to F . We also have the holomorphic map β : B ′ →W ′

where the given inclusion C(W ′) ⊂ F is induced from this β. Let b′ be the composition of β
and the injection W ′ →M ′. Thus we have constructed B ′, b′ and π2. By this construction
we have

(4.2.7) deg π2 ≤ Q3,

where we denote by Q3 the degree of the finite map U → U0 (cf. (U1)).
Next we construct the lifting g′ : Y ′ → X ′. Since the meromorphic function field KY

is a finite extension of KB with respect to π, we consider KY as a subfield of KB. Let
F ′ = KY · KB′ be the composite field. Then F ′ is a finite extension of KY and KB′ . Thus
there exist a Riemann surface Y ′, where KY ′ is isomorphic to F ′, and proper, surjective
holomorphic maps π1 : Y ′ → Y and π′ : Y ′ → B′. Note that we have a holomorphic map

(g ◦ π1, b
′ ◦ π′) : Y ′ → X ×M M ′.
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Taking into account the facts (C4a), (4.2.4) and b(B) 6⊂ S, we naturally get the holomorphic
map g′ : Y ′ → X ′ from the above map (g ◦ π1, b

′ ◦ π′). Thus we have obtained the
commutative diagram of the lemma.

We shall prove (4.2.6). By the definitions of B ′ and b′, the multi-valued morphism
b′ ◦ π−1

2 : B → M ′ defines the distinct morphism on each branch of π−1
2 . Hence by the

property (U1) above, we observe that the restriction

π2|(b′)−1(U) : (b′)−1(U)→ B

is unramified. Thus we get

supp(ram π2) ⊂ supp
(
(b′)−1(M ′\U)

)
,

which yields the estimate

(4.2.8)
1

deg πB′

∫ r

1

disc(π2, B(t))

t
dt ≤ (deg π2)N(r, b′, M ′\U)

for r > 1 (cf. (U4)). Here we note that ordx(ramπ2) ≤ deg π2 for x ∈ B′.
Now we shall apply Lemma 2 for the map t : M ′ → M to estimate the right hand side

of (4.2.8). Note that the two line bundles OM ′ and [M ′\U ] are isomorphic on U , where
OM ′ is the trivial line bundle on M ′. Here, by (U4), we note that M ′\U is a divisor on
M ′. Taking into account (4.2.4), we denote by Q4 the positive constant

C(M ′, M, t, M\S,OM ′ , [M ′\U ], E)

obtained in Lemma 2. Then we have

N(r, b′, M ′\U) ≤ T (r, b′, [M ′\U ]) + O(1) (cf. (2.1.1))

≤ Q4T (r, t ◦ b′, E) + O(1) (cf. Lemma 2)

= Q4T (r, b, E) + O(1).

Hence by (4.2.8) and (4.2.7), we get

1

deg πB′

∫ r

1

disc(π2, B(t))

t
dt ≤ (deg π2)N(r, b′, M ′\U)

= Q3Q4T (r, b, E) + O(1).

(4.2.9)

Thus by

NramπB′
(r)−Nram πB

(r) =
1

deg πB′

∫ r

1

disc(π2, B(t))

t
dt (cf. (4.1.2)),

we get (4.2.6). (Put Q2 = Q3Q4.)
Next we prove (4.2.5). By the definitions of Y ′, π′ and π1, the multi-valued morphism

π′ ◦ π−1
1 : Y → B′ defines the distinct morphism on each branch of π−1

1 . Since π2 : B′ → B
is unramified over B′\ supp(ram π2), we observe that the restriction

π1|(π′)−1(B′\ supp(ram π2)) : (π′)−1(B′\ supp(ram π2))→ Y

is unramified. Thus we get

supp(ram π1) ⊂ (π′)−1
(
supp(ramπ2)

)
,
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which yields the following estimate for r > 1:

1

deg πY ′

∫ r

1

disc(π1, Y (t))

t
dt ≤ deg π1

deg πY ′

∫ r

1

#{Y ′(t) ∩ supp(ram π1)}
t

dt

≤ deg π1

deg πB′

∫ r

1

#{B′(t) ∩ supp(ram π2)}
t

dt

≤ deg π1

deg πB′

∫ r

1

disc(π2, B(t))

t
dt.

Here we note that ordx(ramπ1) ≤ deg π1 for x ∈ Y ′. Hence we get

Nram πY ′
(r)−NramπY

(r) =
1

deg πY ′

∫ r

1

disc(π1, Y (t))

t
dt (cf. (4.1.2))

≤ deg π1

deg πB′

∫ r

1

disc(π2, B(t))

t
dt

= Q2(deg π1)T (r, b, E) + O(1) (cf. (4.2.9)).

Since by the construction of π1 and (4.2.7),we have

deg π1 ≤ deg π2 ≤ Q3.

Thus we get (4.2.5), which proves our lemma. (Put Q1 = Q2Q3.) �

Now we go back to the proof of the claim. We consider the following two cases.
Case 1: w ◦ g′(Y ′) ⊂ Dq. In this case, we are going to prove the estimate

(4.2.10) T (r, g, KX/M(D)) ≤ Q5T (r, b, E) + O(1),

whereQ5 will be given below. Let Ξ1, . . . , Ξk be irreducible components of (w∗Dq)red|(p′)−1(U).

For i = 1, . . . , k, we denote by Ξi the Zariski closure of Ξi in X ′, and by ξi : Ξ̃i → Ξi a
desingularization of Ξi. By (U2), Ξi is smooth. Thus by Hironaka’s theorem, we may
assume that ξ−1

i (Ξi) is isomorphic to Ξi, where Ξi is a Zariski open subset of Ξi. Let

ξ′i : Ξ̃i → X ′ be the composition of ξi and the closed immersion Ξi → X ′.
We look at the morphism t ◦ p′ ◦ ξ′i : Ξ̃i →M . Let Q′

i be the positive constant

C
(
Ξ̃i, M, t ◦ p′ ◦ ξ′i, M\S, (t ◦ p′ ◦ ξ′i)

∗E, (τ ◦ ξ′i)
∗KX/M (D), E

)

obtained in Lemma 3. Here we note the following three facts to ensure the assumption of
Lemma 3:

(1) (t ◦ p′ ◦ ξ′i)
−1
(
M\S

)
=

(4.2.4)
(p′ ◦ ξ′i)

−1(U) = ξ−1
i (Ξi).

(2) By (U1) and (U2), the induced morphism ξ−1
i (Ξi)→M is a composition of the finite

morphism ξ−1
i (Ξi) → U0 and the immersion U0 → M . Thus the restriction of the line

bundle (t ◦ p′ ◦ ξ′i)
∗E on ξ−1

i (Ξi) is ample.
(3) (t◦p′◦ξ′i)∗E admits a smooth Hermitian metric whose curvature form is semi-positive

(cf. Remarks 1 (3)).
Put Q5 = 2 max1≤i≤kQ′

i. We note that there is some i such that g′(Y ′) ⊂ Ξi and

g′(Y ′) 6⊂ Ξi\Ξi. Hence there is a holomorphic map g̃′ : Y ′ → Ξ̃i such that ξ′i ◦ g̃′ = g′.
Applying Lemma 3, we get

T (r, g̃′, (τ ◦ ξ′i)
∗KX/M(D)) ≤ Q5T (r, b, E) + O(1).

Since τ ◦ ξ′i ◦ g̃′ = g ◦ π1, we get (4.2.10).
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Case 2: w ◦ g′(Y ′) 6⊂ Dq. In this case, we are going to prove the following estimate

(4.2.11) T (r, g, KX/M(D)) ≤ N(r, g, D) + NramπY
(r) + εT (r, g, L)

+ C ′′′(T (r, b, E) + NramπB
(r)
)

+ O(1) ||
where C ′′′ is a positive constant given below. Let L′ and E ′ be ample line bundles on
U0,q and M0,q, respectively. Let ε′ be a positive constant. We denote by C ′′ the positive
constant

C(U0,q,M0,q, $q,Dq, L
′, M ′, ε′)

obtained in Claim 1. By (U3), we may apply Claim 1 to get

(4.2.12) T (r, w ◦ g′, KU0,q/M0,q
(Dq)) ≤ N(r, w ◦ g′,Dq) + NramπY ′

(r) + ε′T (r, w ◦ g′, L′)

+ C ′′ (T (r, u ◦ b′, E ′) + Nram πB′
(r)
)

+ O(1) ||.
Next we shall estimate the terms on (4.2.12).

Subclaim. We have the following estimates:
(4.2.13)

T (r, g, KX/M(D)) + T (r, g′, [G]) ≤ T (r, w ◦ g′, KU0,q/M0,q
(Dq)) +Q6T (r, b, E) + O(1),

(4.2.14) N(r, w ◦ g′,Dq) ≤ N(r, g, D) + N(r, g′, G) +Q7T (r, b, E) + O(1),

(4.2.15) T (r, w ◦ g′, L′) ≤ Q8(T (r, g, L) + T (r, b, E)) + O(1),

(4.2.16) T (r, u ◦ b′, E ′) ≤ Q9T (r, b, E) + O(1).

Proof of (4.2.13). Taking into account (C4c), we denote by Q6 the positive constant

C(X ′, M, t ◦ p′, M\S, w∗KU0,q/M0,q
(Dq), τ

∗KX/M (D) + [G], E)

obtained in Lemma 2, where we note that (t ◦ p′)−1(M\S) = (p′)−1(U) (cf. (4.2.4)). Then
by

T (r, g′, τ ∗KX/M (D)) = T (r, g, KX/M(D)) + O(1),

we get our estimate (4.2.13) as a direct consequence of Lemma 2.
Proof of (4.2.14). Put F = supp

(
(w∗Dq)red− τ ∗D−G

)
, which is an effective divisor on

X ′ (cf. Remark 2). Taking into account (C4b), we denote by Q7 the positive constant

C(X ′, M, t ◦ p′, M\S, [F ],OX′ , E)

obtained in Lemma 2, where OX′ is the trivial line bundle on X ′. Then we have

N(r, w ◦ g′,Dq)−N(r, g′, τ ∗D)−N(r, g′, G) ≤ N(r, g′, F ) (for r > 1)

≤ T (r, g′, [F ]) + O(1) (cf. (2.1.1))

≤ Q7T (r, b, E) + O(1) (cf. Lemma 2).

Hence by

N(r, g′, τ ∗D) ≤ N(r, g, D) (for r > 1),

we get (4.2.14).
Proof of (4.2.15). By (C4a) and (U1), the induced morphism (p′)−1(U) → p−1(U0) is

finite and étale. Since the induced morphism (p′)−1(U)→ X is a composition of this finite
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morphism (p′)−1(U)→ p−1(U0) and the immersion p−1(U0)→ X, the restriction of τ ∗L on
(p′)−1(U) is an ample line bundle. Let Q8 be the positive constant

C(X ′, M, t ◦ p′, M\S, τ ∗L, w∗L′, E)

obtained in Lemma 3 (cf. Remarks 1 (3)). Then our estimate (4.2.15) is a direct conse-
quence of Lemma 3.

Proof of (4.2.16). Since the induced morphism U → M is a composition of the finite
morphism U → U0 (cf. (U1)) and the immersion U0 → M , the restriction of t∗E on U is
an ample line bundle. Let Q9 be the double of the positive constant

C(M ′, M, t, M\S, t∗E, u∗E ′, E)

obtained in Lemma 3 (cf. Remarks 1 (3)). Then our estimate (4.2.16) is a direct conse-
quence of Lemma 3. This conclude the proof of the subclaim. �

We continue to estimate the terms of (4.2.12). Using (4.2.5), (4.2.6), the subclaim above
and the estimate

N(r, g′, G) ≤ T (r, g′, [G]) + O(1) (cf. (2.1.1)),

and letting ε′ = ε/Q8, we obtain the desired estimate (4.2.11) where C ′′′ is the constant

C ′′′ = max{C ′′, ε +Q1 + C ′′Q2 +Q6 +Q7 + C ′′Q9}.

Now we complete the proof of Claim 2 by combining the two cases above. Put C ′ =
max{Q5, C

′′′}, which is a positive constant independent of Y , B, π, g and b. Then, by
(4.2.10) and (4.2.11), we obtain the estimate (4.2.3). This conclude the proof of our claim.
�

4.3. Step 3. We may construct many special correspondences by the following.
Claim 3. Let X, M , p and D be the same as the theorem. Let V ⊂M be an irreducible

Zariski closed subset with V 6⊂ Z(X, M, p, D). Then there is a special correspondence C

such that V = t(M ′).
Proof. Let υ be the generic point of V in the sense of scheme theory. Since V 6⊂ Z,

we have υ ∈ M\Z. Put k = C(V ). Let Xυ be the fiber of p : X → M over υ, and let
Dυ ⊂ Xυ be the restriction of D. Since υ ∈ M\Z, we note that Xυ is a finite disjoint
union of smooth projective curves over k and that Dυ is a reduced divisor.

Let α : Xυ → P1
k be a finite morphism over k. We shall construct a desired special

correspondence C from α by taking models.
Put F = ramα, which is a divisor on Xυ. Let H ⊂ P

1
k be a reduced divisor such that

α(supp(Dυ + F )) ⊂ H and deg H ≥ 3. Then since Dυ is reduced, there is an effective
divisor G0 ⊂ Xυ such that

(4.3.1)
(
α∗(H)

)

red
= Dυ + G0.

By the ramification formula, we have

(4.3.2) KXυ
(Dυ + G0) = α∗KP

1

k
(H).
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Note that there is a finite extension k′ of k such that H⊗k k′ ⊂ P1
k′ is a union of k′-rational

points. Then by the moduli-space property, we have the following commutative diagram

P1
k′

u′

0−−−→ U0,q


y



y$q

Spec k′ −−−→
u0

M0,q

such that the scheme theoretical point u0(Spec k′) is contained inM0,q, and that:

(4.3.3) (u′
0)

∗Dq = H ⊗k k′, (u′
0)

∗KU0,q/M0,q
(Dq) = KP

1

k
(H)⊗k k′.

Put w0 = u′
0 ◦α′, where α′ : Xυ⊗k k′ → P1

k′ is induced from α by the field extension. Then
we get the following commutative diagram:

(4.3.4)

X
τ0←−−− Xυ ⊗k k′ w0−−−→ U0,q

p



y pk′



y



y$q

M ←−−−
t0

Spec k′ −−−→
u0

M0,q

where t0 is the natural map induced from υ, pk′ is the base change of p to Spec k′, and τ0

is the natural map. Using (4.3.1), (4.3.2) and (4.3.3), we have

(4.3.5) (w∗
0Dq)red = (Dυ + G0)⊗k k′, w∗

0KU0,q/M0,q
(Dq) =

(
KXυ

(Dυ + G0)
)
⊗k k′.

Now, using Hironaka’s theorem, we may take a model of (4.3.4), i.e., a smooth projective
variety M ′, a finite disjoint union of smooth projective varieties X ′, and a morphism
p′ : X ′ →M ′ such that:

• C(M ′) = k′.
• The generic fiber of p′ is isomorphic to pk′ : Xυ ⊗k k′ → Spec k′.
• X ′, M ′ and p′ fit into the commutative diagram (4.2.1) where the morphisms w, u,

τ and t are the extensions of w0, u0, τ0 and t0, respectively.
• The property (C3) holds.

Then we can easily check that this model of (4.3.4) satisfies the conditions (C1), (C2),
(C3) and (C4a). Define a divisor G on X ′ by the Zariski closure of G0 ⊗k k′. Then the
conditions (C4b) and (C4c) are consequences of (4.3.5). Thus we have constructed a special
correspondence C which has the desired property t(M ′) = V . This proves our claim. �

4.4. Step 4. We shall finish the proof of the theorem. Let X, M , p, D, L, E and ε
be the objects in the theorem. For each irreducible Zariski closed subset V ⊂ M with
V 6⊂ Z(X, M, p, D), we denote by CV the special correspondence constructed in Claim 3,
and by SV the proper Zariski closed subset S(X, M, p, D, CV ) of V constructed in Claim
2. Let V be the set of irreducible Zariski closed subsets V ⊂ M with V 6⊂ Z. We define
the sequence

V1,V2, . . .

of subsets of V by the following inductive rule. Put V1 = {M}. Define Vi+1 from Vi by

Vi+1 =
⋃

V ′∈Vi

{V ∈ V; V is an irreducible component of SV ′ }.
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Since the number of the irreducible components of SV is finite for all V ∈ V, each Vi is a
finite set. Since dim SV < dim V for all V ∈ V, we have Vi = ∅ for i ≥ dim M + 2. Put

V̂ =
⋃

1≤i≤dim M+1

Vi.

Then V̂ is a finite set. Put

C(X, M, p, D, L, E, ε) = max
V ∈V̂

C ′(X, M, p, D, L, E, ε, CV ),

where the constant C ′ in the right hand side is obtained in Claim 2.
Now for the objects Y , B, π, g and b for which we want to prove (1.0.1), we may take

a minimal V ∈ V̂ among the elements in V̂ which have the property b(B) ⊂ V . Then by
b(B) 6⊂ Z, we have b(B) 6⊂ SV . Hence we may apply Claim 2 to get the estimate (1.0.1).
This proves our theorem. �

5. Proof of Corollary 1

In this section, we prove Corollary 1. We use the notation of the corollary.
By the Riemann-Roch theorem, we may take a finite map πB : B → P1 such that

(5.0.1) deg πB ≤ genus(B) + 1 (cf. [H, IV Ex.1.6]).

Put πY = πB ◦ π, B0 = π−1
B (C) and Y0 = π−1

Y (C), where we consider C ⊂ P1 as a Zariski
open subset. Then B0 and Y0 are Zariski open subsets of B and Y , respectively. Put
πB0

= πB|B0
: B0 → C and πY0

= πY |Y0
: Y0 → C. Let b0 : B0 →M be the restriction of b,

and let g0 : Y0 → X be the restriction of g.
We shall apply Nevanlinna theory for b0 and g0. By the definitions of the functions

N(r, g0, D), NramπB0

(r), etc., we get the following estimates:

lim
r→∞

N(r, g0, D)

log r
≤ n(g, D, Y )

deg πY

,

lim
r→∞

NramπB0

(r)

log r
≤ disc(πB, P1)

deg πB

=
2 genus(B)− 2

deg πB

+ 2 (cf. [H, 2.4]),

lim
r→∞

NramπY0

(r)

log r
≤ disc(πY , P1)

deg πY
=

2 genus(Y )− 2

deg πY
+ 2 (cf. [H, 2.4]),

lim
r→∞

T (r, g0, KX/M(D))

log r
=

deg g∗KX/M (D)

deg πY
,

lim
r→∞

T (r, g0, L)

log r
=

deg g∗L

deg πY
,

lim
r→∞

T (r, b0, E)

log r
=

deg b∗E

deg πB

.

Now we apply the theorem to Y0, B0, π|Y0
: Y0 → B0, g0 and b0. Multiplying the both

hand sides of the resulting estimate by deg πY / log r, taking the limit r → ∞, and using
the estimates above, we get the estimate

deg g∗KX/M(D) ≤ n(g, D, Y ) + (2 genus(Y )− 2) + 2(deg π) deg πB

+ ε deg g∗L + C(deg π) (deg b∗E + (2 genus(B)− 2) + 2 deg πB) .
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Here C is the positive constant obtained in the theorem. We use (5.0.1) to conclude the
proof. (Replace C by max{C, 4C + 2}.) �

6. The truncated q-small function theorem

In this section, we observe that our theorem implies the truncated q-small function
theorem very simply.

Let π : Y → C be a proper, surjective holomorphic map and let f be a meromorphic
function on Y . We denote by T (r, f) the spherical characteristic function of f , i.e.,

T (r, f) =
1

deg π

∫ r

1

(∫

Y (t)

f ∗ωP1

)
dt

t
,

where

ωP1 =
1

(1 + |w|2)2

√
−1

2π
dw ∧ dw̄

is the Fubini-Study form on the projective line P1. Since ωP1 is the curvature form of the
Fubini-Study metric on the line bundle L, we have

T (r, f) = T (r, f,L) + O(1).

Here, on the right hand side, we consider the meromorphic function f as a holomorphic
map f : Y → P

1. We also put

N(r, f) = N(r, f, (∞)),

which counts the number of poles of f without counting multiplicities.

Corollary 2. Let Y , B, π be the same as the theorem. Recall that KB is the field of
all meromorphic functions on B. Let Φ(x) =

∑q
i=0 aix

i ∈ KB[x] be a polynomial in one
variable with coefficients in KB. Assume that the equation Φ(x) = 0 has no multiple
solutions in an algebraic closure of KB. Let f be a non-constant meromorphic function on
Y such that Φ ◦ f 6= 0 as elements in KY , where Φ ◦ f is a meromorphic function on Y
defined by

Φ ◦ f(z) =

q
∑

i=0

ai(π(z))(f(z))i.

Then for all ε > 0, there exists a positive constant C(ε) > 0 such that

(q−2−ε)T (r, f) ≤ N

(

r,
1

Φ ◦ f

)

+NramπY
(r)+C(ε)

(

Nram πB
(r) +

q
∑

i=0

T (r, ai)

)

+O(1) ||.

Remark 3 . The proof will show that the constant C(ε) depends only on ε and q. It is an
interesting open problem to find an explicit upper bound for C(ε).

Proof. Put Pq = P
1 × · · · × P

1

︸ ︷︷ ︸

q factors

, and let τi : Pq → P1 be the i-th projection. Put

Lq =

q
∑

i=1

τ ∗
i L,

18



which is an ample line bundle on Pq. Let x be the inhomogeneous coordinate of P1 =
C ∪ {∞}. We define a rational function Ψq on Pq+2 by

Ψq =

q
∑

i=0

(x ◦ τi+1)(x ◦ τq+2)
i.

We denote by Dq the zero locus of Ψq, which is a reduced divisor on Pq+2. We apply the
theorem to the following case:

X = Pq+2, M = Pq+1, p = (τ1, . . . , τq+1), D = Dq,

L = Lq+2, E = Lq+1, g = (a0 ◦ π, . . . , aq ◦ π, f), b = (a0, . . . , aq).

Note that the condition

b(B) 6⊂ Z(Pq+2, Pq+1, (τ1, . . . , τq+1), Dq)

is equivalent to the fact that Φ(x) has no multiple solutions in an algebraic closure of KB.
Then by the theorem, we get

(6.0.2) T (r, g, KX/M(Dq)) ≤ N(r, g, Dq) + NramπY
(r) + εT (r, g, Lq+2)

+ C (T (r, b, Lq+1) + NramπB
(r)) + O(1) ||,

where C is the positive constant obtained in the theorem. Put

W = Pq+2\
(
∪q+1

i=1 τ−1
i (∞) ∪ τ−1

q+1(0)
)
.

Then the restriction of Ψq on W gives a holomorphic map Ψq|W : W → P1. Hence by
Ψq ◦ g = Φ ◦ f , we conclude

N(r, g, Dq) ≤ N

(

r,
1

Φ ◦ f

)

+

q
∑

i=0

N(r, ai) + N

(

r,
1

aq

)

+ O(1)

≤ N

(

r,
1

Φ ◦ f

)

+ 2

q
∑

i=0

T (r, ai) + O(1).

(6.0.3)

Since [Dq] = qτ ∗
q+2L+

∑q+1
i=1 τ ∗

i L and KX/M = −2τ ∗
q+2L, we have

(6.0.4) T (r, g, KX/M(Dq)) = (q − 2)T (r, f) +

q
∑

i=0

T (r, ai) + O(1).

We also note the following two estimates:

(6.0.5) T (r, g, Lq+2) = T (r, f) +

q
∑

i=0

T (r, ai) + O(1),

(6.0.6) T (r, b, Lq+1) =

q
∑

i=0

T (r, ai) + O(1).
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Now by (6.0.2)-(6.0.6), we get

(q − 2− ε)T (r, f) ≤ N

(

r,
1

Φ ◦ f

)

+ NramπY
(r)

+ (2 + C + ε)

(
q
∑

i=0

T (r, ai)

)

+ CNram πB
(r) + O(1) ||.

We replace C by max{C, 2 + C + ε} to conclude the proof. �

Corollary 3. Let a1(z), . . . , aq(z) and f(z) be distinct meromorphic functions on C. As-
sume that T (r, ai) = o(T (r, f)) || as r →∞ for i = 1, . . . , q. Then we have

(q − 1− ε)T (r, f) ≤ N(r, f) +

q
∑

i=1

N

(

r,
1

f − ai

)

+ O(1) ||

for all ε > 0.

Proof. By post-composing f, a1, . . . aq with a suitable rotation of P1, we may assume
that ai(z) 6≡ 0,∞ for all i = 1, . . . , q. We put b0(z) ≡ 0, bi(z) = 1/ai(z), i = 1, . . . , q, and
g(z) = 1/f(z). Now we apply Corollary 2 for Φ(x) = (x− b0(z))(x − b1(z)) · · · (x− bq(z))
to get

(q − 1− ε)T (r, g) ≤ N

(

r,
1

Φ ◦ g

)

+ o(T (r, g)) + O(1) ||.

Since
T (r, g) = T (r, f)

and

N

(

r,
1

Φ ◦ g

)

= N(r, f) +

q
∑

i=1

N

(

r,
1

f − ai

)

+ o(T (r, f)) ||,

we get our corollary. �
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