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Abstract. There are two types of numerically trivial involutions
of an Enriques surface according as their period lattice. One is
U(2) ⊥ U(2)-type and the other is U ⊥ U(2)-type. An Enriques
surface with an involution of U(2) ⊥ U(2)-type is doubly cov-
ered by a Kummer surface of product type, and such involutions
are classified again into two types according as the parity of the
corresponding Göpel subgroups. Involutions of odd U(2) ⊥ U(2)-
type are constructed from the standard Cremona involutions of the
quadric surface and closely related with quartic del Pezzo surfaces.

It is known that a nontrivial automorphism of a K3 surface acts
nontrivially on its cohomology group. But this is not true for an En-
riques surface. An automorphism of an Enriques surface S is said to
be numerically trivial (resp. cohomologically trivial) if it acts on the
cohomology group H2(S, Q) (resp. H2(S, Z)) trivially. In this paper
we classify the numerically trivial involutions, correcting [3].

Let S be a (minimal) Enriques surface, that is, a compact complex
surface with H1(OS) = H2(OS) = 0 and 2KS ∼ 0, and σ a numeri-
cally trivial (holomorphic) involution of S. We denote the covering K3
surface of S by S̃ and the covering involution by ε. Then the period
lattice NR of (S, σ) is isomorphic to either U(2) ⊥ U(2) or U ⊥ U(2)
as a lattice ([3, Proposition (2.5)]). σ is called U(2) ⊥ U(2)-type, or
Kummer type, in the former case.

In this paper, except the first appendix, we assume that NR ≅
U(2) ⊥ U(2) and classify the numerically trivial involutions of Kum-
mer type using their periods, that is, the Hodge structures on NR (cf.
Remark 21). There exist a pair of elliptic curves E ′ and E ′′ and an iso-
morphism ϕ between S̃ and the Kummer surface of the product abelian
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surface E ′ × E ′′ such that the diagram

(1)
S̃

ϕ→ Km(E ′ × E ′′)
σR ↓ ↓ µ

S̃
ϕ→ Km(E ′ × E ′′)

is commutative, where σR is the anti-symplectic lift of σ (Section 1)
and µ is the involution induced by (idE′ ,−idE′′) (Proposition 6).

Example 1. Let βev be the involution of Km(E ′ ×E ′′) induced by the
translation of E ′ × E ′′ by a 2-torsion point a with a ̸∈ E ′ × 0 ∪ 0 ×
E ′′. Then εev = µβev has no fixed points and the involution σev of the
Enriques surface Km(E ′ ×E ′′)/εev induced by µ is numerically trivial
(cf. Proposition 4).

The quotient Km(E ′ × E ′′)/µ is the blow-up of P1 × P1 at the
16 points (p′i, p

′′
j ), 1 ≤ i, j ≤ 4, where {p′1, . . . , p′4} and {p′′1, . . . , p′′4}

are the branches of the double coverings E ′ → P1 ≅ E ′/(−id) and
E ′′ → P1 ≅ E ′′/(−id), respectively. In the course of his classification
of Enriques surfaces with finite (full) automorphism groups, Kondo[2]
found a numerically trivial involution of an Enriques surface which had
been overlooked in [3] (cf. Remark 12).

Proposition 2. Assume that

(∗) the ordered 4-tuples (p′1, . . . , p
′
4) and (p′′1, . . . , p

′′
4) ∈ (P1)4 are not

projectively equivalent.

Then the standard Cremona involution of P1 × P1 with center the four
points (p′i, p

′′
i ), 1 ≤ i ≤ 4, lifts to a fixed point free involution εodd of

Km(E ′×E ′′) (Section 2). Moreover, the involution σodd of the Enriques
surface Km(E ′ × E ′′)/εodd induced by µ is numerically trivial.

The following is the main result of this paper:

Theorem 3. Every numerically trivial involution of Kummer type of
an Enriques surface is obtained in the way of Example 1 or Proposi-
tion 2.

First we characterize the involutions of Kummer type by their peri-
ods in Section 1. In Section 2 we construct an Enriques surface using
a Cremona involution of the smooth quadric, or almost equivalently,
from a smooth quartic del Pezzo surface. In Section 3 the main theorem
is proved by the global Torelli theorem for Enriques surfaces and by
computation of periods of Enriques surfaces of Example 1 and Propo-
sition 2. This article has two appendices. In the first, we complete
the classification of numerically trivial involutions, correcting [3]. In
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the second, we exibit 14 smooth rational curves on Enriques surfaces
of Proposition 2 and compute the dual graph of their arrangement.

The author would like to thank the anonymous referee for his or her
careful reading, by which the readability of this paper is improved in
several places.

Notation. The symbol U denotes the rank 2 lattice given by the sym-

metric matrix

(
0 1
1 0

)
. The lattice obtained from a lattice L by re-

placing the bilinear form ( . ) with r( . ), r being a rational number r,
is denoted by L(r).

1. Involutions of Kummer type

Let Km(E ′ × E ′′) and µ be as in the introduction.

Proposition 4. Let ε be a fixed point free involution of Km(E ′ ×
E ′′) which commutes with the involution µ. Then the involution of the
Enriques surface Km(E ′ × E ′′)/ε induced by µ is numerically trivial.

Proof. The invariant part of the action of µ on H2(Km(E ′×E ′′), Z) is
of rank 18. On the other hand, since εµ is symplectic, the anti-invariant
part of its cohomological action is of rank 8. Therefore, µ mod ε acts
on H2(Km(E ′ × E ′′)/ε, Q), which is of rank 10, trivially. ¤

Let σ be a numerically trivial involution of an Enriques surface S.
There are two involutions of the K3 cover S̃ of S which lift σ since S̃
has no fixed point free automorphisms of order 4. One is symplectic
and the other is anti-symplectic. These involutions of S̃ are denoted
by σK and σR, respectively. We denote the anti-invariant parts of the
actions of ε := σKσR, σK and σR on H2(S̃, Z) by N , NK and NR,
respectively. N is isomorphic to U ⊥ U(2) ⊥ E8(2) ([1, Chap. VIII,
Lemma 19.1]) and NK is isomorphic to E8(2) ([3, Lemma (2.1)]). NR

carries a nontrivial polarized Hodge structure of weight 2, which we
call the period of (S, σ).

In order to compute the period for an involution in Proposition 4, we
recall a basic fact on the cohomology of the Kummer surface Km(T ) of
a (2-dimensional) complex torus T . Km(T ) contains sixteen (−2)P1’s
{Ea}a∈T2 parametrized by the 2-torsion subgroup T2 ≅ (Z/2Z)4 of
T . These generate a sublattice of rank 16 in the cohomology group
H2(Km(T ), Z), which we denote by ΓKm. Let Λ be the orthogonal
complement of ΓKm in H2(Km(T ), Z). Λ is the image of H2(T, Z) by
the quotient morphism from the blow-up of T at T2 onto Km(T ). The
following is well known ([1, Chap. VIII, §5]).
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Lemma 5. Λ ⊂ H2(Km(T )) is isomorphic to H2(T, Z) as a Hodge
structure and to H2(T, Z)(2) ≅ U(2) ⊥ U(2) ⊥ U(2) as a lattice.

Being of Kummer type is characterized in terms of the period as
follows:

Proposition 6. The followings are equivalent for a numerically trivial
involution σ.

(1) σ is of Kummer type, that is, the lattice NR is isomorphic to
U(2) ⊥ U(2).

(2) σ is obtained in the way of Proposition 4.

Proof. ΓKm is fixed in the cohomological action of µ. In the action
of the involution (idE′ ,−idE′′) on H2(E ′ × E ′′, Z) ≅ U ⊥ U ⊥ U ,
one U , generated by two elliptic curves, is invariant and the other
two are anti-invariant. Hence the anti-invariant part N− of the action
involution µ on Λ is isomorphic to U(2) ⊥ U(2) as a lattice. Therefore,
NR ≅ U(2) ⊥ U(2) if σ is obtained in the way of Proposition 4.

Conversely assume that NR is isomorphic to U(2) ⊥ U(2). The
lattice U ⊥ U is isomorphic to M2(Z) = V ′ ⊗ V ′′, the group of
2 × 2 matrices of integral entries endowed with the bilinear form form
(A. A) = 2 det A, where V ′ and V ′′ are free Z-modules of rank two. The
period ω of S̃ corresponds to a complex matrix of rank one via this iso-
morphism since (ω2) = 0. Hence we have ω = α′ ⊗ α′′ for α′ ∈ V ′ ⊗ C
and α′′ ∈ V ′′ ⊗ C. These α′ and α′′ determine Hodge structures of
weight one since (ω.ω̄) > 0. Hence, there exits a pair of elliptic curves
E ′ and E ′′ such that NR(1/2) is isomorphic to H1(E ′, Z) ⊗ H1(E ′′, Z)
as a polarized Hodge structure. By Theorem 7 below and the unique-
ness property of 2-elementary lattices, there exists an isomorphism ϕ
between S̃ and the Kummer surface of the product E ′ × E ′′ such that
the diagram (1) commutes. ¤
Theorem 7. Let (X, σ) and (X ′, σ′) be pairs of a K3 surface and its
involution. If there exists a Hodge isometry α : H2(X ′, Z) → H2(X, Z)
such that the diagram

H2(X ′, Z)
α→ H2(X, Z)

σ∗ ↓ ↓ σ′∗

H2(X ′, Z)
α→ H2(X, Z)

commutes, then there exists an isomorphism ϕ : X → X ′ such that
ϕσ = σ′ϕ.

Proof. If neither σ nor σ′ has a fixed point, this is the global Torelli
theorem for Enriques surfaces. The proof in [1, Chap. VIII, §21], espe-
cially its key Proposition (21.1), works in our general case too. ¤



NUMERICALLY TRIVIAL INVOLUTIONS OF AN ENRIQUES SURFACE 5

Assume that (S, σ) is of Kummer type. Since (disc NK)(disc NR) =
4 · disc N , the orthogonal sum NK ⊥ NR is of index two in N . There-
fore, there exists a pair of nonzero 2-torsion elements αK ∈ ANK

=
(1

2
NK)/NK and αR ∈ ANR

= (1
2
NR)/NR such that N = NK + NR +

Z(xK , xR), where xK ∈ 1
2
NK and xR ∈ 1

2
NR are representatives of αK

and αR, respectively. This pair (αK , αR) is uniquely determined from
the involution σ. We call it the patching pair of σ. Since NK and NR

are orthogonal in N , we have qNK
(αK) + qNR

(αR) = 0 in Z/2Z.

Definition 8. A numerically trivial involution σ of Kummer type, or
a patching pair (αK , αR), is of even type or of odd type according as
the common quadratic value qNK

(αK) = qNR
(αR) ∈ Z/2Z of patching

elements is 0 or 1.

Since NR ≅ U(2) ⊥ U(2), qNR
is a non-degenerate even quadratic

space of dimension 4 over F2. Hence the numbers of patching pairs of
even and odd type are 6 and 9, respectively.

2. Cremona involutions and involutions of odd type

The Enriques surface in Proposition 2 is closely related with a del
Pezzo surface of degree 4 and its small1 involution. For our purpose it
is most convenient to describe it as the blow-up of P1×P1. We identify
P1 × P1 with a smooth quadric surface Q in P3 = P(x1:x2:x3:x4).

Let p1 = (p′1, p
′′
1), . . . , p4 = (p′4, p

′′
4) be four points of P1 × P1 which

satisfy

(∗∗) p′1, . . . , p
′
4 are distinct and p′′1, . . . , p

′′
4 are distinct.

In terms of a smooth quadric, this is equivalent to

(∗∗′) any line pipj, 1 ≤ i < j ≤ 4, is not contained in Q.

We also assume the condition (∗) in Proposition 2, or equivalently,

(∗′) p1, . . . , p4 ∈ Q ⊂ P3 is not contained in a plane.

We take a system of homogeneous coordinates of P3 such that p1, . . . , p4

are the coordinate points (1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1). Then the
defining equation of Q is of the form

∑
1≤i<j≤4 aijxixj = 0. By the

assumption (∗∗′), all coefficients aij’s are nonzero. Hence, replacing
x1, . . . , x4 by their suitable constant multiplications, we may and do
assume that Q ⊂ P3 is defined by

(2) a1x2x3 + a2x1x3 + a3x1x2 + (x1 + x2 + x3)x4 = 0

1An automorhism of a surface is small if all fixed points are isolated.
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for some nonzero constants a1, a2 and a3 ∈ C. Since Q is smooth, we
have

(3) a2
1 + a2

2 + a2
3 − 2a1a2 − 2a1a3 − 2a2a3 ̸= 0.

Now we define a birational involution τ ′ of Q by

(x1 : x2 : x3 : x4) 7→ (
a1

x1

:
a2

x2

:
a3

x3

:
a1a2a3

x4

)

and call it the standard Cremona involution of Q (or P1 × P1) with
center p1, . . . , p4.

Let B be the blow-up of a smooth quadric Q at p1, . . . , p4. By
the projection from p4, B is the blow-up of the projective plane also.
By (3), the line l : x1 + x2 + x3 = 0 and the conic C : a1x2x3 +
a2x1x3 + a3x1x2 = 0 intersect transversally in the projective plane
P2 = P(x1:x2:x3). Let q4 and q5 be the two intersection points. Then
B is isomorphic to the blow-up of P2 at the three coordinate points
(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) and the two points q4 and q5. The
standard Cremona involution τ ′ is induced by the quadratic Cremona
transformation

(4) (x1 : x2 : x3) 7→ (
a1

x1

:
a2

x2

:
a3

x3

),

which interchanges l and C. In particular, it induces an automorphism
of B, which we denote by τ . The following is easily verified:

Lemma 9. (1) The indeterminacy locus of τ ′ : Q · · · → Q is {p1, . . . , p4}.
(2) For each 1 ≤ i ≤ 4, the conic C ′

i : Q ∩ {xi = 0} is contracted to
the point pi by τ ′.

(3) For each 1 ≤ i ≤ 4, the two lines in Q passing through pi are
interchanged by τ ′.

(4) The fixed points of τ ′ are (ε1
√

a1 : ε2
√

a2 : ε3
√

a3 :
√

a1a2a3),
where all εi’s are ±1 and satisfy ε1ε2ε3 = −1.

For the later use we compute the cohomological action of τ . The sec-
ond cohomology group H2(B, Z), or equivalently, the Picard group of B
is the free abelian group with the standard Z-basis {h1, h2, e1, . . . , e4},
where h1 and h2 are the pull-backs of the two rulings of P1 × P1 and
e1, . . . , e4 are the classes of the exceptional curves over p1, . . . , p4.

Lemma 10. The action of the standard Cremona involution τ on
H2(B, Z) is equal to the composite of the two reflections with respect to
the mutually orthogonal (−2)-classes h1−h2 and h1 +h2−e1−· · ·−e4.

Proof. We take the description of B as the blow-up of P2. The coho-
mology group H2(B, Z) has {h, e1, e2, e3, f1, f2} as a Z-basis. Here h is
the pull-back of a line and f1 and f2 are the classes of the exceptional
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curves over q4 and q5. The cohomological action of the transformation
(4) on the blow-up of P2 at the three coordinate points is the reflection
r with respect to h − e1 − e2 − e3. Since the transformation (4) inter-
changes q4 and q5, the cohomological action of τ is the composite of r
and the reflection with respect to f1 − f2. This proves the lemma since
f1 = h1 − e4, f2 = h2 − e4 and h = h1 + h2 − e4. ¤

There are 16 smooth rational curves of degree 1 with respect to the
anti-canonical divisor −KB = 2h1 + 2h2 − e1 − · · · − e4:

0) the exceptional divisors e1, . . . , e4 over p1, . . . , p4,
1) the strict transforms of lines in Q passing through one of p1, . . . , p4,

and
2) the strict transforms Ci’s of the conics C ′

i’s in Lemma 9.

We denote the 8 lines of 1) by Γ1̄ and the 8 lines of 0) and 2) by Γ0̄.
The Kummer surface Km(E ′ × E ′′) is the minimal resolution of the
double cover

w2 = (a3x2+a2x3+x4)(a3x1+a1x3+x4)(a2x1+a1x2+x4)(x1+x2+x3)

of Q with branch the union of 8 lines in Q passing through one of
p1, . . . , p4. Hence it is the the minimal resolution of the double cover
of B with branch the union of the 8 lines in Γ1̄.

Lemma 11. Km(E ′×E ′′) is the minimal resolution of the double cover
of B with branch the union of the 8 lines Γ0̄ also.

Proof. Put g1 = −KB−h1 = h1+2h2−e1−· · ·−e4. The complete linear
system |g1| is a base point free pencil and the morphism (Φ|h1|, Φ|g1|) :
B → P1 × P1 is of degree 2. The covering involution acts on H2(B, Z)
by α 7→ (g1.α)h1 + (h1.α)g1 − α and hence interchanges Γ0̄ and Γ1̄.
Hence we have our assertion. ¤
Proof of Proposition 2. By the above lemma, the Kummer surface
Km(E ′ × E ′′) is the minimal resolution of the double cover w2 =
x1x2x3x4 of Q. Let βodd be the involution of Km(E ′ × E ′′) induced
from the birational involution

(w, x1, x2, x3, x4) 7→ (a1a2a3/w, a1/x1, a2/x2, a3/x3, a1a2a3/x4)

of the double cover. Then βodd lifts τ and τ ′. The involution εodd :=
µβodd has no fixed points by (4) of Lemma 9. σodd is numerically trivial
by Proposition 4. ¤
Horikawa expression. Let P1

(1) and P1
(2) be the projective lines whose

inhomogenous coordinates are y1 = x1/x3 and y2 = x2/x3. Then the
surface B is blow-up of P1

(1) × P1
(2) with center (0, 0), (∞,∞) and the

intersection points of y1 +y2 +1 = 0 and a2y1 +a1y2 +a3y1y2 = 0. The
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involution βodd is induced by the automorphism (y1, y2) 7→ (
a1

a3y1

,
a2

a3y2

)

of P1
(1) × P1

(2). By Lemma 11, Km(E ′ × E ′′) is the minimal resolution
of the double cover

w2 = y1y2(a2y1 + a1y2 + a3y1y2)(y1 + y2 + 1)

whose branch locus is as follows:

(5) y1 = ∞

y2 = ∞

y2 = 0

y1 = 0

Remark 12. In the special case a1 = a2 = a3 = 1, the two elliptic
curves E ′ and E ′′ are both isomorphic to Eω := C/(Z+Ze2π

√
−1/3). The

Enriques surface S = Km(Eω × Eω)/εodd is studied in [2, (3.5)] as an
Enriques surface whose automorphism group is finite. In fact, Aut S is
the extension of Z/2Z, the group of numerically trivial automorphisms,
by the symmetric group of degree 4.

3. Computation of the periods

Let Km(T ) and Λ = (ΓKm)⊥ be as in Lemma 5. The discriminant
group AΛ is (1

2
Λ)/Λ ≅ H2(T, Z/2Z) and the discriminant form qΛ

is essentially the cup product, that is, qΛ(ȳ) = (y ∪ y)/2 mod 2 for
y ∈ H2(T, Z).

Let P = {0, a, b, c} ⊂ T2 be a subgroup of order 4, or equivalently, a
2-dimensional subspace of T2. We put EP = E0 +Ea +Eb +Ec ∈ ΓKm.
We denote the Plücker coordinate of P⊥ ⊂ T∨

2 by πP ∈
∧2 T∨

2 ≅
H2(T, Z/2Z) and regard it as an element of Λ/2Λ. The following is
easily verified ([1, Chap. VIII, §5]):

Lemma 13. (EP mod 2) + πP = 0 holds in H2(Km(T ), Z/2Z).

Now we specialize Km(T ) to Km := Km(E ′×E ′′) of product type.
Two rulings of P1 × P1 give two elliptic fibrations Km −→ P1. We
denote the classes of these fibers by h̃1 and h̃2 ∈ H2(Km, Z). These h̃1

and h̃2 generate a rank 2 sublattice of Λ which is isomorphic to U(2).

Λ is the orthogonal (direct) sum of 〈h̃1, h̃2〉 and N−, the anti-invariant
part of the action of µ. As we saw in the proof of Proposition 6, N− is
isomorphic to U(2) ⊥ U(2) as a lattice.
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Observation 14. A subgroup P of order 4 of (E ′ × E ′′)2 is naturally
associated with a numerically trivial involution of Kummer type:

(1) Let a = (a′, a′′) ∈ (E ′ × E ′′)2 be a 2-torsion point as in Exam-
ple 1 and we set P := {0, a, (a′, 0), (0, a′′)}. Then P is of order
4 and the Plücker coordinate πP belongs to N−/2N−.

(2) Let P ⊂ T2 be a subgroup of order 4 such that

P ∩ ((E ′)2 × 0) = P ∩ (0 × (E ′′)2) = 0

and πP the Plücker coordinate. Then πP − h̃1 − h̃2 belongs
to N−/2N−. Let βP be the involution of Km induced by the
standard Cremona involution τ ′ of P1×P1 with center the image
of P . All βodd’s of Proposition 2 are obtained from βP ’s.

In both cases, P ⊂ (E ′ ×E ′′)2 is a Göpel subgroup, that is, P is totally
isotropic with respect to the Weil pairing.

A subgroup P ⊂ T2 of order 4 is Göpel if and only if the Plücker
coordinate πP is parpendicular to h̃1 + h̃2. Hence either πP or πP −
h̃1 − h̃2 belongs to N−/2N−. There are exactly 15 Göpel subgroups.
9 of them satisfy the above (1) and 6 satisfy (2). All 9 odd elements
and 6 even non-zero elements of N−/2N− are obtained in the way of
(1) and (2), respectively.

Remark 15. The number of non-Göpel subgroups of order 4 is 20. By
adding h̃1 or h̃2, one obtain a 2 to 1 map from the set of non-Göpel
subgroups to {x ∈ N−/2N− | (x2) = 0}.

Now we are ready to compute the patching pair for Examples 1 and
Proposition 2.

Lemma 16. Let Π ∈ Λ be a representative of πP ∈ Λ/2Λ.
(1) An Enriques involution εev of Example 1 is of even type and the

patching pair is (Σ/2, Π/2) with Σ := E0 − Ea + E(a′,0) − E(0,a′′).
(2) An Enriques involution εodd of Proposition 2 is of odd type and

the patching pair is ((h̃1 + h̃2 − EP )/2, (Π − h̃1 − h̃2)/2).

Proof. Since σR = µ, NR coincides with N−. Hence the discriminant
form of NK is essentially the cup product on H2(T, Z/2Z). Here we
use the latter for computation.

(1) Since βev is induced by the translation of E ′×E ′′ by a, Σ belongs
to NK . By Lemma 13, Σ+Π is divisible by 2. Hence the second half of
(1) follows. Since πP is the Plücker coordinate, 1

2
(πP ∪πP ) = 0 ∈ Z/2Z

and σ is of even type.
(2) h̃1 + h̃2 −EP belongs to NK by virtue of Lemma 10. The second

half of (2) follows from this and Lemma 13. εodd is of odd type since
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1
2
(πP − h̃1− h̃2)∪ (πP − h̃1− h̃2) = 1

2
(πP ∪πP )+ 1

2
(h̃1 + h̃2)∪ (h̃1 + h̃2) =

1 ∈ Z/2Z. ¤

Proof of Theorem 3. Let ε be an Enriques involution of the Kummer
surface Km = Km(E ′ × E ′′) which commutes with µ. Let σ be the
involution of the Enriques surface S := Km/ε induced by µ. Let
(αK , αR) ∈ ANK

× ANR
be the patching pair of σ. NR coincides with

N− since σR = µ in our situation Recall that NR(1/2) is isomorphic
to U ⊥ U as a lattice and isomorphic to H1(E ′, Z) ⊗ H1(E ′′, Z) as a
polarized Hodge structure. In particular, (1

2
NR)/NR is isomorphic to

the tensor product (E ′)2 ⊗ (E ′′)2. By this isomorphism, 0 ̸= αR ∈
(1

2
NR)/NR corresponds to a′⊗a′′ ∈ (E ′)2⊗ (E ′′)2 or to an isomorphism

ϕ : (E ′)2
∼→ (E ′′)2 according as (αK , αR) is of even type or of odd

type. ((E ′)2 is identified with its dual since it is of dimension 2 over
F2.) In the even case S is isomorphic to the Enriques surface Km/εev

of Example 1 with a = (a′, a′′) by Lemma 16 and the global Torelli
theorem for Enriques surfaces since the group of numerically trivial
automorphisms of S is cyclic by [3, (1.1)].

Assume that (αK , αR) is of odd type.

Claim. There exists no isomorphism from E ′ to E ′′ whose restriction
to the 2-torsion subgroups is ϕ.

Proof. Assume the contrary and let Φ ⊂ E ′×E ′′ be the graph of such an
isomorphism. Then Φ−E ′×0−0×E ′′ is a divisor of self-intersection −2
and its class belongs to H1(E ′, Z)⊗H1(E ′′, Z) ⊂ H2(E ′×E ′′, Z). Hence
NR ⊂ H2(Km, Z) contains an algebraic cycle c′ of self-intersection
number −4 such that c′/2 represents αR. Since NK ≅ E8(2), αK is
represented by a (−4)-element c ∈ NK . Then x := (c + c′)/2 belongs
to N by the definition of patching pairs and is algebraic since c is
orthogonal to H0(Ω2) ⊂ NR ⊗ C. Since (x2) = −2, either x or −x is
effective by the Riemann-Roch theorem. This is a contradiction since
ε(x) = −x. ¤

Let P ⊂ T2 be the graph of ϕ and put P = {(p′i, p′′i )}1≤i≤4 as in
Proposition 2. Then, by the claim, (p′1, . . . , p

′
4) and (p′′1, . . . , p

′′
4) are not

projectively equivalent and we obtain an Enriques surface Km/εodd.
Again, by Lemma 16 and the global Torelli theorem, the Enriques
surface S is isomorphic to that obtained from the image of P as in (2)
of Observation 14. By the same argument as the even case, we have
(S, σ) ≅ (Km/εodd, σodd). ¤
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4. Appendix: Kummer type is not cohomologically trivial

Contrary to the erroneous Proposition (4.8) of [3], the involution of
Example 1 is not cohomologically trivial.

Theorem 17. A numerically trivial involution of Kummer type is not
cohomologically trivial.

Proof. We prove our assertion by constructing an elliptic fibration.
Let {p′1, . . . , p′4} and {p′′1, . . . , p′′4} be the branch of the double cover-

ings E ′ → P1 ≅ E ′/(−id) and E ′′ → P1 ≅ E ′′/(−id), respectively. The
Kummer surface Km(E ′ ×E ′′) is the minimal resolution of the double
cover of P1 × P1 with branch

(p′1 × P1 ∪ · · · ∪ p′4 × P1) ∪ (P1 × p′′1 ∪ · · · ∪ P1 × p′′4).

More precisely, it is the double cover of the blow-up of P1 × P1 at the
16 points (p′i, p

′′
j ), i, j = 1, . . . , 4, with branch the strict transform of

these eight rational curves.

p′′1

p′′2

p′′3

p′′4

p′1 p′2 p′3 p′4

The fixed locus of µ is the inverse images of these strict transform.
We denote them by

(A1 ⊔ · · · ⊔ A4) ⊔ (B1 ⊔ · · · ⊔ B4).

The involution ε := µβ of Example 1 acts on this disjoint union.
Renumbering A1, . . . , A4 and B1, . . . , B4, we may assume that

ε(Ai) = Ai+1 and ε(Bi) = Bi+1

for i = 1, 3. Then ε interchanges two divisors A1 + A3 + B2 + B4 and
A2 +A4 +B1 +B3. Let Λ be the linear pencil spanned by their images

H1 := p′1 × P1 + p′3 × P1 + P1 × p′′2 + P1 × p′′4

and

H2 := p′2 × P1 + p′4 × P1 + P1 × p′′1 + P1 × p′′3
on P1 × P1. Then Λ induces elliptic fibrations

ΦΛ : Km(E ′ × E ′′)/µ → Λ(≅ P1)
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of the rational surface and

Km(E ′ × E ′′) → Λ̃(≅ P1)

of the Kummer surface. The latter is the base change of the former by
the double covering Λ̃ → Λ with branch [H1] and [H2], and descends
to an elliptic fibration f of the Enriques surface Km(E ′ × E ′′)/ε.

The action of 〈ε, µ〉 ≅ Z/2Z × Z/2Z on Km(E ′ × E ′′) induces the
action of Z/2Z × Z/2Z on Λ̃ ≅ P1. In our cases this action is effective
(and hence of Heisenberg type). Let ε̄ and µ̄ be the automorphisms
of Λ induced by ε and µ, respectively. ε̄ interchanges the points [H1]
and [H2] underneath the singular fibers. µ̄ fixes exactly these two
points, but the corresponding fiber of the elliptic fibration f on the
Enriques surface is not multiple. Since µ̄ is not the identity on Λ̃/ε̄,
the involution µ mod ε interchanges two multiple fibers of f . Let G1

and G2 be the reduced part of the two multiple fibers of f . Since the
linear equivalence classes of G1 and G2 differ by the canonical class,
µ mod ε is not cohomologically trivial.

For ε = εodd in Proposition 2, we have ε(Ai) = Bi for every i =
1, . . . , 4, since a Cremona involution interchanges p′i × P1 and P1 × p′′i
for every i = 1, . . . , 4. The above argument works literally in this case
too. Now our assertion follows from Theorem 3. ¤

Now we are ready to complete the classification of numerically trivial
involutions, correcting [3].

At the 6th line in [3, p. 388], it is erroneously stated that the common
value qT (α) = qT ′(α′) ∈ Z/2Z is nonzero in the case where T ′, or NR,
is isomorphic to U(2) ⊥ U(2). But the value can be both 0 and 1 mod
2. We call a primitive embedding of T (≅ E8(2)) into N(≅ E8(2) ⊥
U(2) ⊥ U) even or odd accordingly. Then Proposition (2.6) in [3]
should be replaced by

Proposition 18. Let T1 and T2 be primitive sublattices of N isomor-
phic to E8(2). If their orthogonal complements T ′

1 and T ′
2 are isomor-

phic to each other and if in addition they have the same parity in the
case T ′

1 ≅ T ′
2 ≅ U(2) ⊥ U(2), then there exists an isometry of N which

maps T1 and T ′
1 onto T2 and T ′

2, respectively.

Let P be the set of periods of E8(2)-polarized Enriques surfaces as
defined in [3, p. 388]. Then P is the disjoint union of P1 and P2 for
which the orthogonal complements of E8(2) ⊂ N are isomorphic to
U ⊥ U(2) and U(2) ⊥ U(2), respectively. The latter decomposes into
two parts, P ev

2 and P odd
2 , according to the parity. Corollary (2.7) in [3]

should be replaced by
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Corollary 19. P1/Γ, P ev
2 /Γ and P odd

2 /Γ are irreducible.

Here Γ is the arithmetic group acting on the 10-dimensional Hermit-
ian symmetric domain Ω− of type IV such that the quotient Ω−/Γ is
the moduli space of Enriques surfaces. In fact, P ev

2 /Γ parametrizes Ex-
ample 1 and an open subset of P odd

2 /Γ parametrizes Enriques surfaces
in Proposition 2.

Theorem 20. Every pair of an Enriques surface and a cohomologically
trivial involution is obtained in the way of Example 2 of [3]. Moreover,
they are parametrized by P1/Γ.

Proof. Let σ be a cohomologically trivial involution of an Enriques
surface S. NR is isomorphic to U ⊥ U(2) by Theorem 17, and the
periods of such involutions form an irreducible variety by Corollary 19.
Hence (S, σ) is a deformation of Example 2 of [3]. As is shown in [3, §5],
the fixed locus of the anti-symplectic involution is the disjoint union of
an elliptic curve E and 8 smooth rational curves E1, . . . , E8 for Example
2. Therefore, the same holds for the anti-symplectic involution σR. Let
f : S̃ → P1 be the elliptic fibration defined by the linear system |E|. f
descends to an elliptic fibration of the quotient rational surface S̃/σR.
We denote its minimal fibration by fR : R → P1. The rational surface
R is obtained from S̃/σR by blowing down an exceptional curve of the
first kind 8 times. For Example 2, it is easily checked that the image of∑8

i=1 Ei is a singular fiber of type I8 of fR and that fR has 4 sections.
The same holds for (S, σ) as a deformation of Example 2. Hence, as
is claimed in [3, §5], the configuration of the elliptic curves E and 20
rational curves is the same as Example 2, and (S, σ) is obtained in
the way of Example 2. The second assertion follows from the Torelli
type theorem and [3, (1.1)], the uniqueness of cohomologically trivial
involution. ¤

Remark 21. The fixed locus of the anti-symplectic involution σR is the
disjoint union of 8 smooth rational curves E1, . . . , E8 for numerically
trivial involutions of Kummer type. Our (main) Theorem 3 can be also
proved using certain elliptic fibrations containing E1, . . . , E8 in their
fibers though the existence of such fibrations is not straightforward
as above and they are not unique. Furthermore, Theorem 20 can be
proved using periods also. These alternative proofs will be discussed
elsewhere.
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5. Appendix : Rational curves on an Enriques surface of
Proposition 2

Let B, τ , Γ0̄ and Γ1̄ be as in Section 2. The dual graph of the 8
smooth rational curves in Γ0̄ is a cube:

(6)

C2

e3

C1
e2

C4

e4C3

e1

The automorphism τ sends each vertex of the cube Γ0̄ to its antipodal.
The same holds for Γ1̄. The following is easily verified:

(†) for every curve m in Γ0̄ (resp. Γ1̄), there exists an antipodal pair
of vertices n and n′ in Γ1̄ (resp. Γ0̄) such that (m.n) = (m.n′) = 1 and
that m is disjoint from other curves in Γ1̄ (resp. Γ0̄).

Therefore, the quotient graph (Γ1̄ ∪ Γ0̄)/τ is as follows:

Γ1̄/τ Γ0̄/τ

The Kummer surface Km(E ′ × E ′′) is the double cover of B with
branch the union of the 8 curves in Γ1̄. The union has 12 nodes corre-
sponding to the 12 edges of Γ1̄. The pull-backs of the curves in Γ0̄ are
smooth rational curves on Km(E ′ × E ′′) by (†). Hence Km(E ′ × E ′′)
has 28 smooth rational curves, 12 of which come from the nodes of the
double cover and the rest from Γ0̄ ∪ Γ1̄. Since the involution τ lifts to
εodd of Proposition 2, we have
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Proposition 22. On the Enriques surface Km(E ′×E ′′)/εodd of Propo-
sition 2, there are 14 smooth rational curves whose dual graph is as
follows:

(7)

The proposition, together with [3, (4.7)], shows the ‘only if’ part of
[2, Theorem (1.7), (i)] in the case of Kummer type.
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