Numerically trivial involutions of Enriques surfaces

Shigeru Mukai *

It is known that a nontrivial automorphism of a K3 surface acts nontrivially on its cohomology group ([1, Chap. VIII, Proposition (11.3)]). But this is not true for an Enriques surface S. An automorphism of S is said to be *numerically trivial* (resp. *cohomologically trivial*) if it acts on $H^2(S, \mathbb{Q})$ (resp. $H^2(S, \mathbb{Z})$) trivially. In this note, correcting [3], we classify the numerically trivial involutions of Kummer type.

Let S be a (minimal) *Enriques surface*, that is, a compact complex S = 0surface with $H^1(\mathcal{O}_S) = H^2(\mathcal{O}_S) = 0$ and $2K_S \sim 0$, and σ a numerically trivial involution of S. Then σ lifts to an involution of the covering K3 surface \tilde{S} . More precisely, there are two lifts. One acts on $H^0(\tilde{S}, \Omega^2)$ trivially and the other by -1. We denote them by σ_K and σ_R , respectively. Their product $\sigma_K \sigma_R$ is the covering involution ε of $\tilde{S} \to S$. We denote the anti-invariant part of the action of σ_R on $H^2(\tilde{S},\mathbb{Z})$ by N_R . Then N_R is isomorphic to either $U(2) \perp U(2)$ or $U \perp U(2)$ as a lattice ([3, Proposition (2.5)]). In the sequel we assume that $N_R \simeq U(2) \perp U(2)$ and call such σ Kummer type. The lattice $U \perp U$ is isomorphic to $M_2(\mathbb{Z})$, the group of 2×2 matrices of integral entries endowed with the bilinear form $(A, A) = 2 \det A$. Hence, there exits a pair of elliptic curves E' and E'' such that $N_R(1/2)$ is isomorphic to $H^1(E',\mathbb{Z})\otimes H^1(E'',\mathbb{Z})$ as a polarized Hodge structure. By the Torelli theorem for Kummer (or K3) surfaces ([1, Chap. VIII]), there exists an isomorphism ψ between \tilde{S} and the Kummer surface of the product $E' \times E''$ such that the diagram

is commutative, where μ is the involution induced by $(id_{E'}, -id_{E''})$.

^{*}Supported in part by the JSPS Grant-in-Aid for Scientific Research (B) 17340006.

Example 1 ([3, Proposition (4.8)]) Let β be the involution of $Km(E' \times E'')$ induced by the translation of $E' \times E''$ by a 2-torsion point a with $a \notin E' \times 0 \cup 0 \times E''$. Then $\mu\beta$ has no fixed points and μ , or β , induces a cohomologically trivial involution of the Enriques surface $Km(E' \times E'')/\mu\beta$.

Let $\{p'_1, \ldots, p'_4\}$ and $\{p''_1, \ldots, p''_4\}$ be the branch of the double coverings $E' \to \mathbb{P}^1 \simeq E'/(-id)$ and $E'' \to \mathbb{P}^1 \simeq E''/(-id)$, respectively. Then the quotient \tilde{S}/σ_R is isomorphic to the blow-up of $\mathbb{P}^1 \times \mathbb{P}^1$ at the 16 points $(p'_i, p''_j), 1 \leq i, j \leq 4$. The above involution β is induced by an automorphism of $\mathbb{P}^1 \times \mathbb{P}^1$.

Example 2 Assume that

(*) the ordered 4-tuples (p'_1, \ldots, p'_4) and $(p''_1, \ldots, p''_4) \in (\mathbb{P}^1)^4$ are not projectively equivalent

and let β be the involution of $Km(E' \times E'')$ induced by the standard Cremona involution of $\mathbb{P}^1 \times \mathbb{P}^1$ with center the four points $(p'_i, p''_i), 1 \leq i \leq 4$ (§1). Then $\mu\beta$ has no fixed points and μ induces a numerically trivial involution of the Enriques surface $Km(E' \times E'')/\mu\beta$ (Proposition 7).

This was overlooked in [3] and first found by Kondo. More precisely, the special case of Example 2 with $E \simeq E'' \simeq \mathbb{C}/(\mathbb{Z} + \mathbb{Z}e^{2\pi\sqrt{-1}/3})$ was studied in [2, (3.5)] as an Enriques surface whose automorphism group is finite. The following is the main result of this note:

Theorem 3 Every numerically trivial involution of Kummer type of an Enriques surface is obtained in the way of Example 1 or 2.

We have also the following since the involution of $Km(E' \times E'')/\mu\beta$ in Example 2 is not cohomologically trivial (Proposition 8).

Corollary 4 Every cohomologically trivial involution of Kummer type is obtained in the way of Example 1.

Notation U denotes the rank 2 lattice given by the symmetric matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. The lattice obtained from a lattice L by replacing the bilinear form (.) with r(.), r being a suitable rational number, is denoted by L(r).

The author would like to thank Professor Shigeyuki Kondo for valuable discussion on this subject in middle 80's at Nagoya University.

§1 Cremona involution of a quadric surface

The Enriques surface in Example 2 is closely related with a del Pezzo surface B of degree 4 and its small involution. ¹ For our purpose it is most convenient to describe B as the blow-up of $\mathbb{P}^1 \times \mathbb{P}^1$. We identify $\mathbb{P}^1 \times \mathbb{P}^1$ with a smooth quadric surface Q in $\mathbb{P}^3 = \mathbb{P}_{(x_1:x_2:x_3:x_4)}$.

Let $p_1 = (p'_1, p''_1), \dots, p_4 = (p'_4, p''_4)$ be four points of $\mathbb{P}^1 \times \mathbb{P}^1$ which satisfy

(**) p'_1, \ldots, p'_4 are distinct and p''_1, \ldots, p''_4 are distinct.

In terms of a smooth quadric, this is equivalent to

(**') any line $\overline{p_i p_j}$, $1 \le i < j \le 4$, is not contained in Q.

We also assume the condition (*) in the introduction, or equivalently,

(*') $p_1, \ldots, p_4 \in Q \subset \mathbb{P}^3$ is not contained in a plane.

We take a system of homogeneous coordinates of \mathbb{P}^3 such that p_1, \ldots, p_4 are the coordinate points $(1:0:0:0), \ldots, (0:0:0:1)$. Then the equation of Q is of the form $\sum_{1 \le i < j \le 4} a_{ij} x_i x_j = 0$. By the assumption (**'), all coefficients a_{ij} 's are nonzero. Hence, replacing x_1, \ldots, x_4 by their suitable constant multiplications, we may and do assume that $Q \subset \mathbb{P}^3$ is defined by

$$a_1x_2x_3 + a_2x_1x_3 + a_3x_1x_2 + (x_1 + x_2 + x_3)x_4 = 0$$
(2)

for some nonzero constants a_1, a_2 and $a_3 \in \mathbb{C}$.

Now we define a birational involution τ' of Q by

$$(x_1:x_2:x_3:x_4) \mapsto (\frac{a_1}{x_1}:\frac{a_2}{x_2}:\frac{a_3}{x_3}:\frac{a_1a_2a_3}{x_4})$$

and call it the standard Cremona involution of Q (or $\mathbb{P}^1 \times \mathbb{P}^1$) with center p_1, \ldots, p_4 . The following is easily verified:

Lemma 5 (1) The indeterminacy locus of $\tau': Q \cdots \to Q$ is $\{p_1, \ldots, p_4\}$.

(2) For each $1 \leq i \leq 4$, the conic $C'_i : Q \cap \{x_i = 0\}$ is contracted to the point p_i by τ' .

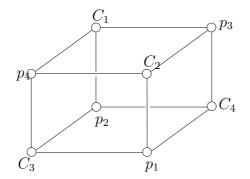
(3) The fixed points of τ' are $(\varepsilon_1\sqrt{a_1}:\varepsilon_2\sqrt{a_2}:\varepsilon_2\sqrt{a_3}:\sqrt{a_1a_2a_3})$, where all ε_i 's are ± 1 and satisfy $\varepsilon_1\varepsilon_2\varepsilon_3 = -1$.

¹An automorhism of a surface is *small* if all fixed points are isolated.

Let *B* be the blow-up of *Q* at p_1, \ldots, p_4 . Then *B* is a del Pezzo surface of degree 4 by (*') and (**'). *B* contains 16 smooth rational curves of degree 1 with respect to the anti-canonical divisor $-K_B$:

- 0) the exceptional divisors over p_1, \ldots, p_4 ,
- 1) the strict transforms of lines in Q passing through one of p_1, \ldots, p_4 , and
- 2) the strict transforms C_i of the four conics C'_i , $1 \le i \le 4$, in the lemma.

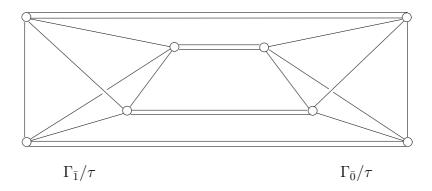
Consider the configuration of the eight curves 0) and 2). The dual graph $\Gamma_{\bar{0}}$ of this configuration is a cube:



The birational involution τ' induces an automorphism of B, which we denote by τ . τ sends each vertex of the cube $\Gamma_{\bar{0}}$ to its antipodal. The same holds for the configuration of the eight curves of 1), whose dual graph is denoted by $\Gamma_{\bar{1}}$. The following is easily verified:

(* * *) for every curve m in $\Gamma_{\bar{0}}$ (resp. $\Gamma_{\bar{1}}$), there exists an antipodal pair of vertices n and n' in $\Gamma_{\bar{1}}$ (resp. $\Gamma_{\bar{0}}$) such that (m.n) = (m.n') = 1 and that m is disjoint from other curves in $\Gamma_{\bar{1}}$ (resp. $\Gamma_{\bar{0}}$).

Therefore, the graph $(\Gamma_{\bar{1}} \cup \Gamma_{\bar{0}})/\tau$ is as follows:



For the later use we compute the cohomological action of the standard Cremona involution. The second cohomology group $H^2(B,\mathbb{Z})$, or equivalently the Picard group of B, is the free abelian group with basis $\{h_1, h_2, e_1, \ldots, e_4\}$, where h_1 and h_2 are the pull-backs of two rulings of $\mathbb{P}^1 \times \mathbb{P}^1$ and e_1, \ldots, e_4 are the classes of exceptional curves over p_1, \ldots, p_4 .

Lemma 6 The action of the standard Cremona involution τ on $H^2(B, \mathbb{Z})$ is equal to the composite of the two reflections with respect to orthogonal (-2)-classes $h_1 - h_2$ and $h_1 + h_2 - e_1 - \cdots - e_4$.

It is also convenient to treat B as the blow-up of the projective plane. Let q_4 and q_5 be the two intersection points of the line $l: x_1 + x_2 + x_3 = 0$ and the conic $C: a_1x_2x_3 + a_2x_1x_3 + a_3x_1x_2 = 0$ in the projective plane $\mathbb{P}^2 = \mathbb{P}_{(x_1:x_2:x_3)}$. By the equation (2), the surface B is the blow-up of \mathbb{P}^2 at the three coordinate points (1:0:0), (0:1:0), (0:0:1) and the two points q_4 and q_5 . In this description the standard Cremona involution τ is induced by the quadratic Cremona transformation

$$(x_1:x_2:x_3) \mapsto (\frac{a_1}{x_1}:\frac{a_2}{x_2}:\frac{a_3}{x_3})$$
 (3)

which interchanges l and C. The cohomology group $H^2(B, \mathbb{Z})$ has $\{h, e'_1, \ldots, e'_5\}$ as a standard basis. Here h is the pull-back of a line and e'_1, \ldots, e'_5 are the classes of exceptional curves. The cohomological action of the transformation (3) on the blow-up of \mathbb{P}^2 at the three coordinate points is the reflection r with respect to $h - e'_1 - e'_2 - e'_3$. Since the transformation (3) interchanges q_4 and q_5 , the cohomological action of τ is the composite of r and the reflection with respect to $e'_4 - e'_5$. This gives a proof of the lemma.

Let $\mathbb{P}^1_{(1)}$ and $\mathbb{P}^1_{(2)}$ be the projective lines whose inhomogenous coordinates are $y_1 = x_1/x_3$ and $y_2 = x_2/x_3$, respectively. Then the line l and the conic C are transformed to the curves

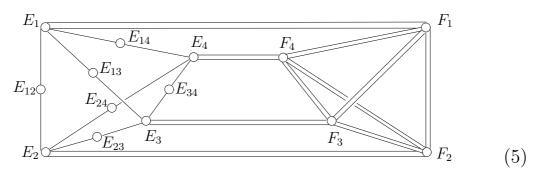
$$y_1 + y_2 + 1 = 0$$
 and $a_2y_1 + a_1y_2 + a_3y_1y_2 = 0$ (4)

of bidegree (1,1) on $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$, respectively. The del Pezzo surface B is blow-up of $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$ with center (0,0), (∞,∞) and the intersection points of (4), and the involution τ is induced by the automorphism $(y_1, y_2) \mapsto (\frac{a_1}{a_3y_1}, \frac{a_2}{a_3y_2})$ of $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$.

§2 New numerically trivial involutions

We take the double cover of the del Pezzo surface B in the previous section with branch the union of all eight curves in $\Gamma_{\bar{1}}$. It has 12 nodes corresponding to the 12 edges of $\Gamma_{\bar{1}}$. Its minimal resolution is the Kummer surface $Km(E' \times E'')$ of product type. Here E' and E'' are the double covers of \mathbb{P}^1 with branch p'_1, \ldots, p'_4 and p''_1, \ldots, p''_4 , respectively. The pull-back of each curve in $\Gamma_{\bar{0}}$ is a smooth rational curve on $Km(E' \times E'')$ by (***). Hence $Km(E' \times E'')$ has 28 smooth rational curves: 12 come from nodes of the branch locus and the rest from the 16 curves on B.

The involution τ lifts to two involutions of $Km(E' \times E'')$. One is symplectic and hence has exactly 8 fixed points ([4]). Since τ has exactly 4 fixed points by Lemma 5, the other lift, denoted by ε , has no fixed points. Hence we obtain an Enriques surface $S = Km(E' \times E'')/\varepsilon$. The 28 smooth rational curves give rise to 14 smooth rational curves on S and the dual graph of their configuration is as follows:



Let σ be the involution of S induced by the covering involution of $Km(E' \times E'') \to B$. Then σ fixes these 14 smooth rational curves.

Proposition 7 σ is numerically trivial.

Proof. Let M_1 be the sublattice of $M = H^2(S, \mathbb{Z})/(\text{torsion})$ generated by the cohomology classes of 10 rational curves E_1, F_2, F_3, F_4 and $E_{ij}, 1 \leq i < j \leq 4$. Then M_1 is the orthogonal (direct) sum of the five lattices $D = \langle E_1, E_{12}, E_{13}, E_{14} \rangle, F = \langle F_2, F_3, F_4 \rangle, \langle E_{23} \rangle, \langle E_{24} \rangle$ and $\langle E_{34} \rangle$. D is a negative definite root lattice of type D_4 . The intersection form of F is $\begin{pmatrix} -2 & 2 & 2 \\ 2 & -2 & 2 \\ 2 & 2 & -2 \end{pmatrix}$ and nondegenerate. Hence M_1 is of rank 10. Therefore,

 σ is numerically trivial. \Box

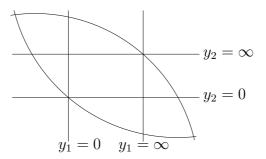
Proposition 8 σ is not cohomologically trivial.

Proof. We look at the subdiagram of (5) consisting of E_1, \ldots, E_4 and E_{12}, E_{13}, E_{14} . This diagram is of type \tilde{E}_6 and the complete linear system of

$$D = 3E_1 + E_2 + E_3 + E_4 + 2E_{12} + 2E_{13} + 2E_{14}$$

defines an elliptic fibration $\pi : S \longrightarrow \mathbb{P}^1$. Since S is an Enriques surface, π has two multiple fibers. Let G_1 and G_2 be their reduced parts. Since $(D.E_{23}) = 2, G_i, i = 1, 2$, meets E_{23} at exactly one point, say p_i . By our construction, the fixed point set of $\sigma|_{E_{23}}$ coincides with $E_{23} \cap D$. Hence we have $\sigma(p_1) = p_2$ and $\sigma(G_1) = G_2$. σ is cohomologically nontrivial since G_1 and G_2 differ by the nonzero 2-torsion K_S . \Box

Remark 9 In terms of $\mathbb{P}^1_{(1)} \times \mathbb{P}^1_{(2)}$ at the end of the previous section, the branch locus of $Km(E' \times E'')/B$ is as follows:



§3 Computation of the periods

In the sequel we fix a pair of elliptic curves E' and E''. Let σ be a numerically trivial involution of an Enriques surface S such that \tilde{S} , the universal cover, is the Kummer surface $Km := Km(E' \times E'')$ and that $\sigma_R = \mu$ as in (1). Let σ_K and ε be as in the introduction. We denote the anti-invariant parts of their action on $H^2(Km, \mathbb{Z})$ by N_K and N, respectively. In this section we compute the *period* of S, that is, the polarized Hodge structure of N for two examples in the introduction.

Since σ is numerically trivial, N contains both N_K and N_R . N_K is isomorphic to $E_8(2)$ ([3, Lemma (2.1)]) and the discriminant group of Nis isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{\oplus 10}$. Since $N_R \simeq U(2) \perp U(2)$ by assumption, the orthogonal sum $N_K \perp N_R$ is of index two in N. Therefore, there exists a pair of nonzero 2-torsion elements $\alpha_K \in A_{N_K} = (\frac{1}{2}N_K)/N_K$ and $\alpha_R \in A_{N_R} = (\frac{1}{2}N_R)/N_R$ such that $N = N_K + N_R + \mathbb{Z}(x_K, x_R)$, where $x_K \in \frac{1}{2}N_K$ and $x_R \in \frac{1}{2}N_R$ are representatives of α_K and α_R , respectively. This pair (α_K, α_R) is uniquely determined from the involution σ . We call it the *patching pair* of σ . Since N_K and N_R are orthogonal in N, we have $q_{N_K}(\alpha_K) + q_{N_R}(\alpha_R) = 0$ in $\mathbb{Z}/2\mathbb{Z}$.

Definition 10 A numerically trivial involution (of Kummer type) is of even type or of odd type according as the common quadratic value² $q_{N_K}(\alpha_K) = q_{N_R}(\alpha_R) \in \mathbb{Z}/2\mathbb{Z}$ of patching elements is 0 or 1.

 N_K is orthogonal to $H^0(Km, \Omega^2) \subset N_R \otimes \mathbb{C}$ and $N_R(1/2)$ is isomorphic to $H^1(E', \mathbb{Z}) \otimes H^1(E'', \mathbb{Z})$ as a polarized Hodge structure. Hence the period of S is determined by the patching pair.

We recall a basic fact on the cohomology of the Kummer surface Km(T)of a (2-dimensional) complex torus T. Km(T) contains sixteen $(-2)\mathbb{P}^{1}$'s $\{E_a\}_{a\in T_2}$ parametrized by the 2-torsion subgroup $T_2 \simeq (\mathbb{Z}/2\mathbb{Z})^4$ of T. These generate a sublattice of rank 16 in the cohomology group $H^2(Km(T),\mathbb{Z})$. Since Km(T) is the quotient of the blow-up of T at T_2 , $H^2(Km(T),\mathbb{Z})$ contains the image of $H^2(T,\mathbb{Z}) = \bigwedge^2 H^1(T,\mathbb{Z})$ as a sublattice of rank 6. We denote these sublattices by Γ and Λ , respectively. These are orthogonal and generate a sublattice of finite index in $H^2(Km(T),\mathbb{Z})$. The lattice Λ is isomorphic to $U(2) \perp U(2) \perp U(2)$. The discriminant group A_{Λ} is $(\frac{1}{2}\Lambda)/\Lambda \simeq H^2(T,\mathbb{Z}/2\mathbb{Z})$ and the discriminant form q_{Λ} is essentially the cup product, that is, $q_{\Lambda}(\bar{y}) = (y \cup y)/2 \mod 2$ for $y \in H^2(T,\mathbb{Z})$.

Let $P = \{0, a, b, c\} \subset T_2$ be a subgroup of order 4, or equivalently, a 2-dimensional subspace of T_2 . We put $E_P = E_0 + E_a + E_b + E_c \in \Gamma$. We denote the Plücker coordinate of $P^{\perp} \subset T_2^{\vee}$ by $\pi_P \in \bigwedge^2 T_2^{\vee} \simeq H^2(T, \mathbb{Z}/2\mathbb{Z})$ and regard it as an element of $\Lambda/2\Lambda$. The following is easily verified ([1, Chap. VIII, §5]):

Lemma 11 $(E_P \mod 2) + \pi_P = 0$ holds in $H^2(Km(T), \mathbb{Z}/2\mathbb{Z})$.

Now we return to the Kummer surface $Km = Km(E' \times E'')$ of product type. Two rulings of $\mathbb{P}^1 \times \mathbb{P}^1$ give two elliptic fibrations $Km \longrightarrow \mathbb{P}^1$. We denote the classes of these fibers by \tilde{h}_1 and $\tilde{h}_2 \in H^2(Km, \mathbb{Z})$. These \tilde{h}_1 and \tilde{h}_2 generate a rank 2 sublattice of Λ which is isomorphic to U(2). Λ is the orthogonal (direct) sum of $\langle \tilde{h}_1, \tilde{h}_2 \rangle$ and N_R .

A subgroup P of order 4 of $(E' \times E'')_2$ is naturally associated with (S, σ) in the two examples:

 $^{^{2}}$ In [3, §2], it is erroneously stated that this common value is nonzero.

Observation 12 (1) Let $a = (a', a'') \in (E' \times E'')_2$ be a 2-torsion point as in Example 1 and we set $P := \{0, a, (a', 0), (0, a'')\}$. Then P is of order 4 and the Plücker coordinate π_P belongs to $N_R/2N_R$.

(2) Let $P \subset T_2$ be a subgroup of order 4 such that $P \cap ((E')_2 \times 0) = P \cap (0 \times (E'')_2) = 0$ and π_P the Plücker coordinate. Then $\pi_P - \tilde{h}_1 - \tilde{h}_2$ belongs to $N_R/2N_R$. Let β_P be the involution of Km induced by the standard Cremona involution $\beta_{0,P}$ of $\mathbb{P}^1 \times \mathbb{P}^1$ with center the image of P. All (S, σ) 's of Example 2 are obtained from μ and β_P 's.

Now we are ready to compute the patching pairs.

Lemma 13 Let $\Pi \in \Lambda$ be a representative of $\pi_P \in \Lambda/2\Lambda$.

(1) A numerically trivial involution σ of Example 1 is of even type and the patching pair is $(\Sigma/2, \Pi/2)$ with $\Sigma := E_0 - E_a + E_{(a',0)} - E_{(0,a'')}$.

(2) A numerically trivial involution σ of Example 2 is of odd type and the patching pair is $((\tilde{h}_1 + \tilde{h}_2 - E_P)/2, (\Pi - \tilde{h}_1 - \tilde{h}_2)/2).$

Proof. (1) Since σ_K is induced by the translation of $E' \times E''$ by a, Σ belongs to N_K . By Lemma 11, $\Sigma + \Pi$ is divisible by 2. Hence the second half of (1) follows. Since π_P is the Plücker coordinate, $\frac{1}{2}(\pi_P \cup \pi_P) = 0 \in \mathbb{Z}/2\mathbb{Z}$ and σ is of even type.

(2) If σ is an involution of Example 2, then $\tilde{h}_1 + \tilde{h}_2 - E_P$ belongs to N_K by virtue of Lemma 6. The second half of (2) follows from this and Lemma 11. σ is of odd type since $\frac{1}{2}(\pi_P - \tilde{h}_1 - \tilde{h}_2) \cup (\pi_P - \tilde{h}_1 - \tilde{h}_2) = \frac{1}{2}(\pi_P \cup \pi_P) + \frac{1}{2}(\tilde{h}_1 + \tilde{h}_2) \cup (\tilde{h}_1 + \tilde{h}_2) = 1 \in \mathbb{Z}/2\mathbb{Z}$. \Box

§4 Proof of Theorem 3

Let σ be a numerically trivial involution of an Enriques surface S and assume that it is of Kummer type. We shall show that S is isomorphic to an Enriques surface of Example 1 or 2 by the global Torelli theorem for Enriques surfaces ([1, Chap. VIII, Theorem (21.2)]). Since the group of numerically trivial automorphisms of S is cyclic ([3, (1.1)]), Theorem 3 follows from this.

Let $(\alpha_K, \alpha_R) \in A_{N_K} \times A_{N_R}$ be the patching pair of σ . Recall that $N_R(1/2)$ is isomorphic to $U \perp U$ as a lattice and isomorphic to $H^1(E', \mathbb{Z}) \otimes$ $H^1(E'', \mathbb{Z})$ as a polarized Hodge structure. Hence $\alpha_R \in (\frac{1}{2}N_R)/N_R$ corresponds to $0 \neq a' \otimes a'' \in (E')_2 \otimes (E'')_2$ or to an isomorphism $\varphi : (E')_2 \xrightarrow{\sim}$ $(E'')_2$ according as σ is of even type or of odd type. In the former case the Enriques surface S is isomorphic to that described in Example 1 with a = (a', a'') by Lemma 13 and the global Torelli theorem.

Assume that σ is of odd type.

Claim: There exists no isomorphism from E' to E'' whose restriction to the 2-torsion subgroups is φ .

Proof. Assume the contrary and let $\Phi \subset E' \times E''$ be the graph of such an isomorphism. Then $\Phi - E' \times 0 - 0 \times E''$ is a divisor of self-intersection -2and its class belongs to $H^1(E', \mathbb{Z}) \otimes H^1(E'', \mathbb{Z}) \subset H^2(E' \times E'', \mathbb{Z})$. Hence $N_R \subset H^2(Km, \mathbb{Z})$ contains an algebraic cycle x_R of self-intersection number -4 such that $x_R/2$ represents α_R . Since $N_K \simeq E_8(2)$, α_N is represented by a (-4)-element $x_K \in N_K$. Then $x := (x_K + x_R)/2$ belongs to N by the definition of patching pairs and is algebraic since x_K is orthogonal to $H^0(\Omega^2) \subset N_R \otimes \mathbb{C}$. Since $(x^2) = -2$, x or -x is effective by the Riemann-Roch theorem. This is a contradiction since $\varepsilon(x) = -x$. \Box

Let $P \subset T_2$ be the graph of φ . By Lemma 13 and the global Torelli theorem, the Enriques surface S is isomorphic to that obtained from the image of P as in (2) of Observation 12.

References

- Barth, W., Peters, C. and Ven, A. Van de: Compact Complex Surfaces, Springer-Verlag, 1984.
- [2] Kondo, S.: Enriques surfaces with finite automorphism groups, Japan. J. Math., 12(1986), 191–282.
- [3] Mukai, S. and Namikawa, Y.: Automorphisms of Enriques surfaces which act trivially on the cohomology groups, Invent. math., 77(1984), 383–397.
- [4] Nikulin, V.: Finite groups of automorphisms of Kählerian surface of type K3, Proc. Moscow Math. Soc. 38(1979), 75–137.

Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502 Japan *e-mail address* : mukai@kurims.kyoto-u.ac.jp