INTEGRABLE HAMILTONIAN SYSTEM ON
THE JACOBIAN OF A SPECTRAL CURVE
— AFTER BEAUVILLE

REI INOUE, YUKIKO KONISHI, AND TAKAO YAMAZAKI

ABSTRACT. Beauville [1] introduced an integrable Hamiltonian system whose general
level set is isomorphic to the complement of the theta divisor in the Jacobian of the
spectral curve. This can be regarded as a generalization of the Mumford system [7].
In this article, we construct a variant of Beauville’s system whose general level set is
isomorphic to the complement of the intersection of the translations of the theta divisor
in the Jacobian. A suitable subsystem of our system can be regarded as a generalization

of the even Mumford system [11, 4].

1. INTRODUCTION

The Mumford system [7] is an integrable Hamiltonian system with the Lax matrix

(1.1) A(z) = (m) w(x)> € My(Cla)).

u(z) —v(x)

Here u(x) and w(z) are monic of degree d — 1 and d, and v(z) is of degree < d — 2
where d is a fixed positive integer. The space of Lax matrices A(z) is endowed with
d—1 independent Hamiltonian vector fields, defining an algebraically completely integrable
dynamical system. Its general level set is isomorphic to the complement of the theta divisor
in the Jacobian of the spectral curve of the Lax matrix, which is a hyperelliptic curve of
genus d — 1.

A variant called the even Mumford system was introduced by Fernandes and Vanhaecke
[11, 4], whose Lax matrix has the same form as (1.1) but the polynomial w(z) is monic
of degree d 4+ 1. This small difference gives rise to another type of general level set, which
is isomorphic to the complement of the union of two translates of the theta divisor in the
Jacobian of a hyperelliptic curve.

On the other hand, Beauville [1] introduced a generalization of the Mumford system.
The Lax matrix is given by A(z) € M, (C[z]) with a certain condition on the degree of each
entry, where r > 2 can be an arbitrary integer. He constructed a completely integrable

Hamiltonian system on the space of (the gauge equivalence classes of) the Lax matrix
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A(z). Tts general level set is isomorphic to the complement of the theta divisor in the
Jacobian of the spectral curve of the Lax matrix, which is not hyperelliptic in general.
The Mumford system can be recovered as the case 7 = 2 of Beauville’s system.

In this paper, we employ Beauville’s method to construct a system which generalize
the even Mumford system. The Lax matrix is again given by A(z) € M,(C[z]) with
arbitrary r» > 2, but we impose a condition, different from Beauville’s, on the degree of
each entry. (Hence the spectral curve is not hyperelliptic in general.) We construct a
completely integrable Hamiltonian system on the space of (the gauge equivalence classes
of) the Lax matrix A(z). An interesting feature of this system is that the general level
set is isomorphic to the complement of the intersection of r translates of the theta divisor
(Theorem 2.8 and 3.11), which is not an affine variety. In addition, we construct a family
of subsystems, which provides an open (finite) covering of our system. The level set of
each subsystem is isomorphic to the complement of the union of r translates of the theta
divisor in the Jacobian (Theorem 4.5). We also construct the spaces of representatives of
the subsystems, and explicitly describe the Hamiltonian vector fields (Proposition 4.11),
and the correspondence between the Lax matrix and the divisor (Proposition 4.9). The
even Mumford system can be recovered as the case r = 2 of a subsystem.

This paper is organized as follows: in §2 we study the Jacobian of the spectral curves
for the Lax matrix. §3 is devoted to the construction of Hamiltonian vector fields, and to
the proof of the integrability. In §4 we introduce a family of subsystems and show that
each of them is algebraically completely integrable. Further we construct the spaces of
representatives of the subsystems, and study the integrable structure.

The proofs of many results in §2 and §3 are given by a modification of the argument of
Beauville [1], nevertheless we included a rather whole proof in the present paper for the

sake of completeness, and for the importance of Beauville’s argument.

2. JACOBIAN OF THE SPECTRAL CURVE

2.1. Intersection of translations of the theta divisor. Let C' be a smooth projective
irreducible curve of genus g (over C). For each integer k, we write J* for the space of

invertible sheaves of degree k, which we regard as a principal homogeneous space under
the Jacobian JY of C. We define the theta divisor © C J9~1 by

©={LeJ ' | H(C,L) #0}
={O¢(E) | E is an effective divisor of degree g — 1 }.
For each point ¢ € C, we write O, for the translation ©+¢ = {L(q) = L® O¢c(q) | L € O}

of ©. This is a divisor on J9. Let m : C — P! be a finite morphism of degree r. We define
a subvariety J' of J9 by

J={LeJ | nL=0a®0(-1)%"1},
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where we abbreviate Op: to O. (In [1], J' is denoted by J(0,—1,--- ,—1).) In this subsec-

tion, we prove the following.

Proposition 2.1. For any point a € P! unramified with respect to m, we have
J'=J\ (10 =7\( (] ©)
qeC gen—1(a)

It is enough to show the following two lemmas:
Lemma 2.2. For any point g € C, we have J9\ O, C J'.

Lemma 2.3. For any point a € P' unramified with respect to w, we have
JcIN\N( ) Oy
gem~(a)
We need some preliminaries to prove them. Let L be an arbitrary invertible sheaf

on C. We can write m,L = &]_,0(d;) for some integers d; < dy < --- < d, such that
degL=g—147r+> d;. We have
(2.1) ho(C,L) = nO(P Zho PLO(d) = > (di+1),
ie{jld; 20}
(2.2) hl(C,L) = (P Zho PLO(-2-d))=— > (di+1),
i€{j|d;<-2}
where we used the notation h*(X, F) = dim H*(X, F'). This computation, together with

the Riemann-Roch theorem, implies the following two lemmas:
Lemma 2.4. (cf. [1] 1.8) For L € J971, the following conditions are equivalent:
(1) Le g7\ e, (2)r°(C,L)=0, (3)A(C,L)=0, (4) mL=0(-1)%"
Lemma 2.5. For L € J9, the following conditions are equivalent:
(1) LeJ (e mL=0a0(-1)®"Y, (2)r°(C,L)=1, (3)hY(C,L)=0.
Proof of Lemma 2.2. For an invertible sheaf L on C, we have an exact sequence
(2.3) 0 — HY(C,L(—q)) — H°(C,L) 2 C — HY(C,L(—q)) — H'(C,L) — 0

deduced from the short exact sequence 0 — L(—q) — L — C;, — 0. Now we assume L €
J9\©O,. This amounts to assuming L(—q) € J9~1\O, and Lemma 2.4 shows h°(C, L(—q)) =
h(C, L(—q)) = 0. Then the exact sequence (2.3) implies h°(C, L) = 1, which means L € J’
by Lemma 2.5. This completes the proof. U
Proof of Lemma 2.3. We take L € J'. By lemma 2.5, we have h°(C, L) = 1. For q € C, we
regard H°(C, L(—q)) as a subspace of H(C, L) by the injection appeared in eq. (2.3).
Now we assume L € Nycr—1(4)©4. This amounts to assuming L(—q) € © for any ¢ €

771 (a). Then Lemma 2.4 shows that the inclusion H(C, L(—q)) — H°(C, L) is bijective
3



for any ¢ € 771(a). In other words, any non-zero global section of L must have a zero at
q for any q € 7=!(a). Therefore H°(C, L(—7*a)) = ﬂqeﬂq(a)HO(C',L(—q)) is isomorphic
to H°(C, L), and we have h°(C, L(—7*a)) = h°(C,L) = 1. However, by the projection

formula (and the assumption L € J'), we have
K(C, L(—7*a)) = h°(P', 7. L ® O(—1)) = h°(P!,0(-1) & O(-2)*"1) = 0.
This is a contradiction, and the proof is done. O

2.2. Jacobian of the spectral curve. We fix natural numbers r and d. Let us consider

a polynomial of the form
P(x,y) =y +s1(x)y" '+ 4 s.(x)

with s;(z) € C[z] is of degree < di. We regard z as a fixed coordinate function on P!,
so that the equation P(z,y) = 0 defines a finite map 7 : Cp — P! of degree r, where
Cp is the spectral curve of P. One can define Cp to be the closure of the affine curve
defined by P(z,y) = 0 in the Hirzebruch surface of degree d. More explicitly, Cp can
be described by gluing two plane affine curves defined by the polynomials P(z,y) and
2¥ P27, z7%) € C[z,w] by the relation = 27!, y = z~%w. The aim of this subsection
is to give an explicit representation (the matrix realization) of the variety J’ considered
in §2.1 assuming C' = Cp is smooth (hence irreducible). We remark that, under this
assumption, the genus of Cp is g = 1(r — 1)(rd — 2).

We introduce some notations:

Sk(x) = {s(z) € Clz] | degs(x) <k},

A(2)11 € Sa(z), A(z)1; € Sas1(2),
A(z)i € Sq—1(x), A(:L‘)ZJ S Sd(l‘),
V(r,d) = {P(z,y) =y" +s1(x)y" "+ -+ s.(x) € Clz,y] | 5i(x) € Sgi(2)},

1 tgl.%' + tgo
GT = =
{g(x) (0 B

In this article we denote column vectors using a notation such as b. We write the adjoint
action of G, on M(r,d) as

M(r,d) = {A(:z:) € M,(Clx])

(2§i,j§7“)},

B € GL,_1(C), by,byeC~ 1}

(2.4) 9(A(z)) = g(x) "' A(x)g(x) for g(x) € G, A(z) € M(r,d).
Further we introduce a map:

¥ M(r,d) — V(r,d); A(z) — det(yl, — Ax)),
and define subsets of V(r,d) or M(r,d) as follows:

Mp =~ (P(z,y)),

Vir(r,d) = {P(z,y) € V(r,d) | Cp is irreducible},
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Vem(r,d) = {P(z,y) € Vip(r,d) | Cp is smooth},

My (r,d) = 4~ (Vir(r,d)),

M (r,d) = 9™ (Vo (1, d)).
Then we have V(r,d) D Vi (r,d) D Vip(r,d) and M(r,d) D M;-(r,d) D Mgy (r,d). Note
that each Mp, M;,(r,d) and Mgy, (r,d) is stable with respect to the action of G, (2.4). For

the later use we introduce a lemma:
Lemma 2.6. The action (2.4) of G, on M;(r,d) is free.

Proof. We have to show that the stabilizer is trivial for all A(z) € M;.(r,d). Since any
element of GG, has an eigenvalue 1, this follows from the following lemma on elementary

linear algebra: O

Lemma 2.7. Let K = C(x) be the field of rational functions over C. Let r € N, and
suppose A, B € M,(K) satisfies the following conditions: (1) AB = BA, (2) B is not a
scalar matriz, (3) B has an eigenvalue b in K. Then det(yl, — A) € K|y| is a reducible

polynomial in y.

Proof. This follows at once by noting that the eigenspace of B with respect to b is a

non-trivial, proper subspace of K®" stable under A. O
We define a projection map 7:
(2.5) n: Mip(r,d) — M (r,d)/G,.

In the following, we respectively write Jp and J} for the variety J and J’ defined in
§2.1 associated to (Cp,w). For k € Z and an invertible sheaf L on Cp, we use a notation
L(k) = L ® 7*O(k). The main result in this subsection is the following:

Theorem 2.8. (cf. [1] 1.4) Let P(x,y) € Vam(r,d), and let 7 : Cp — P! be the finite map
defined by x. Then, Mp is a principal fiber bundle under G,, and the base space Mp /G,

is isomorphic to Jp.

Proof. The first part follows from Lemma 2.6. We construct a surjective map Mp — Jp

and show that each fiber is a principal homogeneous space under G,. We remark that a
matrix A(z) € M(r,d) defines an O-linear map O @ O(—1)%""1 — O(d) ® O(d — 1)®7~1.
(Here we consider O(d) = O(d - 0).) Due to [2] (see also [1] 1.4), the set

(2.6) {(L,v) | LEJp, v:000(-1)% 1 =2x.L}
is in one-to-one correspondence with Mp in such a way that the diagram

Oa o011 2 o) e od— 1)Er!
(2.7) v v(d) |
7L LALLS 7. L(d)



commutes whenever (L,v) corresponds to A(z) € Mp. (Note that A(x) must be in Mp
because of the relation P(z,y) = 0 in O¢.) By composing this correspondence with the
‘forgetful’ map (L,v) — L, we obtain the desired surjection Mp — Jp. The fiber of
this map over L € J} is the set of isomorphisms O & O(—1)®""! = 7, I which is a
principal homogeneous space under G, where the action of g(x) € G, is given by v —
g(z)"tovog(x). (Here we regard g(x) as an automorphism on O @ O(—1)%7~!

O(d) ® O(d — 1)®"~1.) On the set Mp, this action corresponds to the conjugation. This

as well as

completes the proof. O

Remark 2.9. Given an invertible sheaf L € J}p, a corresponding matrix A(x) € Mp is con-
structed in the following way. We have to choose an isomorphism v : O @ O(—1)®""1 —
7. L. This amounts to a choice of a basis of H(Cp, L(1)) of the form (fo, f1,--- , fr—1,%f0)
with fo € H°(Cp,L). The multiplication by y defines elements yfy € H(Cp, L(d)) =
(foSa(x)) ® (B5-1f;Sa-1(x)) and yf1,... ,yfr1 € HYC,L(d + 1)) = (foSas1(z)) &
(@;;%fjsd(x)). Now the matrix A(x) is characterized by

y(fo, fr, - s frm1) = (fo, fr, -0 fro1) A().

In other words, the set Mp is in one-to-one correspondence with the set of pairs (L, v)
where L € J} and v : S (x) @ Co 1 =, H°(Cp, L(1)). A matrix A(z) € Mp corresponds
o (L,v) iff

Si(z)eC®-1 = HOCp,L(1))
(2.8) LA() Ly
v&c/l)
Sat1(2) © Sa(x)® " — HO(Cp,L(d+1))

commutes.

2.3. Characterization of a translation of the theta divisor. We fix P € Vy,,(r,d).
Let A(z) € Mp, and let L € J} be the corresponding invertible sheaf. We take a € P!\ {oco}
unramified with respect to m, so that 7=1(a) = {q1,--- ,¢-} consists of r distinct points.
Then y(q1),-- - ,y(gr) are the distinct eigenvalues of the matrix A(a). Let pg, : C" — C be
the projection to the eigenspace associated with the eigenvalue y(g;). For each i = 1,--- | r,
we write s, : H(Cp, L) — C for the map in the exact sequence (2.3) applied to ¢ = ¢;.

In this subsection, we show the following.
Proposition 2.10. For each i =1,--- 7, the following conditions are equivalent:
(1) in(1707 e 70) # 0, (2) Im(sqz') # 0, (3) Le J}’ \ eqz"

Proof. The equivalence between (2) and (3) is a consequence of Lemma 2.4 and the exact

sequence (2.3), as is shown in the same way as Lemma 2.2. We show the equivalence
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between (1) and (2). We recall that the map s, is induced by the map 54, in the following

short exact sequence of sheaves on C'p

0— L(—q) — L % C,, — 0.

We then have a commutative diagram

B3o.
W*L iqz’ @gzlﬂ'*cqz'
™y | l&'y(qz')
®3q. (d
ri(d) 2 e e,

where the right vertical map is defined as the multiplication by y(g;) on the i-th component.
Let v: O @ O(—1)®"~! = 7, L be the isomorphism corresponding to A(z). The pull-back

of this diagram by v is written as

ooo(-1er-1 L, cer
1A@) 4@
O(d)®O(d —1)er-1 2, cor,

where ] and [y are defined simply by the direct sum of O(k) — C, for k € {0,—1,d,d—1}.
This means that m,C, maps to the eigenspace of y(g;) in C" under the isomorphism
ve : Cr = @I 7,.C,,. The image of the map H°(P!,0 @& O(-1)®""!) — C" induced by
l; is generated by (1,0,---,0). Therefore the image of s, is non-trivial if and only if
pq:(1,0,---,0) # 0. This shows the proposition. O

Remark 2.11. Let us consider the case a = oo (still assuming that = is unramified at
a = o0). The statement of Proposition 2.10 remains true if we replace A(a) by A(oc0),
where the (i, j)-component of A(co) is the coeflicient of the leading term of A(x);;. Note
that, if we set w = y/z?, then w(qy),--- ,w(g,) are the distinct eigenvalues of A(co).

3. INTEGRABLE SYSTEM

3.1. Vector Fields. We identify the tangent space Ty, M (r,d) at A(z) € M(r,d) with
the affine space M (r,d) and write vector fields on M(r,d) in the matrix form. For a
positive integer p and a € C, we define a vector field T((lp) on M(r,d) by the Lax form

1

r—a

(3.1) TP (Ax)) = [A(a)?, A()].

If we let a € C vary, T((lp ) can be written as a polynomial in a of degree pd. For j =

0,---,pd, we define a vector field Yj(p ) to be the coefficient of @/ in this polynomial, viz.
pd

(3.2) TP = Z ajyj(p)_
j=0
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Remark 3.1. For each a € C, the sets of the vector fields {Tgp)|1 <p<r—1} and
{T((lp )]1 < p} generate the same vector space by Hamilton-Cayley’s formula for A(a).
Further for each p > 1, the sets {T((lp)]a € C} and {Yj(p)\O < j < pd} generate the same

vector space by Vandermond’s determinant formula.

Lemma 3.2. The projection map n (2.5) induces the equality n*Tgp)(A(x)) = n*TSE’) (9(A(z)))
in Tya@)) (Mir(r, d)/G,) for all g(z) € G, and A(x) € My, (r,d).

Proof. A vector field X on M, (r, d) satisfies 0. X (A(x)) = 1 X (9(A(2))) in Ty a(2)) (Mir(r, d)/ G)
if and only if X(A(x)) — g.X(A(z)) is tangent to G,-orbits for any g(x) € G,. A direct
calculation shows that TSE’)(A(:I:)) - g*Tgp)(A(:L“)) is a linear combination of the vector

fields of Lie G,:
(3.3) Xp(A(z)) = [E, A(z)], for E = Ejj, By, By (2<4,j <7).
Here E;; is given by (Ejj)r = 6ixdj;, and Eij = xFy;. Thus the claim follows. O

Corollary 3.3. For eacha € C;1 <p <r —1,0 < j < pd, we have well-defined vector
fields TP and Y’j(p) on M;,(r,d)/G, which satisfies at [A(x)] = n(A(z))

TP ([A@) = nXP(A),  YP(A@)]) = n.Y, P (Al2)).
(p)

We collect some properties of ffj .

Lemma 3.4. 1. For each P € V,.(r,d), the vector field Yj(p) is tangent to Mp and 57]-(73)
is tangent to Mp/G,.
2. For any i and j, the vector fields Yi(p) and Yj(q) commute. So do ?i(p) and ffj(q).
3. We have ?;5) = ffp(gll = 0. The dimension of the vector space generated by f/j(p)
withl <p<r—1,0<j<pd-2is at most g.

Proof. 1: A vector field on M (r,d) is equivalently given as a derivation on the affine
ring of M(r,d). We write t(z) = trA(z)¥ and let sz(x) be the coefficients of y"~* in
det(yl, — A(z)) for 1 < k < r. By Newton’s formula, each si(x) is written as a function
in Q[t1(x),... ,tx(z)]. Since TP is given by the Lax form (3.1), the associated derivation
satisfies Tgp)(tk@)) = 0. Thus we see Tgp)(sk(x)) = 0, and the claim follows.

2: This is shown by a direct computation.

3: Since Yp(g) and Y;)(gll are tangent to G-orbits, 5717(5) and ?p(gzl vanish. Therefore the
space in question is generated by f’j(p ) with 1 <p<r-—1,0<j<pd—2. The number of
the members is zz;}(pd —1)=3(r—1)(dr—2) =g. O

3.2. Translation invariance. We have seen that Mp /G, is isomorphic to an open subset
Jp of J% for P(x,y) € Vgn(r,d) (Theorem 2.8). We regard the restriction of the vector
fields T and f’j(p ) as vector fields on Jp. In this subsection, we show that T )\ Mp /G,

and f’j(p )\ Mp /G, are translation invariant under the action of the Jacobian J on JP.
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The space of translation invariant (holomorphic) vector fields on Jp is canonically dual
to HY(Cp, Qlcp). Let C']O3 be the set of points ¢ € Cp such that 7 : Cp — P! is unramified
at ¢ and m(q) # oo. For ¢ € CIOJ, we write X, for the the vector field corresponding to
the linear form w — m(q) on H°(Cp, QICP). (Recall we have fixed a coordinate x
on PL.) Equivalently, X, is characterized as follows: the short exact sequence 0 — O¢,, —

Ocp(q) — T;Cp — 0 induces the connecting homomorphism

T,Cp — H'(Cp,Oc,).

The image of the vector m € T;Cp in HY(Cp,0O¢,) corresponds to X, under the

Serre duality.

Remark 3.5. If Q is an infinite subset of C%, the vectors X4 (¢ € Q) generate the full
space of translation invariant vector fields. Indeed, this is equivalent to the triviality of

the cokernel of

P r.cr — H' (Cp,0c,),
q€Q

which is dual to the kernel of
H(Cp,Q4,) — H T; Cp;
q€Q
but this kernel is trivial by the simple fact that any non-zero differential form has only

finitely many zeros.
The main result in this subsection is the following.

Theorem 3.6. (cf. [1] 2.2) Let a € P! be a point such that 7 : Cp — P! is unramified
over a, and let 71 (a) = {q1,... ,q.}. Then, for each p > 1, the vector field T((lp)\MP/GT
coincides with y(q1)P Xq, + -+ + y(g-)P Xy, -

Proof. Let A(x) € Mp. Then A(a) has r distinct eigenvalues y(q1),--- ,y(g.). For each
q € 77 1(a), we write I, € M, (C) for the projector to the eigenspace of y(q), and we define
a vector field Aq on Mp by

. 1

Ag(Ax)) = [[g, A(z)].

r—a

Since T((lp)\MP/GT = y(q1)P Ay + -+ y(g-)PA,,, the theorem is reduced to the following

lemma. O
Lemma 3.7. We have n*(T((lp))(A(m)) = X,(n(A(z))) for any q € 7~ 1(a), A(z) € Mp.

Proof. In this proof, we omit to indicate P and write C' = Cp,J = Jp etc. Let C, be the
scheme whose underlying topological space is C but with the structure sheaf O¢le], €2 = 0.

For L € J, the tangent space T7,J is in one-to-one correspondence with the set of invertible
9



sheaves on C,, which reduce to L modulo €. If ¢ € C° and L € J’, the vector X, (L)

corresponds to the invertible sheaf Lg is given by

H(U,LY) = {s + et

s € HYU, L), t € (U, L(g)),
s/(xz — a) + t is holomorphic at ¢

for an open set U of C' (cf. [1] 2.2).

Recall that the set Mp is in one-to-one correspondence with the set of pairs (L, v) where
L € J' and v is an isomorphism H(C, L(1)) — S} (z)®C® ! (cf. Remark 2.9). If A(z) €
Mp corresponds to (L, v), the tangent space T)y(,)Mp is in one-to-one correspondence with
the pairs of (L€, v) where L€ is an invertible sheaf on C. which reduces to L modulo e,
and v€ is an isomorphism (S;(x) ® C®"~!) ® C[¢] = H°(C,, L¢(1)) of C[e]-modules, which
reduces to v modulo e. A vector A(z) € Tp@)Mp C Ta(z)Msm(r,d) = M(r,d) corresponds
to a pair (L€, v) iff

(Sg@Cl®—!) =  HYC.L(1))
(3.4) Aw)+ei) L Ly
Ui&d)
(S4 @855 — HYC.,L(d+1))

commutes. Here we denote Si = Si(x) ® Cle].
Now let ¢ € C°. Let A(z) € Mp and let (L,v) be the corresponding pair. Recall that
Lg is the invertible sheaf on C¢ corresponding to X4(L). In order to complete the proof,

we are going to construct an isomorphism v : S5 @ Cle]®" = H O(Ce, L§(1)) such that

€

Yq

reduces to v modulo €, and that the diagram

Yg
(SfeCld™) —  HC.Ly1)
(3'5) A(z)+edq(z) ! ly
vg(d)
(S5 @ S5¥ Y —  HYC., Li(d+1))
cominutes.
Let a = 7(q) and write 77 '(a) = {¢1 = ¢,q2,--- ,¢-}. There exists a section s; €

HY(C, L(1)) which does not vanish at g; but vanish at ¢; for j # i. However, such an s; is
not unique. We specify a choice of s; as follows. We write fo, f1, -+, fr—1 € H°(C, L(1))
for the images of (1, (0,---,0)),(0,(1,0,--- ,0)),---,(0,(0,--- ,1)) under the isomorphism
v. Then ((x — a) fo, fo, f1,+++ , fr—1) is a C-basis of H(C, L(1)) (and (z — a) fo is a C-base

of H°(C,L)). On the other hand, ((x — a)fy,s1,--- ,s,) is also a basis of H°(C, L(1)).
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Thus we can write

((l’ - a)f07817"' 787’) = ((1’— a)ananfla"' 7fr—1) 'Aa

A= (é Z) A= (Xl,... ,Xr) € GL,(C).

~ 1 0
We can choose s1,---,8, so that A = (0 NE This condition determines s; up to a

multiplication by a non-zero scalar. By definition we have ((x — a)fo/si)(¢;)) = 0 and
sj/si(qi) = d; 5. Hence, if we set f := ((fj/sz)(ql))w, then f- A =1,.

Now we define v to be the composition of
o: HO(C,L(1)) ® HO(C, L(1))e — H°(C, L5(1))

(3.6) 8
(t1,t2e) — t1 + (tz _ t_l(q) 1 >6

with an isomorphism
v@idgy : (S5 @ Cle™™") = HO(C, L(1)) © Cld = H(C, L(1)) @ H'(C, L(1))e.

The change of s1 by a scalar multiplication does not affect the definition of this map.

It is immediate that vj mod € is v, We check the commutativity of (3.5). We write

JF: (fo, -+, fr—1) and f/sz(q) = (fo/si(q), -+, fr—1/si(¢)). Then the map (3.6) can be
written in terms of matrices

—

. . 1 o .
o(fief)=F+e(f———7-1), W=3-/si(q) € M,(C).
Therefore, the commutativity of (3.5) means
- € - € .
FA@)(1- ——11) = f(1 - ——11)(A(x) + €4y(@)),
which follows if we have Il = II,,. To show the last assertion, we note that the equation
ys; = fA(x)X; holds in H*(C, L(d + 1)). Thus we have fA(a)A = diag(y(q1),- - ,y(a)).

Since f = A~!, this means ); is an eigenvector of A(a) belonging to the eigenvalue y(g;).

In particular, IT = X; - f/sl(ql) is the projector II;,. This completes the proof. O

By Lemma 3.4-3 and Remark 3.5, we obtain

Corollary 3.8. The space of vector fields on M;.(r,d)/G, generated by ffj(p) (1 <p<
r—1,0<j <pd-—2)is g-dimensional.

3.3. Hamiltonian structure. In this subsection, we show that the vector fields T((lp ) on
M;,(r,d)/G, are Hamiltonian, following the method of [1] §5 (see also [6] §15, [8]).

Let ay,... ,aqss be distinct points in C, and ¢ : M (r,d) — M,(C)%*2 be a map defined
by

(3.7) o(A(z)) = (a1 A(ar), ... ,car2A(agye)).
11



Here ¢, = Py(as)~! with P,(z) = [1,.0(z — ap). This map is injective, and the preim-
age of Y = (Y1,Ya,...,Yy19) € o(M(r,d)) is obtained as ¢~ 1(Y) = Zojfl Yo P, (z) by
Lagrange’s interpolation formula.

We set the coordinate on M, (C)%*? by using Y 1 < a <d+2,1<4d,j<r)as
Yo = (y)i<ij<r € Mp(C) and Y = (Y1,Y2, ... ,Yay2) € M, (C)*2. We define the G,-
action on M, (C)%+?2 by

(3.8) g(x) : (Ya)i<a<dt2 — (g(aa)_lyag(aa))1gagd+2’

which is compatible with the G,-action on M (r,d). We equip M, (C)%*2 with the Poisson
bracket which comes from that of gl,(C) = M, (C):

(3.9) (U5 v} = G5 (G050 — S19i)-

The associated Casimir functions are t; o = tr(YF) for 1 <a <d+2, k€ Zs.
For E € Lie GG, we introduce the Hamiltonian functions Hg on M, (C)d+2:

HElj = Zy?{l’ HE{J = Zaayjo'éla HE'LJ' = Zy?ia for 2 <4,5 <.
a a a

These satisty Hip g = {Hg, Hpr } for any E, E' € Lie G,.. Each Hg generates a vector field
on M, (C)™2 compatible with Xz (3.3) on M(r,d) via the map ¢. The associated moment
map p : M,(C)2 — (Lie G,)* is the unique map which satisfies Hg(Y) = (u(Y), E) for
allY € M,(C)%*2 and E € Lie G,.. Here (, ) is the pairing between (Lie G,)* and Lie G,..

Lemma 3.9. 1. The image of ¢ is an affine subvariety of M,(C)%*2 determined as the
intersection of 1=*(0) and t;*(0), where t1 =Y t1.a-
2. The Poisson structure (3.9) induces the Poisson structure on (M. (r,d))/Gy, and
hence on M;.(r,d)/G, via ¢.

Proof. 1: The image o(M(r,d)) of ¢ is a subvariety of M,(C)%*? determined by the

following conditions:

d+2
> i =0,
(3.10) o=l
d+2 d+2 d+2

Zyqu =0, Zaayﬁ =0, Zyjal =0, for2<4,57<r.
a=1 a=1 a=1

We see that the last three conditions are nothing but the defining equations for p=1(0)
(i.e. the zero of the Hamiltonian functions Hg). Summing up the first one and the last
one for 2 <i = j < r, we obtain the defining equation for ¢;*(0).

2: Recall that the action of G, on (M, (r,d)) C M,(C)3*2 is free, and that (M, (r,d)) C
p~1(0)Nt71(0). Then the Poisson structure (3.9) on M, (C)%+? induces the Poisson struc-
ture on the quotient space ¢(M;,(r,d))/G,. This is passed to the Poisson structure on

M, (r,d)/G, by . O
12



The following lemma is shown by a direct computation.

Lemma 3.10. The vector fields (p+1) Hd+2 (a— aa)T(p) on M. (r,d)/G, is Hamiltonian.
They are generated by the G,.-invariant function trA(a)P** on My.(r,d) with respect to the

Poisson bracket of Lemma 3.9-2.
Summarizing Theorem 2.8, 3.6 and Lemma 3.10, we conclude that

Theorem 3.11. (¢f. [1] 5.8) The Hamiltonian system |y, (ray/G, @ Mir(r,d)/Gr —
V(r,d) is completely integrable. In particular, the general level set is isomorphic to an

open subvariety of a Jacobian. More precisely, we have Mp/G, = Jp if P € Vg (r,d).

4. GENERALIZATION OF EVEN MUMFORD SYSTEM

4.1. Matrix realization of the affine Jacobian. In this section, we construct a family
of subsystems of M;,(r,d)/G, whose general level set is isomorphic to the complement of
the union of r translates of the theta divisor in the Jacobian.

In the following, we write A(z) € M(r,d) as

(4.1) Afa) = (”“’” ““‘”) ,

W(x) € Sgi1(2)® ! and T(z) € M,_1(Sq(x)).
),u(x) and T'(x) will be denoted by vy, W, U

where v(z) € Sy(x), @(x) € Sq_1(z)®" 1,
The coefficients of ¥ (k > 0) in v(x), W (x
and Tj. For A(z) € M(r,d), we define
(42) D(A(x): ) = (il(x), T(2)il(x). ..., T(x)2i(x)) € My_,(Clal),
(4.3) D(A(x);00) = (@g—1, Tytig—1,- .. , Ty" *ilg_1) € M,_1(C).
Note that det D(A(z);x) is a polynomial in z of degree at most g, and that the coefficients
of 29 is det D(A(x); 00).
For each ¢ € P!, we define the subspaces M., M¥ and M, p of M(r,d):

M. ={A(z) € M(r,d) | det D(A(x);c) # 0},

MY = M0 M (r,d),

MC,P - MC N MP.

Lemma 4.1. 1. The subset M, is invariant under the action of G, on M(r,d).
2. The action of G, on M, is free.

3. Let c1,... ,cqp1 be distinct points on P'. Then we have
g+1
M (r, d) U M, = | Mc c M(r,d).
cePt
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0 B
1: This follows from the relation det D(g(A(z));x) = det B~! - det D(A(x); ).

2: A computation

Proof. Let A(x) € M. and g(x) = <_, ) € G,.

(4.4) 9(A(x)) =

v—"tb-B Y 'G-B+vtb—thB~lith — thB~ITB
Bl B~ litb+ B-\TB

shows that the condition g(A(z)) = A(z) implies BD(A(z); z) = D(A(x); z) and 'bD(A(z); z) =
0. If we further assume A(z) € M., then we obtain B =1,_; and b=0.

3: The equality in the middle holds since deg, D(A(z);x) < g. We show the left inclusion.
Assume A(z) ¢ M, for all ¢ € P'. Then D(A(x);x) is identically zero. Hence we have

1 1 ()
det ( <6> , A(z) (6) yoon s A) (6) ) =0,

which implies that the column vectors span a proper subspace in C(z)®" invariant under
A(x). Therefore the characteristic polynomial of A(z) is reducible if A(x) ¢ M.. O

This lemma implies that M7 /G, is a subsystem of the completely integrable system
M;,(r,d)/G,. The general level set is described in the following:

Proposition 4.2. Let ¢ € P! and P € Vyp,(r,d) such that ©: Cp — P! is unramified over
c. Then the level set M p/Gy of MY |G, is isomorphic to Jp \ (U Qq).

ger—!(c)

Proof. Let A(x) € Mp and let L € J, be the image of A(z) under the map Mp —
Mp/G, = Jp. According to Proposition 2.10 and Theorem 2.8, L is in Uger—1(¢)Oq if and
only if the first entry of any eigenvector of ' A(c) is nonzero. Thus the following lemma on

linear algebra completes the proof. O

* *
Lemma 4.3. Let C € M,(C) be a semi-simple matriz. Writing 'C = <_‘ C) with
¢ Co

Co € M,_1(C) and & € C"L, we set D = Y& Cyé,--- ,Co""26) € M,_(C). We write W
for the subspace of C" generated by all eigenvectors of C' whose first entries are zero. Then
we have dimW =r — 1 —rank D.

Proof. Define i : C"~! — C" by setting the first entry to be zero, and let Vj = i(C"1).
Let Wo = {i(W) € Vo | @ € C"', D& = 0}. Since dimWy = r — 1 — rank D, it is
enough to show W = Wj. The lemma below shows that W is the maximal subspace of
Vo which satisfies the condition CW C W. Since CWy C Wy, we have Wy € W. To show
the converse, we take w € W. Since CW C W, we have C*w € W(C Vp) for all k& > 0.
By writing down the condition C¥&% € Vp for k = 0,1,--- , we see @ € W,. This shows

W C Wy and we have done. O
14



Lemma 4.4. Let f : V — V be a semi-simple endomorphism of a finite dimensional
C-vector space. For a subspace V' of V, we write Ev(V') for the set of eigenvectors of f
in V'. Let W be a subspace of V. Let Wy be the mazximal subspace in W which satisfies
f(Wst) C Wy, and let We;g be the subspace of V' generated by Ev(W). Then we have
Wt = Weig.

Proof. We have W;q C Wy because f(Weig) C Weig. It holds that

1 (2) 3
Wy 2 (Bo(Wa)) © (BoW)) € Wi,

Here (1),(2) and (3) follows by the semi-simplicity of f, by Ev(Wy) C Ev(W) and by

definition, respectively. O
We summarize our main result.

Theorem 4.5. The Hamiltonian system ¥|pir/q, M7 )G, — V(r,d) is algebraically
completely integrable. In particular the general level set is isomorphic to an affine subva-
riety of a Jacobian. More precisely, if P € Vyn(r,d) and if 7 : Cp — P! is unramified
over ¢, we have M. p /Gy, = J% \ (Uger—1(c) ©a)-

Remark 4.6. The Hamiltonian vector fields TE}’ ) are defined on M./G, (not only on
MP /@G, because of Lemma 4.1-2.

4.2. Space of Representatives. We introduce a space of representatives of M./G,. For
Beauville’s system, Donagi and Markman [3] constructed such a space of representatives.
We define subspaces S, of M(r,d) for ¢ € P! as follows:

00 t0) o )
A(x):<ﬁ T T@=o a7

+ higher terms in (z —¢), TW € T}, for c € C,

Alz) = 9 Ensmy e by S Mgy i1
0 0] 0 T v Td,1

+ lower terms in x, Ty_1 € T}, for ¢ = co.

S = {A(x) € M(r,d)

Soo = {A(x) € M(r,d)

Here 7,7 and the set 7 is as follows:

0 O 0
1 0 0 0 1
T = € M,_1(C), V= eC,
(4.5)
0 1 0 0

T:{pEMrfl(C)|p1j:0f0rj:1,...,7"—1}-

By definition, S, C M, since det D(A(z);z) =1 for all A(z) € S..
15



Proposition 4.7. For c € P!, the map given by S, x G, — M.; (S(x),g(z)) — g(S(z))

is an isomorphism. Thus the space S, is a set of representatives of M./G,.
This is a consequence of the following lemma:

Lemma 4.8. Let ¢ € PL.

1. If A(x) € M., then there exists g(x) € G, such that g(A(x)) € Se.

2. If g(S(x)) = S(z) with S(x),S(z) € Se and g(x) € Gy, then we have g(x) = 1.

Proof. 1: We give a proof for ¢ # co. (The case of ¢ = oo can be shown in a similar way.)

Define B € M,_,(C) by
B = (i(c), Gyii(e), ... ,Groa(c))
Here G (1 <i < r—2) € M,_1(C) are defined by
G =T() + BT ()" + BT () > + - + filiy,

where 3; (1 <i <7 — 1) are the coefficients of y in the characteristic polynomial of T'(c):
det(yl,_1 —T(c)) =y ' + B1y" 2+ -+ B._1. Since we have assumed A(x) € M., B is

invertible. Then we obtain

1 0 10 * %k % ) )
<0 B_1> Az) <0 B) = <ﬁ 7_,) +(x—c¢) <* T) + higher terms in (z —¢) ,

where
61 =P —Br-1
1 0 0
7= , T e M,_1(C).
0 1 0

We define 51 and 50 by

-

bic+bo=tBr,....01), by = —"(T11,Tha, - s Tir_1)-

Consequently we obtain the matrix

( ) 1 0 1 tgl.%' + tgo
T) = ,
g 0 B 0 1

which satisfies g(A(z)) € S..

2: By expanding the relation g(S(x)) = S(x) in (z — ¢) and comparing the coefficient

matrices of (x — ¢)? and (z — ¢)!, we see g(z) =, O
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4.3. Integrable structure of S,,. Now we set ¢ = co. We study an explicit relation
between S p and Divgf f(Cp), then give a description of the vector field on Soo. These
two results may be regarded as the counterparts of the studies on Beauville’s system by
Smirnov and Zeitlin [10] §4.1-2, and by Fu [5] respectively.

Let P € Vgy(r,d) be such that co € P! is not a ramification point of 7, and set
Soo,p = Soo N Mp. We study the relation between S, p and Div? f f(Cp) by applying the
method of Sklyanin [9] (the separation of variables). Let 7 : DiV‘fo(CP) — J} be the
Abel-Jacobi map. Its restriction 7'|T_1( ) 18 injective, because the complete linear system
of L € Jp is of dimension zero (cf. Lemma 2.5). By abuse of notation, we write 7~! for

the composition of
= —1 .
Jp — 77 HJp) — Dlngf(Cp).
Our aim is to give an explicit description of the composition  of

o o 7—*1 .
Seop — Moop/Gr — JE\ (| ] ©4) C Jp 7= Div?,(Cp).
gen—1(c0)

Unfortunately, our result is limited to a subset of Sy, p due to technical difficulties. Define
. = {A(z) € Seo,p| all roots of det D(A(x);x) are simple and belong to T(C%)}.
Note that det D(A(x);z) of A(z) € Sxo,p is of degree g by the definition of Sy p.

Proposition 4.9. Let A(z) € S, p. Denote by x1,... , x4 the simple roots of det D(A(x);x) =
0. Let 7 € C"! be any vector satisfying

(4.6) det(7, @(z), ... , T(z) ~3a@(z)) Z 0.

With this U, define

(4.7) Yi =

(This is independent of the choice of U.) Then we have k(A(x)) = > 1 (zi, yi).

Proof. The assumption that z; (1 <i < g) is a simple root of det D(A(z);z) implies that
the rank of D(A(z); ;) is r—2. By Lemma 4.3, there exists a unique eigenvector of *A(z;)
whose first component is zero. Denote the eigenvalue by «;. Then by Proposition 2.10,
the invertible sheaf L corresponding to A(z) satisfies L € (_; O (4;,0;)- Because of the
injectivity of 7|.-1(;,) mentioned above, we see r(A(z)) = YL) =Y (z;,;). Thus
what we have to show is that y; = «;.

For simplicity, we show the case of i = 1. Since the eigenvalue oy of A(z1) is also an
eigenvalue of T'(x1), there exists an eigenvector i’ of T'(x1) of the eigenvalue ;. It is easy
to show det (', w(x1),...,T(z1)" ~3u(z1)) # 0, and we obtain

o — det(T(x1) i, ii(x1), ... , T(x1)" " 3id(z1))
det(i@, u(x1), ..., T(x1) " 3u(x1))
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Let 7 € C™! be a vector satisfying (4.6). Then there exist rational functions 3(z),
Bo(z),..., Br—3(z) € C(x) such that

r—3
7= B(x)i + Y Be(x)T () i(z).
k=0

Here B(x) # 0 by the assumption on 7. Now it is immediate to check that y; = ;. O

Next we describe the vector field on Sy, induced from (3.1), using the following lemma:

Lemma 4.10. Let X be a vector field on Moy ~ Soo X G,.. The isomorphism ® : My, =
Soo X Gp; A(x) — (S(x),9(x)) induces the decomposition of X as ®.X = F + G, where
F e HSy x G, TSy) and G € H*(Sy, x G, TG,). Then

(4.8) X(A(2)) = g(F(S(x),9(x))) — [9(z) " G(S(2), 9(x)), A(x)]-

Here we identify Ty, G, with LieG,, and Tg;)Soc with the subspace of M(r,d) via the

inclusion Seo — M(r,d).
The proof is left to the reader. The Hamiltonian vector field on S, becomes as follows:

Proposition 4.11. The projection of the vector field (3.1) onto Sy is

t= t3
0 7t + 500} 4
i

(49)  EP(A@) = ——[A(a)?, A()] +

r—a

at A(z) € Seo.

Here (?p,gp, C,) € C" 1o Ct @ M,_1(C) is a unique solution of
Cp-V=(1T—v4l,_1)- ﬁp,
7 Ty = [Cpr7) = By - "D,

(4.10) T
(V : ﬂp +Ug—2 - Vp — CpTd—l)l,i

= (hp . (tlﬁd + atlﬁd_f_l) + JpT)l,i, for1<i<r-—1,

where T and U are defined in (4.5), and ﬁp and J, are

(4.11) Ay = <fj ;) .

Proof. The equations (4.10) are obtained by solving (4.8) for F'(S(z), g(z)) and G(S(z), g(x))
at X = T and g =1,.. Eq. (4.8) becomes

(4.12) TP (A(2)) = FP(A2) — [GP(A(x), A(x)],

where Fép)(A(CL‘)) is of the form

0
Fép)(A(l")) =% ’ + 24 i i + 241 i * + lower terms in z.
0 O 0 O 0 p



Here p € T (4.5), and Ggp)(A(:L“)) € Lie G, is of the form

0 9+ 16 R _
G (A(z)) = (6 i a o ”) (%, B, € C1,C, € M,_1(C)).
p

The matrix G((lp)(A(a:)) is determined as follows. In the LHS of (4.12), the (,1)-entries
(2<i<r)and (i,j)-entries (2 <i,j <r) are

(vgl,—1 —7) - hp ™1 4 lower order in z,

ﬁp . tiﬁd+1 .%'d + (Ep . (twd + atiﬁd+1) + [Jp,T]).%'d_l

+ lower order in z.
In the RHS of (4.12),the (i,1)-entries (2 < i <r) and (¢, j)-entries (2 <4,j <r) are
_Cpﬁxdil_i_ R

(v~ tip - [CpaT])fL‘d + (V- tﬁp + g2 - tﬁ)p - [CpaTd—l] + P)fdil +-

We obtain the equations (4.10) for (7, B_;,, Cp) by comparing the LHS and the RHS.
The solution to egs. (4.10) is unique since the first and second equations completely

determine C), and 7, and then the third equation completely determines the value of

By O
4.4. Examples. The case of » = 2: we have the space of representatives as
5o - Ly (@) v@
u(z)  t(x)
0 _ _
= Wa+1 1 4 vd x? + Va1 d-1 %71 + lower terms in x §.
0 O 0 0 1 0

For P € Vg, (r,d), the genus of the curve Cp is d—1. The isomorphism given in Proposition
4.9 becomes very simple: xp (k=1,--- ,d — 1) are the zeros of u(x) and y;, = t(z)). The

vector field on Sy (4.9) becomes

F{V(A(2)) =

. i aA(a) + u(a) (8 (z+a- ud_—jjwd—i—l + wd) , Az)].

Let V = {P(z,y) € V(2,d) | s1(z) = 0}. The restriction "1 (V) NSy — V of our system
Y|s., + Seo — V(2,d) coincides with the even Mumford system introduced by Fernandes

and Vanhaeche [4].
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The case of r = 3: this is a new system. S, is written as
v(z)  wP(z) w?(z)
e {A(@ @) 1O T02)
W) TEVE) TEA()
)@ 1 ,® (1) @)

Wgi1 Waiq Vg Wy d Vd-1 Wy 1 Wy 'y
=lo0 o0 0o |z +|0 o 0 |27+ ] 1 0 0 |az%!

(2,1) (2,2)

0 0 0 0 1 0 o T T2

+ lower terms in x}

For P € Vg, (r,d), the genus g of Cp is 3d — 2. The isomorphism given in Proposition

4.9 becomes as follows: xj are the zeros of D(A(z)) (4.2) and y (4.7) has two equivalent

descriptions:

u® ()T () — u® ()T (z)
u@(z)

The vector field on S is written as

F;p><A<m>>:[;aA<a>+(g K Bp) A)

uD ()T (z) — u® (2)TH2) (2)
or

Y = - e (x) .

o + "B, = W ((x+a— uEll—)Z) "1 + i)
2 2,1 1 2,2
(PwEh @+ TEY —ugy) + (T o WP wi TED)

§4 wd+1
@)
@ (v 0 @ 1 wgiy
C—hp <1 _Ud>+hp <—Ud w(1)
d+1

1
1(72)> are given at (4.11).
P
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