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Abstract

In most cases where it had been shown to exist the derived McKay
correspondence D(Y )

∼

−→ DG(Cn) can be written as a Fourier-Mukai
transform which sends point sheaves of the crepant resolution Y to
pure sheaves in DG(Cn). We give a sufficient (and necessary) condi-
tion for an object of DG(Y × Cn) to be the defining object of such
a transform. We then use it to construct first example of the de-
rived McKay correspondence for a non-projective crepant resolution of
C3/G. Along the way we extract some more geometric sense out of the
Intersection Theorem and learn to explicitly compute θ-stable families
of G-constellations and their direct transforms.

1 Introduction

It had been observed by McKay in [McK80] that the representation graph
(better known now as McKay quiver) of a finite subgroup G of SL2(C) is
one of the extended Dynkin graphs of affine Lie algebras of type ADE and
that the configuration of irreducible exceptional divisors on the crepant res-
olution of C2/G is dual to the regular version of the same Dynkin graph.
The arising bijective correspondence between nontrivial irreducible repre-
sentations of G and irreducible exceptional divisors on Y became known as
the (classical) McKay correspondence. It has enjoyed a number of restate-
ments and generalisations: [GSV83], [IN00],[Rei97], [IR96] to name but a
few. One of the most far-reaching of them has been the derived McKay cor-
respondence conjecture, which had appeared in its initial form in M. Reid’s
famous preprint [Rei97]. It can be stated as follows:

Conjecture 1.1. Let G be a finite subgroup of SLn(C) and let Y be a crepant
resolution of Cn/G, if one exists. Then

D(Y )
∼
−→ DG(Cn) (1.1)

where D(Y ) and DG(Cn) are bounded derived categories of coherent sheaves
on Y and of G-equivariant coherent sheaves on Cn, respectively.
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To date and to the extent of our knowledge this conjecture has been
settled for the following situations:

1. G ⊂ SL2,3(C); Y the distinguished crepant resolution G-Hilb;
([BKR01], Theorem 1.1).

2. G ⊂ SL3(C) abelian; Y any projective crepant resolution;
([CI04], Theorem 1.1).

3. G ⊂ SLn(C) abelian; Y any projective crepant resolution;
([Kaw05], special case of Theorem 4.2).

4. G ⊂ Sp2n(C); Y any symplectic (crepant) resolution;
([BK04], Theorem 1.1).

In the case 3 the construction is not direct and it isn’t clear what form does
equivalence (1.1) take, but in each of the cases 1, 2 and 4, where (1.1) is
constructed directly, we observe that the constructed functor possesses the
following rather special property: it sends the point sheaves Oy of Y to pure
sheaves (i.e. complexes with cohomologies concentrated in degree zero) in
DG(Cn). Another though less special (compare to [Orl97], Theorem 2.18)
property shared by the functors constructed in these three cases is that each
can be written as a Fourier-Mukai transform ΦE(−⊗ρ0) (see Definition 3.3)
for some object E ∈ DG(Y × Cn).

A trivial application (Proposition 3.6) of established machinery of Fourier-
Mukai transforms shows that if an equivalence (1.1) is a Fourier-Mukai trans-
form ΦE(− ⊗ ρ0) which sends point sheaves to pure sheaves, the defining
object E ∈ DG(Y ×Cn) is necessarily a pure sheaf which is a flat family of
G-constellations (certain finite-length coherent G-sheaves on Cn, cf. Section
3.1) over Y . Moreover, the fibers of E have be simple (G-EndCn(E|y) = C

for all y ∈ Y ), orthogonal in all degrees (G-Exti
Cn(E|y1

, E|y2
) = 0 if y1 6= y2)

and the Kodaira-Spencer map has to be injective.
In this paper we give a converse result: given an arbitrary flat family F

of G-constellations over Y , we give a condition on F sufficient for the functor
ΦF (−⊗ρ0) to be an equivalence (1.1). Somewhat of a surprise, in view of the
above-listed properties that F would a posteriori have to possess, is that this
condition only asks for the non-orthogonality locus of F to be of high enough
codimension. Simultaneously, we show that any scheme which supports a
sufficiently large and yet sufficiently orthogonal family of G-constellations
has to be a crepant resolution of Cn/G. The precise statement is:

Theorem 1.1. Let G be a finite subgroup of SLn(C). Let Y be an ir-
reducible separated scheme of finite type over C and let F be a family of
G-constellations on Y such that:

1. Forgetful map πF : Y → Cn/G, which sends each G-constellation to
its support, is well-defined and is a birational proper morphism.
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2. For every 0 ≤ k < (n + 1)/2, the codimension of the subset

Nk = {(y1, y2) ∈ Y × Y \∆ | G-Extk
Cn(F|y1

,F|y2
) 6= 0} (1.2)

in Y × Y is at least n + 1− 2k. It is convinient to think of Nk as the
locus of the degree k non-orthogonality in F .

Then Y is smooth, πF crepant and the functor ΦF (−⊗ρ0) is an equivalence
of categories D(Y )

∼
−→ DG(Cn).

The proof is based on the ideas introduced in [BO95] and [BKR01],
particularly on the Intersection Theorem trick introduced in the latter. But
we take a different approach to Grothendieck duality issues arising when
constructing the left adjoint of ΦF(− ⊗ ρ0), we squeeze yet more mileage
out of the Intersection Theorem as the proof progresses and in the end we
appeal to [Log06], Proposition 1.5 which states that outside the exceptional
set of Y any family of G-constellations has to be locally isomorphic to the
universal family of G-clusters. Then the locus of non-simplicity of the objects
of F and non-injectivity of its Kodaira-Spencer map turns out to have too
high a codimension to exist at all and the result quickly follows.

Thus the question of an existence of derived McKay correspondence (1.1)
which sends point sheaves to pure sheaves is reduced to the question of
an existence of a flat family of G-constellations satisfying nonorthogonality
condition of Theorem 1.1. This is particularly important for the case of
G being abelian, where all the flat families of G-constellations on a given
resolution Y of Cn/G had been classified and their number (up to a twist
by a line bundle) shown to be finite and non-zero ([Log06], Theorem 4.1).

When n = 3 the conditions of Theorem 1.1 reduce to only involve readily-
computable (cf. Section 4.5) assumptions on orthogonality in degree 0:

Corollary 1.2. Let G be a finite subgroup of SL3(C), let π : Y → Cn/G
be a crepant resolution. Denote by E1, . . . , En the irreducible exceptional
surfaces of π. A point of an intersection Ei1 ∩ · · · ∩Eik is said to be general
if it belongs to no Ei other than Ei1 , . . . , Eik .

Let F be a family of G-constellations on Y such that its forgetful map
πF agrees with π. If the fiber of F at a general point of any surface Ei is
orthogonal in degree 0 to the fibers of F at general points of any Ej (including
case j = i) and of any curve Ek ∩El, then ΦF (−⊗ ρ0) is an equivalence of
categories D(Y )

∼
−→ DG(Cn).

We then compute (Section 4) the following example: G is set to be
the abelian subgroup of SL3(C) known as 1

6 (1, 1, 4) ⊕ 1
2(1, 0, 1) (see Section

4.1) and Y to be a certain non-projective crepant resolution of C3/G (see
Section 4.2). We then construct a family of G-constellations over Y which
we demonstrate to satisfy the assumptions of Corollary 1.2. This gives, as
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far as we know, the first example of the derived McKay correspondence for
a non-projective crepant resolution of C3/G.

It also answers the following important question. Above mentioned prop-
erties of simplicity, orthogonality and injectivity of the Kodaira-Spencer
map, which a family F must possess if ΦF (− ⊗ ρ0) is an equivalence, are
common of the families obtained through a moduli construction. At present
the only such construction known for G-constellations comes to us from the
notion of θ-stability (see [CI04]). In dimension 3 the methods of [BKR01]
apply out of the box to show that for any universal family Mθ of θ-stable
G-constellations ΦMθ

(−⊗ρ0) is an equivalence. It is natural to ask whether
there is any family F for which ΦF (−⊗ρ0) is an equivalence and which isn’t
one of Mθ. The computation in Section 4 answers it affirmatively, for due
to the nature of the GIT construction involved any fine module space of θ-
stable G-constellations is projective over Cn/G. As the family constructed
in Section 4 is constructed on a non-projective resolution it can’t be one of
Mθ. Thus there exists a class of families which exhibit the properties usual
of a moduli family without being one, which suggests there may be a more
general notion of stability on G-constellations waiting to be discovered.

The paper is organised as follows: Section 2 is abstract derived category
theory on a locally noetherian scheme X. We propose a generalisation of
the concept of the homological dimension of E ∈ Db

coh(X) which we call
Tor-amplitude and use it to show that inequality

hom. dim. E ≥ codimX Supp(E)

of [BM02], Corollary 5.5 refines to

Tor-ampE − codimX SuppE ≥ coh-ampE

Section 3 contains the proofs of Theorem 1.1 and of Corollary 1.2. In Section
4 we explicitly construct the derived McKay correspondence for a particular
non-projective crepant resolution of C3/G. In the Appendix we prove a
technical result which allows to explicitly compute the universal families
Mθ of θ-stable G-constellations and their direct transforms. It is used to
drastically reduce the amount of computations necessary in Section 4.

Acknowledgements: The author would like to express his gratitude to
S. Mukai, D. Kaledin, D. Orlov and Y. Bondal for useful discussions while
the paper was written. He would also like to thank A. Craw for observing a
crucial link with the work in [CMT05a], [CMT05b] which led to the result
contained in the Proposition 5.1. This paper was completed during the
author’s stay at RIMS, Kyoto, and one would like to thank everyone at the
institute for their hospitality.
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2 Cohomological and Tor amplitudes

We clarify terminology and introduce some persistent notation: by a point of
a scheme we shall mean both closed and non-closed points unless specifically
mentioned otherwise. Given a point x on a scheme X we shall write (Ox,mx)
for the local ring of x, k(x) for the residue field Ox/mx and ιx for the point-
scheme inclusion Spec k(x) ↪→ X. Given an irreducible closed set C ⊂ X,
we shall write xC for the generic point of C and shall frequently abuse the
above notation by writing (OC ,mC) for the local ring of xC .

All complexes are cochain complexes. Given a right (resp. left) exact
functor F between two abelian categories A and B, we denote by LF (resp.
RF ) the left (resp. right) derived functor between the appropriate derived
categories, if it exists, and by Li F (•) (resp. Ri F (•)) the −i-th cohomology
of LF (•) (resp. the i-th cohomology of RF (•)).

Lemma 2.1. Let X be a locally noetherian scheme. Let F be a coherent
sheaf on X. Let C be an irreducible component of the support of F , then
for every point x ∈ C, we have

Li ι∗xF 6= 0 for 0 ≤ i ≤ codimX(C) (2.1)

Proof. Recall (cf. [Mat86], §19) that if a minimal free resolution L• of a
finitely generated module M for a local ring (R,m, k) exists, then

dimk Tori(M,k) = rkLi

Since X is locally noetherian, minimal free resolutions of F exist in all local
rings. Therefore, as the localisation functor is exact, it suffices to prove that
the length of the minimal free resolution of F in the local ring (OC ,mC , kC)
of C is at least codimX(C).

Write FC for the stalk of F at the generic point of C. It is a finite-
length OC -module: consider the standard filtration ([Ser00], I, §7, Theorem
1) of FC by submodules 0 = M0 ⊂ · · · ⊂ Mn = FC with each Mi/Mi−1

isomorphic to OC/p for some p ∈ SuppOC
(FC). As the defining ideal of C is

minimal in SuppX(F), SuppOC
(FC) consists of just mC . So each Mi/Mi−1

is isomorphic to kC and (Mi) is a finite composition series for FC .
As codimX(C) = dim(OC), the result now follows immediately by taking

a minimal free resolution of FC and applying to it the New Intersection
Theorem (see, for instance, [Rob98], Theorem 6.2.2) which states that for
any local ring R the length of any nonexact complex of free R-modules with
finite-length homologies is at least dimR.

Lemma 2.2. Let X be a locally noetherian scheme. Let F be a coherent
sheaf on X of finite Tor-dimension. For any p ∈ Z define

Dp = {x ∈ X | Li ι∗xF 6= 0 for some i ≥ p} (2.2)

Then each Dp is closed and codimX(Dp) ≥ p.
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Proof. It suffices to prove both claims for the case X = Spec R with R
noetherian. Write F for Γ(F). We have Lp ι∗xF = Torp(F,k(x)). The first
claim follows from the upper semicontinuity theorem ([GD63], Théorème
7.6.9) or directly from [GD63] Proposition 7.4.4 which implies that for any
i ∈ Z the points x where any flat resolution of F after being localised to the
local ring Ox can be truncated after i-th term form an open set in Spec R.

For the second claim let C be any irreducible component of Dp, xC be a
generic point of C and let FC be the localisation of F to the local ring OC .
Then Torp

OC
(FC ,k(xC)) 6= 0 by the defining property of Dp. We have quite

generally ([Mat86], §19, Lemma 1)

proj dimOC
FC = sup{i ∈ Z | Tori

OC
(FC ,k(xC))}

thus proj dimOC
FC ≥ p. By Auslander-Buchsbaum equality we have

depthOC
OC = proj dimOC

FC + depthOC
FC

and so we obtain codimX C = dimOC ≥ depthOC
OC ≥ p as required.

The main idea behind the proof of the following proposition we owe to
Bondal and Orlov in [BO95], Proposition 1.5.

Proposition 2.3. Let X be a locally noetherian scheme and F ∈ Db
coh

(X)
an object of finite Tor-dimension. Denote by Hi the sheaf H i(F ).

Then for any point x ∈ X, we have

− sup{i ∈ Z | x ∈ SuppHi} = inf{j ∈ Z | Lj ι∗xF 6= 0} (2.3)

Moreover, for any irreducible component C of SuppF , we have:

codimX C − inf{i ∈ Z | C ⊆ SuppHi} = sup{j ∈ Z | Lj ι∗xC
F 6= 0} (2.4)

Proof. Fix a point x ∈ X. The main ingridient of the proof is the calculation
of higher pullbacks Lj ι∗xF via the standard spectral sequence (eg. [GM03],
Proposition III.7.10) associated to the filtration of L ι∗xF by the rows of the
Cartan-Eilenberg resolution of F :

E−p,q
2 = Lp ι∗x(Hq)⇒ Eq−p

∞ = Lp−q ι∗x(F ) (2.5)

Denote by h and l the highest and the lowest non-zero rows of E••
2 . As

all rows above row h and all columns to the right of column 0 in E••
2 consist

entirely of zeroes we conclude by inspection of the complex that En
∞ = 0 for

all n > h and Eh
∞ = E0,h

2 = Hh|x. This gives (2.3).
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Figure 1

To obtain (2.4) let x be the generic point of C. Observe that C is an
irreducible component of Hl by the defining property of l. Denote by d the
codimension of C. By Lemma 2.2, the set of points y ∈ X, such that there is
a non-zero Lp ι∗y(H

q) with p > d, is closed and of codimension at least d+1.
Then this set can not contain x for the closure of x is C whose codimension
is d. Hence all columns to the left of column d in E••

2 consist entirely of
zeroes. As all the rows below l consist of zeroes by the defining property of
l we conclude that En

∞ = 0 for all n > d − l and E l−d
∞ = E−d,l

2 = Ld ι∗xH
l.

And by Lemma 2.1, Ld ι∗xH
l 6= 0. This gives (2.4).

Definition 2.4. Let E• be a cochain complex of abelian groups. Define its
cohomological amplitude, denoted by coh-amp(E•), to be the length of the
minimal interval in Z containing the set

{i ∈ Z | H i(E•) 6= 0} (2.6)

If no such interval exists we say that coh-amp(E) =∞.

Trivially coh-amp(E•) is the minimal length of a bounded complex quasi-
isomorphic to E•, if any exist, and infinity, if none do.

Definition 2.5. Let R be a ring and E• be a cochain complex of R-modules.
Define its Tor-amplitude, denoted by Tor-amp(E•), to be the length of the
minimal interval in Z containing the set

{i ∈ Z | ∃ A ∈ R-Mod such that Tori
R(E•, A) 6= 0} (2.7)

If no such interval exists we say that Tor-amp(E) =∞.

If X is a quasi-projective scheme and E an object of Db
coh(X), Tor-amp(E)

is the same as homological dimension of E introduced in [BM02]. It can be
seen with the following lemma, an analogue of [BM02], Proposition 5.4:
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Lemma 2.6. Let X be a locally noetherian scheme and E an element of
Db

coh
(X). For any k ∈ Z the following are equivalent:

1. E is quasi-isomorphic to a complex of flat sheaves of length k.

2. Tor-amp(E) ≤ k.

3. There exists an interval of length k in Z containing the set

{i ∈ Z | ∃ x ∈ X such that Li ι∗x(E) 6= 0} (2.8)

Proof. Implications 1 ⇒ 2 ⇒ 3 are trivial, it suffices to prove 3 ⇒ 1. Let
n, k ∈ Z be such that the interval [−n− k,−n] contains the set (2.8). Then
(2.3) and (2.4) of Proposition 2.3 show that H i(F ) = 0 unless i ∈ [n, n + k].
As OX -Mod has resolutions by flat modules there exists a complex F • of
flat sheaves quasi-isomorphic to E and with Fi = 0 for all i > n + k. It
remains to show that we can truncate F • at degree n and keep it flat, i.e.
that the sheaf F n/ ImF n−1 is flat. But as H i(F •) = 0 for i < n, the complex

· · · → F n−2 → F n−1 → F n → 0→ . . .

is a flat resolution of F n/ ImF n−1. Thus L1 ι∗x(F n/ Im F n−1) = L−n+1 ι∗x(E)
and so vanishes for all x ∈ X by assumption. The result follows.

Proposition 2.7. Let X be a locally noetherian scheme, E ∈ Db
coh

(X) an
object of finite Tor-dimension and C an irreducible component of the support
of E. Denote by EC the localisation of E to the local ring OC . Then

Tor-ampEC − codimC = coh-amp EC

NB: In other words for a sufficiently general point x on C we have
Tor-ampEx = coh-amp EC + codimC.

Compare also to the inequality

hom.dim.E ≥ codimC

in [BM02] and [BKR01].

Proof. We apply Proposition 2.3 to Spec OC and FC . Denote by H i the
i-th cohomology of FC . In Spec OC the support of FC is just {mC}. So
applying (2.3) and (2.4) to mC and subtracting the former equality from the
latter we get:

codimSpec OC
mC − inf{i ∈ Z | mC ∈ SuppH i}+ sup{k ∈ Z | mC ∈ SuppHk}

= sup{j ∈ Z | Torj(FC ,k(mC)) 6= 0} − inf{l ∈ Z | Torl(FC ,k(mC)) 6= 0}

The right-hand side is precisely Tor-ampFC (Lemma 2.6) and the left-hand
side, noting that mC ∈ SuppHk(FC) if and only if Hk(FC) 6= 0, equals to
codimX C − coh-ampFC . The result follows.
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Proposition 2.8. Let X be a locally noetherian scheme and E ∈ Db
coh

(X)
an object of finite Tor-dimension. Then

Tor-ampE − codimX SuppE ≥ coh-ampE

NB: For a quick example of this inequality being strict, consider X = A1

and F being a pure sheaf formed by taking a direct sum of OX with the
skyscraper sheaf of any closed point.

Proof. Write l and h for the infimum and the supremum, respectively, of
{i ∈ Z | H i(E) 6= 0}. Let F • be a minimal length flat sheaf complex quasi-
isomorphic to E and write n and m for the infimum and the supremum,
respectively, of {i ∈ Z | F i 6= 0}. Observe that for any x ∈ X

n ≤ inf{i ∈ Z | Li ι∗xE 6= 0} ≤ sup{i ∈ Z | Li ι∗xE 6= 0} ≤ m

With this in mind, if we apply (2.3) of Proposition 2.3 to any point of
SuppHh(E), we obtain

−h ≥ n

Now let C be any irreducible component of SuppH l. Even though C might
not be an irreducible component of SuppE, the argument of Proposition 2.3
applies to it unchanged to yield (2.4). Therefore

m ≥ codimX C − l

Adding the two inequalities, rearranging and noting that codimX C ≥ codimSuppE,
we obtain

(m− n)− codimSuppE ≥ (h− l)

as required.

3 Derived McKay correspondence

Due to the index space becoming of essence we shall adopt the following
shorthand throughout this section : given a scheme X by simply D(X) we
shall mean Db

coh(X), the full subcategory of (unbounded) derived category of
OX -Mod consisting of complexes with bounded and coherent cohomology.

3.1 G-constellations

For S a scheme of finite type over C and H a finite group acting on S on
the left by automorphisms an H-sheaf is a sheaf E of OS -modules equipped
with a lift of the H-action to E . For technical details see the exposition
in [BKR01], Section 4. We shall denote by OS-ModH (resp. QCohH S,
CohH S) the abelian category of H-sheaves (resp. quasi-coherent, coherent
H-sheaves) on S and by DG(S) the category Db

coh(OS-ModH).
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Definition 3.1. Let G be a finite subgroup of GLn(C). A G-constellation
is a coherent G-sheaf V on Cn whose global sections Γ(V) form a regular
representation Vreg of G.

If W is another G-constellation we say that V and W are orthogonal in
degree k if G-Extk

Cn(V,W) = G-Extk
Cn(W,V) = 0.

Let now Y be a scheme of finite type over C. We endow Y with the
trivial G-action, thus we can speak of G-sheaves on Y and on Y × Cn.

Definition 3.2. By a family of G-constellations parametrised by Y we shall
mean an object F of CohG(Y ×Cn) which is flat over Y and whose fiber at
every closed point of Y is a G-constellation.

Given two subsets C and C ′ of Y we say that they are orthogonal in
degree k in F if for every closed y ∈ C and y ′ ∈ C ′, G-constellations F|y and
F|y′ are orthogonal in degree k. We shall say that family F is orthogonal in
degree k, if Y is orthogonal to Y in degree k in F .

The support of any G-constellation is a finite union of G-orbits in Cn. If
for every closed point y ∈ Y the support of the fiber F|y is a single G-orbit,
then we have a well-defined ‘forgetful’ map πF : Y → Cn/G which sends
each y ∈ Y to the support of F|y. If well-defined πF is a morphism. This
can be seen as follows: an invariant part of the pushdown πY ∗(F) is a line
bundle on Y which inherits an OY -linear C[x1, . . . , xn]G-module structure
from F . This structure defines a homomorphism C[x1, . . . , xn]G → OY and
the corresponding scheme morphism Y → Cn/G is precisely πF . We call πF

forgetful because it ‘forgets’ the G-constellation structure on F|y and sends
it to just its set-theoretical support.

3.2 Integral transforms

Definition 3.3. Let S1 and S2 be schemes of finite type over C. Let E be an
object of Dqc(S1×S2) of finite Tor-dimension. By an integral transform

ΦE we shall mean a functor from Dqc(S1) to Dqc(S2) defined by

ΦE(−) = RπS2∗(E
L

⊗ π∗
S1

(−)) (3.1)

The object E is called the kernel of the transform. If ΦE is an equivalence
of categories, it is further called a Fourier-Mukai transform.

If a group G acts on S1 and S2, the definition of an integral transform
DG(S1) → DG(S2) is identical. If the group action on S1 is trivial there
is a functor (− ⊗ ρ0) : D(S1) → DG(S1) which gives any sheaf the trivial
G-equivariant structure. In such a case we shall also use terms integral
and Fourier-Mukai transform for the functors D(S1) → DG(S2) of form
ΦE(−⊗ ρ0) where ΦE is some integral transform DG(S1)→ DG(S2).
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Let now G be a finite subgroup of GLn(C), Y a scheme finite over C

equipped with the trivial G-action and F a flat family of G-constellations
on Y . Then F being flat over Y and Cn being non-singular imply that F is
of finite Tor-dimension in DG

qc(Y × Cn).

Lemma 3.4. Let F be a flat family of G-constelations on Y . Then integral
transform ΦF : DG

qc(Y )→ DG
qc(C

n) restricts to a functor DG(Y )→ DG(Cn).

Proof. Since πCn is flat, the pullback π∗
Cn is exact and trivially takes DG(Cn)

to DG(Cn). Since F is of finite Tor-dimension, F
L

⊗ − takes DG(Y × Cn)

to DG(Y ×Cn). Moreover the image Im(F
L

⊗−) lies in the full subcategory
of DG(Y × Cn) consisting of the objects whose support lies within SuppF .

Finally, since SuppF is finite over Y , RπY ∗ takes Im(F
L

⊗ −) to DG(Y )
([GD61], Corollaire 3.2.4).

We shall also need the following general fact on integral transforms:

Lemma 3.5. Let S1, S2 and E be as in Definition 3.3. Let p be a closed
point of S1 × S2. Denote by p1 and p2 the corresponding points in S1 and
S2. Denote by ιp1×S2

the inclusion S2 ↪→ S1 × S2 of the fiber over p1. Then

ΦE(Op1
) = L ι∗p1×S2

E (3.2)

and consequently we have, in D(C-Mod), an isomorphism:

RHomS2
(ΦE(Op1

),Op2
) ' L ι∗p(E)∗ (3.3)

Proof. We have a commutative diagram:

Spec C
ιp2 // S2

��

ιp1×S2// S1 × S2

πS1

��

πS2

##G

G

G

G

G

G

G

G

G

Spec C
ιp1 // S1 S2

By flat base change we have π∗
S1

Op1
= ιp1×S2∗OS2

. By projection formula

E
L

⊗ ιp1×S2∗OS2
= ιp1×S2∗ L ι∗p1×S2

E. We conclude that

ΦE(Op1
) = R πS2∗(E

L

⊗ π∗
S1

Op1
) = R πS2∗ιp1×S2∗ L ι∗p1×S2

E

and the first assertion follows as πS2∗ ◦ ιp1×S2∗ is the identity map.
For the second assertion we use the adjunction of L ι∗p2

and ιp2∗

RHomS2
(ΦE(Op1

),Op2
) = RHomS2

(L ι∗p1×S2
(E), ιp2∗C) =

= RHomC-Mod(L ι∗p(E), C)

noting that ιp1×S2
◦ ιp2

= ιp.

11



3.3 Main results

Proof of Theorem 1.1. We divide the proof into five steps:
Step 1: We claim that ΦF (−⊗ρ0) has a left adjoint (ΨF )G, where ΨF is

a certain integral transform DG(Cn)→ DG(Y ) and (−)G : DG(Y )→ D(Y )
is the functor which takes a G-sheaf to its G-invariant subsheaf.

Recall that ΦF = RπCn∗(F
L

⊗π∗
Y (−)). The main issue is the left adjoint

of π∗
Y (−) as πY , though smooth, is manifestly non-proper. But the support

of F is proper, which we now show to imply π∗
Y (−)

L

⊗F having a left adjoint
DG(Y × Cn) → DG(Y ) of form R πY ∗(− ⊗ E) for some E ∈ DG(Y × Cn).
The claim then follows as RπCn∗ has left adjoint π∗

Cn and (−)G is the left
(and right) adjoint of −⊗ρ0 if G acts trivially on Y ([BKR01], Section 4.2).

To calculate the left adjoint of π∗
Y (−)

L

⊗F we use the methods of Verdier-
Deligne, as per exposition of Deligne in the note titled “Cohomologie a
support propre et construction du foncteur f !” at the end of [Har66]. The
argument is quite general, so instead of Cn we give it for any smooth separa-
ble noetherian scheme M of finite Krull dimension. First we compactify M :
we choose an open immersion M ↪→ M̄ with M̄ smooth and proper [Nag].
Then πY decomposes as an open immersion ι : Y ×M ↪→ Y × M̄ followed
by the projection π̄Y : Y × M̄ → Y . As π̄Y is smooth and proper it is well
known (e.g. [Har66], VII4.3) that the functor R π̄Y ∗ : D(Y × M̄) → D(Y )
has a right adjoint π̄!

Y and that

π̄!
Y (−) = π̄!

Y ∗(−)⊗ π̄∗
MωM̄ [n]

where π̄M : Y × M̄ → M̄ is the projection onto the second component.
On the other hand, for any noetherian scheme S and any open immersion

ι : U → S it is shown ([Har66], Deligne’s note, Proposition 4) that the
left adjoint to the (exact) functor ι∗(−) exists as an (exact) functor ι! from
Coh(U) to a category pro-Coh(S) which (roughly) consists of filtered inverse
limits of objects in Coh(S). The functor ι! is defined as follows: given
A ∈ Coh(U) take any Ā ∈ Coh(S) which restricts to A on U and set

ι!(A) = lim←−I
nĀ (3.4)

where I is the ideal sheaf defining the complement S \ U . Observe that
on sheaves whose support is proper ι! restricts to the ordinary direct image
functor ι∗ : Coh(U) → Coh(S). Indeed if the support of A is proper then
we can take Ā = ι∗(A). Then Supp(Ā) is ι(SuppA) and hence disjoint from
S \ U which implies that IĀ = Ā and so the limit in (3.4) is just ι∗(A).

The two adjunctions described imply together that the functor

π!
Y = ι∗ ◦ π̄!

Y : D(Y )→ D(Y ×M)

has a left adjoint

πY ! = R π̄Y ∗ ◦ ι! : pro -D(Y ×M)→ pro -D(Y )

12



and it’s worth noting that, as is Deligne’s point, these two functors are
independent of the choice of compactification. Now, first we observe that
the above extends straightforwadly to G-sheaves. Then we note that π̄Y ◦ ι
is just πY and π̄M ◦ ι is the composition of πM with M ↪→ M̄ . Hence

π!
Y (−) = π∗

Y (−)⊗ π∗
M (ωM )[n]

Thus the left adjoint of π∗
Y (−)

L

⊗F is

R π̄Y ∗ι!(−⊗ π∗
M (ωM )[n]

L

⊗F∨) : pro -DG(Y × Cn)→ pro -DG(Y ) (3.5)

If, as in our case, the support of F∨ is proper in Y then ι!(−
L

⊗ F∨) =

ι∗(−
L

⊗ F∨). Thus (3.5) restricts to DG(Y ×M) → DG(Y ) as the functor

RπY ∗(−⊗ π∗
M (ωM )[n]

L

⊗F∨). The claim follows.
Step 2: We claim that the composition (ΨF )G ◦ΦF (−⊗ρ0) is an integral

transform ΦQ for some Q ∈ D(Y ×Y ) and that for any closed point (y1, y2)
in Y × Y and any k ∈ Z we have

Lk ι∗y1,y2
Q = G-Extk(F|y1

,F|y2
)∗ (3.6)

That a composition of two integral transforms is itself an integral trans-
form is a standard result first proved by Mukai in [Muk81], Proposition 1.3.
And since G acts on Y trivially, it follows that for any E ∈ DG(Y × Y ) of
finite Tor-dimension

(−)G ◦ ΦE ◦ (−⊗ ρ0) = ΦEG

where EG is the G-invariant part of E. This gives the first assertion.
For the second assertion observe that by (3.2) of Lemma 3.5 for any

y ∈ Y we have Fy = ΦF(Oy ⊗ ρ0). Moreover

L ι∗y1,y2
Q = RHomD(Y )(ΦQ(Oy1

),Oy2
)∗ =

= RHomDG(Cn)(ΦF (Oy1
⊗ ρ0),ΦF (Oy2

⊗ ρ0))
∗

where the first equality is by (3.6) and the second by adjunction of (ΨF )G

and ΦF(−⊗ ρ0). The assertion follows.
Step 3: We claim that Q is a pure sheaf and that its support lies within

the diagonal Y
∆
−→ Y × Y .

First note that since Y ×Y is of finite type over C, it is certainly Jacobson
(see [GD66], §10.3) and so any closed set of Y × Y is uniquely identified by
its set of closed points. We shall implicitly use this property at several points
of the argument below.
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Recall the closed set Nk of (1.2). As the support of any G-constellation
is proper and as ωCn = OCn ⊗ ρ0 as a G-sheaf since G ⊆ SLn(C), Serre
duality applies to yield

G- Extk
Cn(F|y1

,F|y2
) = G- Extn−k

Cn (F|y2
,F|y1

)∗

and so codimNk = codimNn−k for all k.
Let C be an irreducible component of SuppQ. Denote by yC its generic

point, by OC the local ring of yC and by QC the localisation of Q to OC .
For any k denote by Mk the set {y ∈ Y × Y | Lk ι∗yQ 6= 0} and let l and
m be the infimum and the supremum of the set {k ∈ Z | yC ∈ Mk}, thus
Tor-ampOC

QC = m − l (Lemma 2.6). On the other hand, by (3.6) the
closure of Mk \ ∆ is the set Nk, so either yC ∈ ∆ or yC ∈ Nl ∩ Nm. By
assumption of the theorem, the latter would imply that

codimC ≥ codimNl ≥ n− 2l + 1

codimC ≥ codimNm = codimNn−m ≥ 2m− n + 1

and therefore codimC ≥ m− l + 1. But that would make codimC strictly
greater than Tor-ampOC

QC and contradict Proposition 2.7. Thus yC lies
within ∆ and, since Y × Y is separated, so does all of C.

We have now shown that SuppQ ⊆ ∆, so codimSuppQ ≥ n. But as Cn

is smooth and n-dimensional, (3.6) implies

Lk ι∗yQ = 0 ∀y ∈ Y, k /∈ 0, . . . , n (3.7)

so Tor-ampQ ≤ n. By Proposition 2.8 Tor-ampQ = n and coh-amp Q = 0.
Together with (3.7) this implies that Q is a pure sheaf.

Step 4: We claim that Q is the structure sheaf O∆ of the diagonal ∆
and therefore ΦF (−⊗ ρ0) is fully faithful.

The adjunction co-unit ΦQ → IdD(Y ) induces a surjective OY ×Y -module

morphism Q
ε
−→ O∆. Let K be its kernel, we then have a short exact sequence

0→ K → Q
ε
−→ O∆ → 0 (3.8)

Choosing some closed point (y, y) ∈ ∆ and applying functor L ι∗y,y(−) to
(3.8) we obtain a long exact sequence of C-modules

· · · → G- Ext1Cn(F|y,F|y)
∗ αy
−→ Ω1

Y,y → Ky,y → G- EndCn(F|y)
∗ εy
−→ C→ 0→ . . .

The map εy is surjective due to the trivial automorphisms of any G-constellation.
It is an isomorphism whenever F|y is simple, i.e. trivial automorphisms are
all we get. The map αy is the dual of the Kodaira-Spencer map of F at
y ∈ Y , which takes a tangent vector at y to the infinitesimal deformation
in that direction in the family F . Hence for any y ∈ Y , such that F|y is
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simple and such that the Kodaira-Spencer map of F is injective at y, the
long exact sequence above shows that K|y,y = 0.

Having proved that SuppQ ⊆ ∆ we have proved by (3.6) that any two
G-constellations in F are orthogonal. Denoting by q the quotient map Cn →
Cn/G we claim that for any closed point x ∈ Cn/G, such that q−1(x) is a
free orbit of G, the fiber π−1

F (x) consists of at most a single point. This is
because, by definition of πF , all the G-constellations parametrised by π−1

F (x)
are supported on q−1(x) - and any two G-constellations supported at the
same free orbit are easily seen to be isomorphic. Thus πF is an isomorphism
on the smooth locus X0 of Cn/G. By [Log06], Proposition 1.5 the family
F on X0 (identified with an open subset of Y via πF ) is locally isomorphic
to the canonical G-cluster family q∗OCn |X0

. As any G-cluster is simple and
as the Kodaira-Spencer map of q∗OCn |X0

is trivially injective K|y,y = 0 for
any y ∈ X0. Therefore codimY ×Y SuppK ≥ n + 1, as X0 is open in ∆.

On the other hand, since Tor-amp Q = Tor-ampO∆ = n, the short
exact sequence (3.8) implies that Tor-amp K ≤ n. As that is smaller than
the codimension of its support, K is 0 by Proposition 2.8. Thus Q ' O∆,
the adjunction co-unit is an isomorphism and ΦF(−⊗ ρ0) is fully faithful.

Step 5: We claim that Y is smooth, that πF : Y → Cn/G is crepant and
that ΦF (−⊗ ρ0)is an equivalence of categories.

The argument below is modeled on the one introduced in [BKR01], §6,
Steps 5-7. Observe that for all y ∈ Y the complex RHomY (Oy,Oy) is
bounded as we have HomD(Y )(Oy,Oy) = HomDG(Cn)(F|y,F|y). This implies
([BKR01], Corollary 5.3) that Y is nonsingular.

Let x be any closed point of Cn/G. By definition of πF the functor
ΦF (−⊗ρ0) embeds the subcategory Dx(Y ) of D(Y ) consisting of the objects
supported at π−1

F (x) into the subcategory DG
x (Cn) of DG(Cn) consisting of

the objects supported at the orbit q−1(x). Thus each Dx(Y ) has a trivial
Serre functor, which implies ([BKR01], Lemma 3.1) the crepancy of πF .

Finally, once we know that Y is smooth and that ωY is trivial, an ar-
gument identical to the one in Step 1 shows that (ΨF )G is right adjoint
to ΦF (− ⊗ ρ0) as well as left adjoint and then [Bri99], Theorem 3.3 shows
ΦF (−⊗ ρ0) to be an equivalence of categories.

Proof of Corollary 1.2. It suffices to demonstrate that F satisfies the con-
dition 2 in Theorem 1.1. Thus we have to show that codimN0 ≥ 4 and
codimN1 ≥ 2. But as seen in proof of Theorem 1.1 Nk lies within the fi-
bre product Y ×C3/G Y for all k. As πF is birational its fibres are at most
divisors and so the codimension of Y ×C3/G Y is at least 2.

It remains to show that N0 ≥ 4. The assumptions of the Corollary ensure
that N0 is contained in the union of all closed sets of form (Ei∩Ej)×(Ek∩El)
and of form Ei × (Ei ∩Ej ∩Ek), and we note that the codimension of each
one of these sets in Y × Y is 4.
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Proposition 3.6. Let G be a finite subgroup of SLn(C), Y a crepant reso-
lution of Cn/G and E ∈ DG(Y × Cn) be such that the functor ΦE(− ⊗ ρ0)
is an equivalence D(Y )

∼
−→ DG(Cn) which sends point sheaves on Y to pure

sheaves. Then E is a flat family of G-constellations over Y and

G- Exti(E|y1
, E|y2

) =

{

C if y1 = y2, i = 0

0 if y1 6= y2

(3.9)

and for any y ∈ Y the (Kodaira-Spencer) map Ext1(Oy,Oy)→ G-Ext1(E|y, E|y)
is injective.

Proof. That E is a pure sheaf flat over Y follows from [Bri99], Lemma
4.3. The assertion (3.9) and that of injectivity of its Kodaira-Spencer map
follow immediately from ΦE(−⊗ρ0) being an equivalence, noting that E|y =
ΦE(Oy ⊗ ρ0) by Lemma 3.5. Finally as the support of E has to be proper
in order for the image of ΦE(− ⊗ ρ0) to restrict to DG(Cn) the support
of each fiber E|y in Cn is proper and thus a finite union of G-orbits. The
simplicity of E|y further implies that this support has to be a single G-orbit.

A coherent G-sheaf supported on a single free orbit is isomorphic to Vreg
⊕k

and if it is simple then k = 1. Therefore the fibers of E supported on free
orbits are G-constellations and by flatness so are all the remaining ones.

4 Non-projective example

In this section we give an example of an application for the Theorem 1.1
whereby we construct, explicitly, a derived McKay correspondence for a
choice of an abelian G ⊂ SL3(C) and of a non-projective crepant resolution
Y of C3/G.

4.1 The group

Our C3 shall be the scheme Spec R, where R is a polynomial algebra
C[x1, x2, x3] with a fixed choice of generators xi. We give this scheme a
vector space structure by identifying it with the dual of the vector space gen-
erated by xi. Denote this vector space by Vgiv and denote by x̌i the basis of
Vgiv dual to xi. This choice of basis identifies the group GL3(C) = GL(Vgiv)
with the group of invertible 3× 3 complex matrices.

We then set the group G to be what is known as 1
6(1, 1, 4) ⊕ 1

2 (1, 0, 1).
That is, the image in SL3(C) of the product µ6 × µ2 of groups of 6th and
2nd roots of unity, respectively, under the embedding:

(ξ1, ξ2) 7→





ξ1ξ2

ξ1

ξ4
1ξ2



 (4.1)
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As G is evidently abelian all its representations are one-dimensional i.e.
characters. We denote by G∨ the character group Hom(G, C∗) of G. By χi,j

we denote the character on G induced from (ξ1, ξ2) 7→ ξi
1ξ

j
2 on µ6 × µ2.

The (left) action of G on Cn induces a right action of G on R which we
make into a left action by setting:

g · f(v) = f(g−1 · v) for all v ∈ Cn, f ∈ R, g ∈ G (4.2)

We then say that a rational function f ∈ K(C3) is G-homogeneous of
weight ρ ∈ G∨ if we have f(g.v) = ρ(g) f(v) for all v ∈ C3 where f is
defined. Beware of the confusion: the weight is the inverse of the character
G acts on f with! E.g. by (4.1) we have for all v ∈ Cn and (ξ1, ξ2) ∈ G

((ξ1, ξ2) · x1)(v) = x1((ξ1, ξ2)
−1 · v) = (ξ5

1ξ2 x1)(v)

whence (ξ1, ξ2) · x1 = ξ5
1ξ2x1, i.e. G acts on x1 by character χ5,1. Rewriting

the last equality as x1((ξ1, ξ2) · v) = ξ1ξ2x1(v) we see that the weight of x1

is χ−1
5,1 = χ1,1. Similarly the weight of x2 is χ1,0 and that of x3 is χ4,1.

4.2 The resolution

We define the crepant resolution Y of C3/G using methods of toric geometry.
For a general reading on toric geometry see [Dan78] or [Ful93]. For a detailed
account of the specifics related to G-constellations see [Log03], Section 3.

We give a brief rundown to define the notation involved. By definition
G is a subgroup of the maximal torus (C∗)3 ⊂ GL3(C) corresponding to the
maps diagonal with respect to x̌i. This gives an exact sequence

0 // G // (C∗)n // T // 0 (4.3)

Applying Hom(•, C∗) to (4.3) we obtain an exact sequence

0 // M // Zn
ρ // G∨ // 0 (4.4)

We identify each element m = (k1, . . . , kn) ∈ Zn of the lattice Zn of
characters of (C∗)n with a Laurent monomial xm = xk1

1 . . . xkn
n in R of that

weight with respect to the action of (C∗)n. This identifies the map ρ in (4.4)
with the weight map of the action of G on Laurent monomials and M with
the sublattice in Zn of (exponents of) G-invariant Laurent monomials.

Applying Hom(•, Z) to (4.4) we obtain

0 // (Zn)∨ // L // Ext1(G∨, Z) // 0

where we write (Zn)∨ for the dual lattice of Zn and L for the dual of M .
Tautologically we have a Z-valued pairing between M and L. This pairing
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extends uniquely to a Q-valued pairing between Zn and L. Henceforth, given
l ∈ L and m ∈ Zn, we write l(m) to denote this pairing.

Write ei ∈ L for the elements dual to xi ∈ M . Then C3/G is the toric
variety given by the fan consisting of a single cone L≥0 =

∑

R≥0ei. The
fan of any toric resolution of C3/G is a subdivision of L≥0 into basic cones.
The resolution morphism π is then the toric morphism corresponding to this
subdivision.

The quotient torus T acts on the resolution and to each k-dimensional
cone σ in the fan corresponds a (3 − k)-dimensional orbit of T . We denote
this orbit by Sσ, it is the orbit which contains limit points of the suborbits of
the unique open orbit of T which are defined by those 1-parameter subgroups
of T whose corresponding points of L lie in the interior of σ. We further
denote by Eσ the closure of Sσ, it is the union of all orbits Sσ′ with σ ⊆ σ′.

Each exceptional divisor of π is of form Eσ for some 1-dimensional σ in
the fan of the resolution and it is crepant if and only if the generatior of σ
lies in the junior simplex ∆ = {(k1, k2, k3) ∈ L⊗ R | ki > 0 and

∑

ki = 1},
for details on crepancy of divisors in toric context see [Rei87], Prop. 4.8.

Calculating the elements of L contained in ∆ we obtain:

e1 = (1, 0, 0) e2 = (0, 1, 0) e3 = (0, 0, 1)
e4 = 1

6(1, 1, 4) e5 = 1
3(1, 1, 1) e6 = 1

2(1, 1, 0)
e7 = 1

6(1, 4, 1) e8 = 1
2(1, 0, 1) e9 = 1

6(4, 1, 1)
e10 = 1

2(0, 1, 1)

(4.5)

We define the resolution Y by specifying its fan F to consist of the 3-
dimensional cones which triangulate ∆ as depicted below and all their faces.

Figure 2

By an argument entirely identical to that of [KKMSD73], Chapter III,
§2E, Example 2 it can be seen that the toric morphism π : Y → C3/G
corresponding to this subdivision is non-projective.
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For each cone 〈ei〉 in the fan F, we denote by Si the codimension 1 orbit
S〈ei〉 and by Ei the divisor E〈ei〉. Similarly we use Si,j and Ei,j for the
codimension 2 orbit S〈ei,ej〉 and the surface E〈ei,ej〉 and we use Ei,j,k for the
toric fixed point E〈ei,ej ,ek〉.

4.3 The family

We define the family F of G-constellations on Y using the classification
of G-constellation families established in [Log06]. From now on we shall
operate freely by the concepts introduced in that paper and the reader is
referred to it for all the definitions and other technical details.

We should note that [Log06] employs the following alternative view of G-
constellations: the global section functor Γ(•) is an equivalence between the
categories of quasi-coherent G-equivariant sheaves on C3 and of modules for
the cross-product algebra R o G. Under this equivalence G-constellations
correspond to R o G-modules isomorphic as G-modules to the regular repre-
sentation Vreg. Similarly, the pushforward along Y ×Cn → Y gives an equiv-
alence of the category CohG(Y × Cn) to the category of coherent sheaves
of OY ⊗R o G-modules on Y . A flat family of G-constellations on Y × Cn

becomes a OY ⊗R o G-module on Y which is locally free of rank |G| as an
OY -module and whose fiber at every closed point of Y is a G-constellation in
the sense of R o G-modules. In this section a flat family of G-constellations
shall mostly refer to a sheaf of OY ⊗R o G-modules on Y .

As explained in [Log06], any proper birational map Y → C3/G, such as
the toric morphism π of the previous section, defines the notion of G-Cartier
and G-Weil divisors on Y . By [Log06], Theorem 4.1 any flat family of G-
constellations on Y whose ‘forgetful’ map πF agrees with π (such families
are called gnat-families for π) is of form ⊕χ∈G∨L(−Dχ) where each Dχ is a
G-Weil divisor on Y . Up to an equivalence of families we may assume that
Dχ0,0

= 0. Moreover, there exists ([Log06], Section 3.5) the maximal shift
family ⊕L(−Mχ) and for any other family ⊕L(−Dχ) we have Mχ ≥ Dχ for
all χ ∈ G∨. In our toric context each divisor Mχ is of form

∑

qχ,iEi and the
coefficients qχ,i can be calculated (see [Log03], Example 4.21) via formula

qχ,i = inf{ei(m) | m ∈M≥0 ∩ ρ−1(χ)} (4.6)

We set the family F that we shall endeavor to prove to satisfy the as-
sumptions of Theorem 1.1 to be this maximal shift family

⊕

L(−Mχ). Cal-
culating all qχ,i using formula (4.6) we obtain:
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E4 E5 E6 E7 E8 E9 E10

Mχ0,0
0 0 0 0 0 0 0

Mχ2,0

2

6

4

6
0

2

6
0

2

6
0

Mχ4,0

4

6
1
2

6
0

4

6
0

4

6
0

Mχ1,1

1

6

2

6

3

6

1

6

3

6

4

6
0

Mχ1,0

1

6

2

6

3

6

4

6
0

1

6

3

6

Mχ4,1

4

6

2

6
0

1

6

3

6

1

6

3

6

Mχ3,1

3

6
1

3

6

3

6

3

6
1 0

Mχ3,0

3

6
1

3

6
1 0

3

6

3

6

Mχ0,1
1 1 0

3

6

3

6

3

6

3

6

Mχ5,1

5

6

4

6

3

6

5

6

3

6

2

6
0

Mχ5,0

5

6

4

6

3

6

2

6
0

5

6

3

6

Mχ2,1

2

6

4

6
0

5

6

3

6

5

6

3

6

(4.7)

4.4 Generalities on the McKay quiver of G

By a quiver we shall mean a vertex set Q0, an arrow set Q1 and a pair of
maps h : Q1 → Q0 and t : Q1 → Q0 giving the head hq ∈ Q0 and the tail
tq ∈ Q0 of each arrow q ∈ Q1. By a representation of a quiver we shall
mean a graded vector space

⊕

i∈Q0
Vi and a collection {αq : Vtq → Vhq}q∈Q1

of linear maps indexed by the arrow set of the quiver.

Definition 4.1. Let G be a finite subgroup of GL(Vgiv). Then the McKay
quiver of G is the quiver whose vertex set Q0 are the irreducible representa-
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tions ρ of G and whose arrow set Q1 has precisely dimHomG(ρi, ρj ⊗ Vgiv)
arrows going from the vertex ρi to the vertex ρj .

In our case G is abelian and Vgiv
∨ decomposes into irreducible subrep-

resentations as
⊕

Cxi. If we write Uχ for the 1-dimensional representation
that G acts on by χ ∈ G∨ we have by Schur’s lemma

G- Hom(Uχi
⊗ Vgiv

∨, Uχj
) =

{

C if χj = χiρ(xk)
−1 k ∈ {1, 2, 3}

0 otherwise

Thus each vertex χ of the McKay quiver of G has three arrows emerging
from it and going to vertices χρ(xk)

−1 for k = 1, 2, 3. We denote the arrow
from χ to χρ(xk)

−1 by (χ, xk). Calculating the whole quiver, we obtain:

Figure 3

The way we’ve chosen to depict the McKay quiver reflects the fact that it
has a universal cover quiver naturally embedded into R2. This point of view
will not be essential for our argument but a curious reader should consult
[CI04], Section 10.2 and [Log04], Section 6.4.

Let now A be a G-constellation in a sense of R o G-modules and let ⊕Aχ

be its decomposition into irreducible representations of G. Then R o G-
module structure on A defines a natural representation of the McKay quiver
into the graded vector space ⊕Aχ in which the map αχ,xk

corresponding to
an arrow (χ, xk) is just the multiplication by xk, i.e.

αχ,xk
: Aχ → Aχρ(xk)−1 , v 7→ xk · v (4.8)
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4.5 Degree 0 orthogonality of G-constellations

Let A and A′ be two G-constellations and φ be a R o G-module morphism
A → A′. Let

⊕

G∨ Aχ and
⊕

G∨ A′
χ be decompositions of A and A′ into

one-dimensional representations of G. By G-equivariance φ decomposes into
linear maps φχ : Aχ → A′

χ.
Let {αq} and {α′

q} be the coresponding representations of the McKay
quiver into graded vector spaces ⊕Aχ and ⊕A′

χ, as per (4.8). Each αq is
a linear map between one-dimensional vector spaces Atq and Ahq and so is
either a zero-map or an isomorphism, and similarly for the maps α′

q. So for
each arrow of McKay quiver we distinguish the following four possibilities:

Definition 4.2. Let q be an arrow of McKay quiver of G. With the notation
above we say that with respect to an ordered pair (A,A′) of G-constellations
the arrow q is:

1. a type [1, 1] arrow, if both αq and α′
q are isomorphisms.

2. a type [1, 0] arrow, if αq is an isomorphism and α′
q is a zero map.

3. a type [0, 1] arrow, if αq is a zero map and α′
q is an isomorphism.

4. a type [0, 0] arrow, if both αq and α′
q are zero maps.

Proposition 4.3. Let q and (A,A′) be as in Definition 4.2 and let φ be any
R o G-module morphism A→ A′. Then:

1. If q is a [1, 0] arrow, then Ahq ⊆ kerφ.

2. If q is a [0, 1] arrow, then Atq ⊆ kerφ.

3. If q is a [1, 1] arrow, then Atq and Ahq either both lie in kerφ or both
don’t.

Proof. Write q = (χ, i) where χ ∈ G∨ and i ∈ {1, 2, 3}. Recall that αq

is the map Atq → Ahq corresponding to the action of xi on Atq. Then
R-equivariance of the morphism φ implies the commutative square

Ahq
φhq // A′

hq

Atq
φtq

//

αq

OO

A′
tq

α′

q

OO

from which all three claims immediately follow.
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Corollary 4.4. Let (A,A′) be an ordered pair of G-constellations. If every
component of the McKay quiver path-connected by [1, 1]-arrows has either a
[0, 1]-arrow emerging from it or a [1, 0]-arrow entering it, then

HomRoG(A,A′) = 0

If, also, every component has either a [0, 1]-arrow entering it or a (1, 0)-
arrow emerging from it, then we further have

HomRoG(A′, A) = 0

and therefore A and A′ are orthogonal in degree 0.

4.6 Divisors of zeroes

Definition 4.5. Let V =
⊕

L(−Dχ) be a family of G-constellations on Y
and q = (χ, xk) be an arrow in the McKay quiver of G. We define the divisor
of zeroes Bq of q in V to be the Weil divisor

Dχ−1 + (xi)−Dχ−1ρ(xi) (4.9)

NB: Bq is always an ordinary, integral Weil divisor on Y .

Proposition 4.6. Let V =
⊕

L(−Dχ) be a family of G-constellations on
Y , (χ, xk) an arrow in the McKay quiver of G and Bχ,xk

its divisor of zeroes
in V. Let y be a closed point of Y and G-constellation A be the fiber V|y.

Then in the corresponding representation {αq}q∈Q1
of the McKay quiver

the map α(χ, xk) is a zero map if and only if y ∈ Bχ,xk
.

Proof. By its definition (4.8) the map αχ,xk
: Aχ → Aχρ(xk)−1 is the action

of xk on the χ-eigenspace Aχ. This map is the restriction to the point y of
the global section β of the OY -module

HomG,OY
(OY xk ⊗ Vχ,Vχρ−1(xk)) (4.10)

defined by xk ⊗ s 7→ xk · s for any section s of the χ-eigensheaf Vχ.
As G acts on a monomial of weight χ by χ−1 the χ-eigensheaf of V is

L(−Dχ−1). Hence (4.10) is canonically isomorphic to the following sub-OY -
module of K(C3):

L(Dχ−1 + (xk)−Dχ−1ρ(xk)) (4.11)

and the isomorphism maps β to the global section 1 ∈ K(C3) of (4.11).
Which vanishes precisely on the Weil divisor Bχ,xk

= Dχ−1+(xk)−Dχ−1ρ(xk).
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In toric context the principal G-Weil divisors (xk) can be calculated with
a formula given in [Log03], Proposition 3.2. In our case we obtain:

(x1) = E1 +
1

6
E4 +

1

3
E5 +

1

2
E6 +

1

6
E7 +

1

2
E8 +

4

6
E9

(x2) = E2 +
1

6
E4 +

1

3
E5 +

1

2
E6 +

4

6
E7 +

1

6
E9 +

1

2
E10

(x3) = E3 +
4

6
E4 +

1

3
E5 +

1

6
E7 +

1

2
E8 +

1

6
E9 +

1

2
E10

(4.12)

With these values and the expressions (4.7) for the divisors Mχ we use the
formula (4.9) and for every arrow of the McKay quiver calculate its divisor
of zeroes in the family F =

⊕

L(−Mχ):

Bχ0,0,1 = E1 Bχ1,1,1 = E1 + E4 + E5 + E6 + E7 + E8 + E9

Bχ0,0,2 = E2 Bχ1,1,2 = E2 + E6 + E7

Bχ0,0,3 = E3 Bχ1,1,3 = E3 + E4 + E8

Bχ4,0,1 = E1 Bχ1,0,1 = E1 + E6 + E9

Bχ4,0,2 = E2 Bχ1,0,2 = E2 + E4 + E5 + E6 + E7 + E9 + E10

Bχ4,0,3 = E3 Bχ1,0,3 = E3 + E4 + E10

Bχ2,0,1 = E1 + E5 + E9 Bχ4,1,1 = E1 + E8 + E9

Bχ2,0,2 = E2 + E5 + E7 Bχ4,1,2 = E2 + E7 + E10

Bχ2,0,3 = E3 + E4 + E5 Bχ4,1,3 = E3 + E4 + E5 + E7 + E8 + E9 + E10

Bχ5,1,1 = E1 + E6 + E8 + E9 Bχ3,1,1 = E1 + E6 + E8 + E9

Bχ5,1,2 = E2 + E6 Bχ3,1,2 = E2 + E5 + E6 + E7 + E9

Bχ5,1,3 = E3 + E8 Bχ3,1,3 = E3 + E4 + E5 + E8 + E9

Bχ5,0,1 = E1 + E6 Bχ3,0,1 = E1 + E5 + E6 + E7 + E9

Bχ5,0,2 = E2 + E6 + E7 + E10 Bχ3,0,2 = E2 + E6 + E7 + E10

Bχ5,0,3 = E3 + E10 Bχ3,0,3 = E3 + E4 + E5 + E7 + E10

Bχ2,1,1 = E1 + E8 Bχ0,1,1 = E1 + E4 + E5 + E8 + E9

Bχ2,1,2 = E2 + E10 Bχ0,1,2 = E2 + E4 + E5 + E7 + E10

Bχ2,1,3 = E3 + E4 + E8 + E10 Bχ0,1,3 = E3 + E4 + E8 + E10

(4.13)

4.7 A sample calculation

The orthogonality criterion in Corollary 4.4 and the data in the table (4.13)
of divisors of zeroes are all that we need to check whether any two G-
constellations in the family F are orthogonal in degree 0. In this subsection
we are going to go step by step through such a calculation and verify that
any point on the two-dimensional torus orbit S8 and any point on the one-
dimensional torus orbit S1,7 are orthogonal in degree 0 in F .

Let a be any point of S8. Then a lies on no divisor Ei other than E8.
Observe that as all divisors of zeroes Bq consist entirely of divisors Ei we
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have a ∈ Bq if and only if E8 ⊂ Bq. Let G-constellation A be the fiber of
F at a and {αq} be the corresponding representation of the McKay quiver.
By Proposition 4.6 for any arrow q the map αq is a zero map if and only if
E8 ∈ Bq. From the table (4.13) we mark all the zero-maps on the diagram
of the McKay quiver by drawing a line through the coresponding arrow:

Figure 4

Similarly if b is a point of S1,7 then b lies on no Ei other than E1 and E7.
Let B be the fiber of F at b and {βq} be the corresponding representation of
the McKay quiver. As above βq is a zero-map if and only if either E1 or E7

belongs to Bq. Marking all the zero-maps on the McKay quiver we obtain:

Figure 5
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If we combine Figure 4 and Figure 5 the only arrows left unmarked would
be the arrows of type [1, 1] (Definition 4.2) with respect to the pair (A,B):

Figure 6

Figure 6 makes clear what the components path-connected by [1, 1]-arrows
are: {χ0,0, χ2,1, χ5,0, χ1,1}, {χ5,1, χ4,1, χ2,0}, {χ1,0, χ3,1} and {χ0,1, χ4,0, χ3,0}.
Now, with Corollary 4.4 in mind, we search the borders of these four regions
for the [1, 0] and [0, 1]-arrows. The [1, 0]-arrows are unmarked on Figure 4
but marked on Figure 5 and vice versa for [0, 1]. On Figure 7 we’ve marked
on the border of each region an incoming and an outgoing [0, 1]-arrow:

Figure 7

By the Corollary 4.4 we see that A and B are orthogonal in degree 0.
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4.8 Direct transforms

By construction of the family F its forgetful map πF : Y → Cn/G coincides
with the toric morphism π of the section 4.2. As π is certainly proper and
birational to show that the integral transform ΦF (−⊗ ρ0) is an equivalence
of categories it now suffices by Corollary 1.2 to succesfully carry out the
calculation of Section 4.7 for every pair (Si, Sj,k) and every pair (Si, Sj) on
Y thus showing their degree 0 orthonogality in F . However we are going
to significantly reduce the amount of calculations necessary by pointing out
that our family F is a direct transform of the universal family Mθ+

of G-
clusters on G-Hilb(C3), the fine moduli space of G-clusters and another toric
crepant resolution of C3/G ([Nak00]).

By the direct transform we mean the following: let Y ′ and Y ′′ be two toric
crepant resolutions of C3/G. Then their toric fans in L have the same set of
1-dimensional cones and therefore the unions of torus orbits of codimension
1 or less in Y ′ and in Y ′′ can be naturally identified. We denote this common
open set by U . Since the compliment of U is of codimension 2 in Y ′ (resp.
Y ′′) any line bundle or divisor on U extends uniquely to a line bundle or a
divisor on Y ′ (resp. Y ′′). The same is true of a family of G-constellations
as for G abelian any such family is a direct sum of line bundles. Thus for
any family V ′ of G-constellations on Y ′ we define its direct transform V ′′ to
Y ′′ to be the unique extension to Y ′′ of the restriction of V ′ to U . Observe
that if V ′ is of form

⊕

χ L(−D′
χ) for some G-Weil divisors D′

χ on Y ′ then
V ′′ is the family

⊕

L(−D′′
χ) where each D′′ is the direct transform of D′.

Our claim that F is the direct transform of the universal family Mθ+

follows from a more general statement which on a given Y explicitly identifies
the direct transform of the universal family Mθ for any θ. In particular,
the maximal shift family is always the transform of Mθ+

. The proof is
somewhat technical and we defer it to the Appendix (Section 5.1).

Consider now the set of all cones common to both the fan of Y and
the fan of G-Hilb(C3). We can identify Y and G-Hilb(C3) along the open
set U ′ which consists of all the corresponding torus orbits. As F is the
direct transform of Mθ+

the restriction of F to U ′ ⊂ Y is isomorphic to
the restriction ofMθ+

to U ′ ⊂ G-Hilb(C3). The family Mθ+
is everywhere

orthogonal in all degrees (an immediate consequence of [BKR01], Theorem
1.1) so on U ′ ⊂ Y the family F is also orthogonal in all degrees. Thus any
pair of torus orbits in Y whose corresponding cones are also contained in
the fan of G-Hilb(C3) are orthogonal in F in all degrees.

4.9 Final calculations

A detailed description of an algorythm which allows one to calculate the
toric fan of G-Hilb(C3) can be found in [CR02]. Applying it to our group G
we obtain:
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Figure 8

Comparing Figure 8 with the fan of Y on Figure 2 we see that only codimen-
sion 2 torus orbits of Y whose corresponding cones aren’t also contained in
the fan of G-Hilb(C3) are S1,7, S2,4 and S3,9. By the argument in Section 4.8
to establish that F satisfies the assumptions of Theorem 1.1, it now remains
to demonstrate that each of these three orbits is orthogonal in degree 0 in F
to every torus orbit of codimension 1. But as the fan of Y and the numerical
data 4.7 defining F are invariant with respect to the rotations of L which
correspond to the cyclic permutations of e1, e2 and e3, it suffices to treat
any single one of S1,7, S2,4 and S1,7 - for the three corresponding cones in L
get permuted by these rotations.

We choose to treat S1,7. In Section 4.7 we have established the orthog-
onality of S1,7 and S8. We repeat that calculation for S1,7 and every other
orbit Si and list below the analogues of Figure 7. From them, as elaborated
in Section 4.7, the reader could readily ascertain that Corollary 4.4 applies
in each case to show the orthogonality in F of the torus orbits involved.

(S1, S1,7) and (S7, S1,7) (S2, S1,7)
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(S3, S1,7) (S4, S1,7)

(S5, S1,7) (S6, S1,7)

(S9, S1,7) (S10, S1,7)
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We conclude that the integral transform ΦF (− ⊗ ρ0) is an equivalence of
categories D(Y )→ DG(C3) and that a posteriori the family F is everywhere
orthogonal in all degrees.

5 Appendix

5.1 Theta stability and G-constellations

Let G be a finite subgroup of GLn(C). We recall basic facts about θ-stability
for G-constellations, for more detail the reader should consult [CI04], Section
2.1. Let Z(G) =

⊕

ρ∈IrrG Zρ be the representation ring of G and set

Θ = {θ ∈ HomZ(Z(G), Q) | θ(Vreg) = 0}

For any θ ∈ Θ we say that a G-constellation A is θ-stable (resp. θ-semistable)
if for every sub-R o G-module B of A we have θ(B) > 0 (resp. θ(B) ≥ 0).
We say that θ is generic if every θ-semistable G-constellation is θ-stable. This
is equivalent to θ being non-zero on any proper subrepresentation of Vreg.
The fine moduli space Mθ of θ-stable G-constellations can be constructed
via GIT theory and for G ⊆ SL3(C) and θ generic Mθ is a projective crepant
resolution of C3/G. Any two θ-stable G-constellations are either orthogonal
in degree 0 or isomorphic so the universal family Mθ, which Mθ comes
equipped with, is everywhere orthogonal in degree 0.

Assume from now on that G is abelian. Given any toric resolution Y of
Cn/G and any generic θ ∈ Θ the following allows us to explicitly compute, in
terms of the classification in [Log06], the family that is the direct transform
to Y of the universal family Mθ:

Proposition 5.1. Let G be a finite abelian subgroup of GLn(C), θ be an
element of Θ and let Y

π
−→ Cn/G be a resolution. Denote by E the set of all

irreducible exceptional divisors of π and all divisors (x
|G|
i ) for i ∈ {1, . . . , n}

and by U the open subset of Y consisting of points lying on at most one
divisor in E. We define a map

wθ :
{

normalized gnat-families on Y
π
−→ Cn/G

}

→ Q (5.1)

as follows: given a normalized family V write it as
⊕

L(−Dχ). By [Log06],
Proposition 3.15 each G-Weil divisor Dχ is of form

∑

E∈E
qχ,EE. We set

wθ(V) =
∑

E∈E

∑

χ∈G∨

θ(χ)qχ,E (5.2)

Let M be a family which maximizes wθ(M), such exists as the domain
of definition of wθ is finite ([Log06], Corollary 3.16). Then for any point
y ∈ U the fiber of M at y is a θ-semistable G-constelation. If, moreover, θ
is generic then a normalized family θ-semistable over U is unique.
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Proof. Write M as
⊕

L(−Mχ). Suppose that the fiber of M is not θ-
semistable at some y ∈ U . Denote this fiber by A, its decomposition into
irreducible representations by

⊕

χ∈G∨ Aχ and the corresponding represen-
tation of the McKay quiver by {αq}. As A isn’t θ-semistable there exists a
non-empty proper subset I of G∨ such that A′ =

⊕

χ∈I Aχ is a sub-R o G-
module of A and θ(A′) < 0. Denote by J the compliment G∨ \ I. Denote
by QI→J the subset {q ∈ Q1 | tq ∈ I, hq ∈ J} of the arrow set Q1 of the
McKay quiver and similarly for QJ→I , QI→I , QJ→J . Then A′ being closed
under the action of R implies that for any q ∈ QI→J the map αq is a zero
map. Which by Proposition 4.6 implies y ∈ Bq.

As the divisors Mχ consist entirely of prime Weil divisors in E so do all
the divisors of zeroes Bq. As y lies on all Bq with q ∈ QI→J , y lies on at
least one divisor in E. But as y ∈ U y also lies on at most one divisor in E.
Denote this unique divisor by E then we have

q ∈ QI→J ⇒ E ⊂ Bq (5.3)

Define a new G-Weil divisor set {M ′
χ} by setting M ′

χ to be Mχ if χ ∈ I and
Mχ +E if χ ∈ J . Then divisors {B ′

q} defined from {M ′
χ} by equations (4.9)

can be expressed as

B′
q =











Bq if q ∈ QI→I , QJ→J

Bq + E if q ∈ QJ→I

Bq −E if q ∈ QI→J

(5.4)

Since {Bq} are all effective (5.4) and (5.3) imply that {B ′
q} are also all

effective. Therefore
⊕

L(−M ′
χ) is a normalized gnat-family. But

wθ(M
′) = wθ(M) +

∑

χ∈J

θ(χ) (5.5)

which contradicts the maximality of wθ(M) since
∑

χ∈J θ(χ) = −θ(A′) > 0.
For the second claim let N =

⊕

L(−Nχ) be another normalized family
θ-semistable over U . Let B ′

q be divisors of zeroes of N . Then

Bq −B′
q = (Mtq −Ntq)− (Mhq −Nhq) (5.6)

Take any E ′ ∈ E such that the sets {mχ,E′} and {nχ,E′} of the coefficients
of E′ in {Mχ} and {Nχ} are distinct. Then J ′ = {χ ∈ G∨ | nχ,E′ > mχ,E′}
is a non-empty proper subset of G∨. Denote by I ′ its compliment. For any
q ∈ QI′→J ′ the coefficient of E ′ in the RHS of (5.6) is strictly positive. As
B′

q is effective we conclude that q ∈ QI′→J ′ implies E ′ ⊂ Bq. So for any
y ∈ E′ the restriction (

⊕

χ∈I′ L(Mχ))|y is a sub-R o G-module ofM|y. But
asM is θ-semistable on U and as U ∩E ′ 6= ∅ we must have

∑

χ∈I′ θ(χ) ≥ 0.
Similarly if q ∈ QJ ′→I′ , then the RHS of (5.6) is strictly negative, so E ′ ⊂ B′

q

and θ-semistability of N implies
∑

χ∈J ′ θ(χ) = −
∑

χ∈I′ θ(χ) ≥ 0. Therefore
∑

χ∈I′ θ(χ) = 0 and θ is not generic.
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Corollary 5.2. Let G be the finite subgroup of SL3(C), Y
π
−→ Cn/G be a

crepant toric resolution and θ ∈ Θ be generic.
Denote by M the unique normalized gnat-family on Y which maximizes

the map wθ. Its existence is warrantied by the Proposition 5.1. Then M is
the direct transform of the universal family Mθ from the fine module space
Mθ of θ-stable G-constellations.

Proof. By the first claim of Proposition 5.1, M is θ-stable on the open
subset U of Y consisting of all torus orbits of codimension 1 or less. So, by
its definition, is the direct transform ofMθ+

to Y . So by the second claim of
Proposition 5.1M and the direct transform ofMθ+

must be isomorphic.

Define θ+ ∈ Θ by θ+(χ0) = 1−|G| and θ+(χ) = 1 for χ 6= χ0. Evidently
θ+ is generic. As follows from the original observation by Ito and Nakajima
in [IN00], §3 G-clusters can be identified with θ+-stable G-constellations,
thus identifying G-Hilb(C3) with the fine moduli space Mθ+

.
In Section 4.3 we defined the family F =

⊕

L(−Mχ) to be the maximal
shift family on Y (see [Log06], Section 3.5) so for any other normalized
gnat-family ⊕L(−Dχ) we have

Mχ ≥ Dχ

for all χ ∈ G∨. Therefore F is the family which maximizes wθ+
and thus

Proposition 5.2 verifies our claim that F is the direct transform of the uni-
versal family Mθ+

.
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[GM03] S.I. Gelfand and Yu. I. Manin, Methods of homological algebra,
Springer, 2003.

[GSV83] G. Gonzales-Sprinberg and J.-L. Verdier, Construction
géométrique de la correspondance de McKay, Ann. sci. ENS
16 (1983), 409–449.

[Har66] R. Hartshorne, Residues and duality, Springer-Verlag, 1966.

[IN00] Y. Ito and H. Nakajima, McKay correspondence and Hilbert
schemes in dimension three, Topology 39 (2000), no. 6, 1155–
1191, math.AG/9803120.

[IR96] Y. Ito and M. Reid, The McKay correspondence for the finite
subgroups of SL(3, C)., Higher-dimensional complex varieties
(Trento 1994), de Gruyter, 1996, pp. 221–240.

33



[Kaw05] Y. Kawamata, Log crepant birational maps and derived cate-
gories, J. Math. Sci. Univ. Tokyo 12 (2005), no. 2, 211–231,
math.AG/0311139.

[KKMSD73] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat,
Toroidal embeddings I, Springer-Verlag, 1973.

[Log03] T. Logvinenko, Families of G-constellations over resolutions
of quotient singularities, preprint math.AG/0305194, (2003).

[Log04] , Families of G-Constellations parametrised by resolu-
tions of quotient singularities, Ph.D. thesis, University of Bath,
2004.

[Log06] , Natural G-constellation families, preprint
math.AG/0601014, (2006).

[Mat86] H. Matsumura, Commutative ring theory, Cambridge Univer-
sity Press, 1986.

[McK80] J. McKay, Graphs, singularities and finite groups, Proc. Symp.
Pure Math. 37 (1980), 183–186.

[Muk81] S. Mukai, Duality between D(X) and D(X̂) with its application
to Picard sheaves, Nagoya Math J 81 (1981), 153–175.

[Nag] M. Nagata, Imbedding of an abstract variety in a complete va-
riety, J. Math. Kyoto Uni. 2, no. 1.

[Nak00] I. Nakamura, Hilbert schemes of abelian group orbits, J. Alg.
Geom. 10 (2000), 775–779.

[Orl97] D. Orlov, Equivalences of derived categories and K3 sur-
faces, J. Math. Sci. (NY) 84 (1997), no. 5, 1361–1381,
math.AG/9606006.

[Rei87] M. Reid, Young person’s guide to canonical singularities, Proc.
of Symposia in Pure Math. 46 (1987), 345–414.

[Rei97] , Mckay correspondence, preprint math.AG/9702016,
(1997).

[Rob98] P. C. Roberts, Multiplicities and Chern classes in local algebra,
Cambridge University Press, 1998.

[Ser00] J.P. Serre, Local algebra, Springer, 2000.

34


	Introduction
	Cohomological and Tor amplitudes
	Derived McKay correspondence
	G-constellations
	Integral transforms
	Main results

	Non-projective example
	The group
	The resolution
	The family
	Generalities on the McKay quiver of G
	Degree 0 orthogonality of G-constellations
	Divisors of zeroes
	A sample calculation
	Direct transforms
	Final calculations

	Appendix
	Theta stability and G-constellations


