
THE PRINCIPAL NUMBERS OF K. SAITO FOR THE
TYPES Al, Dl AND El

YOSHIO SANO

Abstract

The principal number σ(Γ) for a tree Γ is introduced by K. Saito
[S2] as the maximal number of chambers contained in components of
the complement of the graphic arrangement attached to Γ (see §1).

The purpose of the present paper is to determine the principal num-
bers for the Coxeter-Dynkin graphs 1 of types Al, Dl and El. We show

that the generating series
∑∞

l=1
σ(Al)

l!
xl,

∑∞
l=3

σ(Dl)
l!

xl and
∑∞

l=4
σ(El)

l!
xl

satisfy certain differential equations of the first order. By solving the
equations, we obtain the following results:∑∞

l=1
σ(Al)

l!
xl = tan(x

2
+ π

4
) − 1.∑∞

l=3
σ(Dl)

l!
xl = 2(x − 1) tan(x

2
+ π

4
) − x2 + 2.∑∞

l=4
σ(El)

l!
xl = (1

2
x2 − 2x + 3) tan(x

2
+ π

4
) − 3x3 − x − 3.

1. Introduction

First, we recall the principal numbers of K. Saito for trees.
Let Γ be a tree (i.e. a connected graph without cycles) with l vertices,

and let Π be the vertex set of Γ. Put |Γ| := |Π| = l. Denote the edge
set of Γ by Edge(Γ).

Any orientation o on Γ defines a partially order on Π by transitive
closure. Let Σ(o) be the set of all linear orderings of Π which agree
with the ordering of o. The enumeration of σ(o) := |Σ(o)|, i.e. the
enumeration of linear extensions of a partially ordered set, is one of
basic problems in combinatorics (see, for instance, [St1]).

Here, let us consider the problem to maximize σ(o) such that o is an
orientation on the tree Γ. Put:

(1) σ(Γ) := max{σ(o) | o : all orientations on Γ}

1In this paper, we denote the Coxeter-Dynkin graphs of types Al, Dl and El also
by the same symbols Al, Dl and El, respectively.

1



2 YOSHIO SANO

K. Saito [S2] has proved that this maximal number σ(Γ) is attained
by the two principal orientations oΠ1,Π2 , oΠ2,Π1 , where the principal
orientations are defined as follows. Since Γ is a tree, the vertex set Π
decomposes uniquely as Π = Π1 t Π2 (disjoint union), where Π1 and
Π2 are totally disconnected in Γ. The ordered decomposition {Π1, Π2}
is called a principal decomposition of the tree Γ. Choosing a principal
decomposition, we define a partial order on Π: for α, β ∈ Π,

α < β ⇐⇒ αβ∈Edge(Γ) with α∈Π1, β∈Π2.

This partial order on Π is called a principal orientation on Γ and is
denoted by oΠ1,Π2 . The number σ(Γ) = σ(oΠ1,Π2) is called the principal
number of Γ. In other words, the principal number σ(Γ) of the tree Γ is
the number of linear extensions of the partially ordered set (Π, <oΠ1,Π2

).
K. Saito has shown further that σ(Γ) is expressed by a finite sum of

hook length formulae for some rooted trees. The purpose of the present
paper is to determine the principal numbers for the three series of the
Coxeter-Dynkin graphs of types Al, Dl and El by a different approach,
i.e. by a use of generating series. We determine the generating series
as described in Abstract.

The construction of this paper is as follows.
In the section 2, we see the inductive relation among the principal

numbers, and we get an induction formula for the principal numbers.
The section 3 is the main part of this paper. Using the inductive

relations among the principal numbers, we obtain ordinary differen-
tial equations of the first order. By solving these ordinary differential
equations, we obtain the generating functions of the series {σ(Al)},
{σ(Dl)} and {σ(El)}, i.e. we give closed expressions to the generat-

ing series
∑∞

l=1
σ(Al)

l!
xl,

∑∞
l=3

σ(Dl)
l!

xl and
∑∞

l=4
σ(El)

l!
xl. (It should be

noted that the number σ(Al) is well known classically as the number
of alternating permutations in the symmetric group of rank l.)

In the appendix, we present the principal numbers concretely for
small l.

Note. It should be noted that the principal numbers of trees have the
discrete geometric background related to Γ-cones (see [S2]). For the
convenience of readers, we recall the definition of a Γ-cone.

Let Π be a finite set. Put l := |Π|. And let VΠ := ⊕α∈ΠRvα/R ·vΠ be
a quotient vector space, where vΠ :=

∑
α∈Π vα. The permutation group

S(Π) acts on {vα}α∈Π fixing vΠ, and, hence, the action extends linearly
on VΠ. Let {λα}α∈Π be the dual basis of {vα}α∈Π, so that the differences
λαβ :=λα−λβ for α, β∈Π are well defined linear forms on VΠ (forming
the root system of type Al−1). The zero locus Hαβ of λαβ (α 6= β) in
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VΠ is the reflection hyperplane of the reflection action induced by the
transposition (α, β). The complement of the union ∪α,β∈Π,α 6=βHαβ in
VΠ decomposes into l! connected components, called chambers. Let Γ
be a tree which has Π as its vertex set. The complement of the union
∪(α,β)∈Edge(Γ)Hαβ in VΠ decomposes into 2l−1 connected components,
called Γ-cones. Note that there exists one-to-one correspondence be-
tween Γ-cones and orientations on Γ.

What the above definitions make clear at once is that each Γ-cone is
subdivided into chambers. This fact leads us to one question:
“How many chambers are contained in each Γ-cone?”

K. Saito have shown that two particular Γ-cones which correspond
to the principal orientations, called principal Γ-cones, contain the most
number of chambers. In terms of the Γ-cones, the principal number is
the number of chambers contained in a principal Γ-cone. This geomet-
ric background is our original motivation for calculating the principal
numbers.

And it should be also noted that the principal numbers for types Al,
Dl and El have geometric meanings as the number of topological types
of Morsification of simple polynomials (see [S1]), and are of particular
interest.

2. An induction formula

In this section, we calculate the principal number σ(Γ) of a tree Γ
inductively.

Suppose that we know the principal numbers for all the trees such
that the number of vertices is less than l := |Γ|.

Consider one linear extension of oΠ1,Π2 . Then, the minimum (max-
imum) element is in Π1 (Π2). Let v ∈ Π1 be the minimum element.
And consider a graph Γ\{v}. This graph consists of some trees. So we
denote the connected components of the graph Γ \ {v} by Γv,(1), Γv,(2),
...., Γv,(tv), where tv is the number of the connected components of the
graph Γ \ {v}. It is obvious that the number of vertices of each tree is
less than l.

Now we can calculate the principal number σ(Γ) of the tree Γ. The
number of linear extensions of each Γv,(k) (k = 1, ..., tv) is σ(Γv,(k))
which we know. And among the elements in different Γv,(k), there are
no order relations in oΠ1,Π2 . So the number of the linear extensions of
oΠ1,Π2 such that v is the minimum element is:(

(l − 1)
|Γv,(1)|

)
·
(

(l − 1) − |Γv,(1)|
|Γv,(2)|

)
·
(

(l − 1) − |Γv,(1)| − |Γv,(2)|
|Γv,(3)|

)
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·... ·
(

(l − 1) −
∑tv−1

k=1 |Γv,(k)|
|Γv,(tv)|

)
· σ(Γv,(1)) · σ(Γv,(2)) · ... · σ(Γv,(tv))

=
tv∏

k=1

(
(l − 1) −

∑k−1
i=1 |Γv,(i)|

|Γv,(k)|

)
·

tv∏
k=1

σ(Γv,(k))

=
(l − 1)!

|Γv,(1)|! · |Γv,(2)|! · .... · |Γv,(tv)|!
·

tv∏
k=1

σ(Γv,(k)).

At last, we can get the following induction formula by taking a sum-
mation for all v ∈ Π1.

(2) σ(Γ) =
∑
v∈Π1

{
(l − 1)! ·

tv∏
k=1

σ(Γv,(k))

|Γv,(k)|!

}
.

We also get the following formula in the same way by considering
the maximum element.

(3) σ(Γ) =
∑
v∈Π2

{
(l − 1)! ·

tv∏
k=1

σ(Γv,(k))

|Γv,(k)|!

}
.

From that Π = Π1 tΠ2 (disjoint union) and the above equations (2)
and (3), we obtain the next result (c.f. [S2] Assertion 2.1).

Proposition 2.1 (An induction formula for the principal number).
Let Γ be a tree. The principal number σ(Γ) of the tree Γ is given by
the next induction formula.

(4) σ(Γ) =
1

2
· (|Γ| − 1)! ·

∑
v∈Π

{ tv∏
k=1

σ(Γv,(k))

|Γv,(k)|!

}
,

where Γv,(k) (k = 1, ..., tv) are connected components of a graph Γ\{v}.

For the use in the next section, we reformulate this formula (4) as
follows.

Corollary 2.2.

(5) σ(Γ) =
1

2
·
∑
v∈Π

{ tv∏
k=1

(
(|Γ| − 1) −

∑k−1
i=1 |Γv,(i)|

|Γv,(k)|

)
·

tv∏
k=1

σ(Γv,(k))
}

,
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3. Generating functions for the series of types Al, Dl and El

In this section, we give the generating functions for the series {σ(Al)},
{σ(Dl)} and {σ(El)} of the principal numbers of types Al (l ≥ 1), Dl

(l ≥ 3) and El (l ≥ 4).

1. Al-type.

The Coxeter-Dynkin graph of type Al (l ≥ 1) is a tree given as
follows:

◦−−−◦−−−◦−− · · · −−◦−−−◦−−−◦
where l is the number of vertices of the graph. We denote the principal
number of type Al by σ(Al).

Theorem 3.1.

(6)
∞∑
l=1

σ(Al)

l!
xl = tan

(x

2
+

π

4

)
− 1.

Proof. We put σ(A0) := 1. From the formula (5), we get an equation:

σ(Al+1) =
1

2

l∑
i=0

(
l
i

)
σ(Ai)σ(Al−i) (l ≥ 1)

We transform this equation as follows.

2 · σ(Al+1)

l!
=

l∑
i=0

σ(Ai)

i!
· σ(Al−i)

(l − i)!

2 ·
∞∑
l=1

σ(Al+1)

l!
xl =

∞∑
l=1

( l∑
i=0

σ(Ai)

i!
· σ(Al−i)

(l − i)!

)
xl

−2 + 2 ·
∞∑
l=0

σ(Al+1)

l!
xl = −1 +

∞∑
l=0

( l∑
i=0

σ(Ai)

i!
· σ(Al−i)

(l − i)!

)
xl

Here, put fA(x) :=
∑∞

l=0
σ(Al)

l!
xl. Then, above equation implies the

differential equation:

2f ′
A(x) = 1 + (fA(x))2.

We can solve this differential equation by using the separation of vari-
ables. With the initial condition: fA(0) = σ(A0) = 1, the solution
is:

fA(x) = tan
(x

2
+

π

4

)
.

So we obtain the formula (6). ¤
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Remark. The formula (6) agrees with the classical formula.

f ′
A(x) =

∞∑
l=0

σ(Al+1)

l!
xl = sec(x) + tan(x).

2. Dl-type.

The Coxeter-Dynkin graph of type Dl (l ≥ 3) is a tree given as
follows:

◦−−−◦−−−◦−− · · · −−◦−−−◦−−−◦
|
◦

where l is the number of vertices of the graph. We denote the principal
number of type Dl by σ(Dl).

Theorem 3.2.

(7)
∞∑
l=3

σ(Dl)

l!
xl = 2(x − 1) tan

(x

2
+

π

4

)
− x2 + 2.

Proof. We note that σ(D3) = σ(A3) = 2. And from the formula (5),
we get an equation:

2 · σ(Dl+1) = 2 · σ(Al) +
(

l
2

)(
2
1

)
σ(A1)σ(Al−1)

+
l∑

i=3

(
l
i

)
σ(Di)σ(Al−i) (l ≥ 3).

Here, we put σ(D2) := 2, σ(D1) := 0 and σ(D0) := 2 formally. Then
this equation becomes a simpler form:

σ(Dl+1) =
1

2

l∑
i=0

(
l
i

)
σ(Di)σ(Al−i) (l ≥ 3).

We transform this equation as follows.

2 · σ(Dl+1)

l!
=

l∑
i=0

σ(Di)

i!
· σ(Al−i)

(l − i)!
.

2 ·
∞∑
l=3

σ(Dl+1)

l!
xl =

∞∑
l=3

( l∑
i=0

σ(Di)

i!
· σ(Al−i)

(l − i)!

)
xl.

2
( ∞∑

l=0

σ(Dl+1)

l!
xl−2x−x2

)
=

∞∑
l=0

( l∑
i=0

σ(Di)

i!
·σ(Al−i)

(l − i)!

)
xl−2−2x−2x2.

Put fD(x) :=
∑∞

l=0
σ(Dl)

l!
xl. Then, above equation implies the differen-
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tial equation:

f ′
D(x) =

1

2
fD(x)fA(x) + x − 1.

We can solve this differential equation by using variations of param-
eters. With the initial condition: fD(0) = σ(D0) = 2, the solution
is:

fD(x) = 2(x − 1) tan
(x

2
+

π

4

)
+ 4.

So we obtain the formula (7). ¤
Using the relation: fD(x) = 2(x − 1)fA(x) + 4, one obtains:

Corollary 3.3.

(8) σ(Dl) = 2(l · σ(Al−1) − σ(Al)) (l ≥ 1).

3. El-type.

The Coxeter-Dynkin graph of type El (l ≥ 4) is a tree given as
follows:

◦−−−◦−−−−◦−−· · · −−◦−−−◦−−−◦
|
◦

where l is the number of vertices of the graph. We denote the principal
number of type El by σ(El).

Theorem 3.4.

(9)
∞∑
l=4

σ(El)

l!
xl =

(1

2
x2 − 2x + 3

)
tan

(x

2
+

π

4

)
− 3x3 − x − 3.

Proof. We note that σ(E5) = σ(D5) = 18, σ(E4) = σ(A4) = 5. And
from the formula (5), we get an equation:

2σ(El+1) = σ(Al) + σ(Dl) +
(

l
1

)
σ(A1)σ(Al−1)

+
(

l
3

)(
3
1

)
σ(A1)σ(A2)σ(Al−3)

+
l∑

i=4

(
l
i

)
σ(Ei)σ(Al−i) (l ≥ 4).

From Corollary 3.3, we have σ(Dl) = 2(l · σ(Al−1) − σ(Al)) (l ≥ 1).
Moreover we put σ(E3) := 3, σ(E2) := 0, σ(E1) := 3 and σ(E0) := −1
formally. Then this equation becomes a simpler form:

σ(El+1) =
1

2

l∑
i=0

(
l
i

)
σ(Ei)σ(Al−i) (l ≥ 4).
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We transform this equation as follows.

2
( ∞∑

l=0

σ(El+1)

l!
xl − (3 +

3

2
x2 +

5

6
x3)

)

=
∞∑
l=0

( l∑
i=0

σ(Ei)

i!
· σ(Al−i)

(l − i)!

)
xl − (−1 + 2x +

5

2
x2 +

5

3
x3).

Put fE(x) :=
∑∞

l=0
σ(El)

l!
xl. Then, above equation implies the differen-

tial equation:

f ′
E(x) =

1

2
fE(x)fA(x) +

1

4
x2 − x +

7

2
.

We can solve this differential equation by using variations of param-
eters. With the initial condition: fE(0) = σ(E0) = −1, the solution
is:

fE(x) =
(1

2
x2 − 2x + 3

)
tan

(x

2
+

π

4

)
+ 2x − 4.

So we obtain the formula (9). ¤

Using the relation: fE(x) = (1
2
x2−2x+3)fA(x)+2x−4, one obtains:

Corollary 3.5.

(10) σ(El) =
l(l − 1)

2
σ(Al−2) − 2l · σ(Al−1) + 3 · σ(Al) (l ≥ 2).
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4. Appendix: the concrete numbers for small l

the principal numbers
l σ(Al) σ(Dl) σ(El)

(0) (1) (2) (-1)
1 1 (0) (3)
2 1 (2) (0)
3 2 2 (3)
4 5 6 5
5 16 18 18
6 61 70 66
7 272 310 298
8 1385 1582 1511
9 7936 9058 8670

10 50521 57678 55168
11 353792 403878 386394
12 2702765 3085478 2951673
13 22368256 25535378 24428657
14 199360981 227589206 217723390
15 1903757312 2173314806 2079109386

The numbers in ( ) are just defined formally in the proofs in section
3, even though corresponding graphs do not exist.
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