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Abstract

We study an extension of the Gale-Shapley marriage model and the Shapley-

Shubik assignment model by considering linear valuations and bounded side pay-

ments. Our model includes the Eriksson-Karlander hybrid model as a special case.

We propose a polynomial-time algorithm which finds a pairwise-stable outcome.

Keywords: stable marriage model, assignment game

1 Introduction

A two-sided matching market consists of two disjoint finite sets of agents. The purpose

is to match the agents of opposite sides in pairs. A matching is a set of pairs of opposite

sides such that each agent appears at most once and is called stable if there is no pair

of agents who are not matched with each other but prefer each other to their partners

in the matching.

The marriage model by Gale and Shapley [4] and the assignment model by Shapley

and Shubik [10] are well known in the theory of two-sided markets. In [4], Gale and

Shapley proposed an algorithm that always finds a (perfect) stable matching for any

instance of a stable marriage model problem. In their model, side payments are not

allowed, i.e., the agents are rigid. In the assignment model by Shapley and Shubik [10],

in contrast to the Gale-Shapley marriage model, side payments are permitted, i.e., the

agents are flexible, and they showed that the core is non-empty.

Kaneko [5] unified both the Gale-Shapley marriage model and the Shapley-Shubik

assignment model, and proved the non-emptiness of the core, but does not consider

lattice property. Roth and Sotomayor [9] proposed a general model that includes the

both marriage and assignment model. They showed the existence of stable outcome

and investigated the lattice property for payoffs in the core. The model of Eriksson and
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Karlander [1] deals with both rigid and flexible agents, which is a common generalization

of the marriage and assignment models. The existence of a stable outcome and the

lattice property of the set of stable outcomes are preserved in their model. Following

the idea of Eriksson and Karlander [1], Sotomayor [11] investigated their hybrid model

and gave a non-constructive proof of the existence of a pairwise-stable outcome.

Very recently, Fujishige and Tamura [2] proposed a common generalization of the

marriage model and the assignment model by utilizing the framework of discrete convex

analysis which was developed by Murota [6, 7, 8]. Their model also includes hybrid

models of Eriksson and Karlander [1] and Sotomayor [11]. The existence of a pairwise-

stable outcome is preserved in their model. They further extended their model in [3] by

assuming possibly bounded side payments and proved the existence of a pairwise-stable

outcome. In their work, however, structure of the set of pairwise-stable outcome is not

discussed.

In the present work, our aim is to formulate a model which includes the Gale-Shapley

marriage model, the Shapley-Shubik assignment model and the Eriksson-Karlander

model as special cases. We use the notion of bounded side payments and valuations

rather than rigidity and flexibility. We list here the main assumptions in our model:

• the set of agents is partitioned into two sets; the set of men and the set of women,

• each agent has at most one partner of opposite side,

• side payments are permitted,

• side payments are bounded by lower and upper bounds,

• valuations of agents for the side payments from opposite side are identified by

linear and strictly increasing real valued functions.

We can handle rigid agents by assuming 0 as a lower and upper bound for the side

payments and the flexible agents can be dealt by considering lower and upper bounds

of the side payments sufficiently small and sufficiently large, respectively, and hence

the marriage model, the assignment model and the Eriksson-Karlander hybrid model

are included in our model. We propose a polynomial-time algorithm in the number of

agents to find a pairwise-stable matching.

This paper is organized as follows: In Section 2, we discuss our model and give

a comparison between known models and our model. In Section 3, we characterize

the pairwise stability. We will use this characterization to develop a polynomial-time

algorithm. Section 4 deals with the case when valuations are linear. In this section,

first of all, we give several lemmas which will help us to design our algorithm. We then

propose our algorithm and finally discuss its correctness and complexity.
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2 Model Description

Let M and W be two disjoint finite sets of agents and let E = M × W , i.e., the set

of all pairs (i, j) of agents i ∈ M and j ∈ W . A subset X ⊆ E is called a matching

if every agent appears at most once in X. Given a matching X, k ∈ M ∪ W is called

unmatched in X if it does not appear in X; otherwise matched in X.

Before describing our model, we briefly explain the marriage model by Gale and

Shapley [4] and the assignment model by Shapley and Shubik [10]. In the marriage

model, M and W represent the sets of men and women, respectively. Each man has

preferences on the women and each woman has preferences on the men. Negotiations

and side payments are not involved in this model. We represent the preferences of

men and women by the numbers aij ∈ R and bij ∈ R, respectively, for all (i, j) ∈ E.

For i ∈ M and j1, j2 ∈ W , if aij1 > aij2 then we say that i prefers j1 to j2 , and

i is indifferent between j1 and j2 if aij1 = aij2 . Similarly, the preferences of women

over men are defined by the vector {bij | (i, j) ∈ E}. Here we assume that aij > 0 if

j is acceptable to i, and aij = −µ otherwise, and bij > 0 if i is acceptable to j, and

bij = −µ otherwise, where µ > 0 is a sufficiently large number. A matching X is called

pairwise-stable if there exist q ∈ RM and r ∈ RW such that

(m1) qi = aij and rj = bij for all (i, j) ∈ X,

(m2) q ≥ 0, r ≥ 0, and qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,

(m3) qi ≥ aij or rj ≥ bij for all (i, j) ∈ E.

Gale and Shapley [4] presented an algorithm which finds a stable matching in this

model.

In the assignment game, M and W represent the sets of sellers and buyers, respec-

tively. The negotiation and side payments between agents of both sides are allowed.

Naturally, each agent wants to gain as much profit as possible from his/her partner.

Here aij ∈ R and bij ∈ R represent the profits of i and j, respectively, when i and j

are matched. The preferences of sellers over buyers and of buyers over sellers can be

defined similarly as in the marriage model. A matching X is called pairwise-stable if

there exist q ∈ RM and r ∈ RW such that

(a1) qi + rj = aij + bij for all (i, j) ∈ X,

(a2) q ≥ 0, r ≥ 0, and qi = 0 (resp. rj = 0) if i (resp. j) is unmatched in X,

(a3) qi + rj ≥ aij + bij for all (i, j) ∈ E.

Shapley and Shubik [10] showed the existence of a stable outcome in this assignment

model.

Now we describe our model. For each (i, j) ∈ E we denote by νij : R → R a

valuation of agent i ∈ M for a side payment from j ∈ W to i, and by νji : R → R
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a valuation of agent j ∈ W for a side payment from i ∈ M to j. We assume that

νij and νji are continuous and monotone increasing and that there exist the inverse

functions ν−1
ij and ν−1

ji over R for all (i, j) ∈ E. We also assume that we are given

vectors l, u ∈ RE with l ≤ u, where lij and uij ((i, j) ∈ E) denote the lower and upper

bounds of a side payment from j ∈ W to i ∈ M .

We say that p = (pij : (i, j) ∈ E) ∈ RE is a feasible side payment vector from W

to M if lij ≤ pij ≤ uij for all (i, j) ∈ E. A pair (X, p) of a matching X and a feasible

side payment vector p is said to be a pairwise-stable outcome if q ∈ RM and r ∈ RW

defined by

qi =

{
νij(pij) if i is matched with j in X

0 if i is unmatched in X
(∀i ∈ M), (2.1)

rj =

{
νji(−pij) if j is matched with i in X

0 if j is unmatched in X
(∀j ∈ W ) (2.2)

satisfy

(S1) q ≥ 0 and r ≥ 0,

(S2) qi ≥ νij(c) or rj ≥ νji(−c) for each pair (i, j) ∈ E and each c ∈ [lij , uij ].

For i ∈ M and j1, j2 ∈ W , νij1(pij1) > νij2(pij2) means i prefers j1 to j2 and i is

indifferent between j1 and j2 if νij1(pij1) = νij2(pij2) for a feasible side payment vector

p. Here qi and rj represent the payoffs for i ∈ M and j ∈ W , respectively. If there

exist a pair (i, j) ∈ E and c ∈ [lij, uij ] such that qi < νij(c) and rj < νji(−c), then i

and j had better change their current status or partners and make a partnership with

each other.

By defining the linear valuations as

νij(pij) = aij + pij , νji(−pij) = bij − pij

for all (i, j) ∈ E, where lij ≤ pij ≤ uij and aij, bij ∈ R, we observe that if l = u = 0,

we get the marriage model by Gale and Shapley [4]. If l = (−µ, . . . ,−µ) and u =

(+µ, . . . ,+µ) for a sufficiently large µ > 0, then we have the assignment model by

Shapley and Shubik [10].

We say that a matching X is pairwise-stable if there exists a feasible side payment

vector p such that (X, p) is pairwise-stable.

3 Characterization of Pairwise-stability

In this section, we characterize pairwise-stability by considering a partition of the set

E. We will utilize this characterization to develop our algorithm.

Lemma 3.1. A matching X is pairwise-stable if and only if there exist a feasible side

payment vector p and two subsets EM and EW of E such that, defining q and r by (2.1)

and (2.2),

4



(S’1) q ≥ 0 and r ≥ 0,

(S’2) qi ≥ max{νij(pij) | (i, j) ∈ EM} for all i ∈ M ,

(S’3) rj ≥ max{νji(−pij) | (i, j) ∈ EW} for all j ∈ W ,

(S’4) E = EM ∪ EW ,

(S’5) pij = lij for all (i, j) ∈ E \ EM and pij = uij for all (i, j) ∈ E \ EW ,

where we define the maximum over an empty set to be equal to 0.

Proof. (⇒) Let (X, p̄) be a pairwise-stable outcome. We define q and r by (2.1) and

(2.2) with p = p̄. Let p be a vector defined by

pij =





ν−1
ij (qi) if ν−1

ij (qi) ∈ [lij, uij ]

uij if uij < ν−1
ij (qi)

lij if ν−1
ij (qi) < lij

(∀(i, j) ∈ E), (3.3)

and let EM and EW be defined by

EM = E \ {(i, j) ∈ E | νij(pij) > qi},

EW = E \ {(i, j) ∈ E | νji(−pij) > rj}.
(3.4)

Obviously, p is a feasible side payment vector. We will show that p, EM and EW

satisfy (S’1)∼(S’5). Condition (S’1) holds by (S1). Conditions (S’2) and (S’3) are

direct consequences of (3.4). We also have (S’4) by (S2) and (3.4). We next show

(S’5). Assume (i, j) 6∈ EM , that is, νij(pij) > qi. By (3.3) and the monotonicity of

νij, νij(pij) > qi yields pij = lij. Assume (i, j) 6∈ EW , that is, νji(−pij) > rj . By

(S’4) we see (i, j) ∈ EM , and hence, ν−1
ij (qi) ≥ lij . Suppose pij < uij to the contrary.

Thus, we have qi = νij(pij) by (3.3). Since rj < νji(−pij) holds and νij and νji

are monotone increasing, there exists a sufficiently small positive number ε such that

lij ≤ pij + ε ≤ uij, qi < νij(pij + ε) and rj < νji(−(pij + ε)). However, this contradicts

(S2). Hence pij = uij for all (i, j) ∈ E \ EW .

(⇐) We assume that there exist p, EM and EW satisfying (S’1)∼(S’5). We will

show that (X, p) is pairwise-stable. Obviously, (S1) holds from (S’1). Suppose to the

contrary that (S2) does not hold, i.e., there exist (i, j) ∈ E and c ∈ [lij , uij ] such that

qi < νij(c) and rj < νji(−c). By (S’2), if qi < νij(c) then either (Case 1) (i, j) 6∈ EM

or (Case 2) (i, j) ∈ EM and pij < c. Similarly by (S’3), if rj < νji(−c) then either

(Case 3) (i, j) 6∈ EW or (Case 4) (i, j) ∈ EW and pij > c. Trivially (Case 2) and

(Case 4) are unsuited. By (S’4), both (Case 1) and (Case 3) do not hold. By (S’5),

(Case 1) is irreconcilable to (Case 4), and (Case 2) irreconcilable to (Case 3). This is

a contradiction. Hence we have (S2).
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4 Linear Valuations

In this section, we deal with the case where for all (i, j) ∈ E, valuations νij and νji are

linear, i.e., these are defined by

νij(x) = αijx + βij, νji(x) = αjix + βji (4.5)

where αij and αji are given positive reals, and βij and βji are given reals. Our main

purpose is to show that a pairwise-stable outcome, namely (X, p,EM , EW ) satisfying

(S’1)∼(S’5), can be found in polynomial-time in the number of agents. First, we as-

sume that a given (X, p,EM , EW ) satisfies (S’1), (S’3), (S’4), (S’5) and the following

condition:

(wS’2) qi ≥ max{νij(pij) | (i, j) ∈ EM} for each matched man i in X.

We note that if no unmatched man in X has any pair in EM \E0, then (X, p,EM , EW )

satisfies (S’1)∼(S’5), where

E0 = {(i, j) ∈ E | νij(pij) ≤ 0}. (4.6)

One can easily find such a tuple (X, p,EM , EW ) as follows. Define p ∈ RE by

pij :=

{
uij if νji(−uij) ≥ 0

max{lij ,−ν−1
ji (0)} if νji(−uij) < 0,

(4.7)

and define EM , EW by

EM := {(i, j) ∈ E | νji(−pij) ≥ 0}, (4.8)

EW := {(i, j) ∈ E | pij < uij} ∪ {(i, j) ∈ E | lij = uij , νji(−uij) < 0}. (4.9)

Obviously, p is a feasible side payment vector. By the definition of p, if νji(−pij) < 0

then pij = lij, and if pij < uij then νji(−pij) ≤ 0. These imply that EM and EW

satisfy (S’4) and (S’5). To define a matching X, we consider q̃ ∈ RM and ẼM ⊆ EM

defined by

q̃i := max{νij(pij) | (i, j) ∈ EM \ E0} (4.10)

for all i ∈ M , and

ẼM := {(i, j) ∈ EM \ E0 | νij(pij) = q̃i}. (4.11)

Recall that the maximum over an empty set is 0 by definition. We also define a set

ÊM ⊆ ẼM as follows:

ÊM := {(i, j) ∈ ẼM | νji(−pij) ≥ νji′(−pi′j) ∀(i′, j) ∈ EW}. (4.12)

By (4.8) and (4.9), ÊM initially coincides with ẼM ; however, it may be a proper subset

of ẼM in further iterations in our algorithm. We adopt an artificial notation W̃ and
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initially put W̃ = ∅. Let X be a matching in bipartite graph (M,W ; ÊM ) such that

X matches all members of W̃ , (4.13)

X maximizes
∑

(i,j)∈X

νji(−pij) among the matchings having (4.13), (4.14)

X maximizes
∑

(i,j)∈X

(lnαji− lnαij) among the matchings having (4.14).(4.15)

Since initially W̃ = ∅, any matching satisfies (4.13). If there exists a matching satisfying

(4.13) then one can easily find a matching X satisfying (4.13), (4.14), and (4.15) by

solving the maximum weight matching problem for a bipartite graph. For a matching

X defined as above, define q and r by (2.1) and (2.2). Then q is nonnegative because of

q̃ ≥ 0, and r is nonnegative by (4.14), and hence, (S’1) holds. Moreover, (wS’2) holds

because of q̃ ≥ 0, and (S’3) holds because νji(−pij) ≤ 0 for all (i, j) in EW .

Let (X, p,EM , EW ) be a tuple satisfying (S’1), (wS’2), (S’3)∼(S’5) and, in addition,

(4.13)∼(4.15), where we assume that W̃ is the set of all matched women in X. If (S’2)

does not hold, then we modify (X, p,EM , EW ) preserving (S’1), (wS’2), (S’3)∼(S’5),

and (4.13)∼(4.15). Since we initially put p as large as possible, we monotonically

decrease p, and hence, preserve r ≥ 0 and νji(−pij) ≥ 0 for all (i, j) ∈ EM in our

modification. Assume that there exists an unmatched man i0 in X such that there is a

pair (i0, j) ∈ EM \E0. Let D be a directed graph ({i0}∪ ẼM , A) with arc set A defined

by

A := A0 ∪ A1 ∪ A2, (4.16)

A0 := {(i0, (i0, j)) | (i0, j) ∈ ẼM},

A1 := {((i, j), (k, j)) | (i, j) ∈ ẼM \ X, (k, j) ∈ X, νji(−pij) = νjk(−pkj)},

A2 := {((i, j), (i, k)) | (i, j) ∈ X, (i, k) ∈ ẼM \ X}.

and assign weights w(e) to each arc e of D as follows:

e = (i0, (i0, j)) ∈ A0 ⇒ w(e) = lnαi0j ,

e = ((i, j), (k, j)) ∈ A1 ⇒ w(e) = − lnαji + lnαjk, (4.17)

e = ((i, j), (i, k)) ∈ A2 ⇒ w(e) = − lnαij + lnαik.

Let

R(i0) = {(i, j) ∈ ẼM | (i, j) is reachable from i0 in D}. (4.18)

By the definition of D, we have the following lemma.

Lemma 4.1. Assume that (i, j) ∈ R(i0)\X and (k, j) ∈ X. Then, we have νji(−pij) ≤

νjk(−pkj).
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Proof. Suppose to the contrary that (i, j) ∈ R(i0) \ X and νji(−pij) > νjk(−pkj) for

(k, j) ∈ X. Since (i, j) is reachable from i0, there exists a sequence S of pairs in ẼM :

S = (i0, j0), (i1, j0), (i1, j1), . . . , (is, js) = (i, j), (is+1 , js) = (k, j)

such that ((ih, jh), (ih+1, jh)) ∈ A1 for h = 0, 1, . . . , s − 1 and ((ih, jh−1), (ih, jh)) ∈ A2

for h = 1, . . . , s. Obviously, the symmetric difference X ′ of S and X is a matching

covering W̃ , and X ′ is strictly greater than X in the sense of (4.14). This, however, is

a contradiction. Thus, the assertion holds.

We also have the following lemma.

Lemma 4.2. D has no negative cycle with respect to w.

Proof. Assume that D has a negative cycle C. By the definition of D, vertices corre-

sponding to ẼM \ X and X alternately appear in C. We express C by a sequence of

pairs of ẼM as

C = (i1, j1), (i2, j1), (i2, j2), . . . , (is, js), (is+1, js) = (i1, js), (is+1, js+1) = (i1, j1),

where (ih, jh) ∈ ẼM \X and (ih+1, jh) ∈ X for all h = 1, 2, . . . , s. By (4.17), the weight

w(C) of C is calculated as

w(C) =

s∑

h=1

(− lnαjhih + lnαjhih+1
− lnαih+1jh

+ lnαih+1jh+1
)

=
∑

(i,j)∈C∩X

(lnαji − lnαij) −
∑

(i,j)∈C\X

(lnαji − lnαij) < 0.

By the construction of D, the symmetric difference X ′ of X and C, which is a match-

ing in (M,W ; ÊM ), also satisfies (4.13) and (4.14). The assumption that w(C) < 0,

however, implies that

∑

(i,j)∈X

(lnαji − lnαij) <
∑

(i,j)∈X′

(lnαji − lnαij),

which contradicts (4.15). Hence, D has no negative cycle.

By Lemma 4.2, we can consider the shortest distance d : ẼM → R∪ {+∞} from i0

to the other vertices in D with respect to w. For convenience, we denote the shortest

distance of (i, j) ∈ ẼM by d(i,j). We now decrease p with a parameter ε ≥ 0 as

pij(ε) :=

{
pij − ε exp(−d(i,j)) if (i, j) ∈ R(i0)

pij otherwise.
(4.19)

Before discussing how to determine a parameter ε, we give two lemmas.

Lemma 4.3. For any (i, j) ∈ R(i0), we have (i, k) ∈ R(i0) for all (i, k) ∈ ẼM and

νij(pij(ε)) = νik(pik(ε)), where ε ≥ 0.
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Proof. If (i, j) ∈ X then ((i, j), (i, k)) ∈ A2, and hence (i, k) ∈ R(i0). We assume that

(i, j) ∈ R(i0) \ X. If i = i0 then (i, (i, k)) ∈ A0 and hence (i, k) ∈ R(i0). Assume that

i 6= i0. By the construction of D, given a vertex of ẼM \ X in D, if it has an entering

arc, then the arc is unique and leaves some vertex of X. Since (i, j) ∈ R(i0), there

exists (i, j ′) ∈ X ∩ R(i0) such that ((i, j ′), (i, j)) ∈ A2, and hence (i, k) ∈ R(i0) for all

(i, k) ∈ ẼM .

We next show that νij(pij(ε)) = νik(pik(ε)). If i = i0 then the unique path from i0

to (i0, j) is (i0, (i0, j)) and hence

νi0j′(pi0j′(ε)) = αi0j′(pi0j′ − ε exp(− lnαi0j′)) + βi0j′ = νi0j′(pi0j′) − ε (4.20)

for all (i0, j
′) ∈ ẼM , which means νi0j(pi0j(ε)) = νi0k(pi0k(ε)). Assume that i 6= i0,

and, without loss of generality, assume that (i, j) ∈ X. For each (i, k) ∈ ẼM \ X, we

have d(i,k) = d(i,j) + (− lnαij + lnαik). Hence, we have

νik(pik(ε)) = αik(pik − ε exp(−d(i,j) + lnαij − lnαik)) + βik

= νik(pik) − εαij exp(−d(i,j)) = νij(pij(ε)).

This completes the proof.

Lemma 4.4. Assume that (i, j) ∈ R(i0), and that there exists (k, j) ∈ X. For a

sufficiently small ε ≥ 0, νji(−pij(ε)) ≤ νjk(−pkj(ε)) holds. Moreover, if (k, j) ∈ X ∩

R(i0), then the above inequality holds for all ε ≥ 0. The above inequality holds with

equality if arc ((i, j), (k, j)) lies on a shortest path from i0 to (k, j).

Proof. In the case where νji(−pij) < νjk(−pkj), the assertion obviously holds. In the

other case, it follows from Lemma 4.1 that νji(−pij) = νjk(−pkj), i.e., (k, j) ∈ X∩R(i0).

Since d is the shortest distance with respect to w, we have d(k,j) ≤ d(i,j)− lnαji+lnαjk.

Hence, we have

νjk(−pkj(ε)) = αjk(−pkj + ε exp(−d(k,j))) + βjk

= νji(−pij) + εαjk exp(−d(k,j))

≥ νji(−pij) + εαjk exp(−d(i,j) + lnαji − lnαjk) = νji(−pij(ε)).

Note that if ((i, j), (k, j)) lies on a shortest path from i0 to (k, j), then d(k,j) = d(i,j) −

lnαji + lnαjk and hence νjk(−pkj(ε)) = νji(−pij(ε)). This completes the proof.

Let

W̃ := {j ∈ W | j is matched in X} (4.21)

be the set of all matched women for the matching X. Our aim is to decrease p as (4.19)

by a parameter ε ≥ 0. Note that νij and νji, for all (i, j) ∈ E are monotone increasing

on R and νij(pij) > 0 for all (i, j) ∈ E \ E0. For the time being, if we ignore the lower

bound l of the side payment vector, then we have the following bounds on the values

of νij(pij) and νji(−pij) for any (i, j) ∈ R(i0):
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(a) There exists p̃ij ∈ (−∞, pij ] such that νij(p̃ij) = 0.

(b) If there exists (i, k) ∈ EM \ E0 such that (i, k) /∈ ẼM or k /∈ W̃ , then there exists

p̃ij ∈ (−∞, pij] such that νij(p̃ij) = νik(pik).

(c) If (i, j) ∈ R(i0) \ X, then for (k, j) ∈ X \ R(i0), there exists p̃ij ∈ (−∞, pij] such

that νji(−p̃ij) = νjk(−pkj). Note that Lemma 4.1 guarantees the existence of

such p̃ij provided that (k, j) exists.

To decide parameter ε, we explicitly write the above here:

(Case 1) Let ε1 ≥ 0 be the minimum for which νij(pij(ε1)) = νik(pik(ε1)) for some

(i, j) ∈ R(i0) and (i, k) ∈ EM with k ∈ W \ W̃ . If such ε1 does not exist, then

put ε1 = +∞.

(Case 2) Let ε2 ≥ 0 be the minimum for which νij(pij(ε2)) = νik(pik(ε2)) for some

(i, j) ∈ R(i0) and (i, k) ∈ EM \R(i0) with k ∈ W̃ . If such ε2 does not exist, then

put ε2 = +∞.

(Case 3) Let ε3 ≥ 0 be the minimum for which νij(pij(ε3)) = 0 for some (i, j) ∈ R(i0).

(Case 4) Let ε4 ≥ 0 be the minimum for which pij(ε4) = lij holds for some (i, j) ∈

R(i0).

(Case 5) Let ε5 ≥ 0 be the minimum for which νji(−pij(ε5)) = νjk(−pkj(ε5)) holds

for some (i, j) ∈ R(i0) \ X and (k, j) ∈ X \ R(i0). If such ε5 does not exist, then

put ε5 = +∞.

Since l ∈ RE , we have ε4 ∈ R. Thus, ε determined by

ε = min{ε1, ε2, ε3, ε4, ε5} (4.22)

is well-defined. It follows from ε ≤ ε4 that p(ε) is a feasible side payment vector. Put

p̃ = p(ε). (4.23)

Now, our algorithm is described as below.

Algorithm Stable Outcome

Step 0: Let W̃ = ∅. Initially define (X, p,EM , EW ), E0 and ẼM by (4.6), (4.7), (4.8),

(4.9), (4.11), and (4.13)∼(4.15).

Step 1: If no unmatched man in X has any pair in EM \ E0 then stop.

Step 2: Let i0 be an unmatched man in X such that there is a pair (i0, j) ∈ EM \E0.

Construct a directed graph D = ({i0} ∪ ẼM , A) and weight w by (4.11), (4.16)

and (4.17). Calculate the shortest distances d of all vertices in D from i0, and ε

and p̃ by (4.22) and (4.23).
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Step 3: Let R(i0) and W̃ be the sets defined by (4.18) and (4.21) for the current

matching X. Suppose that (i, j) and k denote a pair and an agent defined in the

above five cases.

(a) If ε = ε1 then set W̃ := W̃ ∪ {k} and go to Step 4; else go to (b),

(b) If ε = ε2 then go to Step 4; else go to (c),

(c) If ε = ε3 then set E0 := E0 ∪ {(i, j′) ∈ ẼM | j′ ∈ W} and go to Step 4; else

go to (d),

(d) If ε = ε4 then set EM := EM \ {(i, j)} and EW := EW ∪ {(i, j)} and go to

Step 4; else go to (e),

(e) If ε = ε5 then go to Step 4,

Step 4: Replace p by p̃, and calculate ẼM and ÊM by (4.11) and (4.12) for the up-

dated p. Redefine EW by (4.9). Find a matching X in (M,W ; ÊM ) satisfying

(4.13)∼(4.15). Go to Step 1.

We first show that Stable Outcome works correctly.

Lemma 4.5. In each iteration of Stable Outcome, (X, p,EM , EW ) at Step 1 sat-

isfies (S’1), (wS’2), (S’3) ∼ (S’5) and (4.13) ∼ (4.15), and furthermore, there exists a

matching in (M,W ; ÊM ) satisfying (4.13) ∼ (4.15) at Step 4.

Proof. By the initial selection of (X, p,EM , EW ) at Step 0, obviously (S’1), (wS’2) and

(S’3) ∼ (S’5) and (4.13) ∼ (4.15) hold prior to the execution of Step 1 in the first

iteration. Thus, the first assertion holds in the first iteration.

Suppose that (X, p,EM , EW ) satisfies (S’1), (wS’2) and (S’3) ∼ (S’5) and (4.13) ∼

(4.15) before the start of the tth-iteration, t ≥ 1. We first show the second assertion.

It is enough to show that there exists a matching X̃ in (M,W ; ÊM ) satisfying (4.13).

We consider Cases 2 and 5. In these cases, by Lemma 4.3, ẼM remains the same or

enlarges at Step 4. Furthermore, Lemma 4.4 and (S’3) guarantee X ⊆ ÊM for the

updated ÊM because the new pairs added into EW belong to R(i0). Hence X satisfies

(4.13) in Cases 2 and 5. Analogously, X satisfies (4.13) when (i, j) 6∈ X in Case 4. We

next consider Cases 3 and 4 with (i, j) ∈ X. In these cases, there exists a shortest path

S from i0 to (i, j) in D, which is denoted by

S = (i0, j0), (i1, j0), (i1, j1), . . . , (is, js)(is+1, js) = (i, j) (4.24)

where ((ih, jh), (ih+1, jh)) ∈ A1 for h = 0, . . . , s and ((ih, jh−1), (ih, jh)) ∈ A2 for h =

1, . . . , s. In the same way as above, Lemmas 4.3, 4.4 and (S’3) guarantee that all pairs

in S ∪ X other than (i, j) are contained in Ê. Let X̃ be the symmetric difference of

S and X. Obviously, (i, j) 6∈ X̃, X̃ ∩ E0 = ∅, and X̃ is a matching in (M,W ; ÊM )

satisfying (4.13). We finally consider Case 1. In this case, (i, k) belongs to the updated

Ê because of νki(−pik) ≥ 0 and (S’3). By the assumption of Case 1, there exists a pair
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(i, j) ∈ X which is reachable from i0. Let S be a shortest path from i0 to (i, j) denoted

as (4.24). We can show that S ∪ X belongs to ÊM as above. Thus, the symmetric

difference X̃ of S ∪ {(i.j)} and X is a matching covering the updated W̃ .

Next we prove that (X, p,EM , EW ) defined at Step 4 satisfies (S’1), (wS’2) and

(S’3) ∼ (S’5). We have q ≥ 0 since ε ≤ ε3, and r ≥ 0 since (4.14) holds for X and

νji(−pij) ≥ 0 for all (i, j) ∈ EM . Hence (S’1) does hold. Definitions of q̃ and ÊM , and

the fact that X ⊆ ÊM yield (wS’2) and (S’3). At Step 3, EM and EW remain the same

or one element is removed from EM and added into EW , and at Step 4 EW may be

enlarged. Thus (S’4) holds true. We note that if any (i, j) ∈ E is removed from EM

and added into EW , then pij = lij . Hence, the first part of (S’5) holds. Also (i, j) ∈ EW

if and only if either pij < uij or (lij = uij and νji(−uij) < 0). Thus, we have pij = uij

for all (i, j) ∈ E \ EW , the second part of (S’5). This completes the proof.

Theorem 4.6. If Stable Outcome terminates, then it outputs a pairwise-stable out-

come (X, p,EM , EW ) satisfying (S’1)∼(S’5).

Proof. Lemma 4.5 guarantees that (X, p,EM , EW ) at Step 1 satisfies (S’1), (wS’2) and

(S’3)∼(S’5). If Stable Outcome terminates, then there is no unmatched man in X

having any pair in EM \ E0. This says that (X, p,EM , EW ) also satisfies (S’2).

Until now, we have spent our efforts to show the correctness of Stable Outcome.

We now finally show that Stable Outcome terminates in polynomial-time in the

number n of agents.

Lemma 4.7. Stable Outcome terminates in O(n3) iterations.

Proof. During Stable Outcome, W̃ , E0 and EW enlarge or remain the same, and a

pair eliminated from ẼM will never appear again in ẼM .

If ε = ε1 then W̃ is enlarged. Thus, Case 1 occurs at most |W | times.

If ε = ε2, then at least one pair is added to ẼM , and hence, Case 2 occurs at most

|E| times.

Since E0 is enlarged if ε = ε3, Case 3 occurs at most |M | times.

If ε = ε4, then one pair is deleted from EM and added in EW and is not selected

for X in the subsequent iterations. Case 4 occurs at most |E| times.

Summing up the above discussion, the cases other than Case 5 occurs at most O(n2)

times.

We finally consider the case where Case 5 occurs but the other cases do not occur.

In this case, a pair in X is added into R(i0). Such case successively occurs at most |W̃ |

times, because R(i0) does not reduce if Cases 1, 2, 3, and 4 do not occur. This means

that Stable Outcome terminates in O(n3) iterations.

In each iteration of Stable Outcome, we solve the maximum weight matching

problem in bipartite graph (M,W ; ÊM ) and the single source shortest path problem in

D. We note that one can execute Stable Outcome without calculating logarithms
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nor exponentials in practice, because maximizing
∑

(i,j)∈X(lnαji− lnαij) is equivalent

to maximizing Π(i,j)∈X
αji

αij
, and because exp(−d(i,j)) in (4.19) can be expressed by

products and divisions of αij’s. It is well known that the maximum weight matching

problem in a bipartite graph can be solved in O(n3). Since the arcs in graph D have

general weights (positive or negative) and D does not have negative cycles with respect

to w, we utilize the Moore-Bellman-Ford Algorithm which finds the shortest distances

in O(|ẼM | · |A|). Since each pair (i, j) ∈ ẼM \ X has at most one entering arc and one

leaving arc in D, |A| is bounded by n2 from above. Thus, the shortest distances can

be calculated in O(n4). By Lemma 4.7, we can easily derive the following Theorem.

Theorem 4.8. The complexity of Stable Outcome is O(n7) where n denotes the

number of agents.
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