
Path resolution for recursive modules

Keiko Nakata
Research Institute for Mathematical Sciences, Kyoto University

Jacques Garrigue
Graduate School of Mathematics, Nagoya University

Abstract

The ML module system enables flexible development of large software sys-
tems by its support of nested structures, functors and signatures. In spite
of this flexibility, however, recursion between modules is prohibited, since de-
pendencies between modules must accord with the order of definitions. As a
result of this constraint, programmers may have to consolidate conceptually
separate components into a single module, intruding on modular programming.
Recently much work has been devoted to extending the module system with
recursion, and developing a type system for recursive modules is one of the
main subjects of study. Since recursion is an essential mechanism, one is to
face several non-trivial issues to be considered for designing a practical type
system.

Our goal is to make recursive modules an ordinary construct of the mod-
ule language for ML programmers. We want to use them easily in everyday
programming, possibly combining with other constructs of the core and the
module languages. With this goal, we are to develop a type system for recur-
sive modules, which is practical and useful from the programmer’s perspective.

In this paper, we present a decidable type system which can reconstruct
the necessary type information during type checking of recursive modules. In
particular, we develop algorithms for resolving forward references in recursive
modules, by confining ourselves to first-order functors. The type system is
provably sound for a call-by-value operational semantics.

1

1 Introduction

When building a large software system, it is useful to decompose the system into
smaller parts and to reuse them in different contexts. Module systems play an im-
portant role in facilitating such factoring of programs. Many modern programming
languages provide some forms of module systems.

The family of ML programming languages, which includes SML[20] and Objec-
tive Caml [18], provides a powerful module system [19, 17]. Nested structures of
modules allow hierarchical decomposition of programs. Functors can be used to ex-
press advanced forms of parameterization, which ease code reuse. Abstraction can
be controlled by signatures with transparent, opaque or translucent types [11, 15].
Despite the flexibility of the module language, however, mutual recursion between
modules is prohibited, since dependencies between modules must accord with the
order of definitions. As a result of this constraint, programmers may have to consol-
idate conceptually separate components into a single module, intruding on modular
programming [25].

Recently, much work has been devoted to investigating extensions with recursion
of the ML module system. There are at least two important issues involved in
recursive modules, namely initialization and type checking.

Initialization: Suppose that we can freely refer to value components of structures
forward and backward. Then we might carelessly define value components cyclically
like val l = m val m = l. Initialization of modules having such cyclic value defini-
tions would either raise runtime errors or cause meaningless infinite computation.
Boudol [3], Hirschowitz and Leroy [14], and Dreyer [5] examined type systems which
ensure safe initialization of recursive modules. Their type systems ensure that the
initialization does not attempt to access undefined recursive variables. The above
cyclic definitions will be rejected because initialization of the value component l

requires an access to itself. This path is not the main focus of this paper.
Type checking: Designing a type system for recursive modules is another impor-

tant and non-trivial issue; this is the main focus of this paper. Suppose that we can
layout modules in any order regardless of their dependencies. Then, it might happen
that a function returns a value whose type is not yet defined at the point where the
function is defined. To type check the function, a type system should somehow know
about the type, which is going to be defined in the following part of the program.

2

1.1 Type checking recursive modules

To type check recursive modules, existing proposals [4, 25, 24, 6, 18] rely on anno-
tations from programmers; programmers have to assist the type checker by writing
enough type information by themselves so that recursive modules do not burden the
type checker with forward references.

The amount of required annotations varies in each proposal and depends on
whether type abstraction is enforced inside the recursion or outside, that is, whether
recursive modules do not know exact implementations of each other, enforcing type
abstraction inside them, or they do but the rest of the program does not, enforcing
type abstraction towards the outside. In all proposals, one has to write two different
signatures for the same module to enforce abstraction towards the outside; one of
the signatures is solely for assisting the type checker and does not affect the resulting
signature of the module. Moreover, due to the annotation requirement programmers
cannot rely on type inference during development. This is unfortunate since a lot
of useful inference algorithms have been and will be developed to support smooth
development of programs.

Even if we write annotations for recursive modules, this still leaves two subtle
issues to be considered.

1.2 Cyclic type specifications in signatures

To annotate recursive modules with signatures, existing type systems provide recur-
sive signatures, in which components of signatures can refer to each other recursively.
To develop a practical algorithm for judging type equality, one may want to ensure
that transparent type specifications in recursive signatures do not declare cyclic types.
For instance, one may want to forbid programmers from writing the following recur-
sive signature:

sig type t = s type s = t end

Detection of cyclic type specifications is not a trivial task when the module lan-
guage supports both recursive signatures and applicative functors [16]. Applicative
functors give us more flexibility in expressing type sharing constraint between mod-
ules; at the same time, it is possible to specify cyclic types in such a way that a
straightforward check cannot detect, by combining applicative functors and recursive
signatures. One pathological example of cyclic type specifications is:

module type F =

functor(X : sig type t end) → sig type t = F(F(X)).t end

Compare the above recursive signature to the recursive signature below.

3

module type G =

functor(X : sig type t end) → sig type t = G(X).t end

On the one hand, a type system would easily detect the latter cycle, since the un-
rolling of the type G(X).t would be G(X).t. On the other hand, it might not be easy
to detect the former cycle, since the unrolling of the type F(F(X)).t could yield the
following infinite rewriting sequence.

F(F(X)).t → F(F(F(X))).t → F(F(F(F(X)))).t → ...

Observe that this sequence does not contain syntactically identical objects, but rather
produces arbitrary large objects.

The situation could become harder, when we want to allow the recursive signature:

module type H = functor(X : sig type t type s end) →
sig type t = H’(H’(X)).t type s = X.s → X.s end

and H’ = functor(X : sig type t type s end) →
sig type t = X.t ∗ X.t type s = H(H(X)).s end

Although H and H’ may seem to define more complex types than F, this last signature
does not contain cycles.

The three recursive signatures we have seen here are simple. Hence one may easily
distinguish between them, judging that only the last one is legal. When recursive
signatures specify more complex types, however, this issue becomes harder to decide.

1.3 Potential existence of cyclic type definitions

Another subtle issue is how to account for the potential existence of cyclic type
definitions in structures, when opaque signatures hide their implementations. For
instance, should the type checker reject the program below?

module M = (struct type t = N.t end : sig type t end)

and N = (struct type t = M.t end : sig type t end)

On the one hand, one could argue that this is unacceptable since the underlying
implementations of the types M.t and N.t make a cycle. On the other hand, one
could argue that this is acceptable since, according to their signatures, the types M.t
and N.t are nothing more than abstract types. Hence the modules M and N need not
be accused of defining cyclic types. At least, one could argue that potential cycles
in type definitions are acceptable, if the type system is sound and decidable and this
choice has merits over the other choice.

Existing type systems take different stands on this issue.
In Russo’s system [25], programmers have to write forward declarations for re-

4

cursive modules, in which implementations of types other than datatypes cannot be
hidden. Thus there is no potential that cyclic type definitions are hidden by opaque
signatures. At the same time, programmers cannot enforce type abstraction inside
recursive modules.

Dreyer’s work [6] focuses on type abstraction inside recursive modules. He requires
the absence of cyclic type definitions whether or not they are hidden by opaque
signatures. To ensure the absence of cycles without peeking inside signatures, he
puts a restriction on types whose implementation can be hidden. As a consequence,
the use of structural types is restricted. For instance, his type system would reject the
following program, which uses polymorphic variants [10] and a list to represent trees
and forests, respectively. (Here we use polymorphic variants, which are supported
only in the Objective Caml variant of ML, since the core language we want to support
is that of O’Caml. Yet, similar restrictions could arise in the context of SML, when
one attempts to use records to represent trees.)

module Tree = (struct

type t = [‘Leaf of int | ‘Node of int * Forest.t]

end : sig type t end)

and Forest = (struct type t = Tree.t list end : sig type t end)

By replacing polymorphic variants with usual datatypes, we can make this program
type checked in his system. Polymorphic variants, however, have their own merits
that datatypes do not have.

The path Objective Caml [18] chose is a more liberal one. It does not care whether
cyclic type definitions are hidden by opaque signatures or not, as long as the signa-
tures themselves do not contain cycles. The type checker complains when recursive
signatures specify cyclic types whenever it terminates. (Recall that applicative func-
tors make it difficult to detect cycles in a terminating way.) Objective Caml already
has a very rich core language, including structural types such as objects [23] and
polymorphic variants. Moreover, the path it chose keeps flexibility in using these
types and in abstracting them away by opaque signatures. This provides for an
extremely expressive language, which only lacks a formal proof of soundness. We
conjecture that this cannot be proven easily by a translation into an explicit type-
passing system. When we make opaque signatures transparent, we may expose cyclic
type definitions which were hidden inside signatures. If a type is defined cyclically,
there is no concrete type to be passed explicitly.

5

1.4 Our proposal of a type system for recursive modules

Our goal is to make recursive modules an ordinary construct of the module language
for ML programmers. We want to use them easily in everyday programming, possibly
combining with other constructs of the core and the module languages. With this
goal, we are to develop a practical type system for recursive modules which over-
comes as much of the difficulties discussed above as possible. Concretely, we follow
the path Objective Caml chose but are to extend it by 1) enabling type inference;
2) ensuring that signatures of recursive modules do not specify cyclic types, while
keeping applicative functors; 3) proving soundness of the type system formally, but
allowing potential cyclic type definitions to be hidden by opaque signatures, thus
keeping flexibility in using structural types. At the current stage, we confine our-
selves to first-order functors. We defer it to future developments to accommodate
higher-order functors by presumably adapting existing approaches.

Our technical developments and proofs are somewhat involved. We obtained
ideas from term rewriting theory for enabling type inference and detecting cyclic type
specifications. We use a technique from labeled transition systems for the soundness
proof.

To make the presentation accessible, this paper focuses on the first two of our
extensions, that is, inference and detection of cycles. For a formal study, we design
a calculus, called Remonade, for recursive modules with first-order applicative func-
tors but without type abstraction. We present a decidable and sound type system
for Remonade, by developing “expansion algorithms” so as to type check recursive
modules without relying on signature annotations.

The expansion algorithms are the main contribution of this paper. They either
resolve forward references in recursive modules or raise an error if a reference is
dangling, by tracing module, type and value abbreviations in a call-by-value strategy.
Although not complete with respect to a call-by-name strategy, the algorithms are
provably terminating whether or not recursive modules are eventually well-typed.
Using the algorithms, we design a type system for Remonade by extending Leroy’s
applicative functor calculus [16] in a straightforward way.

We defer the last part of our extension to another paper [21], in which we extend
Remonade with type abstraction by introducing opaque signature ascription, and
prove soundness of the type system. The type system allows opaque signatures to
hide the potential existence of cyclic type definitions, hence programmers can use
structural types liberally. In that paper, we also present an example which solves
a variation on the expression problem [27], in support of our choice of applicative
functors.

6

The rest of this paper is organized as follows. In the next section, we present the
main features of Remonade in the context of a concrete example. In Section 3, we
give the concrete syntax of Remonade. In Sections 4 to 6 we describe the type system.
We present a soundness result in Section 7. In Section 8, we give a brief overview of
an extension of Remonade with type abstraction. In Section 9, we examine related
work. In Section 10, we conclude and give a brief overview of ongoing and future
work.

7

2 Example

In this section, we explain difficulties involved in type checking recursive modules
and informally present Remonade, using an example given in Figure 1.

The top-level module TreeForest contains three modules S, Tree and Forest:
S is an abbreviation for the module IntegerSet, which we assume to be given in a
library for making sets of integers; Tree represents a module for trees whose leaves
and nodes are labeled with integers; Forest represents a module for unordered sets
of those integer trees. In the example, we shall allow ourselves to use some usual
core language constructions, such as let and if expressions and list constructors, even
though they are not part of the formal development given in Section 3.

The modules Tree and Forest refer to each other in a mutually recursive way.
Their type components Tree.t and Forest.t refer to each other, as do their value
components Tree.labels and Forest.labels. These functions calculate the set of
integers a tree and a forest contain, respectively.

To enable forward references, we extend structures with self variables. Compo-
nents of the structure can refer to each other recursively, using the self variable.
For instance TreeForest declares a self variable TF, which is used inside Tree and
Forest to refer to each other recursively. We keep the usual ML scoping rules for
backward references. Thus the function Tree.labels can refer to the Leaf and Node

constructors without going through a self variable. Tree might also be used without
prefix inside Forest, but the explicit notation seems clearer.

The function Tree.labels calls the function Forest.labels using the path
F.labels. To type check Tree.labels, a type system needs to know the type of
F.labels, although Forest.labels is not yet defined at the point where Tree.labels
is defined. Yet, if the type system knew that the path F.labels has the type
Forest.t → S.t, then it can type check Tree.labels in a standard way, by putting
the binding F.labels : Forest.t → S.t into the type environment.

The critical part of the example lies in the definition of the function Tree.split,
which cuts off the root node of a given tree and returns the resulting forest. To type
check the function, a type system needs to know that the constructor Node contains
a pair (i, f) of an integer i and a list of trees f so as to ensure that (Leaf i) :: f

is a well-typed expression. The definition of the type Tree.t describes that Node

contains a pair of an integer and a forest of type F.t. The type system should easily
find out that the type F.t is an abbreviation for the type TF.Forest.t, by tracing
backward references. According to the definition order, however, the underlying
implementation of the type TF.Forest.t is not known at the point where the type

8

Tree.t and the function Tree.split are defined. Hence, to type check Tree.split,
the type system has to foresee part of the definition of the module Forest so as
to find out the underlying implementation of the type TF.Forest.t. Permutation
of the definitions does not work. To type check the function Forest.sweep, the
type system needs to know the underlying implementation of the type Tree.t. The
function sweep gathers the leaves from a given forest.

2.1 Existing proposals

To type check the module TreeForest, existing type systems require programmers
to write signature annotations, as we will examine below.

To avoid presenting too much annotations, we remove the module abbreviation
module F = TF.Forest inside Tree. Yet, although we can dispense with abbrevia-
tions by replacing them with their definitions, abbreviations are useful in practical
programs [26].

To type check TreeForest in Dreyer’s system [6] or Objective Caml [18], it must
come with fully transparent signature annotations of the modules Tree and Forest,
that is, one has to present the type system with the following signatures:

module Tree : sig

datatype t = Leaf of int | Node of int * Forest.t

val labels : t → S.t

val split : t → Forest.t

end
and

module Forest : sig

type t = Tree.t list

val labels : t → S.t

val incr : Tree.t → t → t

val sweep : t → t

end

In Russo’s system [25], the self variable TF of TreeForest must be annotated
with the recursive signature below. In his system, a recursive signature contains a
typed declaration of a self variable to support forward references in the signature.

9

sig (Z : sig module Tree : sig type t end

module Forest : sig type t = Tree.t list end end)

module Tree : sig

datatype t = Leaf of int | Node of int * Z.Forest.t end

module Forest : sig

type t = Tree.t list val labels : t → S.t end

end

Signature annotations are indispensable in existing proposals and must be given
before type checking TreeForest. We note that when Tree contains the module
abbreviation module F = TF.Forest as in Figure 1, the required annotations must
expose the signature of Forest twice; once for the abbreviation and once for the
module Forest itself.

2.2 Our approach

The type system presented in this paper can type check TreeForest without relying
on signature annotations from programmers.

The idea of our type system is simple. We develop algorithms for resolving forward
references in recursive modules. Precisely, we develop “expansion algorithms” to
determine the component that a path refers to. Then type checking of TreeForest
is straightforward. Moreover, the module abbreviation module F = TF.Forest can
be used inside Tree with no harm. For instance, using the expansion algorithms,
the type system finds out that the path F.t, used inside the definition of the type
Tree.t, refers to the type Tree.t list. Thus the difficulty involved in type checking
Tree.split is resolved.

We devote Sections 4 to 6 to explain the type system. The typing rules are not
our novelty; we develop them by extending Leroy’s applicative functor calculus [16] in
a straightforward way. Our novelty is the expansion algorithms, which are provably
terminating and coincide with the intuitive expansion, defined in Section 7, when
recursive modules are well-typed. We give detailed explanations on these algorithms
in this paper.

2.3 Contribution of our type system

The strength of our type system is that it can reconstruct the necessary type in-
formation by itself during type checking, instead of relying on annotations from
programmers. We do not intend to argue that signatures are useless. Signatures

10

are useful for many reasons; they give means of controlling type abstraction, and
serve as documentation. We actually use them in our system to provide flexible type
abstraction in the presence of recursive modules.

Suppose that one wants to give the module TreeForest the following opaque
signature, by hiding implementations of the types Tree.t and Forest.t and the
functions Tree.labels and Forest.labels.

sig

module Tree : sig type t val split : t → Forest.t end

module Forest : sig

type t val incr : Tree.t → t → t val sweep : t → t end

end

This opaque signature would have a perfect sense for programmers, but might not
be informative enough to assist a type checker. Indeed, in existing type systems, one
has to write this opaque signature in addition to either the fully transparent ones or
the annotation on the self variable which we examined in Section 2.1. The opaque
signature is useful for programmers. But the transparent ones and the annotation
on the self variable are redundant; they serve only in assisting the type checker and
do not affect the resulting signature of TreeForest.

Unlike existing type systems, our type system does not need the assistance of
annotations. Hence the above opaque signature is sufficient to type check TreeForest

and to enforce type abstraction. In short, our type system can check that TreeForest
inhabits the signature, using the result of type reconstruction in a straightforward
way. Since type abstraction is not in the scope of this paper, we do not give further
details of how the type system type checks TreeForest with the opaque signature
given. We refer interested readers to another paper [21].

The example of this section does not cover the issue of detecting cyclic type spec-
ifications in signatures. Since we do not consider type abstraction in this paper nor
require programmers to write signatures of recursive modules, we want to reject pro-
grams which contain cyclic type definitions in structures. Indeed, we first developed
the expansion algorithms for detecting cyclic types, since we wanted to define a de-
cidable judgment for type equality, and cyclic types may make it undecidable. We
later noticed that applying the same idea, we can enable type inference for recursive
modules. We will revisit the issue of detecting cyclic types later in Sections 5 and 6.

11

moduleTreeForest= struct(TF)

module S = IntegerSet

module Tree = struct

module F = TF.Forest

datatype t = Leaf of int | Node of int * F.t

val labels = fun x → case x of

Leaf i ⇒ TF.S.singlton i

| Node(i, f) ⇒ TF.S.add i (F.labels f)

val split = fun x → case x of

Leaf i ⇒ [Leaf i]

| Node(i, f) ⇒ (Leaf i) :: f

end

module Forest = struct

module T = TF.Tree

type t = T.t list

val labels = fun x → case x of [] ⇒ TF.S.empty

| hd :: tl ⇒ TF.S.union (T.labels hd) (labels tl)

val incr = fun x → fun y →
let l = T.labels x in

let l’ = labels y in

if TF.S.subset l’ l then (x :: y) else y

val sweep= fun x → case x of [] ⇒ []

| (T.Leafy) ::tl ⇒ (T.Leaf y) :: (sweep tl)

| (T.Nodey) :: tl ⇒ sweep tl

end

end

Figure 1: Modules for trees and forests

12

Module expr. E ::= struct (Z) D1 . . . Dn end structure
| functor(X : S) → E functor
| mid module ident.
| X module var.

Definitions D ::= module M = E module def.
| val l = e value def.
| datatype t = T datatype def.
| type t = τ type abbrev.

Signature S ::= sig B1 . . . Bn end

Specifications B ::= type t = τ manifest type spec.
| type t opaque type spec.
| val l : τ value spec.

Recursive ident. rid ::= Z | rid .M
Module ident. mid ::= rid | mid1(mid2) | mid(X)
Extended ident. ext id ::= Z | ext id .M | ext id1(ext id2) | ext id(X)
Module paths p, q, r ::= ext id | X
Program P ::= struct (Z) D1 . . . Dn end

Figure 2: Syntax for the module language

3 Syntax

We give the syntax for our module language in Figure 2. It is based on Leroy’s
module calculus with manifest types [15]. We use M as a metavariable for ranging
over module names, X for ranging over module variables, and Z for ranging over
self variables. For simplicity, we distinguish them syntactically, however the context
could tell them apart without this distinction.

As explained in the previous section, we extend structures with implicitly typed
declarations of self variables to support recursive references between modules. In the
construct struct (Z) D1 . . . Dn end, the self variable Z is bound in D1 . . . Dn, and
Z itself is bound to struct (Z) D1 . . . Dn end.

The construct which enables recursive references is recursive identifiers. A recur-
sive identifier is constructed from a self variable and the dot notation “.M”, which
represents access to the module component M of a structure. A recursive iden-
tifier may begin from any bound self variable, and may refer to a module at any
level of nesting within the recursive structure, regardless of component ordering. For
instance, through the self variable of the top-level structure, one can refer to any
module named in that structure.

13

Core types τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | p.t
Datatype definition T ::= c of τ
Core expressions e ::= x | () | (fun x → e : τ) | (e1, e2) | πi(e)

| e1(e2) | rid .c e | case e of ms | rid .l | X.l
Matching clause ms ::= rid .c x ⇒ e

Figure 3: Syntax for the core language

For the sake of simplicity, we assume that functor applications only contain mod-
ule identifiers and module variables.

To support applicative functors [16], we define a slightly extended class of iden-
tifiers, named module paths in Figure2, which can liberally include functor applica-
tions. Core types defined in Figure 3 may use module paths. Applicative functors
give us more flexibility in expressing type sharing constraint between recursive mod-
ules. In [21], we give a practical example which uses both recursive modules and
applicative functors in support of our design choice. Note that module paths include
the syntactic objects rid and mid. We may use the metavariables p, q and r to mean
these objects together.

A program is a top-level structure which contains a bunch of recursive modules.
In this paper, we only consider recursive modules, but not ordinary ones.

To obtain a decidable type system, we impose a first-order structure restriction
that requires functors 1) not to take functors as arguments, 2) nor to access inner
modules of arguments. The first condition means that our functors are first-order,
and the second implies that one has to pass inner modules as independent parameters
for functors instead of passing a module which contains all of them. One might have
noticed that the syntax of module expressions excludes those of the forms X.M and
X(mid), and that signatures do not contain module specifications. This is due to
the restriction.

The module language does not support means of type abstraction, which is one
of the critical features of the ML module system. As we mentioned in Section 1, this
paper focuses on type reconstruction for recursive modules. In Section 8, we give a
brief overview of an extension of Remonade with type abstraction. From a technical
point of view, the extension is orthogonal to the development in this paper.

We gives the syntax for our core language in Figure 3. We use x as a metavariable
for ranging over program variables (variables, for short), and c for ranging over value
constructor names.

The core language describes a simple functional language extended with value

14

paths X.l and rid .l and type paths p.t. Value paths X.l and rid .l refer to the value
components l in the structures referred to by X and rid, respectively. A type path
p.t refers to the type component t in the structure that p refers to.

We may say paths to mean module, type and value paths as a whole.

An unusual convention is that a module variable is bound inside its own signature.
For instance,

functor(X : sig type t val l : X.t end) → X

is a legal expression, which should be understood as

functor(X : sig type t val l : t end) → X

This convention is convenient when proving a soundness result, as the syntax of paths
is kept uniform, that is, every path is prefixed by either a self variable or a module
variable. Moreover there are situations where this convention is useful for practical
programming [21].

We write MVars(p) to denote the set of module variables contained in the module
path p. We also write MVars(τ), MVars(e) and the likes with obvious meanings.

In the formalization, 1) function definitions are explicitly type annotated; 2) every
structure declares a self variable; 3) a path is always prefixed by either a self variable
or a module variable. Our examples do not stick to these rules. Instead, we have
assumed that there is an elaboration phase, prior to type checking, that adds type
annotations for functions by running a type inference algorithm of the core language.
The original program may still require some type annotations, to avoid running
into the polymorphic recursion problem. In Section 10, we discuss the details of
this inference algorithm. The elaboration phase also infers omitted self variables, to
complete implicit backward references.

We assume that the following three conditions hold: 1) module variables and
self variables in a program differ from each other; 2) a program does not contain
free module variables nor self variables; 3) any sequence of module definitions, type
abbreviations, datatype definitions, value definitions, transparent and opaque type
specifications, and value specifications does not contain duplicate definitions nor
specifications for the same name.

15

4 Expanding module paths

In this section, we present a module path expansion algorithm for determining the
module that a module path refers to. We use the algorithm to obtain the neces-
sary type information about module paths during type checking and to define a
type expansion algorithm and a type reconstruction algorithm in Sections 5 and 6,
respectively.

In the rest of the paper, all judgments and predicates are relative to a complete
source program P , which is omitted in notations. All proofs are valid for any P .

We make the following three assumptions.

1. All occurrences of module expressions and signatures in the program P are
labeled with distinct integers. We write Ei and Sj when the module expression
E and the signature S are labeled with the integers i and j, respectively. One
may think of the integer label i of Ei as the location of E in P . We use Σ as a
metavariable for ranging over sets of integers, and write ΣP to mean the set of
integer labels appearing in P . Note that ΣP is finite.

For the interest of brevity, we may omit integer labels when they are not used.
For the interest of clarity, we may write additional parentheses, for instance
(functor(X : sig type t end1) → X2)3.

2. There is a global mapping ∆, which sends i) a self variable Z to the structure
to which Z is bound, and ii) a module variable X to the signature specified
for X. We could avoid this assumption of a global mapping by including this
information in the look-up judgment defined in Figure 4. Yet, this assumption
makes the presentation concise.

3. Each self variable Z is superscripted with a module variable environment θ,
written Zθ. A module variable environment is a substitution of module paths
for module variables. Correspondingly, we assume that each occurrence of a
self variable in the program P is implicitly superscripted with the identity
substitution id. That is, we regard Z as an abbreviation for Z id . We use θ as
a metavariable ranging over module variable environments.

The module path expansion algorithm either reduces a module path into a located
form or raise an error if this cannot be done.

A located form is a module path which refers to a structure or a functor in the
program P . To give the formal definition, we define look-up judgment in Figure 4.

16

[lk-sf]
−

` Zθ 7→ (θ, ∆(Z))

[lk-dot]
` p 7→ (θ, struct . . . module M = Ej . . . endi)

` p.M 7→ (θ, Ej)

[lk-app]
` p1 7→ (θ, (functor(X : Sj) → Ek)i)

` p1(p2) 7→ (θ[X 7→ p2], E
k)

Figure 4: Look-up

struct (Z)
module M1 = (functor(X : sig type t end3) →
struct

module M11 = struct end5

module M12 = X6

end4)2

module M2 = struct type t = int end7

module M3 = Z.M1(Z.M2)
8

end1

Figure 5: A program P1

The judgment ` p 7→ (θ, Ei) is read that the module path p refers to the module
expression E labeled with the integer i, where each module variable X is bound to
θ(X). Note that the judgment implicitly depends on P .

Let us examine each rule of the look-up. For a self variable, the judgment consults
the global mapping ∆([lk-sf]). A path p.M refers to the module component M in the
structure that p refers to([lk-dot]). A path p1(p2) refers to the body of the functor
that p1 refers to, where the module variable environment is augmented with the new
binding [X 7→ p2]([lk-app]). Note that our assumption of the absence of free module
variables means that when ` p 7→ (θ, qi), then MVars(q) ⊆ dom(θ). For a module
variable environment θ, dom(θ) denotes the domain of θ.

Then located forms are defined as follows.

Definition 1 A module path p is in located form if and only if either of the following
two conditions holds.

17

1. p is a module variable.

2. The following two conditions hold.

• ` p 7→ (θ, Ei) where E is neither a module identifier nor a module variable.

• For all q in args(p), q is in located form.

For a module path p, args(p) denotes the set of module paths to which p is applied,
or:

args(Zθ) =
∪

X∈dom(θ){θ(X)} args(p.M) = args(p) args(p1(p2)) = args(p1) ∪ {p2}
We say that a module variable environment θ is in located form if and only if, for all
X in dom(θ), θ(X) is in located form.

For instance, consider the program P1 in Figure 5. The module path Z.M1(Z.M2).M11
is in located form, since ` Z.M1(Z.M2).M11 7→ ([X 7→ Z.M2], struct end5) holds, but
Z.M3.M11 is not. (We need to expand Z.M3 first to make Z.M3.M11 located form.)

The basic idea of the module path expansion algorithm is straightforward; the
algorithm traces module abbreviations until it meets a structure or a functor. To
keep the algorithm terminating, we have to be careful about the potential existence
of cyclic module definitions. Below we give two pathological examples which contain
cyclic definitions.

To reduce notational burden, we may omit, in examples here and elsewhere, pre-
ceding self variables even for forward references, when no ambiguity arises. Moreover,
we may omit the top-level struct and end.

The first example is:

module F = functor(X : sig end) → X

module L = F(L)

Through the identity functor F, the definition of L makes a cycle. The second one is:

module M = M.N

The second example is more annoying for us than the first one, since the unrolling of
M’s definition could result in the following infinite rewriting sequence, yielding module
paths of arbitrary long length.

M → M.N → M.N.N → M.N.N.N → ...

We design the module path expansion algorithm separately from the type system.
The type system, to be defined in Section 6, is based on Leroy’s applicative functor
calculus [16]. Essentially, it differs from Leroy’s in that it uses the algorithm to
obtain the necessary type information about module paths instead of consulting

18

` p ;g q

` p ;s η(q)

Figure 6: Semi-ground normalization

a type environment, in order to reason about forward references. To keep the type
system decidable, we design the algorithm to be terminating for any program whether
or not the program is eventually well-typed.

In the rest of this section, we detail the algorithm for expanding module paths.

4.1 Semi-ground normalization

To expand module paths, we define semi-ground normalization, which appears in
Figure 6. The semi-ground normalization is defined by composing two normaliza-
tions, namely ground normalization and variable normalization. The inference rule
for the semi-ground normalization denotes that if the ground normalization reduces
p into q, written ` p ;g q, then the variable normal form of q, written η(q), is a
located form of p. We say that q is a located form of p when ` p ;s q.

The ground normalization and the variable normalization are defined below. They
are provably terminating. As a result, the semi-ground normalization is terminating.

4.2 Ground normalization

The ground normalization is a normalization which is essentially ground, that is,
it does not depend on functor arguments. It either reduces a module path into a
pre-located form or raises an error when this cannot be done.

4.2.1 Pre-located forms

We first define pre-located forms, the central idea for defining the terminating ground
normalization.

Definition 2 A module path p is in pre-located form if and only if either of the
following two conditions holds.

1. p is a module variable.

2. The following two conditions hold.

19

• ` p 7→ (θ, Ei) and E is not a module identifier. (Hence E can be a module
variable.)

• For all q in args(p), q is in pre-located form.

The locution “pre-located form” indicates that we can turn a pre-located form into
a located form by substituting functor arguments, as we formally state in Lemma 4
in Section 4.3.

We say that a module variable environment θ is in pre-located form if and only
if, for all X in dom(θ), θ(X) is in pre-located form.

The important feature of pre-located forms is that they satisfy a substitution
property, as stated in Lemma 1 below. Here we first define length of module paths
as follows:

|X | = 1 |p.M | = 1 + |p| |p(q)| = |p| + |q |
|Zθ | = 1 + |θ(X1)| + |θ(X2)| + . . . |θ(Xn)| where dom(θ) = {X1, X2, . . . , Xn}
For a module path p and a module variable environment θ with MVars(p) ⊆

dom(θ), we write θ(p) to denote the module path obtained by applying the substi-
tution θ to p, or:

θ(p.M) = θ(p).M θ(p1(p2)) = θ(p1)(θ(p2)) θ(Zθ′) = Zθ◦θ′

We write θ ◦ θ′ to denote the composition of the two substitutions θ and θ′.

Lemma 1 (Substitution property) Let p and θ be in pre-located form and MVars(p) ⊆
dom(θ). Then θ(p) is in pre-located form.

Proof. By induction on the length of p. 2

We also use the following lemma to define the ground normalization.

Lemma 2 Let p be in pre-located form. If ` p 7→ (θ, Ei), then θ is in pre-located
form.

Proof. By induction on the derivation of ` p 7→ (θ, Ei). 2

It is an important observation that Lemma 1 holds due to the fist-order structure
restriction. If functors took nested arguments, then the module path [X 7→ L]X.M
would not be in pre-located form in the program:

module F = functor(X : sig module M : sig end end) →
struct module M = X.M end

module L = struct module N = struct end module M = N end

Note that the module variable environment [X 7→ L] is in pre-located form, but the
module path L.M is not (because L.M refers to a module identifier).

20

[gnlz-mv]
−−

Σ ` X ;g X

[gnlz-sf]
−−

Σ ` Zθ ;g Zθ

[gnlz-exp1]
Σ ` p ;g p′

` p′.M 7→ (θ, Ei) E 6∈ mid

Σ ` p.M ;g p′.M

[gnlz-pth1]
Σ ` p ;g p′ ` p′.M 7→ (θ, qi)
−−q 6= X Σ] i ` q ;g r−−

Σ ` p.M ;g θ(r)

[gnlz-exp2]
Σ ` p1 ;g p′1 Σ ` p2 ;g p′2
` p′1(p

′
2) 7→ (θ, Ei) E 6∈ mid

Σ ` p1(p2) ;g p′1(p
′
2)

[gnlz-pth2]
Σ ` p1 ;g p′1 Σ ` p2 ;g p′2

` p′1(p
′
2) 7→ (θ, qi) q 6= X Σ] i ` q ;g r

Σ ` p1(p2) ;g θ(r)

Figure 7: Ground-normalization

4.2.2 Ground normalization

We present inference rules for the ground normalization in Figure 7. The judgment
Σ ` p ;g q means that the ground normalization expands p into q with Σ locked.
We may say that q is a pre-located form of p when Σ ` p ;g q holds for some Σ.
The notation Σ] i means Σ ∪ {i} whenever i 6∈ Σ.

We regard the ground normalization as an algorithm which takes a module path
p and a lock Σ as inputs, then either returns a pre-located form or raises an error
if there is no applicable rule. Note that derivations of the ground normalization are
deterministic. We may write ` p ;g q to mean ∅ ` p ;g q.

Let us examine each rule. The first two rules [gnlz-mv] and [gnlz-sf] are straight-
forward. For a path of the form p.M , the ground normalization first expands the pre-
fix p ([gnlz-exp1][gnlz-pth1]). Suppose that p′ is a pre-located form of p. Then there
are two cases depending on whether p′.M refers to a module identifier or not. When
p′.M refers to a module expression other than a module identifier ([gnlz-exp1]), then
p′.M is in pre-located form and the ground normalization terminates. When p′.M
refers to a module identifier q ([gnlz-pth1]), then the ground normalization traces
the abbreviation q. This is the key rule, hence we explain it in detail.

As a simple case, suppose that q is in pre-located form. Then Σ]i ` q ;g q holds
immediately whenever i is not in Σ (see Lemma 6), and the ground normalization
returns θ(q). By Lemma 1 and 2, we are sure that θ(q) is in pre-located form. In
general, q is not necessarily in pre-located form. Hence, the ground normalization
expands q first to obtain its pre-located form in the premise Σ] i ` q ;g r, then

21

apply the substitution θ to r.
This explains the idea of the ground normalization. It additionally holds a lock Σ

during the expansion for termination. In short, when the ground normalization holds
a lock Σ, then it is in the middle of expansion of the module paths labeled with the
integers in Σ. The rules [gnlz-pth1] and [gnlz-pth2] have the side condition i 6∈ Σ
implicitly; thanks to the condition, the ground normalization can avoid tracing the
same module abbreviation cyclically.

The rules [gnlz-exp2] and [gnlz-pth2] for paths of the form p1(p2) are similar to
[gnlz-exp1] and [gnlz-pth1], respectively.

To understand the ground normalization, it may be useful to think of it as a
kind of partial evaluation. Indeed, in the premise Σ] i ` q ;g r, the rules [gnlz-
pth1] and [gnlz-pth2] expand q as far as they can without using functor arguments.
Once this “partial expansion” is done, the rules apply substitution to replace formal
parameters of functors with corresponding actual arguments. (And, by Lemma 1
and 2, the substitution produces a pre-located form, hence the ground normalization
need not continue the expansion after the substitution.)

4.2.3 Well-definedness and termination

Here we show that the ground normalization does reduce module paths into pre-
located forms unless it raises an error and that it defines an algorithm which is
terminating.

We first define a sanity condition which we assume to hold for all input module
paths to the ground normalization.

Definition 3 A module path p has pre-located variables if and only if all the self
variables contained in p are in pre-located form.

Note that Z id is in pre-located form. Hence, all the module paths appearing in
the program P are appropriate for the input to the ground normalization.

Proposition 1 (Well-definedness of the ground normalization) Let p have pre-
located variables. If Σ ` p ;g q, then q is in pre-located form.

Proof. By induction on the derivation of Σ ` p ;g q and by case on the last rule
used. Use Lemma 1 and 2. 2

Now we show termination of the ground normalization. Our proof proceeds by
defining well-founded relations.

22

η(Zθ) = Zη◦θ

η(X) = X
η(p.M) = ζ(η(p).M)
η(p1(p2)) = ζ(η(p1)(η(p2)))

ζ(p) =

{
θ(X) when ` p 7→ (θ,X i)
p otherwise

Figure 8: Variable normalization

Definition 4 A binary relation R on any set is well-founded if and only if there is
no infinitely descending sequence in R, that is, there is no sequence {ri}∞i=1 such that,
for all i in 1, 2, . . ., ri R ri+1 holds.

Proposition 2 (Termination of the ground normalization) For any module path
p and lock Σ, proof search for Σ ` p ;g will terminate.

Proof. Below, we define a well-founded relation >g on pairs (p, Σ) of a module path
p and a lock Σ. It is easy to check that if Σ2 ` p2 ;g is a premise of Σ1 ` p1 ;g ,
then (p1, Σ1) >g (p2, Σ2). Thus, if there is an infinitely deep derivation tree of the
ground normalization, then there is an infinitely descending sequence in >g. This
contradicts well-foundedness of >g. By Köning’s lemma on finitely branching trees,
we obtain the proposition.

(p1, Σ1) >g (p2, Σ2) holds if and only if either of the following three conditions
holds.

1. p1 = p′1.M and p2 = p′1 and Σ1 = Σ2.

2. p1 = p11(p12) and p2 = p1i and Σ1 = Σ2.

3. i is not in Σ1 and Σ2 = Σ1 ∪ {i} ⊆ ΣP

Well-foundedness of >g is shown by the finiteness of ΣP . 2

4.3 Variable normalization

The variable normalization turns pre-located forms into located forms. We define
the variable normalization using functions η and ζ on pre-located forms, which are
found in Figure 8. We write η ◦ θ to denote a module variable environment θ′ such
that dom(θ) = dom(θ′) and, for all X in dom(θ), η(θ(X)) = θ′(X).

23

Given a module path p in pre-located form, functions η and ζ recursively replace
each module path q contained in p with the corresponding functor argument if q
refers to a module variable.

Lemma 3 below is proven by easy induction. Lemma 4 indicates that by combining
the ground normalization and the variable normalization, we obtain located forms.

Lemma 3 Let p be in located form. If ` p 7→ (θ, Ei), then θ is in located form.

Lemma 4 Let p be in pre-located form. Then the computation of η(p) terminates
returning a module path in located form.

Proof. By induction on the length of p. Use Lemma 3. 2

Returning to the example in Figure 5, the ground normalization reduces Z.M3.M12
into Z.M1(Z.M2).M12. Then the variable normalization reduces Z.M1(Z.M2).M12 into Z.M2.
As a whole, we have ` Z.M3.M12 ;s Z.M2.

What is good for us about the stratification of the semi-ground normalization
into the ground normalization and the variable normalization is that we can enforce
the first-order structure restriction without relying on the type system. For instance,
in Figure 5, the ground normalization fails in expanding the module path Z.M3.M12.M.
The fist-order structure restriction, in turn, enables us to define the terminating
ground normalization. Once we are certain that the semi-ground normalization is
terminating, we can safely use it in the type system. Moreover, thanks to the re-
striction, the semi-ground normalization coincides with the intuitive normalization,
which is defined in Section 7, when the program P is well-typed. This result appears
in Proposition 10.

4.4 Termination and well-definedness of
the semi-ground normalization

In this section, we show that the semi-ground normalization defines an algorithm
which is terminating, and that it does reduces module paths into located forms
unless the ground normalization raises an error. We also present some useful lemmas
that are used later in the paper.

Proposition 3 (Termination of the semi-ground normalization) For any mod-
ule path p having pre-located variables, proof search for ` p ;s will terminate.

24

Proof. The proposition is an immediate consequence of Proposition 2 and Lemma 4.
2

Proposition 4 (Well-definedness of the semi-ground normalization) Let p have
pre-located variables. If ` p ;s q, then q is in located form.

Proof. By hypothesis, we have ` p ;g p′ and η(p′) = q. By Proposition 1, p′ is in
pre-located form. By Lemma 4, q is in located form. 2

The following lemmas are shown by easy induction.

Lemma 5 Let p and θ be in located form. Then θ(p) is in located form.

Lemma 6 Let p be in pre-located form. Then Σ ` p ;g p for any Σ.

Lemma 7 Let p be in located form. Then η(p) = p.

Lemma 8 Let p be in located form. Then ` p ;s p.

Proof. By Lemma 6 and 7. 2

It is a useful observation that located forms are invariant of the semi-ground
normalization, the ground normalization and the variable normalization, and that
pre-located forms are invariant of the ground normalization.

25

5 Expanding types

In this section, we present an algorithm for expanding types. The aim of the type
expansion is to reduce types into canonical forms so that we can define a type equiv-
alence relation in a syntactic way. For instance, in Figure 1, the algorithm reduces
the type F.t used inside Tree into TF.Tree.t list.

The type expansion algorithm reduces types into located types. Located types are
defined in terms of simple located types.

Definition 5 A simple located type is either 1, or p.t where either of the following
two conditions holds.

1. p = X and ∆(X) = sig . . . type t . . . endi.

2. p is in located form and ` p 7→ (θ, struct . . . datatype t = c of τ . . . endi).

Then, located types are composed of simple located types.

Definition 6 A located type is a type τ where each type τ ′ in cmpnt(τ) is a simple
located type.

For a type τ , cmpnt(τ) denotes the set of types from which τ is constructed.
Precisely,

cmpnt(τ) =

{
cmpnt(τ1) ∪ cmpnt(τ2) when τ = τ1 → τ2 or τ = τ1 ∗ τ2

{τ} otherwise

We develop the type expansion algorithm separately from the type system, as
we did for the semi-ground normalization. The separation is useful for 1) having
intuitive typing rules (although the expansion algorithm is somewhat involved, the
typing rules to be defined are straightforward) and for 2) accommodating a possible
extension of the algorithm, that is, when we come up with a cleverer algorithm, we
can replace the current one with the new one without changing the rest of the type
system.

One may think that we can apply the same idea as the semi-ground normalization
for developing a type expansion algorithm. Recall the first-order structure restriction
we imposed on functors. If we are going to put a similar restriction, the restriction
would require functors not to access type components of functor arguments. This
seems too restrictive. Hence we define another algorithm on top of the semi-ground
normalization to expand types.

26

[t-uni]
−

Ω ` 1 ↓ 1

[t-arr]
Ω ` τ1 ↓ τ ′

1 Ω ` τ2 ↓ τ ′
2

Ω ` τ1 → τ2 ↓ τ ′
1 → τ ′

2

[t-pair]
Ω ` τ1 ↓ τ ′

1 Ω ` τ2 ↓ τ ′
2

Ω ` τ1 ∗ τ2 ↓ τ ′
1 ∗ τ ′

2

[t-dtyp]
` p ;s p′ ` p′ 7→ (θ, struct . . . datatype t = c of τ . . . endi)

Ω ` p.t ↓ p′.t

[t-typ]
` p ;s p′ ` p′ 7→ (θ, struct . . . type t = τ1 . . . endi)
−−−−−Ω] (i, t) ` τ1 ↓ τ2 Ω ` θ(τ2) ↓ τ−−−−−

Ω ` p.t ↓ τ

[t-opq]
` p ;s X ∆(X) = sig . . . type t . . . endi

Ω ` p.t ↓ X.t

[t-tran]
` p ;s X ∆(X) = sig . . . type t = τ1 . . . endi Ω] (i, t) ` τ1 ↓ τ

Ω ` p.t ↓ τ

Figure 9: Type expansion

5.1 Type expansion

We present inference rules for the type expansion algorithm in Figure 9. The judg-
ment Ω ` τ ↓ τ ′ is read that the algorithm expands τ into τ ′ with Ω locked. We use Ω
as a metavariable for ranging over sets of pairs (i, t) of an integer i and a type name
t. Note that the derivations of the type expansion are deterministic. The algorithm
takes a lock Ω and a type τ as inputs, then either returns a located type τ ′ or raises
an error when there is no applicable rule. We may write ` τ ↓ τ ′ to mean ∅ ` τ ↓ τ ′.

Let us examine each rule. The first three rules [t-uni], [t-arr] and [t-pair] are
straightforward. For the type p.t, the algorithm first expands its prefix p using the
semi-ground normalization, in order to determine the module that p refers to ([t-
dtyp][t-typ][t-opq][t-tran]). Suppose that p′ is a located form of p and is not a
module variable. Then there are two cases depending on the definition of the type
p′.t. When p.′t is a datatype ([t-dtyp]), the algorithm terminates and returns p′.t,
which is a located type. When p′.t is an abbreviation for another type τ1 ([t-typ]),
the algorithm needs to compute the expansion of θ(τ1). This rule is most important.
The rule says that, to obtain a located type of θ(τ1), 1) check that (i, t) is not in the

27

current lock; 2) then expand τ1 under the augmented lock Ω](i, t), without applying
the substitution θ to τ1; 3) apply the substitution θ to the newly obtained type τ2,
then expand θ(τ2) under the original lock Ω. Compare the rule [t-typ] to the rule
[gnlz-pth1] of the ground normalization. Both handle abbreviations and have similar
premises except that the type expansion continues after applying the substitution θ to
the newly obtained type τ2, while the ground normalization terminates immediately
after applying the substitution θ to the newly obtained path r. Since located types
do not satisfy a substitution property like module paths in located form do, it does
not necessarily hold that applying a substitution θ in located form to a located type
produces a located type. Due to this difference, the type expansion appears to be
more involved than the ground normalization. We first examine a simple case in
detail below, to give an intuition of the type expansion. Then we review key cases
by giving concrete examples in Example 1 and 2.

The rules [t-opq] and [t-tran] are similar to, but simpler than the rules [t-dtyp]
and [t-typ], respectively.

First, we present two useful lemmas about the type expansion algorithm. Lemma 9
gives a weakened substitution property simple located types satisfy; Lemma 10 shows
that located types are invariant of the type expansion algorithm.

Lemma 9 (Weak substitution property) Let τ be a simple located type and θ be
in located form and MVars(τ) ⊆ dom(θ). Then either of the following two conditions
holds.

1. θ(τ) is a simple located type.

2. There is a module variable X in dom(θ) such that θ(τ) = θ(X).t for some type
name t.

Proof. By definition of simple located types. Use Lemma 5. 2

Lemma 10 Let τ be a located type, then Ω ` τ ↓ τ for any Ω.

Proof. By induction on the structure of τ . Use Lemma 8. 2

Now let us examine a simple case. Suppose that every type abbreviation in
the program P abbreviates a simple located type and that every transparent type
specification in P specifies a simple located type. That is, we suppose that, for all
type t = τ appearing in P , τ is a simple located type.

To expand a type p.t, the algorithm first expands p into a located form p′ to
find the definition of the type p.t. Let us assume ` p′ 7→ (θ1, struct . . . type t =

28

τ . . . endi) holds. Since τ is a simple located type, Ω ` τ ↓ τ holds by Lemma 10.
Hence, by Lemma 9, θ1(τ) is either a simple located type or else θ1(X1).t1 for
some X1 in dom(θ1) and some type name t1. When θ1(τ) is a simple located
type, the algorithm terminates. When it is not, the algorithm continues expanding
θ1(X1).t1. Since θ1(X1) is in located form (Lemma 3) and located forms are invariant
of the semi-ground normalization (Lemma 8), we have ` θ(X1) ;s θ(X1). Thus
the only possible case where the algorithm further continues is where ` θ1(X1) 7→
(θ2, struct . . . type t1 = τ1 . . . endj) holds. Again, by Lemma 9, θ2(τ1) is either
a simple located type or else θ2(X2).t2 for some X2 in dom(θ2) and t2. Here, one
should notice that θ2(X2) is structurally smaller than θ1(X1), since θ2(X2) appears
syntactically inside θ1(X1). This implies that the algorithm eventually terminates,
since θ1(X1) is structurally finite.

In general, type abbreviations may contain more complex types than simple lo-
cated types, and so do transparent type specifications. Yet, if the algorithm knows
all the type abbreviations and specifications that are looked up during the expansion
of a type τ and if it has expanded these types in advance, it can expand τ in a similar
way to the above simple case. In other words, the algorithm expands types in an
appropriate order so that a type τ is expanded only after all those types that are
looked up during the expansion of τ have been expanded. The algorithm simultane-
ously searches such an order and expands types along the order. Locks Ω are used
to ensure that the order does not contain cycles.

The following two examples are good exercises to understand how the algorithm
works in more complex cases. When designing the algorithm, we were careful to
distinguish between the two; the former should be disallowed, while the latter allowed.

Example 1 Consider the functor F defied as

module F =

(functor(X : sig type t end2) → struct type t = F(F(X)).t end3)1

The functor F contains a dangling type component named t. The type expansion
algorithm raises an error for the input F(F(X)).t, since it attempts to lock (3.t) under
the lock {(3.t)} during the expansion.

We note that if the algorithm expanded the type F(F(X)).t without locks, it would
not terminate, but yield an infinite rewriting sequence:

F(F(X)).t → F(F(F(X))).t → F(F(F(F(X)))).t → ...

Example 2 Consider the following program:

29

module F = (functor(X : sig type t end2) →
struct module L = X4 type t = L.t * int end3)1

module M = struct type s = int type t = s end5

module N = struct type t = F(F(M)).t end6

The type component t of the module N has a valid reference, and the type expansion
algorithm successfully expands the type F(F(M)).t into int ∗ int ∗ int.

Observe that the algorithm expands the type L.t ∗ int into X.t ∗ int before ex-
panding F(F(M)).t, since the expansion of F(F(M)).t looks up the type t of the functor
F.

5.2 Well-definedness and termination

Here we show that the type expansion algorithm does reduce types into located types
unless it raises an error and that it is terminating.

We first define a sanity condition on input types to the algorithm.

Definition 7 A module path p has located variables if and only if all the self variables
contained in p are in located form.

Definition 8 A type τ has located variables if and only if all the module paths con-
tained in τ have located variables.

All the types that appear in the program P have located variables, hence they
are appropriate for the input to the algorithm.

Proposition 5 (Well-definedness of the type expansion) Let τ have located vari-
ables. If Ω ` τ ↓ τ ′, then τ ′ is a located type.

Proof. By induction on the derivation of Ω ` τ ↓ τ ′ and by case on the last rule used.
We show the main case.
[t-typ] We have τ = p.t and ` p ;s p′ and ` p′ 7→ (θ, struct . . . type t =
τ1 . . . endi) and Ω] (i, t) ` τ1 ↓ τ2 and Ω ` θ(τ2) ↓ τ ′. By Proposition 4, p′ is in
located form. By Lemma 3, θ is in located form. By induction hypothesis, τ2 is a
located type. By Lemma 5, θ(τ2) has located variables. By induction hypothesis, τ ′

is a located type. 2

Proposition 6 (Termination of the type expansion) For any lock Ω and a type
τ having located variables, proof search for Ω ` τ ↓ will terminate.

30

Proof. Below, we define a well-founded relation >t on pairs (τ, Ω) of a type τ and a
lock Ω. Using Lemma 9 and Proposition 5, it can be easily checked that if there is
an infinitely deep derivation tree of the type expansion, then one can construct an
infinitely descending sequence in >t from the tree. This contradicts well-foundedness
of >t. By Köning’s lemma on finitely branching trees, we obtain the proposition.

(τ1, Ω1) >t (τ2, Ω2) holds if and only if either of the following four conditions
holds. We write TnamesP to denote the set of type names appearing in P .

1. Ω1 = Ω2 and τ1 = τ11 ∗ τ12 and τ2 = τ1i.

2. Ω1 = Ω2 and τ1 = τ11 → τ12 and τ2 = τ1i.

3. All the following three conditions hold.

• Ω1 = Ω2.

• τ1 = p.t and ` p ;s p1 and ` p1 7→ (θ, struct . . . type t = τ ′ . . . endi).

• For all τ in cmpnt(τ2), τ is either a simple located type or else θ(X).t1 for
some module variable X in dom(θ) and some type name t1.

4. (i, t) 6∈ Ω1 and Ω2 = Ω1 ∪ {(i, t)} ⊆ {(i, t) | i ∈ ΣP , t ∈ TnamesP}.

To prove well-foundedness of >t, we define a well-founded relation >τ on types.
Then we show that well-foundedness of >τ implies that of >t.

τ1 >τ τ2 holds if and only if either of the following three conditions holds.

1. τ1 = τ11 → τ12, and τ2 = τ1i.

2. τ1 = τ11 ∗ τ12, and τ2 = τ1i.

3. The following two conditions hold.

• τ1 = p.t and ` p 7→ (θ, struct . . . type t = τ ′ . . . endi).

• For all τ in cmpnt(τ2), τ is either a simple located type or else θ(X).t1 for
some module variable X in dom(θ) and some type name t1.

Note the slight but crucial difference between the second condition of the rule 3.
of >t and the first condition of the rule 3. of >τ ; in the latter, we do not expand p.

First we show well-foundedness of >τ . Suppose that there is an infinitely de-
scending sequence {τi}∞i=1 in >τ . Such sequence can only be constructed using
the rule 3. of >τ infinitely often. Hence there is an infinite sequence {pi.ti}∞i=1

31

such that, for all i in 1, 2, . . ., pi+1 is in args(pi). Since the length of p1 is finite,
this is a contradiction. (Note that if a type p.t is a simple located type, then
` p 7→ (θ, struct . . . type t = τ ′ . . . endi) cannot hold.)

Now we show the well-foundedness of >t. Suppose that there is an infinitely
descending sequence in >t. Since {(i, t) | i ∈ ΣP , t ∈ TnamesP} is finite, there is
a lock Ω0 such that there is an infinitely descending sequence {(τi, Ω0)}∞i=1 in >t.
Let j be an integer such that (τj, Ω0) >t (τj+1, Ω0) holds due to the rule 3. of >t.
(It is easy to check that such j exists.) Let τj = p.t. We have ` p ;s p1 and
` p1 7→ (θ, struct . . . type t = τ ′ . . . endi1). By Proposition 4, p1 is in located form.
By Lemma 3, for all X in dom(θ), θ(X) is in located form. Since module paths
in located form are invariant for the semi-ground normalization (Lemma 8), it holds
that, for all k > j, if (τk, Ω0) >t (τk+1, Ω0) holds due to the rule 3. of >t and τk = p′.t′

for some p′ and t′, then ` p′ ;s p′. Thus, {τi}∞i=j+1 is a descending sequence in >τ .
This contradicts well-foundedness of >τ . 2

32

` 1 ≡ 1

` τ1 ≡ τ ′
1 ` τ2 ≡ τ ′

2

` τ1 → τ2 ≡ τ ′
1 → τ ′

2

` τ1 ≡ τ ′
1 ` τ2 ≡ τ ′

2

` τ1 ∗ τ2 ≡ τ ′
1 ∗ τ ′

2

` p1 ≡ p2

` p1.t ≡ p2.t

Figure 10: Type equivalence

` X ≡ X

` p1 7→ (θ1, E
i1
1) ` p2 7→ (θ2, E

i2
2) i1 = i2

−−−∀X ∈ dom(θ1), ` θ1(X) ≡ θ2(X)−−−
` p1 ≡ p2

Figure 11: Path equivalence

6 Type system

In this section, we present the overall typing rules. Having defined algorithms for
expanding module paths and types, the remaining part of the type system is straight-
forward.

6.1 Type equality

We define a type equivalence relation in Figure 10, with an auxiliary judgment in
Figure 11.

The judgment ` τ1 ≡ τ2 is read that the types τ1 and τ2 are equivalent. The type
equivalence relation judges equivalence of located types. Hence, to check equivalence
between types which are not necessarily located types, the type system first expands
them into located types, then appeals to the judgment.

Let us examine each rule. The first three rules are straightforward. The last
rule judges whether two abstract types are equivalent. The types p1.t1 and p2.t2 are
equivalent if and only if 1) their type names t1 and t2 are identical; and 2) their
prefixes p1 and p2 are equivalent module paths.

In Figure 11, we present inference rules for judging equivalence of module paths.
Two module paths p1 and p2 are equivalent if and only if either 1) p1 and p2 are the
same module variable or else 2) they refer to module expressions at the same location
and their functor arguments are equivalent.

33

[v-var]
−−

Ψ; Γ ` x :: Γ(x)

[v-uni]
−−

Ψ; Γ ` () :: 1

[v-prd]
Ψ; Γ ` e1 :: τ1 Ψ; Γ ` e2 :: τ2

Ψ; Γ ` (e1, e2) :: τ1 ∗ τ2

[v-prj]
Ψ; Γ ` e :: τ1 ∗ τ2

Ψ; Γ ` πi(e) :: τi

[v-app]
Ψ; Γ ` e1 :: τ ′ → τ

Ψ; Γ ` e1(e2) :: τ

[v-fun]
` τ ′ ↓ τ

Ψ; Γ ` (fun x → e : τ ′) :: τ

[v-cnstr]
` p ;s p′ γ(p′, c) = (t, τ)

Ψ; Γ ` p.c e :: p′.t

[v-case]
` p ;s p′ γ(p′, c) = (t, τ1)

Ψ; Γ, x : τ1 ` e2 :: τ

Ψ; Γ ` case e1 of p.c x ⇒ e2 :: τ

[v-vpth1]
` p ;s p′ ` p′ 7→ (θ, struct . . . val l = e . . . endi)

Ψ] (i, l); ∅ ` e :: τ ′ ` θ(τ ′) ↓ τ

Ψ; Γ ` p.l :: τ

[v-vpth2]
` p ;s X ∆(X) = sig . . . val l : τ ′ . . . endi ` τ ′ ↓ τ

Ψ; Γ ` p.l :: τ

Figure 12: Type reconstruction

34

γ(p, c) = (t, τ) when
` p 7→ (θ, struct . . . datatype t = c of τ ′ . . . end) and ` θ(τ ′) ↓ τ

Figure 13: Datatype look-up

6.2 Type reconstruction

The reconstruction algorithm infers types of expressions, but does not check that
the inferred types are correct. For instance, to reconstruct a type of an application
e1(e2), it only reconstructs a type of e1, which must be in the form τ ′ → τ , then
returns the result type τ . We defer ensuring that e2 does have a type equivalent to τ ′

to well-typedness judgment of the form Γ ` e : τ , which is defined later in Figure 14.
We present inference rules for the type reconstruction algorithm in Figure 12,

with an auxiliary judgment in Figure 13. The judgment Ψ; Γ ` e :: τ is read that the
algorithm reconstructs the type τ for the expression e under the type environment
Γ with Ψ locked. We use Ψ as a metavariable for ranging over pairs (i, l) of an
integer i and a value name l. We use Γ as a metavariable for ranging over type
environments, which assign located types to variables. The inference rules define an
algorithm; their derivations are deterministic. The algorithm takes an expression e,
a type environment Γ and a lock Ψ as inputs, then either returns a located type or
raises an error when there is no applicable rule. We may write ` e :: τ to mean
∅; ∅ ` e :: τ .

In the same way as the type expansion algorithm does, the reconstruction algo-
rithm holds a lock Ψ so as to avoid tracing value paths cyclically. For instance, it
does not attempt to reconstruct a type of the value component l in the program
below, but raises an error.

struct (Z) val l = Z.m val m = Z.l end

The inference rules of the reconstruction are mostly straightforward. Here, we
explain the key rules [v-vpth1] and [v-vpth2]. These two rules infer a type of a value
path p.l. When the located form of p is a module variable X([v-vpth2]), then the
type of X.l should be found in the signature of X. The rule [v-vpth1] handles the
case where the located form of p refers to a structure which contains a value definition
val l = e with a module variable environment θ. In this case, the algorithm first
reconstructs a type of e without applying the substitution θ to e, then returns the
located type of θ(τ ′) where τ ′ is the reconstructed type of e. Hence, when p.l refers
to a value component in the body of a functor, the algorithm first reconstructs a type
of the component in the functor, then instantiates the reconstructed type.

35

Observe that the third premise of the rule [v-vpth1] has an empty type environ-
ment. Hence the algorithm always reconstructs the same type for the same value
path under whatever type environment, unless it raises an error. This implies that
we can memorize results of the reconstruction for efficiency in a practical system.

Proposition 7 (Termination of the type reconstruction) For any expression
e, type environment Γ and lock Ψ, proof search for Ψ; Γ ` e :: will terminate.

Proof. Below we define a well-founded relation >v on pairs (e, Ψ) of an expression e
and a lock Ψ. The proposition can be proven by induction on >v. We write VnamesP
to denote the set of value names appearing in the program P .

(e1, Ψ1) >v (e2, Ψ2) holds if and only if either of the following two conditions
holds.

1. e2 is structurally smaller than e1 and Ψ1 = Ψ2.

2. (i, l) 6∈ Ψ1 and Ψ2 = Ψ1 ∪ {(i, l)} ⊆ {(i, l) | i ∈ ΣP , l ∈ VnamesP}.

The well-foundedness of >v can be proven by the finiteness of {(i, l) | i ∈ ΣP , l ∈
VnamesP}. 2

6.3 Typing rules

Finally, we present the rest of the typing rules in Figure 14, with auxiliary judgments
in Figure 15 and 16.

The judgment ` D ¦ is read that the definition D is well-typed. The judgment
Γ ` e : τ is read that the core expression e has the type τ under the type environment
Γ. The other judgments are read similarly. We may write ` e : τ to mean ∅ ` e : τ .

The typing rules are straightforward. Note only that, for type checking a core
expression p.l, the type system uses the type reconstruction. While the value path p.l
may be a forward reference, the reconstruction algorithm can resolve both forward
and backward references using semi-ground normalization.

In Figure 15, we present inference rules for judging well-formedness of modules
paths; the type system uses the judgment to check well-typedness of module paths.
The judgment ` p wf is read that the module path p is well-formed. The inference
rules check that the references of module paths are not dangling and that functor
applications contained in the paths are well-typed.

In Figure 16, we define realization judgment ` p . B for checking that the module
path p refers to a module which has a component satisfying the specification B. The
inference rules for the judgment are straightforward.

36

Definitions

` E ¦
` module M = E ¦

` τ ¦
` datatype t = c of τ ¦

` τ ¦
` type t = τ ¦

` e : τ
` val l = e ¦

Module expressions

` D1 ¦ . . . ` Dn ¦
` struct (Z) D1 . . . Dn end ¦

` S ¦ ` E ¦
` functor(X : S) → E ¦

` p wf

` p ¦
Signatures

` B1 ¦ . . . ` Bn ¦
` sig B1 . . . Bn end ¦

Specifications

` S ¦
` module M : S ¦

` τ ¦
` type t = τ ¦ ` type t ¦

` τ ¦
` val l : τ ¦

Core types

` 1 ¦
` τ1 ¦ ` τ2 ¦
` τ1 → τ2 ¦

` τ1 ¦ ` τ2 ¦
` τ1 ∗ τ2 ¦

` p wf ` p.t ↓ τ

` p.t ¦
Core expressions

Γ ` () : 1

x ∈ dom(Γ)

Γ ` x : Γ(x)

` τ ¦ ` τ ↓ τ1 → τ2 Γ, x : τ1 ` e : τ3 ` τ2 ≡ τ3

Γ ` (λx.e : τ) : τ1 → τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1, e2) : τ1 ∗ τ2

Γ ` e : τ1 ∗ τ2

Γ ` πi(e) : τi

Γ ` e1 : τ1 → τ Γ ` e2 : τ2 ` τ2 ≡ τ1

Γ ` e1 (e2) : τ

Γ ` e1 : τ1 ` p wf ` p ;s p′ γ(p′, c) = (t, τ2) ` τ1 ≡ p′.t Γ, x : τ2 ` e2 : τ

Γ ` case e1 of p.c x ⇒ e2 : τ

` p wf ` p ;s p′ γ(p′, c) = (t, τ1) Γ ` e : τ2 ` τ1 ≡ τ2

Γ ` p.c e : p′.t

` p wf ` p.l :: τ

Γ ` p.l : τ

Figure 14: Typing rules

` X wf ` Z id wf
` p wf ` p.M ;s q

` p.M wf

` p1 wf ` p2 wf ` p1 ;s p′1 ` p2 ;s p′2 ` p1(p2) ;s q
∀i ∈ {1, . . . , n}, ` p′2 . θ[X 7→ p′2] Bi

` p′1 7→ (θ, (functor(X : sig B1 . . . Bn endj) → Ek)i)

` p1(p2) wf

Figure 15: Well-formed module paths

37

` p.t ↓ τ

` p . type t

` p.t ↓ τ1 ` τ ↓ τ2 ` τ1 ≡ τ2

` p . type t = τ

` p.l :: τ1 ` τ ↓ τ2 ` τ1 ≡ τ2

` p . val l : τ

Figure 16: Realization

Definition 9 The program P is well-typed if and only if ` P ¦ holds.

Proposition 8 below is an immediate consequence of the termination of the semi-
ground normalization (Proposition 3), the type expansion (Proposition 6) and the
type reconstruction (Proposition 7).

Proposition 8 (Decidability of the type system) It is decidable whether ` P ¦
holds or not.

Here, we add two important observations of the type system.

1. The type reconstruction algorithm is developed separately from the typing rules
given in Figure 14. In other words, the algorithm can reconstruct types in a
separate phase from type checking. Hence, in a practical system, it would be
natural to complete the reconstruction in advance, and to use the result of the
reconstruction during type checking to infer types of value paths. The current
presentation of the type system makes the soundness proof concise.

2. The type system checks that every type abbreviation and transparent type
specification in the program P only contains expandable types. Hence, well-
typed programs do not contain cyclic types.

6.3.1 Detecting structural types forming non-regular trees

To support flexible development of programs, it is useful to extend the core language
with structural recursive types, such as objects [23] and polymorphic variants [10].
For developing a practical type system, we want to forbid programmers to specify
structural types which form non-regular trees, since there is little hope that a practical
algorithm for judging equality between non-regular types is found.

There are known algorithms in the core language for detecting non-regular types
defined by programmers, for instance the one implemented in Objective Caml [18].
However, the algorisms may not be available for detecting non-regular types defined
by combining recursive modules and applicative functors.

For instance, consider the following module G, which defines a polymorphic variant
type.

38

module G = functor(X : sig type t end) →
struct

type t = X.t * X.t

type u = [‘A of t | ‘B of G(G(X)).u]

end

An instantiation of G would yield a non-regular type. Compare the module G to the
module F defined as:

module F = (X : sig type t end) →
struct

type t = X.t * X.t

type s = [‘C of t | ‘D of F(X).s]

end

An instantiation of F will yield a regular type, thus there is no reason to disable F.
In these simple examples, it is easy to distinguish between the modules G and F.

Since the type of the constructor ‘B, namely G(G(X)).u, refers to the defining type
itself but changes the functor’s parameter form X to G(X), the type definition of u
should be illegal. Since the type of the constructor ‘D, namely F(X).s, refers to the
defining type without changing the functor’s parameter, the definition of s should be
legal.

Observe that we have implicitly assumed that we have a type expansion algorithm;
in the general case, we would need to expand the types of the constructors ‘B and ‘D.
We believe that our type expansion algorithm is useful to support structural recursive
types and recursive modules together, while keeping the type system decidable and
practical.

39

[nlz-sf]
−−

` Zθ ; Zθ

[nlz-exp1]
` p ; p′ ` p′.M 7→ (θ, Ei) E 6= q

` p.M ; p′.M

[nlz-pth1]
` p ; p′

` p′.M 7→ (θ, qi) ` θ(q) ; r

` p.M ; r

[nlz-exp2]
` p1 ; p′1 ` p2 ; p′2

` p′1(p
′
2) 7→ (θ, Ei) E 6= q

` p1(p2) ; p′1(p
′
2)

[nlz-pth2]
` p1 ; p′1 ` p2 ; p′2

` p′1(p
′
2) 7→ (θ, qi) ` θ(q) ; r

` p1(p2) ; r

Figure 17: Normalization

7 Soundness

In this section, we give a call-by-value operational semantics and present a soundness
result.

Before presenting our small step reductions, we present normalization of module
paths, which we use in reductions to resolve references of module paths. The nor-
malization expands module paths by tracing module abbreviations in the intuitive
way.

In Figure 17, we present inference rules for the normalization. The normalization
acts similarly to the ground normalization, but it does not defer substitution of
module variables. The judgment ` p ; q is read that the normalization expands
p into q. The normalization is defined only for module paths containing no module
variables.

Values v and evaluation contexts E are:

v ::= () | (v1, v2) | p.c v | (fun x → e : τ)
E ::= {} | (E, e) | (v, E) | πi(E) | E (e) | v (E) | p.c E | case E of ms
A small step reduction is either:

πi(v1, v2)
prj→ vi (fun x → e : τ)(v)

fun→ [x 7→ v]e

case p.c v of q.c x ⇒ e
case→ [x 7→ v]e

p.l
vpth→ θ(e) when ` p ; q and ` q 7→ (θ, struct . . . val l = e . . . endi)

or an inner reduction obtained by induction:

40

e1 → e2 E 6= {}
E{e1} → E{e2}

For an expression e, [x 7→ v]e denotes the expression obtained by applying the
substitution [x 7→ v] to e, and θ(e) denotes the expression obtained by applying the
substitution θ to e.

When deconstructing a value through the case expression case p.c v of q.c x ⇒ e,
we do not explicitly check that p and q refer to the same module. Our type system
already ensures that p and q expands into equivalent module paths.

We could define a small step normalization of module paths. The big step one is
convenient for us to prove a soundness result, since the ground-normalization is big
step.

Proposition 9 (Soundness) Let the program P be well-typed. Then, the following
two results hold.

1. Suppose ` e1 : τ and e1 → e2, then ` e2 : τ ′ with ` τ ≡ τ ′.

2. Suppose ` e : τ , then either e is a value or else there is some e′ with e → e′.

7.1 Proofs of the soundness

The soundness result can be proven in a standard way for the most part. The only

difficulty in the proof is about the reduction rule
vpth→ . Below we show progress and

type preservation properties for this rule.

We have already shown decidability of the type system in Proposition 8. Locks
Σ, Ω and Ψ are useful only for the decidability result. In the soundness proof, we are
interested in a derivation tree which proves ` P ¦, but not in how we can construct
the tree. Hence, in the proofs below, we use judgments of the ground normalization,
the type expansion and the type reconstruction that do not hold locks. For instance,
we may say that “` p ;g q holds”, when ` p ;g q can be proven by the inference
rules that are completely same as the rules in Figurere 7 but do not have locks. (It
is clear that whether or not the inference rules use locks does not affect outputs of
the ground normalization; the ground normalization without locks may diverge and
the ground normalization with locks may raise more errors than without.)

In the rest of this section, we assume that the program P is well-typed.

We first show in Proposition 10 that the semi-ground normalization coincides
with the normalization for well-typed module paths. The proof proceeds in two
steps: 1) we prove in Lemma 15 that the ground normalization coincides with the

41

[ugnlz-mv]
−−

` X ;G X

[ugnlz-sf]
−−

` Zθ ;G Zθ

[ugnlz-exp1]
` p ;G p′

` p′.M 7→ (θ, Ei) E 6∈ mid

` p.M ;G p′.M

[ugnlz-pth1]
` p ;G p′ ` p′.M 7→ (θ, qi)
−q 6= X ` θ(q) ;G r−

` p.M ;G r

[ugnlz-exp2]
` p1 ;G p′1 ` p2 ;G p′2

` p′1(p
′
2) 7→ (θ, Ei) E 6∈ mid

` p1(p2) ;G p′1(p
′
2)

[ugnlz-pth2]
` p1 ;G p′1 ` p2 ;G p′2

` p′1(p
′
2) 7→ (θ, qi) q 6= X ` θ(q) ;G r

` p1(p2) ;G r

Figure 18: Unsafe ground-normalization

unsafe ground normalization defined in Figure 18; 2) then we prove in Lemma 20
that the composition of the unsafe one and the variable normalization coincides with
the normalization. For the unsafe ground normalization, we use judgments of the
form ` p ;G q. In rules [ugnlz-pth1] and [ugnlz-pth2], the unsafe one applies the
substitution θ to q, before expanding q.

The following three lemmas can be shown by easy induction. In particular, we
use Lemma 11 implicitly throughout the proofs below.

Lemma 11 Let MVars(p) ⊆ dom(θ). If ` p 7→ (θ1, E
i), then ` θ(p) 7→ (θ ◦ θ1, E

i).

Lemma 12 Let p have pre-located variables. If ` p ;G q then q is in pre-located
form.

Lemma 13 Let p be in pre-located form. Then ` p ;G p.

Lemma 14 Let p have pre-located variables and θ be in pre-located form and
MVars(p) ⊆ dom(θ). If ` p ;G q, then ` θ(p) ;G θ(q).

Proof. By induction on the derivation of ` p ;G q and by case on the last rule used.
Use Lemma 12 and 13. 2

Lemma 15 Let p have pre-located variables. If ` p ;g q, then ` p ;G q.

42

Proof. By induction on the derivation of ` p ;g q and by case on the last rule used.
We show the main case.
[gnlz-pth1] We have p = p1.M and ` p1 ;g p′1 and ` p′1.M 7→ (θ, ri) and r 6= X
and ` r ;g q1 and q = θ(q1). By induction hypothesis we have ` p1 ;G p′1 and
` r ;G q1. By Proposition 1 and Lemma 2, θ is in pre-located form. By Lemma 14,
` θ(r) ;G θ(q1). 2

To make the normalization account for module paths having pre-located variables,
we modify the inference rules of the normalization by replacing the rule [nlz-sf] with
the rule:

dom(θ) = dom(θ1) ∀X ∈ dom(θ), ` θ(X) ; θ1(X)

` Zθ ; Zθ1

The operational semantics uses the normalization only with module paths having
located variables. This new rule and the original one have the same effect for these
paths.

The following two lemmas are shown by easy induction.

Lemma 16 Let p have pre-located variables and contain no module variables. If
` p ; q then q is in located form.

Lemma 17 Let p be in located form containing no module variables. Then ` p ; p.

Lemma 18 Let p be in pre-located form and contain no module variables. Then
` p ; η(p).

Proof. By induction on the length of p and by case on the structure of p. Use
Lemma 16 and 17, and show that when p is in pre-located form and ` p 7→ (θ, Ei)
with E 6= X then ` η(p) 7→ (η ◦ θ, Ei). 2

For a module variable environment θ, we write MVars(θ) to mean
∪

X∈dom(θ) θ(X).

Lemma 19 Let θ be in pre-located form, and p have pre-located variables, and
MVars(p) ⊆ dom(θ), and MVars(θ) = ∅. If ` θ(p) ; q, then ` (η ◦ θ)(p) ; q.

Proof. By induction on the structure of p. For the case where p is a module variable,
use Lemma 4, 17 and 18 . 2

Lemma 20 Let p have pre-located variables and contain no module variables. If
` p ;G q, then ` p ; η(q).

43

Proof. By induction on the derivation of ` p ;G q and by case on the last rule used.
We show the main case.
[ugnlz-pth1] We have p = p1.M and ` p1 ;G p′1 and ` p′1.M 7→ (θ, ri) and r 6= X
and ` θ(r) ;G q. By induction hypothesis, ` p1 ; η(p′1) and ` θ(r) ; η(q). We
have ` η(p′1).M 7→ (η ◦ θ, ri). By Lemma 19, ` (η ◦ θ)(r) ; η(q). 2

Lemma 21 Let θ be in located form and p have located variables and MVars(p) ⊆
dom(θ). If ` p ;s q, then ` θ(p) ;s θ(q).

Proof. Show that if θ is in located form and p has pre-located variables and ` p ;g q,
then ` θ(p) ;g θ(q), by induction on the derivation of ` p ;g q. Show also that if
θ and p are in pre-located form, then η(θ(p)) = (η ◦ θ)(η(p)), by induction on the
length of p. Then, by Lemma 7, we obtain the lemma. 2

Lemma 22 Let p have located variables. If ` p ¦, then ` p ;s q.

Proof. By case on the structure of p. Use Lemma 21. 2

Proposition 10 Let p have located variables and contain no module variables, and
` p ¦. Then ` p ;s q if and only if ` p ; q.

Proof. By Lemma 22, we have ` p ;g p′ and η(p′) = q. By Lemma 15, ` p ;G p′.
By Lemma 20, ` p ; η(p′). Since derivations of the normalization are deterministic,
if ` p ; q1 and ` p ; q2 then q1 and q2 are identical. Thus we have the proposition.
2

Now we show a progress property of the reduction
vpth→ .

Proposition 11 (Progress for the reduction
vpth→) Let p have located variables

and contain no module variables. If ` p.l : τ , then ` p ; q
and ` q 7→ (θ, struct . . . val l = e . . . endi).

Proof. By hypothesis, we have ` p ¦ and ` p ;s p1 and
` p1 7→ (θ′, struct . . . val l = e′ . . . endj). By Proposition 10, ` p ; p1. 2

Before showing a type preservation property of the reduction
vpth→ , we show in

Proposition 12 that the semi-normalization preserves well-formedness of module paths.
To show the proposition, we strengthen the inference rules of well-formedness of mod-
ule paths (Figure 15), by replacing the rule for self variables with the rule:

` θ wf
` Zθ wf

where ` θ wf is defined as follows.

44

Definition 10 A module variable environment θ is well-formed, written ` θ wf, if
and only if, for all X in dom(θ), the following two conditions hold.

1. ` θ(X) wf.

2. When ∆(X) = sig B1 . . . Bn endi, then ∀i ∈ {1, . . . , n}, ` θ(X) . θ(Bi).

All the self variables appearing in the program P are superscripted with the
identity substitution, and ` Z id wf holds with this new rule. Hence this new rule
does not affect the type system in practice.

For types τ1 and τ2, we write ` τ1 ≡τ τ2 to mean that τ1 and τ2 expand into
equivalent types, that is, that there are types τ ′

1 and τ ′
2 such that ` τ1 ↓ τ ′

1 and
` τ2 ↓ τ ′

2 and ` τ ′
1 ≡ τ ′

2. It is easy to check that 1) the relation is transitive, that is,
if ` τ1 ≡τ τ2 and ` τ2 ≡τ τ3 then ` τ1 ≡τ τ3, and that 2) if ` τ ≡τ τ ′ and both τ and
τ ′ are located types, then ` τ ≡ τ ′.

Lemma 23 Let θ be in located form and MVars(τ) ⊆ dom(θ). If ` τ ↓ τ ′ and
` θ wf, then ` θ(τ) ≡τ θ(τ ′).

Proof. By induction on the derivation of ` τ ↓ τ ′ and by case on the last rule used.
We show main cases.
[t-typ]We have τ = p.t and ` p ;s p′ and ` p′ 7→ (θ1, struct . . . type t = τ1 . . . endi)
and ` τ1 ↓ τ ′

1 and ` θ1(τ
′
1) ↓ τ ′. By Lemma 21, ` θ(p) ;s θ(p′). We have ` θ(p′) 7→

(θ◦θ1, struct . . . type t = τ1 . . . endi). By induction hypothesis, ` θ◦θ1(τ
′
1) ≡τ θ(τ ′).

[t-tran]We have τ = p.t and ` p ;s X and ∆(X) = sig . . . type t = τ1 . . . endi

and ` τ1 ↓ τ ′. By Lemma 21, ` θ(p) ;s θ(X). By the well-formedness of θ,
` θ(X).t ≡τ θ(τ1). By induction hypothesis, ` θ(τ1) ≡τ θ(τ ′). 2

Lemma 24 Let τ and τ ′ be located types and θ be in located form and MVars(τ) ∪
MVars(τ ′) ⊆ dom(θ). If ` θ wf and ` τ ≡ τ ′, then ` θ(τ) ≡τ θ(τ ′).

Proof. By induction on the derivation of ` τ ≡ τ ′. 2

We say that a type environment Γ is in located form if and only if , for all x
in dom(Γ), Γ(x) is a located type. For a type environment Γ, dom(Γ) denotes the
domain of Γ.

Lemma 25 Let Γ and θ be in located form, and MVars(e) ∪ MVars(τ) ⊆ dom(θ),
and Γ1 be a type environment in located form such that dom(Γ) = dom(Γ1) and, for
all x ∈ dom(Γ), ` θ(Γ(x)) ≡τ Γ1(x). If Γ ` e :: τ and ` θ wf, then Γ1 ` θ(e) :: τ ′

with ` θ(τ) ≡τ τ ′.

45

Proof. By induction on the derivation of Γ ` e :: τ and by case on the last rule used.
Use Lemma 23. 2

Lemma 26 Let θ be in located form and p have located variables and MVars(p) ∪
MVars(B) ⊆ dom(θ). If ` p . B and ` θ wf, then ` θ(p) . θ(B).

Proof. We show the main case. Suppose ` p . val l : τ . We have ` p.l :: τ1 and
` τ ↓ τ2 and ` τ1 ≡ τ2. By Lemma 25, ` θ(p.l) :: τ3 and ` τ3 ≡τ θ(τ1). By Lemma 23,
` θ(τ) ≡τ θ(τ2). By Lemma 24, ` θ(τ1) ≡τ θ(τ2). 2

Lemma 27 Let p have located variables and θ in located form and MVars(p) ⊆
dom(θ). If ` p wf and ` θ wf, then ` θ(p) wf.

Proof. By induction on the derivation of ` p wf and by case on the last rule used. We
show the main case. Suppose p = p1(p2). We have ` p1 wf and ` p2 wf and ` p1 ;s p′1
and ` p2 ;s p′2 and ` p′1 7→ (θ1, (functor(X : sig B1 . . . Bn endj) → Ek)i) and,
for all i in {1 . . . n}, ` p′2 . θ1[X 7→ p′2]Bi. By induction hypothesis, ` θ(p1) wf
and ` θ(p2) wf. By Lemma 21, ` θ(p1) ;s θ(p′1) and ` θ(p2) ;s θ(p′2). We have
` θ(p′1) 7→ (θ ◦ θ1, (functor(X : sig B1 . . . Bn endj) → Ek)i). By Lemma 26, for all
i in {1 . . . n}, ` θ(p′2) . θ ◦ θ1[X 7→ θ(p′2)]Bi.

2

Lemma 28 Let p be in pre-located form. If ` p wf, then ` η(p) wf.

Proof. By induction on the length of p. 2

Lemma 29 Let p have pre-located variables. If ` p wf and ` p ;G q, then ` q wf.

Proof. By induction on the derivation of ` p ;G q and by case on the last rule used.
Use Lemma 27 and 28. 2

Proposition 12 Let p have located variables. If ` p wf and ` p ;s q, then ` q wf.

Proof. By hypothesis, we have ` p ;g p′ and η(p′) = q. By Lemma 15, we have
` p ;G p′. By Lemma 29 and 28, ` q wf. 2

Finally, we show a type preservation property of
vpth→ in Proposition 13.

Lemma 30 Let τ have located variables and θ be in located form and MVars(τ) ⊆
dom(θ). If ` τ ¦ and ` θ wf, then ` θ(τ) ¦.

46

Proof. By induction on the derivation of ` τ ¦ and by case on the last rule used. Use
Lemma 23 and 27. 2

Lemma 31 Let τ have located variables. If ` τ ¦ and ` τ ↓ τ ′, then ` τ ′ ¦.

Proof. By induction on the derivation of ` τ ↓ τ ′ and by case on the last rule used.
We show the main case.
[t-typ]We have τ = p.t and ` p ;s p′ and ` p′ 7→ (θ, struct . . . type t = τ1 . . . endi)
and ` τ1 ↓ τ2 and ` θ(τ2) ↓ τ ′. By Proposition 12, ` p′ wf, hence ` θ wf. By
well-typedness of the program P and by induction hypothesis, we have ` τ2 ¦. By
Lemma 30, ` θ(τ2) ¦. By induction hypothesis, ` τ ′ ¦. 2

We say that a type environment Γ is well-formed, written ` Γ wf, if and only if,
for all x in dom(Γ), ` Γ(x) ¦. For an expression e, we say that e has located variables
if and only if all the self variables contained in e are in located form.

Lemma 32 Let θ and Γ be in located form, and e have located variables, and
MVars(e)∪MVars(Γ) ⊆ dom(θ), and Γ1 be a type environment in located form such
that dom(Γ) = dom(Γ1) and, for all x ∈ dom(Γ), ` θ(Γ(x)) ≡τ Γ1(x). If ` θ wf and
` Γ wf and Γ ` e : τ , then Γ1 ` θ(e) : τ ′ with ` τ ′ ≡τ θ(τ).

Proof. By induction on the derivation of Γ ` e : τ and by case on the last rule used.
We show the main case.
Suppose e = (fun x → e1 : τ1). We have ` τ1 ¦ and ` τ1 ↓ τ2 → τ3 and Γ, x : τ2 ` e1 :
τ4 and ` τ4 ≡ τ3. By Lemma 30, ` θ(τ1) ¦. By Lemma 23, ` θ(τ1) ↓ τ5 → τ6 with
` τ5 ≡τ θ(τ2) and ` τ6 ≡τ θ(τ3). By Lemma 31, ` τ2 ¦. By induction hypothesis,
Γ1, x : τ5 ` θ(e1) : τ7 with ` τ7 ≡τ θ(τ4). By Lemma 24, ` θ(τ4) ≡τ θ(τ3), hence we
have ` τ7 ≡τ τ6. Since both of τ7 and τ6 are located types, we have ` τ7 ≡ τ6. Hence
we have Γ1 ` θ(fun x → e1 : τ1) : τ5 → τ6. 2

Proposition 13 (Type preservation for the reduction
vpth→) Let p have located

variables and contain no module variables. If ` p.l : τ and ` p ; p1 and ` p1 7→
(θ, struct . . . val l = e . . . endi), then ` θ(e) : τ ′ with ` τ ≡ τ ′.

Proof. By Proposition 10, ` p ;s p1. By Proposition 12, ` p1 wf. By hypothesis,
we have ` p.l :: τ , hence we have ` e :: τ1 and ` θ(τ1) ↓ τ . By Lemma 32, we have
` θ(e) : τ2 with ` θ(τ1) ≡τ τ2. Since both τ and τ2 are located types, ` τ ≡ τ2. 2

47

Module expr. E ::= . . .
| (E : S) sealing

Signature expr. S ::= sig (Z) B1 . . . Bn end signature type
| functor(X : S) → S functor type

Specifications S ::= . . .
| module M : S module specification

Figure 19: Syntax for the module language with type abstraction

8 Towards type abstraction

In this section, we informally present an extension of Remonade with type abstrac-
tion, by giving concrete syntax. A formal account for the extension, including a type
system and a soundness proof, is found in [21].

We present the syntax for the module language with type abstraction in Fig-
urere 19, which only contains constructions that differ from those given in Figurere 2.

Now a module expression can be a sealing of the form (E : S), which seals
the module expression E with the signature S. To seal functors with signatures, we
introduce functor types; to seal nested structures, we allow signature types to contain
module specifications. Note that signature types are extended with declarations of
self variables. Using the self variables, components of signatures can refer to each
other recursively.

Returning to the example in Figurere 1, we can now seal the module TreeForest

with the opaque signature:

sig (Z)

module Tree : sig type t val split : t → Z.Forest.t end

module Forest : sig

type t val incr : Z.Tree.t → t → t val sweep : t → t end

end

We reiterate that this opaque signature is sufficient to type checking TreeForest and
to enforce type abstraction; our type system does not require programmers to write
the transparent signature of TreeForest in addition to the opaque one, like other
type systems do.

Having given the concrete syntax, it would be clear that the type expansion
algorithm presented in the paper can detect cyclic type specifications in signatures,
in the same way that it detects cyclic type definitions in modules.

48

9 Related work

Much work has been devoted to investigating recursive module extensions of the ML
module system. Notably, type systems and initialization of recursive modules pose
non-trivial issues, and have been the main subjects of study. Here, we first examine
existing work on these issues, then give an overview of work on mixin modules, another
proposal for introducing recursion to ML-like module systems.

9.1 Type systems

To the best of our knowledge, no formal work has been examined a type system
for recursive modules with applicative functors, except for the experimental imple-
mentation in Objective Caml [18], nor proposed type inference for recursive modules
whether functors are applicative or generative. Type abstraction inside recursive
modules is not in the scope of this paper. Hence, we do not give a detailed compari-
son in that respect, but defer it to [21].

The experimental implementation of recursive modules in Objective Caml is most
related to our work. Indeed, we followed it in large part when designing Remonade.
O’Caml supports a highly expressive core language and a strong type inference al-
gorithm, which are one of our motivations for the effort to enable type inference.
(We think the “-i” option of O’Caml compiler, which infers signatures of modules,
is useful during the development of programs. Our experience with type inference
in ML is that one often writes a module without its signature, and then eventually
writes a signature by editing the result of type inference.)

The type checker of O’Caml does not terminate for the program:

module rec F :

functor(X : sig type t end) → sig type t = F(F(X)).t end

= functor(X : sig type t end) → struct type t = F(F(X)).t end

This is the same functor we examined in Example 1 from Section 5. The potential
for divergence when typing O’Caml modules is well-known, but is assumed to be a
rare phenomenon in practice. Recursive modules seem to make the problem much
more acute. Moreover, the type checker accepts the following program, which we
examined in Section 6.3.1.

49

module G : functor(X : sig type t end) →
sig

type t = X.t * X.t

type u = [‘B of t | ‘C of G(G(X)).u]

end

= functor(X : sig type t end) →
struct

type t = X.t * X.t

type u = [‘B of t | ‘C of G(G(X)).u]

end

module M = G(struct type t = int end)

A use of the type M.t can cause divergence when the type checker needs to reason
about the type. Since O’Caml does not support type inference for recursive modules,
one may have to write duplicate signatures for the same module as we examined in
Section 2.

Crary, Harper and Puri [4] (revisited later in [7]) gave a foundational type theo-
retic account of recursive modules. They analyzed recursive modules in the context of
a phase-distinction formalism [12], by introducing a fixed-point operator for modules
and recursively dependent signatures. Their type system requires fully transparent
signature annotations for recursive modules, where all components of the modules
must be made public. Due to this requirement, one cannot enforce type abstraction
inside recursive modules.

Russo [25] proposed a type system for recursive modules, which is implemented in
Moscow ML [24]. In Russo’s system, self variables must be annotated with forward
declarations as we described in Section 2. One can not enforce type abstraction inside
recursive modules in his system.

Dreyer [6] gave a theoretical account for type abstraction inside recursive modules.
In particular, he investigated generative functors in the context of recursive modules,
by proposing a “destination passing” interpretation of type generativity. As we dis-
cussed in Section 1, his system restricts uses of structural types. Programmers have
to write duplicate signatures for the same module as in the other systems.

9.2 Initialization

Boudol [3], Hirschowitz and Leroy [14], and Dreyer [5] have proposed type systems
which ensure that initialization of recursive modules does not try to access compo-
nents of modules that are not yet evaluated. They are interested in the safety of
initialization, hence their modules do not have type components.

50

Their type systems judge the two programs:

struct (Z) val l = Z.m val m = Z.l end

and

struct (Z) val l = fun x → x + Z.m val m = Z.l(3) end

to be ill-typed. In both programs, evaluation of the component m cyclically requires
evaluation of itself. Our type system, in particular the type reconstruction algorithm,
can detect the cycle for the former program, but not for the latter.

From a technical point of view, the reconstruction algorithm and their type sys-
tems are orthogonal. Hence, we think that it is possible to combine both to obtain a
stronger type system. This looks like a promising avenue for future work.

9.3 Mixin modules

Mixin modules have been investigated as a new construct for module languages,
where recursive linking is primal and hierarchical linking is special.

Duggan and Sourelis [8, 9] proposed mixin modules specifically for the Standard
ML language. Their mixin modules can split individual definitions of a datatype and
a function into separate mixins: constructors of a datatype can be defined in several
mixins; a function defined by cases on a datatype can be defined in several mixins,
each mixin defining only certain cases. An operator for linking mixins is provided, to
stitch together these constructors and cases to form a single datatype definition and
a single function definition. Although we share the same motivation in principle, the
ways we address them are rather different.

Ancona and Zucca [2] developed a theory for mixin modules in a call-by-name
setting. The work focuses on value level recursion of mixin modules, and is closely
related to work on initialization of recursive modules.

Odersky et al. designed a calculus, called νObj [22], for objects and classes,
which is implemented in Scala [1]. Although the concrete syntax is rather different,
νObj supports most mechanisms of ML-modules, including higher-order functors and
nested structures with type components. It also allows recursion between modules.
Remonade and νObj is closely related in that the path expansion plays a crucial role
in defining type equality. The type system of νObj is undecidable. It traces type
abbreviations in the intuitive way; this is a reason for the undecidability since there
is the potential of cyclic type definitions.

51

10 Conclusion and Future work

In this paper, we presented a type system for recursive modules, which can recon-
struct the necessary type information during type checking, instead of relying on
signature annotations from programmers. The type system is provably decidable
and sound for a call-by-value operational semantics.

The main contribution of the paper is the expansion algorithms, which are prov-
ably terminating and can resolve path references. In addition to that the algorithms
enable type inference, they can also detect cyclic type definitions in recursive mod-
ules. Using the algorithms, we designed a decidable judgment for type equivalence.

The technical development of the paper constitutes the basis of the type system
we develop in [21], in which we extend Remonade with type abstraction.

There is still a lot of work to be done to obtain a fully practical system. Here we
give a brief overview of ongoing and future work.

10.1 Type inference for the core language

We can define a type inference algorithm for the core language by combining a stan-
dard type inference algorithm and an equivalent of the type reconstruction algorithm.
We have to be careful about polymorphism and well-formedness. To obtain as much
polymorphism as possible, we need to determine the best order for type inference.
The equivalent of the reconstruction algorithm returns, instead of a type, the order
along which it looks up value components in recursive modules during the recon-
struction. Using this order, we can build a call graph of functions (represented by
a directed graph), which expresses how functions in modules depend on each other.
This graph gives us useful information to control inference: the strongly connected
components of the graph indicate sets of value components whose type should be
inferred simultaneously, referring to each other monomorphically; by topologically
sorting the connected components, we can generalize types in a connected compo-
nent before moving on to typing the next one. We must also check for well-formedness
of types, as module variables should not escape their scope. Explicit type annotations
can be used to break dependencies in the call graph, and allow polymorphic recur-
sion. Note that these annotations cannot be completely avoided, as type inference
for polymorphic recursion is known to be undecidable [13].

52

10.2 Separate type checking

Although we have not discussed this in the paper, the type system allows separate
type checking. In short, we only have to extend the look-up judgment (Figure 4) so
that the judgment informs the type system of signatures of modules which are type
checked separately.

10.3 Taking fixed-points of functors

The call-by-value strategy of the ground normalization disables programmers from
taking fixed-points of functors. For instance, assume the functor F defined as:

module F = functor(X : sig type t val f : t → int end) →
struct

type t = A | B of X.t

let f = fun x → case x of A ⇒ 0 | B y ⇒ 1 + X.f y

end

The type system of the paper cannot type the following module definition, since the
ground normalization cannot safely expand the module path F(M). module M =

F(M)

When we extend Remonade with type abstraction as explained in Section 8, the ex-
tended type system can type the definition below.

module N = (F(N) : sig type t val f : t → int end)

In short, by writing signatures explicitly, one can break possible cycles in type def-
initions that may arise from connecting the result of the instantiation of F to the
argument.

This style of programming is useful for the development of extensible programs.
In [21], we give a concise and type safe solution to a variation on the expression
problem [27] using this style; we define open recursion using functors, and close
the recursion by taking fixed-points of these functors. This solution also requires
applicative functors, which comes in support of our design choice.

10.4 Lazy modules

The operational semantics presented in the paper uses lazy evaluation for both mod-
ules and their value components, in the sense that only components of modules that
are accessed are evaluated, and the evaluation is triggered at access time. This se-
mantics simplifies the soundness statement and its proof. It might not be natural

53

for practical programming, however. Currently we are investigating lazy modules
with eager value components, that is, to keep modules lazy but evaluate all the value
components (but not module components) of a module at once, triggered by the first
access to some component of the module. Lazy semantics of modules would allow
flexible uses of recursive modules; eager semantics of value components would give
programmers a way to initialize recursive modules. Moreover, this semantics seems
to give us a uniform way to handle statically and dynamically loaded modules, that
is, we can trigger initialization of a module by accessing its components whether the
module is loaded statically or dynamically. We believe that our expansion algorithms
are useful for efficient and safe implementation of lazy recursive modules. We need
more investigation on this topic.

References

[1] P. Altherr, E. Burak, N. Mihaylov, M. Odersky, M. Schinz, and M. Zenger.
The Scala Programming Language, version 2.0. Software and documentation
available on the Web, http://scala.epfl.ch/, 2006.

[2] D. Ancona and E. Zucca. A Calculus of Module Systems. Journal of Functional
Programming, 12(2):91–132, 2002.

[3] G. Boudol. The recursive record semantics of objects revisited. Journal of
Functional Programming, 14(3):263–315, 2004.

[4] K. Crary, R. Harper, and S. Puri. What is a Recursive Module? In ACM
SIGPLAN Conference on Programming Language Design and Implementation.
ACM Press, 1999.

[5] D. Dreyer. A Type System for Well-Founded Recursion. In ACM SIGPLAN
Symposium on Principles of Programming Languages. ACM Press, 2004.

[6] D. Dreyer. Recursive Type Generativity. In ACM SIGPLAN International
Conference on Functional Programming. ACM Press, 2005.

[7] D. Dreyer, R. Harper, and K. Crary. Toward a Practical Type Theory for
Recursive Modules. Technical report, Carnegie Mellon University, 2001.

[8] D. Duggan and C. Sourelis. Mixin modules. In ACM SIGPLAN International
Conference on Functional Programming. ACM Press, 1996.

54

[9] D. Duggan and C. Sourelis. Parameterized Modules, Recursive Modules and
Mixin modules. In ACM SIGPLAN Workshop on ML, 1998.

[10] J. Garrigue. Programming with polymorphic variants. In ACM SIGPLAN Work-
shop on ML, 1998.

[11] R. Harper and M. Lillibridge. A Type-Theoretic Approach to Higher-Order
Modules with Sharing. In ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages, pages 123–137, 1994.

[12] R. Harper, J. C. Mitchell, and E. Moggi. Higher-order modules and the phase
distinction. In ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, pages 341–354, 1990.

[13] F. Henglein. Type Inference with Polymorphic Recursion. ACM Transactions
on Programming Languages and Systems, 15(2):253–289, 1993.

[14] T. Hirschowitz and X. Leroy. Mixin modules in a Call-by-Value Setting. In Eu-
ropean Symposium on Programming:LNCS, volume 2305, pages 6–20. Springer-
Verlag, 2002.

[15] X. Leroy. Manifest types, modules, and separate compilation. In ACM SIG-
PLAN Symposium on Principles of Programming Languages. ACM Press, 1994.

[16] X. Leroy. Applicative functors and fully transparent higher-order modules. In
ACM SIGPLAN Symposium on Principles of Programming Languages. ACM
Press, 1995.

[17] X. Leroy. A modular module system. Journal of Functional Programming,
10(3):269–303, 2000.

[18] X. Leroy, D. Doligez, J. Garrigue, and J. Vouillon. The Objective Caml system,
release 3.09. Software and documentation available on the Web, http://caml.
inria.fr/, 2005.

[19] D. MacQueen. Modules for Standard ML. In Proc. the 1984 ACM Conference
on LISP and Functional Programming, pages 198–207. ACM Press, 1984.

[20] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997.

55

[21] K. Nakata and J. Garrigue. Recursive modules for programming. Technical
Report 1546, Kyoto University Research Institute for Mathematical Sciences,
2006.

[22] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects
with Dependent Types. In European Conference on Object-Oriented Program-
ming:LNCS. Springer-Verlag, 2003.

[23] Didier Rémy and Jérôme Vouillon. Objective ML: An effective object-oriented
extension to ML. Theory And Practice of Object Systems, 4(1):27–50, 1998.

[24] S. Romanenko, C. Russo, N. Kokholm, and P. Sestoft. Moscow ML, 2004.
Software and documentation available on the Web, http://www.dina.dk/

~sestoft/mosml.html.

[25] C. Russo. Recursive Structures for Standard ML. In ACM SIGPLAN Interna-
tional Conference on Functional Programming. ACM Press, 2001.

[26] C. Stone. Type definitions. In Advanced Topics in Types and Programming
Languages, chapter 9. The MIT Press, 2004.

[27] P. Wadler. The expression problem. Java Genericity maling list, 1998. http:

//www.cse.ohio-state.edu/~gb/cis888.07g/java-genericity/20.

56

