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��������� In this paper, we study the pro-Σ anabelian geometry of hyperbolic
curves, where Σ is a nonempty set of prime numbers, over Galois groups of “solv-

ably closed extensions” of number fields — i.e., infinite extensions of number fields

which have no nontrivial abelian extensions. The main results of this paper are, in
essence, immediate corollaries of the following three ingredients: (a) classical results

concerning the structure of Galois groups of number fields; (b) an anabelian result of
Uchida concerning Galois groups of solvably closed extensions of number fields; (c) a

previous result of the author concerning the pro-Σ anabelian geometry of hyperbolic

curves over nonarchimedean local fields.
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Introduction

In this paper, we study various properties of solvably closed Galois groups of
number fields, i.e., Galois groups of field extensions of number fields that admit no
nontrivial abelian field extensions [cf. Definition 1.1, (i)]. In §1, we show that such
Galois groups satisfy many of the properties of absolute Galois groups of number
fields that are of importance in the context of anabelian geometry. In particular, this
includes properties concerning Galois cohomology, center-free-ness, decomposition
groups of valuations, and topologically finitely generated closed normal subgroups.
In §2, after reviewing a fundamental result of Uchida [cf. [Uchida]] to the effect that
solvably closed Galois groups of number fields are anabelian, we apply the various
results obtained in §1 to give a new version of the main result of [Mzk2] concerning
the pro-Σ anabelian geometry of hyperbolic curves, where Σ is a nonempty set of
prime numbers, in the context of solvably closed Galois groups of number fields.
Finally, in §3, we observe that “relatively small” solvably closed Galois groups
of number fields exist in “substantial abundance”. For instance, in the case of
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punctured elliptic curves, it is possible in many instances to obtain solvably closed
Galois groups of number fields that are, on the one hand, “large enough” to be
compatible with the outer action on the pro-Σ geometric fundamental group of the
punctured elliptic curve, but, on the other hand, “small enough” to be linearly
disjoint from various field extensions arising from the l-torsion points of the elliptic
curve, for a prime number l /∈ Σ.
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Section 1: Basic Properties

We begin by defining the notion of a solvably closed Galois group of a number
field and showing that such Galois groups satisfy many properties that are well-
known in the case of absolute Galois groups of number fields.

Let F be a number field [i.e., a finite extension of the field of rational numbers],
F an algebraic closure of F , and F̃ ⊆ F a [not necessarily finite!] Galois extension
of F . Write GF

def= Gal(F/F ), QF
def= Gal(F̃ /F ). Thus, one may think of QF as a

quotient GF � QF of GF .

Definition 1.1.

(i) We shall say that a field is solvably closed if it has no nontrivial abelian
extensions. If F̃ is solvably closed, then we shall say that F̃ /F is a solvably closed
extension and refer to QF as a solvably closed Galois group of the number field F .

(ii) If G is any profinite group, and p is a prime number, then we shall write

cdp(G)

for the smallest positive integer i such that Hj(G, A) = 0 for all continuous p-
torsion G-modules A and all j > i, if such an integer i exists; if such an integer i

does not exist, then we set cdp(G) def= ∞ [cf. [NSW], Definition 3.3.1].

Remark 1.1.1. Observe that the Galois group QF is solvably closed if and only
if, for any open subgroup HQ ⊆ QF , whose inverse image in GF we denote by
HG ⊆ GF , the surjection induced on maximal pro-solvable quotients

Hsol
G � Hsol

Q

by the quotient morphism HG � HQ is an isomorphism.
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Remark 1.1.2. Thus, if we denote by F̃ sol ⊆ F the maximal solvable [Galois]
extension of F̃ , then one verifies immediately that Gal(F̃ sol/F ) is a solvably closed
Galois group of the number field F . In particular, [by taking F̃ = F , it follows
that] the maximal pro-solvable quotient Gsol

F of GF is a solvably closed Galois group
of the number field F .

Remark 1.1.3. One verifies immediately that any open subgroup of a solvably
closed Galois group of a number field is again a solvably closed Galois group of a
number field.

Proposition 1.2. (Galois Cohomology of Solvably Closed Galois Groups)
Suppose that QF is a solvably closed Galois group of the number field F . Then:

(i) The natural surjection GF � QF induces an isomorphism

Hi(QF , A) ∼→ Hi(GF , A)

for all continuous torsion QF -modules A and all integers i ≥ 0. In particular, if F
contains a square root of −1, then cdp(QF ) = 2 for all prime numbers p.

(ii) Let p be a prime number; suppose that F contains a primitive p-th
root of unity. Then for any automorphism σ of the field F̃ that preserves and
acts nontrivially on F ⊆ F̃ , the automorphism induced by σ of the set of one-
dimensional Fp-subspaces of the Fp-vector space

H2(QF , Fp)

is nontrivial.

Proof. First, we consider assertion (i). Write JF
def= Ker(GF � QF ). To show the

desired isomorphism, it follows immediately from the Leray-Serre spectral sequence
associated to the extension 1 → JF → GF → QF → 1 that it suffices to show that
Hi(JF , A) = 0 for all i ≥ 1. Since

Hi(JF , A) ∼= lim−→
JF ⊆H⊆GF

Hi(H, A)

[where H ranges over the open subgroups of GF containing JF ], we thus conclude
the desired vanishing as follows: If i ≥ 3, then the fact that Hi(H, A) = 0 follows
from the fact that cdp(H) ≤ 2, for H sufficiently small [i.e., H that correspond to
totally imaginary extensions of F — cf. [NSW], Proposition 8.3.17]. If i = 2, then
we recall that by the well-known “Hasse Principle for central simple algebras” [cf.,
e.g., [NSW], Corollary 8.1.16; the discussion of [NSW], §7.1], it follows that we have
an exact sequence

0 → H2(GF , Fp(1)) →
⊕

v

H2(Gv, Fp(1)) → Fp → 0
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where the “(1)” denotes a “Tate twist”; v ranges over the valuations of F ; Gv

denotes the decomposition group of v in GF , which is well-defined up to conjugation;
and we recall in passing that the restriction to the various direct summands of the
map to Fp induces an isomorphism H2(Gv, Fp(1)) ∼= Fp for all nonarchimedean v.
Thus, by applying the analogue for H of this exact sequence for GF , together with
the Grunwald-Wang Theorem [which assures the existence of global abelian field
extensions with prescribed behavior at a finite number of valuations — cf., e.g.,
[NSW], Corollary 9.2.3], we conclude immediately that lim−→H H2(H, A) = 0. When
i = 1, the fact that lim−→H H1(H, A) follows formally from the definition of a “solvably
closed” Galois group [cf. Definition 1.1, (i)]. Now the statement concerning cdp(QF )
follows immediately from the isomorphism just verified, together with the fact that,
if F contains a square root of −1 [hence is totally imaginary], then cdp(GF ) =
2 [cf. [NSW], Proposition 8.3.17; the exact sequence just discussed concerning
H2(GF , Fp(1))]. This completes the proof of assertion (i).

Finally, we observe that assertion (ii) follows immediately from the exact se-
quence just discussed concerning

H2(GF , Fp(1)) ∼= H2(QF , Fp(1)) ∼= H2(QF , Fp)

[cf. assertion (i); our assumption that F contains a primitive p-th root of unity],
together with Tchebotarev’s density theorem [cf., e.g., [Lang], Chapter VIII, §4,
Theorem 10], which implies that if we write F0 ⊆ F for the subfield fixed by σ,
then there exist two distinct nonarchimedean valuations v1, v2 of F0 that split
completely in F . That is to say, if w1, w2 are valuations of F lying over v1, v2,
respectively, then there exists an element h ∈ H2(QF , Fp) ∼= H2(GF , Fp(1)) [where
we note that this isomorphism is compatible with the natural actions by σ, up to
multiplication by an element of F×

p ] which maps to a nonzero element of the direct
sum in the above sequence whose unique nonzero components are the components
labeled by v1, v2; thus, σ(Fp · h) 	= Fp · h, as desired. ©

Before proceeding, we recall that a profinite group Δ is slim if every open
subgroup of Δ has trivial centralizer in Δ [cf. [Mzk1], Definition 0.1, (i)].

Corollary 1.3. (Slimness) Every solvably closed Galois group of a number
field is slim.

Proof. Suppose that QF is solvably closed. Let HQ ⊆ QF be an open subgroup,
σ ∈ QF an element of the centralizer of HQ. Write FH ⊆ F̃ for the extension of F
defined by HQ. Since QF is solvably closed, by taking HQ to be sufficiently small,
we may assume that FH contains a p-th root of unity, for some prime number p.
Note that since σ commutes with HQ, it follows that σ acts trivially on H2(HQ, Fp).
Thus, by applying Proposition 1.2, (ii), to the action of σ on F̃ /FH , we conclude
that σ acts trivially on FH , i.e., that σ ∈ HQ. On the other hand, since HQ may
be taken to be arbitrarily small, it thus follows that σ = 1, as desired. ©
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The next two results, concerning decomposition groups and topologically finitely
generated closed normal subgroups, respectively, are well-known in the case of ab-
solute Galois groups [cf., e.g., [NSW], Corollary 12.1.3; [FJ], Proposition 16.11.6].

Proposition 1.4. (Decomposition Groups) Suppose that QF is a solvably
closed Galois group of the number field F . Let v, w be valuations of F such
that v 	= w; write Gv, Gw ⊆ QF for the corresponding decomposition groups
[which are well-defined up to conjugation] in QF and Fv, Fw for the corresponding
completions of F . Then:

(i) Suppose that F contains a square root of −1, and that v, w are nonar-
chimedean; let K be a finite extension of Fv. Then there exists a finite Galois
extension of F contained in F̃ whose restriction to Fv contains K and whose re-
striction to Fw is the trivial extension.

(ii) Suppose that v, w are archimedean; let K be a nontrivial finite extension
of Fv. Then there exists a quadratic extension of F contained in F̃ whose restriction
to Fv contains K and whose restriction to Fw is the trivial extension.

(iii) The surjection GF � QF induces an isomorphism of Gv with the de-
composition group of v in GF . In particular, if v is nonarchimedean, then Gv is
slim and torsion-free.

(iv) Gv

⋂
Gw = {1}.

(v) Suppose that v is archimedean (respectively, nonarchimedean). Then
the normalizer (respectively, commensurator) of Gv in QF is equal to Gv.

Proof. First, we consider assertion (i). Since the absolute Galois group of Fv is
pro-solvable [cf., e.g., [NSW], Chapter VII, §5], we may assume, by recursion, that
K is an abelian extension of Fv. Since, moreover, F contains a square root of −1, it
follows that we may apply the Grunwald-Wang Theorem [cf., e.g., [NSW], Corollary
9.2.3] to F . Now assertion (i) follows immediately by applying the Grunwald-Wang
Theorem to F . Assertion (ii) follows by considering the quadratic extension of F
determined by taking the square root of an element f ∈ F which is < 0 at v and
either > 0 or nonreal at w [where we note that the existence of such an f follows
immediately from the fact that the valuations v, w are distinct]. In the nonar-
chimedean case, assertion (iii) follows formally from assertion (i), together with the
well-known facts that the absolute Galois group of a nonarchimedean local field is
slim [cf., e.g., [Mzk1], Theorem 1.1.1, (ii)] and [of finite cohomological dimension
— cf., e.g., [NSW], Corollary 7.2.5 — hence] torsion-free. In the archimedean case,
assertion (iii) follows, for instance, by considering the extension of F obtained by
adjoining a square root of −1. To verify assertion (iv), let us first observe that if
at least one of v, w is nonarchimedean, then it follows from the torsion-free-ness
portion of assertion (iii) that both v, w are nonarchimedean [cf. also the well-
known fact that the absolute Galois group of an archimedean local field is finite, of
order ≤ 2!], and, moreover, that [from the point of view of verifying assertion (iv)]
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one may replace F by a finite abelian extension of F that satisfies the hypothesis
of assertion (i). Now assertion (iv) follows immediately from assertions (i), (ii),
(iii). Finally, assertion (v) follows formally from assertion (iv) [together with the
torsion-free-ness portion of assertion (iii) in the nonarchimedean case]. ©

Theorem 1.5. (Topologically Finitely Generated Closed Normal Sub-
groups) Suppose that F̃ is a Galois extension of the number field F such that for
some prime number p, F̃ has no cyclic extensions of degree p [e.g., a solvably
closed extension of F ]. Then every topologically finitely generated closed normal
subgroup N ⊆ QF is trivial.

Proof. Although this fact only follows formally from the statement of [FJ], Propo-
sition 16.11.6, in the case where F̃ is algebraically closed, as was explained to the
author by A. Tamagawa, the proof given in [FJ] generalizes immediately to the
case of arbitrary F̃ [i.e., as in the statement of Theorem 1.5]: Indeed, if we write
L ⊆ F̃ for the Galois [since N is normal] field extension of F determined by N ,
and assume that N is nontrivial, then it follows that there exists a proper normal
open subgroup N1 ⊆ N of N . Thus, N1 determines a finite Galois extension L1/L
of degree > 1. But, by [FJ], Theorem 13.9.1, (b) [i.e., “Weissauer’s extension the-
orem for Hilbertian fields”], this implies that L1 is Hilbertian, hence, by [repeated
application of] [FJ], Theorem 16.11.2, that L1 admits Galois extensions with Galois
group isomorphic to a product of an arbitrary finite number of copies of Z/pZ. By
our assumption on F̃ , it follows that such Galois extensions of L1 are contained in
F̃ , hence that N1 admits finite quotients isomorphic to a product of an arbitrary
finite number of copies of Z/pZ. But this contradicts the assumption that N is
topologically finitely generated. ©

Section 2: Anabelian Results

Next, we consider the anabelian geometry of hyperbolic curves, in the context
of solvably closed Galois groups of number fields.

The following result is due to K. Uchida [cf. the main theorem of [Uchida]]:

Theorem 2.1. (Solvably Closed Galois Groups are Anabelian) For
i = 1, 2, let F̃i/Fi be a solvably closed extension of a number field Fi; write Qi

def=
Gal(F̃i/Fi). Then passing to the induced morphism on Galois groups determines a
bijection between the set of isomorphisms of topological groups

Q1
∼→ Q2

and the set of isomorphisms of fields F̃1
∼→ F̃2 that map F1 onto F2.
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Next, let us assume that we have been given a hyperbolic curve [cf., e.g., [Mzk1],
§0, for a discussion of hyperbolic curves] over F . Let Σ be a nonempty set of prime
numbers. Write

ΔX

for the maximal pro-Σ quotient of the geometric fundamental group π1(X ×F F ) of
X [relative to some basepoint]. Here, we note in passing that Σ may be recovered
from ΔX as the set of prime numbers that occur as factors of orders of finite
quotients of ΔX . Thus, one has a natural outer action

GF → Out(ΔX)

of GF on ΔX .

Lemma 2.2. (Slimness) ΔX is slim.

Proof. This follows immediately by considering Galois actions on abelianizations
of open subgroups of ΔX — cf. the proof of [Mzk1], Lemma 1.3.1, in the case where
Σ is the set of all prime numbers. ©

Definition 2.3. We shall say that the [not necessarily solvably closed!] extension
F̃ /F , or, alternatively, the Galois group QF , is Σ-compatible with X if the natural
outer action

GF → Out(ΔX)

factors through the quotient GF � QF . Thus, if QF is Σ-compatible with X , then
one obtains an exact sequence of profinite groups

1 → ΔX → ΠX → QF → 1

by taking ΠX
def= Aut(ΔX) ×Out(ΔX ) QF [cf. Lemma 2.2!].

Proposition 2.4. (Geometric Subgroups are Characteristic) For i = 1, 2,
let F̃i/Fi be a solvably closed extension of a number field Fi; Qi

def= Gal(F̃i/Fi);
Σi a nonempty set of prime numbers; Xi a hyperbolic curve over Fi with which
Qi is Σi-compatible; 1 → ΔXi

→ ΠXi
→ Qi → 1 the resulting exact sequence

of profinite groups [cf. Definition 2.3]. Then any isomorphism of topological
groups

ΠX1

∼→ ΠX2

maps ΔX1 isomorphically onto ΔX2 . In particular, Σ1 = Σ2.

Proof. We give two proofs of Proposition 2.4. The first proof consists of simply
observing [cf. the proof of [Mzk1], Lemma 1.1.4, (i), via [Mzk1], Theorem 1.1.2]
that the image of ΔX1 under the composite of the isomorphism ΠX1

∼→ ΠX2 with
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the surjection ΠX2 � Q2 forms a topologically finitely generated closed normal
subgroup of Q2, hence is trivial, by Theorem 1.5.

The second proof of Proposition 2.4 only uses Theorem 1.5 in the well-known
case of an absolute Galois group of a number field. Moreover, when either Σ1 or Σ2

is not equal to the set of all prime numbers, then this second proof does not use
Theorem 1.5 at all.

For i = 1, 2, let Hi ⊆ ΠXi
be corresponding normal open subgroups; write

Hi � Ji for the quotients determined by the quotients ΠXi
� Qi. By taking the

Hi to be sufficiently small, we may also assume that the number fields determined
by the Ji contain square roots of −1. Thus, by Proposition 1.2, (i), it follows that

cdp(Hi) = 2 + d(p, i)

where d(p, i) is equal to 1 or 2 [depending on whether Xi is affine or proper] if p ∈ Σi

and d(p, i) = 0 if p /∈ Σi. Since H1
∼→ H2, we thus conclude that Σ1 = Σ2, and that

X1 is affine if and only if X2 is. Now if Σ1 = Σ2 is the set of all prime numbers,
and X1, X2 are affine, then it follows from Matsumoto’s injectivity theorem [cf.
[Mtmo], Theorem 2.1] that the field F̃i is an algebraic closure of Fi; thus, in this
case, Proposition 2.4 follows from [Mzk1], Lemma 1.1.4, (i) [i.e., Theorem 1.5 for
absolute Galois groups of number fields].

Next, let us suppose that there exists a prime number p such that p /∈ Σ1,
p /∈ Σ2. This implies that, for i = 1, 2, the natural homomorphism

H2(Ji, Fp) → H2(Hi, Fp)

is an isomorphism, hence that ΔXi
acts trivially on H2(Hi, Fp). Thus, the natural

action of ΠXi
on H2(Hi, Fp) factors through the quotient ΠXi

� Qi/Ji. Now,
by taking Hi to be sufficiently small, we may assume [since Qi is solvably closed!]
that the extension field of Fi determined by Ji contains a primitive p-th root of
unity. Thus, by Proposition 1.2, (ii), we conclude that the action of Qi/Ji on
H2(Hi, Fp) is faithful. Since the isomorphism ΠX1

∼→ ΠX2 induces an isomorphism
H1

∼→ H2, hence an isomorphism H2(H1, Fp)
∼→ H2(H2, Fp) which is compatible

with the respective actions of ΠX1 , ΠX2 , we thus conclude that the isomorphism
ΠX1

∼→ ΠX2 preserves the kernels of the surjections ΠXi
� Qi/Ji, hence that the

subgroup ΔXi
= Ker(ΠXi

� Qi) may be recovered as the intersection of the kernels
of the surjections ΠXi

� Qi/Ji, by letting the Hi range over all sufficiently small
normal open subgroups of ΠXi

. This completes the proof of Proposition 2.4 in the
case where there exists a prime number p such that p /∈ Σ1, p /∈ Σ2.

Finally, we consider the case where X1, X2 are proper. Let p be a prime
number; suppose that the Hi have been taken to be sufficiently small so that the
number fields determined by the Ji contain a primitive p-th root of unity and a
square root of −1. Then it follows from the Leray-Serre spectral sequence associated
to the extension 1 → Di → Hi → Ji → 1 [where we write Di

def= Ker(Hi � Ji)] and
Proposition 1.2, (i), that there is a natural isomorphism

H4(Hi, Fp) ∼= H2(Ji, Fp) ⊗ H2(Di, Fp)
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which is compatible with the natural action of ΠXi
on the various cohomology mod-

ules involved. Here, we note that [by the well-known structure of the cohomology
of the geometric fundamental group of an algebraic curve] ΔXi

⊆ ΠXi
acts triv-

ially on H2(Di, Fp). Thus, Proposition 2.4 follows in the present case by applying
Proposition 1.2, (ii), as in the argument given in the preceding paragraph. ©

Theorem 2.5. (The Anabelian Geometry of Hyperbolic Curves over
Solvably Closed Galois Groups) For i = 1, 2, let F̃i/Fi be a solvably closed

extension of a number field Fi; Qi
def= Gal(F̃i/Fi); Σi a nonempty set of prime

numbers; Xi a hyperbolic curve over Fi with which Qi is Σi-compatible; 1 →
ΔXi

→ ΠXi
→ Qi → 1 the resulting exact sequence of profinite groups [cf. Def-

inition 2.3]; X̃i → Xi the pro-finite étale covering of Xi determined by ΠXi

[regarded as a quotient of the étale fundamental group of Xi]. Then passing to the
induced morphism on fundamental groups determines a bijection between the set
of isomorphisms of topological groups

ΠX1

∼→ ΠX2

and the set of compatible pairs of isomorphisms of schemes X̃1
∼→ X̃2,

X1
∼→ X2.

Proof. By Proposition 2.4, any isomorphism ΠX1

∼→ ΠX2 induces an isomorphism
Q1

∼→ Q2, hence, by Theorem 2.1, a compatible pair of isomorphisms of fields
F̃1

∼→ F̃2, F1
∼→ F2. Thus, we may apply “Theorem A” of [Mzk2] to the isomorphism

ΠX1

∼→ ΠX2 to conclude that this isomorphism arises from a unique compatible pair
of isomorphisms of schemes X̃1

∼→ X̃2, X1
∼→ X2, as desired. ©

Section 3: Some Examples

Finally, we conclude by observing that in various situations, Σ-compatible solv-
ably closed extensions which are, moreover, “relatively small” [e.g., by comparison
to the entire absolute Galois group of a number field] exist in substantial abundance.

Proposition 3.1. (The Case of a Single Prime Number) Let Σ def= {r},
where r is a prime number.

(i) Let Δ be a topologically finitely generated pro-r group. [Thus, since
Δ is topologically finitely generated, its topology admits a base of characteristic
open subgroups, which determine a natural profinite topology on Out(Δ).] Write
Δ � Δab for the abelianization of Δ. Then the kernel of the natural morphism
of profinite groups

Out(Δ) → Aut(Δab ⊗ Fr)
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is a pro-r [hence, in particular, pro-solvable!] group.

(ii) Let X be a hyperbolic curve over F . Then there exists a finite Ga-
lois extension F1 over F such that the maximal solvable extension [which is
solvably closed — cf. Remark 1.1.2] F̃

def= F sol
1 of F1 is Σ-compatible with X.

Proof. Assertion (i) follows immediately by considering the action of an outer
automorphism in the kernel of Out(Δ) → Aut(Δab ⊗ Fr) on the lower central
series of Δ. Assertion (ii) follows formally from assertion (i) and the definitions.
©

Proposition 3.2. (Basic Properties of Special Linear Groups) Let l be
a prime number. Write SL2(Fl) for the special linear group of 2 by 2 matrices
with coefficients in Fl, PSL2(Fl)

def= SL2(Fl)/{±1}.
(i) Suppose that l ≥ 5. Then PSL2(Fl) is a simple finite group.

(ii) No proper subgroup of SL2(Fl) surjects onto PSL2(Fl).

(iii) PSL2(F2), PSL2(F3), as well as every proper subgroup of PSL2(Fl) [for
arbitrary l], is either solvable or isomorphic to PSL2(F5).

Proof. Assertions (i), (ii), (iii) are well-known — cf., e.g., [Serre], Chapter IV,
§3.4, Lemmas 1, 2; [Carter], §1.2. ©

Remark 3.2.1. The proper subgroups H of SL2(Fl) may be analyzed as follows:
If H is of order divisible by l, then H contains an element of order l — i.e., [since F×

l ,
F×

l2 are of order prime to l] a unipotent matrix — and so it is easy to show [using the
fact that SL2(Fl) is generated by

(
1 1
0 1

)
,
(
1 0
1 1

)
] that H is solvable [assuming that it is

proper]. On the other hand, if the order of H is prime to l, then H may be classified
by applying the Hurwitz formula to the Galois covering P1

Fl
→ P1

Fl
/H [arising from

the natural action of SL2 on P1
Fl

, where Fl is an algebraic closure of Fl], which
gives rise to fairly restrictive conditions on the ramification indices of this covering.
In particular, if H is non-abelian, then, by taking an appropriate isomorphism of
P1

Fl
/H with P1

Fl
, one concludes that this covering is ramified over the three points

“0”, “1”, and “∞” of P1
Fl

, with ramification index 2 at “0”, ramification index
∈ {2, 3} at “1”, and ramification index ∈ {3, 4, 5} (respectively, arbitrary, ≥ 2) at
“∞” if the ramification index at “1” is equal to 3 (respectively, 2). Now it is an
elementary exercise to classify the possible groups H that may occur. For instance,
by considering modular curves, it follows immediately that the case H = PSL2(F5)
corresponds to the case where the ramification indices are (2, 3, 5).

Proposition 3.3. (Linear Disjointness I) Let l > 5 be a prime number;
r a prime number 	= l; Σ def= {r}; X a once-punctured elliptic curve over a
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number field F . Suppose further that F contains an l-th root of unity, and
that the resulting homomorphism

GF → SL2(Fl)

determined by the action of the absolute Galois group GF of F on the l-torsion
points of the elliptic curve E compactifying X is surjective. Then there exists a
solvably closed extension F̃ /F which is Σ-compatible with X, and, moreover,
linearly disjoint [over F ] from the extension K of F determined by the kernel of
the homomorphism GF → SL2(Fl).

Proof. Write L ⊆ K for the extension of F determined by the kernel of the
homomorphism GF → PSL2(Fl). Then it follows immediately from Proposition
3.2, (ii), that any Galois extension of F is linearly disjoint from K if and only if
it is linearly disjoint from L. Now observe that Gal(L/F ) ∼= PSL2(Fl) is simple
[cf. Proposition 3.2, (i)] and non-abelian. Thus, by Proposition 3.1, (i), it suffices
to show that the finite Galois extension R of F determined by the kernel of the
homomorphism GF → GL2(Fr) arising from the Galois action on the r-torsion
points of E is linearly disjoint from L. On the other hand, again since Gal(L/F )
is simple and non-abelian, this linear disjointness property follows from the fact
[cf. Proposition 3.2, (iii); our assumption that r 	= l > 5] that no subquotient of
GL2(Fr) [or, equivalently, PSL2(Fr), since PSL2(Fl) is simple and nonabelian] is
isomorphic to PSL2(Fl). This completes the proof of Proposition 3.3. ©

Proposition 3.4. (Linear Disjointness II) Let l > 5 be a prime number;
Σ a nonempty set of prime numbers such that l /∈ Σ; X a once-punctured
elliptic curve over a number field F with stable reduction over the ring of
integers OF of F ; Fµ the extension of F obtained by adjoining an l-th root of
unity. Suppose further that l ≥ [F : Q] + 2; that [Fµ : F ] divides (l − 1)/2 [which
implies that the homomorphism

GF → PGL2(Fl)
def= GL2(Fl)/F×

l

determined by the action of the absolute Galois group GF of F on the l-torsion
points of the elliptic curve E compactifying X factors through the image of PSL2(Fl)
in PGL2(Fl)]; that the resulting homomorphism GF → PSL2(Fl) is surjective;
and that, for each prime l of F lying over l at which E has bad reduction, the
following condition is satisfied:

Write Fl for the completion of F at l. Thus, the elliptic curve E ×F Fl is
a Tate curve, hence has a well-defined “q-parameter” ql in the ring of
integers OFl

. Then the valuation of ql is prime to l.

Then:
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(i) There exists an extension F̃ /F which is Σ-compatible with X, and, more-
over, linearly disjoint [over F ] from the extension K of F determined by the
kernel of the homomorphism GF → PSL2(Fl).

(ii) Write Kµ for the extension of F determined by the kernel of the homo-
morphism GF → GL2(Fl) [arising from the Galois action on the l-torsion points of
E]. Thus, Fµ ⊆ Kµ; write F̃µ

def= Fµ · F̃ for the composite extension [over F ]. Then
the maximal solvable extension F̃ sol

µ of F̃µ forms a solvably closed extension of
Fµ which is Σ-compatible with X and, moreover, linearly disjoint over Fµ from
the extension Kµ of Fµ.

Proof. First, we consider assertion (i). Let F̃ /F be the extension determined by
the kernel of the homomorphism GF → Out(ΔX) [cf. Definition 2.3]. Let l be
a prime of F lying over l. Since PSL2(Fl) is simple [cf. Proposition 3.2, (i)], to
complete the proof of assertion (i), it suffices to show that the composite [i.e., over
F ] field extension K · F̃ is not equal to F̃ . Thus, suppose that K · F̃ = F̃ . Since
l /∈ Σ, if E has good reduction at l, then it follows that F̃ /F is unramified at l;
similarly, if E has bad reduction at l, then the fact that l 	∈ Σ implies that F̃ /F is
tamely ramified at l. On the other hand, if E has good reduction at l, then the fact
that K ⊆ K · F̃ = F̃ is unramified at l implies, by applying, for instance, results
of Raynaud on the “fully faithfulness of restriction to the generic fiber” for finite
flat group schemes over moderately ramified discrete valuation rings [cf. [Rayn],
Corollaire 3.3.6, (1); our assumption that l ≥ [F : Q] + 2, which implies that the
ring of integers OFl

is indeed “moderately ramified”], that, if we write E for the
stable model of the elliptic curve E over OFl

and E [l] for the kernel of multiplication
by l on E , then E [l] may be written as a direct product

E [l] ∼= G × G

of two copies of some finite flat group scheme G over OFl
[which implies, for in-

stance, that the tangent space of E [l], hence also of E , is even-dimensional!] — a
contradiction. Finally, if E has bad reduction at l, then the fact that K ⊆ K ·F̃ = F̃
is tamely ramified at l contradicts our assumption concerning the “valuation of the
q-parameter” [which implies that K is wildly ramified at l]. This completes the
proof of assertion (i).

To verify assertion (ii), let us first observe that by Proposition 3.2, (i) [cf. our
assumption that l > 5], (ii), and the surjectivity assumption in the statement of the
present Proposition 3.4, we have Gal(Kµ/Fµ) ∼= SL2(Fl). Now, by applying Propo-
sition 3.2, (ii), as in the proof of Proposition 3.3, assertion (ii) follows immediately
from assertion (i), together with the simplicity [and non-solvability] of PSL2(Fl).
©
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