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Summary. Several aspects of the notion of virtual turning points are discussed;
its background, its relevance to the bifurcation phenomena of a Stokes curve, its
importance in the analysis of the Noumi-Yamada system (a particular higher order
Painlevé equation) and a concrete recipe for locating them. Examples given here
make it manifest that virtual turning points are indispensable in WKB analysis of
higher order linear ordinary differential equations with a large parameter.

0 Introduction

Microlocal analysis and the exact WKB analysis are intimately related and
they are often complementary. A typical example is the exact steepest descent
method ([AKT3], [AKT4], [T]), where a global version of the quantized Leg-
endre transformation is given in terms of exact steepest descent paths. Here in
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this report we discuss another important example of their interactions, namely
the notion of virtual turning points. Since this notion does not find any prece-
dents in traditional asymptotic analysis, we first explain why it is needed. As
pointed out by Silverstone ([S]), notorious ambiguities in the connection prob-
lems in WKB analysis are resolved if we make use of the Borel resummation
method; in a word we have to first specify the region (the so-called Stokes
region) where the Borel sum of a WKB solution is well-defined. Parentheti-
cally we note that the importance of the Borel resummation in WKB analysis
is also shown by Bender-Wu ([BW]), Voros ([V]), Zinn-Justin ([Z]), Pham
([P]) and others from several points of view and that the exact WKB analysis
means the WKB analysis based on the Borel resummation. (See [DDP], where
the wording “exact semi-classical expansion” is also used.) In the description
of Stokes regions for a second order linear ordinary differential operator with
a large parameter η that is of the form P = P (x, η−1d/dx) = P (x, η−1ξ),
we need to consider only Stokes curves emanating from (ordinary, or tradi-
tional) turning points; it suffices to consider the union of integral curves of
the direction field

Im(ξj(x) − ξk(x))dx = 0 (1)

that emanate from some traditional turning point a of type (j, k), i.e., a point
a satisfying

ξj(a) = ξk(a), (2)

where ξj(x) and ξk(x) are characteristic roots of the operator P . For higher
order operators, however, the totality of Stokes curves emanating from turning
points (i.e., points satisfying (2)) does not suffice to describe the Stokes region
as Berk-Nevins-Roberts ([BNR]) first pointed out; we need a “new Stokes
curve” that does not emanate from a traditional turning point if we want
to find correct Stokes regions. As we discuss in Section 1, the needed “new
Stokes curves” emanate from “new turning points”, which were first detected
in [AKT1] through microlocal analysis. The wording “a new turning point”
has been superseded by “a virtual turning point” in recent literature, and
here, and in what follows, we use this new wording. As the effect of a virtual
turning point is inert in its immediate vicinity, we discuss in Section 2 its
relevance to the bifurcation of a Stokes curve so that its effect may become
impressively visible. In Section 3 we discuss how this relevance gives a neat
interpretation of the strange and intriguing phenomenon that one of us (S.
Sasaki; [Sa1], [Sa2]) has found in analyzing the Noumi-Yamada system ([NY])
with the help of a computer. In Appendix we briefly describe how to find a
virtual turning point with the help of a computer.

As we discuss only some illuminating examples in this report, for the
detailed argument we refer the reader to [AKT1], [AKT2], [AKT5], [AKSST],
[Ho], [Sa1], and [Sa2]. We use the same notions and notations used in [KT].
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1 The background of the introduction of a virtual
turning point

Let P denote the following third order operator with a large parameter η(>>
1):

η−3 d3

dx3
+ 3η−1 d

dx
+ 2ix. (3)

In what follows we call this operator the BNR operator after Berk-Nevins-
Roberts ([BNR]), who first observed the importance of this operator in WKB
analysis. The turning points of (3) are x = ±1, and the traditional Stokes
geometry is given in Fig. 1.

Figure 1

As Berk et al. ([BNR]) observed, we have to add two Stokes rays γ1 and
γ2 to obtain the correct Stokes regions. See Fig. 2.

Figure 2

Then a natural question to be raised is: From what points do these rays
emanate? Let us try to answer this question in terms of the singularity struc-
ture of the Borel transform ψB(x, y) of a WKB solution ψ(x, η) of the equation
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Pψ = 0. In view of the definition of the Borel sum, we know ([V]) that the
Stokes phenomenon of ψ is due to the interplay of singularities of ψB(x, y):
the Stokes phenomenon is observed when the path C(x) of integration used to
define the Borel sum

∫
C(x)

exp(−yη)ψB(x, y)dy is hit by some “related” sin-
gular point of ψB(x, y). Hence it is reasonable to surmise that a starting point
of a Stokes curve should be the x-component of a point where two “related”,
or “cognate”, singularities of ψB(x, y) coalesce. Actually a traditional turning
point of a Schrödinger operator P̃ = d2/dx2 − η2Q(x) is of this character: the
Borel transform ϕB(x, y) of a WKB solution ϕ of the equation P̃ϕ = 0 has
two singularities s± = {(x, y); y = ±

∫ x

a

√
Qdx} with Q(a) = 0, and they coa-

lesce at (x, y) = (a, 0). Let us now raise the following question: In what sense
are s+ and s− cognate? To answer this question, we have to understand the
structure of singularities of ϕB(x, y). Fortunately enough, a clear-cut answer
to this question has been given by microlocal analysis: Assuming that the
point a is a simple turning point, i.e., a is a simple zero of the potential Q(x),
there exists a non-singular bicharacteristic strip of the Borel transform P̃B of
P̃ whose projection to the base manifold C2

(x,y) is s+ ∪ s− near (x, y) = (a, 0).

Here P̃B is a partial differential operator given by ∂2/∂x2 −Q(x)∂2/∂y2, and
a bicharacteristic strip is, by definition, a solution curve of the Hamilton-
Jacobi equation associated with P̃B . (See e.g. [CH, p.558].) Its projection to
the base manifold is called a bicharacteristic curve. A fundamental result in
microlocal analysis ([H], [SKK]) asserts that each bicharacteristic strip is the
most “elementary” carrier of the singularities of solutions of a linear partial
differential equation with simple characteristics. Hence a singular point in s+

and that in s− should be cognate, as they are both the projections of points in
one and the same connected non-singular curve, a bicharacteristic strip. The
next question is, then: Are there any other pairs of cognate singularities that
coalesce? In a generic situation it is rather difficult to find such pairs. But the
dimension of the base manifold is 2 in our case, and hence a bicharacteristic
curve “generically” forms a self-intersection point.

Remark 1. We encounter self-intersection points of bicharcteristics “normally”
even in higher dimensional case if we start with a subholonomic system with
a large parameter instead of an ordinary differential equation with a large
parameter. See [Sh] for such equations.

For example, in the case of the operator P given by (3), the associated
bicharacteristic strip passing through (x, y; ξ, η) = (1, 0;−i, 1) is given by





x(t) = −4(t + 1/2)(t2 + t − 1/2)
y(t) = −6it2(t + 1)2

ξ(t) = −2it − i

η(t) = 1.

(4)

Hence its projection to the base space forms a (unique) self-intersection point
at (x, y) = (0,−3i/2). The situation is schematically illustrated in Fig. 3 with
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an appropriate labelling of solutions of the following characteristic equation
of P :

ξ3 + 3η2ξ + 2ixη3 = 0 with η = 1. (5)

The label j attached to a curve in Fig. 3 indicates that the curve is determined
by the factor ξ−ξj(x)η of the characteristic polynomial written in the form of
3∏

l=1

(ξ− ξl(x)η). Note that the point A(resp., B) corresponds to the traditional

Figure 3

turning point x = −1(resp., 1). Thus the x-component of the point C, i.e.,
x = 0, is expected to play a role similar to a traditional turning point in the
description of Stokes regions. Fortunately the actual situation is exactly as
expected: the Stokes curve of type (1,3) that emanates from x = 0, that is,

Im
∫ x

0

(ξ1(x) − ξ3(x))dx = 0 (6)

contains Stokes rays γ1 and γ2 in Fig. 2. Furthermore, by using the reasoning
of Voros ([V, p.244]) we find that the Stokes curve is inert near x = 0 (until
it hits a crossing point of other Stokes curves) in the sense that no Stokes
phenomena are observed there. We also note that the Voros argument ceases
to work at the crossing points of Stokes curves as the singularity originating
from the factor ξ − ξ2(x)η intervenes there. To emphasize the inert character
of a portion of a Stokes curve, we usually use a dotted line to describe it. See
Fig. 4.

Figure 4
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Thus we have found the correct Stokes regions shown in Fig. 2 by making use
of an ordinary Stokes curve that emanates from the hitherto undetected point
x = 0, and we are now entitled to call the point x = 0

a virtual turning point (of the BNR operator),

a turning point which cannot be detected with the naked eye but whose effect
may resurge when it hits a crossing point of Stokes curves, due to the interplay
of three singularities that occurs there. Although we have so far discussed the
particular operator (3), the reasoning goes as well in the general case.

Definition 1.1 ([AKT1],[AKT2],[AKKT]) Let P = P (x, η−1d/dx, η−1) be a
linear differential operator with a large parameter η that is of the following
form:

P0(x, η−1d/dx) + η−1P1(x, η−1d/dx) + η−2P2(x, η−1d/dx) + · · · . (7)

Assume that its Borel transform PB = P (x, ∂−1
y ∂x, ∂−1

y ) is a well-defined mi-
crodifferntial operator and that its traditional turning points are all simple
(in the sense of [AKKT]). Then a virtual turning point of P is, by defini-
tion, the x-component of a self-intersection point of a bicharacteristic curve
associated with the operator PB. If the crossing bicharacteristic curves are
respectively associated with the factor (η−1ξ − ξj(x)) and (η−1ξ − ξk(x)) of
P0(x, ζ) =

∏

l

(η−1ξ − ξl(x)), we say the virtual turning point is of type (j, k).

Definition 1.2 Let τ be a virtual turning point of type (j, k) of the operator
P in Definition 1.1. Then an integral curve of the direction field

Im(ξj(x) − ξk(x))dx = 0 (8)

that emanates from τ is called a new Stokes curve of type (j, k), or just a
Stokes curve of type (j, k).

Remark 2. A bicharacteristic strip is a curve in the complex cotangent bun-
dle. Hence a virtual turning point is a complex-analytic notion; unlike Stokes
curves or their crossing points, real structure is irrelevant. To avoid the possi-
ble confusion of the reader, we note that the assertion contrary to this remark
in [HLO, p.2292, l.3] originates from their erroneous quotation of the wording
‘a new turning point’ ([HLO, p.2291]). We also note that they make a mis-
leading claim in p.2291, l.8 ∼ l.10; actually f0(a) and f2(a) coalesce at a “new
turning point”. (Logically speaking, their argument in p.2291, l.2 resulted in
counting a virtual turning point as a (traditional) turning point, contrary to
their intention. At the same time Fig. 4 of [HLO] indicates that they over-
looked the relation f0(0) = f2(0). They could have avoided losing their way
in the logical labyrinth if they had noticed this relation.) Parenthetically we
also note that we can actually characterize (either traditional or virtual) turn-
ing points by the comparison of phase functions evaluated at different saddle
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points if the differential equation in question admits some “nice” integral rep-
resentation of its solutions. See [Sh] for the concrete examples related to the
quantized Hénon map.

Remark 3. If some turning points of the operator P in question are double,
some care is needed in the definition of virtual turning points. See [AKT5]
for the details. We note that the care is needed due to the complexity of
microlocal structure of solutions of the equation PBψB = 0 ; the operator PB

is an operator with multiple characteristics in this case.

2 The relevance of a virtual turning point to the
bifurcation phenomenon of a Stokes curve

The Stokes geometry given in Fig. 4 of the BNR operator is described with
η being real and positive. Let us now study what happens when we change
arg η. This amounts to considering the operator

η−3 d3

dx3
+ 3a2η−1 d

dx
+ 2ia3x (9)

with a parameter a satisfying |a| = 1, keeping η to be positive. Note that
Stokes curves do depend on arg η by their definition but that (virtual and
traditional) turning points remain fixed. (See Remark 2.) The resulting Stokes
geometry for (i) arg η = ( 1

2 − 1
12 )π, (ii) arg η = 1

2π and (iii) arg η = ( 1
2 + 1

12 )π
are respectively given in Fig. 5 (i), (ii) and (iii).

Figure 5: The Stokes geometry of the BNR operator for (i) arg η =
( 1
2 − 1

12 )π, (ii) arg η = 1
2π and (iii) arg η = ( 1

2 + 1
12 )π.

The bifurcation of a Stokes curve observed in Fig. 5 (ii) is due to the singularity
that the direction field (1) acquires at a simple turning point. Impressively
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enough, the smooth transition between Fig. 5 (i) and Fig. 5 (iii) via Fig. 5
(ii) is attained with the addition of Stokes curves emanating from the virtual
turning point x = 0. One should observe some clumsy transition if they were
not added. A subtle and interesting fact is that Fig. 5 (ii) switches the relative
location of a Stokes curve emanating from a traditional turning point and that
from a virtual turning point. As we will see in Section 3, this fact plays an
important role in understanding the intriguing fact which Sasaki ([Sa1]) has
found in the study of the Noumi-Yamada system.

3 Deformation of the linear differential equations that
underlie the Noumi-Yamada system

The Noumi-Yamada system ([NY]) is one of the Painlevé hierarchies, i.e., a
family of higher order non-linear equations whose first member coincides with
one of the second order Painlevé equations. The first member of the Noumi-
Yamada hierarchy is the following (NY )2, which is a symmetric form of the
fourth Painlevé equation (PIV);

(NY )2 : η−1 dfj

dt
= fj(fj+1 − fj+2) + αj (j = 0, 1, 2), (10)

where fj = fj−3 (j = 3, 4) and αj (j = 0, 1, 2) are constants that satisfy

α0 + α1 + α2 = η−1. (11)

Its underlying Lax pair, i.e., an overdetermined system of linear differential
equations whose compatibility conditions are given by (10), is as follows:

− η−1x
∂

∂x




ψ0

ψ1

ψ2


 =




(2α1 + α2)/3 f1 1
x (−α1 + α2)/3 f2

xf0 x −(α1 + 2α2)/3







ψ0

ψ1

ψ2


 ,

(12)

− η−1 ∂

∂t




ψ0

ψ1

ψ2


 =




f2 − t/2 −1 0
0 f0 − t/2 −1
−x 0 f1 − t/2







ψ0

ψ1

ψ2


 . (13)

In what follows we regard (12) as the main equation containing a parameter t
that is to be deformed obeying (13), and we study the Stokes geometry of (12)
for each t. Our earlier study ([KT]) of the connection problems for the Painlevé
transcendents indicates that, if t0 lies on a Stokes curve γ properly defined
for the Painlevé equation, the Stokes geometry of (12) should degenerate in
the sense that some turning points are connected by a Stokes curve. A more
accurate statement would be that the Stokes geometry topologically changes
off the curve γ near t = t0; actually the degeneration of the Stokes geometry is
a symptom of such a change. In studying the Stokes geometry of (12), Sasaki
([Sa1]) found the following intriguing FACT 3.1:
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FACT 3.1 When t0 moves along a Stoke curve γ of (10), we observe the
following phenomena in the Stokes geometry of (12):

(i) 　 If t0 is close to the starting point τ (i.e., a turning point of (10)) of γ, a
double turning point and a simple turning point are connected by a Stokes
curve of (12).

(ii)　 If t0 is far away from τ , no (traditional) turning points are connected
by a Stokes curve of (12).

The situation is illustrated in Fig.6.

Figure 6: Stokes geometry of (12) with α0 = 1 + 0.6i and α1 =
0.2−0.1i for (i) t0 = −1.6104−0.2268i and (ii) t0 = −1.5783−
0.4130i.

To understand FACT 3.1 properly, we next include relevant virtual turning
points in Fig. 6. For this purpose we study the Stokes geometry of (12) for
t0 slightly away from γ: near t = t0 that realizes Fig. 6 (i), the resulting
configuration is either one of the following:

Figure 7
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Similarly, near t = t0 that realizes Fig. 6(ii), we find

Figure 8

Here, and in what follows, a wiggly line designates a cut to fix the branch of a
characteristic root, and the symbol j > k attached to a Stokes curve indicates
the dominance relation along the Stokes curve. (See, e.g., [AKT1], [AKSST]
for the details.)

By letting the parameter t sit on the curve we then obtain the following
Fig. 9 through the limiting procedure. (Cf. [AKSST, Fig. 2])

Figure 9

We now find the mechanism at the back of FACT 3.1: virtual turning
points v1, v2 and v3 should have been taken into account in Fig. 6 (ii). The
degeneration of the Stokes geometry observed in Fig. 6 (i), that is, the ex-
istence of a pair of a double turning point d and a simple turning point s1

which are connected by a Stokes curve, is superseded by another degeneration
in Fig. 9 (ii), which is caused by the existence of a Stokes curve connecting
the turning point d with a virtual turning point v1 and that connecting s1

with another virtual turning point v2. We also note that Fig. 9 (i) and (ii)
are switched by the following Fig. 10, which is observed when another simple
turning point s2 hits the Stokes curves in question and causes their bifurcation
as we explained in Section 2.

Comparison of Fig. 7, 8 and 9 shows the following:

FACT 3.2 Resolution of the degeneration in Fig. 9 (ii) by a tiny change of
t induces the change of topological configurations of Stokes curves of (12), as
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Figure 10

is observed in Fig. 8 (ii)+ and (ii)− ; it is exactly in the same manner as the
result of the resolution of the degeneration observed in Fig. 9 (i).

Thus we are forced to conclude that the role of virtual turning points is
commensurate with that of traditional turning points in describing the Stokes
geometry.

The same comparison manifests the smooth transition from Fig. 7 (i)+
(resp. Fig. 7 (i)−) to Fig. 8 (ii)+ (resp. Fig. 8 (ii)−) outside a small neigh-
borhood of the simple turning point s2; this is what the reasoning in Section 2
predicts, but such a smooth transition can never be observed without virtual
turning points.

Remark 4. The Noumi-Yamada system (NY )l (l ≥ 4) is of higher order
(higher than the second order), and the so-called Nishikawa phenomena
([KKNT]) are observed in its Stokes geometry. Its investigation requires some
subtler study of Stokes geometry of the underlying linear differential equation
(a counterpart of (12)). Such a study was initiated by Sasaki ([Sa2]) and its
systematization is undertaken by Honda ([Ho]).

Appendix A practical recipe for locating a virtual turning point

If one wants to locate a virtual turning point following Definition 1.1, one
needs to solve the Hamilton-Jacobi equation globally. In general it is a
formidably difficult task. However, there is a practically satisfactory way to
locate a virtual turning point with the help of a computer. For the reader’s
convenience we briefly describe the recipe. See also [AKKSST], [AKSST] and
[Ho]; in particular [Ho] presents a systematic algorithm for describing a com-
plete Stokes geometry for the underlying linear differential equation of (NY )4.
Probably the method of Honda ([Ho]) is applicable to general equations, be-
yond the framework of the Noumi-Yamada system.

To describe the recipe, let us first fix the situation to be considered: Sup-
pose that a Stokes curve γ1 of type (1,2) that emanates from a turning point
τ1 intersects at a point ι with another Stokes curve γ2 of type (2,3) emanat-
ing from another turning point τ2. In what follows τ1 and τ2 may be either
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virtual or traditional. (In case τ1 or τ2 is a simple turning point we need some
care about the cut structure to fix the branches of solutions ξj(x) of the char-
acteristic equation.) Having the labeling of Fig. 3 in mind, a point x∗ that
satisfies ∫ x∗

τ1

ξ1dx =
∫ τ2

τ1

ξ2dx +
∫ x∗

τ2

ξ3dx (14)

is a virtual turning point. Next let us try to relate x∗ with the point ι. Sup-
posing that the cut structure is appropriately introduced if necessary, we use
(14) to find the following:

∫ x∗

τ1

(ξ1 − ξ2)dx =
∫ τ2

τ1

ξ2dx +
∫ x∗

τ2

ξ3dx −
∫ x∗

τ1

ξ2dx

=
∫ x∗

τ2

(ξ3 − ξ2)dx. (15)

(See [T, §3.3] for some diagrammatic interpretation of this relation.) By rewrit-
ing (15), we obtain

0 =
∫ ι

τ1

(ξ1 − ξ2)dx +
∫ x∗

ι

(ξ1−ξ2)dx +
∫ ι

τ2

(ξ2−ξ3)dx

+
∫ x∗

ι

(ξ2 − ξ3)dx

=
∫ x∗

ι

(ξ1−ξ3)dx +
∫ ι

τ1

(ξ1−ξ2)dx +
∫ ι

τ2

(ξ2−ξ3)dx. (16)

Since ι is an intersection point of Stokes curves γ1 and γ2, (16) entails

Im
∫ x∗

ι

(ξ1 − ξ3)dx = 0. (17)

Hence ι is most likely to lie in the Stokes curve of type (1,3) that emanates
from x∗. Here we say “most likely” just because we have not confirmed that
x∗ and ι belong to the same connected component of the real one-dimensional
curve defined by (17). This point is, however, almost automatically checked
in the computer-assisted study. This reasoning can be converted to find out a
virtual turning point relevant to ι: We first consider a curve γ defined by

Im
∫ x

ι

(ξ1 − ξ3)dx = 0. (18)

Defining a function ρ(x) by

Re
∫ x

ι

(ξ1 − ξ3)dx, (19)
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we seek for a point x0 in γ at which the following relation holds:

ρ(x0) =
∫ ι

τ1

(ξ2 − ξ1)dx +
∫ ι

τ2

(ξ3 − ξ2)dx. (20)

Since ρ(x) is monotonically decreasing or increasing on the real one-
dimensional curve γ, we can normally (i.e., except for the case where ρ is
bounded on γ) locate such a point x0 in γ. (Note that the right-hand side of
(20) is a real number, as ι is an intersection point of Stokes curves.) Then we
have ∫ x0

ι

(ξ1 − ξ3)dx =
∫ ι

τ1

(ξ2 − ξ1)dx +
∫ ι

τ2

(ξ3 − ξ2)dx. (21)

Hence the comparison of (16) and (21) entails that x0 is coincident with
a virtual turning point x∗. Actually all the virtual turning points studied by
Sasaki ([Sa1], [Sa2]) and Honda ([Ho]) have been detected by this method.

Furthermore virtual turning points thus detected play important roles in
describing the phase function φ(t) used in the instanton expansion of a solution
of the Noumi-Yamada system: for example the function φ(t) is given by

∫ v1(t)

d(t)

(ξ1 − ξ3)dx (22)

in the situation of Fig. 9 (ii) ([Sa1], [AKSST]). Using the terminology of [Ho],
we can go further to give another interpretation of the point v1 in the following
manner: We can associate a function φT (t) to each effective bi-directional
binary tree T that corresponds to degeneration of the Stokes geometry, and
we can locate the required virtual turning point v(t) in an appropriate Stokes
curve of type, say (j, k), which emanates from a turning point τ so that the
following relation holds:

φT (t) =
∫ v(t)

τ(t)

(ξj − ξk)dx (up to sign). (23)

Let us note that φT (t) is given by

∫ C

d

(ξ1 − ξ3)dx +
∫ C

s1

(ξ2 − ξ1)dx +
∫ C

s2

(ξ3 − ξ2)dx (24)

with an appropriate indexing ξj in the situation of Fig. 6 (ii), where C desig-
nates the crossing point of three Stokes curves observed there. We note that
(21) and (24) immediately entail (23) in this case. This interpretation of a vir-
tual turning point plays an important role in grasping the behavior of napping
virtual turning points ([Sa2]) in the framework of Honda ([Ho]).
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