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Abstract

We consider matroidal structures on convex geometries, which we call cg-matroids.
The concept of a cg-matroid is closely related to but different from that of a super-
matroid introduced by Dunstan, Ingleton, and Welsh in 1972. Distributive superma-
troids or poset matroids are supermatroids defined on distributive lattices or sets of
order ideals of posets. The class of cg-matroids includes distributive supermatroids
(or poset matroids). We also introduce the concept of a strict cg-matroid, which turns
out to be exactly a cg-matroid that is also a supermatroid. We show characterizations
of cg-matroids and strict cg-matroids by means of the exchange property for bases
and the augmentation property for independent sets. We also examine submodularity
structures of strict cg-matroids.
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1. Introduction

Dunstan, Ingleton, and Welsh [6] introduced the conceptsiiermatroidn 1972 as a
generalization of the concept of an ordinary matroid and integral polymatroid ([29, 8];
also see [26, 27, 28, 22]). Supermatroids have been investigated in the literature such
as [9, 10, 12, 14, 17, 18, 19]. Distributive supermatroids or poset matroids are super-
matroids defined on distributive lattices or sets of order ideals of partially ordered sets
(posets). Faigle [11] investigated their geometric strucure and examined a greedy algo-
rithm on them. Tardos [25] showed a matroid-type intersection theorem for distributive
supermatroids, and Peled and Srinivasan [23] also considered a generalization of the ma-
troid independent matching problem for distributive supermatroids. Moreover, Barnabei,
Nicoletti, and Pezzoli [3, 4] studied distributive supermatroids in more detail. Also see a
related general framework in [13].

We generalize the concept of a distributive supermatroid (or a poset matroid) by con-
sidering a convex geometry, instead of a poset, as the underlying combinatorial structure
on which we define a matroidal structure, which we catljamatroid For a cg-matroid
we define independent sets, bases, and other related concepts, and examine their combi-
natorial structural properties. We show characterizations of cg-matroids by means of the
exchange property for bases and the augmentation property for independent sets. We also
introduce the concept of a strict cg-matroid; strict cg-matroids will turn out to be exactly
cg-matroids that are also supermatroids. In other words, strict cg-matroids are exactly su-
permatroids defined on the lattices of closed sets of convex geometries. We also examine
submodularity structures of strict cg-matroids.

In Section 2 we give definitions and some preliminaries on convex geometries. We de-
fine a cg-matroid and associated concepts of bases, independent sets, etc. of a cg-matroid
in Section 3. Moreover, in Section 4 we introduce the concept of a strict cg-matroid
and give a characterization of strict cg-matroids. We also give some remarks on the dual
exchange property for cg-matroids in Section 5.

2. Definitions and Preliminaries on Convex Geometries

In this section we give some definitions and preliminaries on convex geometries (see
[7, 15] for more details).

Let E be a nonempty finite set arfl be a family of subsets of. The pair(E, F) is
called aclosure spacen F if it satisfies the following two conditions:

(FO) 0, E € F.
(F1) X,Y e F—= XNY eF.



The setF is called theground sebf the closure spacgr, F), and each member f is
called aclosed set Moreover, we call the closure spagg, F) a convex geometryf it
satisfies the following condition:

(F2) VX e F\{E}, Jec E\ X: X U{e} € F.
Condition (F2) is equivalent to the following chain condition:
(F2Y Every maximal chaifl = X, C X; C --- C X,, = F'in F has lengtm = |E|.

Next we define an operatar: 2¥ — 2% associated with the closure spade, F).
For anyX € 2% define

TX)=({YeFlxcvy} (2.1)

That is,7(X) is the unique minimal closed set containig The operator satisfies the
following properties (cl0y-(cl3):

(clo) 7(0) = 0.

(cll) X C7(X) forX e€2F (Extensionality).

cl2) XCY=7(X)C7(Y) foranyX,Y €2F (Monotonicity).
€I3) 7(7(X))=r71(X) foranyX €2¥ (ldempotence).

In general, any operater: 2 — 2% satisfying the four conditions given above is called a
closure operator Conversely, given a closure operatodefine = {X € 2 | 7(X) =
X}. ThenF forms a closure space dit Hence, for a finite se’ and a closure operator
7 on E we also call the paifF, 7) aclosure space

In terms of closure operator, a closure spé€er) is a convex geometry if and only
if it satisfies the following property, called ttati-exchange property

(AE) X CFE, pe E\T(X), ge (X U{p}) \{p} = p&7(XU{q}).

Example 2.1.

(a) Given a finite seE of points in a Euclidean spad®”, the convex hull operator in
RF gives a closure operateron 27. We then get a convex geometry éh called
aconvex shelling

(b) LetE be the vertex set of a tréé The vertex sets of subtrees’Bfform the closed
sets of a convex geometry, calledree shelling

(c) For aposeP, (order) ideals of? gives the closed sets of a convex geometry, called
aposet shellinglt is well-known that a convex geomet(y’, F) is a poset shelling
if and only if F is closed with respect to set union.



]

Every convex geometry forms a graded lattice with respect to set-inclusion, where the
lattice operationgoin Vv andmeetA are given by

XVY =7(XUY), XANY=XnNnY (2.2)

forany X, Y € F.

Now, we define dual operatoes : 2 — 2% andex* : 2¥ — 2F, associated with a
convex geometryE, F) or, more generally, a closure spadg, {). The first onegx, is
the extreme-point operatoof the closure spacédy, 7) defined by

ex(X)={e|e€ X, e 7(X\ {eh)} (2.3)

for any X € 2E. An element inex(X) is called anextreme poinbf X. The second
operatorex™, is theco-extreme-point operataf (E, 7) defined by

ex"(X)={e|lee E\7(X), 7(X)U{e} =1(X U{e})} (2.4)

forany X € 2%.
The extreme-point operatex satisfies the following properties (ex0ex4).

(ex0) ex({e}) = {e} foreverye € E (Singleton Identity).
(exl) ex(X)C X foreveryX € 2% (Intensionality).
ex2) X CYCFE = ex(Y)NX Cex(X) (Chernoff property).

(ex3) X CE, pge E\X, pgex(XU{p}), ¢ € ex(XU{q})
= q € ex(X U {p}U{q}).

(ex4) ex(Y)C X CY CE — ex(X) Cex(Y) (Aizerman’s Axiom).

Itis known (see [2]) that conditions (exQfex3) completely characterize the extreme-
point operatoex for closure spaces, while conditions (ex@x2) and (ex4) completely
characterize the extreme-point operatarfor convex geometries. Note that extreme-
point operators are also investigated as choice functions; see [1, 16, 21, 5] (also see [7,
24)).

The following facts are fundamental, but their proofs are easy so that we omit them.

Let (F, F) be a closure space dil

e For any closed seX € F
ex(X)={e|lee X, X\ {e} € F}. (2.5)



e For any closed seX € F
ex"(X)={e|leec E\ X, XU{e} e F}. (2.6)

e Let (FE,7) be aclosure space. For afye 2F ande € ex(7(X)),

T(X\{e}) € 7(X) \ {e}, (2.7)
ex(7(X)) \ {e} € ex(r(X)\ {e}), (2.8)
ex(7(X)) C X, (2.9)
(X U{e'}) = 7(X) (€' € 7(X)). (2.10)

The following two lemmas are useful and will be used in the following argument.

Lemma 2.2. Let (E, F) be a convex geometry. For aly, Y € F, ex(7(X UY)) C
ex(X)Uex(Y).

Proof. From (2.9),

ex(T(XUY)) C XUY. (2.11)

Also, from (ex2)
ex(T(XUY))NX Cex(X), ex(T(XUY))NY Cex(Y). (2.12)
Hence, from (2.11) and (2.12) we hawg7(X UY)) C ex(X) Uex(Y). O

Lemma 2.3. Let (E, F) be a convex geometry. For ai§, Y € F with X ¢ Y, we have
ex(T(XUY))Nex(X) 2 Y.

Proof. For anyX,Y € F with X ¢ Y there exists an elemente ex(7(X UY)) such
thate ¢ Y. Such an elemertmust belong tex(X), due to (2.9) and Lemma 2.2. [

3. Matroids on Convex Geometries (cg-matroids)

In this section we define a matroid on a convex geometry, called a cg-matroid. The
concept of a cg-matroid is closely related to but different from that of a supermatroid
introduced by Dunstan, Ingleton, and Welsh [6]. Their relationship will be made clear in
Section 4.



3.1. Definition

Let £ be a nonempty finite set arid’, ) be a convex geometry ofi with a family 7
of closed sets. Let : 2 — F be the closure operator associated with convex geometry
(E,F).

Definition 3.1 (Matroid on a convex geometry).For a convex geometryE, ) and a
family B C F, suppose thaB satisfies the following three conditions:

(BO) B # 0.
(Bl) Bl,BQEB, Bl QBQ — BlzBQ.

(BM) (Middle Base Property)
ForanyB,,Bs; € BandX,Y € Fwith X C By, B, CY,andX CY,
there exists3 € B suchthatY C B CY.

Then we call(E, F; B) a matroid on the convex geometfy’, ) (or a cg-matroidfor
short). EachB € B is called abase andB the family of base®f cg-matroid(E, F; B).
O

Note that a cg-matroidE, F; B) is an ordinary matroid whetF = 2% and that
(E,F; B) is a poset matroid (or a distributive supermatroid) wiférs the set of order
ideals of a poset oA,

Example 3.2. For a convex geometryr, F), let k be an integer such that< k£ < |E],
and define
B(k)={X|X e F, |X|=k}. (3.1)

We can easily see that/, F; B(k)) satisfies (BO), (B1), and (BM) and is a cg-matroid on
(E, F), which we call auniform cg-matroid of rank:. A uniform cg-matroid of rank is
calledtrivial and that of ranKE)| free

The family of subtrees, of fixed size, of a tree is an example of such a uniform cg-
matroid. O

3.2. Bases and an exchange property

We examine properties of bases of a cg-matféidF; 5) on a convex geometry, F).

Theorem 3.3.For any cg-matroid £, F; B3) all the bases i3 have the same cardinality,
le.,

(B1)" By, By € B = |By| = | Byl



Proof. Let By, By € B. SupposéB; | > | B,|. We show the present theorem by induction
onk = |7'(Bl U B2)| - ’B2|

First, supposé = 0. Then, sincéB,| = |7(B,UBy)| andB, C 7(B, U B,), we have
B, = 7(B; U Bs). SinceB, is a closed set, i.e;;(By) = Bs, it follows thatB; C Bs.
Hence,B, = B, (due to (B1)) andB;| = |Bs|.

Next, for an integek > 0 suppose thatB,| = | By| holds for anyB,, B, € B such
that|7 (B, U By)| — | B2| = k. Consider any distincB,, B, € B such thatr (B, U By)| —
|By] = k+ 1. SinceB; Z B,, we see from Lemma 2.3 that there exists an element
¢ € ex(1(B1 U By)) Nex(By) \ Bs. Then, from (2.5),

Bl \ {é} € ,7:, T(Bl U Bg) \ {é} e F. (32)
Note that
Bi\{e} € B, By C7(B1UBy)\{¢e}, (3.3)
and also
Bi\{&} CT(BiUBy)\ {e}. (3.4)
It follows from (3.2)~(3.4) and (BM) that there exist8 € 13 such that
Bi\{¢} € BC7(B1UB,)\ {¢}, (3.5)

where note that ¢ B.
Now, from (3.5) and the monotonicitity property (cl2) ofve have

T(BUB,) C 7(ByUB,). (3.6)
Sinceé € ex(7(B; U By)) and from (3.5§ ¢ 7(B U B,), we have from (3.6)
IT(BUBy)| < |7(B1U By)|. (3.7)

It follows from the induction assumption theg| = |Bs)|.
Furthermore, sincé ¢ B andé € By, from (3.5) and (B1) we hav®; \ {¢} C B.
Consequently,B;| < |B|. Since|B;| > |Bs| = | B|, we thus haveB;| = | By|. O

Theorem 3.4 (Exchange Property).A cg-matroid( £, F; B) satisfies

(BE) (Exchange Property)
For any By, By € B and anye; € ex(7(B; U By)) \ Ba,
there existg, € 7(B; U By) \ By suchthat B; \ {e;}) U {e2} € B.

Proof. Consider anyB;, By € B and anye; € ex(7(B; U By)) \ Bs. Here note that
e1 € ex(7(B1 U By)) \ By = e; € ex(By), (3.8)

due to Lemma 2.2. Then, by the same argument as in{832%), there exist® € 5 such
thatB; \ {e;} € B C 7(B1UBy) \ {e1}. Since from Theorem 3.3 we haj®, | = |B|, it
follows that there exists, € 7(B; U Bs) \ By suchthat{B; \ {e;})U{ex} = Be B. O



To get the converse of Theorem 3.4 we first show the following.

Lemma 3.5. Let (E, F) be a convex geometry. i C F satisfiegB0) and (BE), then it
also satisfiegB1), i.e., all elements oB as subsets af’ have the same cardinality.

Proof. The proof given here is similar to that of Theorem 3.3. Consideriany3, € B
such that/B,| > |By|. We show the present lemma by induction on the nunbes
7(B1U Bs)| — |Bs].

First, whenk = 0, we haveB; = B, as in the proof of Theorem 3.3, and hence
| Bi| = |Bs|.

Next, for somek > 0, suppose thatB;| = |Bs| holds for anyB;, B, € B such
that |7(By, U Bsy)| — |Bs| < k. Consider anyB;, B, € B such thatB;| > |B,| and
|7(B1 U By)| — | B2| = k + 1. From Lemma 2.3, there exists an element ex(7(B; U
By)) Nex(By) \ B2. Then, from (BE) there exists an elementc 7(B; U Bs) \ B; such
that

B = (By\{e1}) U{es} € B. (3.9)

Sincee; € ex(7(By U By)) Nex(By) \ By andey € 7(By U By) \ By, we have

T(B'UB;y) = 7(BiUByU{ex} \ {e1})

(
C 7(r(B1UBs) U{ea} \ {en})
T(T(B1U By) \ {e1})
= 7(B1UBy)\ {e1}. (3.10)
Hence we havér(B' U By)| < |7(By U Bs)|, which implies|B;| = | B’|(= |B,|) due to
the induction assumption.
Consequently, (B1holds. ]

Now, we have

Theorem 3.6.Let (E, F) be a convex geometry. i C F satisfieqB0) and (BE), then
it also satisfiegB0), (B1) and(BM), and henceé E, F; B) is a cg-matroid.

Proof. Lemma 3.5 implies (B1), so that we show (BM) by induction on the number
|7(B1 U By) \ Y.

Consider anyB;, B, € BandX,Y € F suchthatX C By, B, CY,andX C Y.
Supposer(B; U By) \ Y| = 0, i.e.,, 7(B; U By) C Y. Then we haveX C B; C
7(B1 U By) C Y and takeB = B;.

Next, for an integek > 0, suppose that for ani;, B, € Band.X,Y € F such that

XCB, BCY, XCVY, |f(BiUB)\Y|<k, (3.11)



there existd3 € B such thatX C B C Y. Consider anyBy, B, € BandX,Y € F such
thatX C By, B, CY,andX C Y, and supposer(B; U By) \ Y| =k + 1. There are
two cases, (Case I) and (Case Il), to be considered.

(Case l) Ifex(7(B1UBy))Nex(B;1) C Y, then from Lemma 2.2 an8, C Y we have
ex(7(B1UBy)) CY,sothatr(B;UBy) C Y. WethushaveX C B; C 7(B1UB;) C Y,
and takeB = B,.

(Case Il) Suppose thak(7(B; U By))Nex(B1)\ Y # (. Choose any; € ex(7(B;U
By)) Nex(B;) \ Y. Note thate; ¢ B, ande; ¢ X sincee; ¢ Y. It follows from (BE)
that there exists

e € T(B1 U By) \ By (3.12)

such that
B'=(Bi\{e1}) U{es} € B. (3.13)

Also note thatB’ U B, C 7(B; U By) ande; € 7(B; U By) \ (B"U By), where recall that
e1 € ex(7(B1 U By)) ande; ¢ B’ U By. Hence we have

T(B/ U Bg) Q T(Bl U Bg) \ {61}. (314)
Sincee; € Y, we have from (3.14)
7(B'UBy)\Y C 7(ByUB,) \Y. (3.15)

Sincee; ¢ X and henceX C B, it follows from the induction assumption that there
existsB € BsuchthatY C BCY.
This completes the proof. H

Combining the preceding two theorems, we have one of our main results.

Theorem 3.7. For any convex geometiy, ) andB C F, (E, F;B) is a cg-matroid if
and only if B satisfiegB0) and (BE).

Moreover, we have the following.
Theorem 3.8 (Multiple-Exchange Property). For any cg-matroid £, F; 3), we have

(BmE) (Multiple-Exchange Property)
Forany By, B; € Band anyS C B; \ B, such thatr(B; U By) \ S € F,
there existg” C 7(B, U By) \ By such thal7| = |S|and (B, \ S)UT € B.

Proof. We prove this theorem by induction on the numbet |S]|.

Whenk = 1, (BmE) is just (BE), and hence (BmE) holds.

Next, suppose that (BmE) holds wher= n(> 1). Consider the case whén= n+1.
ForanyB;, B, € Band anyS C B; \ By suchthatS| =n+1andr(B,UB;)\ S € F,



considering a maximal chain ¢f that includes (B, U Bs) and7(B; U Bs) \ S, we see
that there existe € S N 7(B; N By) such that(7(B; U By) \ S) U {e} € F. Hence,
putting S’ = S\ {e}, we haver(B, U B,) \ §' € F, 5" C B; \ By, and|S’| = |S| — 1.
From the induction assumption, there exi$tsC B, \ B; such that|7’| = |S’| and
By = (B;\S")UT" € B. Note thate € B} \ B, ande € ex(7(B; U Bs) \ S").

Now, we show

T(B,UB,) C7T(BiUB,y)\ S (3.16)

BecauseB3, NS’ = (), we haveB, C 7(B; U By) \ S’ € F. Also, usingS’ N T" = ) and
T' C7(B1UBy),wehaveB; = (B;\ S)UT' = (ByUT)\ S C7(ByUBy)\ 5. So
we haveB| U B, C 7(B; U By) \ S’ € F, from which the desired relation follows.

Then from (ex2) we have

ex(7(B1 U B) \ §') N7(B] U By) C ex(7(B; U By)). (3.17)

Here,e belongs to the set in the left-hand side, so that ex(7(B; U Bs)). SinceB;,
B,, ande satisfy the condition of (BE), there exist§ € 7(B] U Bs) \ Bj such that

(Bi\ {e}) u{e} e B.

Then, since’ ¢ B, we haver’ ¢ T". And note thats’ NT" =0, e € B; \ S’. Hence
we have( B\ {e}) U{e'} = ((B1\S)UT)\{e}) U{e'} = (Bi\S)U(T"U{e'}) € B,
where note that = S’ U {e}. Putting? = 7" U {¢'}, we getT" C 7(By, U By) \ By,
T|=1T"|+1=|54+1=|S|,and(B; \ S)UT € B.

The present theorem thus holds. ]

It follows from the above theorem that (BE) and (BmE) are equivalent under (BO).

3.3. Independent sets

Let us define a family of independent sets for a cg-matroid, similarly as for ordinary
matroids.

Definition 3.9 (Independent set).Let (£, F) be a convex geometry and’, 7; 5) be a
cg-matroid with a family3 of bases. For a closed set F, if there exists a basB € B
such that/ C B, then we calll anindependent seif the cg-matroid £, F; B). O

Denote byZ the family of independent sets of a cg-matroid F; 5).

Theorem 3.10.The familyZ of independent sets of a cg-matrdifl, 7; B) with a family
B of bases satisfies the following three conditions:

(10) D eZ.

(ll) LeF ILel L CI, = €1

10



(IA) (Augmentation Property)
Forany!,, I, € 7 with |I;| < |I,] and I, being maximal irZ,
there existg € 7(I; U Iy) \ I; such thatl; U {e} € 7.

Proof. We can easily see from (BO) and the definition of independent sets that (I10) and
(11) hold. Let us show (IA). For any,, I, € Z with |I;| < |I,| and, being maximal

in Z there exists a basB, such thatl; C B, and [, itself is a base because of its
maximality. Hence, by the middle base property (BM) there exists a Basech that

I, € B C 7(I, U I,). Since there exists a chain of subsetsircontaining/,, B, and

7([; Uly)), there existg € B\ [,(C 7([; Uly) \ I ) such that’; U{e} C B. Hence (I1A)
holds. [

Remark 3.11. It should be emphasized that in Condition (IA) the maximality/ofs
required. The maximality is not necessary for characterizing independent sets of ordinary
matroids, but (IA) without the maximality ok, does not always hold for cg-matroids. In
Section 4 we consider cg-matroids whose families of independent sets satisfy (IA) without
the maximality ofl,. O

Conversely,

Theorem 3.12 f — B). Let(FE, F) be a convex geometry. Suppose that F satisfies
(10), (11) and(lA) . Define

B={le€Z]|IismaximalinZ}. (3.18)
Then,B is a family of bases of a cg-matroid ¢#', F).
To show this theorem we employ the following lemma.
Lemma 3.13. The family3 given by(3.18)is equicardinal, i.e., it satisfies
(B1)" By, By € B = |By| = | Byl

Proof. If we have|B;| < |Bs| for someB;, By € B, then from (lA) there exists €
7(By U Bs) \ By such thatB; U {e} € Z, which contradicts the maximality aB; in
I. ]

Proof of Theoren3.12 Property (BO) follows from (10), and (B1) from (B1)We show
(BE). Consider anyB;, By € B ande; € ex(7(B; U By)) Nex(By) \ By. We see from
(11) that B, \ {e1} € Z. Since from (B1)|B; \ {e1}| < |Ba|, it follows from (IA) that
there existsy € 7((B1 \ {e1}) U By) \ (B1 \ {e1}) such that B, \ {e1}) U {ea} € Z.

Here since:; € ex(7(By U By)) Nex(By) \ B2, we have

T(Bi\{ei}) UB)\ (Bi\{e1}) = 7((B1UB2)\{ei})\ (B1\{er})
= (7(B1UBy) \{ei}) \ (B \ {e1})

11



And we have B, \ {e1}) U {e2} € B because of its maximum cardinality. We thus have
(BE). O

From Theorems 3.10 and 3.12,7fsatisfies (10), (11), and (IA), we also denote by
(E,F;Z)a cg-matroid with a familyZ of independent sets.

4. Strict cg-matroids

It seems to be difficult to define the rank function of a general cg-matroid in a meaningful
way, so that we shall introduce a subclass of cg-matroids, called strict cg-matroids, for
which we define rank functions.

4.1. The strict augmentation property

Let us consider the following augmentation property that is stronger than (IA) given in
Theorem 3.10. Note that we do not require thais maximal inZ.

(IsA) (Strict Augmentation Property)
Foranyl,, I, € T with |I;| < |3,
there existe € 7(I; U 1) \ I; such thatl; U {e} € Z.

Definition 4.1 (Strict cg-matroid). Let (£, F) be a convex geometry. f C F sat-
isfies (10), (I11) and (IsA), then we callE, F;Z) a strict cg-matroidwith a family Z of
independent sets. O

By definition, any strict cg-matroid is a cg-matroid. It should also be noted that in the
case of matroids, i.e., whef = 27, the set of axioms (10), (11), and (IA) and that of (10),
(11), and (IsA) are equivalent. But in the case of cg-matroids they are not equivalent; the
following example shows a cg-matroid that is not a strict cg-matroid.

Example 4.2.Let E = {1,2,3,4,5} and(FE, F) be the convex shelling of the five points
in the plane given in Figure 1. Defie= {{1,2,3},{2,4,5},{2,3,4},{2,3,5}}. Then
(E, F; B) satisfies the conditions of the cg-matroid with a faniilyof bases. But this
is not a strict cg-matroid. Foi; = {1} andl, = {4,5} are, respectively, subsets of
B, = {1,2,3} and B, = {2,4,5}, so that they are independent sets, ilg,J; € Z.
Since|l,| < || and7(I; U I) \ I} = {4,5}, it follows from (IsA) that{1,4} or {1,5}
should be an independent set. But neithert} nor{1,5} is included in any member of
B. Hence the present cg-matroid does not satisfy (ISA). O

Remark 4.3. A uniform cg-matroid is a strict cg-matroid. O

12



Figure 1: An example of five points in the plane.

First, we show the following characterization.

Theorem 4.4 (Local Augmentation Property). Let (E, F) be a convex geometry. Sup-
pose thatZ C F satisfieg(10) and (I11). Then the strict augmentation propef(tigA) is
equivalent to the following property.

(ILA) (Local Augmentation Property)
Foranyl,, I, € Twith |I;| + 1 = |3,
there existe € 7(I; U I1) \ I; such that/; U {e} € 7.

Proof. The implication, (IsA)= (ILA), is trivial. We show the converse, (ILA}- (ISA).
Considerly, I, € Z with |I;| < |I;]. Then there exist§ € F such thatl C I, and
|I| = |I1|+1. From (11), we havd € Z. Hence, from (ILA), there existse 7([;UI)\ I,
such that/; U {e} € Z. Sincel C I, we haver(I;UI)\ I, C 7([; UI,)\ I, and hence
e € 7(1; Uly) \ I;. We thus have (IsA). O

Next, we give another characterization of the strict cg-matroids, which reveals the
exact relationship between the concept of a strict cg-matroid and that of a supermatroid
introduced by Dunstan, Ingleton, and Welsh [6].

Lemma 4.5. Let (E, F;Z) be a strict cg-matroid with a famil of independent sets.
ThenZ satisfies the following property.

(IS) For eachX < F, all the maximal elements @X) = {X N1 | I € T} have the
same cardinalityas subsets aof).

Proof. Take anyX € F. Suppose thak N [; and X N I, (1, I, € 7) are maximal in
I andthal X N1;| < | X N1y|. SinceX NI € FandX NI; C I; (i = 1,2), we have
XNIL,XNI, € Z. Hence, from (IsA) there existse 7((X N1L)U(XN1y))\ (X NI)
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such thatl, = (X N [;) U {e} € Z, which contradicts the maximality ok N /; in
I, sincee € X \ I,. (Here note that((X N ;) U (X N 1)) C 7(X) = X and
XNhHCcXnhu{e=Xn(XNnhL)u{e})=XNIeZI) O

-

Conversely, we have the following.

Lemma 4.6. Let (E, F) be a convex geometry. Suppose that F satisfieq10), (11),
and(IS). ThenZ also satisfieglsA), and hencé E, F;7) is a strict cg-matroid.

Proof. Suppose that,, I, € Z and|[;| < |I3|. ConsiderX = 7(I; U I5) in (IS). Then,
I = 7(LU L) NI € T0(VR) (5 = 1,2). From the assumption thak | < |15, we
see thatl; is not maximal inZ("(:Y2)) Hence, there exists€ 7(I, U I) \ I, such that
I, U{e} € ZU(hVR)) € 7, where the last inclusion follows from (11). O

Axioms (10), (I1), and (IS) are exactly those for what is calledupermatroid[6]
when restricted on the lattices of closed sets of convex geometries. Hence the above two
lemmas establish the following.

Theorem 4.7. The concept of a strict cg-matroid is equivalent to that of a supermatroid
on the lattice of closed sets of a convex geometry. H

strict
cg-matroids

cg-matroids supermatroids

distributive
supermatroids,

Figure 2: Generalizations of matroids.

Recall that for a convex geometty, F), if F is closed with respect to the set union,
then it is distributive and is represented as the set of ideals of a poset. Also note that
the class of distributive cg-matroids (or poset matroids) is strictly included in the class of
strict cg-matroids.

See Figure 2 for the relationship among the relevant concepts.
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4.2. Rank functions

Now we define rank functions of strict cg-matroids. Since strict cg-matroids are super-
matroids, some of the following results on rank functions are subsumed by those in [6].
We denote the set of nonnegative integerZhy

Definition 4.8 (Rank function of a strict cg-matroid). Let (E,F;Z) be a strict cg-
matroid with a familyZ of independent sets. Define a functien2® — Z, as

p(X)=max{|I| | I €Z,] C X} (X €2F). (4.1)

We call the functiorp therank functionof the strict cg-matroid £, 7; 7). We callp(X)
therank of X. O

We examine some properties of the rank funcgianF — Z. such as submodularity,
which is a fundamental and crucial property of rank functions of ordinary matroids (see
for more detalils [8, 13, 20]).

We first show a useful property of strict cg-matroids.

Theorem 4.9. A strict cg-matroid( £, F; Z) with a familyZ of independent sets satisfies
the following property.

(IE) (Extension Property)
ForanyX € Fandl € Zwith] C X,
there existd ™ € Z such that/ C /™ C X andp(I™) = p(X).

Proof. Suppose that/| < p(X) andp(X) = |Ix| foranlx € Z with Ix C X. Since
I,Ixy C X andX € F, we haver(/ U Ix) C X. Hence, applying (ISA)/x \ | times,
we get a desired independent $ét O

Then we consider the following “local” properties.
(RLO) p() = 0.
(RL1) X € F, ecex*(X) = p(X) < p(XU{e}) <p(X)+1.

(RLS) (Local Submodularity)
ForanyX € F andey, es € ex*(X) such thatX U {e;, ex} € F,

it p(X) = p(X U{er}) = p(X U {e2}), thenp(X) = p(X U {er, e2}).

Theorem 4.10.The rank functiorp : F — Z, of a strict cg-matroid £, F; Z) satisfies
properties(RLO), (RL1), and(RLS).
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Proof. (RLO) follows from (10).

Next we show (RL1). Suppose thatX) = |I| foran/ € Z. Sincel C X U {e},
we havep(X) < p(X U {e}). Also suppose that(X U {e}) = |I’| foranl’ € Z.

If p(X U{e}) > p(X)+ 1(= |I| + 1), then we have € I’ (otherwisel/’” C X and
|I'l > |I], which contradicts the definition gf(X)). Now, e € ex*(X) impliese €
ex(X U{e}). It follows from (ex2) thaex(X U {e})NI" C ex(I’), and hence € ex(I’).
This implies!” = I' \ {e} € 7 and[” C X, which contradicts the assumption that
p(X) < p(X U{e}) — 1. We thus have property (RL1).

Finally, we show (RLS). Suppose thatX) = p(X U{e1}) = p(X U {e2}). Then,
from (RL1), we havep(X) < p(X U {es,ea}) < p(X) + 1. Suppose to the contrary
that p(X U{ej,ea}) = p(X) + 1. Then there exist, I’ € Z such that (1) C X and
p(X) = |I| and (2)I" C X U {e1,e2} andp(X U {e1,es}) = |I'|(= |I| + 1). Since
|I'l > |I], from (IsA) there exist¢ € 7(I' U I) \ I such that!” = I U {é} € Z. Here,
sincer(I’ UI) C X U{e, e}, we must have € X oré = e, or é = ey, Which leads
ustol” C X orl” C X U{e}orl” C X U/{ey}. This contradicts the assumption on
p(X)orp(X U{e})orp(X U{es}). We thus have shown (RLS). O

For any functiorp : 7 — Z, that satisfies (RLO), (RL1), and (RLS), let us define
I(p) ={X € F| p(X) = [X]}. (4.2)

We may expect thal (p) would give a strict cg-matroid. But, unfortunately, this is not
true as seen from the following example.

Example 4.11.Let E = {1,2,3,4}. Consider a tree with a vertex sBtand an edge set
{{1,2},{2,3},{3,4}} that forms a path of length three. See Figure 3. (i2tF) be the
tree shelling of the tree, i.e% = {0, {1}, {2}, {3}, {4},{1,2},{2,3},{3,4},{1,2,3},
{2,3,4},{1,2,3,4}}. Define a functiorp : F — Z, as follows: p(0) = 0, p({1}) =
p({2}) = p({3}) = p({4}) = p({2,3}) = 1, p({1,2}) = p({3,4}) = p({1,2,3}) =
p({2,3,4}) = 2, p({1,2,3,4}) = 3. Then the functiorp : F — Z, satisfies (RLO),
(RL1), and (RLS), and we hav&(p) = {0,{1},{2}, {3}, {4},{1,2},{3,4}}. But the
obtainedZ(p) is not a strict cg-matroid. O

Next, we consider some “global” properties.
(RGO) 0 < p(X)<|X]| foranyX € F.
(RG1) XY e F,XCY = p(X) < p(Y).

(RGS) (Global Submodularity)
ForanyX,Y € FsuchthatX UY € F,
p(X)+p(Y) Z p(XUY) +p(XNY).
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Figure 3: A path of length three and its tree shelling.

Theorem 4.12.The rank functiorp : F — Z, of a strict cg-matroid £, F;7Z) satisfies
properties(RGO0), (RG1), and(RGS)

Proof. We can easily see that the definition of rank functiamplies (RG0) and (RG1).
We show (RGS). Consider any,Y € F suchthatX UY € F. ThenX NY € F, and
there existd € Z such thap(X NY) = |I| and/ C X NY. The extension property (IE)
implies the following (1) and (2).

(1) There exists/; C X \ I suchthat U J; € Z, p(X) = [T U J;|and/ U J; C X.

(2) There exists/y C E\ X suchthal U J; U Jy € Z, p(X UY) = [T U J; U Jo),
andIUJ1UJ2 C XuY.

Then, from (11) and the definition ¢f( X), we haveJ, C Y \ X. Therefore, we get
PXUY) = p(X) + p(X NY) = |1+ [J| + | Ja] = (1] + L)) + 1] = 1] + | .

Next, considep(Y’). Sincer(I/ U Jy) C Y andr(IU Jy) C TUJ; U Jy € Z, from
(11) we getr (I U J;) € Z. We thus have(Y) > |7(1 U Jo)| > [T U Jo| = |I]| + | Jo].

Hence, we have(XUY)—p(X)+p(XNY) = |I|+]Js] < p(Y),i.€.,p(X)+p(Y) >
p(XNY)+p(XUY). O

Again the above-mentioned three properties do not completely characterize rank func-
tions of strict cg-matroids. In fact, consider Example 4.11 again. The fungtiaf —
7., defined there also satisfies (RG0), (RG1), and (RGS).
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Example 4.13.Let (E, F; B) be a unirorm cg-matroid of rank 3 on the tree shelling of a
path of length three, i.ef; = {1,2,3,4}, F = {0, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4},
{1,2,3},{2,3,4},{1,2,3,4}}, andB = {{1,2,3},{2,3,4}} (see Figure 4). Then, from
Remark 4.3(F, F; B) is a strict cg matroid with a familys of bases.

For X = {1} andY = {4}, we haveX AY = 0 andX VY = {1,2,3,4}. Since
p(X)=1pY)=1pXVY) =3, andp(X ANY) = 0, we havep(X) + p(Y) <
p(XVY)+p(XAY). O

O—CO—C0——0O

Figure 4: A strict cg-matroid that does not satisfy the submodularity on the lattice.
Remark 4.14. It follows from Example 4.13 that the rank functiprof a strict cg-matroid
(E, F;T) does not always satisfy the submodularity on the latfice

e p(X)+pY)>p(XVY)+p(XAY) foranyX,Y € F,

whereX VY = 7(X UY)andX AY = X NY. Hence strict cg-matroids are not
submodular supermatroids which are defined in [12]. O

5. Concluding Remarks

We have introduced the concept of a cg-matroid, a matroidal structure defined on a con-
vex geometry, and have shown characterizations of cg-matroids by means of an exchange
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property for bases and an augmentation property of independent sets. We have also de-
fined a strict cg-matroid, which turns out to be a cg-matroid that is at the same time a
supermatroid on the lattice of closed sets of the undelying convex geometry, and exam-
ined the submodularity property of the rank function of a strict cg-matroid.

The problem of linear and nonlinear optimization over cg-matroids is left for future
work. Also we should examine how polyhedral characterizations of (a special class of)
cg-matroids would be possible.

Finally, we give some remarks on dual exchange properties for cg-matroids. The fam-
ily of bases of an ordinary matroidv, B) satisfies the following dual exchange property.

(BE*) (Dual Exchange Property for ordinary matroids)
ForanyB;, B, € Bande; € By \ By,
there existe; € B; \ By such that{B; U {e2}) \ {e1} € B.

We can show the following for cg-matroids (we omit its proof).

(Dual Exchange Property) Any cg-matroid F, F; B) satisfies

(BE*1) ForanyB, B, € B and anye; € ex*(B;) N By,
there exists; € ex(B;) \ Bz such thatB; U {ex} \ {e1} € B.

(BE*2) For anyB;, B, € B and anye; € ex*(B;) N 7(B, U By),
there existg; € (ex(B;) U {es}) \ By such that B; U {es}) \ {e1} € B.

(BE*3) For any By, B, € B and anye; € ex™(By) N 7(B; U Bsy),
there existg; € ex(B;) such that B; U {e2}) \ {e1} € B,
where the operatoex™ : B — 2F is defined by
ext(B)={e|e€ E\ B,e € B'C BU{e} for some B’ € B}
for any baseB € B.

(BE*3)" For any By, By € Bwith By # Bs,
we haveex™ (B;) N 7(B1 U By) # 0.

Unfortunately the dual exchange properties given above do not characterize cg-matroids
as seen from the following examples.

Example 5.1.Let (E, F) be the convex shelling of nine points in the plane given in Figure
5. DefineB = {{1,2,3},{7,8,9}}. ThenB satisfies conditions (BE*1) and (BE*2), but
it is not a cg-matroid. H

Example 5.2.Let (£, F) be the convex shelling of eight points in the plane given in Fig-

ure 6. DefineB = {{1,2,3},{1,2,4},{5,7,8},{6,7,8}}. Thens satisfies conditions
(BE*3) and (BE*3}, but it is not a cg-matroid. O
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Figure 5: An example of nine points in the plane.
C\ '”‘D
‘e e’
’ ~
@ ©,

Figure 6: An example of eight points in the plane.

Remark 5.3. A shortcoming of (BE*1) is that ifex*(B;) N By = @, then condition
(BE*1) is void, while that of (BE*2) is that there is a possibility @f = e,, which makes
condition (BE*2) trivial. O]

It is still open to characterize cg-matroids by means of a dual exchange property.
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