
Numerically trivial involutions of Enriques surfaces

Shigeru Mukai ∗

It is known that a nontrivial automorphism of a K3 surface acts non-
trivially on its cohomology group ([1, Chap. VIII, Proposition (11.3)]).
But this is not true for an Enriques surface S. An automorphism of S is

said to be numerically trivial (resp. cohomologically trivial) if it acts on
H2(S,Q) (resp. H2(S,Z)) trivially. In this note, correcting [3], we classify

the numerically trivial involutions of Kummer type.
Let S be a (minimal) Enriques surface, that is, a compact complex

surface with H1(OS) = H2(OS) = 0 and 2KS ∼ 0, and σ a numerically
trivial involution of S. Then σ lifts to an involution of the covering K3

surface S̃. More precisely, there are two lifts. One acts on H0(S̃,Ω2)
trivially and the other by −1. We denote them by σK and σR, respectively.
Their product σKσR is the covering involution ε of S̃ → S. We denote

the anti-invariant part of the action of σR on H2(S̃,Z) by NR. Then
NR is isomorphic to either U(2) ⊥ U(2) or U ⊥ U(2) as a lattice ([3,

Proposition (2.5)]). In the sequel we assume that NR ' U(2) ⊥ U(2) and
call such σ Kummer type. The lattice U ⊥ U is isomorphic to M2(Z), the

group of 2 × 2 matrices of integral entries endowed with the bilinear form
(A.A) = 2 detA. Hence, there exits a pair of elliptic curves E ′ and E ′′

such that NR(1/2) is isomorphic to H1(E ′,Z) ⊗H1(E ′′,Z) as a polarized
Hodge structure. By the Torelli theorem for Kummer (or K3) surfaces ([1,
Chap. VIII]), there exists an isomorphism ψ between S̃ and the Kummer

surface of the product E ′ ×E ′′ such that the diagram

S̃
ψ→ Km(E ′ ×E ′′)

σR ↓ ↓ µ

S̃
ψ→ Km(E ′ ×E ′′)

(1)

is commutative, where µ is the involution induced by (idE′,−idE′′).
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Example 1 ([3, Proposition (4.8)]) Let β be the involution ofKm(E ′×E ′′)
induced by the translation of E ′ × E ′′ by a 2-torsion point a with a 6∈
E ′ × 0 ∪ 0 × E ′′. Then µβ has no fixed points and µ, or β, induces a

cohomologically trivial involution of the Enriques surfaceKm(E ′×E ′′)/µβ.

Let {p′1, . . . , p′4} and {p′′1, . . . , p′′4} be the branch of the double coverings
E ′ → P1 ' E ′/(−id) and E ′′ → P1 ' E ′′/(−id), respectively. Then the

quotient S̃/σR is isomorphic to the blow-up of P1 × P1 at the 16 points
(p′i, p

′′
j ), 1 ≤ i, j ≤ 4. The above involution β is induced by an automor-

phism of P1 × P1.

Example 2 Assume that

(∗) the ordered 4-tuples (p′1, . . . , p
′
4) and (p′′1, . . . , p

′′
4) ∈ (P1)4 are not pro-

jectively equivalent

and let β be the involution of Km(E ′ × E ′′) induced by the standard
Cremona involution of P1×P1 with center the four points (p′i, p

′′
i ), 1 ≤ i ≤ 4

(§1). Then µβ has no fixed points and µ induces a numerically trivial

involution of the Enriques surface Km(E ′ × E ′′)/µβ (Proposition 7).

This was overlooked in [3] and first found by Kondo. More precisely, the
special case of Example 2 with E ' E ′′ ' C/(Z + Ze2π

√
−1/3) was studied

in [2, (3.5)] as an Enriques surface whose automorphism group is finite.
The following is the main result of this note:

Theorem 3 Every numerically trivial involution of Kummer type of an
Enriques surface is obtained in the way of Example 1 or 2.

We have also the following since the involution of Km(E ′ × E ′′)/µβ in

Example 2 is not cohomologically trivial (Proposition 8).

Corollary 4 Every cohomologically trivial involution of Kummer type is
obtained in the way of Example 1.

Notation U denotes the rank 2 lattice given by the symmetric matrix
(

0 1

1 0

)

. The lattice obtained from a lattice L by replacing the bilinear

form ( . ) with r( . ), r being a suitable rational number, is denoted by
L(r).

The author would like to thank Professor Shigeyuki Kondo for valuable
discussion on this subject in middle 80’s at Nagoya University.
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§1 Cremona involution of a quadric surface

The Enriques surface in Example 2 is closely related with a del Pezzo

surface B of degree 4 and its small involution. 1 For our purpose it is most
convenient to describe B as the blow-up of P1 × P1. We identify P1 × P1

with a smooth quadric surface Q in P3 = P(x1:x2:x3:x4).
Let p1 = (p′1, p

′′
1), . . . , p4 = (p′4, p

′′
4) be four points of P1×P1 which satisfy

(∗∗) p′1, . . . , p′4 are distinct and p′′1, . . . , p
′′
4 are distinct.

In terms of a smooth quadric, this is equivalent to

(∗∗′) any line pipj, 1 ≤ i < j ≤ 4, is not contained in Q.

We also assume the condition (∗) in the introduction, or equivalently,

(∗′) p1, . . . , p4 ∈ Q ⊂ P3 is not contained in a plane.

We take a system of homogeneous coordinates of P3 such that p1, . . . , p4 are
the coordinate points (1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1). Then the equation

of Q is of the form
∑

1≤i<j≤4 aijxixj = 0. By the assumption (∗∗′), all
coefficients aij’s are nonzero. Hence, replacing x1, . . . , x4 by their suitable

constant multiplications, we may and do assume that Q ⊂ P3 is defined by

a1x2x3 + a2x1x3 + a3x1x2 + (x1 + x2 + x3)x4 = 0 (2)

for some nonzero constants a1, a2 and a3 ∈ C.
Now we define a birational involution τ ′ of Q by

(x1 : x2 : x3 : x4) 7→ (
a1

x1
:
a2

x2
:
a3

x3
:
a1a2a3

x4
)

and call it the standard Cremona involution of Q (or P1 × P1) with center
p1, . . . , p4. The following is easily verified:

Lemma 5 (1) The indeterminacy locus of τ ′ : Q · · · → Q is {p1, . . . , p4}.
(2) For each 1 ≤ i ≤ 4, the conic C ′

i : Q ∩ {xi = 0} is contracted to the
point pi by τ ′.

(3) The fixed points of τ ′ are (ε1
√
a1 : ε2

√
a2 : ε2

√
a3 :

√
a1a2a3), where

all εi’s are ±1 and satisfy ε1ε2ε3 = −1.

1An automorhism of a surface is small if all fixed points are isolated.
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Let B be the blow-up of Q at p1, . . . , p4. Then B is a del Pezzo surface

of degree 4 by (∗′) and (∗∗′). B contains 16 smooth rational curves of
degree 1 with respect to the anti-canonical divisor −KB:

0) the exceptional divisors over p1, . . . , p4,

1) the strict transforms of lines in Q passing through one of p1, . . . , p4,

and

2) the strict transforms Ci of the four conics C ′
i, 1 ≤ i ≤ 4, in the lemma.

Consider the configuration of the eight curves 0) and 2). The dual graph
Γ0̄ of this configuration is a cube:

C4

p3

C2
p4

C1

p1C3

p2

The birational involution τ ′ induces an automorphism of B, which we de-
note by τ . τ sends each vertex of the cube Γ0̄ to its antipodal. The same
holds for the configuration of the eight curves of 1), whose dual graph is

denoted by Γ1̄. The following is easily verified:

(∗ ∗ ∗) for every curve m in Γ0̄ (resp. Γ1̄), there exists an antipodal pair of

vertices n and n′ in Γ1̄ (resp. Γ0̄) such that (m.n) = (m.n′) = 1 and
that m is disjoint from other curves in Γ1̄ (resp. Γ0̄).

Therefore, the graph (Γ1̄ ∪ Γ0̄)/τ is as follows:

Γ1̄/τ Γ0̄/τ
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For the later use we compute the cohomological action of the stan-

dard Cremona involution. The second cohomology group H2(B,Z), or
equivalently the Picard group of B, is the free abelian group with basis

{h1, h2, e1, . . . , e4}, where h1 and h2 are the pull-backs of two rulings of
P1 × P1 and e1, . . . , e4 are the classes of exceptional curves over p1, . . . , p4.

Lemma 6 The action of the standard Cremona involution τ on H2(B,Z)
is equal to the composite of the two reflections with respect to orthogonal
(−2)-classes h1 − h2 and h1 + h2 − e1 − · · · − e4.

It is also convenient to treat B as the blow-up of the projective plane.
Let q4 and q5 be the two intersection points of the line l : x1 + x2 + x3 = 0

and the conic C : a1x2x3 + a2x1x3 + a3x1x2 = 0 in the projective plane
P2 = P(x1:x2:x3). By the equation (2), the surface B is the blow-up of P2 at

the three coordinate points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the two
points q4 and q5. In this description the standard Cremona involution τ is
induced by the quadratic Cremona transformation

(x1 : x2 : x3) 7→ (
a1

x1
:
a2

x2
:
a3

x3
) (3)

which interchanges l and C. The cohomology group H2(B,Z) has {h, e′1,
. . . , e′5} as a standard basis. Here h is the pull-back of a line and e′1, . . . , e

′
5

are the classes of exceptional curves. The cohomological action of the
transformation (3) on the blow-up of P2 at the three coordinate points is

the reflection r with respect to h − e′1 − e′2 − e′3. Since the transformation
(3) interchanges q4 and q5, the cohomological action of τ is the composite
of r and the reflection with respect to e′4 − e′5. This gives a proof of the

lemma.
Let P1

(1) and P1
(2) be the projective lines whose inhomogenous coordinates

are y1 = x1/x3 and y2 = x2/x3, respectively. Then the line l and the conic
C are transformed to the curves

y1 + y2 + 1 = 0 and a2y1 + a1y2 + a3y1y2 = 0 (4)

of bidegree (1, 1) on P1
(1) × P1

(2), respectively. The del Pezzo surface B is

blow-up of P1
(1)×P1

(2) with center (0, 0), (∞,∞) and the intersection points

of (4), and the involution τ is induced by the automorphism (y1, y2) 7→
(
a1

a3y1
,
a2

a3y2
) of P1

(1) × P1
(2).
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§2 New numerically trivial involutions

We take the double cover of the del Pezzo surface B in the previous section

with branch the union of all eight curves in Γ1̄. It has 12 nodes correspond-
ing to the 12 edges of Γ1̄. Its minimal resolution is the Kummer surface

Km(E ′×E ′′) of product type. Here E ′ and E ′′ are the double covers of P1

with branch p′1, . . . , p
′
4 and p′′1, . . . , p

′′
4, respectively. The pull-back of each

curve in Γ0̄ is a smooth rational curve on Km(E ′ × E ′′) by (∗ ∗ ∗). Hence
Km(E ′ × E ′′) has 28 smooth rational curves: 12 come from nodes of the
branch locus and the rest from the 16 curves on B.

The involution τ lifts to two involutions of Km(E ′ × E ′′). One is sym-
plectic and hence has exactly 8 fixed points ([4]). Since τ has exactly 4

fixed points by Lemma 5, the other lift, denoted by ε, has no fixed points.
Hence we obtain an Enriques surface S = Km(E ′×E ′′)/ε. The 28 smooth

rational curves give rise to 14 smooth rational curves on S and the dual
graph of their configuration is as follows:

E14

E23

E12

E24

E13

E34

F4

F3

F2

F1

E3

E4

E2

E1

(5)

Let σ be the involution of S induced by the covering involution of Km(E ′×
E ′′) → B. Then σ fixes these 14 smooth rational curves.

Proposition 7 σ is numerically trivial.

Proof. Let M1 be the sublattice of M = H2(S,Z)/(torsion) generated by

the cohomology classes of 10 rational curves E1, F2, F3, F4 and Eij, 1 ≤
i < j ≤ 4. Then M1 is the orthogonal (direct) sum of the five lattices

D = 〈E1, E12, E13, E14〉, F = 〈F2, F3, F4〉, 〈E23〉, 〈E24〉 and 〈E34〉. D is a
negative definite root lattice of type D4. The intersection form of F is




−2 2 2

2 −2 2
2 2 −2



 and nondegenerate. Hence M1 is of rank 10. Therefore,

σ is numerically trivial. �
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Proposition 8 σ is not cohomologically trivial.

Proof. We look at the subdiagram of (5) consisting of E1, . . . , E4 and
E12, E13, E14. This diagram is of type Ẽ6 and the complete linear system

of
D = 3E1 +E2 + E3 +E4 + 2E12 + 2E13 + 2E14

defines an elliptic fibration π : S −→ P1. Since S is an Enriques surface,

π has two multiple fibers. Let G1 and G2 be their reduced parts. Since
(D.E23) = 2, Gi, i = 1, 2, meets E23 at exactly one point, say pi. By our
construction, the fixed point set of σ|E23

coincides with E23 ∩D. Hence we

have σ(p1) = p2 and σ(G1) = G2. σ is cohomologically nontrivial since G1

and G2 differ by the nonzero 2-torsion KS. �

Remark 9 In terms of P1
(1) × P1

(2) at the end of the previous section, the
branch locus of Km(E ′ × E ′′)/B is as follows:

y1 = ∞

y2 = ∞

y2 = 0

y1 = 0

§3 Computation of the periods

In the sequel we fix a pair of elliptic curves E ′ and E ′′. Let σ be a numeri-
cally trivial involution of an Enriques surface S such that S̃, the universal

cover, is the Kummer surface Km := Km(E ′×E ′′) and that σR = µ as in
(1). Let σK and ε be as in the introduction. We denote the anti-invariant

parts of their action on H2(Km,Z) by NK and N , respectively. In this
section we compute the period of S, that is, the polarized Hodge structure
of N for two examples in the introduction.

Since σ is numerically trivial, N contains both NK and NR. NK is
isomorphic to E8(2) ([3, Lemma (2.1)]) and the discriminant group of N

is isomorphic to (Z/2Z)⊕10. Since NR ' U(2) ⊥ U(2) by assumption,
the orthogonal sum NK ⊥ NR is of index two in N . Therefore, there

exists a pair of nonzero 2-torsion elements αK ∈ ANK
= (1

2NK)/NK and
αR ∈ ANR

= (1
2NR)/NR such that N = NK + NR + Z(xK, xR), where
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xK ∈ 1
2
NK and xR ∈ 1

2
NR are representatives of αK and αR, respectively.

This pair (αK, αR) is uniquely determined from the involution σ. We call
it the patching pair of σ. Since NK and NR are orthogonal in N , we have

qNK
(αK) + qNR

(αR) = 0 in Z/2Z.

Definition 10 A numerically trivial involution (of Kummer type) is of

even type or of odd type according as the common quadratic value2qNK
(αK) =

qNR
(αR) ∈ Z/2Z of patching elements is 0 or 1.

NK is orthogonal to H0(Km,Ω2) ⊂ NR⊗C and NR(1/2) is isomorphic

to H1(E ′,Z)⊗H1(E ′′,Z) as a polarized Hodge structure. Hence the period
of S is determined by the patching pair.

We recall a basic fact on the cohomology of the Kummer surfaceKm(T )
of a (2-dimensional) complex torus T . Km(T ) contains sixteen (−2)P1’s

{Ea}a∈T2
parametrized by the 2-torsion subgroup T2 ' (Z/2Z)4 of T . These

generate a sublattice of rank 16 in the cohomology group H2(Km(T ),Z).

Since Km(T ) is the quotient of the blow-up of T at T2, H
2(Km(T ),Z)

contains the image of H2(T,Z) =
∧2H1(T,Z) as a sublattice of rank 6.

We denote these sublattices by Γ and Λ, respectively. These are orthogonal

and generate a sublattice of finite index in H2(Km(T ),Z). The lattice Λ
is isomorphic to U(2) ⊥ U(2) ⊥ U(2). The discriminant group AΛ is

(1
2Λ)/Λ ' H2(T,Z/2Z) and the discriminant form qΛ is essentially the cup

product, that is, qΛ(ȳ) = (y ∪ y)/2 mod 2 for y ∈ H2(T,Z).

Let P = {0, a, b, c} ⊂ T2 be a subgroup of order 4, or equivalently, a
2-dimensional subspace of T2. We put EP = E0 + Ea + Eb + Ec ∈ Γ. We

denote the Plücker coordinate of P⊥ ⊂ T∨
2 by πP ∈

∧2 T∨
2 ' H2(T,Z/2Z)

and regard it as an element of Λ/2Λ. The following is easily verified ([1,
Chap. VIII, §5]):

Lemma 11 (EP mod 2) + πP = 0 holds in H2(Km(T ),Z/2Z).

Now we return to the Kummer surface Km = Km(E ′×E ′′) of product

type. Two rulings of P1 × P1 give two elliptic fibrations Km −→ P1. We
denote the classes of these fibers by h̃1 and h̃2 ∈ H2(Km,Z). These h̃1

and h̃2 generate a rank 2 sublattice of Λ which is isomorphic to U(2). Λ is
the orthogonal (direct) sum of 〈h̃1, h̃2〉 and NR.

A subgroup P of order 4 of (E ′×E ′′)2 is naturally associated with (S, σ)

in the two examples:
2In [3, §2], it is erroneously stated that this common value is nonzero.
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Observation 12 (1) Let a = (a′, a′′) ∈ (E ′ × E ′′)2 be a 2-torsion point as

in Example 1 and we set P := {0, a, (a′, 0), (0, a′′)}. Then P is of order 4
and the Plücker coordinate πP belongs to NR/2NR.

(2) Let P ⊂ T2 be a subgroup of order 4 such that P ∩ ((E ′)2 × 0) =
P ∩ (0 × (E ′′)2) = 0 and πP the Plücker coordinate. Then πP − h̃1 − h̃2

belongs to NR/2NR. Let βP be the involution of Km induced by the
standard Cremona involution β0,P of P1 × P1 with center the image of P .

All (S, σ)’s of Example 2 are obtained from µ and βP ’s.

Now we are ready to compute the patching pairs.

Lemma 13 Let Π ∈ Λ be a representative of πP ∈ Λ/2Λ.
(1) A numerically trivial involution σ of Example 1 is of even type and

the patching pair is (Σ/2,Π/2) with Σ := E0 − Ea + E(a′,0) − E(0,a′′).
(2) A numerically trivial involution σ of Example 2 is of odd type and

the patching pair is ((h̃1 + h̃2 −EP )/2, (Π− h̃1 − h̃2)/2).

Proof. (1) Since σK is induced by the translation of E ′×E ′′ by a, Σ belongs

to NK . By Lemma 11, Σ+Π is divisible by 2. Hence the second half of (1)
follows. Since πP is the Plücker coordinate, 1

2
(πP ∪ πP ) = 0 ∈ Z/2Z and σ

is of even type.
(2) If σ is an involution of Example 2, then h̃1 + h̃2 − EP belongs to

NK by virtue of Lemma 6. The second half of (2) follows from this and
Lemma 11. σ is of odd type since 1

2(πP − h̃1 − h̃2) ∪ (πP − h̃1 − h̃2) =
1
2(πP ∪ πP ) + 1

2(h̃1 + h̃2) ∪ (h̃1 + h̃2) = 1 ∈ Z/2Z. �

§4 Proof of Theorem 3

Let σ be a numerically trivial involution of an Enriques surface S and
assume that it is of Kummer type. We shall show that S is isomorphic

to an Enriques surface of Example 1 or 2 by the global Torelli theorem
for Enriques surfaces ([1, Chap. VIII, Theorem (21.2)]). Since the group

of numerically trivial automorphisms of S is cyclic ([3, (1.1)]), Theorem 3
follows from this.

Let (αK , αR) ∈ ANK
× ANR

be the patching pair of σ. Recall that

NR(1/2) is isomorphic to U ⊥ U as a lattice and isomorphic to H1(E ′,Z)⊗
H1(E ′′,Z) as a polarized Hodge structure. Hence αR ∈ (1

2
NR)/NR corre-

sponds to 0 6= a′ ⊗ a′′ ∈ (E ′)2 ⊗ (E ′′)2 or to an isomorphism ϕ : (E ′)2
∼→
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(E ′′)2 according as σ is of even type or of odd type. In the former case

the Enriques surface S is isomorphic to that described in Example 1 with
a = (a′, a′′) by Lemma 13 and the global Torelli theorem.

Assume that σ is of odd type.

Claim: There exists no isomorphism from E ′ to E ′′ whose restriction to

the 2-torsion subgroups is ϕ.

Proof. Assume the contrary and let Φ ⊂ E ′ × E ′′ be the graph of such
an isomorphism. Then Φ−E ′×0−0×E ′′ is a divisor of self-intersection −2

and its class belongs to H1(E ′,Z) ⊗H1(E ′′,Z) ⊂ H2(E ′ × E ′′,Z). Hence
NR ⊂ H2(Km,Z) contains an algebraic cycle xR of self-intersection number

−4 such that xR/2 represents αR. Since NK ' E8(2), αN is represented
by a (−4)-element xK ∈ NK. Then x := (xK + xR)/2 belongs to N by

the definition of patching pairs and is algebraic since xK is orthogonal to
H0(Ω2) ⊂ NR ⊗ C. Since (x2) = −2, x or −x is effective by the Riemann-
Roch theorem. This is a contradiction since ε(x) = −x. �

Let P ⊂ T2 be the graph of ϕ. By Lemma 13 and the global Torelli

theorem, the Enriques surface S is isomorphic to that obtained from the
image of P as in (2) of Observation 12.
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