
Matroids on Convex Geometries (cg-matroids)

SATORU FUJISHIGE
Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606-8502, Japan
fujishig@kurims.kyoto-u.ac.jp

GLEB A. KOSHEVOY
Central Institute of Economics and Mathematics

Russian Academy of Sciences
Nahimovskii pr. 47, Moscow, 117418, Russia

koshevoy@cemi.rssi.ru

YOSHIO SANO
Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606-8502, Japan
sano@kurims.kyoto-u.ac.jp

April 2006

Abstract

We consider matroidal structures on convex geometries, which we call cg-matroids.
The concept of a cg-matroid is closely related to but different from that of a super-
matroid introduced by Dunstan, Ingleton, and Welsh in 1972. Distributive superma-
troids or poset matroids are supermatroids defined on distributive lattices or sets of
order ideals of posets. The class of cg-matroids includes distributive supermatroids
(or poset matroids). We also introduce the concept of a strict cg-matroid, which turns
out to be exactly a cg-matroid that is also a supermatroid. We show characterizations
of cg-matroids and strict cg-matroids by means of the exchange property for bases
and the augmentation property for independent sets. We also examine submodularity
structures of strict cg-matroids.
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1. Introduction

Dunstan, Ingleton, and Welsh [6] introduced the concept of asupermatroidin 1972 as a
generalization of the concept of an ordinary matroid and integral polymatroid ([29, 8];
also see [26, 27, 28, 22]). Supermatroids have been investigated in the literature such
as [9, 10, 12, 14, 17, 18, 19]. Distributive supermatroids or poset matroids are super-
matroids defined on distributive lattices or sets of order ideals of partially ordered sets
(posets). Faigle [11] investigated their geometric strucure and examined a greedy algo-
rithm on them. Tardos [25] showed a matroid-type intersection theorem for distributive
supermatroids, and Peled and Srinivasan [23] also considered a generalization of the ma-
troid independent matching problem for distributive supermatroids. Moreover, Barnabei,
Nicoletti, and Pezzoli [3, 4] studied distributive supermatroids in more detail. Also see a
related general framework in [13].

We generalize the concept of a distributive supermatroid (or a poset matroid) by con-
sidering a convex geometry, instead of a poset, as the underlying combinatorial structure
on which we define a matroidal structure, which we call acg-matroid. For a cg-matroid
we define independent sets, bases, and other related concepts, and examine their combi-
natorial structural properties. We show characterizations of cg-matroids by means of the
exchange property for bases and the augmentation property for independent sets. We also
introduce the concept of a strict cg-matroid; strict cg-matroids will turn out to be exactly
cg-matroids that are also supermatroids. In other words, strict cg-matroids are exactly su-
permatroids defined on the lattices of closed sets of convex geometries. We also examine
submodularity structures of strict cg-matroids.

In Section 2 we give definitions and some preliminaries on convex geometries. We de-
fine a cg-matroid and associated concepts of bases, independent sets, etc. of a cg-matroid
in Section 3. Moreover, in Section 4 we introduce the concept of a strict cg-matroid
and give a characterization of strict cg-matroids. We also give some remarks on the dual
exchange property for cg-matroids in Section 5.

2. Definitions and Preliminaries on Convex Geometries

In this section we give some definitions and preliminaries on convex geometries (see
[7, 15] for more details).

Let E be a nonempty finite set andF be a family of subsets ofE. The pair(E,F) is
called aclosure spaceonE if it satisfies the following two conditions:

(F0) ∅, E ∈ F .

(F1) X, Y ∈ F =⇒ X ∩ Y ∈ F .
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The setE is called theground setof the closure space(E,F), and each member ofF is
called aclosed set. Moreover, we call the closure space(E,F) a convex geometryif it
satisfies the following condition:

(F2) ∀X ∈ F \ {E}, ∃e ∈ E \X: X ∪ {e} ∈ F .

Condition (F2) is equivalent to the following chain condition:

(F2)′ Every maximal chain∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = E in F has lengthn = |E|.
Next we define an operatorτ : 2E → 2E associated with the closure space(E,F).

For anyX ∈ 2E define
τ(X) =

⋂
{Y ∈ F | X ⊆ Y }. (2.1)

That is,τ(X) is the unique minimal closed set containingX. The operatorτ satisfies the
following properties (cl0)∼(cl3):

(cl0) τ(∅) = ∅.
(cl1) X ⊆ τ(X) for X ∈ 2E (Extensionality).

(cl2) X ⊆ Y =⇒ τ(X) ⊆ τ(Y ) for anyX,Y ∈ 2E (Monotonicity).

(cl3) τ(τ(X)) = τ(X) for anyX ∈ 2E (Idempotence).

In general, any operatorτ : 2E → 2E satisfying the four conditions given above is called a
closure operator. Conversely, given a closure operatorτ , defineF = {X ∈ 2E | τ(X) =
X}. ThenF forms a closure space onE. Hence, for a finite setE and a closure operator
τ onE we also call the pair(E, τ) aclosure space.

In terms of closure operator, a closure space(E, τ) is a convex geometry if and only
if it satisfies the following property, called theanti-exchange property:

(AE) X ⊆ E, p ∈ E \ τ(X), q ∈ τ(X ∪ {p}) \ {p} =⇒ p 6∈ τ(X ∪ {q}).
Example 2.1.

(a) Given a finite setE of points in a Euclidean spaceRk, the convex hull operator in
Rk gives a closure operatorτ on 2E. We then get a convex geometry onE, called
aconvex shelling.

(b) LetE be the vertex set of a treeT . The vertex sets of subtrees ofT form the closed
sets of a convex geometry, called atree shelling.

(c) For a posetP, (order) ideals ofP gives the closed sets of a convex geometry, called
aposet shelling. It is well-known that a convex geometry(E,F) is a poset shelling
if and only ifF is closed with respect to set union.
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Every convex geometry forms a graded lattice with respect to set-inclusion, where the
lattice operationsjoin ∨ andmeet∧ are given by

X ∨ Y = τ(X ∪ Y ), X ∧ Y = X ∩ Y (2.2)

for anyX,Y ∈ F .
Now, we define dual operatorsex : 2E → 2E andex∗ : 2E → 2E, associated with a

convex geometry(E,F) or, more generally, a closure space (E, τ ). The first one,ex, is
theextreme-point operatorof the closure space (E, τ ) defined by

ex(X) = {e | e ∈ X, e 6∈ τ(X \ {e})} (2.3)

for any X ∈ 2E. An element inex(X) is called anextreme pointof X. The second
operator,ex∗, is theco-extreme-point operatorof (E, τ) defined by

ex∗(X) = {e | e ∈ E \ τ(X), τ(X) ∪ {e} = τ(X ∪ {e})} (2.4)

for anyX ∈ 2E.
The extreme-point operatorex satisfies the following properties (ex0)∼(ex4).

(ex0) ex({e}) = {e} for everye ∈ E (Singleton Identity).

(ex1) ex(X) ⊆ X for everyX ∈ 2E (Intensionality).

(ex2) X ⊆ Y ⊆ E =⇒ ex(Y ) ∩X ⊆ ex(X) (Chernoff property).

(ex3) X ⊆ E, p, q ∈ E \X, p 6∈ ex(X ∪ {p}), q ∈ ex(X ∪ {q})
=⇒ q ∈ ex(X ∪ {p} ∪ {q}).

(ex4) ex(Y ) ⊆ X ⊆ Y ⊆ E =⇒ ex(X) ⊆ ex(Y ) (Aizerman’s Axiom).

It is known (see [2]) that conditions (ex0)∼(ex3) completely characterize the extreme-
point operatorex for closure spaces, while conditions (ex0)∼(ex2) and (ex4) completely
characterize the extreme-point operatorex for convex geometries. Note that extreme-
point operators are also investigated as choice functions; see [1, 16, 21, 5] (also see [7,
24]).

The following facts are fundamental, but their proofs are easy so that we omit them.
Let (E,F) be a closure space onE.

• For any closed setX ∈ F
ex(X) = {e | e ∈ X, X \ {e} ∈ F}. (2.5)
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• For any closed setX ∈ F
ex∗(X) = {e | e ∈ E \X, X ∪ {e} ∈ F}. (2.6)

• Let (E, τ) be a closure space. For anyX ∈ 2E ande ∈ ex(τ(X)) ,

τ(X \ {e}) ⊆ τ(X) \ {e}, (2.7)

ex(τ(X)) \ {e} ⊆ ex(τ(X) \ {e}), (2.8)

ex(τ(X)) ⊆ X, (2.9)

τ(X ∪ {e′}) = τ(X) (e′ ∈ τ(X)). (2.10)

The following two lemmas are useful and will be used in the following argument.

Lemma 2.2. Let (E,F) be a convex geometry. For anyX, Y ∈ F , ex(τ(X ∪ Y )) ⊆
ex(X) ∪ ex(Y ).

Proof. From (2.9),
ex(τ(X ∪ Y )) ⊆ X ∪ Y. (2.11)

Also, from (ex2)

ex(τ(X ∪ Y )) ∩X ⊆ ex(X), ex(τ(X ∪ Y )) ∩ Y ⊆ ex(Y ). (2.12)

Hence, from (2.11) and (2.12) we haveex(τ(X ∪ Y )) ⊆ ex(X) ∪ ex(Y ).

Lemma 2.3. Let (E,F) be a convex geometry. For anyX, Y ∈ F with X * Y , we have
ex(τ(X ∪ Y )) ∩ ex(X) * Y .

Proof. For anyX,Y ∈ F with X * Y there exists an elemente ∈ ex(τ(X ∪ Y )) such
thate /∈ Y . Such an elemente must belong toex(X), due to (2.9) and Lemma 2.2.

3. Matroids on Convex Geometries (cg-matroids)

In this section we define a matroid on a convex geometry, called a cg-matroid. The
concept of a cg-matroid is closely related to but different from that of a supermatroid
introduced by Dunstan, Ingleton, and Welsh [6]. Their relationship will be made clear in
Section 4.
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3.1. Definition

Let E be a nonempty finite set and(E,F) be a convex geometry onE with a familyF
of closed sets. Letτ : 2E → F be the closure operator associated with convex geometry
(E,F).

Definition 3.1 (Matroid on a convex geometry).For a convex geometry(E,F) and a
family B ⊆ F , suppose thatB satisfies the following three conditions:

(B0) B 6= ∅.
(B1) B1, B2 ∈ B , B1 ⊆ B2 =⇒ B1 = B2.

(BM) (Middle Base Property)
For anyB1, B2 ∈ B andX,Y ∈ F with X ⊆ B1, B2 ⊆ Y , andX ⊆ Y ,
there existsB ∈ B such thatX ⊆ B ⊆ Y .

Then we call(E,F ;B) a matroid on the convex geometry(E,F) (or a cg-matroidfor
short). EachB ∈ B is called abase, andB the family of basesof cg-matroid(E,F ;B).

Note that a cg-matroid(E,F ;B) is an ordinary matroid whenF = 2E and that
(E,F ;B) is a poset matroid (or a distributive supermatroid) whenF is the set of order
ideals of a poset onE.

Example 3.2. For a convex geometry(E,F), let k be an integer such that0 ≤ k ≤ |E|,
and define

B(k) = {X | X ∈ F , |X| = k}. (3.1)

We can easily see that(E,F ;B(k)) satisfies (B0), (B1), and (BM) and is a cg-matroid on
(E,F), which we call auniform cg-matroid of rankk. A uniform cg-matroid of rank0 is
calledtrivial and that of rank|E| free.

The family of subtrees, of fixed size, of a tree is an example of such a uniform cg-
matroid.

3.2. Bases and an exchange property

We examine properties of bases of a cg-matroid(E,F ;B) on a convex geometry(E,F).

Theorem 3.3.For any cg-matroid(E,F ;B) all the bases inB have the same cardinality,
i.e.,

(B1)′ B1, B2 ∈ B =⇒ |B1| = |B2|.
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Proof. Let B1, B2 ∈ B. Suppose|B1| ≥ |B2|. We show the present theorem by induction
onk = |τ(B1 ∪B2)| − |B2|.

First, supposek = 0. Then, since|B2| = |τ(B1∪B2)| andB2 ⊆ τ(B1∪B2), we have
B2 = τ(B1 ∪ B2). SinceB2 is a closed set, i.e.,τ(B2) = B2, it follows thatB1 ⊆ B2.
Hence,B1 = B2 (due to (B1)) and|B1| = |B2|.

Next, for an integerk ≥ 0 suppose that|B1| = |B2| holds for anyB1, B2 ∈ B such
that|τ(B1 ∪B2)| − |B2| = k. Consider any distinctB1, B2 ∈ B such that|τ(B1 ∪B2)| −
|B2| = k + 1. SinceB1 6⊆ B2, we see from Lemma 2.3 that there exists an element
ê ∈ ex(τ(B1 ∪B2)) ∩ ex(B1) \B2. Then, from (2.5),

B1 \ {ê} ∈ F , τ(B1 ∪B2) \ {ê} ∈ F . (3.2)

Note that
B1 \ {ê} ⊆ B1, B2 ⊆ τ(B1 ∪B2) \ {ê}, (3.3)

and also
B1 \ {ê} ⊆ τ(B1 ∪B2) \ {ê}. (3.4)

It follows from (3.2)∼(3.4) and (BM) that there existŝB ∈ B such that

B1 \ {ê} ⊆ B̂ ⊆ τ(B1 ∪B2) \ {ê}, (3.5)

where note that̂e 6∈ B̂.
Now, from (3.5) and the monotonicitity property (cl2) ofτ we have

τ(B̂ ∪B2) ⊆ τ(B1 ∪B2). (3.6)

Sinceê ∈ ex(τ(B1 ∪B2)) and from (3.5)̂e 6∈ τ(B̂ ∪B2), we have from (3.6)

|τ(B̂ ∪B2)| < |τ(B1 ∪B2)|. (3.7)

It follows from the induction assumption that|B̂| = |B2|.
Furthermore, sincêe 6∈ B̂ andê ∈ B1, from (3.5) and (B1) we haveB1 \ {ê} ( B̂.

Consequently,|B1| ≤ |B̂|. Since|B1| ≥ |B2| = |B̂|, we thus have|B1| = |B2|.
Theorem 3.4 (Exchange Property).A cg-matroid(E,F ;B) satisfies

(BE) (Exchange Property)
For anyB1, B2 ∈ B and anye1 ∈ ex(τ(B1 ∪B2)) \B2,
there existse2 ∈ τ(B1 ∪B2) \B1 such that(B1 \ {e1}) ∪ {e2} ∈ B.

Proof. Consider anyB1, B2 ∈ B and anye1 ∈ ex(τ(B1 ∪B2)) \B2. Here note that

e1 ∈ ex(τ(B1 ∪B2)) \B2 =⇒ e1 ∈ ex(B1), (3.8)

due to Lemma 2.2. Then, by the same argument as in (3.2)∼(3.5), there existsB ∈ B such
thatB1 \{e1} ⊆ B ⊆ τ(B1∪B2) \{e1}. Since from Theorem 3.3 we have|B1| = |B|, it
follows that there existse2 ∈ τ(B1∪B2)\B1 such that(B1 \{e1})∪{e2} = B ∈ B.
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To get the converse of Theorem 3.4 we first show the following.

Lemma 3.5. Let (E,F) be a convex geometry. IfB ⊆ F satisfies(B0) and(BE), then it
also satisfies(B1)′, i.e., all elements ofB as subsets ofE have the same cardinality.

Proof. The proof given here is similar to that of Theorem 3.3. Consider anyB1, B2 ∈ B
such that|B1| ≥ |B2|. We show the present lemma by induction on the numberk =
|τ(B1 ∪B2)| − |B2|.

First, whenk = 0, we haveB1 = B2 as in the proof of Theorem 3.3, and hence
|B1| = |B2|.

Next, for somek ≥ 0, suppose that|B1| = |B2| holds for anyB1, B2 ∈ B such
that |τ(B1 ∪ B2)| − |B2| ≤ k. Consider anyB1, B2 ∈ B such that|B1| ≥ |B2| and
|τ(B1 ∪ B2)| − |B2| = k + 1. From Lemma 2.3, there exists an elemente1 ∈ ex(τ(B1 ∪
B2)) ∩ ex(B1) \B2. Then, from (BE) there exists an elemente2 ∈ τ(B1 ∪B2) \B1 such
that

B′ ≡ (B1 \ {e1}) ∪ {e2} ∈ B. (3.9)

Sincee1 ∈ ex(τ(B1 ∪B2)) ∩ ex(B1) \B2 ande2 ∈ τ(B1 ∪B2) \B1, we have

τ(B′ ∪B2) = τ(B1 ∪B2 ∪ {e2} \ {e1})
⊆ τ(τ(B1 ∪B2) ∪ {e2} \ {e1})
= τ(τ(B1 ∪B2) \ {e1})
= τ(B1 ∪B2) \ {e1}. (3.10)

Hence we have|τ(B′ ∪ B2)| < |τ(B1 ∪ B2)|, which implies|B2| = |B′|(= |B1|) due to
the induction assumption.

Consequently, (B1)′ holds.

Now, we have

Theorem 3.6. Let (E,F) be a convex geometry. IfB ⊆ F satisfies(B0) and (BE), then
it also satisfies(B0), (B1) and(BM), and hence(E,F ;B) is a cg-matroid.

Proof. Lemma 3.5 implies (B1), so that we show (BM) by induction on the numberk =
|τ(B1 ∪B2) \ Y |.

Consider anyB1, B2 ∈ B andX, Y ∈ F such thatX ⊆ B1, B2 ⊆ Y , andX ⊆ Y .
Suppose|τ(B1 ∪ B2) \ Y | = 0, i.e., τ(B1 ∪ B2) ⊆ Y . Then we haveX ⊆ B1 ⊆
τ(B1 ∪B2) ⊆ Y and takeB = B1.

Next, for an integerk ≥ 0, suppose that for anyB1, B2 ∈ B andX,Y ∈ F such that

X ⊆ B1, B2 ⊆ Y, X ⊆ Y, |τ(B1 ∪B2) \ Y | ≤ k, (3.11)
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there existsB ∈ B such thatX ⊆ B ⊆ Y . Consider anyB1, B2 ∈ B andX,Y ∈ F such
thatX ⊆ B1, B2 ⊆ Y , andX ⊆ Y , and suppose|τ(B1 ∪ B2) \ Y | = k + 1. There are
two cases, (Case I) and (Case II), to be considered.

(Case I) Ifex(τ(B1∪B2))∩ex(B1) ⊆ Y , then from Lemma 2.2 andB2 ⊆ Y we have
ex(τ(B1∪B2)) ⊆ Y , so thatτ(B1∪B2) ⊆ Y . We thus haveX ⊆ B1 ⊆ τ(B1∪B2) ⊆ Y ,
and takeB = B1.

(Case II) Suppose thatex(τ(B1∪B2))∩ex(B1)\Y 6= ∅. Choose anye1 ∈ ex(τ(B1∪
B2)) ∩ ex(B1) \ Y . Note thate1 6∈ B2 ande1 6∈ X sincee1 6∈ Y . It follows from (BE)
that there exists

e2 ∈ τ(B1 ∪B2) \B1 (3.12)

such that
B′ ≡ (B1 \ {e1}) ∪ {e2} ∈ B. (3.13)

Also note thatB′ ∪B2 ⊆ τ(B1 ∪B2) ande1 ∈ τ(B1 ∪B2) \ (B′ ∪B2), where recall that
e1 ∈ ex(τ(B1 ∪B2)) ande1 /∈ B′ ∪B2. Hence we have

τ(B′ ∪B2) ⊆ τ(B1 ∪B2) \ {e1}. (3.14)

Sincee1 6∈ Y , we have from (3.14)

τ(B′ ∪B2) \ Y ( τ(B1 ∪B2) \ Y. (3.15)

Sincee1 /∈ X and henceX ⊆ B′, it follows from the induction assumption that there
existsB ∈ B such thatX ⊆ B ⊆ Y .

This completes the proof.

Combining the preceding two theorems, we have one of our main results.

Theorem 3.7. For any convex geometry(E,F) andB ⊆ F , (E,F ;B) is a cg-matroid if
and only ifB satisfies(B0) and(BE).

Moreover, we have the following.

Theorem 3.8 (Multiple-Exchange Property).For any cg-matroid(E,F ;B), we have

(BmE) (Multiple-Exchange Property)
For anyB1, B2 ∈ B and anyS ⊆ B1 \B2 such thatτ(B1 ∪B2) \ S ∈ F ,
there existsT ⊆ τ(B1 ∪B2) \B1 such that|T | = |S| and(B1 \ S) ∪ T ∈ B.

Proof. We prove this theorem by induction on the numberk = |S|.
Whenk = 1, (BmE) is just (BE), and hence (BmE) holds.
Next, suppose that (BmE) holds whenk = n(≥ 1). Consider the case whenk = n+1.

For anyB1, B2 ∈ B and anyS ⊆ B1 \B2 such that|S| = n+1 andτ(B1 ∪B2) \S ∈ F ,
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considering a maximal chain ofF that includesτ(B1 ∪ B2) andτ(B1 ∪ B2) \ S, we see
that there existse ∈ S ∩ τ(B1 ∩ B2) such that(τ(B1 ∪ B2) \ S) ∪ {e} ∈ F . Hence,
puttingS ′ = S \ {e}, we haveτ(B1 ∪ B2) \ S ′ ∈ F , S ′ ⊆ B1 \ B2, and|S ′| = |S| − 1.
From the induction assumption, there existsT ′ ⊆ B2 \ B1 such that|T ′| = |S ′| and
B′

1 ≡ (B1 \ S ′) ∪ T ′ ∈ B. Note thate ∈ B′
1 \B2 ande ∈ ex(τ(B1 ∪B2) \ S ′).

Now, we show
τ(B′

1 ∪B2) ⊆ τ(B1 ∪B2) \ S ′. (3.16)

BecauseB2 ∩ S ′ = ∅, we haveB2 ⊆ τ(B1 ∪ B2) \ S ′ ∈ F . Also, usingS ′ ∩ T ′ = ∅ and
T ′ ⊆ τ(B1 ∪B2), we haveB′

1 = (B1 \ S ′) ∪ T ′ = (B1 ∪ T ′) \ S ′ ⊆ τ(B1 ∪B2) \ S ′. So
we haveB′

1 ∪B2 ⊆ τ(B1 ∪B2) \ S ′ ∈ F , from which the desired relation follows.
Then from (ex2) we have

ex(τ(B1 ∪B2) \ S ′) ∩ τ(B′
1 ∪B2) ⊆ ex(τ(B′

1 ∪B2)). (3.17)

Here,e belongs to the set in the left-hand side, so thate ∈ ex(τ(B′
1 ∪ B2)). SinceB′

1,
B2, ande satisfy the condition of (BE), there existse′ ∈ τ(B′

1 ∪ B2) \ B′
1 such that

(B′
1 \ {e}) ∪ {e′} ∈ B.
Then, sincee′ 6∈ B′

1, we havee′ 6∈ T ′. And note thatS ′ ∩ T ′ = ∅, e ∈ B1 \ S ′. Hence
we have(B′

1 \{e})∪{e′} = (((B1 \S ′)∪T ′)\{e})∪{e′} = (B1 \S)∪ (T ′∪{e′}) ∈ B,
where note thatS = S ′ ∪ {e}. PuttingT = T ′ ∪ {e′}, we getT ⊆ τ(B1 ∪ B2) \ B1,
|T | = |T ′|+ 1 = |S ′|+ 1 = |S|, and(B1 \ S) ∪ T ∈ B.

The present theorem thus holds.

It follows from the above theorem that (BE) and (BmE) are equivalent under (B0).

3.3. Independent sets

Let us define a family of independent sets for a cg-matroid, similarly as for ordinary
matroids.

Definition 3.9 (Independent set).Let (E,F) be a convex geometry and(E,F ;B) be a
cg-matroid with a familyB of bases. For a closed setI ∈ F , if there exists a baseB ∈ B
such thatI ⊆ B, then we callI an independent setof the cg-matroid(E,F ;B).

Denote byI the family of independent sets of a cg-matroid(E,F ;B).

Theorem 3.10.The familyI of independent sets of a cg-matroid(E,F ;B) with a family
B of bases satisfies the following three conditions:

(I0) ∅ ∈ I.

(I1) I1 ∈ F , I2 ∈ I, I1 ⊆ I2 =⇒ I1 ∈ I.
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(IA) (Augmentation Property)
For anyI1, I2 ∈ I with |I1| < |I2| andI2 being maximal inI,
there existse ∈ τ(I1 ∪ I2) \ I1 such thatI1 ∪ {e} ∈ I.

Proof. We can easily see from (B0) and the definition of independent sets that (I0) and
(I1) hold. Let us show (IA). For anyI1, I2 ∈ I with |I1| < |I2| andI2 being maximal
in I there exists a baseB1 such thatI1 ( B1, and I2 itself is a base because of its
maximality. Hence, by the middle base property (BM) there exists a baseB such that
I1 ( B ⊆ τ(I1 ∪ I2). Since there exists a chain of subsets inF containingI1, B, and
τ(I1 ∪ I2)), there existse ∈ B \ I1(⊆ τ(I1 ∪ I2) \ I1) such thatI1 ∪{e} ⊆ B. Hence (IA)
holds.

Remark 3.11. It should be emphasized that in Condition (IA) the maximality ofI2 is
required. The maximality is not necessary for characterizing independent sets of ordinary
matroids, but (IA) without the maximality ofI2 does not always hold for cg-matroids. In
Section 4 we consider cg-matroids whose families of independent sets satisfy (IA) without
the maximality ofI2.

Conversely,

Theorem 3.12 (I → B). Let (E,F) be a convex geometry. Suppose thatI ⊆ F satisfies
(I0), (I1) and(IA) . Define

B = {I ∈ I | I is maximal inI}. (3.18)

Then,B is a family of bases of a cg-matroid on(E,F).

To show this theorem we employ the following lemma.

Lemma 3.13.The familyB given by(3.18)is equicardinal, i.e., it satisfies

(B1)′ B1, B2 ∈ B =⇒ |B1| = |B2|.
Proof. If we have|B1| < |B2| for someB1, B2 ∈ B, then from (IA) there existse ∈
τ(B1 ∪ B2) \ B1 such thatB1 ∪ {e} ∈ I, which contradicts the maximality ofB1 in
I.

Proof of Theorem3.12. Property (B0) follows from (I0), and (B1) from (B1)′. We show
(BE). Consider anyB1, B2 ∈ B ande1 ∈ ex(τ(B1 ∪ B2)) ∩ ex(B1) \ B2. We see from
(I1) thatB1 \ {e1} ∈ I. Since from (B1)′ |B1 \ {e1}| < |B2|, it follows from (IA) that
there existse2 ∈ τ((B1 \ {e1}) ∪ B2) \ (B1 \ {e1}) such that(B1 \ {e1}) ∪ {e2} ∈ I.
Here sincee1 ∈ ex(τ(B1 ∪B2)) ∩ ex(B1) \B2, we have

τ((B1 \ {e1}) ∪B2) \ (B1 \ {e1}) = τ((B1 ∪B2) \ {e1}) \ (B1 \ {e1})
= (τ(B1 ∪B2) \ {e1}) \ (B1 \ {e1})
= τ(B1 ∪B2) \B1 (3.19)
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And we have(B1 \ {e1}) ∪ {e2} ∈ B because of its maximum cardinality. We thus have
(BE).

From Theorems 3.10 and 3.12, ifI satisfies (I0), (I1), and (IA), we also denote by
(E,F ; I) a cg-matroid with a familyI of independent sets.

4. Strict cg-matroids

It seems to be difficult to define the rank function of a general cg-matroid in a meaningful
way, so that we shall introduce a subclass of cg-matroids, called strict cg-matroids, for
which we define rank functions.

4.1. The strict augmentation property

Let us consider the following augmentation property that is stronger than (IA) given in
Theorem 3.10. Note that we do not require thatI2 is maximal inI.

(IsA) (Strict Augmentation Property)
For anyI1, I2 ∈ I with |I1| < |I2|,
there existse ∈ τ(I1 ∪ I2) \ I1 such thatI1 ∪ {e} ∈ I.

Definition 4.1 (Strict cg-matroid). Let (E,F) be a convex geometry. IfI ⊆ F sat-
isfies (I0), (I1) and (IsA), then we call(E,F ; I) a strict cg-matroidwith a family I of
independent sets.

By definition, any strict cg-matroid is a cg-matroid. It should also be noted that in the
case of matroids, i.e., whenF = 2E, the set of axioms (I0), (I1), and (IA) and that of (I0),
(I1), and (IsA) are equivalent. But in the case of cg-matroids they are not equivalent; the
following example shows a cg-matroid that is not a strict cg-matroid.

Example 4.2.Let E = {1, 2, 3, 4, 5} and(E,F) be the convex shelling of the five points
in the plane given in Figure 1. DefineB = {{1, 2, 3}, {2, 4, 5}, {2, 3, 4}, {2, 3, 5}}. Then
(E,F ;B) satisfies the conditions of the cg-matroid with a familyB of bases. But this
is not a strict cg-matroid. For,I1 = {1} andI2 = {4, 5} are, respectively, subsets of
B1 = {1, 2, 3} andB2 = {2, 4, 5}, so that they are independent sets, i.e.,I1, I2 ∈ I.
Since|I1| < |I2| andτ(I1 ∪ I2) \ I1 = {4, 5}, it follows from (IsA) that{1, 4} or {1, 5}
should be an independent set. But neither{1, 4} nor{1, 5} is included in any member of
B. Hence the present cg-matroid does not satisfy (IsA).

Remark 4.3. A uniform cg-matroid is a strict cg-matroid.
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Figure 1: An example of five points in the plane.

First, we show the following characterization.

Theorem 4.4 (Local Augmentation Property). Let (E,F) be a convex geometry. Sup-
pose thatI ⊆ F satisfies(I0) and (I1). Then the strict augmentation property(IsA) is
equivalent to the following property.

(ILA) (Local Augmentation Property)
For anyI1, I2 ∈ I with |I1|+ 1 = |I2|,
there existse ∈ τ(I1 ∪ I2) \ I1 such thatI1 ∪ {e} ∈ I.

Proof. The implication, (IsA)⇒ (ILA), is trivial. We show the converse, (ILA)⇒ (IsA).
ConsiderI1, I2 ∈ I with |I1| < |I2|. Then there existsI ∈ F such thatI ⊆ I2 and
|I| = |I1|+1. From (I1), we haveI ∈ I. Hence, from (ILA), there existse ∈ τ(I1∪I)\I1

such thatI1 ∪ {e} ∈ I. SinceI ⊆ I2, we haveτ(I1 ∪ I) \ I1 ⊆ τ(I1 ∪ I2) \ I1, and hence
e ∈ τ(I1 ∪ I2) \ I1. We thus have (IsA).

Next, we give another characterization of the strict cg-matroids, which reveals the
exact relationship between the concept of a strict cg-matroid and that of a supermatroid
introduced by Dunstan, Ingleton, and Welsh [6].

Lemma 4.5. Let (E,F ; I) be a strict cg-matroid with a familyI of independent sets.
ThenI satisfies the following property.

(IS) For eachX ∈ F , all the maximal elements ofI(X) ≡ {X ∩ I | I ∈ I} have the
same cardinality(as subsets ofE).

Proof. Take anyX ∈ F . Suppose thatX ∩ I1 andX ∩ I2 (I1, I2 ∈ I) are maximal in
I(X) and that|X ∩ I1| < |X ∩ I2|. SinceX ∩ Ii ∈ F andX ∩ Ii ⊆ Ii (i = 1, 2), we have
X ∩ I1, X ∩ I2 ∈ I. Hence, from (IsA) there existse ∈ τ((X ∩ I1)∪ (X ∩ I2)) \ (X ∩ I1)
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such thatI0 ≡ (X ∩ I1) ∪ {e} ∈ I, which contradicts the maximality ofX ∩ I1 in
I(X), sincee ∈ X \ I1. (Here note thatτ((X ∩ I1) ∪ (X ∩ I2)) ⊆ τ(X) = X and
X ∩ I1 ( (X ∩ I1) ∪ {e} = X ∩ ((X ∩ I1) ∪ {e}) = X ∩ I0 ∈ I.)

Conversely, we have the following.

Lemma 4.6. Let (E,F) be a convex geometry. Suppose thatI ⊆ F satisfies(I0), (I1),
and(IS). Then,I also satisfies(IsA), and hence(E,F ; I) is a strict cg-matroid.

Proof. Suppose thatI1, I2 ∈ I and|I1| < |I2|. ConsiderX = τ(I1 ∪ I2) in (IS). Then,
Ii = τ(I1 ∪ I2) ∩ Ii ∈ I(τ(I1∪I2)) (i = 1, 2). From the assumption that|I1| < |I2|, we
see thatI1 is not maximal inI(τ(I1∪I2)). Hence, there existse ∈ τ(I1 ∪ I2) \ I1 such that
I1 ∪ {e} ∈ I(τ(I1∪I2)) ⊆ I, where the last inclusion follows from (I1).

Axioms (I0), (I1), and (IS) are exactly those for what is called asupermatroid[6]
when restricted on the lattices of closed sets of convex geometries. Hence the above two
lemmas establish the following.

Theorem 4.7. The concept of a strict cg-matroid is equivalent to that of a supermatroid
on the lattice of closed sets of a convex geometry.

matroids

 poset
matroids

distributive
supermatroids

  strict
cg-matroids

cg-matroids supermatroids

  

Figure 2: Generalizations of matroids.

Recall that for a convex geometry(E,F), if F is closed with respect to the set union,
then it is distributive and is represented as the set of ideals of a poset. Also note that
the class of distributive cg-matroids (or poset matroids) is strictly included in the class of
strict cg-matroids.

See Figure 2 for the relationship among the relevant concepts.
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4.2. Rank functions

Now we define rank functions of strict cg-matroids. Since strict cg-matroids are super-
matroids, some of the following results on rank functions are subsumed by those in [6].

We denote the set of nonnegative integers byZ+.

Definition 4.8 (Rank function of a strict cg-matroid). Let (E,F ; I) be a strict cg-
matroid with a familyI of independent sets. Define a functionρ : 2E → Z+ as

ρ(X) = max{|I| | I ∈ I, I ⊆ X} (X ∈ 2E). (4.1)

We call the functionρ therank functionof the strict cg-matroid(E,F ; I). We callρ(X)
therankof X.

We examine some properties of the rank functionρ : F → Z+ such as submodularity,
which is a fundamental and crucial property of rank functions of ordinary matroids (see
for more details [8, 13, 20]).

We first show a useful property of strict cg-matroids.

Theorem 4.9. A strict cg-matroid(E,F ; I) with a familyI of independent sets satisfies
the following property.

(IE) (Extension Property)
For anyX ∈ F andI ∈ I with I ⊆ X,
there existsI+ ∈ I such thatI ⊆ I+ ⊆ X andρ(I+) = ρ(X).

Proof. Suppose that|I| < ρ(X) andρ(X) = |IX | for an IX ∈ I with IX ⊆ X. Since
I, IX ⊆ X andX ∈ F , we haveτ(I ∪ IX) ⊆ X. Hence, applying (IsA)|IX \ I| times,
we get a desired independent setI+.

Then we consider the following “local” properties.

(RL0) ρ(∅) = 0.

(RL1) X ∈ F , e ∈ ex∗(X) =⇒ ρ(X) ≤ ρ(X ∪ {e}) ≤ ρ(X) + 1.

(RLS) (Local Submodularity)
For anyX ∈ F ande1, e2 ∈ ex∗(X) such thatX ∪ {e1, e2} ∈ F ,
if ρ(X) = ρ(X ∪ {e1}) = ρ(X ∪ {e2}), thenρ(X) = ρ(X ∪ {e1, e2}).

Theorem 4.10.The rank functionρ : F → Z+ of a strict cg-matroid(E,F ; I) satisfies
properties(RL0), (RL1), and(RLS).
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Proof. (RL0) follows from (I0).
Next we show (RL1). Suppose thatρ(X) = |I| for an I ∈ I. SinceI ⊆ X ∪ {e},

we haveρ(X) ≤ ρ(X ∪ {e}). Also suppose thatρ(X ∪ {e}) = |I ′| for an I ′ ∈ I.
If ρ(X ∪ {e}) > ρ(X) + 1(= |I| + 1), then we havee ∈ I ′ (otherwiseI ′ ⊆ X and
|I ′| > |I|, which contradicts the definition ofρ(X)). Now, e ∈ ex∗(X) implies e ∈
ex(X ∪{e}). It follows from (ex2) thatex(X ∪{e})∩ I ′ ⊆ ex(I ′), and hencee ∈ ex(I ′).
This impliesI ′′ ≡ I ′ \ {e} ∈ I and I ′′ ⊆ X, which contradicts the assumption that
ρ(X) < ρ(X ∪ {e})− 1. We thus have property (RL1).

Finally, we show (RLS). Suppose thatρ(X) = ρ(X ∪ {e1}) = ρ(X ∪ {e2}). Then,
from (RL1), we haveρ(X) ≤ ρ(X ∪ {e1, e2}) ≤ ρ(X) + 1. Suppose to the contrary
thatρ(X ∪ {e1, e2}) = ρ(X) + 1. Then there existI, I ′ ∈ I such that (1)I ⊆ X and
ρ(X) = |I| and (2)I ′ ⊆ X ∪ {e1, e2} andρ(X ∪ {e1, e2}) = |I ′|(= |I| + 1). Since
|I ′| > |I|, from (IsA) there existŝe ∈ τ(I ′ ∪ I) \ I such thatI ′′ ≡ I ∪ {ê} ∈ I. Here,
sinceτ(I ′ ∪ I) ⊆ X ∪ {e1, e2}, we must havêe ∈ X or ê = e1 or ê = e2, which leads
us toI ′′ ⊆ X or I ′′ ⊆ X ∪ {e1} or I ′′ ⊆ X ∪ {e2}. This contradicts the assumption on
ρ(X) or ρ(X ∪ {e1}) or ρ(X ∪ {e2}). We thus have shown (RLS).

For any functionρ : F → Z+ that satisfies (RL0), (RL1), and (RLS), let us define

I(ρ) = {X ∈ F | ρ(X) = |X|}. (4.2)

We may expect thatI(ρ) would give a strict cg-matroid. But, unfortunately, this is not
true as seen from the following example.

Example 4.11.Let E = {1, 2, 3, 4}. Consider a tree with a vertex setE and an edge set
{{1, 2}, {2, 3}, {3, 4}} that forms a path of length three. See Figure 3. Let(E,F) be the
tree shelling of the tree, i.e.,F = {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3},
{2, 3, 4}, {1, 2, 3, 4}}. Define a functionρ : F → Z+ as follows: ρ(∅) = 0, ρ({1}) =
ρ({2}) = ρ({3}) = ρ({4}) = ρ({2, 3}) = 1, ρ({1, 2}) = ρ({3, 4}) = ρ({1, 2, 3}) =
ρ({2, 3, 4}) = 2, ρ({1, 2, 3, 4}) = 3. Then the functionρ : F → Z+ satisfies (RL0),
(RL1), and (RLS), and we haveI(ρ) = {∅, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}. But the
obtainedI(ρ) is not a strict cg-matroid.

Next, we consider some “global” properties.

(RG0) 0 ≤ ρ(X) ≤ |X| for anyX ∈ F .

(RG1) X, Y ∈ F , X ⊆ Y =⇒ ρ(X) ≤ ρ(Y ).

(RGS) (Global Submodularity)
For anyX,Y ∈ F such thatX ∪ Y ∈ F ,
ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).
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Figure 3: A path of length three and its tree shelling.

Theorem 4.12.The rank functionρ : F → Z+ of a strict cg-matroid(E,F ; I) satisfies
properties(RG0), (RG1), and(RGS).

Proof. We can easily see that the definition of rank functionρ implies (RG0) and (RG1).
We show (RGS). Consider anyX, Y ∈ F such thatX ∪ Y ∈ F . ThenX ∩ Y ∈ F , and
there existsI ∈ I such thatρ(X ∩ Y ) = |I| andI ⊆ X ∩ Y . The extension property (IE)
implies the following (1) and (2).

(1) There existsJ1 ⊆ X \ I such thatI ∪ J1 ∈ I, ρ(X) = |I ∪ J1| andI ∪ J1 ⊆ X.
(2) There existsJ2 ⊆ E \ X such thatI ∪ J1 ∪ J2 ∈ I, ρ(X ∪ Y ) = |I ∪ J1 ∪ J2|,

andI ∪ J1 ∪ J2 ⊆ X ∪ Y .
Then, from (I1) and the definition ofρ(X), we haveJ2 ⊆ Y \X. Therefore, we get

ρ(X ∪ Y )− ρ(X) + ρ(X ∩ Y ) = |I|+ |J1|+ |J2| − (|I|+ |J1|) + |I| = |I|+ |J2|.
Next, considerρ(Y ). Sinceτ(I ∪ J2) ⊆ Y andτ(I ∪ J2) ⊆ I ∪ J1 ∪ J2 ∈ I, from

(I1) we getτ(I ∪ J2) ∈ I. We thus haveρ(Y ) ≥ |τ(I ∪ J2)| ≥ |I ∪ J2| = |I|+ |J2|.
Hence, we haveρ(X∪Y )−ρ(X)+ρ(X∩Y ) = |I|+|J2| ≤ ρ(Y ), i.e.,ρ(X)+ρ(Y ) ≥

ρ(X ∩ Y ) + ρ(X ∪ Y ).

Again the above-mentioned three properties do not completely characterize rank func-
tions of strict cg-matroids. In fact, consider Example 4.11 again. The functionρ : F →
Z+ defined there also satisfies (RG0), (RG1), and (RGS).
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Example 4.13.Let (E,F ;B) be a unirorm cg-matroid of rank 3 on the tree shelling of a
path of length three, i.e.,E = {1, 2, 3, 4},F = {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4},
{1, 2, 3}, {2, 3, 4}, {1, 2, 3, 4}}, andB = {{1, 2, 3}, {2, 3, 4}} (see Figure 4). Then, from
Remark 4.3,(E,F ;B) is a strict cg matroid with a familyB of bases.

For X = {1} andY = {4}, we haveX ∧ Y = ∅ andX ∨ Y = {1, 2, 3, 4}. Since
ρ(X) = 1, ρ(Y ) = 1, ρ(X ∨ Y ) = 3, andρ(X ∧ Y ) = 0, we haveρ(X) + ρ(Y ) <
ρ(X ∨ Y ) + ρ(X ∧ Y ).

1234

123 234

23 34

1 2 3 4

1 3 42

X Y

3

11

0

12

Figure 4: A strict cg-matroid that does not satisfy the submodularity on the lattice.

Remark 4.14. It follows from Example 4.13 that the rank functionρ of a strict cg-matroid
(E,F ; I) does not always satisfy the submodularity on the latticeF :

• ρ(X) + ρ(Y ) ≥ ρ(X ∨ Y ) + ρ(X ∧ Y ) for anyX,Y ∈ F ,

whereX ∨ Y = τ(X ∪ Y ) andX ∧ Y = X ∩ Y . Hence strict cg-matroids are not
submodular supermatroids which are defined in [12].

5. Concluding Remarks

We have introduced the concept of a cg-matroid, a matroidal structure defined on a con-
vex geometry, and have shown characterizations of cg-matroids by means of an exchange
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property for bases and an augmentation property of independent sets. We have also de-
fined a strict cg-matroid, which turns out to be a cg-matroid that is at the same time a
supermatroid on the lattice of closed sets of the undelying convex geometry, and exam-
ined the submodularity property of the rank function of a strict cg-matroid.

The problem of linear and nonlinear optimization over cg-matroids is left for future
work. Also we should examine how polyhedral characterizations of (a special class of)
cg-matroids would be possible.

Finally, we give some remarks on dual exchange properties for cg-matroids. The fam-
ily of bases of an ordinary matroid(E,B) satisfies the following dual exchange property.

(BE*) (Dual Exchange Property for ordinary matroids)
For anyB1, B2 ∈ B ande2 ∈ B2 \B1,
there existse1 ∈ B1 \B2 such that(B1 ∪ {e2}) \ {e1} ∈ B.

We can show the following for cg-matroids (we omit its proof).

(Dual Exchange Property) Any cg-matroid(E,F ;B) satisfies

(BE*1) For anyB1, B2 ∈ B and anye2 ∈ ex∗(B1) ∩B2,
there existse1 ∈ ex(B1) \B2 such thatB1 ∪ {e2} \ {e1} ∈ B.

(BE*2) For anyB1, B2 ∈ B and anye2 ∈ ex∗(B1) ∩ τ(B1 ∪B2),
there existse1 ∈ (ex(B1) ∪ {e2}) \B2 such that(B1 ∪ {e2}) \ {e1} ∈ B.

(BE*3) For anyB1, B2 ∈ B and anye2 ∈ ex+(B1) ∩ τ(B1 ∪B2),
there existse1 ∈ ex(B1) such that(B1 ∪ {e2}) \ {e1} ∈ B,
where the operatorex+ : B → 2E is defined by

ex+(B) = {e | e ∈ E \B, e ∈ B′ ⊆ B ∪ {e} for some B′ ∈ B}
for any baseB ∈ B.

(BE*3)′ For anyB1, B2 ∈ B with B1 6= B2,
we haveex+(B1) ∩ τ(B1 ∪B2) 6= ∅.

Unfortunately the dual exchange properties given above do not characterize cg-matroids
as seen from the following examples.

Example 5.1.Let (E,F) be the convex shelling of nine points in the plane given in Figure
5. DefineB = {{1, 2, 3}, {7, 8, 9}}. ThenB satisfies conditions (BE*1) and (BE*2), but
it is not a cg-matroid.

Example 5.2.Let (E,F) be the convex shelling of eight points in the plane given in Fig-
ure 6. DefineB = {{1, 2, 3}, {1, 2, 4}, {5, 7, 8}, {6, 7, 8}}. ThenB satisfies conditions
(BE*3) and (BE*3)′, but it is not a cg-matroid.
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Figure 5: An example of nine points in the plane.
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Figure 6: An example of eight points in the plane.

Remark 5.3. A shortcoming of (BE*1) is that ifex∗(B1) ∩ B2 = ∅, then condition
(BE*1) is void, while that of (BE*2) is that there is a possibility ofe1 = e2, which makes
condition (BE*2) trivial.

It is still open to characterize cg-matroids by means of a dual exchange property.
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