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Abstract

This paper studies the class of polyhedrally tight functions in terms
of the basic theorems on convex functions over <n, such as the Fenchel
Duality Theorem, Separation Theorem etc. (Polyhedrally tight func-
tions are those for which the inequalities

yT x ≤ f(y), y ∈ A
in x ∈ A∗ with A,A∗ ⊆ <n can be satisfied as equalities for some
vector x, not necessarily simultaneously.) It is shown, using results in
[6], that the basic theorems hold for polyhedrally tight set functions
provided the concerned functions can be extended to convex/concave
functionals retaining certain essential features. These essential fea-
tures carry over only if the functions are compatible in the sense that
the normal cone structures of the associated polyhedra are related in
a strong way.

1 Introduction

Combinatorial optimization as a subject has benefited from convexity based
methods and a whole subarea, namely polyhedral combinatorics, is concerned
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with this viewpoint towards combinatorics. In polyhedral combinatorics,
structures are studied by first building an appropriate set function (a func-
tion which takes real values on subsets), associating a polyhedron with the
set function and studying properties of the original structure through the
geometrical properties of the polyhedron. A very good example of this ap-
proach is the case of the submodular polyhedron associated with a submodu-
lar set function. For each subset under consideration one writes the inequality
χT

Xx ≤ f(X) where χX is the characteristic vector associated with the set X.
The set of all vectors which satisfy these inequalities is the polyhedron asso-
ciated with the set function. Now, clearly, the function f(·) can be recovered
using the geometrical object, namely the polyhedron, provided for each X,
some vector in the polyhedron actually satisfies χT

Xx = f(X). We call such
functions polyhedrally tight and use them as the basis for our study.

There is a strong case for regarding polyhedrally tight set functions as
‘discrete convex’ functions because they are precisely the class of functions
which can be extended to convex functionals (i.e., convex functions f̂ which
satisfy f̂(λz) = λf̂(z), λ ≥ 0) (see [6]). Submodular set functions possess
a number of properties such as the one implied by the Discrete Separation
Theorem of Frank [2] which are analogous to properties of convex functions
over <n. Quite naturally, they also possess some other special properties.
Now, submodular function theory ‘rests’ on four basic equivalent theorems
which may be called Minkowski Sum Theorem, Discrete Separation Theorem,
Fenchel Duality Theorem, and the Intersection Theorem due to Edmonds [1].
We show in this paper using results in [6] that three of these theorems go
through also for ‘compatible’ polyhedrally tight set functions. The last does
not appear to generalize. Further, in the case of submodular set functions
all four results have integrality counterparts which are equivalent. These do
not appear to generalize.

The primary motivation behind this paper is to understand better certain
techniques, which have worked well for submodular functions. Our main tool
is that of extending the set function to a suitable convex functional.

The outline of the paper is as follows:

• Section 2 is on preliminaries,

• Section 3 on the equivalence of the basic ‘key fact’ convex function
theorems at an elementary level,

• Section 4 on issues related to extending a polyhedrally tight set function
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to a convex functional,

• Section 5 is on an idea due to Hirai [4] which allows us to study poly-
hedrally tight set functions in terms of characteristic inequalities (in
the manner submodular functions are studied in terms of submodular
inequalities),

• Section 6 is on Conclusions.

2 Notation and preliminaries

Vectors are treated as functions such as a : E → < where E is the underlying
set. Set functions f : 2E → < are treated as functions over collections
of characteristic vectors (characteristic vector χX of X ⊆ E takes value
1 on e ∈ X and 0 on e′ /∈ X). This collection is denoted by A ⊆ <E.
For V ⊆ A, C(V ) denotes the cone of nonnegative linear combinations of
vectors in V . A function f̂ : <n → <n is said to be a convex functional iff
f̂(

∑
i=1,··· ,k

λiyi) ≤
∑

i=1,··· ,k
λif̂(yi), whenever λi ≥ 0 and f̂(λy) = λf̂(y) ∀λ ≥ 0.

The polyhedron Pf (P f ) associated with f : A → < is defined by

{x ∈ <E : yT x ≤ f(y), y ∈ A} ({x ∈ <E : yT x ≥ f(y), y ∈ A}).

We say f is polyhedrally tight (pt) (dually polyhedrally tight (dpt)) iff each
defining inequality for Pf (P f ) is satisfied as an equality, not necessarily si-
multaneously. A face F of Pf (P f ) is defined by imposing the additional
condition that some of these inequalities be satisfied as equalities. We asso-
ciate the corresponding set of row vectors with F and denote it by VF . The
normal cone of Pf (P f ) at a face is the collection of all vectors c such that
max c>x

x∈Pf

(min c>x
x∈Pf

) is achieved at the face.

We need the notion of a ‘Legal Dual Generator’ structure (see [6]) which
is a generalization of the structure of generators of normal cones at vertices
of a polyhedron.

A legal dual generator structure G on E is a collection of sets V of vectors
in A ⊆ <E such that

1. If c ∈ <E and c belongs to the cone C(A), then there exist V ∈ G and
λi ≥ 0 such that

∑
i λivi = c and vi ∈ V .
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2. (Intersection property) If V 1, V 2 ∈ G, then C(V 1 ∩ V 2) = C(V 1) ∩
C(V 2).

As noted before A would be made up of 0, 1 vectors. When each V ∈ G
has linearly independent vectors, we say G is simplicial. Given two LDGs G1

and G2, we write G1 ≥ G2 iff for every V2 ∈ G2, there exists a V1 ∈ G1 s.t.
C(V2) ⊆ C(V1). The set of all VF , where F is a vertex of Pf (P f ), is seen to
be an LDG structure which will be denoted by Gf . We have made use of the
following results from [6].

Theorem 1. Let f : 2E → < and g : 2E → < be pt and dpt functions,
respectively. Let f ≥ g and let there be a simplicial LDG structure s.t.
Gf ≥ G and Gg ≥ G. Then there exists a modular function h s.t. f ≥ h ≥ g.

Theorem 2. Let f and g be pt and dpt functions, respectively, on subsets of
S. Let Gf and Gg be LDGs but let Gf 6≥ Gg and Gg be simplicial. Then there
exists a modular function α s.t. f ≥ g +α but such that no modular function
exists between f and g + α.

3 Basic Convexity Theorems

Let A and A∗ be collections of vectors in <n. We assume A∗ to be an
abelian group (closed under subtraction). No condition is imposed on A.
Let f : A → <. Then Pf ∩ A∗ (P f ∩ A∗) is the collection of all vectors x in
A∗ which satisfy

yT x ≤ f(y), ∀y ∈ A (yT x ≥ f(y), ∀y ∈ A).

For two such functions f1 and f2 we have

Pf1 + Pf2 ≡ {x : x = x1 + x2, x1 ∈ Pf1 , x2 ∈ Pf2}
(the Minkowski sum of Pf1 and Pf2). We also define

f ∗(x) ≡ max
y∈A

(xT y − f(y)),

f∗(x) ≡ min
y∈A

(xT y − f(y)).

We will call f ∗ and f∗ convex and concave Fenchel duals, respectively, of f .
We will allow vectors in A∗ to define functions on A in the usual way as

x(y) ≡ xT y, x ∈ A∗, y ∈ A.
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If f : A → < and x ∈ A∗, then x + f denotes the function whose value on
y ∈ A is xT y + f(y). Let f1, f2, g : A → <. We say f1 and f2 satisfy MS
(Minkowski Sum) property if Pf1+f2∩A∗ = Pf1∩A∗+Pf2∩A∗. We say f and
g satisfy DST (Discrete Separation Theorem) property if there exist h ∈ A∗

and δ ∈ < s.t.

f(y)−min
y∈A

(f(y)− g(y)) ≥ hT y + δ ≥ g(y), y ∈ A.

We say f and g satisfy FDT (Fenchel Duality Theorem) property if

min
y∈A

(f(y)− g(y)) = max
x∈A∗

(g∗(x)− f ∗(x)).

Remark. For DST to be satisfied it is necessary that min
y∈A

(f(y)− g(y)) exists.

For FDT to be satisfied g∗, f ∗ must exist and the min and max of the LHS
and RHS must exist. We have deliberately used min and max in place of inf
and sup since, for our arguments of equivalence of the theorems, we need the
appropriate ‘min’ and ‘max’ values to exist.

We show that f and g satisfy DST iff they satisfy FDT. We show a more
limited equivalence between the MS property and the DST property.

Theorem 3. Let f, g : A → < be pt, dpt respectively. Let 0 ∈ A, f(0) =
g(0) = 0. Then f and −g satisfy MS iff f and g−x (∀x ∈ A∗ s.t. f ≥ g−x)
satisfy DST.

Proof. (DST =⇒ MS) Let x ∈ P(f−g) ∩ A∗. Then

yT x ≤ f(y)− g(y), ∀y ∈ A

i.e.,
xT y + g(y) ≤ f(y), ∀y ∈ A.

Hence
x + g ≤ f.

Now −g is pt. Hence x + g is dpt. By DST there exists a vector h ∈ A∗ s.t.

f(y) ≥ h(y) ≥ (x + g)(y)

(noting that f(0) = (x + g)(0) = 0, so that min
y∈A

(f(y) − g(y) − xT y) = 0).

Hence, h ∈ Pf ∩ A∗ and x− h ∈ P−g ∩ A∗. So MS is satisfied by f and −g.
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(MS =⇒ DST) Let f ≥ g−x. Now, −xT y ≤ (f−g)(y). So −x ∈ P(f−g)∩A∗.
We have P(f−g) ∩ A∗ = Pf ∩ A∗ + P−g ∩ A∗.

Hence by MS there exists h ∈ A∗ s.t. h ∈ Pf ∩A∗ and −x−h ∈ P−g∩A∗,
i.e.,

hT y ≤ f(y), ∀y ∈ A,

(−x− h)T y ≤ −g(y), ∀y ∈ A.

Hence f(y) ≥ hT y ≥ g(y)− xT y, i.e., f ≥ h ≥ g − x. Thus DST is satisfied
by f and g − x. Q.E.D.

Theorem 4. Let f, g : A → < be pt, dpt respectively. Then f and g satisfy
DST iff they satisfy FDT.

Proof. (DST =⇒ FDT) We have

f(ŷ)− (min
y∈A

(f(y)− g(y)) ≥ g(ŷ), ∀ŷ ∈ A.

By DST, there exist h ∈ A∗ and δ ∈ < s.t.

f(ŷ)− (min
y∈A

(f(y)− g(y)) ≥ hT ŷ + δ ≥ g(ŷ), ∀ŷ ∈ A.

We now have

hT ŷ − f(ŷ) ≤ −δ − (min
y∈A

(f(y)− g(y))), ∀ŷ ∈ A,

hT ŷ − g(ŷ) ≥ −δ ∀ŷ ∈ A.

Hence (by adding the inequalities),

g∗(h)− f ∗(h) = min
y∈A

(hT y − g(y))−max
y∈A

(hT y − f(y))

≥ min
y∈A

(f(y)− g(y))

However, from the definition of f ∗ and g∗, it is clear that

g∗(x)− f ∗(x) ≤ f(y)− g(y), ∀x ∈ A∗, ∀y ∈ A.

Hence
g∗(h)− f ∗(h) = min

y∈A
(f(y)− g(y))
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and clearly
g∗(h)− f ∗(h) = max

x∈A∗
(g∗(x)− f ∗(x)),

which proves that f and g satisfy FDT.

(FDT =⇒ DST) We have

min
y∈A

(f(y)− g(y)) = max
x∈A∗

(g∗(x)− f ∗(x)).

Let g∗(h) − f ∗(h) correspond to the right-hand side of the above equation.
Now, by definition of f ∗ and g∗,

hT y − f(y) ≤ f ∗(h), ∀y ∈ A

and

hT y − g(y) ≥ g∗(h), ∀y ∈ A.

Hence,

f(y)− (g∗(h)− f ∗(h)) ≥ hT (y)− g∗(h) ≥ g(y),

i.e.,

f(y)−min
ŷ∈A

(f(ŷ)− g(ŷ)) ≥ hT y − g∗(h) ≥ g(y).

Q.E.D.

Remark. If A and A∗ are collections of integral vectors, then g∗(h) would be
integral provided g is integral. Thus if FDT is satisfied, then DST would be
satisfied with δ integral.

At the level of generality that we are working we also have the following
result. The proof is essentially that of Theorem 6.1 of [3].

Theorem 5. If f is pt (dpt), then

f ∗∗ = f (f∗∗ = f).
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Proof. We consider only the pt case. By definition

f ∗(x) ≥ xT y − f(y), ∀y ∈ A.

Hence
f(y) ≥ xT y − f ∗(x), ∀y ∈ A.

Hence
f(y) ≥ max

x∈A∗
(xT y − f ∗(x)) = f ∗∗(y), ∀y ∈ A.

We will construct a vector xy ∈ A∗ s.t.

f(y) = xT
y y − f ∗(xy).

Since f is pt, there exists a vector xy ∈ Pf s.t. f(y) = xT
y y. Now,

f ∗(xy) = max
y∈A

(xT
y y − f(y)) = 0,

since xy ∈ Pf . Hence,
f(y) = xT

y y − f ∗(xy).

This proves the result. Q.E.D.

Corollary. If f1 = f + δ where f is pt (dpt) and δ ∈ <,

f ∗∗1 = f1 ((f1)∗∗ = f1).

Proof. We note that (f + δ)∗ = f ∗ − δ and (f ∗ − δ)∗ = f ∗∗ + δ. The result
follows. Q.E.D.

4 Studying pt functions through convex ex-

tensions

The discussion of the previous section indicates that, in order to consider dis-
crete functions to be ‘convex’ it is desirable that they satisfy one of the basic
convexity theorems, say the Separation or Fenchel Duality Theorem. For pt
functions one could also use Minkowski Sum theorem equivalently. We show
in this section that pt and dpt functions do satisfy the basic theorems pro-
vided they are ‘compatible’ (i.e., there exists an LDG structure G s.t. G ≤ Gf

and G ≤ Gg). If they are incompatible they do not satisfy the basic theorems
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for all practical purposes according to Theorem 2. The theme in this section
is that pt and dpt functions satisfy the basic theorem provided they can be
extended to convex and concave functionals respectively, retaining properties
essential for the theorem to be true for the concerned functionals.

In combinatorial optimization it is often convenient to permit set func-
tions to take nonzero value on the null set. It is therefore natural to work
with functions of the form f + δ where f is a pt function and δ is a constant.
The ideas of extension that we use for polyhedrally tight functions carry
through in this case by introducing an additional dimension. Here we only
sketch the ideas since they have already been elaborated for pt functions in
[6]. Henceforth, we will invariably work with pt functions when we use Pf .
We say an LDG structure G is compatible with f iff G ≤ Gf . We extend f

to a convex function f̂ over <n by

f̂(c) ≡ max c>y
y∈Pf

, c ∈ C(A)

≡ +∞ otherwise.

It is easily directly verified that f̂ is convex. The extension of f when f
is dpt is similar except that we use ‘min’ in place of ‘max’, P f in place of
Pf and −∞ in place of +∞. The extension would of course be concave
in that case. LDGs enter into the picture here. The value of max c>x for
c ∈ C(A) is attained at a vertex v of Pf ; equivalently, c belongs to the normal
cone of Pf at v which is generated by vectors yi, where y>i v = f(yi). These

are precisely the vectors in Vv ∈ Gf . Thus f̂(c) may be computed by first
expressing c as

∑
λiyi, λi ≥ 0 where yi are some of the vectors in Vv and

taking f̂(c) =
∑

λif(yi). Even if c is expressed in a different way in terms

of vectors of Vv, the computed value of f̂(c) would be the same.
Let G ≤ Gf and let c belong to some V ∈ G s.t. C(V ) ⊆ C(Vf ) and

Vf ∈ Gf . The value of f̂(c) computed as
∑

λif(y′i), where c =
∑

λiy
′
i, λi ≥ 0

and y′i ∈ V , would be the same as earlier when the computation was in terms
of Gf (this can be seen by using the above argument using vertices). Now
suppose g is dpt and G is compatible with both Gf and Gg with G ≤ Gf and
G ≤ Gg. We can again use V ∈ G for computing ĝ(c). If g ≤ f , then we can
proceed as follows: we write c as

∑
λiy

′
i, y′i ∈ V , and λi ≥ 0. Then,

f̂(c) =
∑

λif(y′i), ĝ(c) =
∑

λig(y′i).
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But then ĝ(c) ≤ f̂(c). Since f̂ and ĝ are convex and concave, respectively,
and f̂(0) = ĝ(0) = 0, there exists a vector h ∈ <n s.t.

f̂(c) ≥ h>(c) ≥ ĝ(c), ∀c ∈ C(A).

Now, f̂(y) = f(y) (∀y ∈ A) since f is pt. Hence we have f̂(y) = f(y) ≥
h>y ≥ ĝ(y) = g(y) (∀y ∈ A). Thus we have that f and g satisfy DST.

Let us next consider a function of the type f1 = f + δ where f is pt.
A natural attempt to extend f1 to a convex function is to introduce an

additional dimension. We enlarge E to E∪{e0}. Each y ∈ A is now changed
to y0 ∈ A0 where

y0(e) = y(e), ∀e ∈ E,

y0(e0) = 1.

We can therefore denote y0 by (y, 1). The function f1 is replaced by f10

where

f10(y
0) ≡ f1(y) = f(y) + δ,

f10(e0) ≡ δ.

Pf10 would be the polyhedron

(y0)>x0 ≤ f10(y
0), y0 ∈ A0.

x0(e0) ≤ δ.

The function f10 is clearly pt when f is pt. Similarly, if g is dpt and g1 = g+θ,
we can define g10 suitably so that it is dpt. If f1(y) ≥ g1(y) and δ ≥ θ we
will have

f10(y, 1) = (f + δ)(y) ≥ (g + θ)(y) = g0(y, 1).

We next examine the LDG structure Gf10 associated with f10.
We claim that V10 ∈ Gf10 under the following conditions

(a) (y, 1) ∈ V10, y 6= 0 iff y ∈ V
(b) (0, 1) ∈ V10

Proof of Claim:- Every vector y1
0 ∈ A0 has y1

0(e0) = 1. Hence the in-
equalities of Pf permit x0 ∈ Pf to have x0(e0) less than any negative number
and therefore maxx0∈Pf10

c1
>x0 = ∞ , if c1(e0) ≤ 0.
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Next let c1(e0) = α > 0. By LP duality, if the primal optimum exists,
maxx0∈Pf10

c>1 x0 = min
∑

λif(y0
1i), λi ≥ 0

for y0
1i = (yi, 1) ∈ A0 and∑

λi[yi
>, 1] = [c>, α]

= min{∑ λif̂(yi) + (
∑

λi) δ :
∑

λiyi
> = c>, λi ≥ 0,

yi ∈ A or yi = 0}
(noting that f̂(yi) = f(yi), yi ∈ A, f̂(0) = 0)

= f̂(c) + αδ
Thus if the primal optimum exists, it is clear that (c, α), α ≥ 0 lies in the
cone generated by (0, 1) and (yi, 1), yi ∈ V if c lies in the cone generated by
yi, yi ∈ V . This proves the claim.

(The above discussion also shows that if (c, α) is such that c ∈ C(V ), but
whenever c> = λ>(V ) , λ ≥ 0, we have

∑
λi > α , then the primal optimum

will not exist.)

Since f10 and g10 are pt and dpt, respectively, it follows that the extensions
f̂10 and ĝ10 are convex and concave, respectively. If f1 ≥ g1, we have f10 ≥ g10.
If an LDG structure G exists such that G ≤ Gf as well as G ≤ Gg, we can
construct an LDG structure G0 from G in the way Gf10 was built from Gf

and it would follow that G0 ≤ Gf10 and G0 ≤ Gg10 , and therefore f̂10 ≥ ĝ10.

Hence there would be a vector h0 in <E∪{e0} s.t. f̂10(c
0) ≥ (h0)>c0 ≥ ĝ10(c

0)
for every c0 ∈ C(A0). Hence f10(y

0) = f̂10(y
0) ≥ (h0)>y0 ≥ ĝ10(y

0) or
equivalently f1(y) ≥ h>y + h(e0) ≥ g1(y), where (h0)> = (h>, h(e0)). If the
LDG G0 permits an integral h0, we would have the advantage that h(e0) is
an integer.

From the preceding discussion it is clear that if f and g are pt and dpt,
respectively, then f + δ and g + θ satisfy the discrete separation theorem
provided f and g are compatible, i.e., if there exists an LDG structure G
s.t. Gf ≥ G and Gg ≥ G. By Theorem 2, we know that if either Gf or Gg

is simplicial (i.e., every member V having |E| linearly independent vectors)
and f ≥ g, unless Gf and Gg are compatible they can not always satisfy the
Discrete Separation Theorem. From the results of Section 3, we know that
for pt and dpt functions, DST, MS and FDT hold together or not at all.
Essentially, therefore, the situation is as follows. For convex and concave
functionals on <n all three results — Separation Theorem, the Minkowski
sum theorem (Pf1+f2 = Pf1 + Pf2) and Fenchel Duality Theorem are always
true. But things go wrong when we extend pt and dpt functions to convex
functionals unless the functions are compatible. Thus if f ≥ g but f and g
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are not compatible, it would not be true that f̂ ≥ ĝ. If pt function f and dpt
function g are not compatible, miny∈A(f(y)−g(y)) 6= miny∈C(A)(f̂(y)− ĝ(y)).
Similarly, if f1 and f2 are not compatible, the extension of f1 + f2 would not
be the sum of the extensions of f1 and f2. What if we extend incompatible
f and g using the same LDG G? In this case f ≥ g will clearly lead to f̂ ≥
ĝ. Unfortunately we lose convexity during extension so that no separation
theorem is guaranteed. The following result is due to Sohoni [7]. We give a
different proof consistent with the approach in this paper.

Theorem 6. Let f be pt and let Gf � G. Let f̂(c) ≡ ∑
λif(yi), λi ≥ 0, yi ∈

V ∈ G s.t.
∑

λiyi = c. Then, the function f̂ is not convex.

Proof. Since Gf � G, there exists a V ∈ G s.t. V is not contained in any
Vf ∈ Gf . Let Vf ∈ Gf be such that C(V ) ∩ C(Vf ) has nonzero volume. Let
c ∈ Interior(C(V )∩C(Vf )). Let c =

∑
λiyi, λi ≥ 0 when expressed in terms

of vectors in Vf and equal to
∑

σjy
′
j, σj ≥ 0 when expressed in terms of

vectors of V . Observe that at least one of the y′j, say y′k, would not be in Vf .

Now f̂(c) =
∑

σjf(y′j). Let max c>x
x∈Pf

be achieved at a vertex say vc of Pf

whose normal cone is C(Vf ). Now y′k /∈ C(V ). So (y′k)
>vc < f(y′k). Hence

c>vc = (
∑

σjy
′
j)
>vc =

∑
σj(y

′
j
>
vc) <

∑
σjf(y′j),

where note that (y′j)
>vc ≤ f(y′j) since vc ∈ Pf .

On the other hand,

c>vc = (
∑

λiyi)
>vc =

∑
λi(y

>
i vc) =

∑
λif(yi).

Now f̂(y) = f(y), y ∈ A.
Hence we have

f̂(c) =
∑

σjf(y′j) >
∑

λif(yi) =
∑

λif̂(yi).

Thus f̂(
∑

λiyi) = f̂(c) >
∑

λif̂(yi) (λi ≥ 0) which contradicts the fact that

f̂ is a convex functional. Q.E.D.

5 Natural inequalities for polyhedrally tight

functions

In the case of submodular functions, the subject was largely developed in
terms of the defining inequalities. The use of the natural LDG for this class

12



arose during the convex extension carried out in [5]. For polyhedrally tight
functions our approach has been entirely in terms of LDGs. It is natural
to ask whether there are inequalities in this case analogous to the case of
submodular functions. In [4] such inequalities are defined and exploited.
Here we cast some of these results in our language.

Let F be any family of elements of A with the property that if Vi, Vj ∈ F
and i 6= j, then Vi * Vj. Let F∗ be the family of minimal elements of A not
contained (as subsets of E) in any element of F and let F∗ be the family of
maximal such elements of A . It is clear that

(F∗)∗ = (F∗)∗ = F .

For two such families let us say that F1 ≥ F2 iff every member of F2 is
contained in some member of F1.

Let T ⊆ A. A Tf inequality for a function g : A → < is generated as
follows.

Let c =
∑

yi∈T yi. Now c ∈ C(V ) for some V ∈ Gf . Let c =
∑

y′i∈V λiy
′
i

with λi ≥ 0. Then ∑
yi∈T

g(yi) ≥
∑

y′i∈V

λig(y′i)

is a Tf inequality for g. If the inequality is strict, it is a strict Tf inequality
for g.

Remark. If the vectors in V are not linearly independent, there would be
many Tf inequalities for g corresponding to a single subset T .

The collection of all such Tf inequalities for g, T ∈ (Gf )∗ would be the
(Gf )∗ inequalities for g. We would say ‘strict’ (Gf )∗ inequalities if we make
every inequality concerned strict.

Lemma 1. Let f, g : A → < be pt.
(a) Let T be a set not contained in any member of Gf . Then f satisfies

Tf inequalities strictly.
(b) Let T be a set contained in a member of Gg and not contained in any

member of Gf . Then g violates a strict Tf inequality for g.

Proof. (a) Let T be a set not contained in any member of Gf . Let c =∑
yi∈T yi. Now c ∈ C(V ) for some V ∈ Gf . Let c =

∑
y′i∈V λiy

′
i with λi ≥ 0.

At least one of the yi in T , say yk, does not belong to V . Let max
x∈Pf

cT x

13



be achieved at a vertex, say vc, of Pf whose normal cone is C(V ). Now
yk /∈ C(V ). So

yT
k vc < f(yk)

Hence,

cT vc = (
∑
yj∈T

yj)
T vc =

∑
yj∈T

(yT
j vc) <

∑
yj∈T

f(yj).

But cT vc =
∑

y′i∈V λif(y′i). Hence,
∑

yj∈T f(yj) >
∑

y′i∈V λif(y′i).

(b) Let T be a set contained in a member of Gg and not contained in any
member of Gf . Let c =

∑
yj∈T yj =

∑
y′i∈V λiy

′
i with λi ≥ 0, and V ∈ Gf . We

then have

max{cT x | x ∈ Pg} =
∑
yj∈T

g(yi)

≤
∑

y′i∈V

λig(y′i),

where λi ≥ 0 and V ∈ Gf . This is a violation of a strict Tf inequality for
g. Q.E.D.

Theorem 7. Let f, g : A → < be pt functions. Gf ≥ Gg iff g satisfies (Gf )∗
inequalities strictly.

Proof. (Only if) Let Gf ≥ Gg. Consider the strict Tf inequality for g with
T ∈ (Gf )∗, ∑

yj∈T

g(yj) >
∑

y′i∈Vf

λig(y′i), λi ≥ 0,

where λiy
′
i =

∑
yj∈T yj, and T * Vf . But

∑
yi∈T yi ∈ C(Vg) ⊆ C(Vf ), for

some Vg ∈ Gg. Hence

∑

y′i∈Vf

λig(y′i) =
∑

y′′i ∈Vg

σig(y′′i ), σi ≥ 0,

where

∑

y′i∈Vf

λiy
′
i =

∑

y′′i ∈Vg

σiy
′′
i =

∑
yi∈T

yi.
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Hence the strict Tf inequality is implied by the strict Tg inequality

∑
yi∈T

g(yi) >
∑

y′′i ∈Vg

σig(y′′i ), σi ≥ 0

which, by Lemma 1, is satisfied by g.

(if) Let Gf � Gg. Then there exists V ∈ Gg that is not in any member of Gf

and therefore contains some T ∈ (Gf )∗. Consider the Tf inequality for g.

∑
yi∈T

g(yi) ≥
∑

y′i∈Vf

λig(y′i), λi ≥ 0

where

∑
yi∈T

yi =
∑

y′i∈Vf

λiy
′
i, λi ≥ 0.

Now,
∑

yi∈T yi ∈ C(V ) for V ∈ Gg. Hence the Tf inequality cannot be
satisfied by g strictly. Q.E.D.

We would like to be able to prove Gf ≥ G and Gg ≥ G iff Gf and Gg satisfy
(G)∗ inequalities.

Hirai in [4] showed this result for the case where G is simplicial and is
further equal to some Gf1 .

6 Conclusion

In this paper we have studied basic properties of polyhedrally tight set func-
tions which are analogous to those of convex functionals. In particular, it
is shown that at a very elementary level Fenchel Duality Theorem and the
Separation Theorem are equivalent, as a consequence of which integrality
versions of the theorems can be seen to be equivalent. For polyhedrally tight
set functions it is shown that these are equivalent to the result which could
be called Minkowski Sum Theorem which says that the sum of the polyhe-
dra associated with a pair of convex ‘support’ functions is the polyhedron
associated with the sum of the functions. By using convex extension ideas it
is indicated using results from [6] that these theorems hold provided the set
functions are compatible, in particular, when the functions have the same
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normal cone structure (Legal Dual Generator structure) associated with the
vertices of the associated polyhedra. We have also made a primitive attempt
to study polyhedrally tight set functions in terms of inequalities associated
with them.
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