FLOP INVARIANCE OF THE TOPOLOGICAL VERTEX

YUKIKO KONISHI AND SATOSHI MINABE

ABSTRACT. We prove transformation formulae for generating functions of Gromov—
Witten invariants on general toric Calabi—Yau threefolds under flops. Our proof is based
on a combinatorial identity on the topological vertex and analysis of fans of toric Calabi-
Yau threefolds.

1. INTRODUCTION

Motivated by a conjecture [Mor, W] on quantum cohomology, Li and Ruan studied
the transformation of Gromov—Witten (GW) invariants of projective Calabi—Yau (CY)
threefolds under flops using symplectic approach [LR]. The algebro-geometric approach
was pursued in [LY]. The same problem for Donaldson-Thomas invariants was studied in
[HL], and this may be related since there is a conjecture that Donaldson-Thomas invariants
and GW invariants are related at the level of generating functions [MNOP1, MNOP2].

In this paper, we study the behavior of GW invariants of toric Calabi-Yau (TCY)
threefolds (which are noncompact) under a flop based on the method of the topological
vertex. It is a formalism which expresses the partition functions of GW invariants of
TCY threefolds in terms of symmetric functions [AKMV]. (In this paper, the partition
function of GW invariants means the exponential of the generating function.) Although its
original argument was based on the duality to the Chern-Simons theory, a mathematical
theory including a definition of GW invariants for TCY threefolds has been developed
later in [LLLZ] (see Remark 3.2). We remark that in [IK3], the case of some special TCY
threefolds was studied (see remark 4.5).

Let us explain the results of this paper. Let X be a TCY threefold containing a torus
invariant rational curve C' such that its normal bundle is isomorphic to Op1 (—1)®Op1(—1).
Let X be another TCY threefold obtained by flopping C. Identifying the expansion
parameters with respect to second homology classes, we can compare the partition function
of GW invariants of X and that of X*. We show that they are equal except for factors
coming from multiples of [C] and from multiples of the class [CT] of the flopped curve C'*
(Theorem 4.4). Since the difference between the two appears only at the local contributions
from neighborhoods of C' and C+, showing the equality of two partition functions reduces
to showing a combinatorial identity on skew Schur functions (Theorem 2.7). Then we

obtain the same result as [LR, LY] on the relation between GW invariants of X and
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those of XT. As an example, we consider the TCY threefold X containing two disjoint
P! x PVs and another related by a flop. We also show that the partition function of
X reproduces Nekrasov’s partition function of 4-dimensional SU(2) x SU(2) gauge theory
with a matter in the bifundamental representation (2, 2) [N] (Proposition 5.1). As another
application, we consider the canonical bundle Kg of a complete smooth toric surface S
and the canonical bundle K¢ of a blown-up surface S and show that GW invariants of K g
with certain second homology classes are equal to those of Kg (Proposition 6.1).

The organization of this paper is as follows. In §2, we prove a key combinatorial identity.
In §3, we give a definition of TCY threefolds used in this paper and review the method
to write down their partition functions. In §4, we study the transformations of partition
functions under a flop. In §5, we give an example and discuss the relationship with
Nekrasov’s partition function. In §6, we study GW invariants of the canonical bundles
of smooth toric surfaces related by a blowup. Combinatorial formulae are collected in

Appendix A.

Acknowledgement. The authors would like to thank the organizers of the workshop
“Symplectic varieties and related topics” held at Hokkaido University in November 2005.
This work has grown out from discussions there. They are grateful to Prof. H. Kanno for
useful discussions, comments and kindly providing them with his unpublished manuscript
[Ka]. The result of §2 is a generalization of his result. They also thank Y. Tachikawa for

discussions and comments. A part of §5 is based on discussions with him.

2. TOPOLOGICAL VERTEX UNDER FLOPS

2.1. Definitions. Let P be the set of partitions. For y = (u1 > pg > ---) € P, we define
two integers |u| and x(u) by

1) )
il = g wl) =l + > iy —24)
j=1 Jj=1

where [(u) is the number of nonzero components in .

We use the following definition of the topological vertex ([ORV]):

Definition 2.1.

def. 1 t
(1) O (@) S a3 s3,(07) 3 50,/ (@ )50, (07217)
neP

where s,,/,(¢" ") (resp. s5,(q”)) is the skew Schur function with the specialization of vari-
ables:

. i1
Su/u(wz‘ =q" HQ) (resp. su(zi =q HQ)) .



FLOP INVARIANCE OF THE TOPOLOGICAL VERTEX 3

Take four partitions Aj, Ag, A3, A4. These will be fixed throughout the rest of §2. We
define

(2) Zo(g,Qo) = > (=Qo)MC it (0)Crg ran(@)
neP

(3) Z§(@.Q0) = D (= MOy 0 (0)Cr o @) -
neP

We also set

(4) Z1,-1)(q,Q) = Hl—Qq

k=1
and
20, Qo) & Zo(q, Qo) Z3(q, 0F) Zi (q,Q7)

Z-1,-1)(¢, Qo) ’ Z(1,-1)(0,QF)
The goal of this section is to show an identity relating Z/(¢q, Qo) and ZOJr '(q, QH ) under
the identification QE]" =Qy ! (Theorem 2.7). Formulae necessary for proofs can be found

in Appendix A.

Remark 2.2. Let us mention the geometrical meaning of the above formal power series.
Z(~1,-1)(q, Qo) is the partition function of the TCY threefold Op1 (—1)®Op1 (1) (cf. §3.2,
see also [EK1, (C.18)] and [FP, Theorem 3]). Zy(q,Qo) and Z; (¢, Q) appear as local
contributions in the partition functions of TCY threefolds related by a flop such that both a
flopping curve and a flopped curve have normal bundles isomorphic to Op1(—1) & Op1(—1)

(see Figure 3).

2.2. Individual calculations. First, we compute Z|(q, Qo) and Zar '(q, Qg ) respectively.

Let us introduce the following functions:

= q unz—z_ _i ’

Z>1

fur(@) = (@ =2+ ¢ ) fu(@) (@) + fula) + fo(a)

and let Cy(u,v) be the expansion coefficients in the Laurent polynomial £, ,(q):

Fun@) = Cilp,v

kEZ

Proposition 2.3. We have

(q’ QO) >\2)+ H(A4)s)\1 (qP)SAS(qP) H(l - Q q )Ck >\17>\ )

(5) keZ
X Z(_QO)‘Tl‘SAE/Tt (q)\l'f'P, Qoq_)\3_p)sAi/T(qA3+pa Qoq_)\l —p) )
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Z§'(0,Q8) = sn (@) (@) [T (0 - Q5 ) )
(6) keZ
X Z(_Q(—)’—)|T‘S)\2/T(q>\g+p7 Q(—)i_qixiip)S)ul/Tt (quer’ Qa'qf)‘gfp) )

Proof. By definition (1) of the topological vertex, we have
1 t
Zo(0,Q0) = > _(=Qo)Mq2")s5 (¢)> " sy (@H) s 1 (01 F)

o T

02" 53, (¢7) S 8, (@) 50 e (4577)

T/
1 1
:QEH(AQHEK(A‘*)SM(qp)S,\s(qp)Z( Qo)™ SxtL/ (quer)SAg/T/(qAﬁp)
T,T"
D sy (— Qe )8, (577)
o

We perform the sum with respect to p by using (19):

Zo(q, Qo) = q2r0D+ a0 gy (qp)s (@)
H(l—Qthxt ZS t/ q3+P (T’ ( Qoq)\—l—p)
4,7>1
D (=Q0) Msxg (@ )55 7 (a777)
T,T"
2k ok hyt ¢ (2,7
= qé (>\2)+; (A4)S)\1(qp)s>\3(qp) H (1 _ Q(]q /\1,/\3( J))
i,7>1
Z ~Qo)" ‘ZSM/T M) 5000 (Qog )Y sae (05 (Qog M TP)

T/
Here for p,v € P,
By (i §) S i =i+ vy —j+ 1.
In passing to the second line, we have used (22). By using (20), we have
L hy
Zo(g, Qo) = gF" 0D E s, (), (@) TT (0= Qog™44")
7.7>1

Z( Qo)™ sxy /ot (7 Qg P)sye (1, Qog ™M)

T

Applying Lemma A.1, we obtain (5). One can also compute Z; (¢,Qf) in a similar
way. Il

The next corollary is a consequence of Proposition 2.3.

Corollary 2.4. Zg"(q, Qa’) is a polynomial in QS‘ of degree at most |\1|+|A2|+]|Ag|+]| A4
Moreover, if A\3 = Ay =0, Zg'(q,QF) is a polynomial in QF of degree |A1| + |Azl.

Similar statement also holds for Z{(q, Qo).
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Proof. The first statement follows if we apply (16) and (21) to the expression (6). To

prove the second statement, we show that the top term does not vanish. By (16), we have
H(l - Qé"qk)c’“(Aﬁ’@) = (—1)|>“q7%’“1 (Qb")p‘1| + (terms of lower degree in Q).
Substituting this into (6) with A3, A4 set to (), and using (21), we obtain the claim. O

2.3. Comparison. Next, we compare Z}(q, Qo) with Zg”(¢,Q¢) under the identification
QSL =Qq ! First we have the following

Lemma 2.5. Under the identification QaL = Qal, we have

(7) Z<_Q3)|T‘S}‘2/T(q>\%+p’ Qarintlip)s)m/Tt (quer’ Qarqi)\éip)

T

= (=Qu) P (= @0) g a4, Qg™ P )ong (0477, Qoa™ )

Proof. Under Qg =Qy 1 we have

(LHS) = > (=Qp "W sr, (@17, Q5 a1 7)sx,r (0¥, Q5 g ¥577)

T

= Z(_Qal)h‘(_1)|>\2‘+|>\4|5)\5/7't (qi)\gipa Qalquer)S)\fl/T(qi)\lipa Qalq)\ngp) )

T

_ _ _ _\t_ )\t _
_ Z(_QO) [A2|+|7] |>\4|+\T|(_QO1)|T\S>\§/Tt(q)\1+p’Q0q AL p)sAZ/T(qA3+0’Q0q A p)

T

= (RHS) .

Note that we have used the property (22) in the second line and the homogeneity (21) of

skew Schur functions in the third line. O
The next lemma was proven in [IK3, eq.(45)].

Lemma 2.6. The following identity holds:

H( Q 1 k)()k()\l,)\3 :( QO) ‘)\1|—‘)\3| K(A1)+3 K()\g H Ck )\1)\3)

k k

Proof. By (17), we have

H( Q 1 k‘)Ck )\1)\3) _ H(l_Q 1 —k:)Ck(Atl,A;tg)

k k

_ Qa%wmg\) ~ L (s(A) (ML) H(

k

q

to\?r
l\)

omH

. k>ck(xf AL)
2 .
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On the other hand, we have

Cr(A1A3)
L +Ix _1 1 k(AL
H(l_Qoqk)ck(Ag,Ag) _ QS(I 1|+ 3|)% (A8)+r( At)H< 24 -5 _ Q02q§>
k k
Cr(AE L)
= (c)Palel e MR 3 (sxD)+404)) H( Qidb -0 %q"§> o

k

By comparing the above two equations and by using a symmetry (15) of a s-factor, we

get the claim. O

The following is the main result in this section. (The case of A\; = Ay = () was proved

in [Ka].)
Theorem 2.7. Under the identification Qar = Qal, we have

Za_/(qug) — (_QO)*(P\l|+\>\2|+\>\3|+\>\4|)q%(f’v()\l)*H(/\2)+H()\3)*H()\4))Z(/](q, Qo) -

Proof. This follows from Proposition 2.3 and Lemmas 2.5 and 2.6. O

3. Toric CALABI-YAU THREEFOLDS AND PARTITION FUNCTIONS

In this section, we give definitions of toric Calabi—Yau threefolds and their partition

functions. Our reference is [Ko].
3.1. Toric Calabi—Yau threefolds.

Definition 3.1. A toric Calabi-Yau (TCY) threefold is a three-dimensional smooth toric
variety X over C associated with a fan ¥ satisfying following conditions:
(i) the primitive generator & of every 1-cone satisfies & - & = 1 where @ = (0,0, 1);
(ii) all maximal cones are three dimensional;

(iii) |X|N{z = 1} is simply connected where |X| = U o C R? is the support of ¥ and
o€eY
z is the third coordinate of R3.

The condition (i) is equivalent to the condition that A3T*X is trivial (Calabi-Yau
condition) and the condition (ii) implies that 71(X) = 0. The condition (iii) is imposed
for simplicity of arguments.

We briefly describe necessary facts on (co)homology of TCY threefolds. Recall that
the subset 3, C ¥ of n-cones is in one-to-one correspondence with the set of (3 — n)-
dimensional torus invariant subvarieties in X. Let 31 = {p1,..., p,} be the set of 1-cones.
Denote by ; (1 < i < r) the primitive lattice vector generating p; and by D, C X
(1 <4 < r) the torus invariant Weil divisor corresponding to p;. The group As(X) of

all Weil divisors modulo rational equivalence is generated by D,,,..., D, with rational
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T
equivalence given by ZAijDPJ =0 (i = 1,2,3) ([F], the first proposition in §3.4) where
j=1
A = (A;j) is the 3 x r matrix

A= (Gr,...,&).
Let XY be the set of 2-cones which lie in the interior of |X|:

¥, ={r eS|t C|Z]\9IZ|}.

It is in one-to-one correspondence with the set of torus invariant (hence rational) curves in
X. Let us write 4 = {71,...,7p} and let C;; C X denote the rational curve corresponding
to 7;. We define N (X) to be the set of 2-cycles generated by Cy,, ... , C7, modulo numer-
ical equivalence. Note that by the intersection pairing A2(X) x N{(X) — Z, A2(X) ® R
and N{(X) ® R become dual to each other.

Now let us explain the calculation of the intersection numbers and numerical equiva-
lence. If p; and 7; spans a 3-cone, D,..Cr, =1 and if p; and 7; do not span a cone in the
fan, D,,.Cr, = 0 ([F],85,1 p.98). If two 1-cones, say p1, pa, are contained in 7, then D,,.C,
and D,,.C, are obtained via rational equivalence relations of D, ’s. For convenience, we

introduce the following injective map

(8) Ix NI (X) = {leZ"|Al=0}=La, Z+ (Dp.Z,...,D,,.2).

Then D,,.C,, and D,,.C;, are obtained by solving the equation A.lx([C,]) = 0. (Hence
they satisfy the relation D,,.C;, + D,,.C;, = —2.) The numerical equivalence can be read
from linear relations between the vectors Ix([Cr]),...,Ix([Cr,]).

By the analysis of the gluing of local coordinate systems around C,, we see that its nor-
mal bundle is isomorphic to Op1(D,,.Cr,) ® Op1(D,,.Cr,). We will use a term a (-1, —1)-

curve for a torus invariant curve with the normal bundle isomorphic to Op1 (—1)®Op1 (—1).

3.2. Partition functions. Let X be a TCY threefold and ¥ be its fan. We briefly review
how to write down the partition function of X.
First, consider the following directed graph I'x (called a toric graph) with labels on

edges of a certain type. The vertex set is

V(I'x) = V3(I'x)UVi(I'x), V3(Ux) = {ve]o € Z3(X)}, Vi(T'x) = {vr|7 € Ta(X)\E5(X)}.
The edge set is

E('x) = E3(Px)UEL(Tx), E3(Tx) = {e;|7 € E5(X)}, E1(I'x) = {er|7 € Ba(X)\E5(X)}

An edge e, € E3(T'x) joins vy,v, € V3(T) iff 7 = 0N o’ (see Figure 1) and an edge
er € F1(T) joins v, € V3(I'x) and v, € Vi(I'x) iff o is a unique 3-cone such that 7 is a

face of 0. (Note that a vertex in V3(I'x) is trivalent and a vertex in V;(I'x) is univalent.)
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FIGURE 2. XU

The direction of edges can be taken arbitrarily. The label n : E3(I') — Z, called the
framing, is given as follows:
D, .C; —-D,,.C;
5 )
where 7 € ¥/, and p1, p2 € X1 are as shown in Figure 1. Note that I'x is connected by the

n(e;) =

condition (iii) in Definition 3.1

Secondly, we write down the partition function from I'x. Let
P(Cx) = {X: E3(T) — P}.

Take the set of formal variables @ = (Qe)ecEs(ry) associated to E3(I'y). Then the parti-

tion function of X is a formal power series in @ given by

© - 3L ety HoQen T ¢,

XeP(T) e€E3 (I veVs(D)
Here C5 (g) is the topological vertex defined in (1) and Xo (v € Va(I), X € P(I")) is as in
Figure 2 (for e € E(I'x) \ E3(I'x), set A(e) to §)). We remark that the partition function
does not depend on the directions of edges since the framing changes the sign if one gives
the opposite direction to an edge e € F3(I'x) and it is compensated by (15) and the

summation.

Remark 3.2. Precisely speaking, the partition function obtained in [LLLZ] has the ex-
pression almost same as (9) except that C'; (g) is replaced by WXU (q). Here Wi, a5 ()
is a rational function in q% similar to Ci, ,.1;(¢) but has a slightly different expression.
It is conjectured that V~V)\17>\27>\3(q) = C) 005 (q) [LLLZ, Conjecture 8.3]. Here we use

C, 20,05 (q) assuming that the conjecture is true.
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T T T
p3 2__p P3 2 po P3 2 po
Jr
g g
T3 Llm Bl 6 | sl 2/ |
g g
p4 22 p1 P4 p1 P4 1 p
T4 T4 T4

FIGURE 3. Fans (sections at z = 1): ¥ (left), £ (middle) and XT (right).

The generators &1, ..., of p1, ..., ps satisfy the relation i +ds = do+dy.

The Gromov-Witten invariant N, 3(X) of X with the genus g and the second homology
class 3 € H5"(X,7) (see [LLLZ] for a definition) is obtained as follows:
(10) D o Ngp(X)g 2= DT FfeV'),

920 J‘:(de)§€E3(FX)7
dIC1=I9]
where [C] = ([Ce))ecrs(ry) and Ce C X is the rational curve corresponding to e. F{q) is
the coefficient of éd = H foe in log Zx(q, Q)
e€FE3(T'x)

4. TRANSFORMATIONS OF PARTITION FUNCTIONS UNDER FLOP

In this section, we study the transformation of the partition function of TCY threefolds
under a flop.

Let X be a TCY threefold and let 3 be its fan. Assume that X contains at least one
(=1, —1)-curve Cy. Denote the corresponding 2-cone by 9. Near 79, the fan looks like the

left diagram in Figure 3. We set

5=\ {rn,01,02}) U{oo}, Xt =(Z\{r0,01,02}) U{rg, 01,05}

where To,al,ag,ao,Tgr af,a; are cones shown in Figure 3. Let Y be the singular toric

variety associated with the fan 3 and X T be the TCY threefold associated with the fan
¥+, Then associated to the evident maps ¥ — ¥ and ¥ — %, there are the following

birational maps:

N\ o
Y

The map f is a small contraction with the exceptional set Cy and ¢ is a flop of f.

Remark 4.1. Since ¥ and ¥ have the same set of 1-cones, there is a canonical isomorphism
As(X) = Ax(X™T) induced by ¢. In turn, this induces an isomorphism ¢, : N{ (X) @ R —
N{(X+) ®R via the duality between As(-) ® R and N{ (-) ® R where - = X, X .

From here on, we proceeds assuming that 71,...,74 € Xf. Other cases can be recovered
by setting to zero the formal variables associated to any of 71,...,74 which are not in 3.

We use the notations shown in Table 1.
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X Xt
+
2-cone TOy T1y---5T4 T To » Ty -+ T4 T
+ ot +
curve | Cy,Cq,...,Cy C Cy.Cf,....C Cr
edge €p,€1,---,€4 €y orjuste e[{,ef,...,ej er or just e
: + O +
variable QOana"'7Q4 Qe QOan 7"'7Q4 Qe
TABLE 1.

FIGURE 4. Toric graphs I'x (left) and I'x+ (right).

Lemma 4.2. Under the flop ¢ : X —-» X, the curve classes transform as follows.

¢:[Col = ~[C7], &[Gl =[CI1+[C)],  ¢uCr]=[CF] (7 € B(X)\{r0, ..., 7a}).

Proof. The first statement follows from I x([Co]) = —lx+([Cq]) by remark 4.1. The proof

of the other two is similar. O

Let I'x be a toric graph of X. Near the edge ey, the graph looks like the left diagram
in Figure 4. Under the flop ¢, the toric diagram (and the framings) changes as follows.

Lemma 4.3. A graph obtained from I'x by replacing the left diagram in Figure 4 with
the right is a toric graph of X .

We associate the same formal variables G = (Q.) to edges in E3(I'x) \ {eo,...,es}
and those in E3(T'x+) \ {eg,...,e;} and write the partition functions of X and X+ as

Zx(q,@,Qo, Q1,Q2,Q3,Qu) and Zx+(¢,G,Qf, QT QF, Q5 , Q) respectively. Tt is imme-
diate to check that
ZX(Qa 67 QOa 0,0,0, 0) = Z(—l,—l) (Q7 QO),

(11) )
Zx+ (q’ 0, QS_a 0,0,0, 0) = Z(fl,fl) (Q7 QE]’—)
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We set

d;f. ZX(Q7 éa QOa Qla Q2a Q3? Q4)
ZX(q, 6, QO, 07 07 07 O)
d;f. ZX+(q,Q,an faQ;’QQJ{aQI)
ZX+(q,6, Qara O’ana 0)

Z4(4,G, Qo, Q1,Q2,Q3,Qu)

)

;(-F(QaQ’,Q(—)FaQT’Q;,Q;aQI)

Now we will compare these. To do so, we should identify the formal variables so that

the identification is compatible with Lemma 4.2:

Qo= Q)" Qi =Qf Q7.

Theorem 4.4. (i) The coefficients of @JQgOQ?I .. Qg‘* in Z'(q, Q, Qo,Q1,Q2,Q3,Q4)
is zero if dy > di + do + d3 + dy. A similar result holds for X .
(ii) Under the identification Qo = (Q¢ )L, Qi = Qf Q;", we have

7’
ZS((Q? Qa QOa Ql’ QQ’ Q3’ Q4) = ;(+ (Q7 Q’ QS_a Qi—’ Q;’ Qg_a QI) .
(This is an equality between two formal power series in Cj, QH, e I)

Remark 4.5. In [IK3, §4.1], Igbal and Kashani—Poor studied the special case such that
the 2-cones 9,74 ¢ XS and the curves Cy,C3 have normal bundles Opi(—1) & Op(—1)
or Opi(—2) @ Op1(0). They obtained the result of Lemma 4.2 and proved the second

statement of Theorem 4.4 in that case.

Proof. (i) follows from the first statement of Corollary 2.4.
(ii) Let

P'(Tx) ={7: E3('x) \ {eo} — P}

and define 7, € P? for 7 € P'(Ix) and v € V3(I'x)\ {v1,v2} in the same way as X, (Figure
2). After (9), ZX(q,Q, Qo, Q1,Q2,Q3,Q4) is written as follows:

Zx(¢,@,Q0,Q1,Q2,Q3,Q4)

= Z H (_1)(n(6)+1)|ﬁ(6)|Q\eﬁ(e)l H Cy,(q)

veP'(T'x) eEE3(Fx)\{eo,...,e4} vEVg(Fx)\{’Ul,’Ug}

4
% H(_l)(n(ei)‘Fl)h/(ei)‘Qiy(ei)‘ Z Cﬁ(el)ﬁ(ez),;ﬁ(Q)Cﬁ(ea),ﬁ(m),u(Q)(_QO)M )
=1 neP

(a)
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Similarly, Zx+(q, Q, Qa’, Q7,Q7, Qé", Q) is written as follows:
Zx+(4,Q,Q5, Q. Q3 Q1. Q)

= Z H (_1)(n(6)+1)|ﬁ(6)|Q\eﬁ(e)l H Cy,(q)

EP (T x+) e E3(D 4 )\{ed s et vEV3 (T 4+ )\{v w3}

XH PO QNS Cpt ey (@ Cey ey (@~ QW

neP

(0)

Here
P'(Tx+) ={7: E3(Tx+) \ {eg } — P}

and for 7 € P'(T'x+) and v € V3(T'x+) \ {v],v5 }, #, € P3 is defined in the same way.

Since I'y and I'x+ are identical outside the diagrams described in Figure 4, E3(I'x) \
{eo,...,ea} = E3(Tx+) \ {eg,-- eq ), Va(Tx) \ {vr,v2} = Va(Tx+) \ {vi", 05 } and we
have a natural bijection p : P/(I'x) — P'(I'x+) such that p(¥) = 7t iff J(e) = v"(e) for
all e € E3(T'x) \ {eo,...,e4} and D(e;) = U (e}) for 1 < i < 4. Under this identification,
we could see that the two partition functions have the same expressions except for the

factors (a) and (b). Taking into account the change in framings, we have

(@) _ (b)

Z 1 _1(q,Q0) - +
(-1,-1)(q, Qo) Qom(QF )L Qi=0t O Z—1,-1y(q,Qyq)

by Theorem 2.7. U

We finish this subsection by restating Theorem 4.4 in terms of GW invariants. (Compare
with [LR, Corollary A.1] and [LY, Theorem 3.1.1].)

Corollary 4.6. For € H'(X,Z) such that 3 is not a multiple of [C],

Ng,m(ﬁ) (X+) = Ng,ﬁ(X)-

Moreover,

Ny aico)(X) = Ny o (XT) = Ny e} (Op1 (=1) & O (—1)).

Proof. Theorem 4.4 implies that log Zx (g, Q.Qo, . .. ,Q4) and log Zx+(q, Q, Qf,...,QN

are written in the following form:

9 5dd d
log Zx(¢:Q, Qoo Q1) =3 > F o i s D@ QG - Q1

d do,..,da>0,
di+++da>do

. =d di+-+ds—d d d
IOgZS(vL(QaQaQE)’—a---»QI) = Z Z F£d07d1,d2,d37d4(Q)Q (QE)’—) 1 O(Qi—) ! (QI) !
d do,...,da>0,
di+++da>do

Comparing with (10), we obtain the first statement. The second statement follows from

(11). O
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5. EXAMPLE AND GEOMETRIC ENGINEERING

In this section, we first give an example of §4. Then we will discuss its relation with
Nekrasov’s partition function [N] along the same lines with [IK1, IK2, EK1, EK2, Z].

Let X and X' be the TCY threefolds associated with the left and right toric graphs
in Figure 5, respectively. X contains two copies of P! x P! disjoint to each other and X+
is obtained by a flop of a unique (—1,—1)-curve in X. In this example, formal variables
should be assigned as in Figure 5: the five variables for X are independent and the nine
variables for X have the four relations Qp, = QEQJ (i = 1,2) and Qp, = QEZ,QE)F
(i = 1,2). The variables of X and X should be identified by QH = Qo_l and QF,, @B, of
Xt =Qp,Qp, of X.

Let us compute the partition function Zx of X (we omit the variables). By Proposition

2.3, we have

2
h (1,7 —2
Zx= > ]I (QBk)‘“’f‘+|“l5|8izf(q”)Si§(q”) 11 <1 Qg ( J))

pl ol 3 k=1 hizl
A 1 1 2\t 2\t
D (=Q) sxi (@21, Qr g tP) sx (¥R, Qg )
)

We can perform the sum in the last factor by (19):

D (=Qo)Msn (¢, Qr gM1T) A (q¥D) H, QgD FP)
)

_ H <1 _ Qoqhuéy(#%)t(iyj)) (1 _ QOQFIqh#%M%)t(Z‘,j»

3,j>1
h » N -
(1 - QoQrq H%’(H%)t(w)) (1 — QoQrQrq ”{’(H%)t(%]))

Therefore Theorem 4.4 implies that the partition function Zy+ is obtained from Zx by

replacing
H (1 B Qoqh“i"“g)t(i’j)) . H (1 B (Qar)_lqk>0k(u%7(u§)t) H (1 B Q(J{qk>k,
i,j>1 k E>1

and replacing Qo in other factors by (Qg ).

From the discussions in [KMV, §2.1], it seems natural to expect that the partition
function of X reproduces Nekrasov’s partition function for a gauge theory with a product
gauge group and with a matter. We want to clarify this statement. Let us set

Z}?St — ZX
ZX|QBl =Qp,=0 -

Then, by the same method with [EK1, Z], we can show the following

Proposition 5.1. Let

“2Rh 4R 4R 2R -
qg=ce , Qp =t Qp =t Qy = 2filarterm)
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Then we have

Qg >|le|+u'2“ 2 sinh R (al(s) +h <,quZ - ,ugj +7- z))

2
Zinst — ( k
X Z l];ll 24QFk In=114,j>1 Sil’lhR (al(z) + h (] — Z))

pd b 2

1 1
w2 ()R (uh)—r(ud) = (3)) (22Qq) il szl lisd |13 Q2 )2l [+ s Q2 Yl tlal+2u]
1 2

2 sinh R (0l +m+h(j— i)
H < |

pnm igz1 sinh R (aly® bom (il — 2 45— 1))

)

where
o =alf) =0, o) = —alf) =20,
and
a§11,2) =a1tas, ag11,2) = —a1 + a2, a§12’2) =a1 —as, a§12’2) = —a; —a .

By Proposition 5.1, it is easy to see that the R — 0 limit of

Zinst AR
X lg=e=2Bh, Qp, =22A, Qp, =e %, Qo=e?fi(a1taz—m)

is equal to the instanton part of Nekrasov’s partition function of 4-dimensional SU(2) x
SU(2) gauge theory with a matter in the bifundamental representation (2,2) [N, (66)].
(See also [FMP, HIV, MO, S] for related works.)

Remark 5.2. It is immediate to see that Zf = Zx+/(Zx+|Qp,=Qp,=0) also coincides
with the same Nekrasov’s partition function with a similar variable identification in the
limit R — 0. More generally, Theorem 4.4 may imply that if TCY threefolds X and X T
are related by flops with respect to (—1, —1)-curves and if the partition function of X
reproduces Nekrasov’s partition function for a gauge theory, then the partition function

of X also reproduces it. (This statement itself seems to be well-known to specialists.)

6. APPLICATION TO TORIC SURFACE AND ITS BLOWUP

As an application, we compare GW invariants of the canonical bundle of a complete
smooth toric surface and those of the canonical bundle of a blown-up surface. Some
relevant numerical data can be found in [CKYZ].

Let S be a complete smooth toric surface (see [F, §2.5]) and S its blowup at a torus
fixed point. The exceptional curve of 9 : S — S is denoted by E. Let X be the total
space of the canonical bundle Kg of S and X=K g+ These are TCY threefolds and F is
a (—1,—1)-curve in Kg.
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@B,
> QBQ
—1 >
04 Q+ -1
_ _ F:
QFQ A 1 1" QFQ 0=Jr 2 _1" QF2
—1 QBI 3 0 Qt
QBl 0 < QO :Bz
- Qo @B Qrt—1 0
> 0 +
—1 1 QF1"O
QFl 41 _1" QFI QBl
‘—1
QBl

FIGURE 5. TCY threefold which contains two disjoint P! x P! connected

by a (—1,—1)-curve (left) and its flop (right).

T T T
p3 2 __p2 p3 2 __p P3 2 __ P2
Ty 73 91 |7y | 2/ |n
70 70 70..
o o
p1 palZ2 p1 P4 L py
4 4

FIGURE 6. Fans (sections at z = 1): % (left), & (middle) and 3 (right).

The generators &y, ..., of p1, ..., ps satisfy the relation i +ds = do+dy.

Since all torus invariant curves in X are contained in .S C X, there is a canonical map

N{(X) — Ho(S,Z). In fact, the following maps p, p are isomorphisms:

(12) p: Hy(S,R) = NI(X)®@R,  p:Hy(S,R) = NI(X)®R.

Proposition 6.1. (i) For B € Ho(S,7) such that 3 is not an multiple of [E] and
satisfying 6.E < 0,
Nyj(s)(X) =0
(ii) For € Hy(S,Z) such that 3.E =0,
Ng,p3)(X) = N p(y. (8 (X) -
(iii) For a multiple of [E],
Ny 4 (X) = Ny gp1(Op1 (—1) © Opa (—1)).

Proof. Let X be the TCY threefold obtained from X by flopping the curve E. Let X, %, by
be fans of X, X, X, and let 7, be the 2-cone in & representing E. Then near 7y, 3 looks
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like the right diagram in Figure 6 and 3, 3 are like the left and the middle diagrams.
v ¥, 3 are identical outside these parts.

A natural inclusion ¥ < ¥ induces the isomorphism
a:NY(X) = {ZeN(X)|2D,, =0},

where p4 is the 1-cone in ¥ shown in Figure 6. Composed with the isomorphism ¢, :
NT(X)®R — NT(X) ® R induced from the flop ¢ : X --» X,

(13) p.oa: NI(X)®R - {Z e NI(X)®R|Z.D,, =0},

where py4 is the 1-cone in > shown in Figure 6. By calculating intersection numbers, we
see that the RHS is spanned by (recall E = C3,)

(Bl +[Crn),  [E]+[Crl, (O] (7€355\ {m,m}).
Under the isomorphisms (12), the inverse of the isomorphism (13) becomes
(14) Yy - {B € Hy(S,R) | B.E = 0} = Hy(S,R).

By applying Theorem 4.4 to X and X, we obtain (i). The statement (iii) follows from
the second statement of Corollary 4.6. The first statement of Corollary 4.6, together with

the following, implies (ii):
Ngp(X) = Nya@)(X) (B € N[ (X)),

by the construction of partition function (9). O

APPENDIX A. COMBINATORIAL FORMULAE

We collect some combinatorial formulae which are used in this paper. Our basic refer-
ences are [Mac, EK1, ORV, Z].

k(p) is always even and

(15) r(p') = —k(p)

where u! denotes the conjugate partition (the partition corresponding to the transposed
Young diagram of u).

Ck(p,v) are nonnegative integers which are nonzero for finitely many values of k [Z,
Theorem 5.1], and have the following properties ([EK1, §3.1], [Z, §5.3]):

(16) S Culuw) =l 1 S RCk (1) = S(s() + £W)
k k

(17) Ck(:ual/) = C—k(:utayt) :

The following lemma is proved in [EK1, Lemma in §C], [Z, Proposition 6.1]:
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Lemma A.1. For pu,v € P, the following identity holds:

IT (1- @) = zC1 @[] (1 - qu)ck(u,u).

ij>1 k

Here are some properties of skew Schur function. Let z = (z1,z2,...) and y =

(Y1, 42, -

.) be sets of variables and (x,y) = (z1,22,...,Y1,¥2,...). The following for-

mulae are useful in performing the summations over partitions ([Mac, p.93,(5.10)]):

(18)

(19)

(20)

Y s @@ = IO =)™ sau(@)sa ) |

AEP 6,5 >1 HEP
Z Sx/a (T)sae/n, (¥) = H (1 + ziy;) Z S)\é/,u,(x)s)\’i/pt ) ,
\EP ij>1 HEP

Z Su/ﬁ(x)sg/u(y) = S,u/u(x,y) :

£epP

Other properties are ([Z, Proposition 4.1)):

(21)

S;L/V(Qx) - Q‘Mih’lsu/l/(m’) )

where Qz = (Qz1, Qxa,...).

(22)

[AKMV]
[CKYZ]
[EK1]
[EK2]
[FP]
[FMP]
(F]
[HIV]
[HL]
[1K1]

[TK2]
[TK3]

t

).

SA/u(qVer) = (_1)‘)\|7M8>\t/ut (qu
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