
Time Evolution with and without Remote Past (I):
Noise Driven Automorphisms of Compact Abelian Groups

Yoichiro Takahashi and Kouji Yano

July 14, 2006

1 Introduction

Usually the time evolution is discussed from the present to the future or from the past,
precisely, from some fixed initial time in the past, to the present or to the future. But
we sometimes consider the time evolution from the remote past to the remote future as
in the theory of stationary stochastic processes. In the present paper we consider time
evolutions governed by noise driven automorphism on compact abelian groups and give a
necessary and sufficient condition for the time evolution to admit remote past. It turns
out that to admit the remote past is fairly restrictive.

Let G be a compact abelian group and ϕ be an automorphism of G. Consider the
random time evolution governed by a stochastic equation

(1.1) ηn = ϕ(ηn−1) + ξn (n ∈ Z)

on G where (ξn) is a noise in the sense that (a) the random variables ξn are mutually
independent and subject to a common probability distribution, say µ, and (b) for each n
the random variable ξn is independent of the random variables ηk with k < n.

The point is that ξn and ηn are indexed for all integer n, including negative n. We say
that the time evolution admits remote past if there exists a solution (ξn, ηn) of (1.1).

It is immediate (cf. [1]) to see that the above equation (1.1) is reduced to the convo-
lution equation

(1.2) λn = µn ∗ λn−1 (n ∈ Z)

where λn’s are unknown probability measures on G which stand for the probability dis-
tribution of ϕ−nηn and µn’s are known probability measures which come from ϕ−nξn.
The equation (1.2) for arbitrarily given µn’s will be discussed in Section 3. We remark
that the equation (1.2) always admits the trivial solution (λHaar

n ) where each λHaar
n is the

normalized Haar measure on G.
Let Γ stand for the characteristic group of G.

Theorem 1.1. Assume that the noise is stationary and the automorphism is the identity:

(1.3) µn = µ for any n ∈ Z and ϕ = id.

Set

Γµ = {χ ∈ Γ : |µ(χ)| = 1}(1.4)

and

Gµ = {g ∈ G : χ(g) = 1 for all χ ∈ Γµ}.(1.5)
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Then there exists a unique element α(µ) in G/Gµ such that solutions (λn) of (1.2) are
characterized by the following two properties:
(a) Each λn is Gµ-invariant.

(b) The projections λ̂n of λn to G/Gµ evolves by the Weyl transformation τα(µ):

λ̂n = τα(µ)λ̂n−1 (n ∈ Z)(1.6)

where ταβ = β + α for α, β ∈ G/Gµ.

To illustrate the idea, we give examples in the case where G = T1. Here we identify
T with the interval [0, 1).

Example 1.2 (cf. [4, Section 7, Lemma 5]). For p = 1, 2, . . ., we denote Zp = {k/p :
k = 0, 1, . . . , p− 1}.
(i) Assume that µ(x +Zp) < 1 for any p = 1, 2, . . . and any x ∈ T. Then Gµ = T. In this
case the solution of (1.2) is only the trivial solution.
(ii) Assume that µ({x}) = 1 for some x ∈ T. Then Gµ = {0} and α(µ) = {x}. In this
case every solution (λn) of (1.2) evolves by the translation by x.
(iii) Otherwise, we can choose x ∈ T and p = 2, 3, . . . such that p is minimum among the
pairs (x, p) with µ(x + Zp) = 1. Then Gµ = Zp and α(µ) = x + Zp.

In particular, we consider the case where the support of µ consists of two points:
µ = p1δx1 + p2δx2 for some p1, p2 > 0, p1 + p2 = 1 and x1, x2 ∈ T, x1 6= x2.
(i)′ Assume that x2 − x1 is rational under identification G ' [0, 1). We can express
x2− x1 = r/p for some p = 2, 3, . . . and r ∈ N where p and r are coprime. Then Gµ = Zp

and α(µ) = x1 + Zp (= x2 + Zp).
(ii)′ Otherwise, Gµ = T.

The following observation shows that the existence of nontrivial solution is fairly re-
strictive and is surprising at least to the authors.

Theorem 1.3. Assume that G has a countable basis. Let µ be a probability measure on
G and ϕ an automorphism of G. Set

Γµ =

{
χ ∈ Γ :

∞∏

k=m

|µ(χ ◦ ϕk)| > 0 for some m

}
(1.7)

and

(1.8) Gµ = {g ∈ G : χ(g) = 1 for all χ ∈ Γµ}.

Then there exists an element α(µ) ∈ G/Gµ such that µ(∩χ∈ΓµW s(a, χ, ϕ)) = 1 for any
a ∈ α(µ) where

W s(a, χ, ϕ) =
{

x ∈ G : lim
k→∞

χ(ϕkx)/χ(ϕka) = 1
}

.(1.9)

Theorem 1.4. Under the same assumption and notations as in Theorem 1.3, the follow-
ing statements hold:
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(a) Every solution (λn) of (1.2) consists of Gµ-invariant measures λn.
(b) There exists a sequence (νn) of Gµ-invariant probability measures on G such that every
extramal solution (λn) of the convolution equation (1.2) corresponds to a unique element
γ ∈ G/Gµ by the relation

(1.10) λn = νn ∗ δ−P−n−1
j=0 ϕja+c (n ∈ Z)

where a and c are arbitrary elements of the cosets α(µ) and γ, respectively, and the sum∑−n−1
j=0 is interpreted as 0 for n = 0 and −∑−1

j=−n for positive n.

In Section 5 we give a further property in the special case where G is a finite-
dimensional torus and Γµ = Γ.

The equation (1.1) has a background in the theory of stochastic differential equation
of the probability theory. Roughly speaking, a stochastic differential equation is a differ-
ential equation driven by a noise process. Hence one may ask whether the randomness
of a solution is exhausted by that of the noise process, namely, in the terminology of the
discrete-time equation (1.1), whether each ηn is expressed as a function of ξn, ξn−1, . . . up
to a null set. If the answer is yes, the solution is called strong, and otherwise nonstrong.
While for ordinary differential equations any solution is always strong, for stochastic differ-
ential equations several examples have been known since 1960’s which possess nonstrong
solutions.

Tsirelson ([3]) has constructed such an example by considering the discrete-time equa-
tion (1.1) when G = T. Yor ([4]) has studied the discrete-time equation for general
noise laws and determined the necessary and sufficient condition on the noise law for
presence/absence of strong solutions and for uniqueness/nonuniqueness of the solution.
Recently Akahori et. al. ([1]) have studied the equation (1.1) for general compact groups
G and proved that the extremal set of solutions is homeomorphic to the quotient space
G/H for some subgroup H of G.

We must also refer to a work of Brossard and Leuridan ([2]). They have studied rather
general Markov chains and investigate the uniqueness problem and the behavior of sample
paths at the remote past. But they imposed a restrictive assumption that the one-step
transition probability is absolute continuous with respect to a measure; Consequently, the
case which involves the Weyl transform is excluded.

2 The simple case

In this section we assume that the noise is stationary and the automorphism is the identity:

(2.1) µn = µ for any n ∈ Z and ϕ = id.

Then the convolution equation (1.2) takes the form

(2.2) λn = µ ∗ λn−1 (n ∈ Z).

Then we obtain

(2.3) λn(χ) = µ(χ)mλn−m(χ) n ∈ Z, m ∈ N, χ ∈ Γ.

3



Definition 2.1. Set

(2.4) Γµ = {χ ∈ Γ : |µ(χ)| = 1}.
Lemma 2.2. If |µ(χ)| < 1, then λn(χ) = 0 for any n ∈ Z.

Proof. By (2.3), we have |λn(χ)| = |µ(χ)|m|λn−m(χ)|. Since |λn−m(χ)| ≤ λn−m(|χ|) ≤ 1,
we obtain |λn(χ)| ≤ |µ(χ)|m for n ∈ Z and m ∈ N. Letting m tend to infinity, we obtain
λn(χ) = 0.

Lemma 2.3. Let λ be a probability measure on G and Γ0 be a subset of Γ. Assume
that λ(χ) = 0 whenever χ /∈ Γ0. Then, the measure λ is G0-invariant where G0 is the
annihilator of Γ0:

G0 = {x ∈ G : χ(x) = 1 for all χ ∈ Γ0}.(2.5)

Proof. Let Tg be the translation by g ∈ G0. Then, (Tgλ)(χ) = χ(g)λ(χ) = λ(χ) if χ ∈ Γ0

by the definition of G0. Otherwise, (Tgλ)(χ) = χ(g)λ(χ) = 0 = λ(χ) by the assumption
on λ. Hence, Tgλ = λ.

Let us denote the annihilator of Γµ by Gµ.

Lemma 2.4. If |µ(χ)| = 1, then χ(x) is constant µ-a.e. In particular, χ(x) = µ(χ) for
µ-a.e. x.

Proof. Since |χ(x)| = 1 µ-a.e., one obtains

0 ≤
∫

X

|χ(x)− µ(χ)|2µ(dx)(2.6)

≤
∫

X

∫

X

|χ(x)− χ(y)|2µ(dx)µ(dy) = 2(1− |µ(χ)|2).

Hence, if |µ(χ)| = 1, then χ(x) = µ(χ) µ-a.e.

Proposition 2.5. The following statements hold:
(i) Γµ is a subgroup of the character group Γ.
(ii) For any χ1, χ2 ∈ Γµ,

µ(χ1χ2) = µ(χ1)µ(χ2).(2.7)

In other words, the restriction µ|Γµ is a character of Γµ.
(iii) There exists a unique element αµ in G/Gµ such that µ(χ) = χ(a) for any a ∈ αµ

and any character χ ∈ Γµ.

Proof. Let χ1, χ2 ∈ Γµ. By Lemma 2.4, we see that χ1(x) = µ(χ1) and χ2(x) = µ(χ2)

for µ-a.e. x ∈ G. Then we have (χ1χ2)(x) = µ(χ1)µ(χ2) for µ-a.e. x ∈ G, and, hence, we
obtain µ(χ1χ2) = µ(χ1)µ(χ2). This implies (ii) and also (i).

Note that Γµ is identified with the character group of G/Gµ. By Pontryagin’s duality
theorem, the character µ|Γµ of Γµ obtained in Proposition 2.5 can be identified with an
element of G/Gµ. We identify it with a coset α(µ). Then, for any a ∈ α(µ) and any
character χ ∈ Γµ, we obtain µ(χ) = χ(a).
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Proof of Theorem 1.1. We already proved (a) in Lemmas 2.2 and 2.3.
It then follows from Proposition 2.5 (iii) and from a similar argument in the proof of

Lemma 2.3 that λn(χ) = χ(a)λn−1(χ) for all n ∈ Z, a ∈ α(µ) and χ ∈ Γ. Consequently,
λn = Taλn−1. Since each λn is Gµ-invariant, we obtain (b).

Remark 2.6. Assume, in addition, that G has a countable basis. Since each λn is Gµ-

invariant, there exists a probability measure λ̂n on the quotient group G/Gµ such that
∫

G

λn(dx)f(x) =

∫

G/Gµ

λ̂n(dh)

∫

Gµ

ν(dy)f(h.y)(2.8)

for any continuous function f on G where ν is the normalized Haar measure on Gµ and
h.y stands for an element of h ∈ G/Gµ identified with a coset.

3 Nonstationary noise

In this section we continue to assume that ϕ = id but we consider the case where µn does
depend on n. Now the convolution equation (1.2) takes the original form

λn = µn ∗ λn−1 n ∈ Z(3.1)

and, hence, we obtain

λn(χ) = µn(χ)µn−1(χ) · · ·µn−m+1(χ)λn−m(χ) n ∈ Z, m ∈ N, χ ∈ Γ.(3.2)

Lemma 3.1. If
∏∞

k=1 µ−k(χ) = 0, then λn(χ) = 0 for any n ∈ Z.

Proof. By (3.2), we have |λn(χ)| = ∏m−1
k=1 |µn−k(χ)||λn−m(χ)|. Since |λn−m(χ)| ≤ λn−m(|χ|) ≤

1, we obtain |λn(χ)| ≤ ∏m−1
k=1 |µn−k(χ)| for n ∈ Z and m ∈ N. Letting m tend to infinity,

we obtain λn(χ) = 0.

Definition 3.2. Set

Γµ =

{
χ ∈ Γ :

∞∏

k=m

|µ−k(χ)| > 0 for some m

}
.(3.3)

Remark 3.3. In the case considered in Section 2 the two definitions of Γµ given by (2.4)
and (3.3) coincide.

Lemma 3.4. The inequality
∏∞

k=m |µ−k(χ)| > 0 holds if and only if µ−k(χ) 6= 0 for any
k ≥ m and

∞∑

k=m

∫

G

∫

G

µ−k(dx)µ−k(dy)|χ(x)− χ(y)|2 < ∞.(3.4)

Proof. Notice that
∫

G

∫

G

µ−k(dx)µ−k(dy)|χ(x)− χ(y)|2 = 2(1− |µ−k(χ)|2).(3.5)

Hence the assertion follows from the fact that the infinite product
∏∞

k=1 ck of 0 ≤ ck ≤ 1
converges to a positive limit if and only if ck’s are positive and

∑∞
k=1(1− ck) < ∞.
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Proposition 3.5. Γµ is a subgroup of the character group Γ.

Proof. Let χ1, χ2 ∈ Γµ. Then it follows from Lemma 3.4 that, for sufficiently large m,

∞∑

k=m

∫

G

∫

G

µ−k(dx)µ−k(dy)|(χ1χ2)(x)− (χ1χ2)(y)|2(3.6)

≤
∞∑

k=m

∫

G

∫

G

µ−k(dx)µ−k(dy)2
{
|χ1(x)− χ1(y)|2 + |χ2(x)− χ2(y)|2

}
< ∞.

Moreover,

∞∑

k=m

∫

G

µ−k(dx)|(χ1χ2)(x)− µ−k(χ1χ2)|2 < ∞.(3.7)

Hence, µ−k(χ1χ2) 6= 0 except for finitely many k. Consequently, again by Lemma 3.4 we
conclude that χ1χ2 ∈ Γµ. Since we assume that G is compact, the character group Γ is
discrete. Hence, an algebraic subgroup of Γ is a (topological) subgroup.

Remark 3.6. Lemma 2.3 in the previous section works here, too. Thus, each λn of a
solution (λn) is Gµ-invariant.

Here we stop the preliminary discussion on nonstationary noises and we proceed in the
next section to the case where the noise is stationary and the automorphism is arbitrary.

4 General case

Let ϕ be an automorphism of a compact abelian group G. We assume that the noise (ξn)
is stationary so that the random variables ξn’s are independent and subject to a common
probability distribution µ. So we consider the stochastic equation (1.1) stated in Section
1 where µn is the probability distribution of ϕ−nξn and λn is the probability distribution
of ϕ−nηn. We denote by λ̃n the probability distribution of ηn itself.

The automorphism ϕ of G induces an automorphism ϕ∗ of the character group Γ:
ϕ∗χ(x) = χ(ϕx), x ∈ G, χ ∈ Γ. For χ ∈ Γ define

W s
2 (χ, ϕ) =

{
(x, y) ∈ G×G :

∞∑

k=0

|(ϕ∗nχ)(x)− (ϕ∗nχ)(y)|2 < ∞
}

(4.1)

and, for x ∈ G,

W s
2 (x; χ, ϕ) = {y ∈ G : (x, y) ∈ W s

2 (χ, ϕ)}(4.2)

=

{
y ∈ G :

∞∑

k=0

|(ϕ∗nχ)(y)− (ϕ∗nχ)(x)|2 < ∞
}

.

We may call it the `2-stable set of x in the direction χ with respect to ϕ.
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Remark 4.1. We have the obvious relation W s
2 (x; χ, ϕ) ⊂ W s(x; χ, ϕ) where W s(x; χ, ϕ)

is defined in (1.9).

Lemma 4.2. The set W s
2 (0; χ, ϕ) is a ϕ-invariant subgroup of G.

Proof. Obvious.

Now Lemma 3.4, Proposition 3.5 and Remark 3.6 can be restated as follows.

Proposition 4.3. Assume that (λn) solves the equation (1.2). Then the following state-
ments hold.
(i) If χ ∈ Γµ, then, (µ⊗ µ)(W s

2 (χ, ϕ)) = 1.
(ii) Γµ is ϕ∗-invariant.
(iii) Gµ is a ϕ-invariant subgroup.

(iv) λn is Gµ-invariant and so is λ̃n.

Proof. (ii)-(iv) are obvious restatements. To see (i) it suffices to note that

∫

G

∫

G

µ(dx)µ(dy)
∞∑

k=m

|(ϕ∗kχ)(x)− (ϕ∗kχ)(y)|2(4.3)

=
∞∑

k=m

∫

G

∫

G

µ−k(dx)µ−k(dy)|χ(x)− χ(y)|2.

Remark 4.4. If ϕ = id, then, W s
2 (x; χ, ϕ) = {y : χ(y) = χ(x)}. Hence, if we assume, in

addition, that G is metrizable or that Γµ is coutable, then we can apply Fubini’s theorem
and the assertion (i) of Proposition 4.2 shows

(µ⊗ µ){(x, y) ∈ G : χ(x) = χ(y) for all χ ∈ Γµ} = 1.(4.4)

This implies that the support of µ consists of a single coset in G/Gµ, which is nothing
but the element α(µ) introduced in Section 2.

Proof of Theorem 1.2. Obvious from (i) of Proposition 4.2.

Proof of Theorem 1.3. Let (λn) be a solution of (1.2) and a ∈ α(µ). Set

µ◦n = T−ϕ−naµn (n ∈ Z)(4.5)

and

λ◦n = TP−n−1
j=0 ϕjaλn (n ∈ Z)(4.6)

for each n. Here we interpret
∑−1

j=0 = 0 and
∑−n−1

j=0 = −∑−1
j=−n for positive n. Then

they satisfy

(4.7) λ◦n = µ◦n ∗ λ◦n−1 (n ∈ Z),
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and, hence,

λ◦n = µ◦n ∗ µ◦n−1 ∗ · · · ∗ µ◦n−k ∗ λ◦n−k−1 (n ∈ Z, k ∈ N).(4.8)

Recall that the totality of probability measures on a compact metrizable space is
compact in the weak topology. Here we say that µn → µ weakly if µn(f) → µ(f) for any
continuous function f . This topology is called the weak∗ topology in the context of the
functional analysis.

Now we can choose an increasing sequence of integers mj → ∞ such that the weak
limit

(4.9) ν◦n = lim
j→∞

µ◦n ∗ µ◦n−1 ∗ · · · ∗ µ◦n−mj
(n ∈ Z)

exists. Since

(4.10) ν◦n(χ) = lim
j→∞

mj∏
i=0

µ◦n−i(χ) (n ∈ Z)

for any χ ∈ Γ, we see that ν◦n(χ) for each n ∈ Z is not equal to 0 for any χ ∈ Γµ and is
equal to 0 for any χ /∈ Γµ. Thus we conclude that ν◦n is Gµ-invariant by Lemma 2.3. Note
that (νn) is not uniquely determined from (µn), but, for each choice of a sequence mj, the
limit (νn(χ)) is uniquely determined up to a multiplicative constant of modulus 1.

Take a limit point of the sequence (λ◦−mj
) and denote it by λ◦−∞. Recall that µn → µ

and νn → ν weakly imply µn ∗ νn → µ ∗ ν weakly. In fact, it is obvious that the product
measure µn⊗ νn → µ⊗ ν weakly and that the pullback of any continuous function under
the map (x, y) 7→ x + y is again a continuous function on the product space. Letting k
tend to infinity in (4.8), we obtain

λ◦n = ν◦n ∗ λ◦−∞.(4.11)

Then (λn) is expressed as

λn = T−P−n−1
j=0 ϕja(ν

◦
n ∗ λ◦−∞)(4.12)

= νn ∗ T−P−n−1
j=0 ϕja(λ

◦
−∞).

Here we denote νn = T−P−n−1
j=0 ϕja(ν

◦
n), which is also Gµ-invariant.

Consequently, an extremal solution (λn) is expressed as

(4.13) λn = νn ∗ δ−P−n−1
j=0 ϕja+c

for some c ∈ G and the element c is unique modulo Gµ.
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5 The case of toral automorphisms

By the definition the probability measures ν◦n satisfy the equation

ν◦n = µ◦n ∗ ν◦n−1 n ∈ Z.(5.1)

Consequently, if we take a sequence of independent random variables ξ◦n subject to µ◦n,
then, we may formally understand that each ν◦n is the probability distribution of the
infinite sum

∑n
k=−∞ ξ◦k.

In some special cases the convergence of
∑n

k=−∞ ξ◦k is justified and an explicit formula
for the solution (ηn) of the equation (1.1) is obtained.

Theorem 5.1. Let G be a finite dimensional torus, say G = Td and assume that Γµ = Zd.
Let d be a distance in Td. Then

∞∑

k=−n

ϕk(ξ◦−k) converges almost surely(5.2)

and

E

[ ∞∑

k=−n

d(ϕk(ξ◦−k), 0)2

]
< ∞(5.3)

for each n ∈ Z. Moreover, the extremal solution (ηn) is given by the formula

ϕ−n(ηn) = c +
∞∑

k=−n

ϕk(ξ◦−k) +
−n−1∑

k=0

ϕk(a) for n ∈ Z(5.4)

with c ∈ Td and a ∈ α(µ) where α(µ) is defined in Theorem 1.4.

Lemma 5.2. There exists a constant r with 0 < r < 1 such that

∩χ∈Γ W s(a; χ, ϕ) = ∩χ∈ΓW s
2 (a; χ, ϕ)(5.5)

=
{
x ∈ G : d(ϕk(x), ϕk(a)) ≤ Crn for any k ∈ N and for some constant C

}
.

Proof. Let us identify Td with the unit cube [−1/2, 1/2)d in Rd and measures on Td with
those on [−1/2, 1/2)d. Then the automorphism ϕ is regarded as an automorphism on
[−1/2, 1/2)d and is defined by a matrix A as

ϕ(x) = Ax mod Zd.(5.6)

Under the identification stated above, ϕk(x) → 0 as k → ∞ in Td if and only if
Akx → 0 as k → ∞ in Rd. Since A is a finite dimensional matrix, it means that the
vector x in Rd belongs to the linear span of eigenvectors of A corresponding to eigenvalues
of modulus less than 1. Take a constant r which is less than 1 and is greater than the
maximum modulus of such eigenvalues. Then for any norm ‖ ·‖ there holds the inequality
‖Akx‖ ≤ Crk for some constant C. Consequently, for any distance d on Td there holds
the inequality d(0, ϕk(x)) ≤ Crk for some constant C depnending on x (which may be
different from the previous C). Hence follows the desired assertion.

9



Remark 5.3. If x 6= 0 and Akx → 0 as k → ∞, then ‖A−kx‖ → ∞ as k → ∞ but the
converse is not true.

To prove Theorem 5.1 we want to apply a well-known convergence theorem: if Xk,
k = 0, 1, . . ., are independent Rd-valued random variables and if they are square integrable
with

∑∞
k=0 E[‖Xk −E[Xk]‖2] < ∞, then

∑∞
k=0(Xk −E[Xk]) converges almost surely and

in L2 sense. Here appear two obstacles:
(a) Absence of the notion of mean for group elements.
(b) The sequence χ(ϕk(x)) − ∫

G
µ(dy)χ(ϕk(y)) is square summable for µ-a.e. x but is

generally not summable.
Lemma 5.2 above shows that the assumptions of Theorem 5.1 eliminates (b). Indeed,

the sequence χ(ϕk(x))− ∫
G

µ(dy)χ(ϕk(y)) decreases exponentially.

Lemma 5.4. Under the identification of Td with [−1/2, 1/2)d, we obtain

E

[ ∞∑

k=0

‖ϕk(ξ◦−k)‖2

]
< ∞.(5.7)

Proof. We start with the following restatement of (3.4):

∫

G

µ(dx)E

[ ∞∑

k=0

|χ(ϕk(ξ−k))− χ(ϕk(x))|2
]

< ∞.(5.8)

Thus, for µ-a.e. x,

E

[ ∞∑

k=0

|χ(ϕk(ξ−k))− χ(ϕk(x))|2
]

< ∞.(5.9)

Thererfore, ξ◦−k = ξ−k − ϕk(a) satisfies

E

[ ∞∑

k=0

|χ(ϕk(ξ◦−k))− 1|2
]

< ∞.(5.10)

Now let χj, j = 1, 2, . . . , d, be the standard generators of Γ:

χj(x) = exp(2π
√−1xj) for x = (x1, . . . , xd) ∈ [−1/2, 1/2)d.(5.11)

Note that | exp(2π
√−1x) − 1| ≥ c|x| for x ∈ [−1/2, 1/2). Hence it follows from (5.10)

with χ = χj, j = 1, 2, . . . , d, in Td that

E

[ ∞∑

k=0

‖ϕk(ξ◦−k)‖2

]
< ∞(5.12)

in Rd.
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Proof of Theorem 5.1. It follows from Lemma 5.4 that

E

[ ∞∑

k=0

∥∥ϕk(ξ◦−k) − E[ϕk(ξ◦−k)]
∥∥2

]
< ∞.(5.13)

Hence, the sum

∞∑

k=0

{
ϕk(ξ◦−k)− E[ϕk(ξ◦−k)]

}
(5.14)

converges almost surely. On the other hand, we already know that

∞∑

k=0

(E[ϕk(ξ◦−k)]− 1)(5.15)

converges absolutely. Consequently, the sum
∑∞

k=0 ϕk(ξ◦−k) converges almost surely.
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