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Abstract. Let LΦ7(s) be the Dirichlet series associated to the
eta-product η(7τ)7/η(τ)∈M3(Γ0(7), ε) (here ε(n) :=

(
n
7

)
=

(−7
n

)
is

the Dirichlet character defined by the residue symbol). We show
that LΦ7(s) decomposes into the difference of two L-functions:

LΦ7(s) =
1
8
(
L(s, ε)L(s− 2, 1)− L(s− 1, ξ)

)
,

where i) L(s, ε) and L(s, 1) are Dirichlet L-functions for the charac-
ters ε and 1 modulo 7, respectively, and ii) L(s, ξ) is the L-function
for a Hecke character ξ of the imaginary quadratic field Q(

√−7).
This expression of LΦ7(s) gives a new proof of the non-negativity

of the Fourier coefficients of the product η(7τ)7/η(τ), conjectured
in [S3] and proven by Ibukiyama [I]. We also prove the uniqueness
of the above decomposition of LΦ7(s) in a suitable sense.

1. introduction

Let η(τ)=q
1
24

∏∞
n=1(1−qη), q=exp(2π

√−1τ) be the Dedekind eta-
function (e.g. [R]). A product Πi∈Iη(iτ)e(i), where I is a finite set of
positive integers and e : I → Z is any map, is called an eta-product.
The eta-product can be developed in a Laurent series in powers of q,
whose coefficients are called the Fourier coefficients.

Ibukiyama [I] has shown the following result, which answers to a part
of a conjecture given by the author [S3] (see the next paragraph).

Theorem 1.1. Let p be a rational prime number. Then the Fourier
coefficients of the eta product ηΦp := η(pτ)p/η(τ) are non-negative.

The proof in [I] is given by expressing the eta-product as a difference
of two generating functions of two arithmetically constructed lattices.

More in general than the theorem, for any positive integer h which
may not be prime, we have the following non-negativity conjecture.

Conjecture ([S3]). Define the sequence Φh(λ) (h ∈ Z>0) of polynomials in λ by
the recursive relation: (1−λh)h

1−λ =
∏

d|h Φd(λh/d). Explicitly, Φh(λ) = (1−λh)φ(h)Q
d|h(1−λd)µ(d)

where φ and µ are the Euler function and the Möbius function. Then the Fourier
coefficients of the eta-product ηΦh

(τ) := η(hτ)φ(h)Q
d|h η(dτ)µ(d) are non-negative integers.
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This was proven for h=2, 3, 4, 5, 6 [S1,2,3] by a use of the Dirichlet series
LΦh

(s) associated to the eta-products ηΦh

1. Precisely, we show that
LΦh

(s) admits either an Euler product for h = 2, 3, 5 or a decomposition
into the difference of two Euler products for h = 4, 6, and that these
expressions lead to a direct proof of the positivity of the coefficients.

In the present note, we prove in section 2 that the Dirichlet series
LΦ7(s) decomposes into a difference of two L-functions, which admit
Euler products, as stated in the abstract. In section 3, we show that
this expression implies the non-negativity of the Dirichlet coefficients of
LΦ7(s). In section 4, we prove a general lemma on the uniqueness of the
decomposition of Dirichlet series into a difference of two Euler products,
and apply it to LΦ7(s) (and also to LΦ4(s) and LΦ6(s)). Finally, we
remark in section 5 that such difference decomposition of LΦp(s) for
any prime p ≥ 11 does not exist. If h is a composite number, we do
not know when LΦh

(s) admits such a difference decomposition.

Remark 1. The interest on the positivity of Fourier coefficients ap-
peared, first, in the study of elliptic root systems [S1]. Namely a simply
laced elliptic root system admits the flat (Frobenius manifold) struc-
ture on its invariant space if and only if its associated eta product has
non-negative Fourier coefficients, and this happens exactly for the 4 ex-

ceptional types D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 and E

(1,1)
8 of elliptic root systems.

The proof uses the associated Dirichlet series as explained above.
In [S2,Conjecture 13.5], we construct, by a use of regular weight

system, a wide class of eta-products whose Fourier coefficients are con-
jecturally non-negative and are of interest.

2. L-function L(s, ξ) for a Hecke character ξ of Q(
√−7)

We recall Hecke’s L-function for a character ξ on the imaginary qua-
dratic field Q(

√−7), and, then, decompose LΦ7(s) by a use of it. For a
back ground on analytic number theory, one is referred to [M] and [R].

Since the class number of Q(
√−7) is equal to 1, we can introduce

the Hecke character ξ for the non-zero ideals of K := Q(
√−7) by

(1) ξ((a)) :=
( a

|a|
)2

(a ∈ K \ {0}).

Then, the L-function for ξ is defined by the following Dirichlet series,
which, as a result of definition, has the Euler product:

(2) L(s, ξ) :=
∑

a ⊂OK

ξ(a)NK(a)−s =
∏

p : prime

(1− ξ(p)NK(p)−s)−1.

1The Dirichlet series
∑

n>0c(n)n−s is associated to a Fourier series
∑

n≥0c(n)qn.
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Here, a (resp. p) runs over all non-zero integral (resp. prime) ideals of
OK , and NK(a) is the absolute norm of a (i.e. NK(a) = |OK/a|).

The first main result of the present note is the following.

Lemma 2.1. The Dirichlet series LΦ7(s) associated to the eta-product
η(7τ)7/η(τ) decomposes into a difference of two L-functions as follows:

(3) LΦ7(s) =
1

8

(
L(s, ε)L(s− 2, 1)− L(s− 1, ξ)

)
,

where we recall that ε :=
(∗

7

)
=

(−7
∗

)
is the residue symbol modulo 7.

Proof. Recall that ηΦ7(τ)=η(7τ)7/η(τ) belongs to the space M3(Γ0(7), ε)
of automorphic forms of weight 3, charcter ε on the group Γ0(7) (e.g.
[S2,13.3]). The L-function L(s−1, ξ) is associated to a Fourier series

(4) f(τ) :=
∑
a

ξ(a)NK(a)e2π
√−1NK(a)τ .

According to Hecke [H1][H2], f(τ) is a cusp form belonging to S3(Γ0(7), ε)
(see [M, Th.4.8.2]). Similarly, L(s, ε)L(s− 2, 1) and L(s− 2, ε)L(s, 1)
are associated to Eisenstein series, say E(τ) and E ′(τ), in M3(Γ0(7), ε).
Since Γ0(7)\H has two cusps and dimCS3(Γ0(7), ε)=1, M3(Γ0(7), ε) is
spanned by E, E ′ and f . Since their Fourier coefficients until degree
3 are already linearly independent, to show the equality: ηΦ7(τ) =
1
8

(
E(τ)− f(τ)

)
, it suffices to show that nth Fourier coefficients c(n) of

ηΦ7(τ) coincide with nth Dirichlet coefficients of 1
8
(L(s, ε)L(s−2, 1)−

L(s−1, ξ)) for 1≤ n≤ 3. Let us give an explicit integral description
(which we shall use in the next section) of the coefficients of L(s−1, ξ).
For this end, we factorize L(s− 1, ξ) w.r.t. rational primes p, q in Z>0:

(5) L(s− 1, ξ) :=
1

1 + 7−s+1
·

∏

ε(q)=−1

1

1− q−2s+2
·

∏

ε(p)=1

1

Pp(p−s)
,

where Pp(λ)∈Z[λ] for a prime p with ε(p)=1 is defined in (6) below.
A proof of (5). We recall a well-known (e.g. [T]) list of all prime

ideals in Q(
√−7) (where we note that all ideals are principla).

i) for any rational prime q with ε(q) = −1, (q) is a prime ideal,
ii) for any odd rational prime number p with ε(p) = 1, one has the

decomposition: p=x2
p+7·y2

p =(xp+yp

√−7)(xp−yp

√−7) ((xp, yp)∈Z2
>0),

iii) 2 = 7·1+1
4

= 1+
√−7
2

· 1−√−7
2

and 7 = −(
√−7)2.

Put π2 := 1+
√−7
2

and πp := xp + yp

√−7 for an odd rational prime
number p with ε(p) = 1 and, define the quadratic polynomials

(6)
P2(X) := (1− π2

2X)(1− π2
2X) = 1 + 3X + 22X2 and

Pp(X) := (1− π2
pX)(1− π2

pX) = 1− 2(x2
p − 7y2

p)X + p2X2.
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Then (5) follows from the Euler product in (2) and
i) ξ((πp)) = π2

p/p and NK((πp)) = p for ε(p) = 1,

ii) ξ((q)) = 1 and NK((q)) = q2 for ε(q) = −1,
iii) ξ((

√−7)) = −1 and NK((
√−7)) = 7 .

Put L(s, ε)L(s−2, 1) =
∑∞

n=1 a(n)n−s and L(s−1, ξ) =
∑∞

n=1 b(n)n−s,
and we give explicite expressions of the coefficients a(n) and b(n). Let

n = 7k
∏

i∈I pli
i

∏
j∈J q

mj

j

be the prime decompostion of n∈Z>0 where {pi | i∈I} and {qj | j∈J}
are finite sets of distinct prime numbers with ε(pi) = 1 and ε(qj) = −1.

Then, by a use of (5) together with (6), one obtains the formulae:

a(n) = 72k
∏
i∈I

p2(li+1) − 1

p2
i − 1

∏
j∈J

q
2(mj+1)
j − (−1)mj+1

q2
j + 1

(7)

b(n) = (−7)k
∏
i∈I

( li∑
t=0

π2t
pi

π2(li−t)
pi

) ∏
j∈J

1− (−1)mj+1

2
q

mj

j(8)

Finally, we give the Fourier expansion of ηΦ7 up to degree 50.

ηΦ7 = q2 + q3 + 2q4 + 3q5 + 5q6 + 7q7 + 11q8 + 8q9 + 15q10 + 16q11 + 21q12 + 21q13

+28q14 + 24q15 + 44q16 + 36q17 + 49q18 + 45q19 + 63q20 + 49q21 + 74q22 + 64q23

+85q24 + 72q25 + 105q26 + 82q27 + 133q28 + 112q29 + 120q30 + 120q31 + 165q32

+122q33 + 180q34 + 147q35 + 186q36 + 176q37 + 225q38 + 168q39 + 255q40 + 210q41

+245q42 + 224q43 + 324q44 + 219q45 + 338q46 + 276q47 + 341q48 + 294q49 + 385q50 + · · ·

By inspection, we check the equality c(n) = 1
8
(a(n)− b(n)) for n with

1 ≤ n ≤ 3. This completes the proof of Lemma 2.1. ¤
Remark 2. As we see in the above proof, once one guesses a correct
formula (3), then its proof is straightforward. However, we do not
know yet what is a “correct formula” for LΦh

(s) for h > 7 (see §5).

3. Positivity of Fourier coefficients of η(7τ)7/η(τ)

As an immediate consequence of Lemma 2.1. together with the ex-
plicit formulae (6) and (7), we obtain the following positivity.

Corollary. All Fourier coefficients of η(7τ)7/η(τ) are positive.

Proof. Lemma 2.1. says c(n) = 1
8
(a(n)− b(n)) for all n ∈ Z≥1. To show

a(n) > b(n) for all n ∈ Z≥1, it is sufficient to show a(pk) > |b(pk)| for
any primary number pk (i.e. p is a prime number and k ∈ Z>0) because
of the multiplicativity of a(n) and b(n). We separate cases:
Case p = 7. a(7k) = 72k > 7k = |b(7k)|.
Case ε(p) = 1. a(pk) > p2k ≥ (k + 1)pk =

∑k
i=0 |π2i

p π2(k−i)
p | ≥ |b(pk)|.

Case ε(q)=−1. a(qk)−|b(qk)| ≥ q2(k+1)−1
q2+1

− qk = (qk+2−1)(qk−1)−2
q2+1

>0. ¤
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4. Uniqueness of decomposition of Dirichlet series

We show the second main result of the present note:
Under a mild assumption on a Dirichlet series L(s) =

∑
n∈Z≥1

c(n)n−s,

we show the uniqueness of the decomposition of L(s) into the form:

(9) L(s) = aM(s) + bN(s)

where M(s) and N(s) are Dirichlet series which admit Euler product
and a, b are constants. For our applications, we assume that c(1) = 0 so
that one automatically has a+b = 0 (since the first Dirichlet coefficients
of M(s) and N(s) are automatically equal to 1) and
(9)’ L(s) = c(M(s)−N(s)) (c := a = −b).

Lemma 4.1. Let L(s) =
∑

n∈Z≥1
c(n)n−s be a Dirichlet series such that

i) c(1) = 0 and ii) there are five relatively prime integers l, m, n, u, v ∈
Z≥1 such that c(l)c(m)c(n)c(u)c(v) 6= 0. If there exists a decomposition
(9), where M(s) and N(s) are Dirichlet series having Euler products,
then it is unique up to the transposition of M(s) and N(s).

Proof. Put M(s) =
∑

n∈Z≥1
a(n)n−s, N(s) =

∑
n∈Z≥1

b(n)n−s and c :=

a = −b so that one has the relation among the Dirichlet coefficients:

(10) c(n) = c(a(n)− b(n)) (n ∈ Z≥1).

Clearly c 6= 0, else L(s) = 0 contradicting to the assumption on L(s).
We first remark that one sees from (10) that if c(n) = c(m) = 0

for relatively prime positive integers n and m then c(nm)=0. Conse-
quently, if c(n) 6=0, then there exists a primary factor pk of n (i.e. p is a
prime number and k is a positive integer s.t. pk|n) such that c(pk) 6= 0.

Suppose there exist another decomposition L(s) = c′(M ′(s)−N ′(s)).
Using Dirichlet coefficients a′(n), b′(n) of M ′(s), N ′(s), this means

(11) c(n) = c′(a′(n)− b′(n)) (n ∈ Z≥1)

Let n,m ∈ Z≥1 be relatively prime to each other, then the multi-
plicativities of the Dirichlet coefficients a, b, a′ and b′ implies

c(mn) = c(a(n)a(m)− b(n)b(m)) = c′(a′(n)a′(m)− b′(n)b′(m))

Substituting b(n) = a(n)− c(n)/c, b′(n) = a′(n)− c(n)/c′ and b(m)
= a(m)−c(m)/c, b′(m) = a′(m)−c(m)/c′ in this equality, we obtain

E(m,n) : c(n)(a(m)−a′(m)) + c(m)(a(n)−a′(n)) = (
1

c
− 1

c′
)c(n)c(m).

Let k, m, n∈Z≥1 be relatively prime to each other and c(m)c(n) 6=0,
then (c(k)E(m,n)−c(m)E(n, k)−c(n)E(k, m))/c(m)c(n) is the equality

∗ a(k)− a′(k) =
1

2
(
1

c
− 1

c′
)c(k).
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This, together with (10) and (11), can be rewritten as the linear rela-
tions among a(k), b(k) and a′(k), b′(k) for all k prime to mn:

a′(k) = (1− λ)a(k) + λb(k) and b′(k) = λa(k) + (1− λ)b(k),

where λ := c
2
(1

c
− 1

c′ ) so that λ = 0 or 1 if and only if c = c′ or c = −c′,
respectively. Summing two relations, we also obtain the relation:

∗∗ a(k) + b(k) = a′(k) + b′(k).

If c = c′ (i.e. λ = 0), then the proof of Lemma 4.1. is already achieved
as follows: by substituting c = c′ in ∗ and using ∗∗, one has

∗ ∗ ∗ a(k) = a′(k) and b(k) = b′(k)

for any k ∈ Z≥1 prime to m,n. By replacing the role of m,n by u, v,
the equalities ∗ ∗ ∗ hold for any primary numbers k. The ∗ ∗ ∗ extends,
further, for any positive integers k due to the multiplicativity of a, a′, b
and b′. This means M(s) = M ′(s) and N(s) = N ′(s).

Suppose c 6= c′ (i.e. λ 6= 0). Then, ∗ means another decomposition:

(11)′ c(k) =
c

λ
(a(k)− a′(k))

for any k ∈ Z≥1 prime to m, n. Replacing (11) by (11)’, we can repeat
the previous discussions to induce ∗ and ∗∗, where we replace the role of
m, n by u, v, and consider integers k which is prime to m,n and also to
u, v. Then, in addition to ∗ and ∗∗, we obtain: ∗′ : 0 = a(k)− a(k) =
1−λ
2c

c(k) and ∗∗′ : a(k)+b(k) = a(k)+a′(k) for all k prime to m, n, u, v.
Taking k = l with c(l) 6= 0, which exists by the assumption of Lemma,
we obtain λ = 1, i.e. c = −c′. By the similar argument for the case
c = c′, we obtain: ∗ ∗ ∗′ : a(k) = b′(k), b(k) = a′(k) for all k ∈ Z≥1

and, therefore, M(s) = N ′(s) and N(s) = M ′(s). ¤

Corollary. The Dirichlet series LΦ7(s) satisfies the assumptions i) and
ii) so that the decomposition (3) is unique in the sense of Lemma 4.1.

Remark 3. Lemma 4.1. can be formulated more precisely according to
the # of relatively prime n’s with c(n) 6= 0. The case #=5 of Lemma
4.1. is the strongest case. Since the other cases for # < 5 are involved
but not used in the present note, they are omitted.

Remark 4. There are a few more known Dirichlet series associated to
eta-products, which decompose as (9) ((9)’) and satisfy the assumption
of Lemma 4.1, namely, η(48τ)3/η(24τ), ηΦ4(8τ) = η(32τ)2η(16τ)/η(8τ)
and ηΦ6(12τ) = η(72τ)η(36τ)η(24τ)/η(12τ). They have an origin in a
study of elliptic root systems (see [S1]).
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5. non-decomposability of LΦp(s) for p ≥ 11

We finally give the following remark, which can be shown easily.

Fact. The Dirichlet series LΦp(s) associated to the eta-product η(pτ)p/η(τ)
for a prime number p with p ≥ 11 does not admit a decomposition (9).

Proof. Suppose a decomposition (9)’ exists, i.e. there is a Dirichlet
series M(s) and a constant c 6= 0 such that M(s)− 1

c
LΦp(s) is a Dirich-

let series admitting an Euler product. Let c(n), a(n) and b(n) be
the Dirichlet coefficients of LΦp(s), M(s) and M(s) − 1

c
LΦp(s). The

following fact follows from the explicit expression of the eta product
η(pτ)p/η(τ):

i) c(n) = 0 for 1 ≤ n < (p2 − 1)/24 (≥ 5),
ii) c(n) 6= 0 for (p2 − 1)/24 ≤ n < (p2 − 1)/24 + p.
Thus, we can find an odd integer m such that 1 < m < (p2 − 1)/24

and (p2−1)/24 ≤ 2m < (p2−1)/24+p. Then, a(2)a(m) = b(2)b(m) =
b(2m) = a(2m)− 1

c
c(2m) = a(2)a(m)− 1

c
c(2m) should imply 1

c
c(2m) =

0. Since c(2m) 6= 0 (due to ii)), one has 1
c

= 0 which is impossible. ¤

Acknowledgement : The author is grateful to Professor Hiroshi Saito
for his help to identify L(s, ξ) with a Hecke L-function.

REFERENCES
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