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Abstract

This article gives an up-to-date account of the theory of discrete
group actions on non-Riemannian homogeneous spaces.

As an introduction of the motifs of this article, we begin by re-
viewing the current knowledge of possible global forms of pseudo-
Riemannian manifolds with constant curvatures, and discuss what
kind of problems we propose to pursue.

For pseudo-Riemannian manifolds, isometric actions of discrete
groups are not always properly discontinuous. The fundamental prob-
lem is to understand when discrete subgroups of Lie groups G act prop-
erly discontinuously on homogeneous spaces G/H for non-compact H.
For this, we introduce the concepts from a group-theoretic perspec-
tive, including the ‘discontinuous dual’ of G/H that recovers H in a
sense.

We then summarize recent results giving criteria for the existence
of properly discontinuous subgroups, and the known results and con-
jectures on the existence of cocompact ones. The final section discusses
the deformation theory and in particular rigidity results for cocom-
pact properly discontinuous groups for pseudo-Riemannian symmetric
spaces.

∗Translation from Sugaku, 57 (2005) 267–281, to appear in AMS translation journal
“Sugaku Expositions”
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1 Introduction: The problem of space forms

1.1 Pseudo-Riemannian manifolds of constant curva-
ture

The local to global study of geometries was a major trend of 20th century ge-
ometry, with remarkable developments achieved particularly in Riemannian
geometry. In contrast, in areas such as Lorentz geometry, familiar to us as the
space-time of relativity theory, and more generally in pseudo-Riemannian1

geometries, as well as in various other kinds of geometry (symplectic, com-
plex geometry,. . . ), surprising little is known about global properties of the
geometry even if we impose a locally homogeneous structure.

On the other hand, in the representation theory of Lie groups and in the
area of global analysis that applies it (noncommutative harmonic analysis),
the great trends of development throughout the 20th century include the
generalizations

compact 7→ noncompact
Riemannian 7→ pseudo-Riemannian manifolds

finite 7→ infinite dimensional representations

within their terms of study, and together with these, the appearance of
ground-breaking new research methods; these moreover deepened relations
with various areas of mathematics, such as PDEs, functional analysis, differ-
ential and algebraic geometry.

Against this background, from around the mid 1980s, I began to envis-
age the possibility of developing the theory of discontinuous groups also in
the world of pseudo-Riemannian manifolds. Soon afterwards, I succeeded
in proving a necessary and sufficient condition for the Calabi–Markus phe-
nomenon to occur, and, stimulated by this, launched a systematic study of
the general theory of discontinuous groups of homogeneous spaces that have
good geometric structures, but are not necessarily Riemannian manifolds; for
example, semisimple symmetric spaces or adjoint orbit spaces.

1That is, having a pseudometric 2-form that is not necessarily positive definite: whereas
a Riemannian metric is given by a positive definite 2-form at every point of a manifold, a
pseudo-Riemannian metric is the generalization obtained by replacing the positive definite
condition on the form by nondegenerate. The case of Lorentz manifolds corresponds to
the nondegenerate 2-form having signature (n − 1, 1).
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Whereas the theory of discontinuous groups of Riemannian symmetric
spaces had been the center of wide and deep developments for more than a
hundred years, at the time in the 1980s, practically no other researchers were
interested in the theory of discontinuous groups for non-Riemannian homo-
geneous spaces; although the starting point was solitary, whatever I did was
a new development. After the publication of the series of papers contain-
ing foundational results [17]–[19], [28], from the early 1990s, specialists in
other areas from France and the United States such as Benoist, Labourie,
Zimmer, Lipsman, Witte and so on eventually started to join in the study
of this problem. After this, research methods developed rapidly over the
following 10 years or so, and the ideas concerning discontinuous groups of
non-Riemannian homogeneous spaces have come to relate to many areas of
mathematics, including not only Lie group theory and discrete group theory,
but also differential geometry, algebra, ergodic theory, mechanical systems,
unitary representation theory and so on ([4], [5], [9], [15], [17], [28], [34], [35],
[40], [43], [46], [56], . . . ), so much so that already no single mathematician
can hope to cover them all.

For example, the recent researches of Margulis, Oh, Shalom and myself
([23], [35], [40], [46]) can be viewed as another instance of the same trend,
where the fundamental question of understanding the distinction between
a discrete group action and a discontinuous group for a non-Riemannian
homogeneous space begins to tie in to the at first sight unrelated subject of
the restriction of a unitary representation to a noncompact subgroup.

As an introduction to this article, we review and put in order the simplest
examples (in some sense) of spaces “of constant curvature”, and discuss what
kind of problems we propose to pursue, and what is the current state of
knowledge concerning the “possible global forms” of these spaces. To set
these things up precisely we recall the following definitions.

Definition A pseudo-Riemannian manifold of constant sectional curvature
is a space form.

For example, for signature (n, 0) (Riemannian manifolds), the sphere Sn

is a space form of positive curvature, and hyperbolic space a space form of
negative curvature. For signature (n − 1, 1) (Lorentz manifolds), de Sitter
space is a space form of positive curvature,2 Minkowski space a space form of

2In Calabi and Markus [8], in connection with the use of 4-dimensional Lorentz man-
ifold as the space-time continuum of relativity theory, the Lorentz space form of positive
curvature (that is, de Sitter space) is called the relativistic spherical space form.
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zero curvature, and anti-de Sitter space a space form of negative curvature.
Here since we are interested in global properties, when we say space form,

we assume that the geometry is geodesically complete. The main topic we
consider in this section is the following question:

Local assumption: among pseudo-Riemannian space forms3 of signature
(p, q) and curvature κ,

Global conclusion: do there exist any compact examples?

And if so, what types of group can appear as their fundamental groups?

1.2 The two dimensional case

The sphere S2, the torus T 2, and the closed Riemann surface Mg of genus
g ≥ 2 can be given Riemannian metrics to make them respectively into
space forms of positive, zero and negative curvature. In other words, in two
dimensional Riemannian geometry, there exists a space form of any curvature
κ. The same holds in general dimensions.

However, in the case of Lorentz signature (1, 1), there do not exist any
compact space form with κ 6= 0. In fact, the sphere S2 and the Riemann
surface Mg with g ≥ 2 do not even admit a Lorentz metric.4 And if T 2

can be given a Lorentz metric of constant curvature κ then κ = 0 by the
Gauss–Bonnet theorem.

1.3 The case of positive curvature

Among Riemannian manifolds, the sphere Sn is the typical model for a space
form of positive curvature. Conversely, the only complete space forms with
this property are Sn, or at most Sn divided by a suitable finite group.5

We recall two classical theorems generalizing the fact that “a space form of
positive curvature has finite fundamental group”.

In one direction, we leave unchanged the positive definite property of the
metric form (that is, a Riemannian manifold), and perturb the curvature (or
the metric itself).

3Multiplying a pseudo-Riemannian metric by −1 changes its signature from (p, q) to
(q, p), and its curvature from κ to −κ.

4Any paracompact manifold admits a Riemannian structure, but the analogous result
does not hold for pseudo-Riemannian structure.

5See Wolf [50] for details on what kind of finite groups one can divide by.
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Theorem 1 (Myers 1941 [38]) Suppose that the Ricci curvature of a com-
plete Riemannian manifold has a positive lower bound. Then the fundamental
group is finite, and the manifold is compact.

In the other direction, we now leave unchanged the positive definite prop-
erty of the curvature, but vary the positive definite assumption on the metric
form (that is, the condition for a Riemannian manifold).

Theorem 2 (Calabi and Markus 1962 [8]) In Lorentz geometry of di-
mension ≥ 3, a space form of positive curvature has finite fundamental group,
and is noncompact.

Theorem 2 can be formulated more generally, with pseudo-Riemannian
manifold of general signature in place of Lorentz manifold, and locally homo-
geneous space in place of constant sectional curvature. We can formalize this
as the problem of discontinuous groups for homogeneous spaces. Here we say
that a discrete subgroup Γ of G is a discontinuous group for the homogeneous
space G/H to mean that the left action of Γ on G/H is properly discontinuous
and free (for more details, see Section 2). The following result is formulated
so as to contain Theorem 2 as a special case.

Theorem 3 (Criterion for the Calabi–Markus phenomenon 1989 [17])
Let G ⊃ H be a pair of reductive Lie groups; then the homogeneous space
G/H admits a discontinuous group of infinite order if and only if rankR G >
rankR H.

In the opposite directions, testing this theorem on various examples of
homogenous spaces leads one to believe that the following conjecture may
hold:

Conjecture 4 (see [27]) Assume that p ≥ q > 0 and p + q ≥ 3. Suppose
that the sectional curvature of a complete pseudo-Riemannian manifold of
signature (p, q) has a positive lower bound.6 Then the fundamental group is
finite and the manifold is noncompact.

6Here we are using sectional curvature. With Ricci curvature only, the assumption is
too weak.
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1.4 The case of curvature zero

Among Riemannian manifolds, the n-dimensional torus T n is the typical
example of a space form of curvature 0. Its fundamental group Zn is an
Abelian group. More generally, the following theorem says that the fun-
damental group of a space form of curvature 0 is also close to an Abelian
group:

Theorem 5 (Bieberbach 1911) The fundamental group of a complete Rie-
mannian manifold of constant sectional curvature 0 contains an Abelian sub-
group of finite index.

Whether the analogous result holds for a pseudo-Riemannian manifold is
still unknown:

Conjecture 6 (Auslander Conjecture – Special case) The fundamen-
tal group of a compact pseudo-Riemannian manifold of constant sectional
curvature 0 contains a solvable subgroup of finite index.

Conjecture 6 is true for a Lorentz manifold (Goldman and Kamishima
1984 [12], Tomanov). More generally, one can extend the Bieberbach theorem
under the assumption of an affine manifold. This is the original Auslander
Conjecture. One can also envisage a stronger form:

Problem 7 (Milnor 1977 [37]) Is it true that any discontinuous group
(see Section 2) for affine space Rn = (GL(n, R) n Rn)/ GL(n, R) contains a
solvable subgroup of finite index?

In 1983 Margulis gave a counterexample to this conjecture of Milnor in
dimension n = 3 (Theorem 11). On the other hand, the following proposition
is a continuous analog of Milnor’s problem:

A connected subgroup of the affine group that acts properly on
Rn (see Section 2) is amenable; that is, it is a compact extension
of a solvable group.

This statement (also in a more general form) is known to hold (1993 [20],
Lipsman 1995 [34]). Although the original Auslander Conjecture remains
open, Abels, Margulis and Soifer (1997 [1], [2], [36]) have announced that it
holds in dimension ≤ 6. Also, on a related topic, the Lipsman conjecture
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(1995, [34]) on discontinuous groups of nilmanifolds and their proper actions
is known. Definitive results on the Lipsman conjecture have been obtained in
very recent work of Nasrin, Yoshino, Baklouti and Khlif. Namely, it is true
if the nilmanifold has dimension ≤ 4 [51], and there is a counterexamples in
dimension ≥ 5 [52]. Moreover, it is true for Lie groups that are at most 3-step
nilpotent ([3], [39], [54]), and there is a counterexample for 4-step nilpotent
or more [52].

1.5 The case of negative curvature

In the case of Riemannian manifolds, negatively curved compact space forms
(hyperbolic manifolds) exist. This is equivalent to the fact that the Lorentz
groups O(n, 1) admit uniform lattices.7 However, for general pseudo-Riemannian
manifolds, the fundamental problem of knowing for which signature (p, q)
there exist compact space forms (of negative curvature) is still not completely
settled as things stand. The following conjecture addresses this question; it
is a specialization to the case of the homogeneous spaces O(p, q + 1)/ O(p, q)
of Conjecture 17, the existence problem for uniform lattices for a reductive
homogeneous space.

Conjecture 8 (Conjecture on Space Forms, 1996) The necessary and
sufficient condition for the existence of a compact pseudo-Riemannian mani-
fold of signature (p, q) with constant negative sectional curvature is that (p, q)
is in the following list:

q N 0 1 3 7
p 0 N 2N 4N 8

where N = 1, 2, 3, . . . .

The sufficiency of the condition is proved. As already discussed, for q = 0,
these are hyperbolic (Riemannian) manifolds; for q = 1, 3, examples were dis-
covered in 1981 by Kulkarni [30]. In the case q = 7, examples were discovered
from the 1990s by applying the existence theorem of uniform lattices for gen-
eral homogeneous spaces (Theorem 15), see [21].

7For arithmetic uniform lattices, this is general theory, due to Borel and Harish-
Chandra (1962), Mostow and Tamagawa (1962) and Borel (1963); for nonarithmetic
uniform lattices (in hyperbolic spaces) examples were constructed by Makarov (1966),
Vinberg, Gromov and Pyatetskĭi-Shapiro (1981).
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Whether the condition of Conjecture 8 is necessary is still not settled, al-
though it is proved to hold in many cases, such as q = 1, or p ≤ q, or pq odd.
The final “odd condition” on p, q was extended to general reductive homoge-
neous spaces (the most typical pseudo-Riemannian homogeneous spaces) by
Ono and myself [28], by a method generalizing Hirzebruch proportionality
for characteristic classes. (For more details on these topics, we refer to the
references given in [27] and [31]. See also [58].)

2 Discontinuous actions and Clifford–Klein

forms

Even though the problem of space forms treats extremely special spaces, as
discussed in the preceding section, many problems remain open. However,
even restricting to these cases, there are instances when, rather than studying
individual isolated examples, we obtain a clearer perspective from the general
viewpoint of discontinuous group actions on (non-Riemannian) homogeneous
spaces.8 In this direction, this section explains basic notions and concrete
examples, while emphasizing the distinction between “discontinuous groups
acting on homogeneous spaces” and “discrete subgroups”. In the remainder
of the article, keeping at the back of our minds the point of view on the
problem of space forms explained above, we want to discuss how far the
world of discontinuous groups can be extended in the general framework,
avoiding as far as possible the technical terms of the theory of Lie group.

First, in the case of Riemannian manifolds, subgroups consisting of isome-
tries satisfy

discrete group ⇐⇒ discontinuous group.

However, for pseudo-Riemannian manifolds and for subgroups consisting of
isometries, these conditions are not equivalent:

discrete group
=⇒×
⇐= discontinuous group,

and the quotient space by the action of a discrete group is not necessarily
Hausdorff. For example, the orbit of a discrete group is not necessarily a

8From this point of view, any pseudo-Riemannian space forms of signature (p, q) with
q 6= 1 is a Clifford–Klein form of the rank 1 semisimple symmetric space O(p, q+1)/ O(p, q).
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closed set; this corresponds to the fact that in the topology of the quotient
space, a single point is not a closed point, and in particular the quotient
topology is not Hausdorff. There are thus cases when the quotient is non-
Hausdorff for local reasons. However, Hausdorff is a global property of a
topological space, and there are also more curious counterexamples. The
following example is one such. Here the quotient topology is non-Hausdorff
for a global reason, because accumulation points do not exist.9

Example Make the discrete group Z act on X = R2 \ {(0, 0)} by the
map Z × X → X given by (n, (x, y)) 7→ (2nx, 2−ny). Thus the Z-orbits
are contained in the hyperbolas xy = const. or in the x- and y-axes; in

Figure 1: Z-orbits

Figure 1 the crosses × represent a Z-orbit contained in the first quadrant.
This Z-action does not have any accumulation points in X, but the quotient
space Z\X is non-Hausdorff. In fact, by considering the fiber bundle Z\R →
Z\X → R\X, one sees that the quotient space Z\X is homeomorphic to an
S1 fiber bundle over the base space illustrated in Figure 2, consisting of four
half-lines and four points, given a non-Hausdorff topology.

How to understand this kind of example in group theoretic terms is the
main topic of Sections 2–3. As a preparation, we introduce some pieces of
basic terminology. The set-up we consider is a topological group Γ with a
continuous action on a space X; we write Γ y X for this action. For S ⊂ X
a subset, we define the subset ΓS ⊂ Γ as follows:

ΓS :=
{

γ ∈ Γ
∣

∣ γ · S ∩ S 6= ∅
}

.

9This example can be reformulated in group theoretic terms as a homogeneous space
of SL(2, R).
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Figure 2: R\X ' four half-lines and four points
(a complete system of representatives)

Definition (1) The action Γ y X is properly discontinuous if ΓS is finite
for any compact subset S ⊂ X.

(2) The action Γ y X is proper if ΓS is compact for any compact subset
S ⊂ X.

(3) The action Γ y X is free if the stabilizer subgroup Γ{p} of any point
p ∈ X consists of the identity element only.

The action of a noncompact group is not necessarily well behaved. The
notion of a “proper action” (Palais 1961 [44]) abstracts out the “good prop-
erty” of a compact group action. Putting together as above the notion of
properly discontinuous gives rise to the following equation:

Γ acts properly discontinuously ⇐⇒

{

Γ acts properly,
and Γ is a discrete group.

Thus, in order to determine whether the action of a discrete group is properly
discontinuous, it is enough to determine whether the action is proper. This
last point has wide applications.

Now, for a group Γ acting on a set X, we write Γ\X for the set of
equivalence classes of the equivalence relation given by

x ∼ x′ ⇐⇒ x′ = γ · x for some γ ∈ Γ.

We can view Γ\X as the set of Γ-orbits in X, so we call it the orbit space (or
Γ-orbit space). The reason for considering properly discontinuous actions of
Γ is the following well-known result:
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Lemma Let X be a manifold (respectively C∞ manifold, pseudo-Riemannian
manifold, complex manifold, etc.), and suppose that a discrete group Γ acts
on X continuously (respectively smoothly, isometrically, biholomorphically,
etc.). If the action of Γ is properly discontinuous and free then the quotient
topology on Γ\X is Hausdorff, and the quotient Γ\X can be given a unique
manifold structure for which the quotient map X → Γ\X is a local home-
omorphism (respectively local diffeomorphism, local pseudo-isometry, locally
biholomorphic).

In what follows, X = G/H is a homogeneous space for a Lie group G,
and Γ is a discrete subgroup of G, so we have the following triple of groups:

Γ ⊂ G ⊃ H.

Definition We say that Γ is a discontinuous group for the homogeneous
space G/H if Γ acts properly discontinuously and freely on G/H. Here
“properly discontinuously” is the most important condition; papers in the
literature sometimes omit the condition that the action is free in the definition
of a discontinuous group. If Γ is a discontinuous group for G/H, the manifold
obtained as the double coset space Γ\G/H is a Clifford–Klein form of G/H.
If in addition Γ\G/H is compact, we say that Γ is a uniform lattice of the
homogeneous space G/H.

Examples (1) Let (G, Γ, H) = (Rn, Zn, {0}); then the Clifford–Klein
form Γ\G/H is diffeomorphic to the n-dimensional torus T n, and so is
a compact manifold.

(2) Nilmanifold: set

G :=











1 a b
0 1 c
0 0 1





∣

∣

∣

∣

∣

∣

a, b, c,∈ R







, Γ := G ∩ GL(3, Z), H = {e}.

The Clifford–Klein form Γ\G/H is a 3-dimensional compact manifold
(the Iwasawa manifold).

(3) The modular group: set (G, Γ, H) = (SL(2, R), SL(2, Z), {e}). The
Clifford–Klein form Γ\G/H is noncompact, but has finite volume (with
respect to a naturally defined measure). Moreover Γ\G/H is homeo-
morphic to the knot complement R3 \ (trefoil knot).
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(4) Closed Riemann surface: the closed Riemann surface Mg of genus g ≥ 2
can be realized as a Clifford–Klein form Γ\G/H of the Poincaré upper
half-space G/H = SL(2, R)/ SO(2); here Γ ' π1(Mg).

(5) The Calabi–Markus phenomenon: let G = SL(2, R), and let H ⊂ G be
any noncompact closed subgroup. Then the only discontinuous groups
of G/H are finite groups. In particular, if H and G/H are both non-
compact then there does not exist any uniform lattice for G/H.

(6) Compact Lorentz space form: let (G, H) = (SO(2n, 2), SO(2n, 1)) and
let Γ ⊂ U(n, 1) be a uniform lattice without torsion elements. If we view
Γ as a discrete subgroup of G by the embedding Γ ⊂ U(n, 1) ⊂ G then
Γ is also a uniform lattice of the homogeneous space G/H. However,
Γ cannot be a uniform lattice of G.

The above examples (5) and (6) illustrate the following important warning
for noncompact subgroups:

for a noncompact subgroup H, a uniform lattice for G is not the
same thing as a uniform lattice for the homogeneous space G/H.

3 Criterion for an action to be discontinuous

This section discusses the following problem:

Problem A Find effective methods of determining whether a discrete sub-
group Γ acts properly discontinuously on a homogeneous space G/H.

The definition of a properly discontinuous action on a topological space
was easy enough to formulate. However, in general, given a discrete subgroup
Γ of a Lie group G, actually determining whether or not the action of Γ
on a homogeneous space G/H is properly discontinuous is not at all easy.
One aims for “criteria” in Problem A that are so concrete and powerful
that we can, for example, obtain the following various theorems as sample
applications.

Theorem 9 (Pseudo-Riemannian manifold space form of signature
(p, q) with negative curvature [8], [48], [30], [17]) The homogeneous
space O(p, q+1)/ O(p, q) has only finite groups as discontinuous groups ⇐⇒
p ≤ q.
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Theorem 10 (Solvable manifolds 1993 [20], [34]) Any homogeneous space
for a solvable Lie group has a Clifford–Klein form with fundamental group of
infinite order.

Theorem 11 (Affinely flat manifold, Margulis 1983 [2]) Affine 3-space
(GL(3, R) n R3)/ GL(3, R) ' R3 admits a free non-Abelian group as a dis-
continuous group.

Theorem 12 (Pseudo-Riemannian homogeneous space, Benoist 1996 [4])
SL(3, R)/ SL(2, R) does not admit a free non-Abelian group as a discontinu-
ous group.

Now for a non-Riemannian homogeneous space G/H, the usual approach
to its discontinuous groups was to restrict the study to extremely special
situations (for example, the rank 1 symmetric spaces of the type treated
in Section 1) and to make clever use of the special properties enjoyed by
the individual homogeneous spaces G/H; compare [8], [30], [48], [49],. . . .
This method requires huge calculations, even if G/H is a rank 1 symmetric
space (as in [30]). Instead of this, to deal with discontinuous groups for
more general pseudo-Riemannian homogeneous spaces (for noncompact H),
I introduced the following idea in [17], [22].

1. Forget that H is a group and that the homogeneous space G/H is a
manifold.

2. Forget that Γ is discrete and that it is a group.

Having thus thrown away all of the (at first sight) most important infor-
mation, we are left with the following possibilities:

3. View Γ and H on an equal footing, simply as subsets of G.

4. Control the discontinuous property of the action Γ y G/H using the
representation theory of G.

In order to implement this idea, we introduce the following two relations
t and ∼ on subsets H and10 L of a locally compact group G.

10In what follows, we often use L as an alternative notation to Γ.
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Definition (see [22]) (1) We say that the pair (L, H) is proper in G and
write L t H (in G) if and only if for any compact subset S of G the
intersection L ∩ SHS is relatively compact.11

(2) We write L ∼ H (in G) if and only if there exists a compact subset S
of G such that L ⊂ SHS and H ⊂ SLS.

For an Abelian group G, the relations t and ∼ are remarkably simple.

Example Let H and L be subspaces of the Abelian group G := Rn.

(1) H t L in G ⇐⇒ H ∩ L = {0}.

(2) H ∼ L in G ⇐⇒ H = L.

Now if L and H are closed subgroups of G then

L t H in G ⇐⇒ L acts properly on G/H.

Thus we can view t as a notion generalizing properness of a group action.
In other words, to understand whether an action is proper, or is properly
discontinuous, it is enough to understand the relation t. Moreover

L t H ⇐⇒ H t L

This reflects a kind of symmetry between the action of L on G/H and of H
on G/L. We also have

if H ∼ H ′ then L t H ⇐⇒ L t H ′.

Thus the use of ∼ provides economies in considering t. We define the dis-
continuous dual Ht of a subset H of G as follows:

Ht :=
{

L
∣

∣ L is a subset of G satisfying L t H
}

.

First, we have the following theorem, which I proved in 1996 [22] for G
a reductive Lie group; whether it holds in general was one of the unsolved
problems discussed in [27], and was settled positively by Yoshino in 2004 [53].

11In differential geometry, t is often used to mean that two submanifolds intersect
transversally; here we use the notation in a completely different meaning.
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Theorem 13 (Duality theorem) A subset H of a Lie group G can be re-
constructed from its discontinuous dual Ht up to the equivalence ∼.

Our original aim was to determine by explicit methods whether the action
of a discrete group is properly discontinuous. Problem A can be formalized
again in the following more general form.

Problem A′ Let H and L be subsets of a group G. Find criteria to deter-
mine whether H t L.

Let G be a reductive linear Lie group (for example, GL(n, R) or O(p, q),
etc.). Write g = k + p for a Cartan decomposition of the Lie algebra g of G,
and choose a maximal Abelian subspace a of p. Write

d(G) := dim p, rankR G := dim a.

Also, using a Cartan decomposition G = K exp(a)K, we define the Cartan
projection ν : G → a, which is determined up to the action of the Weyl group.

For example, for G = GL(n, R), we have d(G) =
(

n+1

2

)

and rankR G = n.
For a square matrix g ∈ G, the product tgg is a positive definite symmetric
matrix, and we write out its eigenvalues in order, from the largest down:

λ1 ≥ · · · ≥ λn (> 0).

Then the Cartan projection ν : G → R
n is given by the formula: g 7→

1

2
(log λ1, . . . , log λn).

After these preparations, the answer to Problem A (or Problem A′) is as
follows:

Theorem 14 (Criterion for a properly discontinuous action [17], [22])
Let H and L be subsets of a reductive linear Lie group G. Then

(1) L ∼ H in G ⇐⇒ ν(L) ∼ ν(H) in a.

(2) L t H in G ⇐⇒ ν(L) t ν(H) in a.

For the Abelian group a ' Rn the relations t and ∼ have a very simple
meaning. Thus Theorem 14 is useful as a criterion.

I solved Problem A′ in 1989 [17] for a triple of reductive Lie groups
(G, H, L), and subsequently generalized the result in [22] in the above form,
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without even assuming that L and H have group structures; Benoist [4]
proved a similar generalization independently of [22]. The above results
Theorems 3, 9 and 12 can be obtained as corollaries of Theorem 14. Also,
using a generalization in the style of Theorem 14 made it possible to study
the extent to which the proper discontinuity of an action is preserved on
deforming a discrete group (for example, Goldman’s conjecture 1985 [11]);
see [24], [29], [41], [45]; we return to this topic in Section 5. In addition to
this, recent work (from 2001 onwards) due to Iozzi, Oh, Witte and others
[14], [27], [42] contain results arising from applications of Theorem 14 to
individual homogeneous spaces.

The implications ⇐ of Theorem 14, (1) and ⇒ of Theorem 14, (2) are
obvious. And the implication ⇒ in (1) is related to giving uniform bounds
on the errors in the eigenvalues when a matrix is perturbed.12

4 The existence problem for compact Clifford–

Klein forms

4.1 Existence and nonexistence theorems for uniform

lattices

In what follows, we let G ⊃ H be a pair of reductive linear Lie groups. G/H is
the typical model of a pseudo-Riemannian homogeneous space (Riemannian
if H is compact). This section discusses the following problem.

Problem B For which homogeneous spaces G/H does a uniform lattice
exist? In other words, classify the homogeneous spaces that have compact
Clifford–Klein forms.

Among the various currently known results, we discuss two that have the
widest field of applications. The key points in the proof of these results are
the criterion for a proper action (Theorem 14) and the cohomology of discrete
groups.

Theorem 15 (1989 [17]) If a reductive subgroup L ⊂ G satisfies

L t H and d(L) + d(H) = d(G),

12Various inequalities concerning this are known, of which a theorem of Weyl is the
prototype.
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then a compact Clifford–Klein form of G/H exists.

Theorem 16 (1992 [19]) If L ⊂ G is a reductive subgroup and there exists
H with

L ∼ H and d(L) > d(H)

then there does not exist a compact Clifford–Klein form of G/H.

We refer to [21] for the list of pairs (G, H) that satisfy the conditions
of Theorem 1513 and to [19], [21] for the list of (G, H) that satisfy those of
Theorem 16.

If Γ is a torsion-free uniform lattice of a group L then, provided the
assumptions of Theorem 15 are satisfied, Γ\G/H is a compact Clifford–Klein
form. Conversely, even if we assume that Γ\G/H is a compact Clifford–Klein
form, it does not necessarily follow that there exists a reductive Lie subgroup
L containing Γ satisfying the assumptions of Theorem 15 (1998 [24], Salein
1999 [45]). However, in a slightly weaker form, the following conjecture is
still unsolved. The special case G/H = O(p, q + 1)/ O(p, q) of Conjecture 17
is Conjecture 6 on space forms.

Conjecture 17 (1996 [21]) The converse of Theorem 15 also holds.

4.2 Uniform lattices of an adjoint orbit

We consider semisimple orbits as examples of homogeneous spaces. If we
choose an element X of the Lie algebra g of a Lie group G, the adjoint
orbit OX = Ad(G)X is a submanifold of g that we can identify with the
homogeneous space G/GX , where GX = {g ∈ G

∣

∣ Ad(g)X = X} is the
stabilizer of X.

When G is a reductive Lie group and ad X ∈ End(g) is semisimple, we
say that OX is a semisimple orbit. If in addition all of the eigenvalues of
adX are purely imaginary numbers then we say that OX is an elliptic orbit.
For example, the adjoint orbits of a compact Lie group are always elliptic
orbits.

A number of important classes of homogeneous spaces arise as semisimple
orbits. For example, all the flag manifolds, Hermitian symmetric spaces,

13It follows of course from Borel’s Theorem [5] that this list includes the case that H is
compact, and the case of the group manifold itself (that is G = G′×G′ and H = diag G′).
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para-Hermitian symmetric spaces, and so on can be realized as semisimple
orbits.14

One can define a natural G-invariant symplectic structure and pseudo-
Riemannian structure on a semisimple orbit.15 Also, various unitary repre-
sentations appear as geometric quantizations of these orbits, including prin-
cipal series representations (more generally, degenerate principal series repre-
sentations), and discrete series representations (more generally, Zuckerman’s
derived functor modules Aq(λ)), and so on. The latter in particular corre-
sponds to geometric quantization of elliptic orbits.

We have the following theorem concerning the existence problem16 of
compact Clifford–Klein forms of semisimple orbits.

Theorem 18 (see [19]) The only semisimple orbits having a uniform lat-
tice are elliptic orbits. In particular, these have an invariant complex struc-
ture.

Hermitian symmetric spaces always have a uniform lattice (Borel [6]),
and are elliptic orbits. We give one example of an elliptic orbit that is not a
Hermitian symmetric space: consider the Hermitian form of signature (2, n)

z1z1 + z2z2 − z3z3 − · · · − zn+2zn+2,

and write O ⊂ P
n+1

C
for the set of all complex lines such that the restriction of

the form is positive definite. Then O is an open subset of complex projective
space P

n+1

C
(so is in particular a complex manifold), and can be identified

with an elliptic orbit of U(2, n). Note that O does not have the structure of
a Hermitian symmetric space. Moreover, if n is even then we can use The-
orem 15 to see that there exists a uniform lattice for O (for this, one need
only set L = Sp(1, n

2
)). In particular, one can use this to construct a com-

pact symplectic complex manifold for which the natural form has indefinite
signature (see [17], [21]).

Theorem 18 was discovered by myself; its proof uses the cohomology
of discrete groups, and is based on Theorem 16 ([18], [19]). Subsequently
Benoist and Labourie [5] gave a different proof using symplectic geometry.

14The first two cases are even elliptic orbits.
15Plus, in the case of an elliptic orbit, a G-invariant complex structure. A Kähler or

pseudo-Kähler structure can also be defined.
16Although extremely special, the case that a compact Clifford–Klein form exists has

known analytic applications, such as Atiyah and Schmid’s construction [57] of the discrete
series representations via the L2 index theorem.
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4.3 Uniform lattices of SL(n)/ SL(m)

This section discusses the question of whether there exist compact Clifford–
Klein forms of the non-symmetric homogeneous space SL(n)/ SL(m). This
space is special from our point of view; from the mid-1990s onwards, the
question of the existence of its compact Clifford–Klein forms was attacked
using a variety of different methods, with the same result being obtained
using many different methods of proof, resulting in an attractive amalgam
with other areas.

The original model is the following result, obtained by applying L =
SU(2, 1) to Theorem 16.

Theorem 19 (1990 [18]) There do not exist any compact Clifford–Klein
forms of SL(3, C)/ SL(2, C).

The following theorem is deduced from Theorem 16 by the same principle
(replacing R by C or by the quaternions H leads to similar results).

Theorem 20 (1992 [19]) There do not exist any compact Clifford–Klein
forms of the homogeneous spaces SL(n, R)/ SL(m, R) if n

3
>

[

m+1

2

]

.

Now for the Clifford–Klein forms of SL(n, R)/ SL(m, R), we can also con-
sider the right action of SL(n − m, R). Taking note of this point, Zimmer
and his collaborators used machinery such as the superrigidity theorem for
cocycles and Ratner’s theorem on the closure of orbits to prove the following
theorems.

Theorem 21 (Zimmer 1994 [56]) There do not exist any compact Clifford–
Klein forms of SL(n, R)/ SL(m, R) when n > 2m.

Theorem 22 (Labourie, Mozes and Zimmer 1995 [32]) There do not
exist any compact Clifford–Klein forms of SL(n, R)/ SL(m, R) if n ≥ 2m.

Theorem 23 (Corlette and Zimmer 1994 [9], [10]) There do not exist
any compact Clifford–Klein forms of Sp(n, 2)/ Sp(m, 1) if n > 2m.

The following result was obtained as an application of the criterion for a
proper action (Theorem 14).

Theorem 24 (Benoist 1996 [4]) There do not exist any compact Clifford–
Klein forms of SL(n, R)/ SL(n − 1, R) for odd n.
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Moreover, for SL(m) embedded in SL(n) by an irreducible representa-
tion ϕ (not just the natural inclusion), Margulis considered the restriction
of unitary representations of SL(n, R) to noncompact subgroups, and used
methods involving delicate estimates for the asymptotic behavior of matrix
coefficients to prove the following theorem.

Theorem 25 (Margulis 1997 [35]) For n ≥ 5, there does not exist any
compact Clifford–Klein form of SL(n, R)/ϕ(SL(2, R)).

The systematic study of Margulis’ method was taken further by Oh 1998
[40]. The method based on unitary representation theory was developed
futher, and Shalom proved the following theorem.

Theorem 26 (Shalom 2000 [46]) For n ≥ 4, there does not exist any
compact Clifford–Klein form of SL(n, R)/ SL(2, R).

These results were obtained by taking up recent development in other
areas of mathematics, and the methods of proof extend over many branches.
However, as things stand at present, all the currently known results support
Conjecture 17 (which, applied to this case, states that “there do not exist
any compact Clifford–Klein forms of SL(n, R)/ SL(m, R) for n > m”).

Note that, among these theorems, Theorems 21, 22, 23 and 26 are con-
tained in an extremely special case of Theorem 16: although the references
[9], [10], [31], [46], [56] mentioned above do not refer explicitly to this, The-
orem 16 or its corollary Theorem 20 is actually a stronger result even when
restricted to these special cases. On the other hand, Benoist’s Theorem 24
and Margulis’ Theorem 25 are not contained in Theorem 16. For various re-
sults concerning these explicit kinds of homogeneous spaces, many details are
contained in my lecture notes [21] in the proceedings of a European School.

5 Rigidity and deformations of Clifford–Klein

forms

This section discusses the following problem.

Problem C Is it possible to deform a uniform lattice Γ for a homogenous
space G/H?
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For an irreducible Riemannian symmetric space G/H of dimension ≥ 3
with a compact subgroup H, and Γ a uniform lattice of G/H, there do not
exist any essential deformations of Γ (Theorem 27). This result is the original
model for various kinds of rigidity theorems (in Riemannian geometry).

Now, does there exist a similar rigidity result in the case that H is non-
compact (the pseudo-Riemannian case)? We can view a “rigidity theorem”
as an assertion of the type that the fundamental group determines not just
the topological structure, but also the geometric structure. Now, does the
“rigidity theorem” also hold for an (irreducible) pseudo-Riemannian sym-
metric space?

In fact, for a noncompact subgroup H, the situation for the rigidity the-
orem is quite different from the case of Riemannian symmetric spaces. More
precisely, there exist (irreducible) pseudo-Riemannian symmetric spaces of
arbitrarily high dimension, that admit uniform lattices for which the rigidity
theorem does not hold (see [20], [24]). We give such examples in Theorem 28,
where we give a more precise formulation of Problem C. But first, we note
that Problem C includes the following two subproblems.

Problem C-1 For a discrete subgroup Γ ⊂ G, describe the deformations of
Γ as an abstract group inside G.

Problem C-2 If a discrete subgroup Γ ⊂ G can be deformed inside G,
determine the range of the deformation parameters that does not destroy
the proper discontinuity of its action on G/H.

Bearing these questions in mind, we now try to describe abstractly the
set of deformations of a discontinuous group.

Let G be a Lie group and Γ a finitely generated group; we give the set
Hom(Γ, G) of group homomorphisms from Γ to G the pointwise convergence
topology. The same topology is obtained by taking generators γ1, . . . , γk of
Γ, then using the injective map

Hom(Γ, G) ↪→ G × · · · × G given by ϕ 7→ (ϕ(γ1), . . . , ϕ(γk))

to give Hom(Γ, G) the relative topology induced from the direct product
G × · · · × G.

Let H be a closed subgroup of G. As already explained, if H is noncom-
pact then a discrete subgroup of G does not necessarily act properly discon-
tinuously on G/H. Here rather than Hom(Γ, G), it is the subset R(Γ, G, H)
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defined below that plays the important role (see [20]):

R(Γ, G, H) :=

{

u ∈ Hom(Γ, G)

∣

∣

∣

∣

u is injective; and u(Γ) acts properly
discontinuously and freely on G/H

}

.

Then for each u ∈ R(Γ, G, H) we obtain a Clifford–Klein form u(Γ)\G/H.
Now the direct product group Aut(Γ) × G acts naturally on Hom(Γ, G),
leaving R(Γ, G, H) invariant. We now define the following two spaces:

the deformation space T (Γ, G, H) := R(Γ, G, H)/G; and

the moduli space M(Γ, G, H) := Aut(Γ)\R(Γ, G, H)/G.

For example, if (G, H) = (PSL(2, R), PSO(2)) and Γ = π1(Mg) for g ≥ 2
then T (Γ, G, H) is the Teichmüller space of Mg, and M(Γ, G, H) is nothing
other than the moduli space of complex structures on Mg.

We formalize local rigidity of a discontinuous group as saying that it
corresponds to an “isolated point” of the deformation space T (Γ, G, H):

Definition (Local rigidity in a non-Riemannian homogeneous space 1993 [20])
Let u ∈ R(Γ, G, H). We say that the discontinuous group u(Γ) for the
homogeneous space G/H determined by u is locally rigid as a discontinuous
group of G/H if the single point [u] is an open set of the quotient space
Hom(Γ, G)/G; this means that any point sufficiently close to u is conjugate
to u under an inner automorphism of G. If u is not locally rigid, we say that
u admits continuous deformations.

When H is compact, this terminology coincides with the original notion
(see Weil [47]).

In higher dimensions, let us compare whether the local rigidity theorem
holds in the cases that H is compact or noncompact. Let G′ be a noncompact
simple linear Lie group, and K ′ its maximal compact subgroup. We can use
the vanishing and nonvanishing theorems for cohomology of Lie algebras to-
gether with the criterion for a properly discontinuous action discussed above
(Theorem 14) and so on, to prove the following theorem.

Theorem 27 (Local rigidity theorem – the Riemannian case:
Selberg and Weil 1964 [47]) Let (G, H) := (G′, K ′). Then the following
two conditions on G′ are equivalent:
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(i) there exists a uniform lattice ι : Γ → G′ such that ι ∈ R(Γ, G, H) admits
continuous deformations.

(ii) G′ is locally isomorphic to SL(2, R).

Theorem 28 (Local rigidity theorem – the non-Riemannian case 1998 [24])
Let (G, H) := (G′ × G′, diag(G′)). Then the following two conditions on G′

are equivalent:

(i) there exists a uniform lattice ι : Γ → G′ such that ι × 1 ∈ R(Γ, G, H)
admits continuous deformations.

(ii) G′ is locally isomorphic to SO(n, 1) or SU(n, 1).

From a different point of view, for the group manifold G′ and its uni-
form lattice Γ, Theorem 27 only treats the rigidity of left actions, whereas
Theorem 28 considers the rigidity of both left and right actions. (Note that
G/H ∼= G′ in the latter case.)

The deformation spaces have also been studied in the following cases:

(1) The Poincaré disk G/H = SL(2, R)/ SO(2).

(2) G/H = G′ × G′/ diag G′ for G′ = SL(2, R) (Goldman 1985 [11], Salein
1999 [45]).

(3) G/H = G′ × G′/ diag G′ for G′ = SL(2, C) (Ghys 1995 [13]).

In these cases the deformation space T (Γ, G, H) corresponds respectively
to:

(1) The deformations of complex structures on a Riemann surface Mg of
genus g ≥ 2.

(2) The deformations of Lorentz structures on a 3-dimensional manifold.

(3) The deformation of complex structures on a 3-dimensional complex
manifolds.

Moreover, (2) and (3) correspond to the cases n = 1, 2, 3 of Theorem 28.
Indeed, this follows because we have the local isomorphisms of Lie groups

G′ = SL(2, R) ≈ SO(2, 1) ≈ SU(1, 1) and G′ = SL(2, C) ≈ SO(3, 1).
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In Theorem 28, as n increases, one sees that one can construct irreducible
pseudo-Riemannian symmetric spaces of arbitrarily high dimension, together
with a uniform lattice Γ for which the local rigidity theorem does not hold.
In [24], for general n, we obtained quantitative estimates for deformations of
this type of uniform lattice Γ (that is, the range within which discontinuity
is preserved) using the diameter of locally Riemannian symmetric spaces
Γ\G′/K ′. Now the proposition

a “small” deformation of a discrete subgroup preserves the dis-
continuity of the action

is false for general Lie groups (see [29]).However, in the case of semisimple Lie
groups discussed above this proposition holds, and in particular this settles
Goldman’s conjecture [11] positively. The key to the proof is the criterion
for a properly discontinuous action (Theorem 14).
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gènes de SL(2, C), J. reine angew. Math. 468 (1995), 113–138.

[14] A. Iozzi and D. Witte, Cartan-decomposition subgroups of SU(2, n), J.
Lie Theory, 11 (2001), 505–543.

[15] A. Iozzi and D. Witte, Tessellations of homogeneous spaces of classical
groups of real rank two, Geom. Dedicata, 103 (2004), 115–191.

[16] B. Klingler, Complétude des variétés lorentziennes à courbure constante,
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