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Abstract

In the present paper, we develop the theory of the log homotopy
exact sequence associated to proper log smooth morphisms and mor-
phisms whose characteristic sheaf is locally constant with stalk iso-
morphic to N. In the process of developing this theory, we also show
the existence of a logarithmic version of the Stein factorization and
develop the theory of the algebraization of log formal schemes.
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In the study of the geometry of log schemes, the following objects often
appear:

(i) a proper log smooth fibration over a log regular base log scheme,

stant with stalk isomorphic to N.

(ii) a morphism (of log schemes) whose characteristic sheaf is locally con-



In this paper, the behavior of the log fundamental group for such an object is
studied; in particular, it is shown that the homotopy sequence associated to
such a morphism is ezact. In addition to situting a basic tool in the reserch
of the log fundamental group, the theory developed in the present paper may
also be regarded as technical preparation for [6].

This paper is organized as follows:

In Section 1, we prove the existence of a logarithmic version of the Stein
factorization under some hypotheses (cf. Definition 1.11, Theorem 1.9, also
Remark 1.13). In [5], Exposé X, Corollaire 1.4, the exactness of the homotopy
sequence associated to a proper separable morphism is proven. In this proof,
the existence of the Stein factorization plays an essential role. Therefore, to
prove a logarithmic analogue of the exactness of the homotopy sequence, we
consider the existence of a logarithmic analogue of the Stein factorization.

In Section 2, we prove a logarithmic analogue of [5], Exposé X, Corollaire
1.4, i.e., the exactness of the log homotopy sequence by means of the existence
of the log Stein factorization (cf. Theorem 2.3). Moreover, a logarithmic
analogue of the fact that the fundamental group of the scheme obtained by
taking the product of schemes is naturally isomorphic to the product of the
fundamental groups of these schemes (cf. [5], Exposé X, Corollaire 1.7) is
proven (cf. Proposition 2.4).

In Section 3, we define the notion of a log structure on a formal scheme
and establish a theory of algebraizations of log formal schemes. One can de-
velop a theory of algebraizations of log formal schemes (cf. Theorem 3.6) in a
similar fashion to the classical theory of algebraizations of formal schemes (for
example, the theory considered in [2], §5). However, in the case of algebraiza-
tions of log formal schemes, it is insufficient only to assume a “compactness
condition” of the sort that is required in the classical algebraization theory of
formal schemes; in addition to such a “compactness condition”, a certain re-
ducedness hypothesis is necessary (cf. Remarks 3.7; 3.8). This algebraization
theory of formal log schemes implies a logarithmic analogue of the fact that
the fundamental group of a proper smooth scheme over a “complete base”
is naturally isomorphic to the fundamental group of the closed fiber (cf. [5],
Exposé X, Théoreme 2.1, also [15], Théoreme 2.2, (a)) (cf. Corollary 3.9).
This result is used in the next Section.

In Section 4, we define the notion of a morphism of type N¥™ and consider
fundamental properties of such a morphism. Roughly speaking, a morphism
of log schemes is of type N®" if the relative characteristic sheaf is locally
constant with stalk isomorphic to N®”. The main result of this Section is
the fact that at the level of anabelioids (i.e., Galois categories) (determined
by ket coverings), certain morphisms of type N®™ can be regarded as “G)"-
fibrations” (cf. Theorem 4.17). Moreover, following [11], Lemma 4.4, we give
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a sufficient condition for the homomorphism from the log fundamental group
of the fiber of the “G,"-fibration” determined by such a morphism of type
N®" to the log fundamental group of total space of the “G"-fibration” to
be injective (cf. Proposition 4.22).

Finally, in the Appendix, we prove the well-known fact that the category
of ket coverings of a connected locally noetherian fs log scheme is a Galois
category; this implies, in particular, the existence of log fundamental groups
(cf. Theorem A.1, also Theorem A.2). The log fundamental group has
already been constructed by several people (e.g., [1]; [7], 4.6; [14], 3.3; [15],
1.2). Since, however, at the time of writing, a proof of this fact was not
available in published form, and, moreover, various facts used in the proof of
this fact are necessary elsewhere in this paper, we decided to give a proof of
this fact. Moreover, although other authors approach the problem of showing
that the category of ket coverings of a log scheme is a Galois category by
considering the category of locally constant sheaves on the Kummer log étale
site, we take a more direct approach to this problem which allows us to avoid
the use of locally constant sheaves on the Kummer log étale site.

Acknowledgements

I would like to thank my advisor, Professor Shinichi Mochizuki, for sug-
gesting the topics, helpful discussions, warm encouragements, and valuable
advices. Without his warm and constant help, this paper could not be writ-
ten. The author is supported by JSPS Research Fellowships for Young Sci-
entists.

Notation

Symbols:

We shall denote by Z the set of rational integers, by N the set of rational
integers n > 0, by Q the set of rational numbers and by Z the profinite
completion of Z.

Subscripts:

For a ring A (respectively, a scheme X), we shall denote by A,.q (re-
spectively, X,.q) the quotient ring by the ideal of all nilpotent elements of
A (respectively, the reduced closed subscheme of X associated to X). For
a ring A, we shall denote by A* the group of unity of A. For a field k, we
shall use the notation k*P® to denote a separable closure of k. For a monoid
P, (respectively, a sheaf of monoids P) we shall denote by P2 the group
associated to P (respectively, P8P the sheaf of groups associated to P). For



a group G, we shall denote by G® the abelianization of G.

Log schemes:

For a log scheme X%, we shall denote by M x the sheaf of monoids that
defines the log structure of X8

Let P be a property of schemes [for example, “quasi-compact”, “con-
nected”, “normal”, “regular”] (respectively, morphisms of schemes [for ex-
ample, “proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log
scheme (respectively, a morphism of log schemes) satisfies P if the underlying
scheme (respectively, the underlying morphism of schemes) satisfies P.

For a log scheme X'°8 (respectively, a morphism f°% of log schemes), we
shall denote by X the underlying scheme (respectively, by f the underlying
morphism of schemes). For fs log schemes X8 Y18 and Z'°¢, we shall denote
by X'°8 X110 Z'°8 the fiber product of X% and Z'°8 over Y'°¢ in the category
of fs log schemes. In general, the underlying scheme of X'°% xy1.; Z'°¢ is not
X xy Z. However, since strictness (a morphism f1°8 : X8 — ylos ig called
strict if the induced morphism f*My — My on X is an isomorphism) is
stable under base-change in the category of arbitrary log schemes, if X8 —
Y8 is strict, then the underlying scheme of X% xy1: Z'°% is X xy Z. Note
that since the natural morphism from the saturation of a fine log scheme
to the original fine log scheme is finite, properness and finiteness are stable
under fs base-change.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

Terminologies:

We shall assume that the underlying topological space of a connected
scheme is not empty. In particular, if a morphism is geometrically connected,
then it is surjective.

Let X be a set of prime numbers, and n an integer. Then we shall say
that n is a X-integer if the prime divisors of n are in X. Let ' be a profinite
group. Then we shall refer to the quotient

lim I/ H

(where the projective limit is over all open normoal subgroups H C I" whose
orders are Y-integers) as the mazimal pro-X quotient of I'. We shall denote
by I'®) the maximal pro-¥ quotient of T

We shall refer to the largest open subset (possibly empty) of the under-
lying scheme of an fs log scheme on which the log structure is trivial as the



interior of the fs log scheme. We shall refer to a Kummer log étale (respec-
tively, finite Kummer log étale) morphism of fs log schemes as a ket morphism
(respectively, a ket covering).

Let X' and Y'°® be log schemes, and f1°% : X6 — Y8 3 morphism of
log schemes. Then we shall refer to the quotient of M x by the image of the
morphism (f°8)* My — Mx induced by f'°¢ as the relative characteristic
sheaf of f'°. Moreover, we shall refer to the relative characteristic sheaf of
the morphism X' — X induced by the natural inclusion O% < Mx as the
characteristic sheaf of X'°8.

1 The log Stein factorization

In this Section, we will show the existence of a logarithmic version of the
Stein factorization.

Definition 1.1. Let X'°® be an fs log scheme, and T — X a geometric point.

(i) We shall refer to the strict morphism 7'°¢ — X'°¢ whose underlying
morphism of schemes is T — X as the strict geometric point over T —

X.

(ii) We shall refer to fllog — X8 as a reduced covering point over the strict
geometric point 76 — X8 or, alternatively, over the geometric point
T — X, if it is obtained as a composite

—1 —log _
:L_log N xll _ I,log _ Xlog’

_ . . . . _ —log
where 7% — X% is the strict geometric point over 7 — X, 2/,

is a connected ket covering, and fllog — Fllog is a strict morphism of fs
log schemes for which the underlying morphism of schemes determines
an isomorphism 7, ~ ?l,red- Note that, in general, Ellog — T8 is not a
ket covering. (See Remark 1.2 below.)

— 7108

Remark 1.2. The underlying scheme of the domain of a strict geometric
point 7° — X8 is the spectrum of a separably closed field. However,

in general, the underlying scheme of the domain of a connected ket covering

Fllog — T1°2 is not the spectrum of a separably closed field. On the other hand,

if we denote by Z\*® the log scheme obtained by equipping 2 ,.q with the

log structure induced by the log structure of ?llog (i.e., the natural morphism

7% — X'°8 is a reduced covering point over 7% — X'°8)  then the following

hold:



(i) The underlying scheme of Ellog is the spectrum of a separably closed
field (Proposition A.4).

(ii) There is a natural equivalence between the category of ket coverings

of Ellog and the category of ket coverings of ?llog (Proposition A.8).
In particular, Wl(yllog) ~ (T ®). (Concerning the log fundamental

group, see Theorem A.1.)

. _1 —log . .
(iii) The natural morphism Z;® — 2/ is a homeomorphism on the under-

lying topological spaces and remains so after any base-change in the
category of fs log schemes over Fllog. Indeed, this follows from the fact
that this morphism is strict, together with the fact that the underlying
morphism of schemes is a universal homeomorphism.

Definition 1.3. Let X' be an fs log scheme, Z — X a geometric point of
X, U — X an étale neighborhood of  — X, and P — Oy an fs chart at
T — X. Then we shall say that the chart P — Oy is clean at ¥ — X if the
composite P — Mxz — (Mx/O% )z is an isomorphism. Note that a clean
chart of X'°8 always exists over an étale neighborhood of any given geometric
point of X. (See the discussion following [10], Definition 1.3.)

The following technical lemma follows immediately from Proposition A.8.

Lemma 1.4. Let X' be an fs log scheme whose underlying scheme X is
the spectrum of a strictly henselian local ring. Then for a strict geometric
point T — X% for which the image of the underlying morphism of schemes
1s the closed point of X, and any reduced covering point Tllog — X8 over
78 — X8 there exists a ket covering Y'°¢ — X'°¢ and a strict geometric
point %6 — Y% such that 7'°¢ — Y18 — X198 factors as a composite 7'°8 —

. _ _log . . .
T, % — X8 where the morphism 3'°¢ — T,"® is a reduced covering point over
the strict geometric point T:® — T given by the identity morphism of T,%.

Lemma 1.5. Let X'°8 be an fs log scheme equipped with the trivial log struc-
ture, Y'°8 an fs log scheme, and f° : Y6 — X8 g proper log smooth
morphism. Then the morphism X' — X that appears in the Stein factoriza-
tion Y — X' — X of [ is finite étale.

Proof. By [5], Exposé X, Proposition 1.2, it is enough to show that f is
proper and separable. The properness of f is assumed in the statement
of Lemma 1.5. Since the log structure of X% is trivial, f°% is integral
([8], Proposition 4.1). Since an integral log smooth morphism is flat ([8],
Theorem 4.5), f is flat. For the rest of the proof of the separability of f,
by base-changing, we may assume that X = Spec k, where k is a field whose



characteristic we denote by p. Then étale locally on Y, there exist an fs
monoid P whose associated group P®P is p-torsion-free if p is not zero and
an étale morphism Y — Spec k[P] over k ([8], Theorem 3.5). On the other
hand, k[P] ®; K C k[P®] ®; K, and k[P®] ®; K = K[P*??] is reduced for
any extension field K of k by the assumption on P&P; thus, k[P]®; K, hence
also Y xj K is reduced. Therefore, f is separable. U

Lemma 1.6. Let X' be a log reqular fs log scheme, Ux C X the interior
of X8 Y% an fs log scheme, and f°% : Y18 — X8 g proper log smooth
morphism. If we denote by Y xx Ux — V — Ux the Stein factorization of
f lyxxuy, then the following hold:

(1) V — Ux 1is finite étale.

(17) The normalization of X in V is tamely ramified over the generic points
Of DX =X \ Ux.

Proof. Since log smoothness and properness are stable under base-change, (i)
follows from Lemma 1.5. For (ii), since normalization and the operation of
taking Stein factorization commute with étale localization, we may assume
that X is the spectrum of a strictly henselian discrete valuation ring R whose
field of fractions we denote by K, and whose residue field we denote by k.
Then the log regularity of X'°® implies that the log structure of X'°8 is trivial
or is defined by the closed point of X ([9], Theorem 11.6). If the log structure
of X' is trivial, then (ii) follows from (i). Thus, we may assume that the
log structure of X'°8 is not trivial. Moreover, for (i), we may assume that V'
is connected. Then, by (i), ['(V, Oy) is a finite separable extension field of
K. We denote this field by L.

Let us denote the integral closure of R in L by R;. Thus, the normaliza-
tion X’ of X in V is Spec Ry, Ux = Spec K, and V' = Spec L. Therefore, we
obtain the following commutative diagram:

Spec L Spec K
| H
Y18 X yi0g Uy ——  V —— Uy
EN
Spec Ry, Spec R



Note that since V' — Uy is finite étale, Ry, is finite over R. Let y — Y be a
geometric point of Y over the closed point of X”.
Now, by [8], Theorem 3.5, there exist

e a connected étale neighborhood W of § — Y;
e an fs monoid chart P — Oy of Y'°8: and

e a chart
N— P

L

R—>OW

of Y18 — (Spec R)!°¢ (where N — R is a chart of (Spec R)'® such that
1 +— mg [mg is a prime element of R])

such that

(i) N — P is injective, and if the image of 1 is ¢t € P, then the torsion part
of P& /(t) is a finite group of order invertible in R; and

(ii) the natural morphism W — Spec R[P]/(wgr — t) is étale.
Thus, we have a commutative diagram:
W —— Spec R[P]/(mg —t)
Spec R, —— Spec R.

Therefore, it follows from above conditions (i) and (ii) that if the image of
mr in Ry, has valuation r, then r is invertible in R, hence in k.

Moreover, by base-changing by R — k and taking “( - );.q”, we obtain a
commutative diagram:

(W xg k)rea — Spec (k[P]/(t))rea

l l

W xrk ——  Speck[P]/(t)

l l

Spec Ry /mrR;, —— Speck .

Since the middle horizontal arrow of the diagram is étale, it follows that
the upper square is cartesian; thus, (W X g k)reqa — Spec (k[P]/(t))rea is also
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étale. Since Spec (k[P]/(t))rea is geometrically reduced over k, it follows that
Spec (k[P]/(t))rea, hence also, (W X g k),eq has a k-rational point. Therefore,
the residue field of Ry, is k. O

Definition 1.7. Let X'°¢ and Y'°8 be fs log schemes. Then we shall say that a
morphism f1°8 : Y18 — X198 is Jog geometrically connected if for any reduced
covering point fllog — Z'°8 over any strict geometric point Z'°¢ — X% the
fiber product Y'°8 X yioe Ellog is connected.

Note that it follows from Remark 1.2, (iii), that this condition is equiv-

o . —log —
alent to the condition that for any connected ket covering =/~ — Z'°8 of a
. . . _ —log .
strict geometric point 78 — X8 Y18 x 1o, 2 is connected.

Remark 1.8. In log geometry, there exists the notion of a log geometric
point. In fact, one can regard a log geometric point as a limit of ket coverings
over a strict geometric point. Thus, one natural way to define log geometric
connectedness is by the condition that every base-change via a log geometric
point is connected. However, in general, a log geometric point is not a fine
log scheme. Hence we can not perform such a base-change in the category of
fs log schemes.

Theorem 1.9. Let X'°8 be a log reqular fs log scheme, Y'°8 an fs log scheme,
and f°8 . Y8 — X8 q proper log smooth morphism. If we denote by

v L X' 9% X the Stein factorization of f, then X' admits a log structure
that satisfies the following conditions:

(i) There exists a ket covering X '°¢ — X'°8 whose underlying morphism
of schemes is g.

(i1) Y& — X8 js log geometrically connected.

Proof. Let Ux C X be the interior of X8, If we denote by Y xx Ux —
V' — Ux the Stein factorization of Y xx Ux — Uy, then, by Lemma 1.6,
V' — Uy is finite étale, and the normalization Z of X in V is tamely ramified
over the generic points of Dx = X \ Ux. Hence Z admits a log structure
that determines a ket covering Z'°8 — X'°& by the log purity theorem in [10].
(Concerning the log purity theorem, see Remark 1.10 below.) Now Y8 is
log regular, hence normal ([9], Theorem 4.1); thus, X’ is normal. Therefore
X' — X factors through Z. Since both X' x x Ux and Z x x Ux are naturally
isomorphic to V', we have X’ ~ Z. This completes the proof of (i).

For (ii), since the operation of taking Stein factorization commutes with
étale base-change, by base-changing, we may assume that both X and X’
are the spectra of strictly henselian local rings. Moreover, by Lemma 1.4,



it is enough to show that for any connected ket covering X iog — X8 and
any strict geometric point 7% — X 18 x 0 X}Og for which the image of
the underlying morphism of schemes is a closed point, Y18 x i/, T8 is
connected.

Let us denote by Y{°® the fiber product Y195 x yio. X1%. Since log smooth-
ness and properness are stable under base-change, Yllog — X iog is log smooth
and proper. By (i), if we denote by Y7 — X| — X the Stein factorization of
Y1 — X3, then X| admits a log structure such that the resulting morphism
Xilog — X}Og is a ket covering. Thus, we have the following commutative
diagram:

}qlog - X;log - Xiog

l | |

Ylog X’ log Xlog ]

Now I claim that the right-hand square in the above commutative diagram
is cartesian. Note that it follows formally from this claim that the left-hand
square is also cartesian. In particular, it follows from this claim, together with
the connectedness property of the Stein factorization, that Y108 x /., 78 =
Yllog X x 1o 7'°% is connected for any strict geometric point 7'°¢ — X llog whose

!

image of the underlying morphism of schemes lies on a closed point of X
The claim of the preceding paragraph may be verified follows: If we base-
change by Uy — X%, then we obtain a commutative diagram:

log

1 "1 1
leog XXlog UX —_— Xl 8 XXlog UX —_— X10g XXlog UX

l | !

/
Ylog XXlog UX —_— X log XXlog UX —_— UX .

Since Ux — X' is a strict morphism, and the log structures of Ux and
X }Og X yioe Ux are trivial, the underlying scheme of Yllog X x1og Uy 18 Y7 X x Ux.
Moreover, X iog X x1oe Ux — Uy is finite étale, hence flat. Thus, the underlying
morphism of schemes of Y] X yix Ux — (X% X yioe X1%) X x10e Ux —
X1°8 X yi0: Ux is the Stein factorization of the underlying morphism of schemes
of Y% % vios Uy — X1°8 X yie Ux; in particular, X{ 98 5 vioa Ux = (X198 X y10g
X1°8) x vis Uy over Uy. Therefore, X,'°8 ~ X'1°8 x y1o; X1 by Proposition
A.10. U

Remark 1.10. In [10], Theorem 3.3, it is only stated that:

Let X'°8 be a log reqular fs log scheme and Ux the interior of X'°8. Let
V' — Uy be a finite étale morphism which is tamely ramified over the generic
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points of X \ Ux. Let'Y be the normalization of X in V and Y'°¢ the log
scheme obtained by equipping Y with the log structure Oy N(V — Y), 0} —
Oy . Then the following hold:

o Y98 is log reqular.

o The finite étale morphism V. — Ux extends uniquely to a log étale
morphism Y'°8 — Xog,

However, in fact, Y'°¢ — X'¢ is Kummer by the proof of the log purity
theorem in loc. cit. (More precisely, in the notation of loc.cit., the inclusions
P C Py C (1/n)P imply this fact.) Moreover, since V' — Uy is finite étale,
it follows that the normalization ¥ — X is finite.

Definition 1.11. In the notation of Theorem 1.9, we shall refer to Y& —
X'log _, X'98 a5 the log Stein factorization of f'°5. This name is motivated
by condition (ii) in the statement of Theorem 1.9.

Proposition 1.12. The operation of taking log Stein factorization commutes
with base-change by a Kummer morphism which satisfies the following con-
dition (*):

(%) The domain is a log reqular fs log scheme, and the restriction to the
interior is flat.

(For example, a ket morphism satisfies (x).)

Proof. Let X'°8 be a log regular fs log scheme, f°8 : Y16 — X% 3 proper
log smooth morphism, and ¢'°¢ : X}Og — X'°& 3 morphism which satisfies
the condition (x) in the statement of Proposition 1.12. Let us denote by
18 v/ — X\° the base-change of f°¢ by ¢'°¢ and by Y& — X'lg _,
X% (respectively, ;% — X8 — X1°) the log Stein factorization of f1°¢
(respectively, f{og). Thus, we obtain the following commutative diagram:

1 "1 1
}/1 og Xl og XIOg

L

Y log X’ log Xlog

If we denote by X3 the fiber product X1 X yie X 12, then the above
commutative diagram determines a morphism X,'*® — X3, Our claim is
that this morphism is an isomorphism.
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Let U; C X, be the interior of X}Og. Since ¢'°¢ is Kummer, the compos-
log
ite Uy — X}Og 9% Xlog factors through the interior of X'°¢; in particular,

U — X'2 is strict. Therefore, the underlying scheme of Y;% x oz Uy s
1
Y xx Uy, and the factorization induced on the underlying schemes by the
factorization Y;°® x oz Up — X8 x o= Uy — Uy is the Stein factorization
1 1

of the underlying morphism of Y;°® x xioe Ut — Ut On the other hand, it
follows from the flatness of U; — X that the factorization induced on the
underlying schemes by the factorization Y;% x xlos Uy — X% x xlos U, — U is

also the Stein factorization of the underlying morphism Yllog X xlos U, — U.
Thus, we obtain Xilog X ylos U, ~ X;Og X ylos U,. Now X;log . xbg and

X8 —, X8 are ket coverings; thus, by Proposition A.10, X' ~ X\¢. [

Remark 1.13. In this Section, we only consider the log Stein factorization
in the case where the base log scheme is log regular. However, if a morphism
flos . ylos X8 of fs log schemes admits a cartesian diagram

Ylog flos log
é X

| |

Vi — X%,
log
1

where
o X iog is a log regular fs log scheme,
o [l V% — X|° is a proper log smooth morphism, and
e the right-hand vertical arrow X'°& — X% is strict,

then the factorization Y& — X' x e X198 — X8 obteined by base-
1

changing the log Stein factorization Y} — X' — X1 of fl°8 via X'z —
X8 satisfies the following:

’

1 . :

o Y& X % x ylos X g ig log geometrically connected.
1

1 . .
o X% X 10 X198 — X8 ig a ket covering.
1 X
1
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2 The log homotopy exact sequence

In this Section, we will prove a logarithmic analogue of [5], Exposé X, Corol-
laire 1.4, i.e., the exactness of the log homotopy sequence.

Proposition 2.1. Let X8 be a log reqular connected fs log scheme, Y'°% an
fs log scheme, and f'°8 : Y6 — X8 g proper log smooth morphism. Then
the following conditions are equivalent:

(Z) f*Oy ~ O)(.

(17) If we denote the Stein factorization of f by Y — X' — X, then
the morphism X' — X is an isomorphism (i.e., [ is geometrically
connected).

(4ii) If we denote the log Stein factorization of f'°% by Y& — X'log . Xlog,
then the morphism X 18 — X' js an isomorphism (i.e., f'°% is log
geometrically connected).

(iv) Y is connected, and f'°% induces a surjection m (Y1°®) — (X108).

Moreover, the above four conditions imply the following condition:
(v) Y is connected, and f induces a surjection w1 (Y) — m(X).

Proof. The equivalence of the first three conditions is immediate from the
constructions of the Stein and log Stein factorizations.

Assume the first three conditions. Then since f is surjective (by condition
(1)), geometrically connected (by condition (ii)), and proper, it follows that
Y is connected. Now let Xiog — X' be a connected ket covering, and

18 . Y% — X1°% the base-change Y18 X yie X% — X1, Then f; is also
surjective and proper. Moreover, it follows from Proposition 1.12 that f; is
geometrically connected. Thus, Y; is connected. This completes the proof
that the first three conditions imply (iv).

Next, we will show that (iv) implies (iii). Assume that f'°® induces a
surjection 7 (Y1°8) — 7, (X'98). If we denote by Y& — X'l°8 — Xl the
log Stein factorization of f°8, then since Y is connected and ¥ — X' is
surjective, X’ is connected. Moreover, it follows from Theorem 1.9, (i), that
X'log  X'98 i5 a ket covering. By condition (iv), Y18 X yis X' 18 — Y8
is also a connected ket covering. However, this covering has a section, hence
Y108 % i X 18 ~ Y& Thus, by applying the general theory of Galois
categories to Két(X'1°¢) and Két(Y'8), we obtain X 18 ~ X' (Concerning
Két(X'°#), see Theorem A.1.)
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Finally, we will show that (iv) implies (v). It is immediate that the
morphism X'°¢ — X determined by the morphism of sheaves of monoids
0% — My induces a surjection m;(X'°8) — 71(X). Thus, (v) follows from
condition (iv), the fact that m (X'°8) — 7, (X) is surjective, and the existence
of the commutative diagram

T (Y10g> — MM (Xlog)

| J

m(Y) —— m(X).
U

Remark 2.2. In the statement of Proposition 2.1, condition (v) does not
imply condition (iv). Indeed, let R be a strictly henselian discrete valuation
ring, K the field of fractions of R, L a tamely ramified extension of K, and
Ry, the integral closure of R in L. If we denote by (Spec R)® (respectively,
(Spec Rp)8) the log scheme obtained by equipping Spec R (respectively,
Spec Ry) with the log structure defined by the closed point, then the natural
morphism (Spec R;)'°6 — (Spec R)'°® satisfies (v) (since 7 (Spec R) = 1),
but m ((Spec R)'8) — 1 ((Spec R)'°®) is not surjective unless K = L (since
(Spec Rp)°¢ — (Spec R)°8 is a connected ket covering).

Next, we will show the exactness of the log homotopy sequence.

Theorem 2.3. Let X'°¢ be a log reqular connected fs log scheme, Y'°8 a con-
nected fs log scheme, and f1°8 : Y18 — X198 o proper log smooth morphism.
Moreover, we assume one of conditions (i), (ii), (#ii) and (iv) in Proposi-
tion 2.1. Then, for any strict geometric point 7% — X8 the following
sequence is exact:

T lo.
lim Wl(Ylog X Xlog fl,\og) — Wl(Ylog) I(Lf) 7T1(Xlog) —s 1.

Here, the projective limit is over all reduced covering points T, — 7% and
. . . . .|
s is induced by the natural projections Y'°8 X xi05 T8 — Y18,

Proof. Note that, by condition (iii) in Proposition 2.1 and the connectedness
property of the log Stein factorization, Y% X yio Elfg is connected for any
reduced covering point Elfg — Z'°8 over T8,

Next, observe that the surjectivity of m1(f°¢) follows from condition (iv)
in Proposition 2.1. Moreover, it is immediate that 7 (f°6) o s = 1. Hence
it is sufficient to show that the kernel of 7 (f°%) is generated by the image
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of s. By the general theory of profinite groups, it is enough to show that
for an open subgroup G of 7 (Y'°8), if G contains the image of s, then G
contains the kernel of 1 (f1°8). Let Yllog — Y8 be the connected ket covering
corresponding to G. Then since G contains the image of s, there exists a
reduced covering point Elfg — T8 such that ¥;% X yios flfg — Y198 % tiog f&og
has a (ket) section. Since Y, — Y™ is finite and log étale, it follows
that Y°® — X" is proper and log smooth. Let Y/ — X% — Xlos
be the log Stein factorization of this morphism, and Y21°g the fiber product
Y198 % 108 X}Og. Thus, we have a commutative diagram

it 1 1
le og 5/20g Xlog
Y10g Ylog Xlog

1 flog ’

where the right-hand sequare is cartesian. Now I claim that Yllog — Y;Og is
an isomorphism. To prove this claim, it is enough to show the following:

(i) Y,° is connected.
.. 1 log - .
(ii) Y7 — Y,% is a ket covering.

(iii) Y{°% — Y,°® has rank one at some point. (We shall say that a ket
covering Y'°¢ — X198 of locally noetherian fs log scheme has rank one
at some point if there exists a log geometric point of X8 such that,
for the fiber functor F' of Két(X'°®) defined by the log geometric point
[cf. Theorem A.1], the cardinality of F/(Y'°®) is one.)

The first assertion follows from condition (iv) in Proposition 2.1, and the
second assertion follows from the fact that Y% — Y8 and Y% — Y2 are
ket coverings and Proposition A.5. Hence, in the rest of the proof, we will
show the third assertion.

By replacing the reduced covering point flfg — 7'°8 by the composite
T8 — T8 — T8 where T — Ty® is a reduced covering point, if necessary,
we may assume that X% X yis Ty splits as a disjoint union of copies of Ty,
If we base-change the above commutative diagram by Tl)?g — X' then we

obtain the following commutative diagram

n n
A A\

1 1 1 1 1 1
leog XXlog l‘)\og Em— (YlOg XXlog l‘)\og) |_| “e e U (YlOg XXlog l‘)\og) — l‘;g |_| e Ul‘)\og

H ! |

lo, —lo 1 —lo
Yl 8 XXlog ZL’)\g —_— YOg XXlog SL’)\g —_— x>\
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where the right-hand sequare is cartesian. By the general theory of Galois
categories, it is enough to show that

n
A

1 1 1 _1 7 _1 _logy
Ylog XXlog l’;g — }/20g XXlog SL’;\)g(: (Yk)g XXlog :L’;g) |_| . e |_| (Ylog XXlog .T};\)g))

has rank one at some point.

Now Y1 X xios Ty & — Y18 5 o El;\) has a (ket) section; thus, one of the
connected components of Yll X xlog 0 V¢ is isomorphic to Y198 X 105 0 V&, Since
Y% — Y,° is a surjective ket covering,

n
A\

(e N
log —log log —log log —log
Yi X xlog Ty _>(Y X xlog Ty )Ul_l(Y X xlog Ty )

is surjective ([12], Proposition 2.2.2). On the other hand, the number of
connected components of Yllog X xlog fl/\og is n by the connectedness property
of the log Stein factorization Y% — X% — X'°2_ Thus, Y% X yis Ty% —
Y X xlog Ty I\ 1nduces a leeCtIOIl between the set of connected components
of Y% X yioe ;1:)\ and that of Y;% X yioe xl)\g. Since one of the connected
components of Y1 X ylog xl)\ is isomorphic to Y18 X yiog El/\og, ong X ylog Elfg —
Y% X y10s Ty ¥ is an isomorphism on the connected component of Y] X yios Ty
which isomorphic to Y18 X yio flfg. This completes the proof of assertion
(iii). O
Proposition 2.4. Let k be a field. Let X'°% be a log smooth proper log
geometrically conncted fs log scheme over k, and Y'°% a connected log reqular
fs log scheme over k. Let pi® : X198 x, Y8 — X8 (respectively, py®
Xog 5, Yioe — Yo8) pe the 1-st (respectively, 2-nd) projection. Then the
following hold:

(1) X8 x;, Y8 is connected.
(i) The natural morphism
) (Xlog X Ylog) — M <X10g> XGal(kseP/k) ™ (Ylog>

log

1
¢ and ps

determined by py 18 an isomorphism.

Proof. First, we prove (i). Since X'°¢ — Speck is proper, p12°g o X8 %y
Yl — Y8 ig proper. Thus, to verify that X'°8 x, Y'°8 is connected, it is
enough to show that each fiber of py at any geometric point of Y is connected.
On the other hand, since X'°¢ — Spec k is log geometrically connected, each
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fiber of p, at any geometric point of Y is connected. Therefore, X'°8 x, Y8
is connected.

Next, we prove (ii). Since Y'°8 is log regular, the interior Uy of Y% is
non-empty and normal ([9], Theorem 4.1). Thus, there exist a finite separable
extension £’ of k and a k’-rational point Speck’ — Uy. By the existence of
a morphism Spec k¥’ — Y!°8 we obtain the following cartesian diagram:

X' x, k' ——— Speck’

l |

Xlog X J Ylog N Ylog ]
plog
2

Thus, by Theorem 2.3, we obtain the following exact sequence:

- log
1 (X8 KP) — 7y (X8 x, Yo8) ™) o (ylomy

Therefore, we obtain a commutative diagram

- log
T (X108 x BSoP) (X8 x, Y1o5) m o (vles)

| l H

1 ? 7T1(X10g Xk ksep) - 7T-1()(10g) X Gal(ksep /k) 7T1(Y10g) _— 7T1(Y10g) s 1

H | J

1 m (X2 xp kP) — o (X10%) — Gal(kP/k) —— 1,

where all horizontal sequences are exact. Then it follows from the injectivity
of the left-hand bottom horizontal arrow (X8 xj k5P) — 71 (X'°®) that
the left-hand top horizontal arrow 7 (X8 x; k5P) — (X8 x;, Yo%) is
injective. Thus, assertion (ii) follows from the “Five lemma”. O

3 Log formal schemes and the algebraization

In this Section, we define the notion of a log structure on a formal scheme
and establish a theory of algebraizations of log formal schemes.

First, we define the notion of a log structure on a locally noetherian formal
scheme.

Definition 3.1. Let X and Q) be locally noetherian formal schemes.

17



(i)

(iii)

Let M x be a sheaf of topological monoids on the étale site of X. (Con-
cerning the étale site of a locally noetherian formal scheme, see [4],
6.1.) We shall refer to a continuous homomorphism of sheaves of topo-
logical monoids My — Ox (where we regard Ox as a sheaf of topolog-
ical monoids via the monoid structure determined by the multiplicative
structure on the sheaf of topological rings Ox) as a pre-log structure on

X.
A morphism (X, Mx — Ox) — (2, Mgy — Oy) of locally noetherian

formal schemes equipped with pre-log structures is defined to be a pair
(f,h) of a morphism of locally noetherian formal schemes f : X — Q)
and a continuous homomorphism h : f~'Mgy — Mz such that the
following diagram commutes:

fﬁle — My

l |

10y — Ox.

We shall refer to a pre-log structure o : My — Ox on X as a log struc-

ture on X if the homomorphism « induces an isomorphism a~!(0%) =
O%.

We shall refer to a locally noetherian formal scheme equipped with a
log structure as a log locally noetherian formal scheme. A morphism

of log locally noetherian formal schemes is defined as a morphism of
locally noetherian formal schemes equipped with pre-log structures.

For simplicity, we shall use the notation X'°¢ to denote a log locally
noetherian formal scheme whose underlying formal scheme is X. Then
we shall denote by My the sheaf of monoids that determines the log
structure of X6, Note that by a similar way to the way in which we
regard the category of locally noetherian schemes as a full subcategory
of the category of locally noetherian formal schemes (by regarding a
scheme S as the formal scheme obtained by the completion of S along
the closed subset S of S), we regard the category of locally noethe-
rian schemes equipped with log structures as a full subcategory of the
category of log locally noetherian formal schemes.

Let a : M’ — Ox be a pre-log structure on X. We shall refer to the
log structure determined by the push-out in the category of sheaves of

18



(vi)

topological monoids on the étale site of X of

a’l((’)}) via a O;

|

M
as the log structure associated to the pre-log structure o : M’ — Ox.

Let f : X — Q) be a morphism of formal schemes, and Mg a log
structure on ). We shall refer to the log structure associated to the
pre-log structure ' Mg — §710q9 — Ox as the pull-back of the log
structure My, or, alternatively, the log structure on X induced by f.

Let X' be a log scheme, and F C X a closed subspace of the un-
derlying topological space of X. Then we shall refer to the log formal
scheme X2 obtained by equipping the completion X of X along F

with the pull-back of the log structure of X'°¢ as the log completion of
X8 qglong F.

Let X' be a log locally noetherian formal scheme. Then we shall say
that X!°8 is an fs log locally noetherian formal scheme if étale locally on
X, there exists a discrete fs monoid P and a homomorphism Py — Ox
(where Py is the constant sheaf on the étale site of X determined by
P) such that the log structure of X!°¢ is isomorphic to the log structure
associated to the homomorphism Py — Ox.

Let X% be an fs log locally noetherian formal scheme, P is a topolog-
ical monoid (respectively, a discrete fs monoid), and Py the constant
sheaf on the étale site of X determined by P. We shall refer to a con-
tinuous homomorphism Py — Oy such that the log structure of X'°# is
isomorphic to the log structure associated to the homomorphism as a
chart (respectively, an fs chart) of X°6. By the definition of an fs log
locally noetherian formal scheme, an fs chart always exists étale locally
on Xlos,

Let T — X be a geometric point of X (i.e., T = Spec k for some separa-
bly closed field k). We shall say that an fs chart Py — Ox is clean at
7 — X if the composite P — Mz — (Mzx/O%)z is an isomorphism.
It follows immediately from a similar argument to the argument used
to prove the existence of a clean chart for an fs log scheme that a clean
chart of X'°¢ always exists over an étale neighborhood of any given
geometric point of X.
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(vii) Let X°8 and 9)'°¢ be fs log locally noetherian formal schemes, and
flog . xlog — 9Plog 3 morphism of log locally noetherian formal schemes.
We shall refer to a collection of data consisting of

e an fs chart Py — Oy of X8,
e an fs chart Qg — O of P8, and

e a morphism ( — P of monoids such that the following diagram

commutes
Qx —— Px

| |

fﬁloy — Ox

as a chart of the morphism f°¢. It follows from a similar argument to
the argument used to prove the existence of a chart of a morphism of
fs log schemes that given a chart Qg — Oy of '8, there exist an
étale morphism 4 — X, an fs chart Py — Oy of the log structure of
o8 induced by the log structure of X!°¢, and a morphism Q — P of
monoids such that these data form a chart of the morphism §°¢.

Lemma 3.2. Let A be an adic noetherian ring, I an ideal of definition
of A, and f : X — Spec A a proper morphism. If a subspace F of the
underlying topological space of X contains the underlying topological space
of X x4 (A/I), and is stable under generization, then F coincides with the
underlying topological space of X .

Proof. Assume that F does not coincide with the underlying topological
space of X (and that X is non-empty). Then there exists an element = of
X \ F. Since F is stable under generization, for any element a of F', there
exists an open neighborhood U, of a in X such that x does not belong to

U,. Thus, the open set U & U,er Ua of the underlying topological space of
X contains the underlying topological space of X x4 (A/I), and = does not
belong to U. It thus follows from the properness of f that f(X \U) is a non-
empty closed subset of the underlying topological space of Spec A, and does
not contain the underlying topological space of Spec (A/I). However, since
A is an adic noetherian ring, Spec (A/I) contains all closed points of Spec A.
Thus, there exists no such a set; hence we obtain a contradiction. O

Lemma 3.3. Let
A —— A

]

B —— B
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be a commutative diagram of commutative rings with unity. Suppose that the
following conditions hold:

(i) The morphism A — B is faithfully flat.

(i) The morphisms A — A" and B — B’ are injective. [Let us regard A
(respectively, B) as a subring of A" (respectively, B')]

(#ii) The natural morphism B ® 4 A" — B’ is injective.
Then the natural morphism from A to the set-thoretic fiber product of
A/

J

B —— B

1S surjective.

Proof. By condition (iii), it is enough to show the assertion in the case where
B'= B ®4 A’. Thus, assume that B' = B®4 A’. Let o’ € A" and b € B be
elements such that the images in B’ coincide. Now let us denote by ¢ the
morphism

ADA — A

(a1,a2) +— a1+d -ay,

and by I the image of ¢. Then we obtain inclusions A C I C A’ (condition
(ii)). On the other hand, the fact that the images of @’ € A’ and b € B in
B’ coincide implies that the image of idg®4¢: B& B — B'is BC B, i.e.,
B = B ®y4 I (condition (i)). Thus,

0= (BwsI)/B=Baj,(I/A).

Since A — B is faithfully flat (condition (i)), I/A = 0, i.e., ' € A. This
completes the proof of Lemma 3.3. O

Lemma 3.4. Let R be a strictly henselian excellent reduced local ring, JE the
completion of R with respect to the maximal ideal m of R, and R — R the
natural morphism. If a diagram

a inclusion
P .m R
Q m R
ag inclusion



(where m is the mazimal ideal of ﬁ, P and Q are clean monoids, and the
left-hand wvertical arrow P — @ is Kummer) commutes, then the morphism

ag 1 Q — R factors through m.

Proof. Let ¢ be an element of (). Our claim is that the image ag(q) of ¢
via ag is in R. Let py,---p, € R be the associated primes of R. Then, by
the fact that R is reduced, the natural morphism R — R/p; @ --- @ R/p,
is injective. We denote by K; the field of fractions of R/p;,. Now since
R is excellent, R/p; is excellent. Therefore, by [3], Corollaire 18.9.2, the
completion W/p\l)(: R/p; ®p ﬁ) of R/p; with respect to the maximal ideal

is an integral domain. We denote by K; the field of fractions of W/P\@) Thus,
we obtain the following diagram

R—— R/pm®---®R/p, — Ki® - DK,

l l |

E—— (Rlp)@-o[R/p) — K@ ak,,

where all morphisms are injective.

Now the Kummerness of P — () implies that ag(q)" € m. Therefore, the
image of ag(¢)" in IA(, is in K;. On the other hand, by the excellentness of
R/p; and [3], Corollaire 18.9.3, K; is algebraically closed in K;: it thus follows
that the image of ag(q) in K; is in K;. Thus, by Lemma 3.3, ag(g) € m.
This completes the proof of Lemma 3.4. U

Definition 3.5. Let X'°¢ and 2)'°¢ be fs log locally noetherian formal schemes.
We shall refer to a morphism §°¢ : X8 — 9)°¢ as a Kummer morphism if for
any geometric point 7 — X of X, the morphism of monoids (Mgy/Oy)j=) —
(Mzx/O%)z induced by f°¢ is Kummer (where the geometric point f(T) — 2)

is the geometric point determined by the composite T — X A ).
The main result in this Section is the following theorem.

Theorem 3.6. Let A be an adic noetherian ring, and I an ideal of definition
of A. Let 58 be a fs log scheme whose underlying scheme S is the spectrum of
A, X' g noetherian excellent fs log scheme, X8 — S°¢ q morphism that is

separated and of finite type, and X'los (respectively, S\log) the log completion of
def

X'os (respectively, S'°8) along X/I = X x 4 (A/I) (respectively Spec (A/I)).

Then the functor determined by the operation of taking the log completion
along the fiber over S/I f Spec (A/I) induces a natural equivalence between
the category Cxios of reduced fs log schemes that are finite and Kummer over
X2 and proper over S'°¢ and the category Cszu, of reduced fs log formal

schemes that are finite and Kummer over X'e gnd proper over Shos
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Proof. Note that if Y8 — X°8 is an object of the category Cxuos, then the
excellentness of X implies that the completion Y of Y along Y x4 A/ is
reduced. Therefore, the functor is well-defined.

First, we prove that the functor is fully faithful. Let Y{°® — X% and
Y,% — X198 he objects of the category Cytos.

Let fl8, glog : V/°% — ¥)°% be morphisms in the category Cxue such that
Flos — glos_ where flo8, glo8 : ¥/°¢ — V1% are the morphisms induced by f°®
and ¢'°¢, respectively. Then since fk’g = §'°¢, we obtain ]/C\: g. Thus, by [2],
Théoréme 5.4.1, we obtain f = g. To see that f°8 = ¢'°¢, we take a geometric
point 7; — Y7 of Y] whose image lies on Y; /1 dof Y1 x4 (A/I). Then it follows
from the assumption that Jﬂog = §'°# and a similar argument to the argument
used in the proof of Proposition A.11 (note that Oy, 3 — Oy, g, is faithfully
flat) that the homomorphism My, 5, — My, 5 induced by f°¢ (where we
denote by ¥, — Y, the geometric point determined by the composite 7; —

Yi = Y5) coincides with the homomorphism My, 3 — My, 5 induced by
g'°¢.  Therefore, f°¢ coincides with ¢'°® on an étale neighborhood of the
geometric point 7j; — Y;. Moreover, by Lemma 3.2, this implies that f°8
coincides with ¢'°8 on Yllog. This completes the proof that the functor in
question is faithful.

Next, let f° : Y/ — V)% he a morphism in the category C oe- BY [2],
Théoreme 5.4.1, there exists a unique morphism f : Y; — Y5 such that f
coincides with the underlying morphism § of formal schemes of 6. Now if
there exists an extension of the morphism f to a morphism of log schemes
flog . yl°e _, yl°® quch that the morphism Y;°%® — Y% induced by flo&
coincides with f1°, then it is unique (cf. the proof of the faithfulness of the
functor in question); therefore, it is enough to show that such an extension of
f exists étale locally on Yllog. Moreover, by Lemma 3.2, it is enough to show
that for any geometric point of Y7 whose image lies on Y; /I, there exists such
an extension of f on an étale neighborhood of the geometric point. To see
this, let 7, — Y7 be a geometric point whose image lies on Y;/I, and denote

by ¥, — Y5 the geometric point determined by the composite y; — Y EN Ys.
If we denote by P, — Oy, ; a clean chart at §, — Y3 of the log structure of

Y,%, then there exists a chart P, — 6Yl,y1 (where (/’)\th1 is the completion

of Oy, 5 with respect to Oy, 5 ) of the log structure on Spf @Yh@l which is
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- lo;
induced by the log structure of Y; g, and a diagram

P2 —_— Pl

l J

OYQ 7@2 (OYI 7@1 ) Oyl 7?1

such that the above diagram is a chart of the natural morphism (Spf 61/1 7 )los —
Y;Og. Note that the cleanness of the chart P, — Oy, - and the Kummerness
of f°¢ imply that the chart P, — 65/1,@1 is a clean chart at the geometric
point y; — Spt Oy, 5 ; thus, the top horizontal arrow P, — Py is a Kum-

mer morphism. In particular, the image of P, — 63’1@1 and the image
of P, — Oy, are contained in the maximal ideals, respectively. Thus,

by Lemma 3.4 (by considering the composite P, — 65/1,@1 -~ 0 where

Y1,910
Oy, 5, is the completion of Oy, ;. with respect to the maximal ideal of Oy, 5 ),
the morphism P; — 6Y1,§1 factors through Oy, - ; moreover, the resulting
morphism P — Oy, ; is a clean chart at y; — Y7 of the log structure of

Y{°¢. In particular, the diagram

P2 E— P1

| !

O — O

Y2,95 Y1,91

is a chart of a morphism from an étale neighborhood of 7, — Y{% to Y,
for which the morphism Y6 — Y% determined by this morphism coincides
with §°¢. This completes the proof that the functor in question is full.

__ Finally, we prove that the functor is essentially surjective. Let Plos —
X'°8 be an object of Cioe- By [2], Théoreme 5.4.1 and Proposition 5.4.4, there
exists a unique noetherian scheme Y that is finite over X, and proper over S
such that the completion Y of Y along Y/I Y x4 (A/I) is isomorphic to
2. (Note that then the reducedness of Q) implies that Y is reduced.) If there
exists an fs log structure of Y such that the pull-back of the log structure
to Y is isomorphic to Myg), then it is unique (cf. the proof of the fully
faithfulness of the functor in question); therefore, it is enough to show that
such an fs log structure exists étale locally on Y. Moreover, by Lemma 3.2,
it is enough to show that for any geometric point of Y for which the image
lies on Y/I, there exists such an fs log structure on an étale neighborhood of
the geometric point.
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By replacing X'°8 by the log scheme obtained by equipping Y with the
log structure induced by the log structure of X'°¢ via the morphism ¥ — X,
we may assume that the morphism Y — X is the identity morphism of X;
thus, we may assume that the underlying morphism of formal schemes of
Ylog —, X8 is the identity morphism of X. Let T — X be a geometric point
of X whose image lies on X/I. Then we obtain the following diagram

Spf (5)@ — Spec Oy 7

| |

~

X _ X

Y

where O x .z 18 the completion of Oy ; with respect to IOy ;. Now we obtain
a chart of the morphism (Spf (/’)\Xj)log — X8 (where the log structure of
(Spf Oy 7)'* is induced by the log structure of Y'°%)

P — Q@
OX z @Xj )
where the left-hand vertical arrow P — Oy - is a clean chart at T of X'°2, and
the right-hand vertical arrow ) — 6)(,5 is a chart of (Spf (7)\)(’5)103 Note that
the cleanness of the chart P — Oy and the Kummerness of Ylog _, Xlog

imply that the chart Q) — O x.z 18 clean at the geometric point T — Spf O Xz
thus, P — @ is a Kummer morphism. In particular, the image of P — Oy
and the image of Q — O xz are contained in the maximal ideals, respectlvely
Thus, by Lemma 3.4 (by considering the composite  — (’)Xx — (’)Xx,
where (’)Xj is the completion of Oy ; with respect to the maximal ideal of
Ox), the chart Q — (7)\)@ factors through Oy ;. It thus follows that the log
structure of Y1°¢ can be descended to an étale neighborhood of the geometric
point T — X. O

Remark 3.7. If, in Theorem 3.6, one drops the reducedness hypothesis, the
conclusion no longer holds in general. A counter-example is as follows:

Let k be a field whose characteristic we denote by p (> 2), A = k[[t]][¢]/(¢?),
X =P, Uy=X\{04}, Uy = X \ {004}, and X (respectively, Lly; respec-
tively, 4,) the t-adic completion of X (respectively, Up; respectively, Us,).
We denote by N — Ox the log structure on X

(n7 f) = e .f’
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where € = € mod (¢?). Thus, we have an isomorphism A /O% ~ Nx & Ny ,3.
Let P be the subsheaf of monoids of N'/O% generated by the global sections
(1,1) and (1,0) € N® N ~ (N/O0%)(X) and N' — Ox the log structure on
X determined by the composite N X /0 P — N — Ox (i.e,, N — Ox is
a log structure on X, whose characteristic sheaf N'/O% is isomorphic to P).
We shall denote by
D
the divisor on X determined by the t-completion of the (reduced) closed
subscheme {04} C X, by
G(m®) (m e Z)
the G,,-torsor sheaf on X which corresponds to the invertible sheaf Ox(m®),
by
bt G(=mD) [0y G(—m/D) |y, (m > )
the isomorphism induced by the natural inclusion Ox(—m®D) — Ox(—m'D),
and by
N (2 m)
the G,,-torsor sheaf on X obtained as the fiber product of

{(n,m)}

|
N —— P,

where {(n,m)} is the sheaf of sets on X generated by the global section
(n,m) € P(X) of P, and the vertical arrow {(n,m)} — P is the natural
inclusion.

Then, by the definition of the log structure N’/ — g, the following
assertions hold:

(i) N7 is generated by the Ny ,.’s (n > m).

(ii) The G,-torsor sheaf A . is naturally isomorphic to G(—mD). We
shall denote this isomorphism by

Bnm NT,Lm = G(—m®D) .
(i) The monoid structure on N is determined by the composites
N X N bt
¢>n,mx¢n,ml T I
G(—m®D) x G(—m'D) —— G(—(m+ m')D)
(fs /) - f-r
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(iv) The restriction of NV — Ox to N, ,, coincides with the composite

$n,m
f =€ Lm—>0(f) :

(v) Let n > m > m' be natural numbers. Then the “glueing isomor-
phism” N} . [s,— N . |y, (note that, by the definition of P, the
restrictions of the global sections (0, m) € P(X) (m € Z) to Yy are 0,
i.e., (0,m) |y= 0; this means that “the restrictions of the G,,-torsor
sheaves NV, . (m € Z) to 4y determine the same subsheaf of N7 [g, ”)

is defined by the composite

-1
¢n,m|u0 Lm—»m/|ﬂ0 d)n,m/'uo

Ny e — G(=mD) |y, — G(=m'D) |yy — N0 |5 -

Let f € I'(4p, Oy, ) be a section such that 1+ €- f is not in the image of
the natural morphism T'(Uy, Op,) — T'(Hy, Oy,) (for example, f = 32, (¢/x)",
where 1/x € T'(Uy, Op,) — A[l/x]).

Now we define the log structure M — Ox as follows:

(I) Let n > m be natural numbers. We shall denote by M,, ,,, a copy of
G(—mD®), and by

wn,m : Mn,m L g(_mQ)
the “identity isomorphism”.

(IT) Let n > m > m’ be natural numbers. Then we define an isomorphism
Mo lio— Moy g, by the composite

wn,mhlo
Mo |y — G(=mD) [y —  G(=mD) |y,
f = fe(l4Ef)mm
bm—m! ‘MO d);iﬂ/ ‘110

— g(—m/@) sty — M lst -

Note that, by the definition, for n > m > m’ > m”, the following
diagram commutes

Mn,m |5Jo ; Mmm/ ‘110

| l

~

Mn,m |5Jo ? Mn,m” |u0,
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(I11)

(IV)

where all morphisms are the isomorphisms defined as above.

“By glueing by means of these isomorphisms”, we obtain a sheaf of sets

M on X. (See the note in (v). More precisely, by taking a quotient

by means of these isomorphisms, we obtain M.) Moreover, by the
Y00

definition of M, there is a natural inclusion O% = Mgy — M.

By the definition of the glueing isomorphism defined in (II), for n; >
m; > m} (i =1, 2), the following diagram commutes

My m, sty XMy s st — Mm,m’l st Xan,m/g |sto

l l

Moy g my+ms |sto - Moy nmi 4ml |40

where the horizontal arrows are the glueing isomorphisms defined in
(IT) and the vertical arrows are the composites

Moy Jste XMtz |sio Moy i +1s Lo
wnl,m1|u0><¢n2,m2|uol T m1-+ngmy +ms lig
G(—0D) |uy xG(=1D) 4y, —— G(=(li + 12)D) |y,

(f, f) — fr
(Iy = my,mi; Iy = mo,m)).

Thus, we define a monoid structure on M by the composites (cf. (iii))

Moy my X Moy ms Mo ngmi+ms
Yy my XPng,my l Tw;;@,mﬁm
G(—m1D) X G(—me®) —— G(—(mq + m2)D)
(f, f) > f-r

Moreover, by the definition of this monoid structure on M, the inclu-
sion O% — M obtained in (II) is a morphism of sheaves of monoids,
and the quotient M /O% is naturally isomorphic to P.

By the definition of the glueing isomorphism defined in (II), for n >
m > m/, the following diagram commutes

Mn,m ‘).10 ; Mmm/ ‘5-10

J |

O}JO j— Oﬂo 9



where the top horizontal arrow is the glueing isomorphism defined in
(IT), and the vertical arrows are the composite

wn,1|u0
Muilyy — G(=1D) |y, — Oy, (I=m,m)
f = € Ll_,o(f) .

Yromlsig
[Indeed, the image of f € G(—mD) |y, — Mum |y, via the compos-
ite Mym lgo— M |u,— Oy (respectively, the morphism M., ,,, |4, —
Ouo) is

(L4 E N o () = & b0 () + (=) - &1 (f)

(respectively, € - t—o(f)) -

Thus, the commutativity of the above diagram follows from the fact
that n >m >m/ and € = 0]

Thus, we define a morphism M — Ox by glueing the morphisms (cf.

(iv))
Y

Mym — G(—mD) — Ox
f — Ean*}()(f)

Then, by construction, the morphism M — Ox is a log structure on

X.

Now we prove that the log structure M — Ox is not algebraizable,

i.e., there is no log structure on X whose log completion is isomorphic to

Assume that there is a log structure M*& — Oy such that the log com-

pletion Mels Ox of M¥® — O is isomorphic to M — Ox. We shall
denote by

p:ﬂalg%./\/l

the isomorphism, by

g
M:E,

the Gy,-torsor sheaf on X (cf. the definition of N ) obtained as the fiber
product of

{(n,m)}

!

e —— $j05 — P
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and by .
Pn,m - Mn,m — Mz{%n

the isomorphism induced by the isomorphism p : M®8 5 M. Then the
following diagram commutes

¥yl
1,114 PLlug

G(—D) luy —— Mg |y, —— M |y,

l l

w;(l)\uo P1,0l4, —
Glyy — Mgl —— Mgy,
where the vertical arrows are the glueing morphisms. Now, by (II), the

composite

1 -1
w1,1 |u0 glueing 1/’1,0\110 Ll—»o‘ﬂo

G(—9) |y, — Mg luy — Mg lyy — Glyy — G(-9) |y,

coincides with
G(-D) loe —  G(-9) |y,
f = f-(1+&-9),
i.e., by the assumption on f, it is not algebraizable. On the other hand, the
composite

alg —1 . alg —1
1,1 \uo glueing %,0 ‘Uo Ll_,o\uo

G(-D) gy — M|y — MB |y — Gluy — G(-D) |u,

~

(where Y28 = 4, ,0p;, 1) is algebraizable. (Indeed, this follows from the fact

-~

that the properness of X implies that the isomorphism wff%n is algebraizable,
together with the fact that the glueing isomorphism M\?I% iy — /T/l\?% |y 18
defined on Up.) Therefore, we obtain a contradiction. This completes the
proof that M — Ox is not algebraizable.

Moreover, if we denote by Q the subsheaf of monoids of P generated by
the global sections (p,p) and (p,0) € Px and by M — Ox the log structure
on X determined by the composite M xp Q — M — Og, then the inclusion
M — M induces a natural morphism of log formal schemes

(X, M — Ox) — (X, M — Ox)

which is finite and Kummer. On the other hand, the log formal scheme
(X, M — Ox) is algebraizable. (Indeed, this follows from the fact that
(1+€-§)? =1 1is algebraizable.)
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Remark 3.8. In light of the classical algebraization theory of formal schemes
(for example, the theory considered in [2], §5), one might expect that data
of a finite nature on a compact object should be algebraizable. However, as
Remark 3.7 shows, this is not the case in the algebraization theory of log
schemes. (Note that Kummerness of a morphism of log schemes is of a finite
nature.)

By applying Theorem 3.6, we obtain the following corollary. Note that
the corollary generalizes [15], Théoréme 2.2, (a). (In [15], Théoreme 2.2, (a),
the underlying scheme of the base log scheme is assumed to be the spectrum
of a complete discrete valuation ring.)

Corollary 3.9. Let S be an fs log scheme whose underlying scheme S is the
spectrum of a complete local ring whose mazimal ideal (respectively, residue
field) we denote by m (respectively, k), X'°¢ a log reqular fs log scheme, and
Xlos — Sl°& q proper morphism. Then the strict closed immersion X(l)og o
X198 x gi0g 58 — X8 induces a natural equivalence of the category of ket
coverings over X'°¢ and the category of ket coverings over Xéog, where s'°8
is the log scheme obtained by equipping Spec k with the log structure induced
by the log structure of S'°% wvia the closed immersion s — S induced by the
natural projection A — A/m ~ k. In particular, if X'°® is connected, then
X8 is also connected, and (X 8) = mp(X°8).

Proof. We may assume that X'°8 is connected. First, we prove that the
functor is fully faithful. Let Y8 — X8 is a connected ket covering. Then
if we denote by ¥ — S’ — S the Stein factorization of the underlying
morphism of the composite Y6 — X8 — Gl°8 then the connectedness of
Y and the surjectivity of Y — S’ implies that S’ is connected. Since S is
the spectrum of the complete ring and S — S is finite, it thus follows that
Y xg Speck, hence also, Y% x s 51 is connected (note that s'°8 — S is
strict). Therefore, by the general theory of Galois categories, the functor in
question is fully faithful.

Next, we prove that the functor is essentially surjective. Let Y% — X%

be a connected ket covering. Then it follows from [16], Théoreme 0.1 that

. . . def
there exists a unique connected ket covering Y08 — Xlog ‘= Xlog x g, Slog

such that Y, X gos 5'°8 =~ Y, where S!¢ is the log scheme obtained by
equipping Spec (A/m™!) with the log structure induced by the log structure
of S8 via the closed immersion induced by the natural projection A —
A/m™1 Now we denote by 9)'°¢ the log noetherian formal scheme obtained
by the system {Y°8},. Note that, by considering the characteristic sheaf
My/ Oy of 2'°¢. one may conclude that the log structure of 98 is fs; and
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that by the construction of '°8, the fiber product 9)'°% x gios S'¢ is naturally
isomorphic to Y,

We denote by X'°¢ the log completion of X'°¢ along X,. Now It follows
from the properness of X — S and the fact that A is complete that X is
excellent. Now since Y, — X is Kummer, 2" — %"¢ is also Kummer;
moreover, since Y, — X, is finite, P — X is also finite. Next, to see that
) is reduced, by taking a geometric point ¥ — 2) of ), and replacing X by
Spec Oy z (where T — X is the geometric point obtained by the composite
7 — 99 — X — X), we may assume that X is the spectrum of a strictly
henselian local ring. (Note that the finiteness of ) — X implies that there
exists a strictly henselian local ring Ry that is finite over Oy such that

) = Spf ﬁy, where ﬁy is the completion of Ry with respect to mRy.) Then
it follows from the fact that Y;°® — X’ is a ket covering and Proposition
A .4 that there exists a diagram

Px — OX,E/ mox,a

| |

Py e Ry/mRy,

where Py = (Mx,/O%,)z Pr = (My,/O5,)y and the horizontal arrows are
clean charts such that the natural morphism (Oy ;/mOy ) ®z(py) Z[Py] —
Ry /mRy is an isomorphism. It follows from the fact that these clean charts
lift to clean charts of X, and Y,, that this isomorphism lifts to an isomorphism
Ox z ®zipy] Z[Py] = Ry (where Oy ; is the completion of Oy with respect
to the ideal mOy ;). Thus, by [9], Theorems 4.1; 8.2 and the log regularity
of X'°8 we obtain that ﬁy is normal, hence reduced.

Thus, by Theorem 3.6, there exists a unique finite Kummer fs log scheme
Y8 over X8 whose log completion of along Y xg $ is naturally isomorphic
to P8, Moreover, it follows from the fact that Oy ®zp) Z[Py] = Ry
(in the preceding paragraph) is an isomorphism that Y18 — X2 is a ket
covering. O

4 Morphisms of type N®"

In this Section, we define the notion of a morphism of type N®" and consider
fundamental properties of such a morphism.

Definition 4.1. Let X'°% and Y'°8 be fs log schemes, f°8 : Yle — Xlog 4
morphism of log schemes.
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(i) Let n be a natural number. We shall refer to f°8 : Y18 — X8 a5 a

morphism of type N®™ if

e the underlying morphism f : Y — X of schemes is an isomor-
phism;

e for any geometric point T — X of X and any clean chart
(an étale neighborhood U — X of T — X, a: P — Oy)

of X8 at T — X, there exist an étale morphism V — U, a clean
chart

-1
(VHUHXf: Y, Q— Oy)

—1 —1

of Y'°¢ at the geometric point 7 — X f: Y (le,V—-oU-—X f:
-1

Y is an étale neighborhood of the geometric point T — X f: Y),
and an isomorphism ¢ : Q = P @ N®" such that the morphism
@ — Oy is given by

Q — Po® N®» — OV
(p’ m1’ P ’mn) — a(p) |V _0m1+“'+WLn ,

and f'°¢ is determined by the morphism of monoids:
P —Q-—~— PoN¥
» . (p,0,---,0).

(i) We shall refer to f1°8 : Y16 — X8 35 a morphism of type N®* if

e the underlying morphism f:Y — X is an isomorphism,;

e for any point x € X of X, there exists a Zariski open neighborhood
U C X of x € X such that the base-change Y'°8 X i, U'%% — U'°8
is morphism of type N®" for some natural number n. Here, U8
is the log scheme obtaind by equipping U with the log structure
induced by the log structure of X8,

Remark 4.2. A typical example of a morphism of type N is as follows:
Let X be a regular scheme, and D C X a prime divisor of X such that
the closed immersion D — X is regular immersion (of codimension 1). We
denote by X'°8 the log scheme obtained by equipping X with the log structure
associated to the divisor D, and by D'°# the log scheme obtained by equipping
D with the log structure induced by the log structure of X'°¢ via D — X.
Then the morphism D¢ — D induced by the natural inclusion O% — Mp
is of type N.
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Remark 4.3. In this Section, we often use the notation X% — X8 to
denote a morphism of type N*. Moreover, we often identify the underly-
ing scheme of X'° with X via the underlying morphism of schemes of the
morphism of type N*.

Remark 4.4. In the notation of Definition 4.1, there exists a splitting
Q = P @ (Q/P); moreover, it is canonical. In fact, by the definition of
a morphism of type N®" the quotient /P of @) by P is isomorphic to N®"

non-canonically. We denote by e; the element of )/P that corresponds to
i—th
(0,--+, 1 ,---,0) under the non-canonical isomorphism /P ~ N®" Then,

by the existence of the (non-canonmical) isomorphism @ — P & N®" there
exists a unique element e; of () such that;

e ¢, modulo P is e;,
e ¢; is an irreducible element of P (Definition A.3).

Thus, the section
QP — Q
€ =g
of the natural projection () — (/P induces a canonical splitting ) ~ P ®

(Q/P). Moreover, the image of e; via the morphism which appears in the
chart Q — Oy is 0.

Lemma 4.5. A morphism of type N®" is stable under base-change in the
category of fs log schemes.

Proof. Let X'°8 be a fs log scheme, fl°&: X6 — X2 3 morphism of type
N®" and Y'°¢ — X8 3 morphism of fs log schemes. Let

y ale oy
Q — P
A
Oy «— Oy

be an fs chart of Y'°¢ — X8  Then the underlying scheme of the fiber
product of X'°® and Y& over X' in the category of arbitrary log schemes
is Y, and this fiber product has a chart

Q ® Ne» . o,
(p,my, - ,my) —  ap)-Qmttm
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Now Q®N®" is an fs monoid. Thus, this fiber product is also the fiber product
in the category of fs log schemes. Moreover, it follows immediately from the
definition of a morphism of type N®” that the projection X8 X yios Y18 —
Yo is type N7, O
Definition 4.6. Let X be a scheme, and M; — Ox and My — Ox fs log
structures on X. Let X]°® (respectively, X2®) be the log scheme obtained by
equipping X with the log structure M; — Oy (respectively, My — Ox).
Then the natural morphism X}Og X x X;Og — X induces an isomorphism
between the underlying schemes of X }Og X x X;Og and X. We shall denote by
M + My — Ox the log structure of Xiog X x Xéog on X.

Remark 4.7.

(i) In the notation of Definition 4.6, for any geometric point T — X; there
exist an étale neighborhood U — X of T — X, fs monoids P; and P,
and morphisms of monoids a7 : P, — Op and ay : P, — Oy such
that ag : P, — Oy (respectively, as : Py — Op) is an fs chart of M,
(respectively, Ms) at T — X. Then there exists an fs chart of the log
structure My + My — Ox at T — X that is of the form

P1 EB P2 e OU
(p1:p2) = ai(pr) - az(p2) -
In particular, (M + M3)/O% ~ (M;/0%) & (M2/O%).
(ii) In the notation of Definition 4.6, for any morphism of scheme f:Y —

X, ffIMi+My) = f*(My) + f*(Mz) (where f* denotes the pull-back

of log structures, not of sheaves).

(iii) Let X be aregular scheme, and D = 3 | D; C X a divisor with normal
crossings. If we denote by M(D) (respectively, M(D;)) the log struc-

ture of X defined by the divisor with normal crossings D (respectively,
Di)7 then M(D) = E?:1M<Dl)

(iv) Clearly, (M7 + My) + M3 = My + (Ms + Ms).

Remark 4.8. Let X'°¢ be an fs log scheme, and fl8 : X8 — Xl 4
morphism of type N®". Then we have the following diagram

Oy — Mx —— Mx/0%

| J l

J !

MX/MX ; Cflog,
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where Cjo: is the quotient of Mx/O% by the subsheaf Mx/O%. Then,
by the definition of a morphism of type N®" Cji is locally constant, and
the stalk at any geometric point of X is non-canonically isomorphic to
N®" (Indeed, this follows from the existence of the chart in Definition 4.1.)
Moreover, by Remark 4.4, the sheaf Mx/O% admits a canonical splitting
(Mx/O}k() b Cflog.

Now the group Aut (N®") is isomorphic to the symmetric group on n
letters, hence, in particular, is finite. (Indeed, this follows from the fact
that any automorphism of N®" preserves the irreducible elements of N®"
together with the fact that the irreducible elements of N are the e;’s [where

e; = (0,-- -,O,Z 1th,0, -+, 0)]. More generally, by Proposition A.2, if P is a
clean monoid, then Aut (P) is a finite group.) Since Cjuw is locally constant,
and the stalk at any geometric point of X is isomorphic to N®" it thus
follows that there exists a finite étale covering X’ — X such that the pull-
back of Cpis to X' is constant. (Indeed, this follows from the fact that since
the sheaf of sets of isomorphisms between C.o: and N on the étale site of
X is locally constant, and has finite stalks, there exists a finite étale covering
X" — X such that the restriction of the sheaf to X’ is constant.) Moreover,
since Aut (N) is trivial, if n = 1, then Cj.e is always constant.
On the other hand, in the diagram

0 0

0 — 05y — M¥ — MP/O —— 0

|

0 — 0y — MY —— MP/Ox —— 0

ME/ME —— B,

0 0,

P

all vertical and horizontal sequences are exact. Now the sheaf C?log is locally

constant, and the stalk at any geometric point is non-canonically isomorphic
to Z3". By Remark 4.4, the sheaf Mij/(’)} admits a canonical splitting
(ME/03) @ CE,.

Definition 4.9. Let X8 be a connected fs log scheme.
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(i)

H(é)t(X, Zg’?) — Hgt(Xu CE ) - H(é)t(X, M%/O;)@Hgt()(, Coh ) - PiC(X>>

(v)

Let f°8 . X8 — X2 be a morphism of type N®”. Then we shall refer
to f1°¢ as a morphism of constant type N®" if Cfioe (in the notation of
Remark 4.8) is constant. Let f1° be a morphism of constant type N®",
Then we shall refer to an isomorphism 7 : N{™ = Cue as a trivialization
of fl°&. Note that, by the portion of Remark 4.8 concerning the case
“n =17, any morphism of type N is of constant type N; moreover, such
a morphism has a canonical trivialization.

For pairs (f/°%,7;) (i = 1,2), where f% : X°® — X% is a morphism
of constant type N®" and 7; is a trivialization of filog, we shall say that
(f1%,71) is equivalent to ( f3%, 75) if there exists an isomorphism of fs log
schemes ¢'°% : X% — X)°® over X'°% such that the trivialization of f;°®
induced by the isomorphism (g'°8)* : My, — My, and 7, coincides

with 7.

We shall denote by Myw.s the set of pairs (f1°¢,7), where f°% is a
morphism of constant type N®" to X'°¢ and 7 is a trivialization of f°8
modulo the equivalence defined in (ii).

We shall denote by ¢ the morphism Myie — Pic(X)®" defined as
follows:

Let (f°% : X8 — X% 1) be an element of Myws. Then the middle
horizontal sequence in the second diagram in Remark 4.8 determines a
connecting morphism

H(é]t<X7 M%/O}) - Hét(‘)(a O;{) :

Now since one has a canonical splitting MY /0% ~ (M /0%) © C?f;g
and a natural isomorphism H} (X, O%) ~ Pic(X), we obtain a mor-
phism

HY, (3, M /O ) & HY, (X, C%,) — Pic(X).

i—th
For the element ¢; = (0,---, 1 ,---,0) of H%(ZY") = Z%", let us

denote by L; the image of e; via the composite

via 8P

flog flog

where the second arrow is « — (0, x), and the third arrow is as above.
Then we shall write ¢(f°8,7) = (L1, -+, L,).

We shall denote by x the morphism Pic(X)®" — Myis defined as
follows:
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Let (Ly,--+,L,) be an element of Pic(X)®". We denote by V; the
geometric line bundle defined by the invertible sheaf E;@(_l) (i.e., the
spectrum of the symmetric algebra of £; over X), by p; : V; — X the
natural morphism, by s; : X — V; the O-section of p;, by p: V' def Vixx
-+ Xx V,, = X the natural morphism, and by s : X — V the section
51 Xx -+ Xx 5, of p. Let V1% be the log scheme obtained by equipping
V with the log structure My = p*Mx + M(D;) + --- M(D,,) (cf.
Definition 4.6), where D; is the divisor on V' defined by the following

cartesian diagram
Dy, — V

l lp

X L) ‘/iu
and M(D;) is a log structure defined by the divisor D;. (See Re-
mark 4.10 below.) Then we obtain a natural morphism of log schemes

plog : Vs — X8 whose underlying morphism of schemes is p. If we
denote by X'°¢ the log scheme obtained by equipping X with the log

lo.
structure s* My, then it is immediate that the composite f°% : X8 %

lo.
Vies £ xlog ig of type N®" where s'°8 is the strict morphism whose
underlying morphism of schemes is s. On the other hand, since

My =s"(p"Mx+M(Dy)+ - M(D,,)) = Mx+s" M(Dy)+- - -+s"M(D,,),
it follows that
Cpos =~ (8" M(D1)/O%) @ -+ & (s"M(D,)/O%)

(cf. Remark 4.7, (i)). Now, by the portion of Remark 4.8 concerning
the case “n =17, s*M(D;)/O% is constant, i.e., there exists a canonical
isomorphism 7; : Nx = s*M(D;)/O%. Thus, Cpuee is constant. Let us
define a trivialization 7 of f1°8 = pl°8 o s!°% by

Ng — (s*M(Dy)/O%) @ -+ ® (s*M(D,)/O%)

(ma, - my) (T1(my), -+, Ta(my)) -
Then we shall write x(Ly,---,L,) = (p'® o s'°¢, 7).

Remark 4.10. For a positive Cartier divisor D on a scheme X, we denote
by M(D) the log structure on X that is defined as follows:

Let us denote by Gp € HL (X, G,,) the G,,-torsor sheaf on (the étale site
of) X that is determined by —D, and by G} € HL (X,G,,) the G,,-torsor
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sheaf on X that is obtained by applying a “change of structure of group” to
Gp via the morphism
Gn — G,
foo=
Write M(D) = U;enGh. Then the natural morphisms G§ x g{) — g;'jj
determine a natural structure of sheaf of monoids on M(D)’. Moreover, the
composite Gp — Ox(—D) — Ox (the first inclusion arises from the fact
that the invertible sheaf determined by the G,,-torsor sheaf Gp is naturally
isomorphic to Ox(—D)) induces a homomorphism M(D)" — Ox of sheaves
of monoids. Then we define the log structure M(D) as the log structure
associated to the above pre-log structure M(D)" — Ox.
Note that, if X is regular, and D is a divisor with normal crossings, then
this log structure M(D) coincides with the log structure defined in [8], 1.5.1.

Remark 4.11. Let X'°¢ be a connected fs log scheme, f°8 : X8 — Xlog
a morphism of constant type N®" and 7 : N{" = Cpoz a trivialization.
We write o(f1°8,7) = (Ly,--+,L,). If we denote by G; the subsheaf of Mx
defined by the following cartesian diagram

g — 0 {eix}

| |

My —— Mx /0% =) (Mx/O0%) ® Cpus

(where {e; x} is the subsheaf of NY" whose sections correspond to e; =

i—th ~
(0,---, 1 ,---,0) € N®" = Cjiog ), then G; is a Gp,-torsor sheaf on X. More-
over, it is a tautology that the invertible sheaf determined by the G,,-torsor
sheaf G; is naturally isomorphic to L;.

Lemma 4.12. Let X'°¢ be a connected fs log scheme, '8 : X'°¢ — Xlog ¢
morphism of type N,

(i) Then there exists a unique morphism g'°% : élog — X of type N®"
and a unique morphism X'°& — X 18 such that the resulting morphism
Xlos élog X x X198 is an isomorphism, i.e., Mx = Mx + Mx.

(i1) Moreover, we assume that f° is of constant type. Then the morphism
g% X' — X (obtained in (i) is also of constant type. Let T be a

trivialization of g'°8. Then there exist morphisms g.\°% : X% — X of

type N (1 < i < n), whose canonical trivialization (see Definition 4.9,
(7)) we denote by T;, such that the following hold:
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(1) The morphism élog — X factors through giog : &log — X, the
resulting morphism o

élog Xllog Xy o Xx anog

is an isomorphism, i.e., Mx = Mx + X Mx,.
(2) The composite

71D DT via (1)
N@n — Cglog @ A @ Cglog — Cglog
1 n

coincides with 7.
o lo o
(3) L(gl g’ 7—) = (L(gl g7 7—1)7 Tty L(gilga Tn))

Proof. First, we prove assertion (i). By Remark 4.8, we have a canonical sec-
tion Cpos — Mx/O%. We define the sheaf of monoids Mx by the following

cartesian diagram:
M& E— Cflog

| |

MX — M&/O}

Then since the inclusion O% — Mx factors through Mx, the composite
My — My — Ox (where the second morphism Mx — Oy is the log struc-

ture of X'8) is a log structure on X; moreover, the injection My — My

induces the morphism X'°¢ — X'°# (where X o i3 the log scheme obtained
by equipping X with the log structure M X_ — Ox). On the other hand,
it follows from the fact that the stalk of Csoe at any geometric point of X
is isomorphic to N®" together with the fact that the image of €; via the
morphism ¢ — Oy is 0 in the notation of Remark 4.4 that the morphism
X"8 — X induced by the natural inculusion Q% — My is of type N
Now, by construction and the fact that f'°¢ is of type N®", the resulting
morphism X' — X8 x o X% i5 an isomorphism.

Next, we prove assertion (ii). Let us denote by M, the subsheaf of My
defined by the following cartesian diagram -

M; —— 0 Nx

! L

My —— (Mx/O% — (Mx/O%) ® Cgos «—)(Mx/O%) & NY",
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where the right-hand vertical arrow is

06Ny — (Mx/O%) ®NY"

(0,nx) +— (0,n-ex).

Then the composite M; — Mx — Ox is a log structure. Moreover, if

we denote by &k’g the log scheme obtained by equipping X with the log

structure M; — Ox and by g1Og : X;'°® — X the morphism determined by

i .

the inclusion O% < M, then the ¢\°® satisfies conditions (1), (2), and (3)
in the statement of Lemma 4.12, (ii). O

Theorem 4.13. Let X'°% be a connected fs log scheme. Then v is a bijection.
The inverse of v is k.

Proof. By Lemma 4.12; (i), the morphism My — My induced by the
morphism X' — X (determined by the natural inclusion 0% — Mx) is a
bijection. Therefore, we may assume that the log structure of X'°# is trivial.
Moreover, by Lemma 4.12, (ii), we may assume n = 1.

First, we prove that x o is the identity morphism. Let fl°8 : X'& — X
be a morphism of type N. If we denote by G the G,,-torsor sheaf defined
in Remark 4.11, then it is a tautology that the restriction to X of the G,,-
torsor sheaf on V' that corresponds to the invertible sheaf Oy (—X) (where
we regard X as a Cartier divisor on V' via the 0-section X — V) is naturally
isomorphic to the G,,-torsor sheaf that corresponds to the conormal sheaf of
X in V (= (f®)), i.e., G. Therefore, the pull-back to X of the log structure
on V associated to the divisor X (cf. Remark 4.10) is naturally isomorphic
to M X-

Next, we prove that 1o« is the identity morphism. Let £ be an invertible
sheaf on X. If we denote by G the G,,-torsor sheaf that corresponds to L,
then it is a tautology that the restriction to X of the G,,-torsor sheaf that
corresponds to the invertible sheaf Oy (—X) (where we regard X as a Cartier
divisor on V' via the O-section X — V') is naturally isomorphic to the G,,-
torsor sheaf that corresponds to the conormal sheaf of X in V' (= L), i.e.,
G. Therefore, the restriction of the invertible sheaf to X that corresponds
to the G,,-torsor sheaf obtained by the log structure on V' associated to the
divisor X (cf. Remark 4.11) is naturally isomorphic to L. O

Remark 4.14. In the notation of Remark 4.2, the invertible sheaf on D
which corresponds to the morphism D¢ — D of type N is the conormal
sheaf Cp,x of D in X by the definition of «.
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Definition 4.15. Let X' be a connected fs log scheme, f& : X'°& —
X' a morphism of constant type N® 7 : N{* = Cpoe a trivialization of
8 and «(f8,7) = (Ly,---L,). We shall denote by m; : P, — X the
Pl-bundle associated to the locally free sheaf £; ® Ox, by s : X — P,
(respectively, s2° : X — P;) is the section of 7; induced by the projection

L; & Ox — Ox (respectively, £; & Ox — L;) (see Remark 4.16 below), by
def

7:P= P Xx - xx P, — X the natural morphism, and by s° : X — P
the section s¥ xy --+ xx s? of 7. We shall denote by P8 the log scheme
obtained by equipping P with the log structure Mp © My + M(DY?) +
o M(D2) + M(D5®) + -+ -+ M(D), where DY (respectively, D®) is the
divisor on P defined by the following cartesian diagram

(respectively,
% P

A

e o]

XLPi X L)pi)’

and M (DY) (respectively, M(D5®)) is the log structure defined by the divisor
DY (respectively, D{°). Then we obtain a natural morphism of log schemes
mlog . Plog X8 whose underlying morphism of schemes is 7; moreover, by
Theorem 4.13, the log scheme obtained by equipping X with the log structure
(s9)*Mp is isomorphic to X'°¢, and the composite X' (O plog % xlog
is flo¢ where (s°)1°8 is the strict morphism whose underlying morphism of
schemes is s°. We shall refer to 7!°¢ : P16 — X198 a5 the log GX"-torsor asso-
ciated to (f°%, 7) or, alternatively, to (Ly,--- L,). Note that 78 is projective
and log smooth.

Remark 4.16. Let £ be a locally free sheaf of rank n on a locally noetherian
scheme X, V — X the geometric vector bundle associated to £, and P —
X (respectively, P’ — X) the P"-bundle (respectively, the P"~!-bundle)
associated to the locally free sheaf £Y @ Ox (respectively, £Y) (where £Y =
Hom(E,Ox)), and P’ — P the closed immersion over X determined by the
projection EY@Ox — EY. Then V is naturally isomorphic to the complement
of P'in P.

Indeed, it follows immediately from construction that P\ P’ — X is a
vector bundle of rank n over X. Moreover, for an open subscheme U — X
of X, a section of (P\ P’) |y— U corresponds to the isomorphic class of the
following data:

e An invertible sheaf £ on U.
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e A surjection 7 : Y |y @Oy — L such that the composite Oy — &Y |y
@Oy = L does not vanish on U. (We denote by s € T'(U, £) the section
of £ determined by the above composite Oy — £V |y ©O0p = L.)

It is immediate that then Oy = £ is an isomorphism, and if we denote by
ou(s) the section of T'(U, € |y) determined by the composite £V [p— &Y |y

®0y = L 5 Oy for the above data, then the assignment
(,C,ﬂ' : (9\/ |U @OU — E) — gbU(S)

determines a bijection between the set of sections of (P \ P’) |y— U and
L(U, & |v); therefore, P\ P’ — X is isomorphic to V' — X. Moreover, by
the above correspondence ¢y between the set of sections of P\ P’ — X
and ['(X, € |x), the O-section X — V of V' — X corresponds to the pair

(Ox,EY @ Ox B3 Oy).
The main result of this Section is the following theorem.

Theorem 4.17. Let X' be a locally noetherian connected fs log scheme,
flog . X8 — X8 ¢ morphism of constant type N 1 . Ng" 5 Cpoz a
trivialization of f°8, and 7'°¢ : P18 — X1°8 the log GX"-torsor associated to
(fl°8, 7). Then (s°)°8 . X'°¢ — P8 induces a natural equivalence between
the Galois category of ket coverings of P'°® and the Galois category of ket

coverings of X'°8, i.e., m1((s°)'°8) is an isomorphism.

Proof. (Step 1) If X is the spectrum of a field k, and the log structure of X
is trivial, then m((s°)1®) is an isomorphism.

By base-changing, we may assume that k is separably closed. Moreover,
by Proposition 2.4, we may assume n = 1. Then it follows from Lemma 4.18,
(ii) below that m((s°)1%8) is an isomorphism.

(Step 2) If X is the spectrum of a separably closed field k, then mi((s°)'°#)
is surjective. (We denote by a: M — k a clean chart of X'°8.)

We write R = k[[M]], and S = Spec R. Let S be the log scheme
obtained by equipping S with the log structure associated to the chart given
by the natural morphism M — R. Then, by [9], Theorem 3.1, S8 is log
regular. Write (5S¢ — S'°8 1g) o K(Og,---,0g), and denote by Py® —
S8 the log GX"-torsor associated to (Og, - --,Og), and by (s°)'$® the closed
immersion S'°¢ — Pg®. Then we obtain the following cartesian diagram:

01
Xlog (sV)'°®e Plog

| |

§log Péog ]
1
(30)5?8
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We denote by K the field of fractions of R, and by Spec K — S'°¢ the strict
morphism whose underlying morphism corresponds to the natural inclusion
R — K. Then we obtain the following diagram:

Klog (s9)o8 Plog

Slog Plog

a ()5 i
S

log def 4log (So)llgg log def log
(Spec K)*® = S X g1e Spec K ——— P® = Pg® X gios Spec K
(where the two squares are cartesian).
Now, in the above diagram, the following hold:

(i) 71 ((Spec K)'°®) — m1(Pi8) is an isomorphism. (This follows from Step

1)

(ii) m (P®) — mi(Pg%) is surjective. (This follows from the fact that if
we denote by np, the generic point of Ps [note that since S'°8 is log
regular, P is also log regular], then m(nps) — 1 (P§®) is surjective,
together with the fact that np, — Pg® factors through P2%.)

(iti) 1 (S"8) — 1 (P§®) is surjective. (This follows from (i) and (ii).)

(iv) 7 (X'"°8) — 7(S5™#) is an isomorphism. (This follows from Proposition
A8.)

(v) m(P"8) — 7 (Pg®) is an isomorphism. (This follows from Corol-

lary 3.9.)

Therefore, by (iii), (iv) and (v), 71 ((s%)!®) is surjective.

(Step 3) If X is the spectrum of a strictly henselian local ring A whose
residue field is k, then m,((s°)1®) is an isomorphism. (We denote by (Spec k =
)Z — X the closed point of X, and by o : M — A a clean chart of X'°®.)

First, we prove that m;((s°)!°¢) is surjective. Let Q% — P be a con-
nected ket covering of P'°¢. If we denote by Q@ — X’ — X the Stein fac-
torization of the composite ) — P — X, then since () is connected, and
QQ — X' is surjective, we obtain that X’ is connected. Now since X is the
spectrum of a strictly henselian local ring, and X" is finite over X, X’ X x T,
hence also ) x x T is connected. Thus, by base-changing by 7'°¢ — X8  we
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may assume that X is the spectrum of a separably closed field k. Then the
surjectivity in question follows from Step 2.

Next, we prove that 7((s°)1°8) is injective. Let Y — X'°% be a con-
nected ket covering. Then, by Proposition A 4, Y'°¢ is of the form Spec (A®zmeNen]
Z[N]) for some fs monoid N and some Kummer morphism M @ N®" — N If
we denote by W8 the log scheme obtained by equipping Spec (A[ty, - - -, t) @z Menen]
Z|N]) (where the morphism M @® N®" — A[ty,---,t,] is given by

M @ N®» — Alty, - )
(pamlu"'7mn> = O[(p>t117“t21n)

with the log structure induced by the chart given by the natural morphism
N — Alty, - -, tn] @zpenen) Z[N], then the natural morphism

W8 = (Spec (Altr, -+ tu]@zqpranen ZIN])® — (Spec Alty, -+ £,])® = V'*5(C P'*)

(where the equality Spec Alty,---,t,] = V is obtained by regarding ¢; as the
“coordinate” of V' determined by L;[~ Ox]) is a connected ket covering, and
W08 X 10e X198 is Y8, Thus, the ket covering Y'°¢ over X'°¢ extends to a
ket covering W1°8 over V1°8. Therefore, we obtain the following diagram:

Ylog Wlog

| |

Klog Vlog Plog )

Now, by the log purity theorem, the connected ket covering W' — Vg
extends to a connected ket covering of P'°¢. Thus, the morphism m; (X'°8) —
71 (P'#) is an isomorphism.

(Step 4) The general case.

We will show that the functor Két(P'%8) — Két(X'#) induced by the
morphism (s°)°8 : X6 — P8 is an equivalence. First, we prove that the
functor is fully faithful. It is immediate that the functor is faithful (indeed,
this follows from the existence of a log geometric point of P°® that factors
through X'°® and the general theory of Galois categories). Thus, it is enough
to show that the functor is full. Let Q\® — P& and QY% — P8 be ket
coverings over P8, and ¢'°8 : Y% & Qo8 x ., X8 — yjog & glogy ., xlog,
Then, by Step 3, there exists a strict étale surjection X %8 — X8 guch
that the morphism ¢''°% : Y, '°8 o Vi% X i X185 — Y, 108 o Y% X yiog
X'los gyer X'lo® o X% % 1o X128 obtained as the base-change of ¢'°% by
X'leg —, X8 extends to a morphism § %8 : Q% L0198 % iog X185
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Q;bg ot Y,% X 1oz X198 over P’ log 4t plog o, X'log. (Indeed, by Step 3,
for any geometric point of X, there exists an etale neighborhood U — X
of the geometric point such that if we denote by U — X% the strict
morphism whose underlying morphism of schemes is the morphism U —
X, then the base-change of ¢'°¢ by U'“¢ — X! extends to a morphism

11°g X xiog U8 — Qg’g X x1og U8, Thus, if we denote by X ¢ the disjoint
union of such a U'°8’s; then X /k’g — X% satisfies the above condition.) Let
us denote by ¢}°® (respectlvely, %) the 1-st (respectively, 2-nd) projection
P'log x i, Pl — P'log Now 1t follows immediately from the fact that
the functor Két(P'°8 x piox P'18) — Két(X '8 x xlog X "2} induced by the
morphism X 1%8 x y10s X 18 — P08 5 1, P'198 determined by (s°)!¢ is faithful
that the following diagram commutes

log * ~' log qulog log * ~/ log
q - @y — q > @y

| |

q;og *Q’llog q;Z?J log q;og*Q’Qlog ’
where qiog* denotes the pull-back of each object over P18 to an object over
P98 % piog P18 vig, qiog, and the vertical arrows are the isomorphisms that
arise from the fact that Q;k’g — P'°% ariges from Q\°* — P& Thus, by
Lemma 4.19 below, § '°¢ extends to a morphism §'°¢ : Qllog — Q;Og. Since
the base-change of §1°8 by X '8 — Plog i5 g’ we conclude that §'°% is an
extension of ¢'°¢.

Next, we prove that the functor is essentially surjective. Let Y08 — X°¢
be a ket covering over X'°6. Then, by Step 3, there exists a strict étale sur-

Jectlon X'log —, X'o¢ quch that the ket covering Y108 % ylog 5\, X'log _,

X'los 9 ylog o\ X los extends to a ket covermg Q'los _, p'log & plog o
X'os Let us denote by ¢} (respectively, s %) the 1-st (respectively, 2-
nd) projection P18 X piox P16 — P16 Now, by replacing the strict étale
surjection X 18 — X2 by the composite X 18 — X'lg — Xlog  where
X"log _, X'log ig g strict étale surjection, if necessary, we may assume that
the isomorphism over X '°& that arises from the fact that Y8 — X'log
arises from Y18 — X8 extends to an isomorphism ¢}®*Q'los 5 ¢i&* Q) log,
where qlog denotes the pull-back of a ket covering over P''® to an ob-
ject over P'1% X piox P2 via ¢°®. (It follows from Step 3 and a simi-
lar argument to the argument used in the proof that the functor in ques-
tion is fully faithful [to show the existence of X'°¢ — X¢] that such a
strict étale surjection X''08 — Xos exists.) Moreover, since the functor
K6t (P98 X piog P18 X piog P'198) — Két(X 18 X yiog X 198 X y10s X' 1°8) induced
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by the morphism X 198 X yiog X 108 X yios X 108 — P'108 5 1oy P108 5 11 P'108
determined by (s°)°8 is faithful, this isomorphism ¢i® *Q"1°8 = ¢i8* ()" 18 gat-
isfies the cocycle condition for being a descent datum. Thus, by Lemma 4.19
below, the ket covering Q'8 — P18 extends to a ket covering Q'°& — P'°g.
Moreover, since Q' X pioz X'°8 X y10e X "o oquipped with descent data with
respect to X'1°8 — X2 ig naturally isomorphic to Y'°¢ equipped with de-
scent data with respect to X 16 — X2 we obtain that Q% X piy X% is
naturally ismorphic to Y8 over X8, O

Lemma 4.18. Let k be a separably closed field whose (not necessarily positive)
characteristic we denote by p, (PL)1°8 the log scheme obtaind by equipping the
projective line Py, with the log structure associated to the divisor {0,000} C P},
U C Pi the interior of (P:)°8 (so U = G,,), and (Spec k)8 — (PL)!°¢ the
strict morphism for which the image of the underlying morphism of schemes
is {0} C P}. Then the following hold:

(1) The morphism 7 (U) — m((P})'8) is an isomorphism.
(i1) The morphism m((Speck)°8) — m((IP})°8) is an isomorphism.

Proof. First, we prove assertion (i). If we denote by 7 the geometric point
of P}, then it follows from the fact that the natural morphism n — (IP%)"8
induces a surjection m(n) — m((PL)°¢), together with the fact that the
natural morphism 7 — ()1 factors through U that m(U) — m;((PL)"®)
is surjective. Moreover, since any connected finite étale covering over U is of

the form
v =6, — G, =U
foo=

for some positive integer n that is prime to p, it is easily seen that any finite
étale covering over U extends to a ket covering over (P:)1°8; thus, m (U) —
71 ((P})°8) is injective. Therefore, 71 (U) — 1 ((P4)°8) is an isomorphism.

Next, we prove assertion (ii). We denote by (A})!°8 — (P1)!°8 the strict
morphism whose underlying morphism of schemes is the natural open im-
mersion A} < P. (where we regard A} as P} \ {occ}). By (i), the re-
striction to (A})¢ of any connected ket covering over (P1)!°® is of the form
Xlog = (Alyee — (Al)°8 where X'°8 is the log scheme obtained by equip-
ping A} with the log structure associated to the divisor {0} C A}, and the
underlying morphism of schemes of this ket covering X'°¢ — (Al)¢ is deter-
mined by the morphism
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fot some positive integer n that is prime to p. It thus follows immediately
from this fact and Proposition A.4 that m;((Speck)°8) — m((IP})°8) is an
isomorphism. O

Lemma 4.19. Let X' be a fs log scheme, and f1°8 : Y18 — X'¢ ¢ strict
étale surjection. Then f'°8 induces a natural equivalence between the category
of ket coverings of X'°¢ and the category of ket coverings of Y8 equipped with
descent data with respect to f°8.

Proof. This follows immediately from the fact that the property of being a
ket covering is étale local, together with [16], Proposition 4.4. O

The following corollary follows immediately from Theorem 2.3 and 4.17.

Corollary 4.20. Let X'°8 be a log reqular connected fs log scheme, fl°% :
X% — X9 g morphism of constant type N®", 7 N{" = Cpos a trivializa-
tion of f'°8, and 7'°% : P18 — X198 the log GX"-torsor associated to (f'°8,T).
Then for any strict geometric point T — X' of X'°¢  the following se-
quence 1S exact:

T log
lim Wl(Xlog X ylog TlAOg> _5, Wl(Xlog) 1(L>g) 7T1<Xlog) — 1.

& T and

Here the projective limit is over all reduced covering points fl;\)
s is induced by the natural projections X'°% X yoe f&og — X" In, particular,

by means of a natural isomorphism
1<i£1ﬂ,1 (Xlog X xclog flfg) -, Z(p/)<1)@n
obtained in Remark 4.21 below, we obtain the following exact sequence:

1o
l(i)g) 7Tl(Xlog;) _ 1’

Z(p’)(l)een — 7 (X08) 4
where p is the characteristic of the residue field of the image of the underlying
schemes of the strict geometric point T — X' and Z¥)(1) is the pro-
prime to p quotient of Z(1).

Remark 4.21. Let k be a separably closed field whose (not necessarily pos-
itive) characteristic we denote by p, and S an fs log scheme whose under-
lying scheme S is the spectrum of k. Let f°% : S1°¢ — S%2 be a morphism of
constant type N®" and 7 a trivialization of f'.

Let P — k, Q@ — k be respective clean charts of S°¢, S'° given in Def-
inition 4.1. Then, as is well-knouwn, the log fundamental group (S™#)
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(respectively, m;(S'°)) is naturally isomorphic to Hom(P#P, Z(p/)(l)) (respec-
tively, Hom(Q®P, 2(1’/)(1))), where Z(p/)(l) is the pro-prime to p quotient of
Z(1) (cf. e.g., [7], Example 4.7). Moreover, the morphism (S5'%) — 71 (5'8)
induced by f'8 is the morphism

Hom(Q#, Z#(1)) — Hom(P®, Z#(1))

induced by P — @ in Definition 4.1. In particular, the kernel of m; (Sog) —
71(S°8) is naturally isomorphic to Hom(Qgp/ng,Z(p/)(l)). Now the trivi-
alization 7 induces a natural isomorphism Z®* = (& /P#P. Therefore, we
obtain a natural isomorphism

(hm st (ilOg X glog Si\og) L)Ker(m (ilOg) — T (SIOg)) ; Z(p’)<1>€9n’

where the projective limit is over all reduced covering points S;Og — Slog,

Proposition 4.22. Let X'°¢ be a log reqular connected fs log scheme over a
field k whose (not necessarily positive) characteristic we denote by p, Ux C X
the interior of X'°¢, and L1, - -, L,, invertible sheaves on X . Let 7' : P8 —
X8 be the log GX"-torsor associated to (Ly,---,L,). If the condition (x)
below is satisfied, then, in the following exact sequence obtained in Corol-
lary 4.20

~ m(ﬂlog)
—_—

(Z%)(1)%" ~) Tim 7y (P X yios Ty 8) —— 1 (P'°8) (X8 — 1,

the first morphism is injective.

() For any integer i such that 1 <i <n and any positive integer N that
is prime to p, there exists a covering V- — Ux tamely ramified along X \ Ux
and an invertible sheaf N such that NN = L; |y

Proof. If we denote by P\ — X' the log G,,-torsor associated to £; (1 <
i < n), then there exists a natural isomorphism P8 = Pllog X xlog * * X xlog P18
over X'°8. Thus, if the assertion in the case where n = 1 is verified, then the
composite

[Thzq Py
T (P X xi0s T%8)  — [ T (PR® X xioe T8) <= (P8 X 105 T%)
i—th
e — (07...7 67"',0)
— m (Po%) ey m(P)

is injective (respectively, zero) if i = j (respectively, if i # j). Therefore, to
complete the proof of Proposition 4.22, we may assume that n = 1. Write
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LY L1. Let N be a positive integer that is prime to p. Note that it is

enough to show that the N-th (cyclic) ket covering over P'°® X 10 T lifts to a
ket covering Q'°¢ — P over P8 to complete the proof of Proposition 4.22.
We denote by Q%% — V the log G,,-torsor associated to A (in the condi-

tion (x)), and by Qy — P xx V the morphism determined by the following
composite:

N — NOY L),

foo— foN
Then it follows from the definition of a log G,,-torsor associated to an in-
vertible sheaf that the morphism @y — P X x V extends to a morphism of
log schemes Ql‘ﬁg — P98 x 10 V; thus, we obtain the following commutative
diagram

legg X pog Up ——— Up
e — s P X1 V —— P8 X i Uy —— P8
%4 —_— UX O XlOg s

where Up is the interior of P8, and the three squares are cartesian. It

follows immediately from the construction of Qlﬁg that the log structure of

1“}’% X plog Up is trivial, and that the top horizontal arrow Ql‘fg X plog Up =
Qv xXp Up — Up is finite étale.

Now I claim the normalization ) of Up in Qy X p Up is tamely ramified
over P along P\ Up. Indeed, this claim may be verified follows: Now every

point a of P\ Up with dim Op, =1 is either

(i) the generic point of a (reduced) divisor on P determined by s° or s
(see Definition 4.15), or

(i) the generic point of a (reduced) divisor on P which is the pull-back of
a reduced divisor on X whose generic point x is a point of X \ Ux with
dim OX,m =1.

Thus, it is easily verified that the normalization ) of Up in Qy xp Up is
tamely ramified over P along P\ Up. Therefore, by the log purity theorem
(cf. Remark 1.10), the covering extends to a ket covering Q8 — P8,
Moreover, by the construction of the morphism @y — P xx V, for any
strict geometric point 7% — X8 of X9 the restriction of the ket covering
Q%% X yioz T® — P8 X 1o 7% to any of the connected components of
Q"% X x10s T8 is the N-th (cyclic) covering over P8 x yioz T8 O
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Definition 4.23. In the notation of Proposition 4.22, we shall refer to the
extension of 7y (X®8) by Z®)(1)®"

71 ((s° lo,
1 — 7Tl<Plog X xlog f) _ 7T.1(P10g> 1(&> ) 7T1<X10g) N

as the extension of m (X'°8) by Z®)(1)®" associated to (L, -, L,). More
generally, for a set of prime numbers 3 which does not contain p, we shall
refer to the extension of 7 (X'°®) by Z®*)(1)®"

via 1 ((s0)108)

1 — my (P X 100 T) /[N — m (P8)/N ™ ™ oy (xog) — 1

(where N is the kernel of the composite of the natural isomorphism 7; (P8 X y1o
T) 5 Z®)(1)®" and the surjection Z®)(1)®" — Z®(1)®" induced by the
natural projection 2@’)(1) — Z(E)(l)) naturally obtained from the exten-
sion of 71 (X1°8) by Z®)(1)®" associated to (L1, - -, Ly,) as the extension of
T (X%8) by Z&)(1)® associated to (L, -+, Ly).

Remark 4.24. If we denote by S(m1(Ux)) (respectively, (Ux )g) the classify-
ing site of w1 (Ux) (i.e., the site defined by considering the category of finite
sets equipped with a continuous action of 71 (Ux) [and coverings given by
surjections of such sets]) (respectively, the étale site of Uy), then the natural
morphism of sites

(Ux)er — S(m(Ux))

induces a natural morphism
H" (1 (Ux), Z%)(1)) — H (Ux, ZW(1)) .

If the morphism H2(m; (Ux), Z®)(1)) — H2,(Uy, Z®)(1)) is an isomorphism,
then, by a similar argument to the argument used in the proof of [11], Lemma
4.3, any invertible sheaf on X satisfies the condition (x) in Proposition 4.22.
Moreover, if the morphism

H? (m (X'%), 2 (1)) — H (w1 (Ux), 2% (1))

induced by the natural surjection 7 (Ux) — 71(X'®) is an isomorphism,
then, by a similar argument to the argument used in the proof of [11], Lemma
4.4, the extension of 7 (X'°8) associated to £ is isomorphic to the extension
of m(X™8) by Z*)(1) determined by the (étale-theoretic) first Chern class
(see [11], Definition 4.1.) of the invertible sheaf £ via the isomorphisms

H2(m (X18), Z#) (1)) 5 H2(m (Ux), %) (1)) > HZ, (Ux, Z¥)(1)).

51



(Now, by means of the natural bijection in [13], Theorem 1.2.5, we iden-
tify the set of equivalence classes of extensions of m;(X'°8) by Z(”/)(l) with
H2 (7 (X8), 2@’)(1)).) Moreover, then the extension of m;(X'°8) associated
to (L1, -+, L,) is isomorphic to the fiber product of the extensions of 7y (X°8)
by Z(p/)(l) determined by the (étale-theoretic) first Chern classes of the in-
vertible sheaves £; (1 <i < n).

A Appendix

In this Section, we prove the well-known fact that the category of ket cover-
ings of a connected locally noetherian fs log scheme is a Galois category; this
implies, in particular, the existence of log fundamental groups.

Definition A.1. Let P be a monoid. We shall say that P is clean if P is an
fs monoid and P* = {0} (where P* is the set of invertible elements of P).

For example,

o NOn

e the stalk of the characteristic sheaf of an fs log scheme at any geometric
point

are clean.

Definition A.2. Let P be a torsion-free fs monoid. We shall denote by
(1/n)P the monoid {p € P® ®; Q | np € Im(P — P ®; Q)}. Note that
the natural inclusion P — P#®;Q factors through (1/n)P. Thus, we always
assume that (1/n)P is a P-monoid via the natural inclusion P — (1/n)P.
Moreover, the morphism

(1/n)P — (1/n)P
p = np
factors through P (C (1/n)P). On the other hand, the resulting morphism

(1/n)P — P is an isomorphism. We shall denote by (1/n)p the inverse
isomorphism P — (1/n)P.

Proposition A.1. Let P be a torsion-free fs monoid, and ) a monoid.
Then for any Kummer morphism f : P — @Q, there exists a positive natural
number n such that the natural inclusion P — (1/n)P factors as a composite

rL Q L (1/n)P. Moreover, then n - (1/n)P C Img. If Q is integral and
torsion-free, then g is injective. In particular, g is Kummer.
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Proof. Since f is Kummer, there exists a positive natural number n such
that n - @Q C Imf. Thus, it follows from the injectivity of f that for any
q € @, there exists a unique element p, € P such that ng = f(p,). Now
define g : @ — (1/n)P by ¢ — (1/n)p(p,). It is immediate that ¢ is a
homomorphism of monoids and go f(p) = p for any p € P. Moreover, for any
(1/n)p(p) € (1/m)P, n((1/n)p(p)) = p = gof (p); hence n((1/n)p(p)) € Img.

It remains to show that if () is integral and torsion-free, then ¢ is Kummer.
If g(q) = g(¢'), then ng = nqg’. Since @ is integral and torsion-free, ¢ = ¢’;
thus, g is injective. O

Definition A.3. Let P be a monoid. We shall refer to an element p € P as
irreducible if p satisfies the following:
If p=p1 + p2, then p; =0 or py = 0.

Proposition A.2. Let P be a clean monoid.

(i) The set of irreducible elements is the smallest set which generates P.
In particular, the set is finite.

(it) The group of automorphisms of P is finite.

Proof. First, we prove assertion (i). It follows immediately from the defini-
tion of irreducible elements that the set of irreducible elements is contained
in any subset of P which generates P. Let {py,---,p,} € P be a minimal set
which generates P. Assume p; is not irreducible. Then there exist natural
numbers nq, - - -, n, such that p; = nyp1+---+n,p,, and 2 < ny+---+n,. If
n; # 0, then nyp1+- -+ (n; — 1)p; +- - - +n,.p. = 0. However, since P* = {0},
we obtain a contradiction. Thus, n; = 0. However, since we are operating
under the assumption that {p1,---,p,} C P is a minimal set which generates
P, we obtain a contradiction. Therefore, p; is irreducible. This completes
the proof of assertion (i).

Next, we prove assertion (ii). Since any automorphism of P preserves
the irreducible elements of P, we obtain a natural homomorphism from the
group of automorphisms of P to the group of permutations of the set of
irreducible elements of P. Since the set of irreducible elements of P generates
P by (i), this homomorphism is injective. On the other hand, since the set
of irreducible elements of P is finite by (i), we conclude that the group of
automorphism of P is also finite. O

Proposition A.3.

(i) Let L be a torsion-free finitely generated abelian group, and P a finitely
generated submonoid of L. Then the submonoid P = {l € L | nl € P
for some n € N} of L is finitely generated.
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(it) Let P be a torsion-free fs monoid, and Q a integral torsion-free satu-
rated monoid. Let f : P — ) be a Kummer morphism. Then @ is
finitely generated.

Proof. First we prove assertion (i). Let us fix elements py,---,p, € P of P

which generate P. We denote by Cp the cone in Lg =y ®z R generated

by P (ie., Cp = {cip1 +---¢:pr € Lr | ¢ € Rsp}). Then it is immediate

that P C Cp N L (in Lg). Therefore, for any [ € P there exist n; € N and
€ [0,1) N Q such that

l:(n1+cl)-p1+-'-+(nr+6r)'pr-

Here, since the set S = {c1py + -+ ¢,pr € P | ¢; € [0,1) NQ} is contained
in the intersection of L and a bounded subset of Cp, S is finite. Moreover,
any element of Pis ‘written by a sum of an element of P and an element of
S'; therefore, since P is generated by pq,---,p,, and this finite set S, P is
finitely generated.

Next, we prove assertion (ii). By Proposition A.1, the natural inclusion

P — (1/n)P factors as a composite P EN Q 2 (1/n)P of f and a Kummer
morphism g. By taking the groups associated to P, ), and (1/n)P, we obtain
the following commutative diagram:

P L. 0 2. amp

Lo l

per ST QP e (1/n)P=P .
Note that the all arrows in the above diagram are injective, and that (%P
is a torsion-free finitely generated abelian group. Now we denote by P the
submonoid {q € Q% | ng € P for some n € N} of Q8. I claim that P = Q.
Indeed, if p € P, then p € Q% and np € P C Q. Thus, the saturatedness
of @ implies that p € Q. If ¢ € @, then by the Kummerness of f, ¢ € P;
therefore P = Q. Thus, by (i), P = Q is finitely generated. O

Proposition A.4. Let X'°% be an fs log scheme whose underlying scheme X
is the spectrum of a strictly henselian local ring A. Let us fix a global clean
chart P — Ox. (cf. Definition 1.3.) Then any connected ket covering of
X8 s of the form (X xzip Z[Q])'*® — X8, where P — Q is a Kummer
morphism of fs monoids such that n@QQ C Im(P — Q) for some integer n
invertible on X, and the log structure of (X Xzp) Z[Q])'°¢ is induced by the
natural morphism Q — Ox ®gzip) Z|Q)]. Conversely, if Y'°8 — X'°¢ has this
form, then it is a ket covering.
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Proof. The last assertion is immediate from the definition. Let Y'°8 — Xog
be a connected ket covering. Then since Y — X is finite, Y is affine. Let us
write Y = Spec B. Since A — B is finite, and Y is connected, B is a strictly
henselian local ring. By [8], Theorem 3.5, there exists an fs chart Q — B of

Y'°8 and a chart
Spec B —— SpecA

l l

Spec Z[Q)] ——— Spec Z[P]
of X8 — Y98 guch that the following conditions hold:

(i) P — @ is injective, and the cokernel of P& — Q2P is finite and of order
n invertible on A.

(ii) Spec B — Spec A ®zp) Z[Q)] is étale.
(iii) P — Q/(Q — B)~Y(B*) is Kummer.

By conditions (i) and (iii), P — @ is Kummer, and satisfies n@Q C Im(P —
Q). Moreover, since Z[P| — Z[Q)] is finite, A®zp Z[Q)] is a strictly henselian
local ring. Thus, it follows from the fact that A ®zp Z[Q] — B is finite and
étale that A ®z;p) Z[Q)] is isomorphic to B. O

Proposition A.5. Let X', Y& and Z'¢ be locally noetherian fs log
schemes, and f1°8 : X8 — Y98 gnd g'°8 ;. Y8 — 7% morphisms. Then if

def . .
"% and h'°® = g8 o f1%¢ qre ket coverings, then so is fl°8.

Proof. The finiteness of f is clear. For the log étaleness of f!°¢, we consider
the following commutative diagram

" lo, s’ los lo,
T'les 2, xlog

jlog l l flos

lo slos lo
Tlg =, ylog

lglog

lo
Z'°8

NMog 1198 . . .
where 7"1°¢ " T'°¢ ig an exact closed immersion of affine log schemes defined

by a quasi-coherent nilpotent Or-ideal. Since h'°% is log étale, there exists
tlog . Tlos ., X108 guch that s'1°8 = 18 0§18 and ¢'°% o '8 = plog o flog(=
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g o flos o tlo8)  Since ¢'°® is log étale, s'°¢ = f1°8 o 16, Therefore, f°% is log
étale.

For the Kummerness of f°8, we take a geometric point Z — X of X. Let
us write P = (Mx/O%)z, @ = (My/O5 )5y and R = (Mz/O0% ). Thus,

we obtain the following diagram:

R o™ p

Assume that (f1°%)*(q) = (f'°¢)*(¢'). Now it follows from the Kummerness
of (¢'°8)* that there exsit a positive integer n and elements r, ' € R such
that (¢°¢)*(r) = ng and (g'°8)*(+') = nqg’. Thus, (h'°®)*(r) = (h'°8)*(r’).
Therefore, the injectivity of (h'°®)* and the fact that @ is fs imply that ¢ = ¢
Hence (f°%)* is injective. Next, we take p € P. Then it follows from the
Kummerness of h!°¢ that there exists an integer n such that np € Im (h'°8)*,
hence np € Im (f'°¢)*. Therefore, (f'°¢)* is Kummer. O

Proposition A.6. A ket covering is an open and closed map. In particular,
a connected ket covering over a connected fs log scheme is a surjection.

Proof. This follows from Proposition A.4 and [7], Proposition 3.2. O]

Proposition A.7. Let X'¢ and Y'°8 be connected fs log schemes whose
underlying schemes are the spectra of strictly henselian local rings, and f'°& :
Xle — Y8 g ket covering. If the ket covering f'°¢ : X' — Y% has q

section, then f°8 is an isomorphism.
Proof. This follows immediately from Proposition A .4. O

Proposition A.8. Let X' be an fs log scheme whose underlying scheme
X is the spectrum of a strictly henselian local ring A whose residue field is
k, and T'°® &t (Spec k)¢ — X8 g strict geometric point over a geometric
point of X for which the image of the underlying morphism of schemes is
the closed point of X. Then T'°¢ — X'°¢ induces an equivalence between the

category of ket coverings of X'°8 and the category of ket coverings of T'8.

Proof. 1t follows immediately from Proposition A.4 that the functor in ques-
tion is essentially surjective, and full. Thus, we prove that the functor is
faithful. Let Y{°® — X8 and Y, — X% be ket coverings. Our claim is
that the morphism

log /1 1 _ 1 _
¢ : Hom yios (Y%, Y,%8) — Homiox (V7% X x10s T8, Y3 X y105 T'°8)

is injective. To show the injectivety of ¢, we consider morphisms f°8, ' :
1 1 . . _ _ 1
Y,%® — Y,% over X'°& which satisfy f1°8 X yios 7% = g% X x10s T8 1 Y] X 10
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78 Y;Og X xioz T°8. Then, by Proposition A.5, f'°¢ and ¢'°¢ are ket
coverings. It is immediate that we may assume that Y; and Y5 are connected.
Now write

def

. 1 1 1
Fflog = ldyllog X xlog flog . Ylog . Ylog X o YQOE;.

I

def . 1 1 1
Fglog = ldyllog X xlog glog . Ylog . Ylog X o YQOg
. . . . . . 1

Then since I oz (respectively, T'jie) is a section of the projection Y7 X xios

log log . . . . . .
Y,”™ — Y™, and this pl"OJGCthl’ll is a ket covering, I o (1"espectlvely,1 [ joz)
determines an isomorphism of Y;*® with a connected component of Y, X x

1 .. . — —
Y,% (Propositions A.6; A.7). Thus, since f1°8 X yiz T8 = ¢'°8 X y10s T8, we
conclude that f'°& = gl°s. O

Proposition A.9. Let X'°¢ be an fs log scheme, f1°8 : Y6 — X% ¢ ket cov-
ering, and Ux C X (respectively, Uy CY) the interior of X'°% (respectively,
Y8). Then the projection Y18 X xi0e Ux — Y18 induces an isomorphism
Ylog X xlog UX ~ Uy.

Proof. Since Ux — X'°# is a strict open immersion, Y% X yios Ux — Y18 is
an open immersion. Now since the log structure of Uy is trivial, the Kum-
merness of Y1°% x yi: Ux — Ux implies that the log structure of Y'°% X yios Ux
is trivial. Thus, the open immersion Y8 x yix Ux — Y8 factors through
Uy. On the other hand, since the Kummerness of f'°® implies that f°¢ |,
factors through Uy, we conclude that Y% x yios Ux ~ Uy. O

Proposition A.10. Let X'°® be a log reqular fs log scheme, and Ux C X
the interior of X'°¢. Then the morphism Ux — X'°¢ induces an equivalence
of the category of ket coverings of X'°8 and the category of coverings tamely
ramified of Ux along Dx = X \Ux. (We shall say that V' — Ux is a covering
tamely ramified along Dx, if V. — Ux 1is finite étale, and at all points x of
Dx with dim Ox , = 1, the normalization of X in 'V is tamely ramified over

Proof. First, we prove that the morphism Ux < X'°¢ induces a functor from
the category of ket coverings of X'°¢ to the category of coverings tamely
ramified of Ux along Dx. Let Y'°¢ — X8 bhe a connected ket covering,
and T — X a geometric point of X. Then it follows from the Kummerness
of Y'°¢ — X¢ that if the log structure of X'°¢ at 7 is trivial, then the log
structure of Y'°¢ at any geometric points over T is trivial. Therefore, since a
log étale morphism from a log scheme equipped with the trivial log structure
to a log scheme equipped with the trivial log structure is étale, Y8 X yio
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Ux — Uy is finite étale. Next, we will prove the tameness of Y8 X yio
Ux — Ux. By base-changing, we may assume that X is the spectrum of a
strictly henselian discrete valuation ring. Then it follows immediately from
Proposition A.4 that Y6 — X% is tamely ramified. This completes the
proof that the morphism Ux < X% induces a functor from the category
of ket coverings of X'°¢ to the category of coverings of Ux tamely ramified
along Dy.

Next, we show that this functor is fully faithful. Let Y;°® — X'& and
Y,% — X' be ket coverings. Our claim is that the morphism

. HOleog (Yilog, Yélog) — HOmUX (Yilog X Xlog UX, }/210g X Xlog UX) = HOmUX (UYI 3 UY2 )

is an isomorphism, where Uy, (respectively, Uy,) is the interior of Y; (respec-
tively, Y5). Here, the last equality follows from Proposition A.9. To show
the injectivity of ¢, let f1°8, g8 : Y% — Y% be ket coverings over X'
such that f'% |y, = ¢ |y, 0 Uy, — Uy, Now since X'*¢ is log regular,
and Y% — X8 and V,°8 — X8 are log étale, Y% and Y, are log reg-
ular ([9], Theorem 8.2). Therefore, Uy, C Y (respectively, Uy, C Y3) is a
dense open subset of Y; (respectively, Y3). Thus, f'° |, = ¢'% |p,, implies

f = g. Now since Yllog (respectively, Yzlog) is log regular, the log structure
of Y] (respectively, Y,%) is Oy, N (Uy, — Y1).0p, < Oy, (respecrively,
Oy, N (Uy, — YQ)*(’),*JY2 — Oy,) ([9], Theorem 11.6). Therefore, a morphism

of log schemes from Y;% to Y, is determined by the underlying morphism
of schemes. In other words, f = g implies f'°8 = ¢'°¢; we thus conclude that
¢ is injective. Next, to show the surjectivity of ¢, Let fy : Uy, — Uy, be a
morphism over Uyx. Since the normalization of X in Uy, (respecrively, Uy,)
is V) (respecrively, Y5), the morphism f; extends to a morphism f : Y] — Y.
By a similar argument to the argument used to prove the injectivity of ¢,
a morphism of log schemes from Yllog to Yzlog is determined by the under-
lying morphism of schemes. Therefore f : Y; — Y5 extends to a morphism
flos . Yl1Og — Y21°g of log schemes. We thus conclude that ¢ is surjective.
Finally, we show the essential surjectivity of this functor. Let V' — Uy
be a covering tamely ramified along Dyx. Then, by the log purity theorem
in [10] (cf. also Remark 1.10), this covering extends to a ket covering over
X'los, O

Proposition A.11. Let X'°¢ and Y'°% be log schemes, and f'°¢, g'°8 : X8 —
Y'°8 morphisms of log schemes such that f = g. Let T — X be a geometric
point of X (we denote the image by x € X). If there exist a log scheme X'log,
a morphism b8 : X8 — X2 and a geometric point T — X' (we denote

the image by x' € X') for which the image of the composite T — X' X s
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x such that the following conditions hold, then f'°% coincides with ¢'°® on an
¢tale neighborhood of T — X :

(i) h is flat at 2’ € X'.

(i1) The homomorphism (Mx/O%)z — (Mx:/O% )z induced by h'°® is
injective.

(iii) o8 o hlo® coincides with g'° o h!°% on an étale neighborhood of T — X'.

Proof. We denote by y — Y the geometric point determined by the com-

posite T — X " Y. Then it is immediate that it is enough to show that
the homomorphism Myz — M x 7 induced by f ¢ coincides with the homo-
morphism My — Mz induced by ¢g'°¢. Now, in the diagram induced by

hlog
Oxz —— Mxz —— (Mx/O%)z

| ! J

Oye —— My —— (M /O%)a

since the left-hand vertical arrow is injective (by assumption (i)), and the
right-hand vertical arrow is injective (by assumption (ii)), we conclude that
the homomorphism M xz — M x/ z is injective. Therefore, by assumption
(iii), the homomorphism Myy — Mxz induced by f°8 coincides with the
homomorphism Myz — Mx 7 induced by g'es. O

Proposition A.12. A strict étale surjection is a strict epimorphism in the
category of log schemes.

Proof. Let X8 Y& and Z'°¢ be log schemes, f1°¢8 : Y8 — X8 g strict
étale surjection, and pllog (respectively, plgog) the 1-st (respectively, 2-nd) pro-
jection Y18 x yioz Y198 — Y% Note that our claims are

(i) the morphism Hom(X'°8 Z°8) — Hom(Y'°8, Z°¢) induced by f°8 is
injective; and

(i) if a morphism g¢'°& : Y8 — 7 gatisfies the equality ¢'°® o pllOg =
g8 o p12°g, then ¢'°¢ extends to a morphism X'°& — Zos,

(i) follows immediately from Proposition A.11. (ii) may be verified as follows:
Since ¢'°¢ o pllOg =g o p12°g, we obtain that g o p; = g o ps. Since an étale
morphism is a strict epimorphism in the category of schemes, it thus follows
that there exists an extension g : X — Z of g (i.e,, go f = g). Moreover,

since My is a sheaf on the étale site of X, and Y8 — X8 strict étale
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surjection, it thus follows from the fact that the morphism (gop;) Mz — M
(where M is the sheaf of monoids which determines the log structure of
Y18 x 105 Y1) coincides with the morphism (g o p) My — M that the
morphism ¢~*M,; — My extends to a morphism g~ 'M, — Myx. This
completes the proof of (ii). O

Proposition A.13. Let X' be a locally noetherian fs log scheme. Then,
for a morphism f°8 in the category of ket coverings of X8, f1°8 is q strict
epimorphism in the category of ket coverings of X'°8 if and only if f'°¢ is a
surjection.

Proof. Tt is immediate that if f'°¢ is not surjective, then f°¢ is not a strict
epimorphism in the category of ket coverings of X'°6. Thus, assume that f'°%
is surjective.

(Step 1) The case where X is the spectrum of a strictly henselian ring.
Then, by Proposition A8, by base-changing, we may assume that X is the
spectrum of a separably closed field k. Let us fix a clean chart P — k of X log,
Now we denote by X'° the log scheme obtained by equipping Spec k[[P]]
with the log structure defined by the natural morphism P — E[[P]]. Then
the following hold:

o X' is log regular ([9], Theorem 3.1)

e The natural surjection k[[P]] — k[[P]]/m ~ k (where m C k[[P]] is the
maximal ideal of k[[P]]) induces the strict morphism X'°& — X',

e The strict morphism X' — X'log induces a natural equivalence be-
tween the category of ket coverings of X'°¢ and the category of ket
coverings of X!°8 (Proposition A.8).

Thus, by replacing X% by X log "we may assume that X'°® is log regular.
Moreover, if we denote by Ux C X the interior of X', then the strict
morphism Ux — X' induces a natural equivalence between the category
of ket coverings of X'°¢ and the category of coverings of Ux tamely ramified
along X \ Ux (Proposition A.10). In the category of coverings of Ux tamely
ramified along X \ Uy, a surjection is faithfully flat, thus, strict eqimorphim
(in the category of ket coverings of Uy).

(Step 2) The general case.

Let V] — X8 V)8 — X8 and 7% — X8 be ket coverings, f'°5 :
Y[ — Y,% a surjection over iX log " and 1pllog (relspectively7 PY8) the 1-st
(respectively, 2-nd) projection Y, Xy 10e Y% — Y. Note that our claims

2
are
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(i) the morphism Hom yie (Y,%, Z°¢) — Hom yioe (Y;%%, Z'°8) induced by
fl°8 is injective;

(ii) if a morphism ¢'°& : Y{°¢ — Z'2 gatisfies the equality g8 o p*® =
g% 0 pi® then ¢'°% extends to a morphism Y,% — 78,

First, we prove assertion (i). Let ¢\ and ¢gi® : Y,°® — Z'°¢ be morphisms

over X'°8 such that ¢i°® o f18 = g} o fl°8 Then, by Step 1, there exists a
strict étale surjection X 1°8 — X'°# such that the morphism glllog
by base-changing of gllog by X 18 — X coincides with the morphism g;og
obtained by base-changing of géog by X' — X' On the other hand, since
a strict étale surjection is a strict epimorphism (by Proposition A.12), we
conclude that g\ = ¢gi®. This completes the proof of assertion (i).

Next, we prove assertion (ii). By Step 1, there exists a strict étale surjec-
tion X8 — X% guch that the morphism ¢ '°¢ obtained by base-changing of
g8 by X8 — X'°¢ extends to a morphism g’lo LY, 8 o V%8 X 105 X108 —
7' log ¥ 7log o X 12, Now if we denote by ¢} (respectively, ¢5#) the 1-st

e Yo 1% YV 1% then the composite
Y2°g 2 2 ) p

obtained

(respectively, 2-nd) projection YQ, log

log ~/log
/ / q ! /
Y—Z log XYlog Y2 log 1_> Y2 log L 7 log SN Zlog
2
coincides with the composite

log ~log

/ / q / !/ ’

Yy %8 X e ¥y 8 2 Y, 108 L gllos L, glos
2

, ~llog ,
Therefore, by Proposition A.12, the composite Y, log O, 7'log _, 7log oxtends
to a morphism %% : Y} — Z'° (note that Y,'*® — Y% is a strict étale
surjection). This completes the proof of assertion (ii). O

Theorem A.1l. Let X'°% be a connected locally noetherian fs log scheme, and
¢ — X' g log geometric point of X'°¢. Let us denote by Két(X'°®) the
category of ket coverings of X'°8 (and X'°®-morphisms), and by F = Fioe
the functor

Két(X"s)  — (the category of finite sets)
(Yle — X&) 1 {log geometric points of Y'°® over 7'°¢ — X8}

Then (Két(X'°®), F) forms a Galois category with a fundamental functor.
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Note that it follows from Proposition A.4, that the set
{log geometric points of Y'°8 over 7°8 — X'°8}

is finite. We must verify that (Két(X'°8), F) satisfies the conditions (G, ), . .., (Gs)
and (Gg) in the definition of Galois category in [5], Exposé V, 4.

(G1) Két(X™®) has a final object and there exists a fiber product in
Két(X08).

Proof. It is immediate that X'°® Mxls xlox g o final object of Két(X's).
Next, we will prove the existence of a fiber product. Since any object Y'°#
of Két(X™#) is an fs log scheme, for the existence of a fiber product, it
is enough to show that finiteness, log étaleness, and Kummerness is stable
under composition and base-change. The assertion for finiteness is classical,
the assertion for log étaleness and Kummerness follows immediately from the
definitions. O

(G2) There exists a finite sum in Két(X'°8). Moreover, if f1°8 : Y18 — X'log
is an object of Két(X'®) and G is a finite group of automorphisms of Y'°8
in Két(X'8), then there exists a quotient Y'°8 /G of Y!°¢ by G in Két(X!8),
and the natural morphism Y'°¢ — Y8 /(G is a strict epimorphism.

Proof. The existence of finite sums is immediate by the definition of a ket cov-
ering. In the following, we prove the existence of quotients. By Lemma 4.19,
by base-changing, we may assume that the underlying scheme X of X% is
the spectrum of a strictly henselian local ring. Moreover, by a similar argu-
ment to the argument used in the proof of Proposition A.13, (Step 1), we
may assume that there exist a separably closed field k£ and a clean monoid P
such that the underlying scheme X of X'°® is the spectrum of k[[P]], and the
log structure of X'°¢ is the log structure induced by the natural morphism
P — E[[P]]. Moreover, by taking a connected component of Y and the stabi-
lizer of the connected component with respect to the action of G on the set
of connected components of Y, we may assume that Y is connected. Then,
by Proposition A .4, there exists a clean monoid @), and a Kummer morphism
u : P — @ such that Y is isomorphic to Spec (k[[P]] ®zp) Z[Q)]) ~ Spec k[[Q]]
(the fact that k[[P]] ®zp Z[Q) is isomorphic to k[[Q]] follows from the Kum-
merness of u), the log structure of Y'°¢ is the log structure induced by the
natural morphism @ — k[[Q]], and the morphism Y18 — X% is determined

62



by u. Now we have a commutative diagram

P —= Mx(X)/K[[P]]" «—— Mx(X) —— K[[P]]
o Qo M) s k[QUC
Q =—— My (Y)/K[[Q]" «—— My(Y) —— Kk[[Q]]

where © % My ()9 /(%) (K[QII°)"

Let @ — My (Y) be a clean chart of Y18, Then this chart induces a
(non-canonical) splitting k[[Q]]* ® @ = My (Y). Since the action of G on
Y8 is over X% and u : P — @ is Kummer, for any g € G, there exists
( ) € K[[Q]]" such that (f,q)? = (04(q) - f*,q) ((f,q) € K[[Q]]"®Q =

My (Y)); therefore, for (f,q) € My (Y), (f,q) € My (V)% if and only if
=0,(q) - f? for any g € G. Note that it is immediate that

Q — klQI
¢ — 049

is a homomorphism; moreover, since o,(p) = 1 for any P, we conclude that
o,4(q) is a root of 1 € k[[Q]].
Now I claim that

My (V)S ={(f.0) | f € (K[[QI"), o4(q) = 1 for any g € G},

i.e., if we denote by Q¢! the submonoid of @ of elements which satisfy a.(q) =
1 for any g € G, then My (Y)¢ = (k[[Q]]*)“@®Q!), and the natural surjection
My (Y)¢ — @Q induces an isomorphism Q¢ = Q. Indeed, since k[[Q]] is a
local k-algebra whose residue field is k, we have a split exact sequence

0—m—Kk[[Q]] — k —0,

where m is the maximal ideal of k[[Q]]; i.e., m & k = k[[Q]]. Thus, for
f € k[[Q]]", there exists t € m and a € k such that f = ¢+ a. Let g be an
element of G. Then since the action of G on Y8 is over X8, f9 = t9 4 q
and t9 € m. If (f,q) € My(Y)C, then f9 = o,(—q) - f. Thus, t9 +a =
04(—q) - (t + a); therefore, o,(q) = 1 and tY = t. (Here, we use the fact
that since o,(q) is a root of 1 € k[[Q]]; in particular, o,(¢) € k*.) This
completes the proof of the above claim. In particular, My (Y)% — k[[Q]]¢
is a log structure on Spec k[[Q]]¢ (i.e., (a©)~L(K[[Q]]¢)* = (K[[Q]]¢)*), whose
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characteristic sheaf @ [= Q] is a submonoid of @ (thus, @ is integral and
torsion-free), and this log structure coincides with the log structure induced
by the morphism ul® : QI — My (V)¢ — k[[Q]]®. Now we shall denote
by Y''°¢ the log scheme obtained by equipping Spec k[[Q]]¢ with this log
structure My (Y)9 — k[[Q]]¢. Note that it follows from the definition of
Q!¢ that Q¢ is saturated. Therefore, by Proposition A.3, (ii), QI is fs;
thus, Y''°8 is an fs log scheme.

Next, I claim that the (clean) chart ul® : QI — My (V)¢ — k[[Q]]¢
obtained as above induces an isomorphism v : K[[QI%]] = K[[Q]]®. Since
Q% and Q are Kummer over P, to show this, it is enough to show that the
natural morphism v’ : k[Q[] — k[Q]¢, which satisfies v'®y(p k[[P]] = v, is an
isomorphism. Indeed, the claim may be verified as follows: As a k-module,
E[QIC]] (respectively, k[Q)]) is freely generated by ¢’ € Q!¢ (respectively,
¢ € Q). On the other hand, by the definition of o, for ¢ € k[Q)], we obtain
that ¢ = 04(q) - ¢. Then the above claim follows from this observation.

Therefore, we conclude that the fs log scheme Y''°¢ is the log scheme
obtained by equipping Spec k[[Q!?)]] with the log structure induced by the
natural morphism Q¢! — k[[Q!®]]]. In particular, by Proposition A. 4,
Y'los — Xlog ig a ket covering. Moreover, by the construction of Y%
it is immediate that the ket covering Y198 — X2 is a quotient of the action
of G on the ket covering Y'°¢ — X8 in Két(X™®). Finally, by Proposition
A.13, the natural morphism Y'°8 — Y18 /(G is a strict epimorphism. U

(G3) Any morphism f18 : Y]°® — Y,° in Két(X'°%) admits a factorization

/
log f'9% {,/log 9% 1,1 log : : : :
Y, "= Y, ® 5 Y, where f %% is a strict epimorphism and ¢'°¢ is a
. 1 "1 o s e .
monomorphism. Moreover, then Y,% =Y, ¢ L1 Z!°¢ (disjoint union) for some

object Z'°8 of Két(X's).
Proof. This follows immediately from Proposition A.6 and A.13. O
(G4) F is left exact.

Proof. Let Y1°8 be an object of Két(X'°8) and ¥ — Y a geometric point of
Y. Then any log geometric point 7'°¢ of Y'°¢ over the geometric point § — Y
factors through a reduced covering point ylfg — Y8 over the geometric
point 7 — Y. Thus, since a fiber product in Két(X!°8) is a fiber product in
the category of fs log schemes, and F(Y!°8) is finite, F' commutes with the
operation of taking fiber product. O

(Gs) F commutes with the operation of taking a finite sum and the quo-
tient by a action of a finite group (cf. (G,)). Moreover, if f1¢ is a strict
epimorphism, then F(f1°8) is surjective.
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Proof. The assertion for a finite sum is immediate. The assertion for quotient
follows from a similar argument to the argument used in the proof of (G,).
The assertion for a strict epimorphism follows from Proposition A.13 and the
definition of a log geometric point. O

(Gs) If f1°8 is a morphism in Két(X'8), then f°% is an isomorphism if
and only if F'(f'°®) is an isomorphism.

Proof. For this assertion, by base-changing, we may assume that X is the
spectrum of a strictly henselian local ring, and the image of the underlying
morphism of scheme of the log geometric point 2'°¢ — X8 is the closed point
of X. Then the assertion follows immediately from Proposition A.4. O

Theorem A.2. Let X'° and Y'°8 be connected locally noetherian fs log
schemes, and f'°¢ : X' — Y8 g morphism of log schemes. Then the
functor
Ké lo (flOg)* A lo
ét(Y'°8) — Két(X'°8)
(Y’ log _, Ylog) N (Y’ log X ylog Xlog _, Xlog)
induced by f'°¢ is exact. In particular, (by [5], Exposé V, Corollaire 6.2) for

any log geometric point 7% — X% of X'¢ the functor (f°8)* induces a
continuous homomorphism

7T1(f10g) ) (Xlog’ilog) — (Ylog’ flog(flog)) ’

where f1°8(71°8) — Y8 js the log geometric point obtained as the composite

~ log 1'% 11
Flog _, xlos I yrlog

Proof. Let 7'°¢ — X' be a log geometric point of X'°&. Then, by [5], Exposé
V, Proposition 6.1, it is enough to show that the composite of functor
7 lo (flog)* 7 lo Fil‘)g .
Két(Y'°8) — Két(X°8) = (the category of finite sets)
is a fundamental functor over Két(Y'°¢). Now, by the definitions of (f!°¢)*
and Fhs, for any ket covering Y18 — Y18 [y, o (flo8)*(Y'log — Ylog) =
Fflog(ilog)(Y' log —, ylog) ie., Fhogo (fl08)* = Fiogz10ey. By Theorem A.1, the
functor Flpos(ziosy is a fundamental functor over Két(Y'°8). This completes
the proof of Thereom A.2. O
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