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Summary. Instanton-type formal solutions, which will play an important role in
the description of Stokes phenomena, are discussed for the first Painlevé hierarchy.
We construct instanton-type solutions by using singular-perturbative reduction of
a Hamiltonian system to its Birkhoff normal form. The construction of singular-
perturbative reduction to the Birkhoff normal form is also outlined.
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1 Introduction

Collaborating with Kawai and partly with Aoki, I developed the exact WKB analysis
for traditional (i.e., second order) Painlevé equations in the 1990’s. (Cf. [5], [1], [6],
[16], [17]. See also [9].) To enlarge the scope of its applicability we now try to extend
the exact WKB analysis to some hierarchies, particularly the first Painlevé hierarchy
(PI)m, of higher order Painlevé equations (“Toulouse Project”). To be more concrete,
Toulouse Project is our project to understand the analytic structure of solutions of
higher order Painlevé equations, say (PI)m, from the viewpoint of the exact WKB
analysis with the following procedure:

Part 1 : Stokes geometry of (PI)m and its relationship with that of the
underlying Lax pair of (PI)m.
Part 2 : Reduction of 0-parameter solutions of (PI)m to those of the tradi-
tional first Painlevé equation (PI)1 near a turning point of the first kind.
Part 3 : Study of the structure of 0-parameter solutions of (PI)m near a
turning point of the second kind.
Part 4 : Construction of instanton-type formal solutions of (PI)m, i.e.,
(2m)-parameter solutions of (PI)m.
Part 5 : Study of the structure of instanton-type solutions of (PI)m near
turning points.
Part 6 : Connection formulas for instanton-type solutions near turning
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points.
Part 7 : Study of the structure of instanton-type solutions near a crossing
point of Stokes curves.

Among the above table of the procedure, Part 1 has already been investigated in
detail in [3, 4], Part 2 is established in [7, 8] (which is a generalization of the previous
result [5] for traditional Painlevé equations), and Part 3 is also well analyzed (though
the results have not yet been published anywhere). Now, the purpose of this paper
is to discuss the Toulouse Project Part 4, that is, to discuss the construction of
formal solutions of (PI)m containing sufficiently many (i.e., 2m) free parameters
called “instanton-type solutions”.

In the case of traditional Painlevé equations there were two methods for con-
structing 2-parameter instanton-type formal solutions; the one is to employ the
multiple-scale analysis ([1]) and the other is to use reduction of Hamiltonian sys-
tems equivalent to Painlevé equations to their Birkhoff normal form ([15]). Here,
to construct (2m)-parameter instanton-type solutions of the first Painlevé hierarchy
(PI)m, we generalize the second method so that it may be applied to (PI)m: After
expressing (PI)m in the form of a Hamiltonian system and localizing it around a
0-parameter solution (where a “0-parameter solution” means a formal solution that
is algebraically constructed in a singular-perturbative manner, cf. Section 2 below),
we reduce it to its Birkhoff normal form. Instanton-type formal solutions of (PI)m
are then constructed by solving explicitly the Birkhoff normal form thus obtained.

The plan of the paper is as follows: In Section 2 we first recall the explicit form
of the first Painlevé hierarchy (PI)m and state the main result to give the reader a
clear image about (2m)-parameter instanton-type formal solutions. Next we describe
an outline of the proof of the main result, i.e., an outline of the construction of
instanton-type solutions of (PI)m in Section 3. Finally in Section 4 we sketch out
the proof of the existence of reduction of a Hamiltonian system in question to its
Birkhoff normal form.

In ending this Introduction I would like to express my sincerest gratitude to
Prof. T. Kawai for his valuable advice, kind encouragement and really stimulating
discussions with him. I am very much pleased to dedicate this paper to him on
the occasion of his sixtieth birthday. I also would like to thank many collaborators,
especially Prof. T. Aoki and Dr. T. Koike, for stimulating and interesting discussions
with them.

2 Main result — The first Painlevé hierarchy (PI)m and
its instanton-type solutions

First of all, let us recall the explicit form of the first Painlevé hierarchy (PI)m
(m = 1, 2, . . .) with a large parameter η (> 0):

8

>

<

>

:

duj
dt

= 2ηvj

dvj
dt

= 2η(uj+1 + u1uj +wj)

(PI)m

(j = 1, . . . ,m), where uj and vj are unknown functions (um+1 is conventionally
assumed to be equal to 0) and wj is a polynomial of uk and vl (1 ≤ k, l ≤ j)
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determined by the following recursive relation:

wj =
1

2

 

j
X

k=1

ukuj+1−k

!

+

j−1
X

k=1

ukwj−k −
1

2

 

j−1
X

k=1

vkvj−k

!

+ cj + δjmt (1)

(j = 1, . . . ,m). Here cj is a constant and δjm stands for Kronecker’s delta.
The above expression of (PI)m is a slight modification of that of Shimomura, who

introduced the hierarchy in his study of the most degenerate Garnier system ([13,
14]). It is essentially the same as the PI hierarchy proposed by Gordoa and Pickering
([2]). See also [11, 12]. Note that the first member of the hierarchy, i.e., (PI)1 is
equivalent to (PI), the traditional first Painlevé equation with a large parameter η.
This is the reason why this hierarchy is called “the first Painlevé hierarchy” or “the
PI-hierarchy”.

As is shown in [3], (PI)m admits the following formal solution (ûj , v̂j) called a
“0-parameter solution”:

ûj(t, η) = ûj,0(t) + η−1ûj,1(t) + · · · , v̂j(t, η) = v̂j,0(t) + η−1v̂j,1(t) + · · · . (2)

The 0-parameter solution is algebraically constructed in a singular-perturbative
manner; ûj,0 and v̂j,0 (1 ≤ j ≤ m) are first algebraically determined (in partic-
ular, v̂j,0 ≡ 0 holds) and then the other ûj,k’s and v̂j,k’s (k ≥ 1) are uniquely
determined in a recursive manner once (the branch of) ûj,0 is fixed. See [3, Section
2.1] for the details. In [3] the 0-parameter solution is introduced to define the Stokes
geometry (i.e., turning points and Stokes curves) of (PI)m.

The construction of 0-parameter solutions is simple and straightforward. In com-
pensation for its simplicity 0-parameter solutions do not contain any free param-
eters. Thus it is impossible to discuss the Stokes phenomenon, which is observed
on a Stokes curve, solely in terms of 0-parameter solutions. As a matter of fact, in
the case of the traditional first Painlevé equation (PI), we needed instanton-type
formal solutions to describe the connection formula, the concrete expression of the
Stokes phenomenon, even for a 0-parameter solution ([16]). The aim of this paper
is to construct such instanton-type formal solutions with free parameters also for a
higher order Painlevé equation (PI)m.

To state our main theorem, we prepare some notations. Let (∆PI)m denote
the linearized equation of (PI)m at its 0-parameter solution (ûj , v̂j) (sometimes
called “Fréchet derivative” for short), that is, the linear part in (∆uj , ∆vj) after the
substitution uj = ûj + ∆uj and vj = v̂j +∆vj in (PI)m. Then (∆PI)m becomes a
system of linear ordinary differential equations for (∆uj , ∆vj) of the following form:

d

dt

0

B

B

B

@

∆u1

∆v1
...

∆vm

1

C

C

C

A

= ηC(t, η)

0

B

B

B

@

∆u1

∆v1
...

∆vm

1

C

C

C

A

, (3)

where C(t, η) is a formal power series (in η−1) with coefficients of (2m) × (2m)
matrices whose entries are analytic functions of t. Note that, as is verified in [3,
Section 2.1], the characteristic equation det(λ − C0(t)) = 0 of the top order part
(i.e., the part of order 0 in η) C0(t) of C(t, η) is an m-th degree polynomial of λ2

(see also Section 3 and Lemma 1 below). In what follows we denote the roots of the
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characteristic equation det(λ − C0(t)) = 0 by ±λj(t) (j = 1, . . . ,m). The turning
points of (PI)m are then defined in terms of λj(t). There are two kinds of turning
points; a turning point of the first kind is a point where λj vanishes for some j, and
a turning point of the second kind is a point where λj − λk or λj + λk vanishes for
some j 6= k.

Now the main result of this paper is the following:

Theorem 1. Assume that t0 is not a turning point of (PI)m. Suppose further that

m
X

j=1

njλj(t) does not identically vanish for any

(n1, . . . , nm) ∈ Z
m \ {0}.

(4)

Then, in a neighborhood of t = t0, there exists a formal solution of (PI)m of the
following form:

uj(t, η;α, β) = uj,0(t) + η−1/2uj,1/2(t, Ψ, Φ) + η−1uj,1(t, Ψ, Φ) + · · · ,

vj(t, η;α, β) = vj,0(t) + η−1/2vj,1/2(t, Ψ, Φ) + η−1vj,1(t, Ψ, Φ) + · · · ,
(5)

(j = 1, . . . ,m). Here uj,l/2(t, Ψ, Φ) and vj,l/2(t, Ψ, Φ) (l = 1, 2, . . .) are polynomi-
als in (Ψ, Φ) of degree at most l with analytic (in t) coefficients (in particular,
uj,1/2 and vj,1/2 are linear combinations of (Ψ, Φ) with analytic coefficients), and
Ψ = (Ψ1, . . . , Ψm) and Φ = (Φ1, . . . , Φm) are “instantons”, that is, formal series of
exponential type of the form

Ψj = αj exp

8

<

:

η

Z t

0

@

∞
X

k=0

η−k
X

|µ|=k

(µj + 1)gµ+ej
(t, η)γµ

1

A dt

9

=

;

,

Φj = βj exp

8

<

:

−η

Z t

0

@

∞
X

k=0

η−k
X

|µ|=k

(µj + 1)gµ+ej
(t, η)γµ

1

A dt

9

=

;

(6)

(j = 1, . . . ,m), where αj and βj are free complex constants, γ denotes γ =
(γ1, . . . , γm) = (α1β1, . . . , αmβm), µ = (µ1, . . . , µm) (µj ∈ Z, µj ≥ 0) and ej =
(0, . . . , 1, . . . , 0) (i.e., only the j-th component is equal to 1 while the others are all
0) are multi-indices, and for each multi-index ν = (ν1, . . . , νm) gν(t, η) is a formal
power series of η−1/2 with analytic coefficients of the following form:

gν(t, η) =
∞
X

l=0

η−l/2gν,l/2(t). (7)

We call the formal solution (uj(t, η;α, β), vj(t, η;α, β)) given in this theorem an
“instanton-type solution” of (PI)m.

Remark 1. The top order part (uj,0(t), vj,0(t)) of (uj(t, η;α, β), vj(t, η;α, β)) is the
same as that of the 0-parameter solution (ûj(t, η), v̂j(t, η)). More important is the
top order part of the instantons (Ψj , Φj); it is described by gej ,0(t), which coincides
with the characteristic root λj(t) of the Fréchet derivative (∆PI)m. This fact shows
the relevance of the instanton-type solutions to the Stokes phenomenon and, at the
same time, validates the definition of the Stokes geometry of (PI)m given in [3].
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Remark 2. Each coefficient of uj,l/2 (resp. vj,l/2) may have some singularity in ad-
dition to turning points: By the construction of solutions explained below we see
that the singular points of uj,l/2 (resp. vj,l/2) are contained at most in the union
of zeros of

P

j njλj(t) with |n1| + · · · + |nm| ≤ l + 1. Similarly the singular points
of a coefficient of gν(t, η) are contained in the union of zeros of

P

j njλj(t) with
|n1| + · · · + |nm| ≤ 2|ν| − 1.

3 Outline of the construction of instanton-type solutions

As was mentioned in Introduction, we construct instanton-type solutions by using
reduction of a Hamiltonian system to its Birkhoff normal form. The concrete proce-
dure of construction consists of the following four steps.

Step 1. First we express (PI)m in the form of a Hamiltonian system.
As is discussed in [13, 14], the first Pianlevé hierarchy (PI)m is obtained by

restricting the most degenerate Garnier system onto a one-dimensional complex
curve. Since the (degenerate) Garnier system possesses a Hamiltonian structure,
the first Pianlevé hierarchy also inherits such a Hamitonian structure. To be more
specific, (PI)m can be expressed in the form of a Hamiltonian system by using the
canonical variable (σj , τj) defined as follows:

uj = (−1)j−1
X

k1<···<kj

σk1 · · ·σkj
, (8)

τj =
1

2

`

v1σ
m−1
j + · · · + vm

´

. (9)

(Cf. [13], [10]; uj is the j-th order fundamental symmetric polynomial of (σ1, . . . , σm)
(up to the sign) and τj is defined as the residue of coefficients of the second order
linear differential equation associated with (PI)m through isomonodromic deforma-
tions.) In what follows we use another canonical variable which is more closely
attached to the original variable (uj , vj): Take qj as

qj = (−1)j−1uj

0

@=
X

k1<···<kj

σk1 · · ·σkj

1

A . (10)

As the conjugate variable of qj we choose pj so that it may satisfy
P

dqj ∧ dpj =
P

dσj ∧ dτj or
P

pjdqj =
P

τjdσj . That is, we define pj in such a way that

τj =
X

k

∂qk
∂σj

pk (11)

may be satisfied. More explicitly, pj is given by the following relation:

vj = 2(−1)m−j(pm−j+1 + pm−j+2q1 + · · · + pmqj−1). (12)

Remark 3. The explicit relation (12) follows from (9) and (11) in the following way:

For k = 0, 1, . . . ,m−1 let s(k) and s̃
(k)
j denote the k-th order fundamental symmetric

polynomial of (σ1, . . . , σm) and that of (σ1, . . . , σj−1, σj+1, . . . , σm), respectively.
Then, if we define a k-th degree polynomial F (k)(z) of z by



6 Yoshitsugu Takei

F (k)(z) = s(k) − s(k−1)z + s(k−2)z2 − · · · + (−1)kzk, (13)

the following relation holds for j = 1, . . . ,m:

F (k)(σj) = s̃
(k)
j . (14)

Taking the relation ∂qk/∂σj = ∂s(k)/∂σj = s̃
(k−1)
j into account, we find that (9)

and (11) together with (14) entail

1

2

`

v1z
m−1 + · · · + vm−1z + vm

´

= F (m−1)(z)pm + · · · + F (1)(z)p2 + p1. (15)

Relation (12) immediately follows from comparison of like powers (in z) of (15).

Thus, in the variable (qj , pj), (PI)m can be expressed in the form of the following
Hamiltonian system:

dqj
dt

= η
∂H

∂pj
,

dpj
dt

= −η
∂H

∂qj
. (16)

For example, the Hamiltonian is explicitly given by

H = −
1

2
q41 +

3

2
q21q2 −

1

2
q22 − 2q1p

2
2 − 4p1p2 + c1(−q

2
1 + q2) − tq1 (17)

for m = 2 and by

H = −
1

2
q51 + 2q31q2 −

3

2
q21q3 −

3

2
q1q

2
2 + q2q3 + 4q1p2p3 + 2q2p

2
3

+ 4p1p3 + 2p2
2 + c1(−q

3
1 + 2q1q2 − q3) + c2(−q

2
1 + q2) − tq1 (18)

for m = 3.

Step 2. In the canonical variable (qj , pj) there exists the following 0-parameter
solution of (16), which corresponds to (2):

q̂j(t, η) = q̂j,0(t) + η−1q̂j,1(t) + · · · , p̂j(t, η) = p̂j,0(t) + η−1p̂j,1(t) + · · · . (19)

Then we next consider the “localization at the 0-parameter solution” of (16), that
is, we introduce a new (formal) variable (ψj , ϕj) defined as follows:

qj = q̂j + η−1/2ψj , pj = p̂j + η−1/2ϕj . (20)

Since (ψj , ϕj) is also canonical, in the variable (ψj , ϕj) (16) can be expressed again
in the Hamiltonian form as

dψj
dt

= η
∂K

∂ϕj
,

dϕj
dt

= −η
∂K

∂ψj
, (21)

where

K =
X

|µ+ν|≥2

1

µ!ν!
η−(|µ+ν|−2)/2 ∂

|µ+ν|H

∂qµ∂pν
(t, q̂, p̂)ψµϕν . (22)

Step 3. This is the most important step; we consider the reduction of (21) to its
Birkhoff normal form.
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As the localization at the 0-parameter solution is done in Step 2, the leading
part of (21) consequently becomes linear. For example, the coefficient matrix of the
top order part (in η−1/2) of (21) is given by

0

B

B

B

B

@

∂2H

∂pj∂qk

∂2H

∂pj∂pk

−
∂2H

∂qj∂qk
−

∂2H

∂qj∂pk

1

C

C

C

C

A

˛

˛

˛

˛

˛

˛

˛

˛

˛

˛ql=q̂l,0

pl=p̂l,0

.

j>

j+m>

k
∨

k+m
∨

(23)

Note that the eigenvalues of the matrix (23) exactly coincide with ±λj(t), i.e., the
characteristic roots of the Fréchet derivative (∆PI)m. Therefore they are distinct
and non-zero outside the set of turning points.

Making use of this structure peculiar to (21), we can reduce (21) to its Birkhoff
normal form, that is, we have

Theorem 2. We assume that t0 is not a turning point of (PI)m. We further assume
(4). Then, in a neighborhood of t = t0, we can find a canonical transform

ψj =
∞
X

k=0

η−k/2ψ
(k)
j (t, ψ̃, ϕ̃, η−1/2), ϕj =

∞
X

k=0

η−k/2ϕ
(k)
j (t, ψ̃, ϕ̃, η−1/2), (24)

where ψ
(k)
j and ϕ

(k)
j are homogeneous polynomials of degree (k + 1) in (ψ̃, ϕ̃), that

transforms (21) into the Birkhoff normal form

dψ̃j
dt

= η
∂K̃

∂ϕ̃j
,

dϕ̃j
dt

= −η
∂K̃

∂ψ̃j
, (25)

where
K̃ = K̃(t, θ1, . . . , θm, η

−1/2) with θj = ψ̃j ϕ̃j . (26)

A sketch of the proof of Theorem 2 will be given in Section 4.

Step 4. In view of (26) we find that (25) can be written as

dψ̃j
dt

= η
∂K̃

∂θj

˛

˛

˛

˛

θl=ψ̃lϕ̃l

ψ̃j ,
dϕ̃j
dt

= −η
∂K̃

∂θj

˛

˛

˛

˛

θl=ψ̃lϕ̃l

ϕ̃j . (27)

In particular, this entails that

d

dt
(ψ̃jϕ̃j) =

dψ̃j
dt

ϕ̃j + ψ̃j
dϕ̃j
dt

= 0, (28)

that is,
γj := ψ̃jϕ̃j does not depend on t. (29)

By substituting (29) into (27) we can explicitly solve (27) to obtain

ψ̃j = αj exp

 

η

Z t ∂K̃

∂θj

˛

˛

˛

˛

θl=γl

dt

!

, ϕ̃j = βj exp

 

−η

Z t ∂K̃

∂θj

˛

˛

˛

˛

θl=γl

dt

!

, (30)
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where αj and βj are free complex constants of integration. Note that (29) and (30)
imply

γj = αjβj . (31)

In this way the Birkhoff normal form (25) has been solved explicitly. If we denote
the explicit solution (ψ̃j , ϕ̃j) of (25) thus obtained by (Ψj , Φj) and substitute it
into the canonical transform (24), we can obtain also a (formal) solution of (21)
and consequently an instanton-type solution of (PI)m with (2m) free parameters
(α1, . . . , αm, β1, . . . , βm). (The solution (Ψj , Φj) of (25) or (27) gives “instantons”.)
We have thus finished the construction of instanton-type solutions of (PI)m.

4 A sketch of the proof of Theorem 2

In this section we sketch out the proof of Theorem 2.
Let us denote η−1/2 by ε. We want to construct a canonical transform

ψj =
∞
X

k=0

εkψ
(k)
j (t, ψ̃, ϕ̃, ε), ϕj =

∞
X

k=0

εkϕ
(k)
j (t, ψ̃, ϕ̃, ε) (32)

which transforms the Hamiltonian system (21) in question into its Birkhoff normal

form. Here ψ
(k)
j and ϕ

(k)
j are assumed to be of the following form:

ψ
(k)
j =

X

|µ+ν|=k+1

ψµ,νj (t, ε)ψ̃µϕ̃ν , ϕ
(k)
j =

X

|µ+ν|=k+1

ϕµ,νj (t, ε)ψ̃µϕ̃ν . (33)

As the construction of ψ
(0)
j and ϕ

(0)
j , i.e., the linear part with respect to (ψ̃, ϕ̃), is

quite different from that of the nonlinear part, we discuss these two parts separately
in what follows.

4.1 Construction of the linear part ψ
(0)
j and ϕ

(0)
j

Let us write the quadratic part of the Hamiltonian (22) as

K =
1

2
tψM1ψ +

1

2
tϕM2ϕ+ tϕM3ψ + · · · , (34)

where Mj is a formal power series of ε whose coefficients are m × m matrices of
analytic functions of t. Then (the linear part of) the Hamiltonian system (21) can
be expressed as

d

dt

 

ψ

ϕ

!

= η

 

M3 M2

−M1 −tM3

! 

ψ

ϕ

!

+ · · · . (35)

We now want to construct the linear part of a canonical transform

 

ψ(0)

ϕ(0)

!

= A

 

ψ̃(0)

ϕ̃(0)

!

with A =

 

a b

c d

!

(36)

(where a, b, c and d are also formal power series of ε with m×m matrix coefficients)
in such a way that the following two conditions may be satisfied.
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(A1) (36) is symplectic,

(A2) (36) diagonalizes the linear part of (35).

First, the top order term (with respect to ε) of (36) can be constructed by
applying

Lemma 1. Assume that the top order term of the coefficient of (35)
 

M3,0 M2,0

−M1,0 −tM3,0

!

=

 

M3 M2

−M1 −tM3

!˛

˛

˛

˛

˛

ε=0

, (37)

which coincides with (23), has distinct eigenvalues. Then we can find a symplectic
matrix T that satisfies

T−1

 

M3,0 M2,0

−M1,0 −tM3,0

!

T =

0

B

B

B

B

@

λ1
. . . 0

λm
−λ1

0
. . .

−λm

1

C

C

C

C

A

, (38)

where ±λj(t) are eigenvalues of (37), i.e., of (23).

As the proof of Lemma 1 is an exercise of the linear algebra, we omit it here. Since the
assumption of Lemma 1 is satisfied outside the set of turning points, the existence
of the top order term of (36) is guaranteed by this lemma.

Once the top order term is constructed, higher order terms (with respect to ε)
of (36) are determined in the following manner: If we let X, Y and Z denote bd−1,
ca−1 and 1− tXY (= 1− td−1tbca−1), respectively, we find that the conditions (A1)
and (A2) are equivalent to

tX = X, M3X + tXtM3 + tXM1X +M2 − ε2
∂X

∂t
= 0, (39)

tY = Y, tM3Y + tYM3 +M1 + tYM2Y + ε2
∂Y

∂t
= 0, (40)

d = t(Za)−1, (41)

a−1Z−1

»

M3 + tXM1 +M2Y + tXtM3Y + ε2tX
∂Y

∂t

–

a

− ε2a−1 ∂a

∂t
: diagonal. (42)

Since the top order term has already been constructed, we may assume that

a = 1 +O(ε2), b = O(ε2), c = O(ε2), d = 1 +O(ε2), (43)

M1 = O(ε2), M2 = O(ε2), M3 =

 

λ1 . . .
λm

!

+O(ε2). (44)

Equations (39) and (40) then uniquely determine the formal power series X and Y ,
respectively. Consequently Z = 1−tXY is also fixed. Furthermore, substitutingX, Y
and Z thus determined into (42), we may as well determine a = 1+ε2a2 +ε4a4 + · · ·
so that (42) is satisfied. In this way, by using (41) in addition, we can construct
higher order terms of a, b, c and d, that is, the higher order terms of (36).
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4.2 Construction of the nonlinear part

To construct the nonlinear part of the canonical transform (32), we make use of a
generating function of the following form:

W (t, ψ̃, ϕ) =
X

|µ+ν|≥2

ε|µ+ν|−2wµ,ν ψ̃µϕν . (45)

The canonical transform

ψ = ψ(t, ψ̃, ϕ̃, ε), ϕ = ϕ(t, ψ̃, ϕ̃, ε) (46)

induced by the generating function W is determined by

ψj = −
∂W

∂ϕj
, ϕ̃j = −

∂W

∂ψ̃j
, (47)

and the new Hamiltonian K̃ for (ψ̃, ϕ̃) is described in terms of the original Hamil-
tonian K and the generating function W as follows:

K̃ = K(t, ψ(t, ψ̃, ϕ̃, ε), ϕ(t, ψ̃, ϕ̃, ε), ε) + ε2
∂W

∂t
(t, ψ̃, ϕ(t, ψ̃, ϕ̃, ε), ε). (48)

Thus, for the construction of a canonical transform that reduces (21) to its
Birkhoff normal form, it suffices to fix each coefficient wµ,ν of the generating function
W so that

any term of the form ψ̃µϕ̃ν with µ 6= ν may not appear in K̃. (49)

Note that the construction of the linear part of the canonical transform has been
already finished in Section 4.1. Hence we may assume that the quadratic part of the
original Hamiltonian K has the form (34) where M1 = M2 = 0 and M3 is a diagonal
matrix whose top order term is given by the right-hand side of (38), and further
that

wµ,ν = −1 (for µ = ν), wµ,ν = 0 (for µ 6= ν) (50)

in case |µ+ ν| = 2. Using this “induction hypothesis” and the expression (48) of K̃,
we can verify the following Lemma 2 through explicit computations similar to those
of [15, Section 2.2].

Lemma 2. For |µ+ ν| ≥ 3 the requirement (49) is equivalent to an equation of the
following form:

 

m
X

j=1

(µj − νj)λj +O(ε2)

!

wµ,ν + ε2
∂

∂t
wµ,ν = R(t, wµ

′,ν′ , ε2), (51)

where the indices (µ′, ν′) that appear in R(t, wµ
′,ν′ , ε) of the right-hand side run in

the set {(µ′, ν′) ; |µ′ + ν′| ≤ |µ + ν| − 1}.

Thus the terms wµ,ν with µ 6= ν can be recursively determined.
This completes the proof of Theorem 2.
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Acad., Ser. A, 80(2004), 105–109.

[15] Y. Takei, Singular-perturbative reduction to Birkhoff normal form and
instanton-type formal solutions of Hamiltonian systems, Publ. RIMS, Kyoto
Univ., 34(1998), 601–627.

[16] Y. Takei, An explicit description of the connection formula for the first Painlevé
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