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Abstract. A link L in the 3-sphere is called Brunnian if every proper sublink
of L is trivial. In a previous paper, the first author proved that the restriction
to Brunnian links of any Goussarov-Vassiliev finite type invariant of (n + 1)-
component links of degree < 2n is trivial. The purpose of this paper is to study
the first nontrivial case. We will show that the restriction of an invariant of
degree 2n to (n+1)-component Brunnian links can be expressed as a quadratic

form on the Milnor link-homotopy invariants of length n + 1.

1. Introduction

The notion of Goussarov-Vassiliev finite type link invariants [8, 9, 34] enables us
to understand the various quantum invariants from a unifying viewpoint, see e.g.
[1, 32]. The theory involves a descending filtration

ZL(m) = J0(m) ⊃ J1(m) ⊃ . . .

of the free abelian group ZL(m) generated by the set L(m) of the ambient isotopy
classes ofm-component, oriented, ordered links in S3. Here each Jn(m) is generated
by alternating sums of links over n independent crossing changes. A homomorphism
from ZL(m) to an abelian group A is said to be a Goussarov-Vassiliev invariant
of degree n if it vanishes on Jn+1(m). Thus, for L,L′ ∈ L(m), we have L −
L′ ∈ Jn+1(m) if and only if L and L′ have the same values of Goussarov-Vassiliev
invariants of degree ≤ n with values in any abelian group. A fundamental result
in the theory of Goussarov-Vassiliev invariants [20, 1] is that the graded quotient
J̄n(m) = Jn(m)/Jn+1(m) is isomorphic, after being tensored by Q, to the space of
certain unitrivalent diagrams (also called Feynman diagrams or Jacobi diagrams)
‘of degree n’. This gives a complete classification of rational-valued Goussarov-
Vassiliev invariants via the Kontsevich integral [20].

It is natural to ask what kind of informations a Goussarov-Vassiliev link invari-
ants can contain and what is the topological meaning of the unitrivalent diagrams.
Calculus of claspers, introduced by Goussarov and the first author [10, 11, 17],
answers these questions. (We will recall the definition of claspers in Section 2.)
A special type of claspers, called graph claspers, can be regarded as topological
realizations of unitrivalent diagrams. For knots, claspers enables us to give a com-
plete topological characterization of the informations that can be contained by
Goussarov-Vassiliev invariants of degree < n [11, 17]: The difference of two knots is
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Figure 1.1. Milnor’s link L6 of 6 components

in Jn if and only if these two knots are Cn-equivalent. Here Cn-equivalence is gen-
erated by a certain type of local moves, called Cn-moves (called (n− 1)-variations
by Goussarov), which is defined as surgeries along certain tree claspers.

For links with more than 1 components, the above-mentioned properties of
Goussarov-Vassiliev invariants does not hold. It is true that if L,L′ ∈ L(m) are Cn-
equivalent, then we have L−L′ ∈ Jn(m), but the converse does not hold in general.
A counterexample is Milnor’s link Ln+1 of n+1 components depicted in Figure 1.1:
If n ≥ 2, Ln is (Cn-equivalent but) notCn+1-equivalent to the (n+1)-component un-
link U , while we have Ln+1−U ∈ J2n(n+1) (but Ln+1−U �∈ J2n+1(n+1)), see [17,
Proposition 7.4]. (This fact is contrasting to the case of string links: Conjecturally
[17, Conjecture 6.13], two string links L,L′ of the same number of components are
Cn-equivalent if and only if L− L′ ∈ Jn.)

Milnor’s links are typical examples of Brunnian links. Recall that a link in an
oriented, connected 3-manifold is said to be Brunnian if every proper sublink of it
is an unlink. In some sense, an n-component Brunnian link is a ‘pure n-component
linking’. Thus studying the behavior of Goussarov-Vassiliev invariants on Brunnian
links would be a first step in understanding the Goussarov-Vassiliev invariants for
links.

The first author generalized a part of the above-mentioned properties of Milnor’s
links to Brunnian links:

Theorem 1.1 ([19]). Let L be an (n+1)-component Brunnian link in a connected,
oriented 3-manifold M (n ≥ 1), and let U be an (n + 1)-component unlink in M .
Then we have the following.

(1) L and U are Cn-equivalent.
(2) If n ≥ 2, then we have L − U ∈ J2n(n + 1). Hence L and U are not

distinguished by any Goussarov-Vassiliev invariants of degree < 2n.

The case M = S3 of Theorem 1.1 was announced in [17], and was later proved
also by Miyazawa and Yasuhara [29], independently to [19].

The purpose of the present paper is to study the restrictions of Goussarov-
Vassiliev invariants of degree 2n to (n+ 1)-component Brunnian links in S3, which
is the first nontrivial case according to Theorem 1.1. The main result in the present
paper expresses any such restriction as a quadratic form of Milnor link-homotopy
invariants of length n+ 1:

Theorem 1.2. Let f be any Z-valued Goussarov-Vassiliev link invariant of degree
2n. Then there are (non-unique) integers fσ,σ′ for elements σ, σ′ of the symmetric
group Sn−1 on the set {1, . . . , n−1} such that, for any (n+1)-component Brunnian
link L, we have

(1.1) f(L) − f(U) =
∑

σ,σ′∈Sn−1

fσ,σ′ μ̄σ(L)μ̄σ′(L).

Here, U is an (n+ 1)-component unlink, and we set

μ̄σ(L) = μ̄σ(1),σ(2),...,σ(n−1),n,n+1(L) ∈ Z

for σ ∈ Sn−1.
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We give two proofs of Theorem 1.2, one involving a rather heavy use of claspers,
and the other involving the Kontsevich integral.

Recall that Milnor invariants of length n + 1 for string links are Goussarov-
Vassiliev invariants of degree ≤ n [2, 24] (see also [15]). As is well-known, Milnor’s
invariants is not well-defined for all links, and hence it does not make sense to ask
whether Milnor invariants of length n + 1 is of degree ≤ n or not. However, as
Theorem 1.2 indicates, a quadratic expression in such Milnor invariants, which is
well-defined at least for (n + 1)-component Brunnian links, may extend to a link
invariant of degree ≤ 2n. In fact, Theorem 8.3, in theory, gives a necessary and
sufficient condition for a quadratic form of Milnor invariants to be extendable to a
link invariant of degree ≤ 2n.

In the study of Milnor’s invariants, tree claspers seem at least as useful as
Cochran’s construction [3]. For the use of claspers in the study of the Milnor in-
variants, see also [6, 12, 27]. For other relationships between finite type invariants
and the Milnor invariants, see [2, 24, 15, 14, 25].

We organize the rest of the paper as follows.
In Section 2, we recall some definitions from clasper calculus.
In Section 3, we provide a description of the graded quotients of the Goussarov-

Vassiliev filtration for links. We establish a surjective homomorphism

ξn : An(m) → J̄n(m)

from an abelian group An(m) of unitrivalent diagrams of degree n on m circles to
J̄n(m), which is announced in [17, Section 8.2].

In Section 4, we recall the notion of Cak -equivalence for links, studied in [19]. If
a link L is Cak -equivalent (for any k) to a Brunnian link, then L also is a Brunnian
link.

In Section 5, we study the group BSLn+1 of Can+1-equivalence classes of (n+1)-
component string links. We establish an isomorphism

θn : Tn+1
�−→ BSLn+1

from an abelian group Tn+1 of certain tree diagrams. This map is essentially the
inverse to the Milnor link-homotopy invariants of length n+ 1.

In Section 6, we apply the results in Section 5 to Brunnian links. The operation
of closing string links induces a bijection

c̄n+1 : BSLn+1
�−→ Bn+1,

where Bn+1 is the set of Can+1-equivalence classes of (n+ 1)-component Brunnian
links. As a byproduct, we obtain another proof of a result of Miyazawa and Ya-
suhara [29].

In Section 7, we study the behavior of Goussarov-Vassiliev invariants of degree
2n for (n+ 1)-component Brunnian links. We first show that two Can+1-equivalent,
(n+ 1)-component Brunnian links cannot be distinguished by Goussarov-Vassiliev
invariants of degree 2n. We have a quadratic map

κn+1 : Bn+1 −→ J̄2n(n+ 1)

defined by κn+1([L]Ca
n+1

) = [L− U ]J2n+1. We prove Theorem 1.2, using κn+1.
In Section 8, we study the Brunnian part Br(J̄2n(n + 1)) of J̄2n(n + 1), which

is defined as the subgroup generated by the elements [L − U ]J2n+1 , where L is
Brunnian. We construct a homomorphism

hn : Ac
n−1(∅) → J̄2n(n+ 1),

where Ac
n−1(∅) is a Z-module of connected trivalent diagrams with 2n− 2 vertices.

We show that hn is surjective for n ≥ 3, and is an isomorphism over Q for n ≥ 2.
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disk-leafthree leavesnodethree leavesbox leaf

Figure 2.1. How to obtain the associated framed link LG from
G. First one replaces boxes, nodes and disk-leaves by leaves. Then
replace each ‘I-shaped’ clasper by a 2-component framed link as
depicted.

In Section 9, we give an alternative proof of Theorem 1.2 using the Kontsevich
integral.

Acknowledgments. The authors wish to thank Christine Lescop and Akira Yasuhara
for helpful comments and conversations.

2. Claspers

In this section, we recall some definitions from calculus of claspers. For the
details, we refer the reader to [17].

A clasper in an oriented 3-manifold M is a compact, possibly unorientable, em-
bedded surface G in intM equipped with a decomposition into connected sub-
surfaces called leaves, disk-leaves, nodes, boxes, and edges. Two distinct non-edge
subsurfaces are disjoint. Edges are disjoint bands which connect two subsurfaces
of the other types. A connected component of the intersection of one edge E and
another subsurface F (of different type), which is an arc in ∂E ∩ ∂F , is called an
attaching region of F .

• A leaf is an annulus with one attaching region.
• A disk-leaf is a disk with one attaching region.
• A node is a disk with three attaching regions. (Usually, a node is incident

to three edges, but it is allowed that the two ends of one edge are attached
to a node.)

• A box is a disk with three attaching regions. (The same remark as that
for node applies here, too.) Moreover, one attaching region is distinguished
with the other two. (This distinction is done by drawing a box as a rectan-
gle, see [17].)

A clasper G for a link L in M is a clasper in M such that the intersection G ∩ L
consists of finitely many transverse double points and is contained in the interior
of the union of disk-leaves.

We often use the drawing convention for claspers as described in [17].
Surgery along a clasper G is defined to be surgery along the associated framed

link LG to G. Here LG is obtained from G by the rules described in Figure 2.1.
A graph clasper is a clasper without boxes. A graph clasper G is called strict if

each component of G has no leaves and at least one disk-leaf. Surgery along a strict
graph clasper G is tame in the sense of [17, Section 2.3], i.e., the result of surgery
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along G preserves the 3-manifold and the surgery may be regarded as a move on a
link.

A tree clasper is a connected graph clasper T such that the union of edges and
nodes of T is simply connected.

A graph clasper G for a link L is simple (with respect to L) if each disk-leaf of
G has exactly one intersection point with L.

The degree (or C-degree) of a connected, strict graph clasper G is defined to be
the number of nodes of T plus 1.

For n ≥ 1, a Cn-tree (resp. Cn-graph) is a strict tree (resp. connected graph)
clasper of degree n. A (simple) Cn-move is a local move on links defined as surgery
along a (simple) Cn-tree. For example, a simple C1-move is a crossing change, and
a simple C2-move is a delta move [26, 30] The Cn-equivalence is the equivalence
relation on links generated by Cn-moves. This equivalence relation is also generated
by simple Cn-moves, and also by surgeries along (simple) Cn-graphs, see [17, 18].
The Cn-equivalence becomes finer as n increases.

3. Graph claspers as topological realizations of unitrivalent

diagrams

In this section, we recall the formulation of the Goussarov-Vassiliev filtrations
for links using claspers. For each k ≥ 0, we will establish a surgery map ξk from a
Z-module of ‘unitrivalent diagrams of degree k’ to the kth graded quotient of the
Goussarov-Vassiliev filtration, see Theorem 3.4 below. This surgery map has been
announced by the first author [17, Section 8.2].

3.1. Goussarov-Vassiliev filtration. We briefly recall the standard definition of
the Goussarov-Vassiliev filtration for links, involving ‘singular links’. See e.g. [1]
for the details.

A singular link L in a 3-manifold M is an immersed 1-manifold in M whose only
singularities are finitely many transverse double points.

Let L(M,n) denote the set of the equivalence classes of n-component links in
M . Let ZL(M,n) denote the free Z-module generated by L(M,n).

For n, k ≥ 0, let JGVk (n) denote the Z-submodule of ZL(M,n) generated by
the k-fold alternating sums determined by n-component singular links, each with k
double points. We have a descending filtration

ZL(M,n) = JGV0 (n) ⊃ JGV1 (n) ⊃ JGV2 (n) ⊃ · · · ,

which is called the Goussarov-Vassiliev filtration.

3.2. Graph schemes and Goussarov-Vassiliev filtration. Here we give an-
other definition of the Goussarov-Vassiliev filtration for links, which involves graph
schemes. This definition is a slightly modified version of the one given in [17].

Definition 3.1. A graph scheme of degree k for a link L in a 3-manifold M will
mean a collection S = {G1, . . . , Gl} of disjoint connected (strict) graph claspers
G1, . . . , Gl for L such that

∑k
i=1 degGi = k. A graph scheme S is said to be simple

if every element of S is simple.

For a graph scheme S = {G1, . . . , Gl} for a link L in M , we set

[L, S] = [L;G1, . . . , Gl] =
∑
S′⊂S

(−1)|S
′|LS

S′ ∈ ZL(M,n),

where the sum runs over all subsets S′ of S, and |S′| denote the number of elements
of S′.
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crossed edge

= −

Figure 3.1. The crossed edge notation

For k ≥ 0, let Jk(M,n) (resp. Jsk(M,n)) denote the Z-submodule of ZL(M,n)
generated by the elements of the form [L, S], where L ∈ L(M,n) and S is a graph
scheme (resp. a simple graph scheme) for L of degree k.

Proposition 3.2. We have Jk(M,n) = Jsk(M,n) = JGVk (M,n). Thus the Jk(M,n)
is the same as the Goussarov-Vassiliev filtration for n-component links.

Proof. For k ≥ 0, let Jfk (M,n) denote Z-submodule of ZL(M,n) generated by the
elements of the form [L;S], where L ∈ L(M,n) and S is a simple forest scheme for
L of degree k. Here a ‘forest scheme’ is a graph scheme consisting only of (strict)
tree claspers. It is known [17] that Jfk (M,n) = JGVk (M,n).

It is obvious that Jfk (M,n) ⊂ Jsk(M,n) ⊂ Jk(M,n). Hence it suffices to prove
that

(3.1) Jk(M,n) ⊂ Jfk (M,n)

Let S = {G1, . . . , Gl} be a graph scheme for L ∈ L(M,n). By [18] each Gi can
be replaced by a disjoint union of simple CdegGi-trees Ti,1, . . . , Ti,mi (mi ≥ 0) in a
small regular neighborhood of Gi. Hence we have

[L, S] = [L;Ti,1 ∪ · · · ∪ T1,m1 , . . . , Tl,1 ∪ · · · ∪ Tl,ml
]

=
m1∑
j1=1

· · ·
ml∑
jl=1

[LSl
i=1

Sji−1
j=1 Ti,j

;Tj1 , . . . , Tjl ] ∈ Jfk (M,n).

This implies (3.1). �

A similar statement for forest schemes has been proved in [17, Section 6].

3.3. Crossed edge notation. It is useful to introduce a notation for depicting
certain linear combinations of surgery along claspers, which we call crossed edge
notation.

Let G be a clasper for a link L in a 3-manifold M . Let E be an edge of G. By
putting a cross on the edge E in a figure, we mean the difference LG −LG0, where
G0 is obtained from G by inserting two trivial leaves into E. See Figure 3.1. If we
put several crosses on the edges of G, then we understand it in a multilinear way.
I.e., a clasper with several crosses is an alternating sum of the result of surgery
along claspers obtained from G by inserting pairs of trivial, unlinked leaves into
the crossed edges. We will freely use the identities depicted in Figure 3.2, which
can be easily verified. The second identity implies that if G′ is a connected graph
clasper contained in G and there are several crosses on G′, then one can safely
replace these crosses by just one cross on one edge in G′. This properties can be
generalized to the case where G′ is a connected subsurface of G consisting only of
nodes, edges, leaves and disk-leaves. Note also that if S = {G1, . . . , Gl}, is a graph
scheme for L, then [L, S] can be expressed by the clasper G1 ∪ · · · ∪ Gl with one
cross on each component Gi.
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Figure 3.2. Identities for the crossed edge notation

(a) (b)

Figure 3.3

3.4. The map χk : Sk(M,n) → J̄k(M,n). We set

J̄k(M,n) = Jk(M,n)/Jk+1(M,n).

Let Sk = Sk(M,n) denote the free Z-module generated by ambient isotopy
classes of pairs (L, S) of an n-component link L in M and a simple graph scheme
S for L of degree k. Define a Z-homomorphism

χk : Sk(M,n) → J̄k(M,n)

by
χk(L, S) = [L, S] mod Jk+1.

Obviously, χk is surjective.

3.5. Unitrivalent diagrams.

Definition 3.3. By a unitrivalent diagram on an oriented 1-manifold X , we mean
a finite graph Γ with univalent and trivalent vertices with the following data and
properties.

• Each trivalent vertex is equipped with a cyclic order of the three incident
edges.

• Each univalent vertex is associated with a point in X and a local orientation
of X near the point. (This local orientation may or may not be consistent
within each component of X .) Any two distinct univalent vertices of Γ are
associated with distinct points in X .

The degree of Γ is defined to be half the number of vertices in Γ.
A diagram Γ is called strict if every component of Γ has at least one univalent

vertex. In the rest of this section, by a ‘diagram’ we mean a ‘strict diagram’.

For example, Figure 3.3 (a) depicts a diagram on the disjoint union of two
oriented circles. As usual, the diagram is drawn with dashed lines. We sometimes
drop the cyclic orders and local orientations from figures by adopting the convention
depicted in Figure 3.4. Thus the previous diagram can alternatively be drawn as
in Figure 3.3 (b).

Two diagrams Γ and Γ′ on X are said to be equivalent if there is an isomorphism
g of graphs from Γ to Γ′ such that g preserves the cyclic order at each trivalent
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==

= =

Figure 3.4

= 0
+ = 0

univalent AS
FI

− − = 0

STU

Figure 3.5

+ = 0−+ = 0

IHXAS

Figure 3.6

vertex and such that the associated points at the univalent vertices are the same
up to isotopy of X .

For a compact 1-manifoldX , let An = An(X) denote the Z-module generated by
diagrams on X of degree n, subject to the FI (framing independence) relations, the
STU relations and the univalent AS relations, see Figure 3.5. It is easy to see that
the definition of An(X) is equivalent to the usual one for any oriented 1-manifold
X . It follows that the AS relations and the IHX relations depicted in Figure 3.6
are valid in An(X). If X is the disjoint union of m copies of S1, then An(X) is
denoted by A(m).

3.6. The map Γn : Sn → An. In this subsection, we set M = S3 for simplicity.
Define a homomorphism

Γn : Sn → An

as follows. Let (L, S) ∈ Sn. The link L is regarded as an embedding L : X → M .
We choose orientations for the nodes and the disk-leaves of S, which may or may
not extend to an orientation of the components of S. Let Γ be a diagram on X
defined as follows. The trivalent vertices of Γ corresponds to the nodes of S and
the univalent vertices of Γ corresponds to the intersections of disk-leaves of S and
L(X) via the map L. The orientation of each node induces a cyclic order at the
corresponding trivalent vertex of Γ. At the intersection of each disk-leaf and X ,
the local orientation is such that the sign of the intersection of the locally-oriented
strand of X and the disk-leaf is positive. Let s be the number of edges E of S such
that the two nodes or disk-leaves incident to E have inconsistent orientations along
E. Then, set

(3.2) Γn(L, S) = (−1)sΓ.

For example, see Figure 3.7. Using the AS and the univalent AS relations, we see
easily that Γn(L, S) does not depend on the choice of the orientations of the nodes
and the disk-leaves, and hence is well-defined.
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Γn�−→ (−1)4

−+

−

+

−

+

+

−

Figure 3.7. Here, each edge is labeled ‘+’ if the incident
nodes/disk-leaves have consistent orientations, and ‘−’ otherwise.
There are four inconsistent edges.

node-reduction

Figure 3.8. Here the strands may be replaced by a parallel family
of strands.

Obviously, Γn is surjective.

3.7. Statement of the result.

Theorem 3.4. There is a surjective homomorphism ξn : An(m) → J̄n(S3,m) such
that the diagram

(3.3) Sn(S3,m)

Γn

��

χn

�������������

An(m)
ξn

�� J̄n(S3,m).

commutes. Moreover, ξn ⊗ Q : An(m) ⊗ Q → J̄n(S3,m) ⊗ Q is an isomorphism.

3.8. Lemmas. In this subsection, we list some results which are necessary in the
proof of Theorem 3.4.

We will refer to the move on a clasper depicted in Figure 3.8 as a node-reduction.
It reduces the number of nodes by one, and preserves the result of surgery (cf.
move 9 of [17, Proposition 2.7]). For a graph scheme, a node-reduction preserves
the degree, and increases the number of elements by 0 or 1.

Lemma 3.5. If two graph schemes are related by a node-reduction, then we have
[L, S] = [L, S′].

Proof. If |S| = |S′|, where |S| denotes the cardinality of S, then the result clearly
follows. Suppose |S′| = |S| + 1. Let G be the element of S on which a node-
reduction is performed, and let G1, G2 ∈ S′ be the elements newly created by the
move. By [17, Proposition 3.4], surgery along only G1 and surgery along only G2

both preserve the result of surgery from the regular neighborhood N of G. Hence
we have

[L ∩N ;G] = (L ∩N)G1∪G2 − L ∩N
= (L ∩N)G1∪G2 − (L ∩N)G1 − (L ∩N)G2 + L ∩N
= [L ∩N ;G1, G2].
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L L L L

− ≡ 0 (mod Jn+1)=

Figure 3.9. There is a graph scheme S of degree n invisible in the figure.

Hence we have the assertion. �

Proposition 3.6 (Homotopy). Let S be a graph scheme for a link in M of degree
n, and let S′ be a graph scheme for a link in M ′ of degree n. Let N be a regular
neighborhood of L ∪

⋃
S in M . Suppose that there is an orientation-preserving

embedding f : N → M such that f(L) = L′, f(S) = S′, where f respects the
orientation and the orderings of links and also the structures of graph schemes.
Assume also that f is homotopic to i : N ⊂ M . (If M is simply connected, then
this assumption is vacuous.) Then we have

[L, S] ≡ [L′, S′] (mod Jn+1)

Proof. There is a sequence from (L, S) to (L′, S′) of ambient isotopies and the
following moves:

(1) crossing change of two strands,
(2) crossing change of a strand of the link and an edge of a graph scheme,
(3) crossing change of two edges of a graph scheme,
(4) full twisting of an edge of a graph scheme.

Hence we may assume that (L, S) and (L′, S′) are related by one of the above
moves.

We use induction on the number v of nodes in S. Suppose v = 0. In the cases
(2), (3), (4) above, the move can be achieved by a sequence of crossing changes of
strands, and hence reduces to the case (1). The case (1) follows from Figure 3.9.

Now suppose that v > 0. There is at least one disk-leaf A of S such that the
edge E incident to A is not involved in the move, and such that A is adjacent to
a node V . Let S̃ be the result from S of applying a node-reduction at A,E, V ,
and let S̃′ be the result from S′ of the corresponding application of node-reduction.
By Lemma 3.5, we have [L, S] = [L, S̃] and [L, S′] = [L, S̃′]. Since the number of
nodes in S̃ (and in S̃′) is less than the number of nodes in S (and in S′) by 1, the
assertion follows from the induction hypothesis. �

Proposition 3.7 (Half twist). Let S and S′ be two graph schemes for a link L in
M of degree n. Suppose that S and S′ are related by a half twist of an edge. Then
we have

[L, S] + [L, S′] ≡ 0 (mod Jn+1).

Proof. The proof is by induction on the number v of nodes in S (and in S′). Suppose
v = 0. Let T ∈ S be the C1-tree on which half twist is performed. Let B be a
regular neighborhood of T in M . We may assume without loss of generality that
S′ = (S \ {T })∪ {T ′}, where T ′ ⊂ B is a C1-tree obtained from T by half twisting
the edge and sliding along the strands of S intersecting T as depicted in the left
hand side of Figure 3.10. As depicted in the figure we have (L ∩N)T∪T ′ ∼= L ∩N .
Hence we have

0 = (L ∩N)T∪T ′ − L ∩N = [L ∩N ;T, T ′] + [L ∩N ;T ] + [L ∩N ;T ′].
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move 2
T ′T

∼ ∼=

Figure 3.10. Here the strands may be replaced by parallel
schemes of strands.

S′′
L

S′
L

S

L

Figure 3.11

and hence

[L ∩N ;T ] + [L ∩N ;T ′] = −[L ∩N ;T, T ′] ≡ 0 (mod J2).

Hence we have [L;S] + [L;S′] ≡ 0 (mod Jn).
The case v > 0 is similar to the case v > 0 in the proof of Proposition 3.6. Here

we apply a node-reduction to a disk-leaf which is incident to an edge not involved
in the half twist, and which is adjacent to a node. �
Proposition 3.8 (STU). Let S, S′, S′′ be three graph schemes for a link L in
M of degree n which differ only in a small ball as depicted in Figure 3.11. Note
that in each of the figures of S′ and S′′ the two leaves are contained in distinct tree
claspers. Then we have

(3.4) [L, S] + [L, S′] − [L, S′′] ≡ 0 (mod Jn+1).

Proof. The proof is by induction on the number v of nodes in S′ (and in S′′).
Consider the case v = 0. It suffices to consider the case S = {T }, where T is a
C2-tree as depicted in the left hand side of Figure 3.12. There are four C1-claspers
G1, G

′
1, G2, G

′
2 for L in M as depicted in the right hand side of the figure, such that

LT ∼= LG1∪G′
1∪G2∪G′

2
. It is not difficult to check that

[L;T ] = [LG1∪G2 ;G
′
1, G

′
2] − [L;G1, G2].

We have
[LG1∪G2 ;G

′
1, G

′
2] ≡ [L;G′

1, G
′
2] (mod J3).

Hence, by Proposition 3.7, we have

[L;G′
1, G

′
2] ≡ [L;G′′

1 , G
′′
2 ] (mod J3),

where G′′
1 (resp. G′′

2 ) is obtained from G′
1 (resp. G′

2) by inserting a negative half
twist. Hence we have the assertion.

The case v > 0 can be proved by using Lemma 3.5, similarly to the case v > 0
in the proof of Proposition 3.6. �
3.9. Proof of Theorem 3.4. To prove the existence of ξn, it suffices to prove that
ker Γn ⊂ kerχn.

kerΓn is generated by the following elements.
(1) (homotopy) (L, S) − (L′, S′), where (L, S) and (L′, S′) are homotopic to

each other in the sense of Proposition 3.6.
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∼
T

G1

G′
1

G2

G′
2

Figure 3.12. Here the strands may be replaced by parallel fami-
lies of strands.

S1

L

Figure 3.13

+ ≡ 0 (mod Jn+1)

≡ 0 (mod Jn+1)+−

graph scheme AS relation:

graph scheme IHX relation:

Figure 3.14

(2) (edge AS) (L, S)+ (L, S′), where S and S′ are related by a half twist of an
edge.

(3) (FI) (L, S), where S contains a tree clasper S1 as depicted in Figure 3.13.
(4) (STU) (L, S) + (L, S′) − (L, S′′) as described in Proposition 3.8.

By Propositions 3.6, 3.7, 3.8, the elements in (1), (2) and (4) are contained in
kerχn. The element in (3) is obviously 0.

Since χn is surjective, so is ξn.
ξn⊗Q is an isomorphism since it can be naturally identified with the well-known

isomorphism

Ach
n (m) ⊗ Q � J̄n ⊗ Q,

where Ach
n (m) ⊗ Q is the Q-vector space of chord diagrams for m circles of degree

n, modulo the 4T and the FI relations.
This completes the proof of Theorem 3.4.

Remark 3.9 (AS and IHX relations). As we have mentioned, the AS and the IHX
relations are valid in An. Therefore, it follows from Theorem 3.4 that graph scheme
versions of these relations are also valid, see Figure 3.14. (One can also prove
these relations by induction directly using Proposition 3.8.) The graph scheme AS
relation can also be directly proved by applying Proposition 3.7 three times. The
graph scheme IHX relation can also be proved directly using the IHX relation for
tree claspers which has already appeared in the literature [11, 5, 4] (see also [16]
for an earlier version of topological IHX relation).
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4. Cak -equivalence

We recall from [19] the definition of the Cak -equivalence.

Definition 4.1. Let L be an m-component link in a 3-manifold M . For k ≥ m−1,
a Cak -tree for L in M is a Ck-tree T for L in M , such that

(1) for each disk-leaf A of T , all the strands intersecting A are contained in one
component of L, and

(2) each component of L intersects at least one disk-leaf of T , i.e., T intersects
all the components of L.

Note that the condition (1) is vacuous if T is simple.
A Cak -move on a link is surgery along a Cak -tree. The Cak -equivalence is the

equivalence relation on links generated by Cak -moves. A Cak -forest is a clasper
consisting only of Cak -trees.

Clearly, the above notions are defined also for tangles, particularly for string
links.

What makes the notion of Cak -equivalence useful in the study of Brunnian links
is the fact that a link which is Cak -equivalent (for any k) to a Brunnian link is again
a Brunnian link ([19, Proposition 5]).

Note that the Cak -equivalence is generated by simple Cak -moves, i.e., surgeries
along simple Cak -trees [19]. In the following, we use technical lemmas from [19].

Lemma 4.2 ([19, Lemma 7], Ca-version of [17, Theorem 3.17]). For two tangles
β and β′ in a 3-manifold M , and an integer k ≥ 1, the following conditions are
equivalent.

(1) β and β′ are Cak -equivalent.
(2) There is a simple Cak -forest F for β in M such that βF ∼= β′.

Lemma 4.3 ([19, Lemma 8], Ca-version of [17, Proposition 4.5]). Let β be a tangle
in a 3-manifold M , and let β0 be a component of β. Let T1 and T2 be Ck-trees for
a tangle β in M , differing from each other by a crossing change of an edge with the
component β0. Suppose that T1 and T2 are Cak -trees for either β or β \ β0. Then
βT1 and βT2 are related by one Cak+1-move.

5. The group BSLn+1

5.1. The monoids BSLn+1 and BSLn+1. Let us recall the definition of string
links. (For the details, see e.g. [13, 17]). Let x1, . . . , xn+1 ∈ intD2 be distinct
points. An (n+1)-component string link β = β1∪· · ·∪βn+1 is a tangle in the cylinder
D2 × [0, 1], consisting of arc components β1, . . . , βn+1 such that ∂βi = {xi}×{0, 1}
for each i. Let SLn+1 denote the set of (n + 1)-component string links up to
ambient isotopy fixing endpoints. There is a natural, well-known monoid structure
for SLn+1 with multiplication given by ‘stacking’ of string links. The identity string
link is denoted by 1 = 1n+1.

Let BSLn+1 denote the submonoid of SLn+1 consisting of Brunnian string links.
Here a string link β is said to be Brunnian if every proper subtangle of β is the
identity string link.

We have the following characterization of Brunnian string links.

Theorem 5.1 ([19, Theorem 9], [29, Proposition 4.1]). An (n+ 1)-component link
(resp. string link) is Brunnian if and only if it is Can-trivial, i.e., it is Can-equivalent
to the unlink (resp. the identity string link).

Set
BSLn+1 = BSLn+1/(Can+1-equivalence).
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4321

t Tt

1 23 4

Figure 5.1

By Theorem 5.1, BSLn+1 can be regarded as the monoid of Can+1-equivalence
classes of Can-trivial, (n+ 1)-component string links (in D2 × [0, 1]).

In the rest of this section, we will describe the structure of BSLn+1.

5.2. The group BSLn+1 and the surgery map θn : Tn+1 → BSLn+1.

Proposition 5.2. BSLn+1 is a finitely generated abelian group.

Proof. The assertion is obtained by adapting the proof of [17, Lemma 5.5, Corollary
5.6] into the Ca setting. �

Let n ≥ 1. By a (labeled) unitrivalent tree of degree n we mean a vertex-oriented,
unitrivalent graph t such that the n+1 univalent vertices of t are labeled by distinct
elements from {1, 2, . . . , n+1}. We use the usual drawing convention for the vertex-
orientations as in Section 3.5.

Let Tn+1 denote the free abelian group generated by unitrivalent trees of degree
n, modulo the IHX and the AS relations.

For a unitrivalent tree t, let Tt denote a Can-tree for 1 such that the tree shape
and the labeling of Tt is induced by those of t, and such that after choosing an
orientation of Tt, for each i = 1, . . . , n + 1, the sign of the intersection of the ith
string of 1 and the disk-leaf of Tt corresponding to the univalent vertex of t colored
i is positive. See for example Figure 5.1.

Proposition 5.3. There is a unique isomorphism

θn+1 : Tn+1
�−→ BSLn+1.

such that θn+1(t) = [1Tt ]Ca
n+1

for each unitrivalent tree t, where Tt is as above.

Proof. Let T ′
n+1 be the free abelian group generated by unitrivalent trees of degree

n, modulo the AS relations. By adapting the proof of [17, Theorem 4.7] into the
Ca setting, we see that there is a unique surjective homomorphism

θ′n+1 : T ′
n+1 → BSLn+1.

To see that θ′n+1 factors through the projection T ′
n+1 → Tn, it suffices to see

that the IHX relation is valid in BSLn+1, i.e., tI − tH + tX ∈ T ′
n+1 is mapped to

0, where tI , tH , tX locally differs as in the definition of the IHX relation (see the
second line of Figure 3.14). This can be checked by adapting the IHX relation for
tree claspers (see e.g. [11, 5, 4]) into the Ca setting.

Let
θn+1 : Tn+1 → BSLn+1

be the surjective homomorphism induced by θ′n+1. As in the statement of Theorem
1.2, for σ ∈ Sn−1 and L ∈ B(n+ 1), we set

μσ(T ) = μσ(1),σ(2),...,σ(n−1),n,n+1(T ),
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σ(1) σ(2) σ(n− 1)

nn+ 1

. . .tσ =

Figure 5.2

where μσ(1),σ(2),...,σ(n−1),n,n+1(T ) ∈ Z is the Milnor string link invariant of T . Let
tσ denote the unitrivalent tree as depicted in Figure 5.2. The tσ for σ ∈ Sn−1

form a basis of Tn+1. Define a homomorphism

μn+1 : BSLn+1 −→ Tn+1

by
μn+1(L) =

∑
σ∈Sn−1

μσ(L)tσ,

By [17, Theorem 7.2], μn+1 is well defined.
To show that μn+1 is left inverse to θn+1, it suffices to prove that μn+1θn+1(tσ) =

tσ for σ ∈ Sn−1. Let Lσ denote the closure of Tσ, which is Milnor’s link as depicted
in Figure 1.1. Milnor [28] proved that for τ ∈ Sn−1

(5.1) μτ (Lσ) =
{

1 if τ = σ,
0 otherwise.

Hence we have
μn+1θn+1(tσ) =

∑
τ∈Sn−1

μ̄τ (Lσ)tτ = tσ.

This completes the proof. �

Corollary 5.4. For two Brunnian (n+1)-component string links T, T ′ ∈ BSLn+1,
the following conditions are equivalent.

(1) T and T ′ are Can+1-equivalent.
(2) T and T ′ have the same Milnor invariants of length n+ 1.
(3) T and T ′ are link-homotopic.

Proof. The equivalence (2) ⇔ (3) is due to Milnor [28]. The equivalence (1) ⇔ (2)
follows from the proof of Proposition 5.3. �

Remark 5.5. Miyazawa and Yasuhara [29] prove a similar result for Brunnian links.
It seems that their proof can be applied to the case of string links. See also the
Remark 6.4 below.

6. The group Bn+1

6.1. The set Bn+1. Let Bn+1 denote the set of the ambient isotopy classes of
(n+ 1)-component Brunnian links. Let

(6.1) cn+1 : BSLn+1 → Bn+1

denote the map such that cn+1(β) is obtained from β ∈ BSLn+1 by closing each
component in the well-known manner.

Proposition 6.1. The map cn+1 is onto.

Proof. This is an immediate consequence of [19, Proposition 12]. �



16 K. HABIRO AND J.-B. MEILHAN

Uσ(n−1)Uσ(2)Uσ(1)

. . .

Un+1 Un

Tσ

Figure 6.1

6.2. The isomorphism c̄n+1 : BSLn+1 → Bn+1. Set

Bn+1 = Bn+1/(Can+1-equivalence),

and let
c̄n+1 : BSLn+1 → Bn+1

denote the map induced by cn+1, which is onto by Proposition 6.1.

Proposition 6.2. c̄n+1 is one-to-one.

Proof. It suffices to prove that there is a map Bn+1 → Tn+1 which is inverse to
c̄n+1θn : Tn+1 → Bn+1. This is proved similarly as in the proof of Proposition
5.3. �

Proposition 6.2 provides the set Bn+1 the well-known abelian group structure,
with multiplication induced by band sums of Brunnian links.

As a corollary, we obtain another proof of a result of Miyazawa and Yasuhara
[29].

Corollary 6.3 ([29, Theorem 1.2]). Let L and L′ be two (n+ 1)-component Brun-
nian links in S3. Then the following conditions are equivalent.

(1) L and L′ are Can+1-equivalent.
(2) L and L′ are Cn+1-equivalent.
(3) L and L′ are link-homotopic.

Proof. The result follows immediately from Propositions 5.4 and 6.2. �

Remark 6.4. Miyazawa and Yasuhara [29] do not explicitly state the equivalence
of (1) and others, but this equivalence follows from their proof.

Note that, unlike the Can+1-equivalence, neither the Cn+1-equivalence nor the
link-homotopy are closed for Brunnian links.

Remark 6.5. It is possible to show directly that Tn+1 is isomorphic to Bn+1, without
using string links and the closure map c̄n+1. The proof uses Milnor’s μ-invariants
and the above result of Miyazawa and Yasuhara. Our approach provides an alter-
native proof of the latter (instead of using it).

6.3. Trees and the Milnor invariants. In this subsection, we fix some notations
which are used in later sections. (Some has appeared in the proof of Proposition
5.3.)

For σ ∈ Sn−1, let tσ denote the unitrivalent tree as depicted in Figure 5.2. The
tσ for σ ∈ Sn−1 form a basis of Tn+1. Let Tσ denote the corresponding Can-tree for
the (n+ 1)-component unlink U = U1 ∪ · · · ∪ Un+1, see Figure 6.1.

For i1, . . . , in+1 with {i1, . . . , in+1} = {1, . . . , n+ 1}, let

μ̄i1,...,in+1 : Bn+1 → Z
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denote the Milnor invariant, which is additive under connected sum [28] (see also
[3, 33, 21]). For σ ∈ Sn−1, we set

μ̄σ = μ̄σ(1),σ(2),...,σ(n−1),n,n+1 : Bn+1 → Z.

It is well known [28] that for ρ ∈ Sn−1

μ̄ρ(UTσ ) =
{

1 if ρ = σ,
0 otherwise.

7. Goussarov-Vassiliev invariants of Brunnian links

Throughout the rest of the paper, let U = U1 ∪ U2 ∪ · · · ∪ Un+1 be the (n + 1)-
component unlink in the 3-sphere S3.

7.1. The map κn+1 : Bn+1 → J̄2n(n+ 1).

Proposition 7.1. Let n ≥ 2. Let L and L′ be two (n + 1)-component Brunnian
links in an oriented, connected 3-manifold M . If L and L′ are Can+1-equivalent (or
link-homotopic), then we have L′ − L ∈ J2n+1.

Proposition 7.1 implies the following.

Corollary 7.2. The restriction of any Goussarov-Vassiliev invariant of degree 2n
to (n+ 1)-component Brunnian links is a link-homotopy invariant.

Proof of Proposition 7.1. First, we consider the case L = U . By using the same
arguments as in the proof of [19, Lemma 14], we see that there is a clasper G
for U consisting of Cal -claspers with n + 1 ≤ l < 2n + 1, such that U bounds
n + 1 disjoint disks which are disjoint from the edges and the nodes of G, and
such that UG ∼Ca

2n+1
UT . The latter implies that UG − UT ∈ J2n+1. We use the

equality UG =
∑

G′⊂G[U,G′]. Clearly [U,G′] ∈ J2n+1 for |G′| > 1, so we may safely
assume that G has only one component. We then have UG−U ∈ J2n+1 as a direct
application of [19, Lemma 16]. This completes the proof of the case L = U .

Now consider the general case. We may assume that L′ is obtained from L by
one simple Can-move. Since L is an (n + 1)-component Brunnian link, it follows
from Theorem 5.1 and Lemma 4.2 that there exists a simple Can-forest F for U
such that L = UF . Also, there exists a simple Can+1-tree T̃ for L = U such that
L′ = LT̃ . We may assume that T̃ is a simple Can+1-tree for U disjoint from F such
that L′ = UF∪T̃ . Let S be the forest scheme consisting of the trees T1, . . . , Tl of F .
We have L =

∑
S′⊂S [U, S′] and L′ =

∑
S′⊂S [UT , S′]. Hence we have

L′ − L =
∑
S′⊂S

[U, S′ ∪ {T }].

Since deg T̃ = n+1 and deg Ti = n for all i, the term in the above sum is contained
in J2n+1 unless S′ = ∅. Hence we have

L′ − L ≡ [U, T̃ ] ≡ 0 (mod J2n+1),

where the second congruence follows from the first case. �

By Proposition 7.1, we have a map

κn+1 : Bn+1 −→ J̄2n(n+ 1)

defined by κn+1(L) = [L− U ]J2n+1 .
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Tσ

Un+1

. . .

Uσ(1) . . . Uσ(n−1) Un

T ′

C

Tσ

Un+1
Uσ(1) . . . Uσ(n−1) Un

T̃σ′
. . .

Figure 7.1

7.2. Quadraticity of κn+1. Let n ≥ 2. In this subsection, we establish the fol-
lowing commutative diagram.

(7.1)

Tn+1
ψn+1−−−−→� Bn+1

qn+1

⏐⏐�
⏐⏐�κn+1

˜Sym
2Tn+1 −−−−→

δn+1
J̄2n(n+ 1)

Definitions of ψn+1, ˜Sym
2Tn+1, qn+1 and δn+1 are in order.

• The isomorphism ψn+1 is the composition of

Tn+1
θn−→� BSLn+1

c̄n+1−→� Bn+1.

• Let Sym2 T Q
n+1 denote the symmetric product of two copies of T Q

n+1 :=

Tn+1 ⊗Q, and let ˜Sym
2Tn+1 denote the Z-submodule of Sym2 T Q

n+1 gener-

ated by 1
2x

2, x ∈ Tn+1. One can easily verify that ˜Sym
2Tn+1 is Z-spanned

by the elements 1
2 t

2
σ for σ ∈ Sn−1 and tσtσ′ for σ, σ′ ∈ Sn−1. (Of course

we have tσtσ′ = tσ′tσ. Thus ˜Sym
2Tn+1 is a free abelian group of rank

1
2 (n− 1)!((n− 1)! + 1).)

• The arrow qn+1 is the quadratic map defined by qn+1(x) = 1
2x

2 for x ∈
Tn+1.

• The arrow δn+1 is the homomorphism defined as follows. For σ, σ′ ∈ Sn−1,
let Tσ and Tσ′ be the corresponding simple Can-trees for U as in Section
6.3. Let T̃σ′ denote a simple Can-trees obtained from Tσ′ by a small isotopy
if necessary so that T̃σ′ is disjoint from Tσ. Set

δn+1(tσtσ′) = [U ;Tσ, T̃σ′ ]J2n+1 ∈ J̄2n(n+ 1),

which does not depend on how we obtained T̃σ′ from Tσ, since crossing
changes between an edge of Tσ and an edge of T̃σ′ preserves the right-hand
side. (This can be verified by using a ‘Ca-version’ of [17, Proposition 4.6].)
For the case of 1

2 t
2
σ, we modify the above definition with σ′ = σ as follows.

Let Tσ and T̃σ be as above. See Figure 7.1. Let T ′ be the Cn−1-tree
obtained from T̃σ by first removing the disk-leaf D intersecting Un+1, the
edge E incident to D, and the node N incident to E, and then gluing the
ends of the two edges which were attached to N . Moreover, let C be a
C1-tree which intersects Un+1 and Uσ(1) as depicted. Set

δn+1(
1
2
t2σ) = [U ;Tσ, T ′, C].

Lemma 7.3. We have

(7.2) [U ;Tσ, T̃σ] ≡ 2[U ;Tσ, T ′, C] (mod J2n+1).
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Figure 7.2
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Figure 7.3

Proof. By Theorem 3.4, it suffices to prove the identity in A2n(n + 1) depicted in
Figure 7.2, which can be easily verified using the STU relation several times. �

It follows from Lemma 7.3 that δn+1 is a well-defined homomorphism. Set
1
2
[U ;Tσ, T̃σ]J2n+1 = [U ;Tσ, T ′, C]J2n+1 .

We have
δn+1(

1
2
t2σ) =

1
2
[U ;Tσ, T̃σ]J2n+1 .

Theorem 7.4. The diagram (7.1) commutes. In particular, κn+1 is a quadratic
map.

We need the following lemma before proving Theorem 7.4.

Lemma 7.5. Let C be a clasper for a link L such that there is a disk-leaf D of T
which ‘monopolizes’ a component K of L in the sense of [19, Definition 15], and
such that D is adjacent to a node. That is, T and L looks as depicted in the left
hand side of Figure 7.3. Then we have the identity as depicted in the figure.

Proof. The identity is easily verified and left to the reader. (Note that Lemma 7.5
is essentially the same as [19, (4.4)].) �
Proof of Theorem 7.4. Let σ ∈ Sn−1. We must show that

[U ;Tσ]J2n+1 =
1
2
[U ;Tσ, T̃σ]J2n+1 .

For i = 1, . . . , n+ 1, let Di denote the disk-leaf of Tσ intersecting Li, and let Ei
denote the incident edge. For i = 1, . . . , n − 1, let Ni denote the node incident to
Ei.

By applying Lemma 7.5 to the edge of Tσ which is incident to Nσ(1) but not to
Dn+1 or Dσ(1), we obtain the identity depicted in Figure 7.4. Let B be the box
and E be the edge as depicted. Let G be the clasper in the right hand side. By zip
construction [17, Section 3.3] at E, we obtain a crossed clasper depicted in Figure
7.5, which consists of two components Tσ and P . The component P has n − 2
(non-disk) leaves.

We claim that we can unlink the leaves of P from Tσ without changing the class
in J̄2n(n+ 1). To see this, it suffices to show that

(7.3) UTσ∪P − UTσ∪P ′ ∈ J2n+1,
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where P ′ is obtained from P by the unlinking operation. Note that each unlinking is
performed by a sequence of crossing changes between an edge of the Can-tree Tσ and
a link component (after performing surgery along P in the regular neighborhood
of P ), and thus can be performed by Can+1-moves. Since all the links appearing in
this sequence is Brunnian, we have (7.3) by Proposition 7.1. This completes the
proof of the claim.

By the above claim, it follows that

[U ;Tσ, P ] ≡ [U ;Tσ, T ′] (mod J2n+1),

where T ′ is obtained from P by removing the leaves, the incident edges, and the
boxes, and then smoothing the open edges, see the left hand side of Figure 7.6,
which is equal to the right hand side by Lemma 7.5. The result is related to the
desired clasper defining 1

2 [U ;Tσ, T ′, C] by half twists of two edges and homotopy
with respect to U , and hence equivalent modulo J2n+1 to 1

2 [U ;Tσ, T ′, C]. This
completes the proof. �

7.3. Proof of Theorem 1.2. In this subsection we prove Theorem 1.2.
Let L ∈ Bn+1. We have

[L]Ca
n+1

=
∑

σ∈Sn−1

μ̄σ(L)[UTσ ]Ca
n+1
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in Bn+1. (Recall that the sum is induced by band-sum in Bn+1.) Hence we have
by the commutativity of (7.1)

[L− U ]J2n+1 = κn+1([L]Ca
n+1

)

= δn+1qn+1ψ
−1
n+1(

∑
σ∈Sn−1

μ̄σ(L)[UTσ ]Ca
n+1

)

= δn+1qn+1(
∑

σ∈Sn−1

μ̄σ(L)tσ)

= δn+1(
1
2
(

∑
σ∈Sn−1

μ̄σ(L)tσ)2)

= δn+1(
1
2

∑
σ,σ′∈Sn−1

μ̄σ(L)μ̄σ′(L)tσtσ′)

=
1
2

∑
σ,σ′∈Sn−1

μ̄σ(L)μ̄σ′(L)[U ;Tσ, Tσ′ ]J2n+1 .

Hence we have

(7.4) f(L) − f(U) =
1
2

∑
σ,σ′∈Sn−1

μ̄σ(L)μ̄σ′(L)f([U ;Tσ, Tσ′ ]).

We give any total order on the set Sn−1. Then we have

f(L) = f(U)+
∑

σ∈Sn−1

(
1
2
f([U ;Tσ, Tσ]))μ̄σ(L)μ̄σ(L)+

∑
σ<σ′

f([U ;Tσ, Tσ′ ])μ̄σ(L)μ̄σ′(L).

Note that 1
2f([U ;Tσ, Tσ]) ∈ Z and f([U ;Tσ, Tσ′ ]) ∈ Z. Hence we have (1.1) by

setting

f(σ, σ′) =

⎧⎪⎨
⎪⎩

1
2f([U ;Tσ, Tσ]) if σ = σ′,
f([U ;Tσ, Tσ′ ]) if σ < σ′,
0 if σ > σ′.

This completes the proof of Theorem 1.2.

8. The Brunnian part of J̄2n(n+ 1)

If L is an (n+ 1)-component Brunnian link in S3, then, by [19, Theorem 3], we
have L−U ∈ J2n(n+1). Define Br(J̄2n(n+1)) to be the Z-submodule of J̄2n(n+1)
generated by the elements [L−U ]J2n+1, where L is an (n+1)-component Brunnian
link. We call Br(J̄2n(n+ 1)) the Brunnian part of J̄2n(n+ 1).

The purpose of this section is to give an almost complete description of the
structure of the Brunnian part Br(J̄2n(n+1)) of the 2nth graded quotient J̄2n(n+1)
of Goussarov-Vassiliev filtration of (n + 1)-component links, using the Z-module
Ac
n−1(∅) of ‘connected trivalent diagrams’ (see below for the definition).

8.1. Trivalent diagrams. In Section 3.5, we have defined the notion of unitriva-
lent diagrams on a 1-manifold.

Definition 8.1. A trivalent diagram (also called closed Jacobi diagram) is defined
to be a unitrivalent diagram on the empty 1-manifold ∅. In other words, a trivalent
diagram is a vertex-oriented trivalent diagram. Note that the degree of a trivalent
diagram is half the number of vertices.

No nonempty trivalent diagram is strict in the sense of Definition 3.3.
For n ≥ 1, let An(∅) denote the Z-module generated by trivalent diagrams of

degree n modulo the AS and IHX relations. This notation contradicts to the
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notation in Section 3.5, where An(∅) means a strict unitrivalent diagram. Let us
allow this abuse of notation for simplicity.

Let Ac
n(∅) denote the Z-submodule of An(∅) generated by connected trivalent

diagrams.

8.2. The circle-insertion map gn. For n ≥ 2, let

gn : Ac
n−1(∅) → A2n(n+ 1)

denote the homomorphism which maps each trivalent diagram Γ to the result of
inserting n + 1 ordered copies of S1 in its edges, see Figure 8.1. This map is
well-defined thanks to the STU relation, since Γ is connected.

We need the following result.

Proposition 8.2. For n ≥ 2, the map

gn ⊗ Q : Ac
n−1(∅) ⊗ Q → A2n(n+ 1) ⊗ Q

is injective.

Proof. An open unitrivalent diagram (also called open Jacobi diagrams) Γ of degree
2n for n+ 1 colors {1, . . . , n+ 1} will mean a vertex-oriented unitrivalent diagram
such that each univalent vertex is labeled by an element in {1, . . . , n + 1}. We
assume that such a diagram Γ is strict, i.e., each component of Γ has at least one
univalent vertex. Let Bl2n(n + 1) denote the Q-vector space generated by open
unitrivalent diagrams of degree 2n for n+ 1 colors {1, . . . , n+ 1}, modulo the AS,
the IHX, and the link relation. It is known [1] that there is a standard isomorphism

χ2n : Bl2n(n+ 1) �−→ A2n(n+ 1) ⊗ Q,

called the Poincaré-Birkhoff-Witt isomorphism.
Define a homomorphism

P : Bl2n(n+ 1) −→ Ac
n−1(∅) ⊗ Q

as follows. Let Γ ∈ Bl2n(n + 1) be a diagram. If there are exactly two univalent
vertices colored by i for each i = 1, . . . , n+ 1, then we set P (Γ) to be the trivalent
diagram obtained from Γ by joining each pair of univalent vertices of the same
color. Otherwise, set P (Γ) = 0. Let

π : An−1(∅) ⊗ Q −→ Ac
n−1(∅) ⊗ Q

denote the projection, which maps each connected diagram into itself, and maps
nonconnected diagrams to 0. One can easily check that the composition of

Ac
n−1(∅)⊗Q

gn⊗Q−→ A2n(n+1)⊗Q
χ−1

2n−→ Bl2n(n+1) P−→ An−1(∅)⊗Q
π−→ Ac

n−1(∅)⊗Q

is the identity. Hence gn ⊗ Q is injective. �
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8.3. Structure of Br(J̄2n(n+ 1)). For n ≥ 2, let hn denote the composition

hn : Ac
n−1(∅)

gn−→ A2n(n+ 1)
ξ2n−→ J̄2n(n+ 1).

(For the definition of ξ2n, see Section 3.7.)

Theorem 8.3. (1) For n ≥ 3 we have hn(Ac
n−1(∅)) = Br(J̄2n(n+ 1)). For n = 2,

h2(Ac
1(∅)) is an index 2 subgroup of Br(J̄4(3)).

(2) For n ≥ 2, the Q-linear map

(8.1) hn ⊗ Q : Ac
n−1(∅) ⊗ Q → Br(J̄2n(n+ 1)) ⊗ Q

is an isomorphism.

Proof. (1) Suppose n ≥ 3. First we show that

(8.2) Br(J̄2n(n+ 1)) ⊂ hn(Ac
n−1(∅)).

It follows from the proof of Theorem 1.2 that Br(J̄2n(n+ 1)) is Z-spanned by
1
2
[U ;Tσ, T̃σ] for σ ∈ Sn−1,

[U ;Tσ, T̃σ′ ] for σ, σ′ ∈ Sn−1.

For n ≥ 3, 1
2 [U ;Tσ, T̃σ]J2n+1 is equal to

= ±hn

“ ”· · ·

· · ·

nσ(2)

· · ·

· · ·

n + 1
σ(1)

J2n+1

± σ(n − 1)

For n ≥ 2, [U ;Tσ, T̃σ′ ]J2n+1 is equal to

(8.3)

J2n+1

±
nσ(2)σ(1)

· · ·

n + 1 σ(n − 1) = ±hn

“ ”· · ·

· · ·permutation

permutation

Hence we have (8.2) for n ≥ 3.
Now we prove

(8.4) hn(Ac
n−1(∅)) ⊂ Br(J̄2n(n+ 1)).

It suffices to prove that every element of Ac
n−1(∅) is a Z-linear combination of the

elements of the form depicted in the right hand side of (8.3), which one can easily
verify.

The case n = 2 follows, since Br(J̄4(3)) is Z-spanned by [U ;T1]J5 = 1
2 [U ;T1, T̃1]J5 ,

and h2(Ac
1(∅)) is Z-spanned by [U ;T1, T̃1]J5 . (Here ‘1’ in ‘T1’ denotes the unit in

the (trivial) symmetric group S1 of order 1.)
(2) The assertion follows immediately from (1) above, Proposition 8.2 and The-

orem 3.4. �

Corollary 8.4. Let f be a Z-valued invariant of degree 2n for (n+ 1)-component
links in S3. For any (n+1)-component Brunnian link L in S3, we have the follow-
ing.
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(1) f(L) = f(Lσ) for any σ ∈ Sn+1, where Lσ is obtained by reordering the
components of L using σ.

(2) f(L) = f(L−), where L− is obtained by reversing the orientation of any
component of L.

Remark 8.5. Recall that trivalent diagrams appear in the study of Ohtsuki finite
type invariants of integral homology spheres [31, 7, 22]. The relation between
Theorem 8.3 and Ohtsuki finite type invariants will be discussed in a future paper.

9. An alternative proof of Theorem 1.2

In this section, we give a sketch proof of Theorem 1.2 using the Kontsevich
integral.

Suppose L ∈ Bn+1. By Proposition 6.1, there is T ∈ BSLn+1 with cn+1(T ) = L.
Consider the Kontsevich integral Z(T ) ∈ A(�n+1I) of T , where A(�n+1I) is a
completed Q-vector space of unitrivalent diagrams on the disjoint union �n+1I of
n + 1 copies of the unit interval I, modulo the FI and the STU relations. Recall
that A(�n+1I) has an algebra structure with multiplication given by the ‘stacking
product’ and with unit 1 given by the empty unitrivalent diagram.

Let p : A(�n+1I) � B(n + 1) denote the inverse of the Poincaré-Birkhoff-Witt
isomorphism, where B(n+ 1) is the completed Q-vector space of open unitrivalent
diagrams modulo the AS and the IHX relations. Since p(Z(T )) ∈ B(n + 1) is
grouplike (see [23]), we have

(9.1) p(Z(T )) = exp	(P ), P ∈ P(n+ 1),

where P(n + 1) denotes the primitive part of B(n + 1), generated by connected
diagrams, and where exp	 denotes exponential with respect to disjoint union of
diagrams.

For each i = 1, . . . , n + 1, consider the operation εi of omitting the ith string.
At the level of string link we have εi(T ) = 1n, since T is Brunnian. Hence we have
εi(P ) = 0. It follows that P can be expressed as an infinite Q-linear combination of
connected diagrams, each having at least one univalent vertex of color i. Since we
have this property for i = 1, . . . , n+ 1, we can deduce that P is an infinite Q-linear
combination of connected diagrams, each involving all the colors.

By an easy counting argument, we see that P can be expressed as

P = Pn + Pn+1 + Pn+2 + . . . ,

where Pn is a linear combination of trees of degree n, and Pk for k > n is a linear
combination of diagrams of degree k. By Habegger and Masbaum’s result [15], Pn
is a Z-linear combination of trees which corresponds to the Milnor invariants of
length n without repeating indices.

By (9.1), we have

p(Z(T )) = exp	(Pn + Pn+1 + · · · + P2n + . . . )

= 1 + Pn + Pn+1 + · · · + P2n−1 + (P2n +
1
2
P 2
n) +O>2n,

where O>2n is a sum of terms of degree > 2n. Hence we have

Z(T ) = 1 + P ′
n + P ′

n+1 + · · · + P ′
2n−1 + P ′

2n + p−1(
1
2
P 2
n) + p−1(O>2n),

where P ′
k = p−1(Pk) for k = n, . . . , 2n.

The Kontsevich integral Z(L) of L can be obtained from Z(T ) by first multiply-
ing by the Kontsevich integral of the unknot at each string, and then mapping into
the space A(n+1) by closing the strings. For our purpose, it is more convenient to
use a version Z ′(L) which is obtained from Z(L) by multiplying the inverse of the
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Kontsevich integral of the unknot to each string. Thus we have Z ′(L) = π(Z(T )),
where π : A(�n+1I) → A(n+1) is the projection which closes the strings. The map
π kills each diagram with at least one string having exactly one univalent vertex
of the attached diagram. One can verify that each term in P ′

n, . . . , P
′
2n is killed in

this way. Thus we have

Z ′(L) = 1 + πp−1(
1
2
P 2
n) + πp−1(O>2n).

It follows that the first nontrivial, Z-valued, finite type invariants of (n + 1)-
component Brunnian links are of degree 2n and is a quadratic form of Milnor’s
link-homotopy invariant of length n+ 1. Further details are left to the reader.
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