NUMERICALLY TRIVIAL INVOLUTIONS OF
KUMMER TYPE OF AN ENRIQUES SURFACE

SHIGERU MUKAI

ABSTRACT. There are two types of numerically trivial involutions
of an Enriques surface according as their period lattice. One is
U(2) L U(2)-type and the other is U L U(2)-type. An Enriques
surface with an involution of U(2) L U(2)-type is doubly cov-
ered by a Kummer surface of product type, and such involutions
are classified again into two types according as the parity of the
corresponding Gopel subgroups. Involutions of odd U(2) L U(2)-
type are constructed from the standard Cremona involutions of the
quadric surface and closely related with quartic del Pezzo surfaces.

It is known that a nontrivial automorphism of a K3 surface acts
nontrivially on its cohomology group. But this is not true for an En-
riques surface. An automorphism of an Enriques surface S is said to
be numerically trivial (resp. cohomologically trivial) if it acts on the
cohomology group H?(S,Q) (resp. H?(S,Z)) trivially. In this paper
we classify the numerically trivial involutions, correcting [3].

Let S be a (minimal) Enriques surface, that is, a compact complex
surface with H'(Og) = H?*(Og) = 0 and 2K5 ~ 0, and ¢ a numeri-
cally trivial (holomorphic) involution of S. We denote the covering K3
surface of S by S and the covering involution by . Then the period
lattice Ng of (S, o) is isomorphic to either U(2) L U(2) or U L U(2)
as a lattice ([3, Proposition (2.5)]). o is called U(2) L U(2)-type, or
Kummer type, in the former case.

In this paper, except the first appendix, we assume that Np =~
U(2) L U(2) and classify the numerically trivial involutions of Kum-
mer type using their periods, that is, the Hodge structures on Ny (cf.
Remark 21). There exist a pair of elliptic curves E' and E” and an iso-
morphism ¢ between S and the Kummer surface of the product abelian

2000 Mathematics Subject Classification. 14J28, 14C34, 14K10.
Supported in part by the JSPS Grant-in-Aid for Scientific Research (B)
17340006, (S) 19104001 and for Exploratory Research 20654004.
1



2 SHIGERU MUKAI

surface £’ x E” such that the diagram

S % Km(E' x E")

! l I
S % Km(E' x E")

is commutative, where op is the anti-symplectic lift of o (Section 1)
and p is the involution induced by (idg, —idg~) (Proposition 6).

(1) OR

Example 1. Let (., be the involution of Km(E' x E") induced by the
translation of E' x E" by a 2-torsion point a with a ¢ E' x 0 U0 X
E". Then e., = jfey, has no fixed points and the involution o, of the
Enriques surface Km(E' x E")/eq, induced by p is numerically trivial
(cf. Proposition 4).

The quotient Km(E' x E")/u is the blow-up of P! x P! at the
16 points (p},pj), 1 < 4,5 < 4, where {p},...,py} and {pY,...,p]
are the branches of the double coverings E' — P! ~ FE’/(—id) and
E" — P! ~ E"/(—id), respectively. In the course of his classification
of Enriques surfaces with finite (full) automorphism groups, Kondo|[2]
found a numerically trivial involution of an Enriques surface which had

been overlooked in [3] (¢f. Remark 12).

Proposition 2. Assume that
(%) the ordered 4-tuples (p),...,py) and (p],...,p}) € (P')* are not
projectively equivalent.
Then the standard Cremona involution of P* x P! with center the four
points (pi,p!l), 1 < i < 4, lifts to a fized point free involution €,qq of
Km(E"xE") (Section 2). Moreover, the involution 0,44 of the Enriques
surface Km(E' x E")/eqq induced by p is numerically trivial.

The following is the main result of this paper:

Theorem 3. Fvery numerically trivial involution of Kummer type of
an Enriques surface is obtained in the way of Example 1 or Proposi-
tion 2.

First we characterize the involutions of Kummer type by their peri-
ods in Section 1. In Section 2 we construct an Enriques surface using
a Cremona involution of the smooth quadric, or almost equivalently,
from a smooth quartic del Pezzo surface. In Section 3 the main theorem
is proved by the global Torelli theorem for Enriques surfaces and by
computation of periods of Enriques surfaces of Example 1 and Propo-
sition 2. This article has two appendices. In the first, we complete
the classification of numerically trivial involutions, correcting [3]. In
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the second, we exibit 14 smooth rational curves on Enriques surfaces
of Proposition 2 and compute the dual graph of their arrangement.

The author would like to thank the anonymous referee for his or her
careful reading, by which the readability of this paper is improved in
several places.

Notation. The symbol U denotes the rank 2 lattice given by the sym-

metric matrix ((1) (1)> The lattice obtained from a lattice L by re-

placing the bilinear form ( . ) with r( . ), r being a rational number r,
is denoted by L(r).

1. INVOLUTIONS OF KUMMER TYPE

Let Km(E' x E") and p be as in the introduction.

Proposition 4. Let ¢ be a fized point free involution of Km(E' X
E") which commutes with the involution p. Then the involution of the
Enriques surface Km(E' x E")/e induced by p is numerically trivial.

Proof. The invariant part of the action of p on H*(Km(E' x E"),Z) is
of rank 18. On the other hand, since eu is symplectic, the anti-invariant
part of its cohomological action is of rank 8. Therefore, u mod ¢ acts
on H?(Km(E' x E")/e,Q), which is of rank 10, trivially. O

Let o be a numerically trivial involution of an Enriques surface S.
There are two involutions of the K3 cover S of S which lift o since S
has no fixed point free automorphisms of order 4. One is symplectic
and the other is anti-symplectic. These involutions of S are denoted
by ok and o, respectively. We denote the anti-invariant parts of the
actions of € := oxor, ox and or on H%(S,Z) by N, Nk and N,
respectively. N is isomorphic to U L U(2) L Es(2) ([1, Chap. VIII,
Lemma 19.1]) and Nk is isomorphic to Es(2) ([3, Lemma (2.1)]). Ng
carries a nontrivial polarized Hodge structure of weight 2, which we
call the period of (S, 0).

In order to compute the period for an involution in Proposition 4, we
recall a basic fact on the cohomology of the Kummer surface Km(7T") of
a (2-dimensional) complex torus T. Km(T) contains sixteen (—2)P'’s
{E,}scr, parametrized by the 2-torsion subgroup Ty =~ (Z/2Z)* of
T. These generate a sublattice of rank 16 in the cohomology group
H?*(Km(T),Z), which we denote by T'k,,. Let A be the orthogonal
complement of T'x,, in H*(Km(T),Z). A is the image of H*(T,Z) by
the quotient morphism from the blow-up of T" at Ty onto K'm(T'). The
following is well known ([1, Chap. VIII, §5]).
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Lemma 5. A C H*(Km(T)) is isomorphic to H*(T,Z) as a Hodge
structure and to H*(T,Z)(2) ~ U(2) L U(2) L U(2) as a lattice.

Being of Kummer type is characterized in terms of the period as
follows:

Proposition 6. The followings are equivalent for a numerically trivial
wnvolution o.

(1) o is of Kummer type, that is, the lattice Ng is isomorphic to
U(2) LU(2).
(2) o is obtained in the way of Proposition 4.

Proof. 'k, is fixed in the cohomological action of p. In the action
of the involution (idg:, —idgs) on H*(E' x E"Z) ~ U L U 1L U,
one U, generated by two elliptic curves, is invariant and the other
two are anti-invariant. Hence the anti-invariant part N~ of the action
involution g on A is isomorphic to U(2) L U(2) as a lattice. Therefore,
N~ U(2) L U(2) if o is obtained in the way of Proposition 4.
Conversely assume that Ng is isomorphic to U(2) L U(2). The
lattice U L U is isomorphic to My(Z) = V' ® V", the group of
2 x 2 matrices of integral entries endowed with the bilinear form form
(A. A) = 2det A, where V" and V" are free Z-modules of rank two. The
period w of S corresponds to a complex matrix of rank one via this iso-
morphism since (w?) = 0. Hence we have w = o/ ® o for o/ € V' @ C
and o € V" ®@ C. These o and " determine Hodge structures of
weight one since (w.w) > 0. Hence, there exits a pair of elliptic curves
E’ and E" such that Np(1/2) is isomorphic to H'(E',Z) @ H(E",Z)
as a polarized Hodge structure. By Theorem 7 below and the unique-
ness property of 2-elementary lattices, there exists an isomorphism ¢
between S and the Kummer surface of the product E' x E” such that
the diagram (1) commutes. O

Theorem 7. Let (X,0) and (X', 0') be pairs of a K3 surface and its
involution. If there exists a Hodge isometry o - H*(X',Z) — H*(X,Z)
such that the diagram

H*(X',7) % H*X,7)

o l l o'*

H*(X',7) % H*X,7)
commutes, then there exists an isomorphism ¢ : X — X' such that
wo =aodp.
Proof. If neither o nor ¢’ has a fixed point, this is the global Torelli

theorem for Enriques surfaces. The proof in [1, Chap. VIII, §21], espe-
cially its key Proposition (21.1), works in our general case too. 0
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Assume that (S, 0) is of Kummer type. Since (disc Ng)(disc Ng) =
4 - disc N, the orthogonal sum Ng | Ng is of index two in N. There-
fore, there exists a pair of nonzero 2-torsion elements ax € Ay, =
(%NK)/NK and ap € ANR = (%NR)/NR such that N = Ng + N +
Z(xg,rR), where xx € %NK and zp € %NR are representatives of oy
and «ag, respectively. This pair (ag,ar) is uniquely determined from
the involution . We call it the patching pair of 0. Since N and Ng
are orthogonal in N, we have qn, (k) + gy, (ar) = 0 in Z/27.

Definition 8. A numerically trivial involution ¢ of Kummer type, or
a patching pair (ag,ag), is of even type or of odd type according as
the common quadratic value gy, (ax) = qn,(r) € Z/2Z of patching
elements is 0 or 1.

Since Ng ~ U(2) L U(2), qn, is a non-degenerate even quadratic
space of dimension 4 over [Fy. Hence the numbers of patching pairs of
even and odd type are 6 and 9, respectively.

2. CREMONA INVOLUTIONS AND INVOLUTIONS OF ODD TYPE

The Enriques surface in Proposition 2 is closely related with a del
Pezzo surface of degree 4 and its small! involution. For our purpose it
is most convenient to describe it as the blow-up of P* x P!. We identify
P! x P! with a smooth quadric surface @ in P? = P, .00:24)-

Let p1 = (p},p}),-..,pa = (p},p}) be four points of P! x P! which
satisfy

(%) pl, ..., p} are distinct and pY, ..., p] are distinct.

In terms of a smooth quadric, this is equivalent to

(") any line p;p;, 1 <i < j <4, is not contained in Q.

We also assume the condition (%) in Proposition 2, or equivalently,

(') p1,...,ps € Q C P3 is not contained in a plane.

We take a system of homogeneous coordinates of P? such that py, ..., ps
are the coordinate points (1 : 0:0:0),...,(0:0:0:1). Then the
defining equation of @ is of the form ), ; ;. ajziz; = 0. By the
assumption ('), all coefficients a;;’s are nonzero. Hence, replacing
x1,...,T4 by their suitable constant multiplications, we may and do
assume that Q C P3 is defined by

(2) 123 + ao9X1T3 + asxT1To + (131 + ) + 133>1E4 =0

TAn automorhism of a surface is small if all fixed points are isolated.
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for some nonzero constants ai,as and ag € C. Since () is smooth, we
have

(3) al + a3+ a; — 2a,ay — 2a,a3 — 2asaz # 0.

Now we define a birational involution 7/ of ) by
a; Gz a3 (10203
(T1 @9t w3 1 wy) > (—: — 1 — 1 ——
r1 T2 T3 T4

)
and call it the standard Cremona involution of @ (or P* x P') with
center py,...,pq.

Let B be the blow-up of a smooth quadric @ at pq,...,ps. By
the projection from p,, B is the blow-up of the projective plane also.
By (3), the line [ : 7y + 29 + 3 = 0 and the conic C : ajxsx3 +
asx1x3 + agrirs = 0 intersect transversally in the projective plane
P? = P(o1:20:5)- Let gu and g5 be the two intersection points. Then
B is isomorphic to the blow-up of P? at the three coordinate points
(1:0:0),(0:1:0),(0:0:1) and the two points g4 and gs. The
standard Cremona involution 7’ is induced by the quadratic Cremona

transformation
aq a9 as
4 T1:To:x3) = (—:—:1—),
(1 (@i ag) o (S 20 28
which interchanges [ and C'. In particular, it induces an automorphism
of B, which we denote by 7. The following is easily verified:

Lemma 9. (1) The indeterminacy locus of 7' : Q-+ — Q is{p1,...,ps}-
(2) For each 1 < i <4, the conic C}: QN {x; = 0} is contracted to
the point p; by T'.
(3) For each 1 < 1 < 4, the two lines in Q) passing through p; are
interchanged by 7’.

(4) The fized points of T' are (e1\/a1 : €2y/a2 : €3/as : \Jaiazas),

where all €;’s are £1 and satisfy e1e963 = —1.

For the later use we compute the cohomological action of 7. The sec-
ond cohomology group H?(B,Z), or equivalently, the Picard group of B
is the free abelian group with the standard Z-basis {hy, ho, €1, ..., €4},
where h; and hsy are the pull-backs of the two rulings of P! x P! and
e1,...,eq are the classes of the exceptional curves over pq, ..., p4.

Lemma 10. The action of the standard Cremona involution T on
H?(B,Z) is equal to the composite of the two reflections with respect to
the mutually orthogonal (—2)-classes hy —hy and hy+hy—e; —- - - —ey.

Proof. We take the description of B as the blow-up of P2. The coho-
mology group H?(B,Z) has {h, ey, e, €3, f1, fo} as a Z-basis. Here h is
the pull-back of a line and f; and f5 are the classes of the exceptional
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curves over ¢4 and gs. The cohomological action of the transformation
(4) on the blow-up of P? at the three coordinate points is the reflection
r with respect to h — e; — es — e3. Since the transformation (4) inter-
changes ¢4 and g5, the cohomological action of 7 is the composite of r
and the reflection with respect to f; — fo. This proves the lemma since

f1:h1—64,f2:h2—e4andh:h1+h2—e4. O
There are 16 smooth rational curves of degree 1 with respect to the
anti-canonical divisor —Kgp = 2hy +2hy — €] — -+ - — €4:
0) the exceptional divisors ey, ..., e4 over py, ..., P4,
1) the strict transforms of lines in ) passing through one of pq, . .., p4,
and

2) the strict transforms C;’s of the conics C}’s in Lemma 9.

We denote the 8 lines of 1) by I't and the 8 lines of 0) and 2) by I's.
The Kummer surface Km(E’" x E”) is the minimal resolution of the
double cover

U)2 = (Clgllig + 23 +$4) (CL35L’1 +0J1(133 +QJ4) (a2x1 +a1xs +5L’4) (Il + X9 +$3)

of ¢ with branch the union of 8 lines in ) passing through one of
P1,--.,ps. Hence it is the the minimal resolution of the double cover
of B with branch the union of the 8 lines in I'5.

Lemma 11. Km(E'x E") is the minimal resolution of the double cover
of B with branch the union of the 8 lines I'y also.

Proof. Put gy = —Kg—hy = h1+2hy—e;—- - -—e4. The complete linear
system |g;| is a base point free pencil and the morphism (@, |, ®q,|) :
B — P! x P! is of degree 2. The covering involution acts on H?*(B,Z)
by a — (g1.a)hy + (h1.a)g1 — a and hence interchanges I'y and T'y.
Hence we have our assertion. U
Proof of Proposition 2. By the above lemma, the Kummer surface
Km(E' x E”) is the minimal resolution of the double cover w? =
r1x9w324 of Q. Let Boqq be the involution of Km(E' x E") induced
from the birational involution

(w, z1, T2, 23, 24) — (a1a2a3/w, a1/x1, a2/ %2, a3/ xs, arasas/xs)
of the double cover. Then (3,44 lifts 7 and 7/. The involution €,4q :=

1044 has no fixed points by (4) of Lemma 9. 0,44 is numerically trivial
by Proposition 4. O

Horikawa expression. Let IP’%I) and IP’%Q) be the projective lines whose
inhomogenous coordinates are y; = /x5 and yo = x9/x3. Then the
surface B is blow-up of IP%I) X IP’%Q) with center (0,0), (co,00) and the
intersection points of y; +y2 +1 = 0 and asy; + a1ys + azy1y. = 0. The
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. . .. . ai a2

involution f3,44 is induced by the automorphism (y1,ys) — (——, —
asyi asyo

of IP’%I) X ]P’é). By Lemma 11, Km(E’ x E") is the minimal resolution

of the double cover

w? = y1y2(asys + a1ys + asyiye) (yr +y2 + 1)

whose branch locus is as follows:

T\ yQZOO
\—&‘yQO

(5) =0 gy =00

Remark 12. In the special case a; = ay = a3 = 1, the two elliptic
curves E' and E” are both isomorphic to E,, := C/(Z+Ze*V=1/3). The
Enriques surface S = Km(E, X E,)/€4q is studied in [2, (3.5)] as an
Enriques surface whose automorphism group is finite. In fact, Aut S is
the extension of Z /27, the group of numerically trivial automorphisms,
by the symmetric group of degree 4.

3. COMPUTATION OF THE PERIODS

Let Km(T) and A = (T'g,,)* be as in Lemma 5. The discriminant
group Ay is (3A)/A ~ H*(T,Z/2Z) and the discriminant form g
is essentially the cup product, that is, gx(y) = (y U y)/2 mod 2 for
y € HX(T,Z).

Let P ={0,a,b,c} C Ty be a subgroup of order 4, or equivalently, a
2-dimensional subspace of Ts. We put Ep = Ey+ E,+ Ey+ E. € T'kp.
We denote the Pliicker coordinate of P+ C Ty by mp € /\2 Ty ~
H?(T,Z/27) and regard it as an element of A/2A. The following is

easily verified ([1, Chap. VIII, §5]):
Lemma 13. (Ep mod 2) + 7p = 0 holds in H*(Km(T),Z/2Z).

Now we specialize Km(T') to Km := Km(E' x E") of product type.
Two rulings of P! x P! give two elliptic fibrations Km — P!. We
denote the classes of these fibers by hy and hy € H?(Km,Z). These hy
and hy generate a rank 2 sublattice of A which is isomorphic to U(2).
A is the orthogonal (direct) sum of (hy, hs) and N~ the anti-invariant
part of the action of . As we saw in the proof of Proposition 6, N~ is
isomorphic to U(2) L U(2) as a lattice.
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Observation 14. A subgroup P of order 4 of (E' x E")y is naturally
associated with a numerically trivial involution of Kummer type:
(1) Let a = (da’,ad") € (E' x E")y be a 2-torsion point as in Exam-
ple 1 and we set P := {0, a, (d’,0),(0,a"”)}. Then P is of order
4 and the Pliicker coordinate wp belongs to N~ /2N .
(2) Let P C Ty be a subgroup of order 4 such that

PN ((E,)Q X 0) =PnN (0 X (E,/)g) =0

and wp the Plicker coordinate. Then mp — le — iLQ belongs
to N~ /2N~. Let Bp be the involution of Km induced by the
standard Cremona involution 7' of P! x P! with center the image
of P. All B,qq’s of Proposition 2 are obtained from Bp’s.

In both cases, P C (E' x E")y is a Gdpel subgroup, that is, P is totally
1sotropic with respect to the Weil pairing.

A subgroup P C T; of order 4 is Gopel if and only if the Pliicker
coordinate 7p is parpendicular to iLl + 712. Hence either 7p or mp —
hi — hs belongs to N~ /2N~. There are exactly 15 Gopel subgroups.
9 of them satisfy the above (1) and 6 satisfy (2). All 9 odd elements
and 6 even non-zero elements of N~/2N~ are obtained in the way of
(1) and (2), respectively.

Remark 15. The number of non-Gdpel subgroups of order 4 is 20. By
adding hy or hg, one obtain a 2 to 1 map from the set of non-Gopel
subgroups to {xr € N~ /2N~ | (2?) = 0}.

Now we are ready to compute the patching pair for Examples 1 and
Proposition 2.

Lemma 16. Let IT € A be a representative of mp € A/2A.

(1) An Enriques involution e., of Example 1 is of even type and the
patching pair is (X/2,11/2) with ¥ := Ey — E, + E o) — E(ga)-

(2) An Enriques involution €,qq of Proposition 2 is of odd type and
the patching pair is ((hy + ho — Ep)/2, (I1 — hy — hy)/2).

Proof. Since og = p, Ng coincides with N~. Hence the discriminant
form of Ny is essentially the cup product on H?*(T,Z/27). Here we
use the latter for computation.

(1) Since S, is induced by the translation of £’ x E” by a, ¥ belongs
to Ni. By Lemma 13, X +1II is divisible by 2. Hence the second half of
(1) follows. Since mp is the Pliicker coordinate, 1 (rpUmp) =0 € Z/2Z
and o is of even type.

(2) hy + hg — Ep belongs to N by virtue of Lemma 10. The second
half of (2) follows from this and Lemma 13. €,44 is of odd type since
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(WP—iM—BQ)U(?TP—iM—im) = %(WPUWP)—F%(ib1+712)U(iL1+iL2) =
1e7/22. O

N

Proof of Theorem 3. Let € be an Enriques involution of the Kummer
surface Km = Km(E' x E") which commutes with p. Let o be the
involution of the Enriques surface S := Km/e induced by u. Let
(ak,ar) € Ay, X Ay, be the patching pair of 0. Ng coincides with
N~ since og = p in our situation Recall that Ng(1/2) is isomorphic
to U L U as a lattice and isomorphic to H'(E',Z) ® H'(E",Z) as a
polarized Hodge structure. In particular, (%N r)/Ng is isomorphic to
the tensor product (E'); ® (E")s. By this isomorphism, 0 # ag €
(3Ng)/Ng corresponds to a’ ®a” € (E'); @ (E"), or to an isomorphism
o . (B9 = (E")y according as (ag,agr) is of even type or of odd
type. ((E')y is identified with its dual since it is of dimension 2 over
Fy.) In the even case S is isomorphic to the Enriques surface Km/e.,
of Example 1 with a = (d/,a”) by Lemma 16 and the global Torelli
theorem for Enriques surfaces since the group of numerically trivial
automorphisms of S is cyclic by [3, (1.1)].
Assume that (ak, ag) is of odd type.

Claim. There exists no isomorphism from E’ to E” whose restriction
to the 2-torsion subgroups is .

Proof. Assume the contrary and let ® C E'x E” be the graph of such an
isomorphism. Then ®—E'x0—0x E” is a divisor of self-intersection —2
and its class belongs to H'(E', Z)®Q HY(E",Z) C H*(E'x E",Z). Hence
Ngr C H?*(Km,Z) contains an algebraic cycle ¢ of self-intersection
number —4 such that ¢/2 represents ag. Since N ~ Fs(2), ag is
represented by a (—4)-element ¢ € Ng. Then = := (¢ + ¢’)/2 belongs
to NN by the definition of patching pairs and is algebraic since c is
orthogonal to HY(Q?) C Ngr ® C. Since (z?) = —2, either z or —z is
effective by the Riemann-Roch theorem. This is a contradiction since
e(z) = —u. O

Let P C T5 be the graph of ¢ and put P = {(p},p!)}1<i<4 as in
Proposition 2. Then, by the claim, (p},...,p}) and (p},...,p}) are not
projectively equivalent and we obtain an Enriques surface Km/eyqq.
Again, by Lemma 16 and the global Torelli theorem, the Enriques
surface S is isomorphic to that obtained from the image of P as in (2)
of Observation 14. By the same argument as the even case, we have
(S, O') >~ (Km/sodd, O'Odd). L]
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4. ApPPENDIX: KUMMER TYPE IS NOT COHOMOLOGICALLY TRIVIAL

Contrary to the erroneous Proposition (4.8) of [3], the involution of
Example 1 is not cohomologically trivial.

Theorem 17. A numerically trivial involution of Kummer type is not
cohomologically trivial.

Proof. We prove our assertion by constructing an elliptic fibration.

Let {p},...,p}} and {pY,...,p}} be the branch of the double cover-
ings ' — P! ~ F'/(—id) and E" — P! ~ E"/(—id), respectively. The
Kummer surface Km(E’ x E”) is the minimal resolution of the double
cover of P! x P! with branch

(P xP*U---Upy x PHYU (P! x pfU---UP! x p)).

More precisely, it is the double cover of the blow-up of P! x P! at the
16 points (p,pj), 4,5 = 1,...,4, with branch the strict transform of
these eight rational curves.

!

Py

/!

D3

/!

Y2

/!

Y4

/

Py Py Py Pl
The fixed locus of p is the inverse images of these strict transform.
We denote them by
(AjU-- LAY U (B U--- U By).

The involution ¢ := pf of Example 1 acts on this disjoint union.
Renumbering Ay, ..., Ay and By, ..., By, we may assume that

Ef(Al) = Ai+1 and E(BZ) = BiJrl

for i = 1,3. Then ¢ interchanges two divisors A; + A3z + By + B, and
A+ Ay + By + Bs. Let A be the linear pencil spanned by their images

Hy:=p) x P+ ph x P + P x pfj + P! x p)
and
Hy == phy x P' + p)y x P' + P! x p} + P' x pj
on P! x P!. Then A induces elliptic fibrations
dp: Km(E' x E")/u — A(~P")
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of the rational surface and
Km(E' x E") — A(~P')

of the Kummer surface. The latter is the base change of the former by
the double covering A — A with branch [H;] and [H,], and descends
to an elliptic fibration f of the Enriques surface Km(E' x E")/e.

The action of (e, ) ~ Z/2Z x Z./27Z on Km(E" x E") induces the
action of Z/27 x 7,/2Z on A ~ P'. In our cases this action is effective
(and hence of Heisenberg type). Let £ and i be the automorphisms
of A induced by ¢ and p, respectively. £ interchanges the points [H;]
and [H3] underneath the singular fibers. [ fixes exactly these two
points, but the corresponding fiber of the elliptic fibration f on the
Enriques surface is not multiple. Since ji is not the identity on A/ £,
the involution p mod ¢ interchanges two multiple fibers of f. Let G
and G5 be the reduced part of the two multiple fibers of f. Since the
linear equivalence classes of G; and G differ by the canonical class,
1 mod € is not cohomologically trivial.

For ¢ = £,44 in Proposition 2, we have £(4;) = B; for every i =

1,...,4, since a Cremona involution interchanges p, x P! and P! x p/
for every i = 1,...,4. The above argument works literally in this case
too. Now our assertion follows from Theorem 3. 0

Now we are ready to complete the classification of numerically trivial
involutions, correcting [3].

At the 6th line in [3, p. 388], it is erroneously stated that the common
value gr(a) = qr/(a/) € Z/27 is nonzero in the case where 7", or Ng,
is isomorphic to U(2) L U(2). But the value can be both 0 and 1 mod
2. We call a primitive embedding of T'(~ FEg(2)) into N(~ Eg(2) L
U(2) L U) even or odd accordingly. Then Proposition (2.6) in [3]
should be replaced by

Proposition 18. Let T} and Ty be primitive sublattices of N isomor-
phic to Es(2). If their orthogonal complements T] and Ty are isomor-
phic to each other and if in addition they have the same parity in the
case T{ ~ T3 ~U(2) L U(2), then there exists an isometry of N which
maps Ty and T] onto Ty and Ty, respectively.

Let P be the set of periods of Eg(2)-polarized Enriques surfaces as
defined in [3, p. 388]. Then P is the disjoint union of P, and P; for
which the orthogonal complements of Eg(2) C N are isomorphic to
U L U(2) and U(2) L U(2), respectively. The latter decomposes into
two parts, P5¥ and Py according to the parity. Corollary (2.7) in [3]
should be replaced by
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Corollary 19. P, /T, Pg/T and P$?/T are irreducible.

Here I is the arithmetic group acting on the 10-dimensional Hermit-
ian symmetric domain Q- of type IV such that the quotient Q= /T" is
the moduli space of Enriques surfaces. In fact, Ps¥/T" parametrizes Ex-
ample 1 and an open subset of P§%/T" parametrizes Enriques surfaces
in Proposition 2.

Theorem 20. Fvery pair of an Enriques surface and a cohomologically
trivial involution is obtained in the way of Example 2 of [3]. Moreover,
they are parametrized by Py /T.

Proof. Let o be a cohomologically trivial involution of an Enriques
surface S. Ng is isomorphic to U L U(2) by Theorem 17, and the
periods of such involutions form an irreducible variety by Corollary 19.
Hence (S, 0) is a deformation of Example 2 of [3]. As is shown in [3, §5],
the fixed locus of the anti-symplectic involution is the disjoint union of
an elliptic curve £ and 8 smooth rational curves Fy, . .., Egs for Example
2. Therefore, the same holds for the anti-symplectic involution og. Let
f: S — P! be the elliptic fibration defined by the linear system |E|. f
descends to an elliptic fibration of the quotient rational surface S /OR.
We denote its minimal fibration by fr: R — P!. The rational surface
R is obtained from S/og by blowing down an exceptional curve of the
first kind 8 times. For Example 2, it is easily checked that the image of
Zle FE; is a singular fiber of type Iz of fr and that fr has 4 sections.
The same holds for (S,0) as a deformation of Example 2. Hence, as
is claimed in [3, §5], the configuration of the elliptic curves E and 20
rational curves is the same as Example 2, and (S,0) is obtained in
the way of Example 2. The second assertion follows from the Torelli
type theorem and [3, (1.1)], the uniqueness of cohomologically trivial
involution. 0

Remark 21. The fixed locus of the anti-symplectic involution o is the

disjoint union of 8 smooth rational curves Ei,..., Fg for numerically
trivial involutions of Kummer type. Our (main) Theorem 3 can be also
proved using certain elliptic fibrations containing FEi, ..., Eg in their

fibers though the existence of such fibrations is not straightforward
as above and they are not unique. Furthermore, Theorem 20 can be
proved using periods also. These alternative proofs will be discussed
elsewhere.
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5. APPENDIX : RATIONAL CURVES ON AN ENRIQUES SURFACE OF
PROPOSITION 2

Let B, 7, I'y and I'; be as in Section 2. The dual graph of the 8
smooth rational curves in I is a cube:

Cly

€3

Cy

(6) Cs e

The automorphism 7 sends each vertex of the cube I'g to its antipodal.
The same holds for I';. The following is easily verified:

(1) for every curve m in I'y (resp. I'y), there exists an antipodal pair
of vertices n and n' in I'; (resp. I'g) such that (m.n) = (m.n’) = 1 and
that m is disjoint from other curves in I'7 (resp. ).

Therefore, the quotient graph (I't UT'g)/7 is as follows:

The Kummer surface Km(E' x E”) is the double cover of B with
branch the union of the 8 curves in I';. The union has 12 nodes corre-
sponding to the 12 edges of I';. The pull-backs of the curves in [' are
smooth rational curves on Km(E’ x E”) by (f). Hence Km(E' x E")
has 28 smooth rational curves, 12 of which come from the nodes of the
double cover and the rest from 'z U T'7. Since the involution 7 lifts to
€04q Of Proposition 2, we have
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Proposition 22. On the Enriques surface Km(E'x E")/€oqq of Propo-
sitton 2, there are 14 smooth rational curves whose dual graph is as
follows:

N

i \

(7) J 9)

The proposition, together with [3, (4.7)], shows the ‘only if’ part of
2, Theorem (1.7), (i)] in the case of Kummer type.

REFERENCES

[1] Barth, W., Peters, C. and Ven, A. Van de: Compact Complex Surfaces, Springer-
Verlag, 1984.

[2] Kondo, S.: Enriques surfaces with finite automorphism groups, Japan. J. Math.,
12(1986), 191-282.

[3] Mukai, S. and Namikawa, Y.: Automorphisms of Enriques surfaces which act
trivially on the cohomology groups, Invent. math., 77(1984), 383-397.

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, KYOoTO UNIVERSITY,
KyoTo 606-8502, JAPAN
E-mail address: mukai@kurims.kyoto-u.ac.jp



