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Excursion measure away from an exit boundary of
one-dimensional diffusion processes

By

Kouji Yano
∗

Abstract

A generalization of the excursion measure away from an exit boundary is defined
for a one-dimensional diffusion process. It is constructed through the disintegration
formula with respect to the lifetime. The counterpart of the Williams description,
the disintegration formula with respect to the maximum, is also established. This
generalized excursion measure is applied to explain and generalize the convergence
theorem of Kasahara and Watanabe [8] in terms of the Poisson point fields, where
the inverse local time processes of regular diffusion processes converge in the sense of
probability law to some Lévy process, which is closely related to a diffusion process
with an exit boundary.

1 Introduction

Watanabe [18] has discovered the necessary and sufficient condition that the ratio of the
occupation time on the positive side of a one-dimensional generalized diffusion process
converges in law to some non-trivial random variable. In the positively recurrent cases,
in particular, the limit random variable is a constant.

Recently Kasahara and Watanabe [8] have studied the scaling limit of the fluctuation
in the positively recurrent cases. In their context, they obtained the following convergence
theorem: The renormalized inverse local time processes at the origin converge in law to
some Lévy process which is not necessarily a subordinator. Indeed the corresponding
strings for which the origin is a regular boundary converge to a string for which the origin
is an exit boundary. The notion of this convergence, which was introduced in Kasahara–
Watanabe [8] and Kotani [12], is a breakthrough in this problem. We state its definition
in Definition 3.1.

We consider non-singular conservative d
dm

d
dx

-diffusion processes and generalize the con-
vergence theorem of Kasahara–Watanabe [8] in terms of the Poisson point fields. For this
generalization we need to establish the generalized notion of the excursion measure n
away from an exit boundary.
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We have the following two well-known formulae of descriptions of usual excursion
measures (see, e.g., [4] and [15]). One is the disintegration formula with respect to the
lifetime ζ:

n(Γ) =

∫ ∞

0

P
0,0
t (Γ)n(ζ ∈ dt). (1.1)

The other is the disintegration formula with respect to the maximum M :

n(Γ) =

∫ ∞

0

Ra(Γ)n(M ∈ da). (1.2)

This is due to Williams [20] and is often called the Williams description. Here P 0,0
t and

Ra are defined through the harmonic transform of the original process. We establish these
two formulae (1.1) and (1.2) for our generalized excursion measures in Theorem 2.3 and
Theorem 2.4, respectively.

We consider a process defined by

U [f ](m; t) =

∫

{ζ<1}

f(ζ(e))Ñ (m; (0, t], de) +

∫

{ζ≥1}

f(ζ(e))N (m; (0, t], de). (1.3)

Here N (m; dt, de) and Ñ (m; dt, de) denote the Poisson point field with intensity mesaure
dtn(de) and its compensated random field, respectively. We establish the continuity
theorem with respect to the string m, which is stated as Theorem 2.7:

U [f ](mn; t)
law
−→ U [f ](m; t) (1.4)

as mn converges to m in the sense of Definition 3.1. If f(x) ≡ x, then the expression
(1.3) gives the compensated inverse local time processes. Hence our continuity theorem
1.4 provides a generalization of the convergence theorem of Kasahara–Watanabe [8] in
terms of the Poisson point fields.

The essence of the proof to the existence theorem of the generalized excursion mea-
sures lies in Proposition 2.1, which asserts that an entrance law exists. Its density with
respect to dm(x) is given by the partial derivative Π(t, x) of q(t, x, y) at y = 0+. Here
q(t, x, y) denotes the transition probability for which the origin is an absorbing boundary.
Proposition 2.1 allows us to interchange the differentiation and the integration in the
eigendifferential expansion

q(t, x, y) =

∫

(0,∞)

e−tξψ−ξ(x)ψ−ξ(y)θ(dξ). (1.5)

We must be careful in interchanging the differentiation and the integration for such
an eigendifferential expansion. For instance, we consider the eigendifferential expansion
of the resolvent kernel:

G(λ, x, y) =

∫

(0,∞)

ψ−ξ(x)ψ−ξ(y)

λ+ ξ
θ(dξ). (1.6)
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Then it can never hold that

∂2G

∂x∂y
(λ, x, y)

∣∣∣∣
y=x

=

∫

(0,∞)

|ψ′−ξ(x)|2

λ+ ξ
θ(dξ). (1.7)

In fact, the LHS equals to the product of the derivatives of the positive increasing eigen-
function and the decreasing one with eigenvalue λ. This means that the LHS of (1.7) is
negative, while the RHS of (1.7) is obviously positive. Hence the identity (1.7) fails.

The foundation of the excursion theory is established by Itô [5]. (We can find it in
standard textbooks, e.g., [4] and [15]. See also [2] in a general framework.) Consider
the inverse local time process (η(t)) for a diffusion process at a regular point, say, the
origin. Then it is an increasing Lévy process, namely, a subordinator. To each jump of
the process (η(t)) we assign a piece of the path starting from the origin and coming back
there, called an excursion away from the origin. Then we obtain a point process (p(t)).
Denote the counting measure of (p(t)) by N (dt, de). Then the process (η(t)) admits an
integral expression

η(t) =

∫
ζ(e)N ((0, t], de). (1.8)

The strong Markov property together with the time homogenuity of the diffusion process
assures that (p(t)) forms a stationary Poisson point process and that N (dt, de) a Poisson
point field. The law of N (dt, de) is characterized by its intensity measure dtn(de), where
n is a σ-finite measure defined on the space of excursions away from the origin. The
measure n is called the excursion measure away from the origin of the diffusion process.

Based on Krein’s spectral theory (see, e.g., [3], [7] and [13]), Knight [10] and Kotani–
Watanabe [13] have characterized the class of the Lévy measures of (η(t)) for one-dimensional
generalized (or gap) diffusion processes. For a string m, the corresponding Lévy measure
has a density ρ(u) =

∫
(0,∞)

e−uξξσ∗(dξ) where σ∗ is the spectral measure of the dual string

m∗. This fact is extremely useful for investigating the law of the occupation time. Watan-
abe’s result [18], mentioned in the beginning of this section, was based on this fact (see
also [1], [9], [21] and [19]).

We may say that Kasahara and Watanabe ([8]) have generalized these results. They
showed that any string m for which the origin is of limit circle type corresponds to a Lévy
process without Gaussian part nor negative jumps and characterized its Lévy measure by
the spectral measure σ∗ of the dual string m∗. Their results are closely related to a recent
work of Kotani [12], which gives a generalization of Krein’s spectral theory. Some of their
results will be stated in §3.5.

The key to our continuity theorem (Theorem 2.7) is to establish the following relation
between two spectral measures θ and σ∗, stated in Theorem 2.2:

θ(dξ) = ξσ∗(dξ). (1.9)

This result unifies the framework of our generalized excursion measure in terms of θ with
that of Knight [10], Kasahara–Watanabe [8] and Kotani [12] in terms of σ∗.
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The present paper is organized as follows. In §2, we will state our results after a brief
review of the known results. In §3 and §4, we prepare some notations and some preliminary
results for the eigendifferential expansion at an exit boundary of the fundamental solution
for operators of the form d

dm
d
dx

and for the corresponding diffusion processes. In §5, we will
introduce the σ-fields which represent the information of the path on the intervals between
two random times. We need a careful treatment of them to establish the generalized
Williams description. In §6, we prove the existence theorem of the excursion measure
away from an exit boundary for absorbing Lm-diffusion process, which we denote by n.
We will construct it through the disintegration formula with respect to the lifetime. In §7,
we will prove the generalized Williams description for our excursion measure. For this, we
establish the strong Markov property and the first-entrance-last-exit decomposition for n.
For the proofs we fully utilize the results in §5. §8 is devoted to the proof of the continuity
theorem, Theorem 2.7. From this we can derive Corollary 2.6, i.e. the convergence of the
processes defined by integrals with respect to Poisson point fields, which generalize the
convergence theorem of Kasahara–Watanabe [8].

Notation: Throughout this paper, the integration (or expectation) with respect to a
positive measure m(·) on a path space is denoted by m[·].

Acknowledgments: I would like to express my sincerest gratitude to Professor
Yoichiro Takahashi, who is my supervisor, for valuable guidance and hearty encourage-
ment. I wish to extend my sincerest appreciation to Professor Shinzo Watanabe for
stimulating discussions and warm encouragement. I am greatly thankful to Professors
Yuji Kasahara and Shin’ichi Kotani, who allowed me to access the first drafts of their
recent works and gave me a lot of valuable comments.

2 Results

2.1 The background

To explain our motivation, we shall make a brief review of the known results.
Let m : [0,∞) → [0,∞) be a string with m(0) = 0. Then there corresponds a d

dm
d
dx

-
diffusion process for which the origin is a reflecting boundary. Denote its inverse local
time process at the origin by (η(t)). Then the process (η(t)) is a subordinator whose law
has the Laplace transform given by

E [exp (−sη(t))] = exp (−tΨ(s)) , s > 0, t > 0 (2.1)

where the exponent Ψ(s) is given as

Ψ(s) =

∫ ∞

0

(1− e−su)ρ(u)du, s > 0 (2.2)

with

ρ(u) =

∫

(0,∞)

e−uξξσ∗(dξ), u > 0. (2.3)
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Suppose that m(x) is regularly varying at x =∞, i.e., there exist a constant β ∈ (0,∞)
and a slowly varying function L(x) such that

m(x) ∼ xβL(x), x→∞. (2.4)

Then we have the following convergence in law:

ηλ(t) :=
1

λ
1

αL(λ)
η(λt)

law
−→ η(α)(t), λ→∞ (2.5)

where α = 1/(1 + β) ∈ (0, 1) and η(α)(t) is an α-stable subordinator. This can be easily
verified since (ηλ(t)) is identical in law to the inverse local time process corresponding to
a string mλ given by

mλ(x) :=
m(λx)

λ
1

α
−1L(λ)

→ x
1

α
−1, λ→∞. (2.6)

In the positively recurrent cases, i.e., if m(∞) <∞, it holds that

1

λ
η(λt)

law
−→ m(∞)t, λ→∞. (2.7)

Hence it is natural to ask the scaling limit of the fluctuation

1

λ
η(λt)−m(∞)t. (2.8)

Kasahara and Watanabe [8] answered this question.

Theorem 2.1 ((Kasahara–Watanabe [8, Theorem 3.3])). Suppose that there exists
a constant β ∈ (0, 1/2) and a slowly varying function L(x) such that

m(∞)−m(x) ∼ x−βL(x), x→∞. (2.9)

Then, as λ→∞, it holds that

1

λ1/α−1L(λ)

(
1

λ
η(λt)−m(∞)t

)
law
−→ T (α)(t), (2.10)

where T (α)(t) is an α-stable process with index α = 1/(1− β) ∈ (1, 2).

We will generalize the convergence (2.10) as Corollary 2.6, which is stated in terms of
the Poisson point fields.

Remark 1. Let m(x) be a string which satisfies the assumptions of Theorem 2.1. Set

mλ(x) =
1

λ1/α−1L(λ)
{m(λx)−m(∞)} (2.11)

and

m(α)(x) = −x1/α−1. (2.12)

Then mλ converges to m(α) in M1 as λ→∞. Here the definition of convergence in M1

is stated in Definition 3.1.
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2.2 Strings, operators and the classifications of boundaries

In this subsection, we prepare the notations concerning strings, operators and the classi-
fications of boundaries to state our theorems.

Let m(x) and s(x) be two (−∞,∞)-valued non-decreasing functions on the interval
(r, l) with −∞ ≤ r < l ≤ ∞. We confine ourselves to the non-singular case, i.e.,

m(x) and s(x) are strictly increasing and continuous. (2.13)

The functions m(x) and s(x) are identified with non-negative Radon measures dm and
ds on (r, l). The condition (2.13) is equivalent to the condition

dm and ds are everywhere positive and have no point masses. (2.14)

We consider the second order differential operator

L(m,s) =
d

dm

d

ds
. (2.15)

If the scale s(x) ≡ x, then we denote L(m,s) simply by Lm and call m a string. (The
self-adjoint extensions of Lm will be denoted by Lm below.)

We follow Feller’s theory of the classification of boundary points. Let

c1 =

∫

(r,r′]

ds(x)

∫

(x,r′]

dm(y), c2 =

∫

(r,r′]

dm(x)

∫

(x,r′]

ds(y) (2.16)

for some r′ ∈ (r, l). Following Itô–McKean’s book [6], we use the following terminology:
(i) If c1 <∞, then the boundary x = r is called exit.
(ii) If c2 <∞, then the boundary x = r is called entrance.

In particular, if it is both exit and entrance, then the boundary x = r is called regular.
Note that this classification is independent of the choice of r′. The classification of the
left boundary x = l for (m(x), s(x)) is introduced as that of x = −l for (m(−x), s(−x))
on the interval (−l,−r).

Consider a string m(x) on (0, l) with 0 < l ≤ ∞ (with the natural scale s(x) ≡ x).
Then
(i) The boundary x = 0 is exit if and only if

∫

(0,δ]

xdm(x) <∞ for some δ > 0. (2.17)

The class of such strings will be denoted by M.
(ii) The boundary x = 0 is of limit circle (Grenzkreis) type in the sense of Weyl’s

classification of the operator Lm = d
dm

d
dx

if and only if

∫ δ

0

m(x)2dx <∞ for some δ > 0. (2.18)

The class of such strings will be denoted by M1.
(iii) The boundary x = 0 is regular if and only if

m(0+) > −∞. (2.19)
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The class of such strings will be denoted by M0.
It is obvious that

M0 ⊂M1 ⊂M. (2.20)

2.3 The fundamental solutions and the spectral measures

Let m ∈ M. We assume that the boundary x = 0 is absorbing and that x = l is also
absorbing if x = l is exit. Under these conditions, the operator Lm extends to a unique
self-adjoint operator Lm with its domain D(Lm).

Then we have the fundamental solution q(t, x, y) of Lm with eigendifferential expansion

q(t, x, y) =

∫

(0,∞)

e−tξψ−ξ(x)ψ−ξ(y)θ(dξ), t > 0, x, y ∈ (0, l). (3.10)

The existence of the density of an entrance law is assured by the following proposition.

Proposition 2.1. Suppose that the spectral measure θ satisfies
∫

(0,∞)

e−tξθ(dξ) <∞ for any t > 0. (S)

Then the following statements hold:
(i) For t > 0 and x ∈ (0, l), the function q(t, x, y) is differentiable at y = 0 and the

partial derivative Π(t, x) = ∂q
∂y

(t, x, 0+) satisfies

Π(t, x) = lim
y→0+

q(t, x, y)

y
=

∫

(0,∞)

e−tξψ−ξ(x)θ(dξ). (2.21)

In particular, the function Π(t, x) is non-negative.
(ii) The family of measures Π(t, x)dm(x) defines an entrance law:

∫

(0,l)

Π(t, x)q(s, x, y)dm(x) = Π(t+ s, y), t, s > 0, y ∈ (0, l). (2.22)

(iii) The function Π(t, x) is differentiable at x = 0 and the derivative ρ(t) = ∂Π
∂x

(t, 0+)
satisfies

ρ(t) = lim
x→0+

Π(t, x)

x
=

∫

[0,∞)

e−tξθ(dξ), t > 0. (2.23)

The proof of Proposition 2.1 will be given in §3.2.
The following theorem gives the relation between the spectral measures θ and σ∗ (cf.

(3.46) and (3.47) below).

Theorem 2.2. Let m ∈M. Suppose that the spectral measure σ∗ satisfies
∫

(0,∞)

e−tξξσ∗(dξ) <∞ for any t > 0. (S∗)

Then the condition (S) holds and the following relation holds:

θ(dξ) = ξσ∗(dξ) on (0,∞). (2.24)
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The proof of Theorem 2.2 will be given in §3.4.

Example 1. The assumption (S∗) (and hence the assumption (S)) is satisfied in the
following cases:
(i) m = m(α) for some α ∈ (0,∞), where

m(α)(x) =





x1/α−1, if α ∈ (0, 1),

log x, if α = 1,

−x1/α−1, if α ∈ (1,∞).

(2.25)

Indeed, the corresponging spectral measure σ∗ is given as σ∗(dξ) = Cξαdξ for some
constant C. Note that the corresponging Lm-diffusion process is the Bessel process with
index −α (or of dimension 2− 2α ∈ (−∞, 2)).

(ii) m ∈M1. Indeed, if m ∈M1, then
∫

[0,∞)
σ∗(dξ)
1+ξ2 <∞ (see Theorem 3.1 (i)).

Remark 2. In the case m ∈M0, the relation (2.24) has been obtained by Minami–Ogura–
Tomisaki [14, Lemma 3].

Remark 3. Kotani [11] has shown that there exists a (singular) string m∗ such that the
corresponding spectral measure σ∗ satisfies

∫

(0,∞)

e−tξσ∗(dξ) =∞ for any t > 0. (2.26)

2.4 The excursion measures away from an exit boundary

Let m ∈M and suppose that the condition (S) is satisfied.
We give the precise definition of our excursion measure. Let (E, E) denote the space

of continuous paths with finite lifetime. Its precise definition will be given in §4.3.

Definition 2.1. The excursion measure away from the origin of the Lm-diffusion process
is a σ-finite measure n on the space E such that

n(C) =

∫

A1

dm(x1)Π(t1, x1)

∫

A2

dm(x2)q(t2 − t1, x1, x2) (2.27)

· · ·

∫

An

dm(xn)q(tn − tn−1, xn−1, xn)

for any cylinder set C ∈ E of the form

C = {e ∈ E : e(t1) ∈ A1, . . . , e(tn) ∈ An}. (4.14)

This definition uniquely determines a measure on E , if it exists, since E is generated
by the totality of cylinder sets of the form (4.14). But it is needed to prove the existence
of such a measure.

Let P 0,0
t denote the law of the pinned diffusion process of the harmonic transform of

Lm (cf. §3.3 and §4.1).
The following theorem assures the existence of the desired excursion measure and, at

the same time, gives the disintegration formula with respect to the lifetime.
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Theorem 2.3. Suppose that m ∈ M with l = ∞ and that the condition (S) is satisfied.
Then the excursion measure n away from the origin of the Lm-diffusion exists and it
possesses the following description:

n(Γ) =

∫ ∞

0

P
0,0
t (Γ)ρ(t)dt, Γ ∈ E (2.28)

where

ρ(t) =

∫

(0,∞)

e−tξdθ(ξ). (2.29)

In particular, the excursion measure n is concentrated on E0 = {e ∈ E : e(0) = 0}.

The proof of Theorem 2.3 will be given in §6.
From this theorem we obtain the distribution of the lifetime ζ under the measure n.

Corollary 2.1. Suppose that the assumption of Theorem 2.3 is satisfied. Then

n(ζ ∈ A) =

∫

A

ρ(t)dt for any A ∈ B((0,∞)). (2.30)

Remark 4. We may interpret the disintegration formula (2.28) as the conditional distri-
bution:

n(Γ | ζ = t) = P
0,0
t (Γ) for any t > 0 and Γ ∈ E . (2.31)

By the symmetry of the transition kernel p(t, x, y), the law P
0,0
t of the pinned Lhm-

diffusion process enjoys the time reversal property stated as

P
0,0
t (Γ∨) = P

0,0
t (Γ), Γ ∈ E0. (2.32)

Here the σ-field E0 and the time-reveral operator (·)∨ will be introduced in (5.17) and
(5.20), respectively. Applying this to the formula (2.28), we obtain the following.

Corollary 2.2 ((Time reversal property)). Suppose that the assumption of Theorem
2.3 is satisfied. Then

n(Γ∨) = n(Γ), Γ ∈ E0. (2.33)

2.5 Generalized Williams description

Throughout this section, we suppose that the assumption of Theorem 2.3 is satisfied, i.e.,
we suppose that m ∈ M with l = ∞ and that the condition (S) is satisfied. For the
symbols P x and Qx, see §4.1 and §4.2 below, respectively.

Denote

M(e) = max
t≥0

e(t), e ∈ E. (2.34)

We prove the following in §7.3.
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Lemma 2.1. It holds that

n(M ∈ da) =
da

a2
on (0,∞). (2.35)

Let (Y 1(t) : t ≥ 0) and (Y 2(t) : t ≥ 0) be two independent processes both of which
obey the law P 0. For a ∈ (0,∞), define

Za(t) =





Y 1(t), if 0 ≤ t ≤ τa(Y
1),

Y 2(τa(Y
1) + τa(Y

2)− t), if τa(Y
1) < t ≤ τa(Y

1) + τa(Y
2),

0 if t > τa(Y
1) + τa(Y

2).

(2.36)

Here τa denotes the first-entrance time to [a,∞) defined in (5.14). Set

Ra = the law of (Za(t) : t ≥ 0) on the space E0. (2.37)

Now we state the generalized Williams description for our excursion measure n.

Theorem 2.4. Suppose that the assumption of Theorem 2.3 is satisfied. Then

n(Γ) =

∫ ∞

0

Ra(Γ)
da

a2
, Γ ∈ E . (2.38)

The proof of Theorem 2.4 will be given in §7.3. It is based on two theorems.
The first one is the strong Markov property of the process (e(t) : t ≥ 0) under n. Let

E(0,τ) and E(τ,ζ) be σ-fields which represents the information of the path before and after
the time τ , respectively. Let X+

τ be the time-shift operator. Their precise definitions will
be given in §5.1.

Theorem 2.5 ((strong Markov property)). Suppose that the assumption of Theo-
rem 2.3 is satisfied. Let τ : E → (0,∞] be a positive stopping time which satisfies the
assumption of Lemma 5.1 (iv). Then, for any Γ1 ∈ E(0,τ) and Γ ∈ E(τ,ζ), it holds that

n(Γ1 ∩ Γ) = P 0

[
1Γ1

(w) ·
1

w(τ)
·Qw(τ)(X+

τ (Γ))

]
. (2.39)

Let a ∈ (0,∞) be fixed. We consider the first-entrance time τa. Then we obtain the
following.

Corollary 2.3. Suppose that the assumption of Theorem 2.3 is satisfied. Let Γ1 ∈ E(0,τa)

and Γ ∈ E(τa,ζ). Then it holds that

n(Γ1 ∩ Γ) =
1

a
P 0(Γ1)Qa(X+

τa(Γ)). (2.40)

This is an immediate consequence of Theorem 2.5 so that we omit the proof.
From this corollary, the following is derived.
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Corollary 2.4. Suppose that the assumption of Theorem 2.3 is satisfied. For a ∈ (0,∞),
it holds that

n
[
e−λτa

]
=

1

ψλ(a)
. (2.41)

In particular, it holds that

n(τa <∞) =
1

a
. (2.42)

Hence the measure na = an|Eτa defines a probability measure on (Eτa , Eτa).

The proofs of Theorem 2.5 and Corollary 2.4 will be given in §7.1.
The second one is the first-entrance-last-exit decomposition. This formula unifies the

first-entrance decomposition (see e.g. [16]) and the last-exit one (see e.g. [16] and [17])
in a single framework.

Let a ∈ (0,∞) be fixed. Let εa denote the last-exit time from [a,∞), which will be
introduced in §5.2. Let E0,a

(0,τa), E
0,a
(τa,εa) and E0,a

(εa,ζ)
be σ-fields which represent the information

of the path on the intervals indicated in the subscripts. These precise definitions will be
given in §5.3.

Theorem 2.6 ((The first-entrance-last-exit decomposition)). Suppose that the as-
sumption of Theorem 2.3 is satisfied. Let Γ1 ∈ E

0,a
(0,τa), Γ2 ∈ E

0,a
(τa,εa) and Γ3 ∈ E

0,a
(εa,ζ)

. Then
the following decomposition holds:

n(Γ1 ∩ Γ2 ∩ Γ3) =
1

a
P 0(Γ1) ·Qa(X+

τa(Γ2)) · P 0((Γ3)∨). (2.43)

The proof will be given in §7.2.
Noting that the lifetime interval is divided into three pieces as

[0, ζ] = [0, τa] ∪ (τa, εa) ∪ [εa, ζ], (2.44)

we have the following.

Corollary 2.5. Suppose that the assumption of Theorem 2.3 is satisfied. Then the joint
distribution of the length of the three intervals [0, τa], (τa, εa) and [εa, ζ] is given by

n ({τa ∈ dt1} ∩ {εa − τa ∈ dt2} ∩ {ζ − εa ∈ dt3}) (2.45)

=
1

a
P 0(τa ∈ dt1)Qa(εa ∈ dt2)P 0(τa ∈ dt3). (2.46)

The proof is obvious and is omitted.

2.6 Convergence theorem of integrals with respect to Poisson
point fields

Let m ∈ M with l = ∞ be such that the condition (S∗) is satisfied. Then Theorem 2.2
is valid and thus (S) is also satisfied.
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We denote the n, ρ and σ∗ for m by n(m; ·), ρ(m; ·) and σ∗(m; ·), respectively.
Since the measure n(m; ·) is σ-finite, there corresponds a Poisson point fieldN (m; dt, de)

on the space (0,∞) × E0 with intensity measure dtn(m; de) on a probability space
(Ω,F ,P ). That is,

P

[
exp

(
−

∫

E0

F (e)N (m; (0, t], de)

)]
= exp

(
−t

∫

E0

(
1− e−F (e)

)
n(m; de)

)
(2.47)

for any t ≥ 0 and any non-negative measurable function F on E0. Define a filtration

Ft = σ{N (m; (s, t],Γ) : 0 < s < t <∞, Γ ∈ E0}, t ≥ 0 (2.48)

and define a random measure Ñ (m; dt, de) by

Ñ (m; dt, de) = N (m; dt, de)− dtn(m; de). (2.49)

Then, for any measurable function F on E0 such that

∫

E0

|F (e)|2n(m; de) <∞, (2.50)

the process

M [F ](t) =

∫

E0

F (e)Ñ (m; (0, t], de), t ≥ 0 (2.51)

is a square-integrable (Ft)-martingale with quadratic variation

〈M [F ]〉t = t

∫

E0

|F (e)|2n(m; de), t ≥ 0 (2.52)

and each of whose increments M [F ](t)−M [F ](s) is independent of Fs for 0 ≤ s < t.

In the sequel, we assume that m ∈M1 with l =∞. Then the conditions (S) and (S∗)
are satisfied.

For a function f on (0,∞), we want to define the integrals

U1[f ](m; t) =

∫

{ζ<1}

f(ζ(e))Ñ (m; (0, t], de), t ≥ 0 (2.53)

and

U2[f ](m; t) =

∫

{ζ≥1}

f(ζ(e))N (m; (0, t], de), t ≥ 0. (2.54)

The following lemma gives a sufficient condition on f for the integrals (2.53) and (2.54)
to be well-defined.
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Lemma 2.2. Suppose that m ∈M1 with l =∞.
(i) Let f be a measurable function on (0, 1) such that

|f(u)| ≤ Cu, 0 < u < 1 (2.55)

for some constant C. Then it holds that

∫ 1

0

|f(u)|2ρ(m;u)du <∞. (2.56)

Hence the stochastic integral U1[f ](m; t) given in (2.53) is well-defined.
(ii) It holds that

P
(
N
(
m; (0, t], {ζ ≥ 1}

)
<∞

)
= 1, t ≥ 0. (2.57)

Hence, for any measurable function f on [1,∞), the integral U2[f ](m; t) given in (2.54)
is well-defined (as a finite sum).
(iii) If both of the assumptions of (i) and (ii) are satisfied, then the processes (U1[f ](m; t))

and (U2[f ](m; t)) are independent.

The proof will be given in §8.
Suppose that the assumption of Lemma 2.2 (i) is satisfied. Then the process (U1[f ](m; t))

defined by (2.53) is a square-integrable (Ft)-martingale with quadratic variation

〈U1[f ](m; ·)〉t =t

∫

{ζ<1}

|f(ζ(e))|2n(m; de) (2.58)

=t

∫ 1

0

|f(u)|2ρ(m;u)du (2.59)

(here we used Corollary 2.1) and each of whose increments U1[f ](m; t) − U1[f ](m; s) is
independent of Fs for 0 < s < t.

The following theorem assures the continuity of the maps m 7→ U1[f ](m; t) and
U2[f ](m; t).

Theorem 2.7. Suppose that mn,m ∈ M1 with l(mn) = l(m) =∞ and that mn → m in
M1.
(i) Suppose that the assumption of Lemma 2.2 (i) is satisfied. Then

U1[f ](mn; t)
law
−→ U1[f ](m; t) as n→∞, t ≥ 0. (2.60)

(ii) Let f be a measurable function on [1,∞) such that limu→∞ f(u) = c for some
c ∈ [−∞,∞]. Then

U2[f ](mn; t)
law
−→ U2[f ](m; t) as n→∞, t ≥ 0. (2.61)

The proof will be given in §8.
Recall Theorem 2.1 of Kasahara–Watanabe [8], stated in §2.1. The following corollary

generalizes Theorem 2.1 in terms of the Poisson point fields.
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Corollary 2.6. Suppose that the assumption of Theorem 2.1 is satisfied. Suppose, more-
over, that f satisfies all the assumptions of Theorem 2.7. Set

fλ(x) = f

(
1

λ1/αL(λ)
x

)
. (2.62)

Then it holds that

U1[fλ](m;λt)
law
−→ U1[f ](m(α); t) (2.63)

and

U2[fλ](m;λt)
law
−→ U2[f ](m(α); t) (2.64)

as λ→∞ for t ≥ 0.

The proof will be given in §8.

3 Notations and preliminaries (I): The fundamental solutions
and spectral measures

3.1 The fundamental solution of Lm

Let m ∈M and consider the operator Lm on D(Lm) introduced in §2.3.
For λ ∈ C, we denote by ψλ the unique solution of the integral equation

ψλ(x) = x+ λ

∫

(0,x]

(x− y)ψλ(y)dm(y) on [0, l). (3.1)

For λ > 0, this is equivalent to say that u = ψλ is the unique increasing solution of
Lmu = λu with initial condition

ψλ(0) = 0, ψ′λ(0) = 1. (3.2)

For fixed x ∈ [0, l), the function λ 7→ ψλ(x) is an entire function on C.
For λ > 0, we define

gλ(x) = ψλ(x)

∫ l

x

dy

ψλ(y)2
, x ∈ (0, l) (3.3)

so that the Wronskian is given by

ψ′λ(x)gλ(x)− ψλ(x)g′λ(x) = 1, x ∈ (0, l). (3.4)

Then u = gλ is the unique decreasing solution of Lmu = λu such that

gλ(0+) = 1 (3.5)
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and
{
gλ(l−) = 0 if x = l is exit,

g′λ(l−) = 0 if x = l is entrance and non-regular.
(3.6)

The resolvent operator (λ− Lm)−1 has a continuous kernel given by

G(λ, x, y) = G(λ, y, x) = gλ(x)ψλ(y), λ > 0, 0 < x ≤ y < l. (3.7)

It is known that there exists a non-negative Radon measure θ on (0,∞), which is
called the spectral measure, such that

G(λ, x, y) =

∫

(0,∞)

ψ−ξ(x)ψ−ξ(y)

λ+ ξ
θ(dξ), λ > 0, x, y ∈ (0, l). (3.8)

We remark that the spectral measure θ does not have a point mass at ξ = 0, since
ψ0(x) = x never belongs to D(Lm). Letting x = y ∈ (0, l), we have

G(λ, x, x) =

∫

(0,∞)

|ψ−ξ(x)|2

λ+ ξ
θ(dξ) <∞, λ > 0, x ∈ (0, l), (3.9)

and hence the integral in the RHS of (3.8) converges absolutely. In addition, the expression

q(t, x, y) =

∫

(0,∞)

e−tξψ−ξ(x)ψ−ξ(y)θ(dξ), t > 0, x, y ∈ (0, l) (3.10)

gives the eigendifferential expansion of the fundamental solution of Lm. It is obvious that

G(λ, x, y) =

∫ ∞

0

e−λtq(t, x, y)dt, λ > 0, x, y ∈ (0, l). (3.11)

3.2 Proof of Proposition 2.1

For the proof of Proposition 2.1, we prepare the following.

Lemma 3.1. Suppose that the assumption (S) is satisfied. Then, for any t > 0, there
exists a(t) ∈ (0, l) such that

∫

(0,∞)

e−tξ

(
sup

x∈(0,a(t)]

|ψ′−ξ(x)|2

)
θ(dξ) <∞. (3.12)

Proof of Lemma 3.1. Let δ > 0 be fixed. Set

F (a) =

∫

(0,a]

|ψ−ξ(x)|dm(x), ξ > 0, a ∈ (0, δ). (3.13)

By the integral equation (3.1), we have

F (a) ≤ c(δ) + ξ

∫

(0,a]

F (x)xdm(x), ξ > 0, a ∈ (0, δ) (3.14)
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for some δ > 0, where

c(a) =

∫

(0,a]

xdm(x) <∞ (3.15)

by the assumption m ∈M. Then Gronwall’s lemma says that

F (a) ≤ c(δ)eξc(a), ξ ≥ 0, a ∈ (0, δ). (3.16)

By the integral equation (3.1) again, we have

ψ′−ξ(x) = 1− ξ

∫

(0,x]

ψ−ξ(y)dm(y). (3.17)

Using the inequality (a+ b)2 ≤ 2(a2 + b2) and the estimate (3.16), we have

sup
x∈[0,a)

|ψ′−ξ(x)|2 ≤ 2 + 2ξ2c(δ)2e2ξc(a), ξ ≥ 0, a ∈ (0, δ). (3.18)

Since lima→0+ c(a) = 0, we can take a(t) so that 2c(a) < t for any a ∈ (0, a(t)). Therefore
we obtain (3.12) by the assumption (S).

Proof of Proposition 2.1. We only prove the claim (i), since (ii) and (iii) are similar as
and easier than (i). Let t > 0 and x ∈ (0, l) be fixed and take a(t) as in Lemma 3.1. Then
we have

∫

(0,∞)

e−tξ|ψ−ξ(x)|

(
sup

y∈(0,a(t)]

|ψ′−ξ(y)|

)
θ(dξ) <∞. (3.19)

Thus we can apply the dominated convergence to obtain

∂q

∂y
(t, x, y) =

∫

(0,∞)

e−tξψ−ξ(x)ψ′−ξ(y)θ(dξ), y ∈ (0, a(t)), (3.20)

where it is continuous in y ∈ (0, a(t)). Letting y → 0+, we obtain

∂q

∂y
(t, x, 0+) =

∫

(0,∞)

e−tξψ−ξ(x)θ(dξ), y ∈ (0, a(t)), (3.21)

since ψ′−ξ(0+) = 1. Noting that ψ−ξ(0) = 0 and that ψ−ξ(x) =
∫ x

0
ψ′−ξ(y)dy, we obtain

(2.21) in a similar argument. The third expression of (2.21) implies that the function
Π(t, x) is non-negative.

3.3 Harmonic transform

Let m ∈ M. We consider the harmonic transform of Lm with respect to the harmonic
function ψ0(x) = x.

We define

mh(x) =

∫

(0,x]

y2dm(y), sh(x) = −
1

x
, x ∈ (0, l) (3.22)
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and we condider the operator

Lhm = L(mh,sh) =
d

dmh

d

dsh
=

1

x2

d

dm

(
x2 d

dx

)
. (3.23)

We define

D(Lhm) =

{
v(x) =

u(x)

x
: u ∈ D(Lm)

}
(3.24)

and

Lhmv =
1

x
Lm(xv), v ∈ D(Lhm). (3.25)

Then the operator Lhm on the domain D(Lhm) is self-adjoint.

Remark 5. By (3.22), we easily see that the boundary x = 0 for Lhm is entrance and non-
regular in any case, but that x = l for Lhm is possibly regular. The boundary condition
at x = 0 is necessarily reflecting. If x = l is regular, we adopt the reflecting boundary
condition at x = l by choosing the domain D(Lhm) as above.

We define

φhλ(x) =
ψλ(x)

x
, λ ∈ C, x ∈ (0, l) (3.26)

and

fhλ (x) =
gλ(x)

x
, λ > 0, x ∈ (0, l). (3.27)

Then, for λ ∈ C, the function φhλ(x) is the unique solution of the equation

φhλ(x) = 1 + λ

∫

(0,x]

(x− y)φhλ(y)dmh(y) on [0, l). (3.28)

In addition, for λ > 0, the function u(x) = φhλ(x) is the unique positive increasing solution
of Lhmu = λu with initial condition

φhλ(0+) = 1,
dφhλ
dsh

(0+) = 0. (3.29)

For λ > 0, the function u = fhλ (x) is a positive decreasing solution of Lhmu = λu which
satisfies

fhλ (x) = φhλ(x)

∫

(x,l)

dsh(y)

φhλ(y)2
, x ∈ (0, l) (3.30)

and

dφhλ
dsh

(x)fhλ (x)− φhλ(x)
dfhλ
dsh

(x) = 1, λ > 0, x ∈ (0, l). (3.31)
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Define

ph(t, x, y) =
q(t, x, y)

xy
, t > 0, x, y ∈ (0, l). (3.32)

Then the resolvent kernel of Lhm is given by

Gh(λ, x, y) =
G(λ, x, y)

xy
=

∫

(0,∞)

φh−ξ(x)φh−ξ(y)

λ+ ξ
θ(dξ) (3.33)

and the fundamental solution of Lhm is given by

ph(t, x, y) =
q(t, x, y)

xy
=

∫

(0,∞)

e−tξφh−ξ(x)φh−ξ(y)θ(dξ). (3.34)

It is obvious that

ph(t, x, 0+) = ph(t, 0+, x) =
Π(t, x)

x
, t > 0, x ∈ (0, l) (3.35)

and that

ph(t, 0+, 0+) = ρ(t), t > 0. (3.36)

3.4 Dual string

Let m ∈ M. In order to study the operator Lm∗ for the dual string m∗(x) = m−1(x), we
define

md(x) = x, sd(x) = m(x), x ∈ (0, l) (3.37)

and consider the operator

Ldm =
d

dmd

d

dsd
. (3.38)

Then its scale transform x′ = sd(x) = m(x) of the operator Ldm coincides with the operator
Lm∗ .

Define

φdλ(x) = ψ′λ(x), λ ∈ C, x ∈ [0, l) (3.39)

and

fdλ(x) = −
1

λ
g′λ(x), λ > 0, x ∈ (0, l). (3.40)

Then the function φdλ is the unique solution of the equation

φdλ(x) = 1 + λ

∫

(0,x]

(sd(x)− sd(y))φdλ(y)dmd(y), λ ∈ C, x ∈ [0, l). (3.41)
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For λ > 0, the function fdλ satisfies

fdλ(x) = φdλ(x)

∫ l

x

dsd(y)

φdλ(y)2
, λ > 0, x ∈ (0, l), (3.42)

since

(φdλ)
′(x)fdλ(x)− φdλ(x)(fdλ)′(x) = 1, λ > 0, x ∈ (0, l). (3.43)

In addition, fdλ is the unique decreasing solution of Ldm such that

(fdλ)′(0+) = −1 (3.44)

and
{

(fdλ)′(l−) = 0 if x = l for Lm is exit,

fdλ(l−) = 0 if x = l for Lm is entrance and non-regular.
(3.45)

Keeping (3.41) and (3.45) in mind, we adopt the reflecting boundary condition at
x = 0, and adopt the reflecting or absorbing condition at x = l according as x = l for
Lm is exit or entrance and non-regular. Under these conditions, we denote the unique
self-adjoint extension of Ldm by Ldm with its domain D(Ldm).

There exists a non-negative Radon measure σ∗ on [0,∞) such that

Gd(λ, x, y) =

∫

[0,∞)

φd−ξ(x)φd−ξ(y)

λ+ ξ
σ∗(dξ), λ > 0, x, y ∈ (0, l) (3.46)

and

pd(t, x, y) =

∫

[0,∞)

e−tξφd−ξ(x)φd−ξ(y)σ∗(dξ), t > 0, x, y ∈ (0, l), (3.47)

where Gd(λ, x, y) and pd(t, x, y) are the resolvent kernel and the fundamental solution of
Ldm, respectively. Moreover, it holds that

σ∗({0}) =
1

l
. (3.48)

Now we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2. Note that

Gd(λ, x, y) = φdλ(x)fdλ(y) = −
1

λ
ψ′λ(x)g′λ(y), λ > 0, 0 < x < y < l. (3.49)

Since ψλ(0) = 0, we have

∫ x

0

du

∫ y2

y1

dvGd(λ, u, v) =
1

λ
ψλ(x)(gλ(y1)− gλ(y2)) (3.50)
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for λ > 0 and 0 < x < y1 < y2 < l. Note that

1

λ
ψλ(x)gλ(y) =

xy

λ
φhλ(x)fhλ (y) (3.51)

=
xy

λ

∫ ∞

0

e−λtph(t, x, y)dt (3.52)

=xy

∫ ∞

0

e−λtdt

∫ t

0

ph(s, x, y)ds. (3.53)

Then we can rewrite (3.50) as
∫ ∞

0

e−λtdt

{∫ x

0

du

∫ y2

y1

dvpd(t, u, v) +

∫ t

0

xy2p
h(s, x, y2)ds

}
(3.54)

=

∫ ∞

0

e−λtdt

∫ t

0

xy1p
h(s, x, y1)ds. (3.55)

Taking Laplace inversion, we have
∫ x

0

du

∫ y2

y1

dvpd(t, u, v) =

∫ t

0

ds{xy1p
h(s, x, y1)− xy2p

h(s, x, y2)}. (3.56)

Let t0 > 0 be fixed. Under the assumption (S∗), the integral
∫

(0,∞)

e−tξφd−ξ(x)φd−ξ(y)ξσ∗(dξ) (3.57)

converges absolutely and uniformly in x, y ∈ (0, a(t0)) for any t > t0. Thus the function
pd(t, u, v) is differentiable with respect to t and its derivative is continuous in (u, v) on
(0, a(t0))× (0, a(t0)).

Differentiating both sides of (3.56) with respect to t, we have
∫ x

0

du

∫ y2

y1

dv
∂pd

∂t
(t, u, v) = xy1p

h(t, x, y1)− xy2p
h(t, x, y2). (3.58)

Taking y1 = x and y2 = x+h with h > 0, dividing both sides by −hx and letting h→ 0+,
we have

−
1

x

∫ x

0

du
∂pd

∂t
(t, u, x) = ph(t, x, x). (3.59)

Since the LHS converges, the limit limx→0+ p
h(t, x, x) exists and we obtain

lim
x→0+

ph(t, x, x) = −
∂pd

∂t
(t, 0+, 0+). (3.60)

We apply Fatou’s lemma to obtain
∫

(0,∞)

e−tξθ(dξ) ≤ lim inf
x→0+

∫

(0,∞)

e−tξ
(
ψ−ξ(x)

x

)2

θ(dξ) = lim
x→0+

ph(t, x, x) <∞, (3.61)

which proves (S). Therefore we combine (3.36) and (3.60) to obtain
∫

(0,∞)

e−tξξσ∗(dξ) =

∫

(0,∞)

e−tξθ(dξ), (3.62)

which completes the proof.
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3.5 Strings of limit circle type

In this subsection, we always assume m ∈M and denote the σ∗ for m ∈M by σ∗(m; ·).
It is well-known (see, e.g., [7] and [13]) that m ∈M0 if and only if

∫

[0,∞)

σ∗(m; dξ)

1 + ξ
<∞ (3.63)

and that mn(x)→ m(x) at every continuity point x of m if and only if

∫

[0,∞)

σ∗(mn; dξ)

λ+ ξ
→

∫

[0,∞)

σ∗(m; dξ)

λ+ ξ
, λ > 0. (3.64)

Kotani [12] and Kasahara–Watanabe [8] have studied a generalization of the above
result.

Definition 3.1. Let mn,m ∈ M1. It is said that mn → m in M1 if the following two
conditions hold:
(i) mn(x)→ m(x) at every continuity point x of m.

(ii) lim
δ→0+

lim sup
n→∞

∫ δ

0

mn(x)2dx = 0.

Then the following holds.

Theorem 3.1 ((Kasahara–Watanabe [8], Kotani [12])). Let m ∈M.
(i) m ∈M1 if and only if

∫

[0,∞)

σ∗(m; dξ)

1 + ξ2
<∞. (3.65)

(ii) If mn ∈M1 converges to m ∈M1 in M1, then it holds that

h(mn;λ)→ h(m;λ), λ > 0. (3.66)

Here

h(m;λ) =

∫

[0,∞)

(
1

λ+ ξ
−

ξ

1 + ξ2

)
σ∗(m; dξ). (3.67)

Remark 6. If m ∈ M1, then (i) implies that (S∗) is satisfied and hence Theorem 2.2 is
valid. Thus (S) is also satisfied and hence Proposition 2.1 is also valid.

For later use, we prepare the following.

Lemma 3.2. If mn → m in M1, then

∫

[0,∞)

F (ξ)
σ∗(mn; dξ)

1 + ξ2
→

∫

[0,∞)

F (ξ)
σ∗(m; dξ)

1 + ξ2
(3.68)

for any bounded continuous function F on [0,∞).
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Proof. Suppose that mn → m in M1. Then, by (ii) of Theorem 3.1, we have
∫

[0,∞)

σ∗(mn; dξ)

(λ+ 2 + ξ)(1 + ξ)
→

∫

[0,∞)

σ∗(m; dξ)

(λ+ 2 + ξ)(1 + ξ)
(3.69)

for λ > −1. Let

µ(m; dξ) =

(∫

[0,∞)

σ∗(m; dξ)

(2 + ξ)(1 + ξ)

)−1
σ∗(m; dξ)

(2 + ξ)(1 + ξ)
. (3.70)

Then µ(m; dξ) is a probability measure and we have
∫

[0,∞)

2 + ξ

λ+ 2 + ξ
µ(mn; dξ)→

∫

[0,∞)

2 + ξ

λ+ 2 + ξ
µ(m; dξ), λ > −1. (3.71)

We rewrite the integral as
∫

[0,∞)

2 + ξ

λ+ 2 + ξ
µ(m; dξ) =

∫ ∞

0

e−λtdt

∫

[0,∞)

(2 + ξ)e−(2+ξ)tµ(m; dξ) (3.72)

=λ

∫ ∞

0

e−λsds

∫

[0,∞)

(
1− e−(2+ξ)s

)
µ(m; dξ) (3.73)

for λ > −1. Thus we apply the continuity theorem of Laplace transform to obtain
∫

[0,∞)

e−s(2+ξ)µ(mn; dξ)→

∫

[0,∞)

e−s(2+ξ)µ(m; dξ), s > 0. (3.74)

We apply the continuity theorem again to obtain the desired result.

4 Notations and preliminaries (II): Diffusion processes

For a detail treatment of what is developed in this section, see, e.g., [6], [4] and [15].

4.1 Lh
m

-diffusion process

Let W be the totality of continuous paths on [0,∞):

W = {w : [0,∞)→ [0,∞) : continuous} . (4.1)

Denote by W the σ-field generated by cylinder sets of the form

V = {w ∈ W : w(t1) ∈ A1, . . . , w(tn) ∈ An} (4.2)

for some 0 = t0 < t1 < · · · < tn < ∞ and A1, . . . , An ∈ B([0,∞)). For 0 < t < ∞, we
denote by Wt the σ-field generated by such cylinder functions V of the form (4.2) where
0 < t1 < · · · < tn ≤ t.

Then we can construct a family of probability measures (P x : x ∈ [0, l)) on W
under which the coordinate process is a generalized Lhm-diffusion with x = l a trap if
x = l is absorbing, i.e., the Markovian family with the transition probability given by
ph(t, x, y)dmh(y).

Let P x,y
t for x, y ∈ [0, l) denote the conditional law of the Lhm-diffusion process starting

from x conditioned on w(t) = y:

P
x,y
t (Γ) = P x(Γ | w(t) = y), Γ ∈ W . (4.3)
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4.2 Lm-diffusion process

We can also construct a family of probability measures (Qx : x ∈ [0, l)) on W under
which the coordinate process is an Lm-diffusion with x = 0 a trap and with x = l also a
trap if x = l is absorbing, i.e., the Markovian family with the transition probability given
by q(t, x, y)dm(y).

For a ∈ [0,∞), let πa be the first-passage time to a:

πa(w) = inf{t ≥ 0 : w(t) = a}, w ∈ W. (4.4)

Lemma 4.1. The Laplace transform of the law of π0 is given by

Qx
[
e−λπ0

]
=

∫ ∞

0

e−λtΠ(t, x)dt, λ > 0, x ∈ (0, l). (4.5)

In particular, for x ∈ (0, l), the law of π0 under Qx is given by

Qx(π0 ∈ dt) = Π(t, x)dt on (0,∞) (4.6)

and the probability that the path hits the origin is given by

Qx(π0 <∞) =

∫ ∞

0

Π(t, x)dt = 1−
x

l
. (4.7)

Proof. It is well-known that

Qx
[
e−λπy

]
=
gλ(x)

gλ(y)
, λ > 0, 0 < y < x < l. (4.8)

Letting y → 0+, we obtain

Qx
[
e−λπ0

]
= gλ(x), λ > 0, x ∈ (0, l). (4.9)

On the other hand,

G(λ, x, y) =

∫ ∞

0

e−λtq(t, x, y)dt = gλ(x)ψλ(y), λ > 0, 0 < y < x < l. (4.10)

Differentiating the second and the third terms with respect to y and letting y → 0, we
obtain

∫ ∞

0

e−λtΠ(t, x)dt = gλ(x), x ∈ (0, l). (4.11)

Combining (4.9) and (4.11), we obtain (4.5). Letting λ→ 0+, we obtain

Qx(π0 <∞) =

∫ ∞

0

Π(t, x)dt = g0+(x) = x

∫ l

x

dy

y2
= 1−

x

l
, x ∈ (0, l). (4.12)

This completes the proof.
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4.3 The space of excursions

Let E be the totality of continuous paths e ∈ W with lifetime ζ(e) ∈ (0,∞) such that
the following hold:

(i) e(t) > 0 for any 0 < t < ζ(e).

(ii) e(t) = 0 for t ≥ ζ(e).

Denote

E = {Γ ∩ E : Γ ∈ W} and Et = {Γ ∩ E : Γ ∈ Wt}, t > 0. (4.13)

Then E (resp. Et for t > 0) coincides with the σ-field generated by the π-system which
consists of cylinder sets given by

C = {e ∈ E : e(t1) ∈ A1, . . . , e(tn) ∈ An} (4.14)

for some 0 = t0 < t1 < · · · < tn < ∞ (resp. 0 < t1 < · · · < tn < t) and A1, . . . , An ∈
B((0,∞)). Note that C is included in the event {ζ > tn}, since e(tn) > 0 on C.

Suppose that

l =∞. (4.15)

Then Lemma 4.1 implies that the probability measure Qx for x ∈ (0,∞) is concentrated
on the space E.

Remark 7. The σ-field E is also generated by the π-system which consists of

(X+
s )−1(C) (4.16)

for a cylinder set C of the form (4.14) and s > 0. Here the map X+
s will be introduced in

Section 5.1.

5 Stopping times and the σ-fields

5.1 The σ-fields before and after a stopping time

Let τ : E → [0,∞] be a random time. Set

Eτ = {τ < ζ} (5.1)

and

Eτ = {Γ ∩ Eτ : Γ ∈ E}, Eτt = {Γ ∩ Eτ : Γ ∈ Et}, t ≥ 0. (5.2)

Define two measurable maps X−τ : Eτ → W and X+
τ : Eτ → E by

X−τ (e) = e(τ ∧ ·), X+
τ (e) = e(τ + ·). (5.3)
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Instead of X−τ , we adopt a measurable map Y−τ : Eτ → E defined by

Y−τ (e)(t) =





e(t) if 0 ≤ t ≤ τ(e),

e(τ(e))(1 + τ(e)− t) if τ(e) < t < τ (e) + 1,

0 if t ≥ τ(e) + 1.

(5.4)

The reason why we prefer Y−τ to X−τ is that it is convenient for dealing with the last-exit
time: See Lemma 5.3 (i).

Define

E(0,τ) =
(
Y−τ

)−1
(E) and E(τ,ζ) =

(
X+
τ

)−1
(E). (5.5)

Lemma 5.1. Suppose that τ is a (Et)-stopping time, i.e.,

{τ ≤ t} ∈ Et for t ≥ 0. (5.6)

Then the following statements hold:
(i) For any t ≥ 0, {τ ≤ t} ∩ {τ < ζ} ∈ Eτt .
(ii) τ(e) = τ(Y−τ (e)) for any e ∈ Eτ .
(iii) For any Ξ ∈ E ,

(
X+
τ

)−1
(Ξ) =

{
e1

τ
∗ e2 : e1 ∈ E

τ , e2 ∈ Ξ, e2(0) = e1(τ(e1))
}
, (5.7)

where, for two paths e1 ∈ E
τ and e2 ∈ E with e2(0) = e1(τ(e1)), the joint path e1

τ
∗ e2 ∈ E

τ

is defined by

e1
τ
∗ e2(t) =

{
e1(t) if t ≤ τ(e1),

e2(t− τ(e1)) if t > τ(e1).
(5.8)

(iv) Suppose that the set Aτ = {e(τ(e)) ∈ [0,∞) : e ∈ Eτ} is Borel measurable. Then,
for any Γ ∈ E(τ,ζ) expressed by Γ = (X+

τ )−1(Ξ) for some Ξ ∈ E , it holds that

X+
τ (Γ) = Ξ ∩ {e ∈ E : e(0) ∈ Aτ} ∈ E . (5.9)

(v) It holds that

E = σ
(
Γ1 ∩ Γ : Γ1 ∈ E(0,τ), Γ ∈ E(τ,ζ)

)
. (5.10)

Proof. (i) This is clear by definition.
(ii) This is a direct consequence of Galmarino’s theorem (see, e.g., [15, pp. 47, Exercise

4.21 3◦]).

(iii) Let e ∈ (X+
τ )−1(Ξ). Then X+

τ (e) ∈ Ξ. Since e = e
τ
∗ X+

τ (e), e is contained in

the RHS of (5.7). Conversely, let e belong to the RHS of (5.7). Then e = e1
τ
∗ e2 for

some e1 ∈ E
τ and e2 ∈ Ξ with e2(0) = e1(τ(e1)). Since τ(e) = τ(e1) by (ii), we obtain

X+
τ (e) = e2 ∈ Ξ.

(iv) The equality is obvious by (iii). The measurability is obvious by the assumption.
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(v) Let E ′ denote the RHS of (5.10). Then the map

Eτ 3 e 7→
(
Y−τ (e),X+

τ (e)
)
∈ E × E (5.11)

is E ′/E ⊗ E-measurable. For any t > 0 and A ∈ B((0, l)),

{e(t) ∈ A} ∩ {τ(e) > t} = {Y−τ (e)(t) ∈ A} ∩ {τ(Y−τ (e)) > t} ∈ E ′ (5.12)

and

{e(t) ∈ A} ∩ {τ(e) ≤ t} = {X+
τ (e)(t− τ(Y−τ (e))) ∈ A} ∩ {τ(Y−τ (e)) ≤ t} ∈ E ′. (5.13)

Thus we obtain {e(t) ∈ A} ∈ E ′ and therefore we obtain E ⊂ E ′.

5.2 The first-entrance and last-exit times and time reversal

Let a ∈ [0, l). Let τa be the first-entrance time to [a,∞):

τa(w) = inf{t ≥ 0 : w(t) ≥ a}, w ∈ W. (5.14)

Note that, if e ∈ E, then τa(e) ∈ [0, ζ(e)] and τ0(e) = 0. We define the last-exit time εa(e)
from [a,∞) by

εa(e) =

{
sup{t ∈ [0, ζ(e)] : e(t) ≥ a}, e ∈ Eτa = {τa(e) < ζ(e)},

∞ e ∈ E \ Eτa .
(5.15)

Note that Eτa = Eεa ; in particular, if a = 0, then Eτ0 = Eε0 = E and ε0(e) = ζ(e) for
e ∈ E.

Let x ∈ [0, l). We denote

Ex = {e ∈ E : e(0) = x} (5.16)

and

Ex = {Γ ∩ Ex : Γ ∈ E}, Ext = {Γ ∩ Ex : Γ ∈ Et}, t ≥ 0. (5.17)

For e ∈ E0, we define the time reversal of the path e, which is denoted by ě ∈ E0, as

ě(t) = e
(
(ζ(e)− t)+

)
, t ≥ 0 (5.18)

where (x)+ = max{x, 0}. Note that

ˇ̌e = e, e ∈ E0. (5.19)

For a set Γ ∈ E0, we define the time reversal of the set Γ, which is denoted by Γ∨ ∈ E0, as

Γ∨ = {ě : e ∈ Γ}. (5.20)

Note that

(Γ∨)
∨

= Γ, Γ ∈ E0. (5.21)
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Lemma 5.2. Let a ∈ (0, l) and e ∈ E0. Then the following hold:
(i) τa(ě) = ζ(e)− εa(e).
(ii) εa(ě) = ζ(e)− τa(e).
(iii) ζ(ě) = ζ(e).
(iv) εa(ě)− τa(ě) = εa(e)− τa(e).

The proof is obvious, so that we omit it.

Let a ∈ (0, l). We define a measurable map Ra : Ea → Ea by

Ra(e)(t) =

{
e(εa(e)− t) if 0 ≤ t < εa(e),

e(t) if t ≥ εa(e).
(5.22)

Note that

Ra ◦Ra(e) = e, e ∈ Ea. (5.23)

Lemma 5.3. Let a ∈ (0, l). Then the following statements hold:
(i) εa(Y

−
εa(e)) = εa(Ra(e)) = εa(e), e ∈ Ea.

(ii) Y−εa(Ra(e)) = Ra(Y
−
εa(e)), e ∈ Ea.

The proof is obvious, so that we omit it.

5.3 The σ-fields which represent the information of the path on
the interval between two random times

For a ∈ [0,∞), we denote

E0,a = {e ∈ E : e(0) = 0, τa(e) < ζ(e)} (5.24)

and

E0,a = {Γ ∩ E0,a : Γ ∈ E}. (5.25)

For 0 ≤ x < a <∞, we note that

0 ≤ τx(e) < τa(e) ≤ εa(e) < ζ(e), e ∈ E0,a. (5.26)

We define

E0,a
(τx,τa) =

(
Y−τa ◦ X+

τx

)−1
(E) ∩ E0,a, (5.27)

E0,a
(τa,ζ)

=
(
X+
τa

)−1
(E) ∩ E0,a, (5.28)

E0,a
(τa,εa) =

(
Y−εa ◦ X+

τa

)−1
(E) ∩ E0,a (5.29)

and

E0,a
(εa,ζ)

=
(
X+
εa ◦ X+

τa

)−1
(E) ∩ E0,a. (5.30)
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Lemma 5.4. Let a ∈ (0, l). Then the following statements hold:

(i) If Γ ∈ E0,a
(τa,ζ)

is expressed by Γ =
(
X+
τa

)−1
(Ξ) with Ξ ∈ Ea, then X+

τa(Γ) = Ξ.

(ii) If Γ1,Γ2 ∈ E
0,a
(τa,ζ)

, then

X+
τa(Γ1 ∩ Γ2) = X+

τa(Γ1) ∩ X+
τa(Γ2). (5.31)

(iii) If Γ ∈ E0,a
(τa,εa), then Γ∨ ∈ E0,a

(τa,εa).

(iv) If Γ ∈ E0,a
(τa,εa), then the following dichotomy holds:

{τa = εa} ⊂ Γ or {τa = εa} ∩ Γ = ∅. (5.32)

(v) Γ ∈ E0,a
(εa,ζ)

if and only if Γ∨ ∈ E0,a
(0,τa).

(vi) E0,x
(τx,ζ)

is generated by E0,a
(τx,τa) and E0,a

(τa,ζ)
, i.e.,

E0,x
(τx,ζ)

= σ
(

Γ1 ∩ Γ : Γ1 ∈ E
0,a
(τx,τa), Γ ∈ E0,a

(τa,ζ)

)
. (5.33)

(vii) E0,a
(τa,ζ)

is generated by E0,a
(τa,εa) and E0,a

(εa,ζ)
, i.e.,

E0,a
(τa,ζ)

= σ
(

Γ2 ∩ Γ3 : Γ2 ∈ E
0,a
(τa,εa), Γ3 ∈ E

0,a
(εa,ζ)

)
. (5.34)

Proof. (i) We can prove the claim similarly as we have done in Lemma 5.1 (iv). So we
omit the proof.

(ii) For i = 1, 2, we can express the set Γi by Γi = (X+
τa)
−1(Ξi) ∩ E

0,a with Ξi ∈ E
a.

By (i), we have X+
τa(Γi) = Ξi. Thus we obtain

X+
τa(Γ1 ∩ Γ2) =X+

τa

((
X+
τa

)−1
(Ξ1) ∩

(
X+
τa

)−1
(Ξ2)

)
(5.35)

=X+
τa

((
X+
τa

)−1
(Ξ1 ∩ Ξ2)

)
(5.36)

=Ξ1 ∩ Ξ2 (5.37)

=X+
τa(Γ1) ∩ X+

τa(Γ2). (5.38)

(iii) Γ ∈ E0,a
(τa,εa) is expressed by Γ = (X+

τa)
−1((Y−εa)

−1(Ξ)) ∩ E0,a with Ξ ∈ Ea. Then

it is obvious that Γ∨ = (X+
τa)
−1((Y−εa)

−1(Ra(Ξ))) ∩ E0,a. Since Ra(Ξ) ∈ Ea, we obtain

Γ∨ ∈ E0,a
(τa,εa).

(iv) Let Γ and Ξ as above. Suppose that there exists an element e ∈ Γ such that
e ∈ {τa = εa}. Then the set Ξ contains the element

ea = Y−εa ◦ X+
τa(e) = (a(1− t)+ : t ≥ 0). (5.39)

Thus Γ contains the set

(X+
τa)
−1((Y−εa)

−1({ea})) ∩ E
0,a = {τa = εa}, (5.40)

which proves the claim.
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(v) This is obvious.
(vi) Noting that

E0,a
(τx,τa) =

(
Y−τa

)−1
(
E0,x

(τx,ζ)

)
∩ E0,a and E0,a

(τa,ζ)
=
(
X+
τa

)−1
(
E0,x

(τx,ζ)

)
∩ E0,a, (5.41)

we can prove the claim similarly as we have done in Lemma 5.1 (v).
(vii) It suffices to show that the σ-field Ea is included in E ′ which is generated by

(Y−εa)
−1(Ea) and (X+

εa)
−1(Ea).

Clearly, the map

Ea 3 e 7→ (Y−εa(e),X
+
εa(e)) ∈ E

a × Ea (5.42)

is E ′/Ea ⊗ Ea-measurable. Let Ξ = {e ∈ Ea : e(t) ∈ A} for t > 0 and A ∈ B((0, l)). Then

Ξ ∩ {t ≤ εa} ={e ∈ Ea : Y−εa(e)(t) ∈ A, εa(Y
−
εa(e)) ≥ t} ∈ E ′ (5.43)

and

Ξ ∩ {t > εa} ={e ∈ Ea : X+
εa(e)(t) ∈ A, εa(Y

−
εa(e)) < t} ∈ E ′. (5.44)

Thus we obtain Ξ ∈ E ′ and therefore we conclude that Ea ⊂ E ′, which proves the claim.

6 Proof of the existence theorem of the excursion measure away
from the origin of Lm-diffusion processes

Proof of Theorem 2.3. Following Ikeda–Watanabe’s book [4], we start with the expression

n(Γ) =

∫ ∞

0

P
0,0
t (Γ)ρ(t)dt, Γ ∈ E (2.28)

and show that n satisfies (2.27). Hence it suffices to show that

n((X+
s )−1(C)) =

∫

(0,∞)

dm(x0)Π(s, x0)Qx0(C) (6.1)

for any cylinder set C ∈ E of the form (4.14) and for any s > 0.
Let t > tn and A ∈ B((0,∞)). Then

P 0
(

(X+
s )−1(C ∩ {w(t) ∈ A})

)
(6.2)

=

∫

(0,∞)

dµ(x0)p(s, 0, x0)

∫

A1

dµ(x1)p(t1 − t0, x0, x1) (6.3)

· · ·

∫

An

dµ(xn)p(tn − tn−1, xn−1, xn)

∫

A

dµ(x)p(t− tn, xn, x)

=

∫

(0,∞)

dm(x0)Π(s, x0)

∫

A1

dm(x1)q(t1 − t0, x0, x1) (6.4)

· · ·

∫

An

dm(xn)q(tn − tn−1, xn−1, xn)

∫

A

dm(x)q(t− tn, xn, x)x

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0 [1C(e)1A(e(t))e(t)] . (6.5)
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The expectation with respect to the probability Qx0 is calculated by

Qx0

[
1C(e)1A(e(t))e(t)

]
(6.6)

=Qx0

[
1C(e)Qx0 [1A(e(t))e(t) | Wtn ]

]
(6.7)

=

∫

A

dm(x)xQx0

[
1C(e)q(t− tn, e(tn), x)

]
. (6.8)

Thus we obtain

P 0
(

(X+
s )−1(C ∩ {w(t) ∈ A})

)
(6.9)

=

∫

A

dm(x)x

∫

(0,∞)

dm(x0)Π(s, x0)Qx0

[
1C(e)q(t− tn, e(tn), x)

]
. (6.10)

On the other hand,

P 0
(

(X+
s )−1({w(t) ∈ A})

)
=

∫

A

dµ(x)p(s+ t, 0, x) (6.11)

=

∫

A

dm(x)Π(s+ t, x)x. (6.12)

Combining it with (6.10), we obtain

P
0,x
s+t

(
(X+

s )−1(C)
)

=P 0
(

(X+
s )−1(C) | w(s+ t) = x

)
(6.13)

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0

[
1C(e)

q(t− tn, e(tn), x)

Π(s+ t, x)

]
. (6.14)

for any x ∈ (0,∞). Letting x→ 0+, we obtain

P
0,0
s+t

(
(X+

s )−1(C)
)

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0

[
1C(e)

Π(t− tn, e(tn))

ρ(s+ t)

]
. (6.15)

Now let us prove (6.1). Since (X+
s )−1(C) ⊂ {e(s+ tn) > 0}, we have

n
(

(X+
s )−1(C)

)
=

∫ ∞

s+tn

P
0,0
t

(
(X+

s )−1(C)
)
ρ(t)dt (6.16)

=

∫ ∞

0

P
0,0
s+tn+t

(
(X+

s )−1(C)
)
ρ(s+ tn + t)dt (6.17)

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0

[
1C(e)

∫ ∞

0

Π(t, e(tn))dt

]
(6.18)

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0(C). (6.19)

Here we used the identity
∫ ∞

0

Π(t, x)dt = Qx(ζ ∈ (0,∞)) = 1, (6.20)

which is ensured by Lemma 4.1. The proof is completed.
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Since (6.2) equals to (6.5), we obtain the following.

Corollary 6.1. Let t > 0 and s > 0. For any non-negative Et-measurable function F and
any non-negative Borel measurable function G on (0,∞), it holds that

P 0
[
F ◦ X+

s (w) ·G(w(s+ t))
]

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0 [F (e)G(e(t))e(t)] . (6.21)

7 Proof of the decomposition formulae

7.1 Proof of the strong Markov property

Proof of Theorem 2.5. It suffices to prove the claim in the case where τ is a constant time
t > 0. In fact, the proof in the general case is obtained by the continuity of the paths and
the Feller property of the Lm-diffusion process.

Let s > 0. Applying (6.1), the Markov property of the Lm-diffusion process and then
Corollary 6.1, we obtain

n
(

(X+
s )−1(Γ1 ∩ Γ)

)
=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0

[
1Γ1

(e)1Γ(e)
]

(7.1)

=

∫

(0,∞)

dm(x0)Π(s, x0)Qx0

[
1Γ1

(e)Qe(t)(X+
t (Γ))

]
(7.2)

=P 0

[
1(X+

s )−1(Γ1)(w) ·
1

w(s+ t)
·Qw(s+t)(X+

t (Γ))

]
. (7.3)

Letting s→ 0+, we obtain (2.39) in the case where τ is a constant time t > 0.

Proof of Corollary 2.4. By Theorem 2.3, we obtain

n
[
e−λτa

]
=

1

a
P 0

[
e−λτa

]
=

φλ(0)

aφλ(a)
=

1

ψλ(a)
. (7.4)

This proves (2.41). The equality (2.42) follows from the fact ψ0(x) = x.

7.2 Proof of the first-entrance-last-exit decomposition

Proof of Theorem 2.6. By Theorem 2.5 and by Lemma 5.4 (ii), we obtain

n(Γ1 ∩ Γ2 ∩ Γ3) =
1

a
P 0(Γ1)Qa(X+

τa(Γ2) ∩ X+
τa(Γ3)). (7.5)

In particular, if we take Γ1 = E0,a, then we have

n(Γ2 ∩ Γ3) =
1

a
Qa(X+

τa(Γ2) ∩ X+
τa(Γ3)). (7.6)

By Corollary 2.2, we have

n((Γ3)∨ ∩ (Γ2)∨) =
1

a
Qa(X+

τa(Γ2) ∩ X+
τa(Γ3)). (7.7)
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By Lemma 5.4 (iii) and (v), we have (Γ2)∨ ∈ E0,a
(τa,εa) and (Γ3)∨ ∈ E0,a

(0,τa). Thus, by
Theorem 2.5 again, we have

n((Γ3)∨ ∩ (Γ2)∨) =
1

a
P 0((Γ3)∨)Qa(X+

τa((Γ2)∨)). (7.8)

In particular, if we take Γ3 = E0,a, then we have

n((Γ2)∨) =
1

a
Qa(X+

τa((Γ2)∨)). (7.9)

By Corollary 2.2 again, we have

Qa(X+
τa((Γ2)∨)) = Qa(X+

τa(Γ2)). (7.10)

Combining (7.5), (7.7), (7.8) and (7.10), we obtain the desired result.

7.3 Proof of the generalized Williams description

Before proving Theorem 2.4, we prove Lemma 2.1.

Proof of Lemma 2.1. Let 0 < b < a <∞. Since {M ≥ a} ∈ E0,a
(τb,εb)

and X+
τb

({M ≥ a}) =

{e ∈ Eb : M(e) ≥ a}, Theorem 2.6 implies that

n(M ≥ a) =
1

b
Qb(M ≥ a). (7.11)

Now we note that

Qb[e−λτa ] =
ψλ(b)

ψλ(a)
, λ > 0, 0 < b < a <∞. (7.12)

Letting λ→ 0, we have

Qb(M ≥ a) = Qb(τa <∞) =
b

a
, 0 < b < a <∞. (7.13)

Combining (7.11) and (7.13), we obtain

n(M ≥ a) =
1

a
. (7.14)

This completes the proof.

Now we prove Theorem 2.4.

Proof of Theorem 2.4. It suffices to show that the Radon–Nikodym derivative is given by

n(Γ ∩ {M ∈ da})

n(M ∈ da)
= Ra(Γ) (7.15)

for any Γ ∈ E0.
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Let a ∈ (0,∞) be fixed. Let x ∈ (0, a) and Γ ∈ E0,x
(τx,ζ)

. Then the strong Markov
property says that

n(Γ ∩ {M ∈ [a, b)}) =
1

x
Qx(X+

τx(Γ) ∩ {M ∈ [a, b)}). (7.16)

Since n(M ∈ [a, b)) = 1
x
Qx(M ∈ [a, b)), we have

n(Γ ∩ {M ∈ [a, b)})

n(M ∈ [a, b))
= Qx(X+

τx(Γ) |M ∈ [a, b)). (7.17)

Letting b→ a+, we have

n(Γ ∩ {M ∈ da})

n(M ∈ da)
= Qx(X+

τx(Γ) |M = a), Γ ∈ E0,x
(τx,ζ)

. (7.18)

Let Γ = Γ1 ∩ Γ2 ∩ Γ3 with Γ1 ∈ E
0,a
(τx,τa), Γ2 ∈ E

0,a
(τa,εa) and Γ3 ∈ E

0,a
(εa,ζ)

. Here we denote

E0,a
(τx,τa) = (X−τa ◦ X+

τx)
−1(W). For any b ∈ (a, l), Theorem 2.6 and (7.16) imply that

1

x
Qx(X+

τx(Γ)) =
1

a
P 0(Γ1)Qa(X+

τa(Γ2) ∩ {M ∈ [a, b)})P 0(Γ∨3 ). (7.19)

Dividing both sides by 1
x
Qx(M ∈ [a, b)) = 1

a
Qa(M ∈ [a, b)) and letting b→ a+, we have

Qx(X+
τx(Γ) |M = a) = P 0(Γ1)Qa(X+

τa(Γ2) |M = a)P 0(Γ∨3 ). (7.20)

Noting that the conditional probability Qa(· |M = a) is concentrated on the set {M = a}
and that the dichotomy of Lemma 5.4 (iv) holds, we obtain

Qx(X+
τx(Γ) |M = a) = Ra(Γ). (7.21)

By Lemma 5.4 (vi) and (vii), we conclude that the equality (7.21) holds for any Γ ∈ E0,x
(τx,ζ)

,
and therefore conclude that

∫

(a1,a2)

n(Γ ∩ {M ∈ da}) =

∫

(a1,a2)

Ra(Γ)n(M ∈ da) (7.22)

for 0 < a1 < a2 <∞ and Γ ∈ E0,x
(τx,ζ)

. Since both sides of (7.22) have masses only on E0,a1

and x ∈ (0, a) is arbitrary, we conclude that (7.22) holds for any Γ ∈ E , which completes
the proof.

8 Proofs of the convergence theorem

Proof of Lemma 2.2. (i) Noting that

ρ(m;u) =

∫

(0,∞)

e−uξξσ∗(m; dξ), (8.1)
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we have
∫ 1

0

|f(u)|2ρ(m;u)du =

∫

(0,∞)

g(ξ)
σ∗(m; dξ)

1 + ξ2
(8.2)

where

g(ξ) = (1 + ξ2)ξ

∫ 1

0

|f(u)|2e−uξdu. (8.3)

It is clear that g(ξ) is continuous on (0,∞) and that g(0+) = 0. Since

g(ξ) ≤ C2(1 + ξ2)ξ

∫ 1

0

u2e−uξdu =
C2(1 + ξ2)

ξ2
, (8.4)

we conclude that g(ξ) is bounded on (0,∞), and hence we obtain (i).
(ii) It suffices to show that

n(m; {ζ ≥ 1}) <∞. (8.5)

By Corollary 2.1, we have

n(m; {ζ ≥ 1}) =

∫ ∞

1

ρ(m;u)du (8.6)

=

∫

(0,∞)

e−ξσ∗(m; dξ). (8.7)

This proves (ii).
(iii) This is obvious since {N (m; (0, t],Γ∩ {ζ < 1}),Γ ∈ E0} and {N (m; (0, t],Γ∩ {ζ ≥

1}),Γ ∈ E0} are independent.

Proof of Theorem 2.7. (i) It suffices to show the convergence of the variances, i.e.,

∫ 1

0

|f(u)|2ρ(mn;u)du→

∫ 1

0

|f(u)|2ρ(m;u)du as n→∞. (8.8)

Using (8.2), we can rewrite (8.8) as

∫

(0,∞)

g(ξ)
σ∗(mn; dξ)

1 + ξ2
→

∫

(0,∞)

g(ξ)
σ∗(m; dξ)

1 + ξ2
as n→∞. (8.9)

Since the function g(ξ) defined in (8.3) extends to a bounded continuous function on
[0,∞), the convergence (8.9) is justified by Lemma 3.2.
(ii) Set f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}. To prove the claim, it

suffices to show the convergence of the joint distribution of (U2[f+](mn; t), U2[f−](mn; t)).
This is equivalent to the convergence of the characteristic functions of U2[λ+f++λ−f−](mn; t)
for any λ+, λ− > 0. Hence we may assume that f is non-negative.
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To prove the convergence in law, we shall show the convergence of the corresponding
Laplace transforms. Let λ > 0 be fixed. By (2.47) and by Corollary 2.1, the Laplace
transform of the law of U2[f ](m; t) is computed as

P
[
exp

(
− λU2[f ](m; t)

)]
= exp

(
−t

∫

{ζ≥1}

(1− e−λf(ζ(e)))n(m; de)

)
(8.10)

= exp

(
−t

∫ ∞

1

(1− e−λf(u))ρ(m;u)du

)
(8.11)

= exp

(
−t

∫

(0,∞)

k(ξ)
σ∗(m; dξ)

1 + ξ2

)
, (8.12)

where

k(ξ) = (1 + ξ2)ξ

∫ ∞

1

(1− e−λf(u))e−uξdu. (8.13)

By Lemma 3.2, it suffices to show that the function k(ξ) extends to a bounded continuous
function on [0,∞).

It is obvious that k(ξ) is continuous on (0,∞) by the dominated convegence. It is also
obvious that k(ξ) is bounded on (0,∞), since

k(ξ) ≤ (1 + ξ2)ξ

∫ ∞

1

e−uξdu = (1 + ξ2)e−ξ. (8.14)

Since limu→∞ f(u) = c, we have

k(0+) = lim
ξ→0+

ξ

∫ ∞

1

(1− e−λf(u))e−uξdu = 1− e−λc. (8.15)

Here, if c =∞, then the third expression is understood as 1. Therefore we complete the
proof.

Proof of Corollary 2.6. Since mλ → m(α) in M1, we can apply Theorem 2.7. Therefore
the only thing we have to prove is that

Ui[f ](mλ; t)
law
= Ui[fλ](m;λt), i = 1, 2. (8.16)

This is equivalent to

ρ(mλ; u) = λ
1

α
+1L(λ)ρ

(
m;λ

1

αL(λ)u
)
. (8.17)

This relation immediately follows from the fact that

ρ
(
am(b·); u

)
=
b2

a
ρ

(
m;

b

a
u

)
, a, b > 0. (8.18)
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[13] S. Kotani and S. Watanabe, Krĕın’s spectral theory of strings and generalized diffusion
processes, Functional analysis in Markov processes (Katata/Kyoto, 1981), Lecture
Notes in Math., 923, 235–259. Springer, Berlin, 1982.

36



[14] N. Minami, Y. Ogura, and M. Tomisaki, Asymptotic behavior of elementary solutions
of one-dimensional generalized diffusion equations, Ann. Probab., 13 no. 3 (1985),
698–715.

[15] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren
der Mathematischen Wissenschaften, 293, Springer-Verlag, Berlin, third edition,
1999.

[16] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales.
Vol. 1, Foundations, Cambridge Mathematical Library, Cambridge University Press,
Cambridge, 2000.

[17] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales.
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