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Abstract. We consider surgery moves along (n + 1)-component Brunnian
links in compact connected oriented 3-manifolds, where the framing of the
components is in { 1

k
; k ∈ Z}. We show that no finite type invariant of degree

< 2n − 2 can detect such a surgery move. The case of two link-homotopic
Brunnian links is also considered. We relate finite type invariants of integral
homology spheres obtained by such operations to Goussarov-Vassiliev invari-
ants of Brunnian links.

1. Introduction

In [19], Ohtsuki introduced the notion of finite type invariants of integral ho-
mology spheres as an attempt to unify the topological invariants of these objects,
in the same way as Goussarov-Vassiliev invariants provide a unified point of view
on invariants of knots and links. This theory was later generalized to all oriented
3-manifolds by Cochran and Melvin [2].

Goussarov and Habiro developed independently another finite type invariants
theory for compact connected oriented 3-manifolds, which essentially coincides with
the Ohtsuki theory in the case of integral homology spheres [7, 4, 11]. This theory
comes equipped with a new and powerful tool called calculus of clasper, which uses
embedded graphs carrying some surgery instruction. Surgery moves along claspers
define a family of (finer and finer) equivalence relations among 3-manifolds, called
Yk-equivalence, which gives a good idea of the information contained by finite type
invariants: two compact connected oriented 3-manifolds are not distinguished by
invariants of degree < k if they are Yk-equivalent [8, 11]. These two conditions
become equivalent when dealing with integral homology spheres.

Recall that a link L is Brunnian if any proper sublink of L is trivial. In some
sense, an n-component Brunnian link is a ‘pure n-component linking’. In this paper
we consider those compact connected oriented 3-manifolds which are obtained by
surgery along a Brunnian link. For a fixed number of components, we study which
finite type invariants (i.e. of which degree) can vary under such an operation.

Let m = (m1, ..., mn) ∈ Zn be a collection of n integers. Given a null-homologous,
ordered link L in a compact connected oriented 3-manifold M , denote by (L, m)
the link L with framing 1

mi
on the ith component ; 1 ≤ i ≤ n. We denote by M(L,m)

the 3-manifold obtained from M by surgery along the framed link (L, m). We say
that M(L,m) is obtained from M by 1

m
-surgery along the link L.

Theorem 1.1. Let n ≥ 2 and m ∈ Zn. Let L be an (n + 1)-component Brunnian
link in a compact, connected, oriented 3-manifold M .

For n = 2, M(L,m) and M are Y1-equivalent.
For n ≥ 3, M(L,m) and M are Y2n−2-equivalent. Consequently, they cannot be

distinguished by any finite type invariant of degree < 2n − 2.
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Note that, for any Brunnian link L in M , we have M(L,m)
∼= M if mi = 0 for some

1 ≤ i ≤ n. In this case, the statement is thus vacuous.
Two links are link-homotopic if they are related by a sequence of isotopies and

self-crossing changes, i.e. crossing changes involving two strands of the same com-
ponent. We obtain the following.

Theorem 1.2. Let n ≥ 2 and m ∈ Zn. Let L and L′ be two link-homotopic
(n + 1)-component Brunnian links in a compact, connected, oriented 3-manifold
M . Then M(L,m) and M(L′,m) are Y2n−1-equivalent. Consequently, they cannot be
distinguished by any finite type invariant of degree < 2n − 1.

In the latter part of the paper, we study the relation between the above results
and Goussarov-Vassiliev invariants of Brunnian links.

Let ZL(n) be the free Z-module generated by the set of isotopy classes of n-
component links in S3. The notion of Vassiliev invariant of links involves a de-
scending filtration

ZL(n) = J0(n) ⊃ J1(n) ⊃ J2(n) ⊃ ...

called Goussarov-Vassiliev filtration. In a previous paper, Habiro and the author
introduced the so-called Brunnian part Br(J 2n(n + 1)) of J2n(n +1)/J2n+1(n + 1),
which is defined as the Z-submodule generated by elements [L − U ]J2n+1

where L
is an (n+1)-component Brunnian link and U is the (n+1)-component unlink [13].
Further, we constructed a linear map

hn : Ac
n−1(∅) −→ Br(J2n(n + 1)),

where Ac
n−1(∅) is a Z-module of connected trivalent diagrams with 2n− 2 vertices.

hn is an isomorphism over Q for n ≥ 2. See §5 for precise definitions.
Let Sk be the abelian group of Yk+1-equivalence classes of integral homology

spheres which are Yk-equivalent to S3. S2k+1 = 0 for all k ≥ 1, and it is well
known that S2k is isomorphic to Ac

k(∅) when tensoring by Q. See §6.3. There is

therefore an isomorphism over Q from Br(J2n(n + 1)) to S2n−2, for n ≥ 2. The
next theorem states that this isomorphism is induced by (+1)-framed surgery.

For a null-homologous ordered link L in a compact connected oriented 3-manifold
M , denote by (L, +1) the link L with all components having framing +1.

Theorem 1.3. For n ≥ 2, the assignment

[L − U ]J2n+1
7→ [S3

(L,+1)]Y2n−1

defines an isomorphism

κn : Br(J2n(n + 1)) ⊗Q −→ S2n−2 ⊗Q.

We actually show that these two Q-modules are isomorphic to the so-called
‘connected part’ of the Ohtsuki filtration, by using the abelian group Ac

n−1(∅). See
§6 for definitions and statements.

The rest of this paper is organized as follows.
In Section 2, we give a brief review of the theory of claspers, both for compact

connected oriented 3-manifolds and for links in a fixed manifold. In Section 3, we
study the Yk-equivalence class of integral homology spheres obtained by surgery
along claspers with several special leaves. This section can be read separately
from the rest of the paper and might be of independent interest. In Section 4, we
use the main result of §3 to prove Theorems 1.1 and 1.2. In section 5, we recall
several results obtained by Habiro and the author in [13]. In Section 6, we define
the material announced above and prove Theorem 1.3. In Section 7, we give the
(technical) proof of Proposition 3.8.

Acknowledgments. The author is grateful to Kazuo Habiro for many helpful con-
versations and comments on an early version of this paper.
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2. Claspers

Throughout this paper, all 3-manifolds will be supposed to be compact, con-
nected and oriented.

2.1. Clasper theory for 3-manifolds. Let us briefly recall from [11, 4, 7] the
fundamental notions of clasper theory for 3-manifolds.

Definition 2.1. A clasper in a 3-manifold M is an embedding

G : F −→ int M

of a compact (possibly unorientable) surface F . F is decomposed into constituents
connected by disjoint bands called edges. Constituents are disjoint connected sub-
surfaces, either annuli or disks:

• A leaf is an annulus with one edge attached.
• A node is a disk with three edges attached.
• A box is a disk with at least three edges attached, one being distinguished

with the others. This distinction is done by drawing a box as a rectangle.

Observe that this definition slightly extends the one in [11], where a box has always
three edges attached.

We will make use of the drawing convention for claspers of [11, Fig. 7], except
for the following: a ⊕ (resp. 	) on an edge represents a positive (resp. negative)
half-twist. This replaces the convention of a circled S (resp. S−1) used in [11].

2.1.1. Surgery along claspers. Given a clasper G in M , we can construct, in a
regular neighborhood of the clasper, an associated framed link LG as follows. First,
replace each node and box of G by leaves as shown in Fig. 2.1 (a) and (b). We
obtain a union of I-shaped claspers, one for each edge of G. LG is obtained by
replacing each of these I-shaped claspers by a 2-component framed link as shown
in Fig. 2.1 (c).1

;;
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����������

(c)(b)(a)

......

Figure 2.1. Constructing the framed link associated to a clasper.

Surgery along the clasper G is defined to be surgery along LG.
In [11, Prop. 2.7], Habiro gives a list of 12 moves on claspers which gives equiv-

alent claspers, that is claspers with diffeomorphic surgery effect. We will freely use
Habiro’s moves (which are essentially derived from Kirby calculus) by referring to
their numbering in Habiro’s paper.

2.1.2. The Yk-equivalence. For n ≥ 1, a Yn-graph is a connected clasper G without
boxes and with n nodes. n is called the degree of G.

A Yk-tree is a Yk-graph T such that the union of edges and nodes of T is simply
connected. For n ≥ 3, we say that a Yk-tree T in a 3-manifold M is linear if there
is a 3-ball in M which intersects the edges and nodes of T as shown in Fig. 2.2.
The leaves denoted by f and f ′ in the figure are called the ends of T .

A Yk-forest is a clasper consisting of p ≥ 0 disjoint Yl-trees, with l ≥ k.

1Here and throughout the paper, blackboard framing convention is used.
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...

T

f f’

Figure 2.2. A linear tree T and its two ends f and f ′.

A Yk-subtree T of a clasper G is a connected union of leaves, nodes and edges of
G such that the union of edges and nodes of T is simply connected and such that
T intersects G \ T along the attaching region of some edges of T , called branches.

A surgery move on M along a Yk-graph G is called a Yk-move. For example, a
Y1-move is equivalent to Matveev’s Borromean surgery [15].

The Yk-equivalence is the equivalence relation on 3-manifolds generated by Yk-
moves and orientation-preserving diffeomorphisms. This equivalence relation be-
comes finer as k increases: if k ≤ l and if M ∼Yl

N , then we also have M ∼Yk
N .

Recall that ‘trees do suffice to define the Yk-equivalence’. That is, M ∼Yk
N

implies that there exists a Yk-forest F in M such that MF
∼= N .

2.2. Clasper theory for links. Another aspect of the theory of claspers is that
it allows to study links in a fixed manifold. For this we use a slightly different type
of claspers.

Definition 2.2. Let L be a link in a 3-manifold M , and let G be a clasper in M
which is disjoint from L. A disk-leaf of G is a leaf l of G which is an unknot bounding
a disk D in M with respect to which it is 0-framed.2 We call D the bounding disk
of f . The interior of D is disjoint from G and from any other bounding disk, but it
may intersect L transversely. For convenience, we say that a disk-leaf f intersects
the link L when its bounding disk does.

A Cn-tree (resp. linear Cn-tree) for a link L in a 3-manifold M is a Yn−1-tree
(resp. linear Yn−1-tree) in M with at least one leaf, and such that each of its leaves
is a disk-leaf.

Given a Cn-tree C in M , there exists a canonical diffeomorphism between M
and the manifold MC . So surgery along a Cn-tree can be regarded as a local move
on links in the manifold M .

A Cn-tree G for a link L is simple (with respect to L) if each disk-leaf of G
intersects L exactly once.

A surgery move on a link L along a Ck-tree is called a Ck-move. The Ck-
equivalence is the equivalence relation on links generated by the Ck-moves and
isotopies. As in the case of manifolds, the Cn-equivalence relation implies the Ck-
equivalence if 1 ≤ k ≤ n. For more details, see [11, 8].

2.3. Some technical lemmas. In this subsection, we state several technical lem-
mas about claspers.

First, we introduce several moves on claspers which produce equivalent claspers,
like the 12 Habiro’s moves. In each of the next three statements, the figure repre-
sents two claspers in a given 3-manifold which are identical outside a 3-ball, where
they are as depicted.

Lemma 2.3. The move of Figure 2.3 produces equivalent claspers.

This is an immediate consequence of [4, Thm. 3.1] (taking into account that the
convention used in [4] for the definition of the surgery link associated to a clasper
is the opposite of the one used in the present paper).

Lemma 2.4. The move of Figure 2.4 produces equivalent claspers.

2Here we define a leaf, which is an embedded annulus, as a knot with a framing.
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Figure 2.3

Figure 2.4

This move is, in some sense, the inverse of Habiro’s move 12. See also Figure 25 of
[3], where a similar move appears.

Proof. Consider the clasper on the right-hand side of Figure 2.4. By replacing the
two boxes by leaves as shown in Fig. 2.1 (b) and applying Habiro’s move 1, we
obtain the clasper depicted on the left-hand side of Fig. 2.5. Now, the three leaves

isotopy

Figure 2.5

depicted in this figure form a 3-component link which is isotopic to the Borromean
link. As shown in Fig. 2.1 (a), this is equivalent to a node. �

Lemma 2.5. The moves of Figure 2.6 produce equivalent claspers.

... ... ............

Figure 2.6. The associativity of boxes

This ‘associativity’ property of boxes is easily checked using Figure 2.1 (b) – see
Figure 37 of [11].

The next lemma deals with crossing change operations on claspers. The proof
is omitted, as it uses the same techniques as in [11, §4] (where similar statements
appear). See also [16, §1.4].

Lemma 2.6. Let T1 ∪ T2 be a disjoint union of a Yk1
-tree and a Yk2

-tree in a
3-manifold M . Let T ′

1 ∪ T ′
2 be obtained by a crossing change c of an edge or a leaf

of T1 with an edge or a leaf of T2. Then

(1) MT1∪T2
∼Yk1+k2+C

MT ′

1
∪T ′

2
, where C ∈ {0, 1, 2} denotes the number of edges

involved in the crossing change c.
(2) MT1∪T2

∼Yk1+k2+C+1
MT ′

1
∪T ′

2
∪T , where T is a copy, disjoint from T ′

1 ∪ T ′
2,

of the Yk1+k2+C-tree T̃ obtained as follows:
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(a) If c involves an edge e1 of T1 and an edge e2 of T2, then C = 2 and

T̃ is obtained by inserting a node n1 in e1 and a node n2 in e2, and
connecting n1 and n2 by an edge.

(b) If c involves an edge e of T1 and a leaf f of T2, then C = 1 and T̃
is obtained by inserting a node n in e, and connecting n1 to the edge
incident to f .

(c) If c involves a leaf f1 of T1 and a leaf f2 of T2, then C = 0 and T̃ is
obtained by connecting the edges incident to f1 and f2.

Remark 2.7. One can replace the trees T1 and T2 with graphs or subtrees in the
statement of Lemma 2.6. Indeed, given a graph or a subtree it suffices to use
Habiro’s move 2 to obtain an equivalent tree.

The next result follows from Lemma 2.6 and [11, Prop. 2.7]. See also [4, 20].

Lemma 2.8. Let G be a Yk-tree in a 3-manifold M , and let G+ be a Yk-tree
obtained from G by inserting a positive half twist in an edge. Then

MG∪G̃+
∼Yk+1

M,

where G̃+ is obtained from G+ by an isotopy so that it is disjoint from G.

2.4. The IHX relation for Yk-graphs. We have the following version of the IHX
relation for Yk-graphs.

Lemma 2.9. Let I, H and X be three Yk-graphs in a 3-manifold M , which are
identical except in a 3-ball were they look as depicted in Figure 2.7. Then

MI ∼Yk+1
MH∪X̃ ,

where X̃ is obtained from X by an isotopy so that it is disjoint from H.

H XI

Figure 2.7. The three Yk-graphs I , H and X .

Various similar statements appear in the literature. For example, an IHX relation
is proved in [4] at the level of finite type invariants, in [3] for Cn-trees (see also [8]),
and in [20, pp. 397-398] for Yn-graphs without leaves.

Proof. For simplicity, we give the proof for the case of Y2-trees. In the general case,
the proof uses the same arguments as below, together with the zip construction
([11, §3], see also [3, §4.2]).

Consider the Y2-tree I , and apply Lemma 2.4 at one of its nodes. Then, apply
Habiro’s move 11 so that we obtain the clasper G1 ∼ I depicted in Fig. 2.8. By
an isotopy and Habiro’s move 7, G1 is seen to be equivalent to the clasper G2 of
Fig. 2.8. Consider the leaf of G2 denoted by f in the figure. By an application of
Habiro’s move 12 at f , followed by moves 7 and 11, we obtain the clasper G3 of
Fig. 2.8. Observe that G3 contains a Y2-subtree TH . By Habiro’s move 6, Lemma
2.8 and Lemma 2.6 (1), we have

MG3
∼Y3

MH∪G4
,

where G4 is the clasper depicted in Fig. 2.9. Now, consider the leaf f ′ of G4 (see
the figure). Apply Habiro’s move 12 at f ′ and moves 7 and 11, just as we did
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∼ ∼
f

G2G1 G3

TH

Figure 2.8

f ′

G4

∼

G5

;

G0

X̃

H H H

TX

Figure 2.9

previously for the clasper G2. The resulting clasper G5 ∼ G4 contains a Y2-subtree
TX (see Fig. 2.9). As above, we obtain by Lemmas 2.8 and 2.6 (1):

MG5
∼Y3

MH∪X̃∪G0
,

where G0 is represented in the right-hand side of Fig. 2.9. By Habiro’s moves 11
and 4, we obtain that MH∪X̃∪G0

∼= MH∪X̃ . �

From an examination of this proof, one can check the following slightly stronger
version of Lemma 2.9 when I , H and X are three Yk-trees (Note that Habiro’s
move 2 always allows us to have this condition satisfied).

Corollary 2.10. Let I, H and X be three Yk-trees in a 3-manifold M as in Lemma
2.9. Then

MI ∼Yk+2
MH∪X̃∪F ,

where F = T1 ∪ ... ∪ Tp is a union of p disjoint Yk+1-trees, such that each Ti is
obtained from either H or X by taking a parallel copy f of one of its leaves, inserting
a node n in one of its edges, connecting n and f by an edge, and performing an
isotopy so that Ti is disjoint from H and X̃.

This follows essentially from (2) of Lemma 2.6 (this lemma is, together with [11,
Prop. 2.7], the main tool of the proof of Lemma 2.9).

3. Surgery along Yn-trees with special leaves.

In this section, we study 3-manifolds obtained by surgery along Yn-trees con-
taining a particular type of leaves.

3.1. m-special leaves. Suppose we are given a clasper G in a 3-manifold M .

Definition 3.1. Let m ∈ Z. An m-special leaf with respect to G is a leaf f of G
which is an unknot bounding a disk D in M with respect to which it is m-framed,3

3Here, as in Definition 2.2, we define a leaf as a knot with a framing.
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such that the interior of D is disjoint from G \ f . D is called the bounding disk of
f . Two bounding disks are required to be disjoint. A regular neighborhood of the
union of G and the bounding disks is called an s-regular neighborhood of G.

In particular, a 0-special leaf with respect to G is called a trivial leaf. If a Yk-
graph G in M contains a 0-special leaf f with respect to G, then MG is diffeomorphic
to M [11, 4].

In the rest of the paper, a special leaf is an m-special leaf for some unspecified
integer m.4 The mention ‘with respect to’ will be omitted when G is clear from the
context.

3.2. Statement of the result. Let G be a Yn-tree in a 3-manifold M , n ≥ 2. It
is well-known that, if G contains a (−1)-special leaf, then

(3.1) MG ∼Yn+1
M.

See [20, Lem. E.21] for a proof for M = S3, which can be generalized to our
context. See also [4, Lem. 4.9].

We obtain the following generalization.

Theorem 3.2. Let G be a Yn-tree in a 3-manifold M , with n ≥ 2. Let l denote
the number of special leaves with respect to G. Then

(1) If l < n, then MG ∼Yn+l
M.

(2) If l = n, then MG ∼Y2n−1
M.

(3) If l > n, then MG ∼Y2n
M.

The proof is given in §3.6. In the next three subsections, we prove Theorem 3.2
in several important cases and provide a lemma which is used in §3.6.

3.3. The case of a tree with one special leaf. In this subsection, we prove
Theorem 3.2 for l = 1.

Lemma 3.3. Let G be a Yn-tree in a 3-manifold M , with n ≥ 2. Suppose that G
contains an m-special leaf ; m ∈ Z. Then MG ∼Yn+1

M .

Proof. We first prove the lemma for all m < 0, by induction. As recalled in §3.2,
we already have the result for m = −1. Now consider a Yn-tree G in M with an
m-special leaf f , m < 0. Denote by G′ the clasper obtained by replacing f by the
union of a box b and two edges e1 and e2 connecting b respectively to a (−1)-special
leaf f1 and a (m + 1)-special leaf f2 (both leaves being special with respect to G′).
By Habiro’s move 7, G′ ∼ G. Denote by Gi the Yn-tree in M obtained from G by
replacing f by fi (i = 1, 2). By a zip construction, we have

G′ ∼ (G1 ∪ P ),

where P satisfies P ∼ G2. By (3.1) it follows that MG ∼Yn+1
MG2

. The result then
follows from the induction hypothesis.

Similarly, it would suffice to show the result for m = 1 to obtain, by a similar
induction, the result for all m > 0. For this, consider the case m = 0. In this case,
f is a trivial leaf and therefore MG

∼= M . The same construction as above, with
m1 = −1 and m2 = 1, shows that M ∼Yn+1

MG′ , where G′ is a Yn-tree in M with
a 1-special leaf. This concludes the proof. �

4Note that in some literature ([4]) the terminology ‘special leaf’ is used to denote a (−1)-special
leaf.
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3.4. The case of a Y2-tree. In this section, we prove Theorem 3.2 for n = 2. The
proof mainly relies on the following lemma.

Lemma 3.4. Let G be a Y2-tree in a 3-manifold M which contains two (−1) special
leaves which are connected to the same node. Then MG ∼Y4

M .

Proof. Denote by w the node of G which is connected to the two special leaves.
w is connected by an edge to another node v. By applying Lemma 2.4 at v, G
is equivalent, in an s-regular neighborhood, to a clasper G′ which is identical to
G, except in a 3-ball where it is as depicted in Fig. 3.1 (a). There, the node w′

corresponds to the node w of G. By Lemma 2.3 and Habiro’s move 6, we obtain
the clasper depicted in Fig. 3.1 (b), which is equivalent to the one depicted in
Fig. 3.1 (c) by three applications of Habiro’s move 12, Lemma 2.5 and an isotopy.
Denote by G′′ this latter clasper. As the figure shows, G′′ contains a Y4-subtree
T . Actually, T is a ‘good input subtree’ of G′′, in the sense of [11, Def. 3.13].

Denote by G̃′′ the clasper obtained from G′′ by inserting in each branch of T a

��

��

���� ��

(a) (b) (c)

TG’’
w’

G’

Figure 3.1

pair of small Hopf-linked leaves. By Habiro’s move 2, G̃′′ ∼ G′. Denote by T̃ the
Y4-tree of G̃′′ which corresponds to T . By an application of the zip construction,
we obtain MG′′ ∼Yn+2

MG̃′\T̃ . Further, it follows from Habiro’s moves 3 and 4 that

G̃′′ \ T̃ ∼ ∅. �

The following technical lemma will allow us to generalize Lemma 3.4 to arbitrary
special leaves.

Lemma 3.5. Let G be a Y2-tree in a 3-manifold M which contains two special
leaves which are connected to the same node. Then

MG ∼Y4
MG1∪G̃2

,

where, for i = 1, 2, Gi is obtained by replacing a k-special leaf of G by a ki-special
leaf, such that k1 +k2 = k, and where G̃2 is obtained from G2 by an isotopy so that
it is disjoint from G1.

Proof. Denote respectively by f and f ′ the k-special (resp. k′-special) leaf of G,
k, k′ ∈ Z. Just as in the proof of Lemma 3.3, we can use Habiro’s moves 7 and the
zip construction to see that G is equivalent, in an s-regular neighborhood, to the
clasper C1 of Fig. 3.2, where f1 is a k1-special leaf and f2 is a k2-special leaf such
that k1 + k2 = k. Consider the leaf of C1 denoted by F in the figure. By Habiro’s
move 12 at F , followed by two applications of Habiro’s move 11, we have C1 ∼ C2,
where C2 is represented in Fig. 3.2.

Consider the box b of C2 (see Fig. 3.2). By applying Habiro’s move 5 at b,
C2 is equivalent to a clasper containing a Y3-subtree T and a Y1-subtree T ′ such
that both T and T ′ contain a copy of f2. Denote by C3 the clasper obtained by
replacing these two (linked) copies of f2 by two k2-special leaves. By Lemma 2.6,
we have MC2

∼Y4
MC3

. It follows from Lemma 3.3 and Habiro’s move 5 that
MC3

∼Y4
MC4

, where C4 is as represented in Fig. 3.2. By applying Habiro’s move
5 at the box b′, C4 is equivalent to a clasper containing a Y2-tree and a Y2-subtree,
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G1

f2

G4G2

bf2

b′

f1

f ′ f ′

F

f2

f1f1

f ′

Figure 3.2

each containing a copy of f ′. By Lemma 2.6, MC4
∼Y4

MC5
, where C5 is obtained

by replacing these two (linked) copies of f ′ in C4 by two k′-special leaves. The
result then follows from an isotopy and Habiro’s move 3. �

We can now prove the case n = 2 of Theorem 3.2.
Let G be a Y2-tree in a 3-manifold M with l special leaves. If l = 0, then the

result is obvious. If l = 1, Lemma 3.3 implies that MG ∼Y3
M . If l = 2, then

MG ∼Y3
M also follows from Lemma 3.3. It remains to prove the result when l = 3

or 4.
Let k, k′ ∈ Z. Denote by Gk,k′ a Y2-tree in M containing a k-special leaf f and

an k′-special leaf f ′, both connected to the same node. Observe that it suffices to
show that

(3.2) MGk,k′
∼Y4

M

If k = k′ = −1, then (3.2) follows from Lemma 3.4. Now, let us fix k′ = −1.
Then we can show by induction that (3.2) holds for all k < −1. Indeed, consider
some integer m < −1, and consider Gm,−1 in M . By Lemma 3.5, we have

MGm,−1
∼Y4

MC1∪C2
,

where C1 contains two (−1)-special leaves connected to the same node, and where
C2 contains a (−1)-special leaf and an m+1-special leaf, both connected to the same
node. By Lemma 3.4 and the induction hypothesis, we thus obtain MC ∼Y4

M .
So we can now set k′ to be any negative integer, and prove (3.2) for all k < −1, by
strictly the same induction.

Similarly, it would suffice to show the result for G1,1 to be able to prove (3.2) for
all k, k′ > 0. Consider G0,−1 in M . In this case, f is a trivial leaf and MG

∼= M .
By applying Lemma 3.5 at f ,

MG
∼= M ∼Y4

MG1∪G2
,

where G1 (resp. G2) contains a (−1)-special leaf and a 1-special (resp. (−1)-special)
leaf, both connected to the same node. It follows from Lemma 3.3 that M ∼Y4

MG1
.

This proves (3.2) for k = 1 and k = −1. We obtain (3.2) for k = k = 1 similarly,
by applying Lemma 3.5 to G0,1 in M .

3.5. The cutting lemma. Let G be a Yn-tree in M , with n ≥ 3. By inserting
a pair of small Hopf-linked leaves in an edge of G, we obtain a Yn1

-tree G1 and a
Yn2

-tree G2 such that n1 + n2 = n and G1 ∪ G2 ∼ G (by Habiro’s move 2). See
Figure 3.3.

Lemma 3.6. Let i = 1, 2. Suppose that, in a regular neighborhood Ni of Gi, we
have (Ni)Gi

∼Yki
Ni, with k1 ≥ 2 and k2 ≥ 1. Then

(1) MG ∼Yk1+2
M, if G2 is a Y1-tree containing at least one special leaf with

respect to G1 ∪ G2,
(2) MG ∼Yk1+k2

M, otherwise.
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Proof. Denote by N an s-regular neighborhood of G ∼ G1 ∪ G2. Consider a 3-ball
B in M which intersects N and G1 ∪ G2 as depicted in Fig. 3.3 (a). Denote by

��������
G’2G’1

(a) (b)

B

N’ N’’

���������������� 	
������

1G G2

N

B

�������

Figure 3.3

N ′ and N ′′ the two connected components of the closure of N \ (B ∩ N). By one
crossing change and isotopy, we can homotop the two Hopf-linked leaves of G1∪G2

into N \ (B∩N) so that, if G′
1 ∪G′

2 denotes the resulting clasper, we have G′
1 ⊂ N ′

and G′
2 ⊂ N ′′. See Fig. 3.3 (b). Each of G′

1 and G′
2 contains a trivial leaf with

respect to G′
1 ∪ G′

2, so we have G′
1 ∪ G′

2 ∼ ∅ in N .
We now prove (1): suppose that G2 contains one node and at least one special

leaf with respect to G1 ∪ G2. Denote by f the leaf of G2 which forms a Hopf link
with a leaf of G1. By assumption, G1 can be replaced by a Yk1

-forest F1 in an
s-regular neighborhood N1 so that F1 ∪ G2 ∼ G in N . Consider a disk d bounded
by f such that d intersects transversally edges and leaves of components of F1. By a
sequence of crossing changes, we can homotop these edges and leaves into N ′ ⊂ N :
the clasper G′ obtained from F1 ∪G2 by this homotopy satisfies G′ ∼ G′

1 ∪G′
2 ∼ ∅

in N . So it would suffice to show that MF1∪G2
∼Yk1+2

MG′ .

By Lemma 2.6, we have MF1∪G2
∼Yk1+2

MF̃1∪G̃2
, where F̃1 ∪ G̃2 is obtained by

‘homotoping’ into N ′ all edges of F1 and all Yk-trees of F1 with k > k1. Denote by
f̃ the leaf of G̃2 corresponding to f . There is a sequence of crossing changes

F̃1 ∪ G̃2 = C0 7→ C1 7→ C2 7→ ... 7→ Cp−1 7→ Cp = G′,

where, for each 1 ≤ k ≤ p, Ck is obtained from Ck−1 by one crossing change

between f̃ and a leaf l of a Yk1
-tree Tk of F̃1.

5 By Lemma 2.6, we have MCk
∼Yk1+2

MCk−1∪Hk
, where Hk is a Yk1+1-tree obtained by connecting the edges of G̃2 and

Tk attached to f̃ and l respectively. In particular, Hk contains a special leaf with
respect to Ck−1 ∪ Hk. So by Lemma 3.3, we have MCk

∼Yk1+2
MCk−1

. It follows

that MF̃1∪G̃2
∼Yk1+2

MG′ , which concludes the proof of (1).

The proof of (2) is simpler, and left to the reader. It uses exactly the same
arguments as above, by considering the Yki

-forest Fi (i = 1, 2) in an s-regular
neighborhood Ni of Gi such that F1 ∪ F2 ∼ G in N . �

3.6. Proof of Theorem 3.2. Suppose that G is a Yn-tree in M with l special
leaves ; n ≥ 2, l ≥ 0.

3.6.1. The case l < n. In this case, it is necessary to reduce the problem to linear
trees. We have the following.

Claim 3.7. Let 1 ≤ p ≤ l be an integer. Pick two non-special leaves f1 and f2 of
G. Then we have, by successive applications of the IHX relation,

MG ∼Yn+p
MLp

,

where Lp is a union of disjoint linear Yk-trees with n ≤ k ≤ n + p − 1 such that

5Here, abusing notations, we still denote by f̃ , G̃2 and F̃1 the corresponding elements in Ck,
for all k ≥ 1.
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• the ends of each linear tree are parallel copies of f1 and f2,
• each Yk-tree contains (n + l − k) special leaves with respect to Lp.

Proof of the claim. The claim is proved by induction on p. Observe that we can
use the IHX relation to replace T by a union L1 of linear Yk-trees whose ends are
parallel copies of f1 and f2. Lemma 2.6 (1) ensures that each tree has l special
leaves with respect to L1. This proves the case p = 1. Now assume the claim for
some p ≥ 1: MT ∼Yn+p

MLp
, where Lp is as described above. By assumption, this

equivalence comes from Lemma 2.9, so we can apply Corollary 2.10. There exists a
union F of disjoint (possibly non linear) Yn+p-trees such that MT ∼Yn+p+1

MLp∪F .
For each tree T in F , its (n + p + 2) leaves are obtained by taking the leaves of
a Yn+p−1-tree in Lp and adding a parallel copy of one of them. If this additional
leaf is a copy of a special leaf f (with respect to Lp), the two (linked) copies of f
in T are not special leaves with respect to Lp ∪ F . This shows that each tree in
F contains at least (l − p) special leaves with respect to Lp ∪ F . Note that each
such tree also contains (at least) a copy of f1 and f2. So by Lemma 2.9 we have
MLp∪F ∼Yn+p+1

MLp+1
, where Lp+1 is of the desired form. �

It follows from Claim 3.7 that

MT ∼Yn+l
ML,

where L is a union of linear Yk-trees with n ≤ k ≤ n+ l−1, each such linear Yk-tree
containing (at least) (n + l − k) special leaves with respect to L, and whose ends
are non-special leaves.

So it suffices to prove the case l < n of Theorem 3.2 for linear Yn-trees whose
ends are non-special leaves. We proceed by induction on n.

For n = 2, the statement follows from §3.4.
Now, assume that the statement holds true for all k < n, and consider a linear

Yn-tree G whose ends are two non-special leaves. Insert a pair of small Hopf-linked
leaves in an edge of G such that it produces a union of two linear trees G1∪G2 ∼ G
with degG1 = n1 and degG2 = n2. Denote respectively by l1 and l2 the number of
special leaves with respect to G1 ∪ G2 in G1 and G2. We have n1 + n2 = n and
l1 + l2 = l. Denote also by N1 an s-regular neighborhood of G1.

• If we can choose n2 = 1 and l2 = 1, then n1 = n − 1 and l1 = l − 1. So
l1 < n1 and by the induction hypothesis we have (N1)G1

∼Yn+l−2
N1 (G1

is indeed linear). As G2 contains one special leaf with respect to G1 ∪ G2,
we obtain the result by Lemma 3.6 (1).

• Otherwise, then l < n − 1, and we can choose G2 such that n2 = 1 and
l2 = 0 (that is, G2 contains one node connected to 2 non-special leaves).
As l1 = l < n1 = n − 1, we have (N1)G1

∼Yn+l−1
N1 (by the induction

hypothesis), and the result follows from Lemma 3.6 (2).

This completes the proof of the case l < n.

3.6.2. The case l ≥ n. The case l = n follows immediately from the case l = n− 1,
by regarding one of the special leaves as a leaf.

We prove the case l = n + 1 by induction on the degree n. The case n = 2 was
proved in §3.4. Consider a Yn-tree G with l ≥ n special leaves. As in §3.6.1, insert
a pair of Hopf-linked leaves in an edge of G so that we obtain a union of two trees
G1 ∪G2 ∼ G with degG1 = n− 1 and degG2 = 1. Denote respectively by l1 and l2
the number of special leaves with respect to G1 ∪G2 in G1 and G2. There are two
cases, depending on whether l2 = 1 or 2.

• If l2 = 1, then l1 = n = n1 + 1, and thus, by the induction hypothesis we
have (N1)G1

∼Y2n−3
N1 in an s-regular neighborhood N1 of G1. The result

follows from Lemma 3.6 (1).
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• If l2 = 2, then l1 = n − 1 = n1. It thus follows from the case l = n of
Theorem 3.2 that (N1)G1

∼Y2n−3
N1 in an s-regular neighborhood N1 of

G1. The result then follows as above from Lemma 3.6 (1).

The case l = n+2 follows from the case l = n+1 by regarding one of the special
leaves as a leaf.

3.7. Some special cases for Theorem 3.2. We have the following improvement
of Theorem 3.2 for linear trees having only (−1)-special leaves.

Proposition 3.8. Let G be a linear Yn-tree in a 3-manifold M , n ≥ 2, such that
all its leaves are (−1)-special leaves. Then in an s-regular neighborhood N of G
(which is a 3-ball in M) we have

NG ∼Y2n+1
NΘn

,

where Θn is the connected Y2n-graph without leaves depicted in Fig. 3.4.

. . .

2(n    ) times

Figure 3.4. The Y2n-graph Θn.

The proof of Proposition 3.8 uses rather involved calculus of claspers, and is there-
fore postponed to §7. Note that this result is not needed for the rest the paper. A
reader who is not too comfortable with claspers (but who nevertheless reached this
point) may thus safely skip this proof.

Also, one can check that, in the case l = n, we have

(3.3) MG ∼Y2n
M

in the two following situations:

• G contains a 2k-special leaf, for some integer k.
• The homology class in H1(M ;Z/2Z) of a non-special leaf of G is zero.6 In

particular, (3.3) always holds if M = S3.

4. Yk-equivalence for 3-manifolds obtained by surgery along

Brunnian links

In this section, we prove Theorems 1.1 and 1.2. The proofs use a characteriza-
tion of Brunnian links in terms of claspers due to Habiro, and independently to
Miyazawa and Yasuhara, which involves the notion of Ca

k -equivalence. Let us first
recall from [12] the definition and some properties of this equivalence relation.

4.1. Ca
k -equivalence.

Definition 4.1. Let L be an m-component link in a 3-manifold M . For k ≥ m−1,
a Ca

k -tree for L in M is a Ck-tree T for L in M , such that

(1) all the strands intersecting a given disk-leaf of T are from the same com-
ponent of L,

(2) T intersects all the components of L.

6This fact was pointed out to the author by Kazuo Habiro.
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A (simple) Ca
k -forest L is a clasper consisting only of (simple) Ca

k -tree for L.
A Ca

k -move on a link is surgery along a Ca
k -tree. The Ca

k -equivalence is the
equivalence relation on links generated by Ca

k -moves.
The main tool in the proofs of Theorems 1.1 and 1.2 is the following.

Theorem 4.2 ([12, 18]). Let L be an (n+1)-component link in S3. L is Brunnian
if and only if it is Ca

n-equivalent to the (n + 1)-component unlink U .

In the proof of Theorem 1.2, we will also need the next result.

Theorem 4.3 ([18], see also [13]). Two (n + 1)-component Brunnian links in S3

are link-homotopic if and only if they are Ca
n+1-equivalent.

Note that this statement does not appear explicitly in [18]. However, it is implied
by the proof of [18, Thm. 3]. An alternative proof was given subsequently by
Habiro and the author [13].

4.2. Proof of Theorem 1.1. Let m = (m1, ..., mn) ∈ Zn, n ≥ 3 and let L be
an (n + 1)-component Brunnian link in a 3-manifold M . By Theorem 4.2, L is
Ca

n-equivalent to an (n + 1)-component unlink U in M . So by [12, Lem. 7] there
exists a simple Ca

n-forest F = T1 ∪ ... ∪ Tp for U such that L ∼= UF . We thus have

M(L,m)
∼= MGm(F ),

where Gm(F ) is the clasper obtained from F by performing 1
mi

-framed surgery

along the ith component Ui of U for all 1 ≤ i ≤ n. Indeed, 1
mi

-surgery along an
unknot does not change the diffeomorphism type of M , and can be regarded as a
move on claspers in M . 1

mi
-surgery along Ui turns each disk-leaf of F intersecting Ui

into a (−mi)-framed unknot (here, we forget the bounding disk). Thus 1
m

-surgery
along U turns each Ca

n-tree Tj of F into a Yn−1-tree Gj in M . However, the (n+1)
corresponding leaves of Gj might not be special leaves with respect to Gm(F ), as
they can be linked with the leaves of other components of Gm(F ). Lemma 2.6 (1)
can be used to unlink these leaves ‘up to Y2n−2-equivalence’. Namely, Lemma 2.6

implies that MGm(F ) ∼Y2n−2
MG̃m(F ), where G̃m(F ) is a union of Yn−1-trees, each

containing (n + 1) special leaves with respect to G̃m(F ). The result then follows
from Theorem 3.2.

4.3. Proof of Theorem 1.2. Let L and L′ be two link-homotopic (n+1)-component
Brunnian links in M , and let U denote an (n + 1)-component unlink U in M .
By Theorems 4.2 and 4.3, and [12, Lem. 7], there exists a simple Ca

n+1-forest
F = T1 ∪ ...∪ Tp and a simple Ca

n-forest F ′ = T ′
1 ∪ ...∪T ′

q for U such that L′ ∼= UF ′

and L ∼= UF∪F ′ .
For all j, denote by G′

j (resp. Gj) the Yk-tree obtained from T ′
j (resp. Tj) by

1
m

-surgery along U . By Lemma 2.6,

M(L,+1) ∼Y2n−1
MG′

1
∪...∪G′

q
]S3

G1
]...]S3

Gp

∼= M(L′,+1)]S
3
G1

]...]S3
Gp

.

So proving that S3
Gi

∼Y2n−1
S3 for all 1 ≤ i ≤ p would imply the theorem.

By strictly the same arguments as in §4.2, the Yn-tree Gi contains at least n
special leaves, for all 1 ≤ i ≤ q. So Theorem 3.2 implies that S3

Gi
∼2n−1 S3.

5. Trivalent diagrams and Goussarov-Vassiliev invariants for

Brunnian links.

In this section, we recall some results proved by Habiro and the author in a
previous paper [13]. These, together with the two theorems shown above, will
allow us to prove Theorem 1.3 in the next section.
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5.1. Trivalent diagrams. A trivalent diagram is a finite graph with trivalent ver-
tices, each vertex being equipped with a cyclic order on the three incident edges.
The degree of a trivalent diagram is half the number of vertices.

For k ≥ 0, let Ak(∅) denote the Z-module generated by trivalent diagrams of
degree k, subject to the AS and IHX relations, see Figure 5.1.

+ = 0−+ = 0

IHXAS

Figure 5.1. The AS and IHX relations.

Denote by Ac
k(∅) the Z-submodule of Ak(∅) generated by connected trivalent

diagrams.

5.2. The Brunnian part of the Goussarov-Vassiliev filtration. Denote by
ZL(n) the free Z-module generated by the set of isotopy classes of n-component
links in S3, and denote by Jk(n) the Z-submodule of ZL(n) generated by elements
of the form

[L; C1, ..., Cp] :=
∑

S⊆{C1∪...∪Cp}

(−1)|S|LS ,

where L is an n-component link in S3, and where the Ci (1 ≤ i ≤ p) are disjoint
Cki

-trees for L such that k1 + ... + kp = k. The sum runs over all the subsets S of
{C1, ..., Cp} and |S| denotes the cardinality of S. The descending filtration

ZL(n) = J0(n) ⊃ J1(n) ⊃ J2(n) ⊃ ...

coincides with the Goussarov-Vassiliev filtration [11].
Denote by Jk(n) the graded quotient Jk(n)/Jk+1(n).

Definition 5.1. The Brunnian part Br(J2n(n + 1)) of the 2nth graded quotient
J2n(n + 1) is the Z-submodule generated by elements [L − U ]J2n+1

where L is an
(n + 1)-component Brunnian link.

As outlined in the proof of [13, Thm. 6.3], Br(J 2n(n + 1)) is spanned over Z by
elements

1

2
[U ; Tσ ∪ T̃σ ] and [U ; Tσ ∪ T̃σ′ ], for σ 6= σ′ ∈ Sn−1,

where, for all σ, σ′ in the symmetric group Sn−1, Tσ is the simple linear Ca
n-tree for

the (n + 1)-component unlink U depicted in Figure 5.2, and T̃σ′ is obtained from
Tσ′ by a small isotopy so that it is disjoint from Tσ.

...

Tσ

Uσ(1) Uσ(n−1)Uσ(2)

Un+1 Un

Figure 5.2. The simple linear Ca
n-tree Tσ.
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5.3. The map hn : Ac
n−1(∅) → Br(J2n(n + 1)). Connected trivalent diagrams

allow us to describe the structure of Br(J2n(n + 1)). For n ≥ 2, we have a map

hn : Ac
n−1(∅) −→ J2n(n + 1)

defined as follows. Given a connected trivalent diagram Γ ∈ Ac
n−1(∅), insert n + 1

ordered copies of S1 in the edges of Γ, in an arbitrary way. The result is a strict
unitrivalent graphs DΓ of degree 2n on the disjoint union of (n + 1) copies of S1

(see [1]). Next, ‘realize’ this unitrivalent graph by a graph clasper. Namely, replace
each univalent vertex (resp. trivalent vertex, edge) of DΓ with a disk-leaf (resp.
node, edge), these various subsurfaces being connected as prescribed by graph DΓ

(see [13, §3.7] for a definition of this map). Denote by C(DΓ) the resulting graph
clasper for the (n + 1)-component unlink U . Then

hn(Γ) := [U − UC(DΓ)]J2n+1
∈ J2n(n + 1).

For n ≥ 3, the image of hn is the Brunnian part Br(J2n(n + 1)) of J2n(n + 1),
and

hn ⊗Q : Ac
n−1(∅) ⊗Q −→ Br(J2n(n + 1)) ⊗Q

is an isomorphism.

6. Finite type invariants of integral homology spheres.

6.1. The Ohtsuki filtration for integral homology spheres. Let M denote
the free Z-module generated by the set of orientation-preserving homeomorphism
classes of integral homology spheres. The definition of the Ohtsuki filtration uses
algebraically split, unit-framed links. For the purpose of the present paper, it is
however more convenient to use a definition using claspers, due to Goussarov and
Habiro [7, 4, 11]. For k ≥ 0, let Mk denote the Z-submodule of M generated by
elements of the form

[M ; G1, ..., Gp] :=
∑

S⊆{G1∪...∪Gp}

(−1)|S|MS ,

where M is an integral homology sphere, and where the Gi (1 ≤ i ≤ p) are disjoint
Yki

-graphs in M such that k1 + ... + kp = k. The sum runs over all the subsets S
of {G1, ..., Gp} and |S| denotes the cardinality of S.

The descending filtration of Z-submodules

M = M0 ⊃ M1 ⊃ M2 ⊃ ...

is equal to the Ohtsuki filtration after re-indexing and tensoring by Z[ 1
2 ] [7, 11, 4].

Another alternative definition was previously given by Garoufalidis and Levine
using ‘blinks’ [5].

6.2. The connected part of the Ohtsuki filtration. Let M2k denote the
graded quotient M2k/M2k+1.

Definition 6.1. The connected part Co(M2k) of M2k is the Z-submodule of M2k

generated by elements [S3; G]M2k+1
where G is a Y2k-graph (in particular, G is

connected).

For k ≥ 1, there is a well-defined surgery map

ϕk : Ak(∅) −→ M2k,

which maps each trivalent diagram Γ = Γ1∪ ...∪Γp to [S3; GΓ1
, ..., GΓp

], where GΓi

is a connected clasper obtained by ‘realizing’ the diagram Γi in S3 as depicted in
Figure 6.1. The image ϕk(Γ) of a degree k trivalent diagram Γ in M2k by ϕk does
not depend on the embeddings GΓi

in S3 ([11], see also [20, pp. 320]). Note that ϕk

is a reconstruction, using claspers, of a map defined previously by Garoufalidis and
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Ohtsuki [6]. The homomorphism ϕk ⊗Z[1/2] is surjective, and it is an isomorphism

ΓGΓ

Figure 6.1. Realizing a trivalent diagram in S3.

when tensoring by Q, with inverse given by the LMO invariant [14].
It can be easily checked using the arguments of [4] that ϕk(Ac

k(∅)) = Co(M2k).
We thus have an isomorphism

ϕk ⊗Q : Ac
k(∅) ⊗Q

'
−→ Co(M2k) ⊗Q

induced by the surgery map ϕk.

6.3. The map αk : Co(M2k) −→ S2k. Let Sk denote the set of integral homology
spheres which are Yk-equivalent to S3, and denote by Sk the quotient Sk/ ∼Yk+1

.

The connected sum induces an abelian group structure on Sk.
As recalled in the introduction, S2k+1 = 0 for all k ≥ 1. S2k is generated by the

elements S3
G, where G is a Y2k-graph in S3 (for k = 0, we have S1 = Z/2Z). There

is a surjective homomorphism of abelian groups

φk : Ac
k(∅) −→ S2k

defined by φk(Γ) := [S3
GΓ

]Y2k+1
, where GΓ is a topological realization of the diagram

Γ as in the definition of ϕk (see Figure 6.1). It is well known that φk is well-defined
(see the proof of [20, Thm. E.20]).

φk is an isomorphism over the rationals. This is shown by using the primitive
part of the LMO invariant zLMO [20, pp. 329-330].

Let
αk : Co(M2k) −→ S2k

be the map defined by

αk([S3; G]M2k+1
) = [S3

G]Y2k+1
.

The fact that αk is well-defined follows from standard arguments of clasper theory,
and is well known to experts.

The following is clear from the above definitions.

Lemma 6.2. The following diagram commutes for all k ≥ 1

Ac
k(∅)

ϕk

��

φk

$$I
I

I
I

I
I

I
I

I

Co(M2k) αk

// S2k.

As a consequence, αk is an isomorphism over the rationals.

6.4. The map λn. For simplicity, we work over the rationals in the rest of this
section.

Let n ≥ 2. Denote by Bn+1 the set of isotopy classes of (n + 1)-component
Brunnian links in S3. Define a linear map

λ̃n : QBn+1 → M

by assigning each element L ∈ Bn+1 to S3
(L,1). Note that λ̃n is well-defined, as

Theorem 1.1 implies that S3
(L,1) is an integral homology sphere for all L ∈ Bn+1.
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Denote by I the submodule of QBn+1 generated by element (L − L′) such that

λ̃n(L−L′) is in M2n−1. The following follows immediately from [12] and Theorem
1.2.

Lemma 6.3. Let L and L′ be two link-homotopic (or Ca
n+1-equivalent) (n + 1)-

component Brunnian links. Then L − L′ ∈ I.

Note that two link-homotopic (n+1)-component Brunnian links satisfy L−L′ ∈
J2n+1(n + 1) [13, Prop. 7.1]. We generalize Lemma 6.3 as follows.

Proposition 6.4. Let L, L′ be two (n + 1)-component Brunnian links in S3 such
that L − L′ ∈ J2n+1(n + 1). Then L − L′ ∈ I.

Proof. Let B be an (n + 1)-component Brunnian link in S3. By [13, §6], we have
B ∼Ca

n+1
UF , where F = T1 ∪ ... ∪ Tm is a simple Ca

n-forest F for U in S3 such

that, for all 1 ≤ i ≤ p, we have Ti = Tσi
for some σi ∈ Sn−1 (see Figure 5.2 for the

definition of Tσi
). By Lemma 6.3 we thus have

B ≡ UF mod I.

Observe that we have the equality

UF =
∑

F ′⊆F

(−1)|F
′|[U ; F ′].

For all F ′ ⊆ F , denote by G(F ′) the clasper obtained in S3 by performing (+1)-

framed surgery along U . As in §4.2, we have λ̃n(UF ) = S3
(UF ,+1)

∼= S3
G(F ). As

each Ca
n-tree in F ′ is turned into a Yn−1-tree of S3 by this operation, we have

λ̃n([U ; F ′]) = [S3; G(F ′)] ∈ M(n−1).|F ′|. In particular, λ̃n([U ; F ′]) ∈ M2n−2 for all
F ′ with |F ′| ≥ 3. It follows that

B ≡
∑

F ′⊆F / |F ′|≤2

(−1)|F
′|[U ; F ′] mod I.

By strictly the same arguments as in the proof of [13, Thm 7.4], one can check

that, for every σ ∈ Sn−1, [U ; Tσ] ≡ 1
2 [U ; Tσ, T̃σ] mod I. It follows that

B ≡ U +
1

2

∑

1≤i≤m

[U ; Tσi
, T̃σi

] +
∑

1≤i6=j≤m

[U ; Tσi
, T̃σj

] mod I.

It follows that L − L′ is equal, modulo I, to a linear combination of the form
(ασ,σ′ ∈ Q)

(6.1)
∑

σ,σ′∈Sn−1

ασ,σ′ [U ; Tσ, T̃σ′ ].

By assumption, L − L′ ∈ J2n+1(n + 1). So (6.1) vanishes in Br(J2n(n + 1)), and
is thus mapped by h−1

n onto a linear combination of connected trivalent diagrams
which vanishes in Ac

n−1(∅). (6.1) is thus a linear combination of terms of the
following two types.

(1) (AS) [U ; T1, T2] + [U ; T ′
1, T

′
2], where T1 ∪ T2 and T ′

1 ∪ T ′
2 differ by the cyclic

order of the three edges attached to a node.
(2) (IHX) [U ; T1, T2] + [U ; T ′

1, T
′
2] + [U ; T ′′

1 , T ′′
2 ], where T1 ∪ T2, T ′

1 ∪ T ′
2 and

T ′′
1 ∪ T ′′

2 are as claspers I , H and X of Figure 2.7.

Consider a term of type (1). By [4, Cor. 4.6], we have λ̃n([U ; T1, T2]+[U ; T ′
1, T

′
2]) ∈

M2n−1. The same holds for terms of type (2) by [4, Thm. 4.11].
This completes the proof. �
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By Theorem 1.1 and Proposition 6.4, we have a well-defined homomorphism

λn : Br(J2n(n + 1)) → M2n−2

by setting

λn([L − U ]J2n+1
) := [S3 − S3

(L,+1)]M2n−1
.

6.5. Proof of Theorem 1.3. First, we show that λn actually takes its values in
the connected part of the Ohtsuki filtration.

Recall from §5.2 that Br(J2n(n + 1)) is generated by elements [U ; Tσ ∪ T̃σ′ ], for
σ, σ′ ∈ Sn−1. Each component Ui of U intersects one disk-leaf fi of Tσ and one

disk-leaf f ′
i of Tσ′ . Denote by Gσ,σ′ the Y2n−2-graph obtained from Tσ ∪ T̃σ′ by

connecting, for each 1 ≤ i ≤ n − 1, the edges incident to fi and f ′
i .

Lemma 6.5. For all σ, σ′ ∈ Sn−1,

λn([U ; Tσ ∪ T̃σ′ ]) ≡ [S3; Gσ,σ′ ] mod M2n−1.

Consequently, we have

λn(Br(J2n(n + 1))) ⊂ Co(M2n−2).

Proof. For any σ, σ′ ∈ Sn−1, we have

λn([U ; Tσ ∪ T̃σ′ ]) = −S3
G(Tσ∪T̃σ′ )

+ S3
G(Tσ) + S3

G(Tσ′ ) − S3,

where, if F is a Ca
n-forest for U , G(F ) denotes the clasper obtained in S3 by (+1)-

framed surgery along U .
For all τ ∈ Sn−1, G(Tτ ) is a linear Yn−1-tree whose leaves are all (−1)-special

leaves. So by Theorem 3.2, there exists a union Gτ of Yk-trees, k ≥ 2n − 2 such
that S3

G(Tτ )
∼= S3

Gτ
.

On the other hand, Gσ,σ′ is obtained from Tσ ∪ T̃σ′ by replacing fi ∪f ′
i by a pair

of Hopf-linked (−1)-framed leaves (as illustrated in Fig. 6.2), for 1 ≤ i ≤ n − 1.

By Habiro’s move 7 and 2, G(Tσ ∪ T̃σ′) is equivalent to the clasper C obtained by

(+1)-surgery

C

Tσ T̃σ′

Ui G(Tσ ∪ T̃σ′)
fi f ′

i

Figure 6.2. Performing (+1)-framed surgery along the unlink U

replacing each such pair of Hopf-linked leaves by two boxes as shown in Fig. 6.2.
By using the zip construction and Lemma 2.6, we obtain

S3
C
∼= S3

G(Tσ∪T̃σ′ )
∼Y2n−1

S3
Gσ,σ′∪G(Tσ)∪G(T̃σ′ )

.

It follows that

λn([U ; Tσ ∪ T̃σ′ ]) ≡ −S3
Gσ,σ′∪Gσ∪Gσ′

+ S3
Gσ

+ S3
Gσ′

− S3 mod M2n−1.

By using the equality S3
Gσ,σ′∪Gσ∪Gσ′

=
∑

G′⊆Gσ,σ′∪Gσ∪Gσ′
(−1)|G

′|[S3; G′], one

can easily check that

S3
Gσ,σ′∪Gσ∪Gσ′

≡ S3
Gσ,σ′

+ S3
Gσ

+ S3
Gσ′

− 2S3 mod M2n−1.

(here we use the fact that Gσ,σ′ and each connected component of Gσ and Gσ′ have
degree ≥ 2n − 2). The result follows. �
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Clearly, the composite αn−1λn is the map

κn : Br(J2n(n + 1)) −→ S2n−2

announced in the statement of Theorem 1.3. By Lemma 6.2, it suffices to show that
λn is an isomorphism to obtain the theorem. This is implied by the next lemma.

Lemma 6.6. For n ≥ 3, the following diagram commutes.

Ac
n−1(∅)

hn

��

ϕn

((PPPPPPPPPPPP

Br(J2n(n + 1))
λn

// Co(M2n−2).

Proof. As pointed out in [13, §8.3], one can easily check that Ac
n−1(∅) is generated

by the elements Γσ depicted in Fig. 6.3, for all σ ∈ Sn−1.

...
...

permutation σpermutation σ

Tσ

T1

Figure 6.3. The connected trivalent diagram Γσ , and the two
simple linear Ca

n-trees T0 and Tσ .

For such an element Γσ , a representative for hn(Γσ) is [U ; T1∪Tσ], where T1 and
Tσ are two Ca

n-trees for U as represented in Fig. 6.3. As seen in the proof of Lemma
6.5, λn([U ; T1 ∪ Tσ]) = [S3; G1,σ ]M2n−1

, where G1,σ is obtained by replacing each
pair of disk-leaves intersecting the same component of U by an edge. Clearly, this
Y2n−2-graph satisfies ϕn(Γσ) = [S3; G1,σ]M2n−1

. �

The various results proved of this section can be summed up in the following
commutative diagram (n ≥ 2)

Ac
n−1(∅)

hn

vvnnnnnnnnnnnn

ϕn−1

��

φn−1

&&L
LL

L
L

L
L

L
L

L

Br(J2n(n + 1))
λn

// Co(M2n−2) αn−1

// S2n−2,

where all arrows are isomorphism over Q.

6.6. Brunnian links with vanishing Milnor invariants. In this last subsection,
we can work over the integers.

Habegger and Orr also studied finite type invariants of integral homology spheres
obtained by (+1)-framed surgery along links in S3. In particular, [10, Thm. 2.1]
deals with (+1)-framed surgery along l-component Brunnian links with vanishing
Milnor invariants of length ≤ 2l−1, and appears to have some similarities with our
results.

Let Brl(Jk(n)) denote the Z-submodule of Jk(n) generated by elements [L −
U ]Jk+1

where L is an n-component Brunnian link with vanishing Milnor invariants

of length ≤ l. Let U(k) denote the k-component unlink U1 ∪ · · · ∪ Uk in S3. Let

Sn+1 : Br(J2n(n + 1)) −→ ZL(n)
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be the map defined by

Sn+1([L − U(n+1)]J2n+1
) = sn+1(L) − U(n),

where sn+1(L) denotes the n-component link in S3 obtained by (+1)-framed surgery
along the (n + 1)th component of L. In particular, sn+1(U(n+1)) = U(n).

We can show that, for n ≥ 3,

(1) Sn+1(Br(J2n(n + 1))) = Br2n−1(J2n−1(n)).
(2) Sn+1⊗Q : Br(J2n(n+1))⊗Q → Br2n−1(J2n−1(n))⊗Q is an isomorphism.

The proof involves the same technique as in the preceding section, and makes use
of Theorem 6.1 of [9].

7. The proof of Proposition 3.8

In this section, we give the proof of Proposition 3.8. For that purpose, it is
convenient to state a few more technical lemmas on claspers.

Lemma 7.1. The move of Figure 7.1 produces equivalent claspers.

Figure 7.1

This is an easy consequence of [11, Prop. 2.7].

Lemma 7.2. Let G be a clasper in a 3-manifold M containing a Yk-subtree T ,
k ≥ 1, such that a branch of T is incident to a box as shown in Figure 7.2. There,
e is an edge of G which is not contained in T . Then

MG ∼Yk+1
MG′ ,

where G′ is the clasper depicted in the right-hand side of Figure 7.2.

e
T

G’

;

G

Figure 7.2

The proof is omitted. It is straightforward, and uses Habiro’s move 12 and a zip
construction.

Lemma 7.3. Let G be a clasper in a 3-manifold M such that a 3-ball B in M
intersects G as depicted in Figure 7.3. There, the nodes n1 and n2 are both in a
Yk-subtree T , k ≥ 1, and e is an edge of G which is not contained in T . Then

MG ∼Yk+1
MG′ ,

where G′ is identical to G outside of B, where it is as shown in Figure 7.3.

Proof. By an isotopy, G is seen to be equivalent to the clasper G1 represented in
Figure 7.4. By applying the move of [11, Fig. 38] to G1, and then applying Habiro’s
move 6 twice, we obtain the clasper G2 ∼ G1 of Figure 7.4. Consider the two I-
shaped claspers I1 ∪ I2 of G2 which appear in the figure. By Habiro’s move 6 and
4, we have that G2 ∼ G2 \ (I1 ∪ I2). The result then follows from Lemma 7.2. �
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G

e

;
n2n1

G′

Figure 7.3

G2G1

Figure 7.4

We can now prove Proposition 3.8.
Let G be a linear Yn-tree in a 3-manifold M , n ≥ 2, with n + 2 (−1)-special

leaves, and let N denote an s-regular neighborhood N of G. As noted previously,
N is a 3-ball in M .

By (n−1) applications of Lemma 2.3, G is equivalent to the clasper G̃ represented
in Fig. 7.5. The first step of this proof is to show the following.

Claim 7.4. We have
G̃ ∼ C,

in N , where C is the clasper containing a Y2n-subtree represented in Figure 7.5.

(n − 1) times

B

G̃

Cv

Figure 7.5

Proof. Consider the box of G̃ which is connected to one (−1)-special leaf. This box
is connected to a node v by two edges. By applying Lemma 2.4 at v, and Lemma
2.5, we obtain the clasper represented in Figure 7.6 (a). Then apply recursively
Lemma 2.4 and Habiro’s move 6, as shown in Figure 7.6 (b), until we obtain a

clasper G′ ∼ G̃ with only one node connected to two (−1)-special leaves. See in
Figure 7.6 (c). By applying the move of Figure 3.1 and Habiro’s move 6, we have
G′ ∼ G′′, where G′′ contains a component c with 4 nodes and with two leaves f
and f ′ lacing an edge e – see Figure 7.6 (d).7 We can apply Habiro’s move 12 to
these two leaves, and then Habiro’s move 6 to create two new leaves lacing an edge.
Apply recursively these two moves until no new leaf lacing an edge is created: the
result is the desired clasper C which contains a Y2n-subtree T , as represented in
Fig. 7.5. �

7Here we say that a leaf of a clasper G laces an edge if it forms an unknot which bounds a disk
D with respect to which it is 0-framed, such that the interior of D intersects G once, transversally,
at an edge.
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����

(a) (b) (c)

G’

(d)

G’’

f’

e

c

f

Figure 7.6. Here, for simplicity, we consider the case n = 5.

Consider in N a 3-ball B which intersects C as depicted. By several applications
of the move of [11, Fig. 38] and of Habiro’s move 6, we obtain the clasper G1 ∼ G
which is identical to C outside B, where it is as shown in Fig. 7.7. By Habiro’s

�������
�

��

G1 G3G2 G4

Figure 7.7. These four claspers are identical to C outside B

move 6 and 4, we can freely remove the pair of I-shaped claspers which appear in
the figure (see the proof of Lemma 7.3). By further applying four times Lemma
7.2, we thus obtain the clasper G2 of Fig. 7.7, which satisfies NG2

∼Y2n+1
NG1

. By
an isotopy, we can apply Habiro’s move 12 to show that NG2

∼ NG3
, where G3 is

as shown in Fig. 7.7. By using [20, pp. 398], we obtain NG3
∼Y2n+1

NG4
.8

Observe that G4 satisfies the hypothesis of Lemma 7.3. Actually, we can apply
Lemma 7.3 recursively (n− 3) times. By further applying, to the resulting clasper,
strictly the same arguments as in the proof of Lemma 7.3, we obtain NG4

∼Y2n+1

NG5
, where G5 is the clasper shown in Fig. 7.8. It follows, by the zip construction

and Lemma 2.6, that

NG5
∼Y2n+1

NG6∪G7
,

where G6 and G7 are two disjoint claspers in N as represented in Fig. 7.8.
By Lemma 7.1 and Theorem 3.2 (for l = 1), it is not hard to check that

NG7
∼Y2n+1

N and that NG6
∼Y2n+1

NΘn
.

This concludes the proof of Proposition 3.8.
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