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Abstract

In the present paper, we study the cuspidalization problem of the

fundamental group of a curve by means of the log geometry of the log

configuration space, which is a natural compactification of the usual

configuration space of the curve. The goal of this paper is to show that

the fundamental group of the configuration space is generated by the

images from morphisms from a group extension of the fundamental

groups of the configuration spaces of lower dimension, and that the

fundamental group of the configuration space can be partially recon-

structed from a collection of data concerning the fundamental groups

of the configuration spaces of lower dimension.
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0 Introduction

In this paper, we consider the cuspidalization problem of the fundamental
group of a curve. Let X be a smooth, proper, geometrically connected curve
of genus g ≥ 2 over a field K whose (not necessarily positive) characteristic
we denote by p.
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Problem 0.1. Let U ↪→ X be an open subscheme of X. Then can one

reconstruct the (arithmetic) fundamental group

π1(U)

of U from the (arithmetic) fundamental group π1(X) of X?

More “generally”,

Problem 0.2. Let r be a natural number. Then can one reconstruct the

(arithmetic) fundamental group

π1(U(r))

of the r-th configuration space U(r) of X (i.e., the open subscheme of the r-th
product of X [over K] whose complement consists of the diagonals “D(r){i,j} =
{(x1, · · · , xr) | xi = xj}” (i 6= j)) from the (arithmetic) fundamental group

π1(X) of X?

In this paper, we study Problem 1.2 by means of the log geometry of the
log configuration scheme of X, which is a natural compactification of U(r).

Let M
log

g,r be the log stack obtained by equipping the moduli stack Mg,r

of r-pointed stable curves of genus g whose r sections are equipped with an
ordering with the log structure associated to the divisor with normal crossings
which parametrizes singular curves. Then, for a natural number r, we define
the (r-th) log configuration scheme X log

(r) as the fiber product

Spec K ×
M

log
g,0
M

log

g,r,

where the (1-)morphism Spec K → M
log

g,0 is the classifying (1-)morphism

determined by the curve X → Spec K, and the (1-)morphismM
log

g,r →M
log

g,0 is
the (1-)morphism obtained by forgetting the sections. Note that the interior
of X log

(r) (i.e., the largest open subset of the underlying scheme of X log
(r) on

which the log structure is trivial) is the usual (r-th) configuration space U(r)

of X, and that the natural inclusion U(r) ↪→ X log
(r) induces an isomorphism

of the geometrically maximal pro-prime to p quotient of π1(U(r)) (i.e., the
quotient of π1(U(r)) by the kernel of the natural surjection π1(U(r)×KKsep)→
π1(U(r)×K Ksep)(Σ), where π1(U(r)×K Ksep)(Σ) is the maximal pro-prime to p

quotient) with the geometrically maximal pro-prime to p quotient of π1(X
log
(r) ).

Let Σ be a (non-empty) set of prime numbers. We shall denote by Πlog
X(r)

the geometrically maximal pro-Σ quotient of π1(X
log
(r) ), by Πlog

PK
the geometri-

cally maximal pro-Σ quotient of the log fundamental group of the log scheme
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P
log
K obtained by equipping the projective line P1

K with the log structure as-
sociated to the divisor {0, 1,∞} ⊆ P1

K, and by GK the absolute Galois group
of K. Then the first main result of this paper is as follows (cf. Theorem 2.5):

Theorem 0.3. Let r ≥ 3 be an integer. Then there exist extensions

Π1, Π3

of Πlog
X(r−1)

by Ẑ(Σ)(1), an extension

Π2

of Πlog
X(r−2)

×GK
Πlog

P
1
K

by Ẑ(Σ)(1), and continuous homomorphisms

Πi −→ Πlog
X(r)

(1 ≤ i ≤ 3)

over GK such that the morphism

ΠGX(r)

def
= lim
−→

(Π1 ← {1} → Π2 ← {1} → Π3) −→ Πlog
X(r)

induced by the morphisms Πi → Πlog
X(r)

is surjective, where the inductive limit

is taken in the category of profinite groups.

Note that Theorem 0.3 can be regarded as a logarithmic analogue of [7],
Remark 1.2.

We shall denote by plog
X(r)i

: X log
(r+1) → X log

(r) the morphism induced by the

(1-)morphismMg,r+1 →Mg,r obtained by forgetting the i-th section. Then
the second main result of this paper is as follows (cf. Theorem 2.16):

Theorem 0.4. Let r ≥ 2 be an integer. Moreover, we assume that

Σ =

{
the set of all prime numbers or {l} if p = 0

{l} if p ≥ 2 .

If the collection of data consisting of the profinite groups Πlog
X(k)

(0 ≤ k ≤ r),

the profinite group Πlog
P

, the surjections Πlog
X(k)
→ Πlog

X(k−1)
(2 ≤ k ≤ r) induced

by the plog
X(k−1)i

’s (2 ≤ k ≤ r, 1 ≤ i ≤ k), the morphisms ΠX → GK and

Πlog
P
→ GK induced by the respective structure morphisms, and some data

concerning the log fundamental groups of the irreducible components of the

divisor at infinity (i.e., the divisor with normal crossings which defines the

log structure) of X log
(r) is given, then we can “reconstruct” the profinite group

ΠGX(r+1)
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defined in Theorem 0.3 and morphisms

qX(r)i
: ΠGX(r+1)

−→ Πlog
X(r)

(1 ≤ i ≤ r + 1)

such that qX(r)i
factors as the composite

ΠGX(r+1)
−→ Πlog

X(r+1)

via plog
X(r)i

−→ Πlog
X(r)

,

where the first morphism is the morphism obtained in Theorem 0.3.

In Theorem 0.4, we use the terminology “reconstruct” as a sort of “abbre-
viation” for the somewhat lengthy but mathematically precise formulation
given in the statement of Theorem 2.16.

By Theorem 0.3 and Theorem 0.4, if one can also reconstruct group-
theoretically the kernel of the surjection ΠGX(r+1)

→ Πlog
X(r+1)

(which appears in

the above composite), then, by taking the quotient by this kernel, one can
reconstruct the profinite group Πlog

X(r+1)
(cf. Proposition 2.15, (ii)). However,

unfortunately, reconstruction of this kernel is not performed in this paper.
Moreover, it seems to the author that if such a reconstruction should prove
to be possible, it is likely that the method of reconstruction of this kernel
should depend on the “arithmetic” of K in an essential way.

This paper is organized as follows:
In Section 1, we consider the scheme-theoretic and log scheme-theoretic

properties of log configuration schemes. Moreover, we study the geometry of
the divisor at infinity of X log

(r) in more detail.
In Section 2, we consider the reconstruction of the fundamental groups

of higher dimensional log configuration schemes.
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Notation

Symbols:

We shall denote by Z the set of rational integers, by N the set of rational
integers n ≥ 0, by Q the set of rational numbers and by Ẑ the profinite
completion of Z.
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Subscripts:

For a ring A (respectively, a scheme X), we shall denote by Ared (re-
spectively, Xred) the quotient ring by the ideal of all nilpotent elements of
A (respectively, the reduced closed subscheme of X associated to X). For
a ring A, we shall denote by A∗ the group of unity of A. For a field k, we
shall use the notation ksep to denote a separable closure of k. For a monoid
P , (respectively, a sheaf of monoids P) we shall denote by P gp the group
associated to P (respectively, Pgp the sheaf of groups associated to P). For
a group G, we shall denote by Gab the abelianization of G.

Log schemes:

For a log scheme X log, we shall denote byMX the sheaf of monoids that
defines the log structure of X log.

Let P be a property of schemes [for example, “quasi-compact”, “con-
nected”, “normal”, “regular”] (respectively, morphisms of schemes [for ex-
ample, “proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log
scheme (respectively, a morphism of log schemes) satisfies P if the underlying
scheme (respectively, the underlying morphism of schemes) satisfies P.

For a log scheme X log (respectively, a morphism f log of log schemes), we
shall denote by X the underlying scheme (respectively, by f the underlying
morphism of schemes). For fs log schemes X log, Y log and Z log, we shall denote
by X log×Y log Z log the fiber product of X log and Z log over Y log in the category
of fs log schemes. In general, the underlying scheme of X log ×Y log Z log is not
X ×Y Z. However, since strictness (a morphism f log : X log → Y log is called
strict if the induced morphism f ∗MY → MX on X is an isomorphism) is
stable under base-change in the category of arbitrary log schemes, if X log →
Y log is strict, then the underlying scheme of X log ×Y log Z log is X ×Y Z. Note
that since the natural morphism from the saturation of a fine log scheme
to the original fine log scheme is finite, properness and finiteness are stable
under fs base-change.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

Terminologies:

We shall assume that the underlying topological space of a connected

scheme is not empty. In particular, if a morphism is geometrically connected,
then it is surjective.

Let Σ be a set of prime numbers, and n an integer. Then we shall say
that n is a Σ-integer if the prime divisors of n are in Σ. Let Γ be a profinite
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group. Then we shall refer to the quotient

lim
←−

Γ/H

(where the projective limit is over all open normoal subgroups H ⊆ Γ whose
orders are Σ-integers) as the maximal pro-Σ quotient of Γ. We shall denote
by Γ(Σ) the maximal pro-Σ quotient of Γ.

We shall refer to the largest open subset (possibly empty) of the under-
lying scheme of an fs log scheme on which the log structure is trivial as the
interior of the fs log scheme. We shall refer to a Kummer log étale (respec-
tively, finite Kummer log étale) morphism of fs log schemes as a ket morphism
(respectively, a ket covering).

Let X log and Y log be log schemes, and f log : X log → Y log a morphism of
log schemes. Then we shall refer to the quotient ofMX by the image of the
morphism (f log)∗MY → MX induced by f log as the relative characteristic

sheaf of f log. Moreover, we shall refer to the relative characteristic sheaf of
the morphism X log → X induced by the natural inclusion O∗X ↪→MX as the
characteristic sheaf of X log.

1 Log configuration schemes

In this Section, we define the log configuration scheme of a curve over a field
and consider the geometry of such log configuration schemes.

Throughout this Section, we shall denote by X a smooth, proper, geomet-
rically connected curve of genus g ≥ 2 over a field K whose (not necessarily
positive) characteristic we denote by p, by P

log
K the log scheme obtained by

equipping P1
K with the log structure associated to the divisor {0, 1,∞} ⊆ P1

K,
and by UP the interior of P

log
K .

LetMg,r be the moduli stack of r-pointed stable curves of genus g whose r
sections are equipped with an ordering, andMg,r ⊆Mg,r the open substack
of Mg,r parametrizing smooth curves ([6]). Then Mg,r \ Mg,r is a divisor
with normal crossings in Mg,r ([6], Theorem 2.7). Let us write Mg =Mg,0

and Mg =Mg,0. By considering the (1-)morphism pM(r)r+1 :Mg,r+1 →Mg,r

obtained by forgetting the (r+1)-st section, we obtain a natural isomorphism
ofMg,r+1 with the universal r-pointed stable curve overMg,r ([6], Corollary
2.6). Now we have a natural action of Sr (where Sr is the symmetric group on
r letters) on Mg,r which is given by permuting the sections. For 1 ≤ i ≤ r,
we shall denote by pM(r)i : Mg,r+1 → Mg,r the (1-)morphism obtained by
forgetting the i-th section.

Let us denote byM
log

g,r the log stack obtained by equippingMg,r with the

log structure associated to the divisor with normal crossings Mg,r \ Mg,r.
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Since the action of Sr onMg,r preserves the divisorMg,r \Mg,r, the action

of Sr onMg,r extends to an action onM
log

g,r .

First, we define the log configuration scheme X log
(r) as follows:

Definition 1.1. We define X(r) by the following (1-)commutative diagram

X(r) −−−→ Mg,ry
y

Spec K −−−→
[X/K]

Mg ,

where the bottom horizontal arrow Spec K
[X/K]
→ Mg is the classifying (1-

)morphism determined by the curve X → Spec K, the right-hand vertical
arrowMg,r →Mg the (1-)morphism obtained by forgetting the sections, and
the (1-)commutative diagram is cartesian in the (2-)category of stacks. Since
Mg,r →Mg is representable, X(r) is a scheme. We shall denote by X log

(r) the fs
log scheme obtained by equipping X(r) with the log structure induced by the

log structure of M
log

g,r . We shall denote by UX(r)
the interior of X log

(r) , and by
DX(r)

the complement of UX(r)
of X(r). Note that, by definition, the scheme

UX(r)
is isomorphic to the usual r-th configuration space of X. For simplicity,

we shall write U(r) (respectively, D(r)) instead of UX(r)
(respectively, DX(r)

)
when there is no danger of confusion. By the definition of X(r) (respectively,

X log
(r) ), the action of Sr on Mg,r (respectively, M

log

g,r) induces an action on

X(r) (respectively, X log
(r) ).

As is well-known, the pull-back of the divisor Mg,r \ Mg,r via the (1-
)morphism pM(r)r+1 : Mg,r+1 → Mg,r is a subdivisor of the divisor Mg,r+1 \

Mg,r+1 (cf. [6], the proof of Theorem 2.7). Thus, there exists a unique (1-

)morphism pM log
(r)r+1 : M

log

g,r+1 → M
log

g,r whose underlying morphism is the (1-

)morphism pM(r)r+1. Moreover, for an integer 1 ≤ i ≤ r, since the composite

of the automorphism ofMg,r+1 determined by the action of

(1, 2, · · · , r + 1) 7→ (1, 2, · · · , i− 1,
i−th

r + 1, i, i + 1, · · · , r) ∈ Sr+1

and pM(r)r+1 coincides with the (1-)morphism pM(r)i, the (1-)morphism pM(r)i

also extends to a (1-)morphism M
log

g,r+1 → M
log

g,r. We shall denote this (1-

)morphism by pM log
(r)i .

The (1-)morphism pM(r)i :Mg,r+1 →Mg,r (respectively, pM log
(r)i :M

log

g,r+1 →

M
log

g,r) determines a morphism X(r+1) → X(r) (respectively, X log
(r+1) → X log

(r) ).
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We denote this morphism by pX(r)i (respectively, plog
X(r)i

). Thus, we obtain the

following (1-)cartesian diagrams:

X(r+1)

pX(r)i

−−−→ X(r)y
y

Mg,r+1 −−−→
pM
(r)i

Mg,r

X log
(r+1)

plog
X(r)i

−−−→ X log
(r)y
y

M
log

g,r+1 −−−→
pM log
(r)i

M
log

g,r .

Note that, by the definition of a stable curve, pX(r)i is proper, flat, geomet-
rically connected, and geometrically reduced. For simplicity, we shall write
p(r)i (respectively, plog

(r)i) instead of pX(r)i (respectively, plog
X(r)i

) when there is

no danger of confusion.

Definition 1.2.

(i) Let 1 ≤ i ≤ r be an integer. Then we shall denote by

prlog
X(r)i

: X log
(r) −→ X

the composite

plog
X(1)2
◦plog

X(2)2
◦ · · ·◦plog

X(r−i−1)2
◦plog

X(r−i)2
◦plog

X(r−i+1)1
◦ · · ·◦plog

X(r−2)1
◦plog

X(r−1)1
,

and by prX(r)i
the underlying morphism of schemes of prlog

X(r)i
. For sim-

plicity, we shall write prlog
(r)i (respectively, pr(r)i) instead of prlog

X(r)i
(re-

spectively, prX(r)i
) when there is no danger of confusion.

(ii) Let 1 ≤ i < j ≤ r be integers. Then we shall denote by

prlog
X(r)i,j

: X log
(r) −→ X log

(2)

the composite

plog
X(2)3

◦ plog
X(3)3

◦ · · · ◦ plog
X(r−j)3

◦ plog
X(r−j+1)3

◦ plog
X(r−j+2)2

◦ · · ·

· · · ◦ plog
X(r−i−1)2

◦ plog
X(r−i)2

◦ plog
X(r−i+1)1

◦ · · · ◦ plog
X(r−2)1

◦ plog
X(r−1)1

,

and by prX(r)i,j
the underlying morphism of schemes of prlog

X(r)i,j
. For

simplicity, we shall write prlog
(r)i,j (respectively, pr(r)i,j) instead of prlog

X(r)i,j

(respectively, prX(r)i,j
) when there is no danger of confusion.
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Remark 1.3. Let 1 ≤ i ≤ r (respectively, 1 ≤ i < j ≤ r) be an inte-
ger (respectively, integers). Then, by the definiitons of pr(r)i (respectively,
pr(r)i,j), the restriction of pr(r)i (respectively, pr(r)i,j) to U(r) coincides with
the composite

U(r) ↪→

r︷ ︸︸ ︷
X ×K · · · ×K X

pri−→ X

(respectively, factors through U(2), the resulting morphism U(r) → U(2) coin-
cides with the composite

U(r) ↪→

r︷ ︸︸ ︷
X ×K · · · ×K X

pri,j

−→ U(2)) .

Next, let us consider the scheme-theoretic and log scheme-theoretic prop-
erties of X log

(r) in more detail.

Proposition 1.4. X(r) is connected.

Proof. Since X(0) = Spec K is connected, and the p(r)i’s are proper and
geometrically connected, it follows immediately that X(r) is connected.

Proposition 1.5. plog
(r)i is log smooth. In particular, since Spec K (equipped

with the trivial log structure) is log regular, X log
(r) is log regular.

Proof. The assertion for plog
(r)r+1 follows from the fact that the (1-)morphism

pM log
(r)r+1 : M

log

g,r+1 → M
log

g,r is log smooth. (See [5], Section 4.) Since plog
(r)i

is a composite of an automorphism of X log
(r) (obtained by permuting of the

sections) and plog
(r)r+1, plog

(r)i is also log smooth.

Remark 1.6. By Propositions 1.4; 1.5 and [4], Proposition A.10, U(r) ↪→ X log
(r)

induces a natural equivalence between the Galois category of ket cover-
ings over X log

(r) and the Galois category of coverings over U(r) tamely ram-
ified along the divisor with normal crossings D(r) ⊆ X(r). In particular,

πtame
1 (X(r), D(r)) ' π1(X

log
(r) ). (Concerning πtame

1 (X(r), D(r)), see [3], Corollary

2.4.4.)

Proposition 1.7. Let xlog → X log
(r) be a strict geometric point. Then, for any

integer 1 ≤ i ≤ r + 1, the following sequence is exact:

lim
←−

π1(X
log
(r+1) ×Xlog

(r)
xlog

λ )
s
−→ π1(X

log
(r+1))

π1(p
log
(r)i

)

−→ π1(X
log
(r) ) −→ 1 .

Here, the projective limit is over all reduced covering points xlog
λ → xlog, and

s is induced by the natural morphism X log
(r+1) ×Xlog

(r)
xlog

λ → X log
(r+1).
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Proof. This follows immediately from Propositions 1.4; 1.5 and [4], Theorem
2.3.

Proposition 1.8. Let S log be a log regular fs log scheme, and s → S a

geometric point of S. If the stalk (MS/O∗S)s of the characteristic sheaf of

S log at s → S is isomorphic to N⊕n for some n ∈ N, then S is regular at

the image of s → S, and the log structure of S log is given by a divisor with

normal crossings around the image of s→ S.

Proof. We take a clean chart α : N⊕n → OS,s of S log at s → S, and write

fi
def
= α(ei) ∈ OS,s (where ei = (0, · · · , 0,

i−th

1 , 0, · · · , 0) ∈ N⊕n). Then, by the
definition of log regularity, the following assertions are satisfied:

(i) OS,s/(f1, . . . , fn) is regular.

(ii) (d
def
=)dimOS,s = dim (OS,s/(f1, . . . , fn)) + n.

Thus, there exist elements fn+1, . . . , fd of OS,s such that f1, . . . , fd generate
the maximal ideal of OS,s. Therefore, OS,s is regular, and the log structure
of S log is given by the divisor with normal crossings defined by f1 · · · fn ∈
OS,s.

Proposition 1.9. X(r) is regular, and the log structure of X log is given by a

divisor with normal crossings.

Proof. Since the natural morphism X log
(r) →M

log

g,r is strict, for any geometric

point x → X(r), the stalk (MX(r)
/O∗X(r)

)x of characteristic sheaf of X log
(r) at

x → X(r) is isomorphic to N⊕n for some n ∈ N. Thus, the assertion follows
immediately from Proposition 1.8.

Definition 1.10. Let r ≥ 2 be a natural number, and I a subset of {1, 2, · · · , r}
of cardinality I# ≥ 2 equipped with an ordering. Then we shall denote by

(C(r)I −→ X(r−I#+1)×KM0,I#+1; s1, · · · , sr : X(r−I#+1)×KM0,I#+1 −→ C(r)I)

the r-pointed stable curve of genus g (whose r sections are equipped with an
ordering) obtained by applying the clutching (1-)morphism ([6], Definition
3.8)

β0,g,I,{1,2,···,r}\I :M0,I#+1 ×Mg,r−I#+1 →Mg,r

(where {1, 2, · · · , r}\I is equipped with the natural ordering) to the (I#+1)-
pointed stable curve of genus 0

X(r−I#+1) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+1
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obtained by base-changing the universal curve M0,I#+2 → M0,I#+1 over
M0,I#+1 and the (r − I# + 1)-pointed stable curve of genus g

X(r−I#+2) ×K M0,I#+1 −→ X(r−I#+1) ×K M0,I#+1

obtained by base-changing X(r−I#+2)

p
X

(r−I#+1)
r−I#+2

→ X(r−I#+1). [Note that
“the clutching locus” of

X(r−I#+1) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+1

(respectively, X(r−I#+2) ×K M0,I#+1 −→ X(r−I#+1) ×K M0,I#+1)

is the (I# + 1)-st (respectively, (r − I# + 1)-st) section [cf. [6], Definition
3.8].]

Then it is immediate that the classifying (1-)morphism X(r−I#+1) ×K

M0,I#+1 → Mg,r of this curve factors through X(r), and this morphism
X(r−I#+1) ×K M0,I#+1 → X(r) is a closed immersion (since it is a proper
monomorphism). We shall denote by δX(r)I this closed immersion, by DX(r)I

the scheme-theoretic image of δX(r)I , by Dlog
X(r)I

the log scheme obtained by

equipping DX(r)I with the log structure induced by the log structure of X log
(r) ,

and by δlog
X(r)I

: Dlog
X(r)I

→ X log
(r) the strict closed immersion whose underlying

morphism is δX(r)I . Note that, by the construction of DX(r)I , the closed
subscheme DX(r)I ⊆ X(r) does not depend on the imposed ordering of I.

For simplicity, we shall write D(r)I (respectively, Dlog
(r)I ; respectively, δ(r)I ;

respectively, δlog
(r)I) instead of DX(r)I (respectively, Dlog

X(r)I
; respectively, δX(r)I ;

respectively, δlog
X(r)I

) when there is no danger of confusion.

Remark 1.11. Let r ≥ 2 be a natural number, and I a subset of {1, 2, · · · , r}
of cardinality ≥ 2. By the definition of D(r)I , D(r)I is irreducible. (Indeed,

the log smoothness of the morphism plog
(s)s+1 : X log

(s+1) → X log
(s) and the (1-

)morphism M
log

0,t+1 → M
log

0,t [obtained by forgetting the (t + 1)-st section]
[s, t ∈ N] imply the log regularity [hence, in particular, the normality of the

underlying scheme] of X log
(r−I#+1)

×KM
log

0,I#+1; moreover, by a similar argument

to the argument used in the proof of Proposition 1.4, D(r)I is connected,
hence, [in light of the normality just observed] irreducible.) Thus, D(r)I is
an irreducible component of D(r). Moreover, D(r) =

⋃
I D(r)I . (Indeed, if the

image of a geometric point x → X(r) lies on D(r), then by considering the
curve which corresponds to the composite x → X(r) → Mg,r, there exists
a subset I of {1, 2, · · · , r} of cardinality ≥ 2 such that the image of the
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geometric point x→ X(r) lies on D(r)I .) Therefore, the log structure of X log
(r)

is the log structure associated to the divisor with normal crossings

⋃

I#≥2

D(r)I ⊆ X(r) ,

i.e., if we denote by M(D(r)I) the log structure on X(r) associated to the

divisor D(r)I ⊆ X(r), then the log structure of X log
(r) is

∑

I#≥2

M(D(r)I)

(cf. [4], Definition 4.6).

Proposition 1.12. Let r ≥ 2 be a natural number, I a subset of {1, 2, · · · , r}
of cardinality I# ≥ 2, and 1 ≤ i ≤ r + 1 an integer.

(i) The closed subscheme of X(r+1) determined by the composite of the

natural closed immersions (defined in Definition 1.10)

X(r−I#+1) ×K M0,I#+2 ↪→ C(r)I ↪→ X(r+1)

is D(r+1)I∪{r+1}.

(ii) The closed subscheme of X(r+1) determined by the composite of the

natural closed immersions (defined in Definition 1.10)

X(r−I#+2) ×K M0,I#+1 ↪→ C(r)I ↪→ X(r+1)

is D(r+1)I .

(iii) The inverse image of D(r)I ⊆ X(r) via p(r)i is D(r+1)(I∪{r+1})σi∪D(r+1)Iσi ,

where

σi = ((1, 2, · · · , r + 1) 7→ (1, 2, · · · , i− 1,
i−th

r + 1, i, i + 1, · · · , r)) ∈ Sr+1 ,

and Iσi = {σi(k) | k ∈ I}.

(iv) The closed subscheme D(r+1){i,j} ⊆ X(r+1) (j 6= i) is the image of a

section of p(r)i.

Proof. First, we prove assertion (i). By the definition of the r-pointed stable
curve

(C(r)I −→ D(r)I ; s1, · · · , sr : D(r)I −→ C(r)I) ,
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the (r+1)-pointed stable curve determined by the closed immersion C(r)I ↪→
X(r+1) is obtained as the stabilization ([6], Definition 2.3) of the r-pointed
stable curve of genus g

(C(r)I ×D(r)I
C(r)I

pr1−→ C(r)I ; s̃1, · · · , s̃r : C(r)I −→ C(r)I ×D(r)I
C(r)I) ,

(where s̃i is the section obtained by base-changing si) with the extra section
obtained as the diagnal morphism C(r)I → C(r)I ×D(r)I

C(r)I . Therefore,
since the operation of stabilization commutes with base-change, the closed
immersion in question

X(r−I#+1) ×K M0,I#+2 ↪→ C(r)I ↪→ X(r+1)

determines the (r + 1)-pointed stable curve obtained as the stabilization of
the r-pointed stable curve of genus g

((X(r−I#+1) ×K M0,I#+2)×D(r)I
C(r)I

pr1−→ X(r−I#+1) ×K M0,I#+2;

s′1, · · · , s
′
r : X(r−I#+1)×KM0,I#+2 −→ (X(r−I#+1)×KM0,I#+2)×D(r)I

C(r)I) (∗1)

(where s′i is the section obtained by base-changing si) with the extra section
induced by the diagonal morphism of X(r−I#+1) ×K M0,I#+2 over D(r)I . On
the other hand, since the operation of clutching commutes with the base-
change, the r-pointed stable curve of genus g (∗1) is obtained by applying
the clutching (1-)morphism β0,g,I,{1,2,···,r}\I to the (I#+1)-pointed stable curve

(X(r−I#+1)×KM0,I#+2)×D(r)I
(X(r−I#+1)×KM0,I#+2)

pr1−→ X(r−I#+1)×KM0,I#+2 (∗2)

obtained by base-changing the (I# + 1)-pointed stable curve X(r−I#+1) ×K

M0,I#+2 → D(r)I defined in Definition 1.10 and the (r − I# + 1)-pointed
stable curve

(X(r−I#+1)×KM0,I#+2)×D(r)I
(X(r−I#+2)×KM0,I#+1)

pr1−→ X(r−I#+1)×KM0,I#+2 (∗3)

obtained by base-changing the (r−I#+1)-pointed stable curve X(r−I#+2)×K

M0,I#+1 → D(r)I defined in Definition 1.10. Note that then, by definition,
the stable curve (∗3) is isomorphic to the (r − I# + 1)-pointed stable curve

X(r−I#+2) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+2

obtained by base-changing the (r − I# + 1)-pointed stable curve

X(r−I#+2)

p
(r−I#+1)r−I#+2
→ X(r−I#+1). Moreover, since the image of the ex-

tra section of the r-pointed stable curve of genus g (∗1) lies on the stable
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curve (∗2), the (r + 1)-pointed stable curve determined by the closed immer-
sion in question is the (r + 1)-pointed stable curve obtained by applying the
clutching (1-)morphism β0,g,I∪{r+1},{1,2,···,r+1}\(I∪{r+1}) to the (I# +2)-pointed
stable curve

X(r−I#+1) ×K M0,I#+3 −→ X(r−I#+1) ×K M0,I#+2

obtained by base-changing the universal curve M0,I#+3 → M0,I#+2 over
M0,I#+2 and the (r − I# + 1)-pointed stable curve

X(r−I#+2) ×K M0,I#+2 −→ X(r−I#+1) ×K M0,I#+2

obtained by base-changing the (r − I# + 1)-pointed stable curve

X(r−I#+2)

p
(r−I#+1)r−I#+2
→ X(r−I#+1). This completes the proof of assertion

(i).
Assertion (ii) follows from a similar argument to the argument used in

the proof of assertion (i).
Assertion (iii) follows from assertion (i) and (ii), together with the fact

that p(r)i coincides with the composite of the automorphism of X(r+1) deter-
mined by σi ∈ Sr+1 and p(r)r+1.

Finally, we prove assertion (iv). By the definition of D(r+1){j,r+1}, the
composite

D(r+1){j,r+1}

δ(r+1){j,r+1}
−→ X(r+1)

p(r)r+1
−→ X(r)

is the classifying morphism of the r-pointed stable curve X(r+1)

p(r)r+1
→ X(r).

Thus, the composite p(r)r+1 ◦ δ(r+1){j,r+1} is an isomorphism. This completes
the proof of the assertion in the case where i = r + 1. In general, the
assertion follows from the fact that p(r)i coincides with the composite of the
automorphism of X(r+1) determined by σi ∈ Sr+1 and p(r)r+1.

Remark 1.13. Let r ≥ 2 and 1 ≤ i ≤ r + 1 be natural numbers, and σi

the element of Sr+1 defined in Proposition 1.12, (iii). Then one may verify
easily that the image of the k-th section (1 ≤ k ≤ r) of the r-pointed stable
curve p(r)r+1 : X(r+1) → X(r) is D(r+1){k,r+1} (see Proposition 1.12, (iv)).
Therefore, by taking the composite of the sections of the r-pointed stable
curve p(r)r+1 : X(r+1) → X(r) and the automorphism of X(r+1) determined
by σi, we obtain a r-pointed stable curve p(r)i : X(r+1) → X(r) such that the
image of the k-th section (1 ≤ k ≤ r) is

{
D(r+1){k,i} (if k ≤ i− 1)

D(r+1){i,k+1} (if i ≤ k) .
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Thus, in particular, if j 6= j ′ then D(r+1){i,j} ∩D(r+1){i,j′} is empty. More-
over, we obtain

D(r+1) =
⋃

j 6=i

D(r+1){i,j} ∪ p−1
(r)iD(r) .

(See the proof of [6], Theorem 2.7. Note that the restriction of S i,n+1
g,n+1 in

the proof of [6], Theorem 2.7 to X(n+1) is D(n+1){i,n+1}.) On the other

hand, the morphism plog
(r)i : X log

(r+1) → X log
(r) factors through the log scheme

(X(r+1), p
−1
(r)iD(r))

log obtained by equipping X(r+1) with the log structure as-

sociated to the divisor with normal crossings p−1
(r)iD(r), the morphism

(X(r+1), p
−1
(r)iD(r))

log → X log
(r)

is log smooth, and the morphism X log
(r+1) → (X(r+1), p

−1
(r)iD(r))

log is obtained by

“forgetting” the portion of the log structure of X log
(r+1) defined by the divisors

determined by the sections D(r+1){i,j} ⊆ X(r+1) (j 6= i) (i.e., Σj 6=iM(D(r+1){i,j})).

Lemma 1.14. Let r ≥ 3 be a natural number, and i = 1 or 2. Then the

composite

Dlog
(r){i,i+1}

δlog
(r){i,i+1}
−→ X log

(r)

plog
(r−1)i
−→ X log

(r−1)

coincides with the composite

Dlog
(r){i,i+1}

δlog
(r){i,i+1}
−→ X log

(r)

plog
(r−1)i+1
−→ X log

(r−1) .

Moreover, this is a morphism of type N.

Proof. The assersion that plog
(r−1)i ◦δ

log
(r){i,i+1} coincides with plog

(r−1)i+1 ◦δ
log
(r){i,i+1}

follows from the fact that plog
(r−1)i+1 coincides with the composite of the auto-

morphism of X log
(r) determined by

σ = ((1, 2, · · · , r) 7→ (1, 2, · · · , i− 1, i + 1, i, i + 2, · · · , r)) ∈ Sr

and plog
(r−1)i, together with the fact that the restriction of the automorphism

of X log
(r) determined by σ to the closed subscheme Dlog

(r){i,i+1} is the identity

morphism of Dlog
(r){i,i+1}.

Now p(r−1)i ◦ δ(r){i,i+1} is an isomorphism by Proposition 1.12, (iv). More-

over, since plog
(r−1)i ◦ δlog

(r){i,i+1} is obtained by “forgetting” the portion of the

log structure of Dlog
(r){i,i+1} that originates from

D(r){i,i+1} ⊆ X(r)
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(i.e., M(D(r){i,i+1}) |D(r){i,i+1}
) (see Remark 1.13), the composite plog

(r−1)i ◦

δlog
(r){i,i+1} is a morphism of type N.

Definition 1.15. Let r ≥ 3 be a natural number, and i = 1 or 2. Then we
shall denote by alog

X(r){i,i+1} the composite

Dlog
X(r){i,i+1}

δlog
X(r){i,i+1}

−→ X log
(r)

plog
X(r−1)i

−→ X log
(r−1) ,

and by aX(r){i,i+1} the underlying morphism of schemes of alog
X(r){i,i+1}. By

Lemma 1.14, alog
X(r){i,i+1} is a morphism of type N.

We shall denote by LX(r){i,i+1} the invertible sheaf on DX(r){i,i+1} which

corresponds to alog
X(r){i,i+1} under the bijection ι in [4], Theorem 4.13. Note

that, by the definition of ι and the proof of Lemma 1.14, LX(r){i,i+1} is iso-
morphic to the conormal sheaf of DX(r){i,i+1} in X(r) (cf. [4], Remark 4.14).

We shall denote by UX(r){i,i+1} the open subscheme of DX(r){i,i+1} deter-
mined by the open immersion

UX(r−1)
↪→ X(r−1)

a−1
X(r){i,i+1}

∼
−→ DX(r){i,i+1} .

For simplicity, we shall write alog
(r){i,i+1} (respectively, a(r){i,i+1}; respectively,

L(r){i,i+1}; respectively, U(r){i,i+1}) instead of alog
X(r){i,i+1} (respectively, aX(r){i,i+1};

respectively, LX(r){i,i+1}; respectively, UX(r){i,i+1}) when there is no danger of
confusion.

Definition 1.16. Let r ≥ 3 be a natural number, and I = {1, 2}, {2, 3} or
{1, 3}. Then we shall denote by DX(r)I:{1,2,3} the closed subscheme DX(r)I ∩
DX(r){1,2,3} of DX(r)I and DX(r){1,2,3}. For simplicity, we shall write D(r)I:{1,2,3}

instead of DX(r)I:{1,2,3} when there is no danger of confusion.

Lemma 1.17. Let r ≥ 3 be a natural number. Then the composite

D(r){1,2,3}

δ(r){1,2,3}
−→ X(r)

p(r−1)1
−→ X(r−1)

factors through D(r−1){1,2}. Moreover, this resulting morphism D(r){1,2,3} →
D(r−1){1,2} determines a trivial P1-bundle over D(r−1){1,2}, and D(r){1,2}:{1,2,3},

D(r){2,3}:{1,2,3}, and D(r){1,3}:{1,2,3} determine sections of this P1-bundle.

Proof. The assertion that the composite p(r−1)1 ◦ δ(r){1,2,3} factors through
D(r−1){1,2} follows from the fact that the inverse image of D(r−1){1,2} ↪→ X(r−1)
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via p(r−1)1 is D(r){2,3} ∪D(r){1,2,3} (Proposition 1.12, (iii)). Moreover, by the
proof of Proposition 1.12, (i), the resulting morphism D(r){1,2,3} → D(r−1){1,2}

determined by p(r−1)1 ◦ δ(r){1,2,3} is isomorphic to the stable curve

X(r−2) ×K M0,4 −→ X(r−2) ×K M0,3

obtained by base-changing the universal curve M0,4 → M0,3 over M0,3;
thus, the resulting morphism D(r){1,2,3} → D(r−1){1,2} determines a trivial P1-
bundle. The assertion that D(r){1,2}:{1,2,3}, D(r){2,3}:{1,2,3}, and D(r){1,3}:{1,2,3}

determine sections of this P1-bundle follows from the fact that by the def-
inition of the operation of clutching and Remark 1.13, the images of the
1-st and 2-nd sections of the resulting morphism D(r){1,2,3} → D(r−1){1,2} are
D(r){1,2}:{1,2,3} and D(r){1,3}:{1,2,3}, respectively, together with the fact that by
Proposition 1.12, (iii), the image of the 3-rd section (i.e., “the clutching lo-
cus” of the stable curve determined by the closed immersion δ(r−1){1,2}) is
D(r){1,2,3} ∩D(r){2,3} = D(r){2,3}:{1,2,3}.

Definition 1.18. Let r ≥ 3 be a natural number. Then we shall denote by
bX(r){1,2,3} the isomorphism DX(r){1,2,3}

∼
→ X(r−2) ×K P1

K such that

• the composite

DX(r){1,2,3}

bX(r){1,2,3}

∼
−→ X(r−2) ×K P1

K

pr1−→ X(r−2)

coincides with the composite

DX(r){1,2,3} −→ DX(r−1){1,2}

aX(r−1){1,2}

∼
−→ X(r−2) ,

where the first morphism is the morphism determined by pX(r−1)1 ◦
δX(r){1,2,3} (cf. Lemma 1.17); and

• the closed subscheme of DX(r){1,2,3} determined by the closed immersion

X(r−2) ×K {0} ↪→ X(r−2) ×K P1
K

b−1
X(r){1,2,3}

∼
−→ DX(r){1,2,3}

(respectively, X(r−2) ×K {1} ↪→ X(r−2) ×K P1
K

b−1
X(r){1,2,3}

∼
−→ DX(r){1,2,3} ;

respectively, X(r−2) ×K {∞} ↪→ X(r−2) ×K P1
K

b−1
X(r){1,2,3}

∼
−→ DX(r){1,2,3})

is DX(r){1,2}:{1,2,3} (respectively, DX(r){2,3}:{1,2,3}; respectively, DX(r){1,3}:{1,2,3}).
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We shall denote by UX(r){1,2,3} the open subscheme of DX(r){1,2,3} deter-
mined by the open immersion

UX(r−2)
×K UP ↪→ X(r−2) ×K P1

K

b−1
X(r){1,2,3}

∼
−→ DX(r){1,2,3} .

For simplicity, we shall write b(r){1,2,3} (respectively, U(r){1,2,3}) instead of
bX(r){1,2,3} (respectively, UX(r){1,2,3}) when there is no danger of confusion.

Lemma 1.19. Let r ≥ 3 be a natural number. Then the isomorphism

b(r){1,2,3} : D(r){1,2,3}
∼
→ X(r−2) ×K P1

K extends to a unique morphism of log

schemes Dlog
(r){1,2,3} → X log

(r−2) ×K P
log
K of type N.

Proof. It is immediate that if b(r){1,2,3} extends to such a morphism, then
it is unique. Thus, it is enough to show that b(r){1,2,3} extends to such a
morphism.

By Remark 1.13, the morphism Dlog
(r){1,2,3} → X log

(r−2) ×K P1
K determined

by the composite

Dlog
(r){1,2,3}

via plog
(r−1)1

◦δlog
(r){1,2,3}

−→ Dlog
(r−1){1,2}

alog
(r−1){1,2}
−→ X log

(r−2) (∗)

and the composite

Dlog
(r){1,2,3} → D(r){1,2,3}

b(r){1,2,3}
∼
→ X(r−2) ×K P1

K

pr2→ P1
K

is obtained by “forgetting” the portion of the log structure of Dlog
(r){1,2,3} de-

fined by D(r){1,2}:{1,2,3}, D(r){2,3}:{1,2,3} and D(r){1,3}:{1,2,3} (i.e.,M(D(r){1,2}:{1,2,3}+

D(r){2,3}:{1,2,3}+D(r){1,3}:{1,2,3})) and the portion of the log structure of Dlog
(r){1,2,3}

that originates from D(r){1,2,3} ⊆ X(r) (i.e., M(D(r){1,2,3}) |D(r){1,2,3}
). There-

fore, the morphism Dlog
(r){1,2,3} −→ X log

(r−2) ×K P
log
K determined by the above

composite (∗) and the composite

Dlog
(r){1,2,3} −→ D

′ log
(r){1,2,3} −→ P

log
K

(where D
′ log
(r){1,2,3} is the log scheme obtained by equipping D(r){1,2,3} with the

log structure associated to the divisors

D(r){1,2}:{1,2,3}, D(r){2,3}:{1,2,3} and D(r){1,3}:{1,2,3} ⊆ D(r){1,2,3} ,

the first morphism is the natural morphism obtained by “forgetting” the
portion of the log structure of Dlog

(r){1,2,3} that originates from the divisors
other than

D(r){1,2}:{1,2,3}, D(r){2,3}:{1,2,3} and D(r){1,3}:{1,2,3} ⊆ D(r){1,2,3} ,
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[among the divisors of the form D(r)I |D(r){1,2,3}
[where I ⊆ {1, 2, · · · , r} of

cardinarity ≥ 2]] and the second morphism is the strict morphism induced
by the natural morphism

D(r){1,2,3}

b(r){1,2,3}
∼
−→ X(r−2) ×K P1

K

pr2−→ P1
K )

is an extension of b(r){1,2,3} of the desired type.

Definition 1.20. Let r ≥ 3 be a natural number. Then we shall denote by
blog
X(r){1,2,3} the morphism

Dlog
X(r){1,2,3} −→ X log

(r−2) ×K P
log
K ,

obtained in Lemma 1.19. Note that this is a morphism of type N by Lemma 1.19.
We shall denote by LX(r){1,2,3} the invertible sheaf on DX(r){1,2,3} which

corresponds to the morphism blog
X(r){1,2,3} under the bijection ι in [4], Theorem

4.13. Note that, by the definition of ι and the proof of Lemma 1.19, LX(r){1,2,3}

is isomorphic to the conormal sheaf of DX(r){1,2,3} in X(r) (cf. [4], Remark

4.14). For simplicity, we shall write blog
(r){1,2,3} (respectively, L(r){1,2,3}) instead

of blog
X(r){1,2,3} (respectively, LX(r){1,2,3}) when there is no danger of confusion.

Lemma 1.21. Let r ≥ 2 be a natural number.

(i) L(r+1){1,2} |U(r+1){1,2}
' (p(r)i |U(r+1){1,2}

)∗L(r){1,2} for i 6= 1, 2.

(ii) L(r+1){2,3} |U(r+1){2,3}
' (p(r)1 |U(r+1){2,3}

)∗L(r){1,2} ' (p(r)i |U(r+1){2,3}
)∗L(r){2,3}

for i 6= 1, 2, 3.

(iii) L(r+1){1,2,3} |U(r+1){1,2,3}
' (p(r)j |U(r+1){1,2,3}

)∗L(r){1,2} ' (p(r)i |U(r+1){1,2,3}

)∗L(r){1,2,3} for j = 1, 2, 3 and i 6= 1, 2, 3.

Proof. First, we prove assertion (i). It follows from the fact that L(r){1,2}

is the conormal sheaf of D(r){1,2} in X(r), together with the flatness of p(r)i

that p∗(r)iL(r){1,2} is naturally isomorphic to the conormal sheaf of the closed
subscheme of X(r+1) obtained as the fiber product of

D(r){1,2}yδ(r){1,2}

X(r+1)

p(r)i
−−−→ X(r) .

Thus, by Proposition 1.12, (iii), and the fact that L(r+1){1,2} is the conormal
sheaf of D(r+1){1,2} in X(r+1), together with the fact that the intersection of
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D(r+1){1,2} and D(r+1){1,2,i} is contained in D(r+1){1,2} \U(r+1){1,2}, the restric-
tion of p∗(r)iL(r){1,2} to U(r+1){1,2} is naturally isomorphic to L(r+1){1,2} |U(r+1){1,2}

.

This completes the proof of (i).
Assertions (ii) and (iii) follow from a similar argument to the argument

used in the proof of (i).

2 Reconstruction of the fundamental groups

of higher dimensional log configuration schemes

We continue with the notation of the preceding Section. Let Σ be a (non-
empty) set of prime numbers, and l a prime number that is invertible in K.
(Thus, it makes sense to speak of Σ-integers.) Then we shall say that Σ is
K-innocuous if

Σ =

{
the set of all prime numbers or {l} if p = 0

{l} if p ≥ 2 .

We shall fix a separable closure Ksep of K and denote by GK the absolute
Galois group Gal(Ksep/K) of K. Moreover, we shall denote by Λ the maximal

pro-Σ quotient of Ẑ(1).

Definition 2.1.

(i) Let r be a positive natural number. We shall denote by Πlog
X(r)

the

quotient of π1(X
log
(r) ) by the closed normal subgroup

Ker(π1(X
log
(r) ×K Ksep)→ π1(X

log
(r) ×K Ksep)(Σ))

and write ΠX for Πlog
X(1)

. For simplicity, we shall write Πlog
(r) instead of

Πlog
X(r)

when there is no danger of confusion.

(ii) Let r ≥ 2 be a natural number, and I a subset of {1, 2, · · · , r} of
cardinality ≥ 2. We shall denote by Πlog

X(r)I
the quotient of π1(D

log
X(r)I

)

by the closed normal subgroup

Ker(π1(D
log
X(r)I

×K Ksep)→ π1(D
log
X(r)I

×K Ksep)(Σ)) .

For simplicity, we shall write Πlog
(r)I instead of Πlog

X(r)I
when there is no

danger of confusion.
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(iii) We shall denote by Πlog
PK

the quotient of π1(P
log
K ) by the closed normal

subgroup

Ker(π1(P
log
K ×K Ksep)→ π1(P

log
K ×K Ksep)(Σ)) .

For simplicity, we shall write Πlog
P

instead of Πlog
PK

when there is no
danger of confusion.

Definition 2.2. Let r ≥ 3 be a natural number. We shall denote by G log
X(r)

(Σ)

the graph of groups defined as follows:

G log
(r) (Σ) = (

Πlog
X(r){1,2}

• −{1}

Πlog
X(r){1,2,3}

• −{1}

Πlog
X(r){2,3}

• ) .

Here, {1} is the trivial group; the symbols “•” (respectively, “−”) denote
the vertices (respectively, the edges) of the underlying graphs; and the group
that lies above a vertex (respectively, below an edge) denotes the group that
corresponds to the vertex (respectively, edge). We shall denote by ΠGX(r)

the

profinite group

lim
−→

(Πlog
X(r){1,2} ←− {1} −→ Πlog

X(r){1,2,3} ←− {1} −→ Πlog
X(r){2,3}) ,

where the inductive limit is taken in the category of profinite groups. For
simplicity, we shall write G log

(r) (Σ) (respectively, ΠG(r)) instead of G log
X(r)

(Σ) (re-

spectively, ΠGX(r)
) when there is no danger of confusion.

Definition 2.3. Let G be a group. Then we shall denote by G• the graph
of groups whose underlying graph has one vertex that corresponds to G and
no edges.

Definition 2.4. Let r ≥ 3 be an integer.

(i) We shall denote by

f log
X(r)

(Σ) : G log
X(r)

(Σ) −→ (Πlog
X(r)

)•

(cf. Definition 2.3) the morphism of graphs of groups determined by

the morphisms Dlog
X(r)I

δlog
X(r)I

→ X log
(r) (I = {1, 2}, {2, 3}, and {1, 2, 3}). For

simplicity, we shall shall write f log
(r) (Σ) instead of f log

X(r)
(Σ) when there is

no danger of confusion.

21



(ii) Let I = {1, 2}, {2, 3}, or {1, 2, 3}. Then, by the definition of G log
X(r)

(Σ),

we have a natural morphism of graphs of groups

(Πlog
X(r)I

)• −→ G
log
X(r)

(Σ) .

We shall denote this morphism by δG log
X(r)I

.

First, we will show the following theorem.

Theorem 2.5. For a set of prime numbers Σ (which is not necessary K-

innocuous), f log
(r) (Σ) induces a surjection ΠG(r) → Πlog

(r).

Proof. First, we prove the assertion in the case where Σ is the set of all prime
numbers. Since the morphism plog

(r−1)3 |Dlog
(r){2,3}

= alog
(r){2,3} : Dlog

(r){2,3} → X log
(r−1)

is a morphism of type N, the composite

Πlog
(r){2,3}

via δG log
X(r){2,3}

−→ ΠG(r)
via f log

(r)
(Σ)

−→ Πlog
(r)

via plog
(r−1)3
−→ Πlog

(r−1)

is surjective ([4], Lemma 4.5). Thus, the morphism

ΠG(r) −→ Πlog
(r−1)

induced by the composite of plog
(r−1)3 ◦ f log

(r) (Σ) is surjective. In particular, it

is enough to show that the image of the morphism ΠG(r) → Πlog
(r) induced

by f log
(r) (Σ) generates the kernel of the morphism Πlog

(r) → Πlog
(r−1) induced

by plog
(r−1)3. Let xlog → X log

(r−1) be a strict geometric point of X log
(r−1) such

that the image of the underlying morphism of schemes of xlog → X log
(r−1)

lies on U(r−1){1,2}. Then it follows from Proposition 1.7 that the kernel of

the morphism Πlog
(r) → Πlog

(r−1) induced by plog
(r−1)3 is generated by the im-

age of the natural morphism π1(X
log

(r)xlog) → Πlog
(r) , where X log

(r)xlog is the log

scheme determined by the base-change of plog
(r−1)3 : X log

(r) → X log
(r−1) via xlog →

X log
(r−1). Let Dlog

(r){1,2}xlog (respectively, Dlog

(r){1,2,3}xlog) be the log scheme deter-

mined by the base-change of plog
(r−1)3 |Dlog

(r){1,2}
: Dlog

(r){1,2} → X log
(r−1) (respectively,

plog
(r−1)3 |Dlog

(r){1,2,3}
: Dlog

(r){1,2,3} → X log
(r−1)) via xlog → X log

(r−1); Dlog

(r){1,2}:{1,2,3}xlog the

fiber product Dlog

(r){1,2}xlog×Xlog
(r)

Dlog

(r){1,2,3}xlog(= Dlog

(r){1,2}xlog×Xlog

(r)xlog
Dlog

(r){1,2,3}xlog);

G log

(r)xlog the graph of groups defined by

G log

(r)xlog = (
π1(D

log

(r){1,2}xlog )

• −π1(Dlog

(r){1,2}:{1,2,3}xlog )

π1(D
log

(r){1,2,3}xlog )

• ) ;
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and π1(G
log

(r)xlog) the group definied by

lim
−→

(π1(D
log

(r){1,2}xlog)←− π1(D
log

(r){1,2}:{1,2,3}xlog) −→ π1(D
log

(r){1,2,3}xlog))

(where the inductive limit is taken in the category of profinite groups). Then
the natural strict closed immersions Dlog

(r){1,2}xlog → X log

(r)xlog and Dlog

(r){1,2,3}xlog →

X log

(r)xlog (note that, by construction, the underlying schemes of Dlog

(r){1,2}xlog

and Dlog

(r){1,2,3}xlog are the irreducible components of the underlying scheme of

X log

(r)xlog) induce a morphism of graphs of groups G log

(r)xlog → π1(X
log

(r)xlog)• such

that the following diagram commutes:

G log

(r)xlog −−−→ π1(X
log

(r)xlog)•y
y

G log
(r) (Σ) −−−−→

f log
(r)

(Σ)

(Πlog
(r))• .

Now since the underlying schemes of Dlog

(r){1,2}xlog and Dlog

(r){1,2,3}xlog are the

irreducible components of the underlying scheme of X log

(r)xlog , if we naturally

regard G log

(r)xlog as a graph of anabelioids (cf. [10]), then the underlying graph

of the graph of anabelioids determined as the pull-back of a ket covering
Y log → X log

(r)xlog of X log

(r)xlog via the morphism G log

(r)xlog → π1(X
log

(r)xlog)• coin-

cides with the dual graph of the pointed stable curve Yred. Thus, it follows
that π1(G

log

(r)xlog) → π1(X
log

(r)xlog) is surjective. Therefore, since the image of

π1(X
log

(r)xlog) → Πlog
(r) generates the kernel of the morphism Πlog

(r) → Πlog
(r−1) in-

duced by plog
(r−1)3, the image of ΠG(r) in Πlog

(r) via the morphism induced by

f log
(r) (Σ) generates the kernel of the morphism Πlog

(r) → Πlog
(r−1) induced by

plog
(r−1)3. This completes the proof of the desired surjectivity in the case where

Σ is the set of all prime numbers.
In the general case, the assertion follows immediately from the assertion

in the case where Σ is the set of all prime numbers.

Remark 2.6. Theorem 2.5 can be regarded as a logarithmic analogue of [7],
Remark 1.2.

In the rest of this Section, we assume that

Σ is K-innocuous.

23



Next, we prove fundamental facts concerning the fundamental groups of
the log configuration schemes.

Lemma 2.7.

(i) The natural morphism U(r) → X log
(r) induces a natural isomorphism

π1(U(r))
(Σ) ∼→ Πlog

(r), where π1(U(r))
(Σ) is the quotient of π1(U(r)) by the

closed normal subgroup

Ker(π1(U(r) ×K Ksep)→ π1(U(r) ×K Ksep)(Σ)) .

(ii) The natural morphism U(r){1,2,3} → X log
(r) ×K P

log
K induces a natural iso-

morphism π1(U(r){1,2,3})
(Σ) ∼→ Πlog

(r) ×GK
Πlog

P
, where π1(U(r){1,2,3})

(Σ) is

the quotient of π1(U(r){1,2,3}) by the closed normal subgroup

Ker(π1(U(r){1,2,3} ×K Ksep)→ π1(U(r){1,2,3} ×K Ksep)(Σ)) .

(iii) Let 1 ≤ i ≤ r +1 be an integer, and x→ X(r) a geometric point of X(r)

whose image lies on U(r). Then the cartesian diagram

X log
(r+1) ×Xlog

(r)
x −−−→ x

y
y

X log
(r+1) −−−→

plog
(r)i

X log
(r)

induces the following exact sequence:

1 −→ π1(X
log
(r+1) ×Xlog

(r)
x)(Σ) −→ Πlog

(r+1)

via plog
(r)i

−→ Πlog
(r) −→ 1 .

(iv) For a profinite group Γ (respectively, a scheme S), we shall denote by

S(Γ) (respectively, Sét) the classifying site of Γ, (i.e., the site defined by

considering the category of finite sets equipped with a continuous action

of Γ [and coverings given by surjections of such sets]) (respectively, the

étale site of S). Then we have natural morphisms of sites

(U(r))ét −→ S(π1(U
log
(r) )

(Σ)) −→ S(Πlog
(r)) .

Let A be a finite Πlog
(r)-module whose order is a Σ-integer, and n an

integer. Then the natural morphisms

Hn(Πlog
(r) , A) −→ Hn(π1(U

log
(r) )

(Σ), A) −→ Hn
ét(U(r),FA)

induced by the above morphisms of sites are isomorphisms, where FA

is the locally constant sheaf on U(r) determined by A.
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(v) Let A be a finite Πlog
(r) ×GK

Πlog
P

-module whose order is a Σ-integer, and

n an integer. Then the natural morphisms of sites

(U(r){1,2,3})ét −→ S(π1(U
log
(r){1,2,3})

(Σ)) −→ S(Πlog
(r) ×GK

Πlog
P

)

induce isomorphisms

Hn(Πlog
(r)×GK

Πlog
P

, A)
∼
−→ Hn(π1(U

log
(r){1,2,3})

(Σ), A)
∼
−→ Hn

ét(U(r){1,2,3},FA) ,

where FA is the locally constant sheaf determined by A.

Proof. First, we prove (i). It is immediate that we may assume that K
is separably closed. Let V → U(r) be a Galois covering whose order is a
Σ-integer (i.e., a Galois covering determined by an open normal subgroup
of π1(U

log
(r) )

(Σ) = π1(U
log
(r) )

(Σ)), Y → X(r) the normalization of X(r) in V , and
η → X(r) a geometric point over the generic point of an irreducible component
of D(r) = X(r) \U(r) ⊆ X(r). Then it follows from the Galoisness of V → U(r)

and the fact that the order of V → U(r) is prime to p (whenever p ≥ 2)
that the base-change Y ×X(r)

SpecOX(r),η → SpecOX(r),η is a tamely ramified
covering (along the unique closed point of SpecOX(r),η). Thus, by the log
purity theorem ([8], Theorem 3.3. cf. also [4], Remark 1.10), Y → X(r)

extends to a ket covering Y log → X log
(r) . In particular, π1(U

log
(r) )

(Σ) → Πlog
(r) is

injective, hence an isomorphism.
Next, we prove (ii). By [4], Proposition 2.4, (ii), the natural morphism

π1(X
log
(r) ×K P

log
K ) → π1(X

log
(r) ) ×GK

π1(P
log
K ) is an isomorphism. Moreover, it

is immediate that we may assume that K is separably closed. Therefore, by
taking pro-Σ completions, π1(X

log
(r) ×K P

log
K )(Σ) ∼→ (π1(X

log
(r) )× π1(P

log
K ))(Σ) ∼→

Πlog
(r) ×Πlog

P
. On the other hand, by a similar argument to the argument used

in the proof of (i), we obtain an isomorphism π1(U(r){1,2,3})
(Σ) ∼→ π1(X

log
(r) ×K

P
log
K )(Σ). This completes the proof of (ii).

Next, we prove (iii). To prove (iii), we may assume that K is separably
closed field. Moreover, if Σ is the set of all prime numbers, then this follows
from [7], Lemma 2.4, together with (i). Thus, we may assume that Σ = {l}
for a prime number l which is invertible in K. By [12], Proposition 2.7, we
have an exact sequence

1 −→ π1(U)(Σ) −→ π1(U(r+1))
(′)

via plog
(r)i

−→ π1(U(r)) −→ 1 ,

where U is the interior of X log
(r+1)×Xlog

(r)
x, and the profinite group π1(U(r+1))

(′)

is the quotient of π1(U(r+1)) by the kernel of the natural surjection

π1(U) −→ π1(U)(Σ) .
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Now, by a similar argument to the argument used in the proof of (i), the group
π1(U)(Σ) is naturally isomorphic to π1(X

log
(r+1) ×Xlog

(r)
x)(Σ). By the exactness

of

1 −→ π1(U)(Σ) −→ π1(U(r+1))
(′)

via plog
(r)i

−→ π1(U(r)) −→ 1 ,

it is enough to show that the outer representation

π1(U(r)) −→ Out(π1(U)(Σ))

induced by the above sequence factors through π1(U(r))
(Σ) ([1], Proposition

3). On the other hand, if we denote by U cpt a (unique) compactification of
U , then the following hold:

(i) If we denote by Out∗(π1(U)(Σ)) the subgroup of Out(π1(U)(Σ)) whose
elements preserve the kernel of the surjection π1(U)(Σ) → π1(U

cpt)(Σ),
then the outer representation π1(U(r))→ Out(π1(U)(Σ)) factors through
Out∗(π1(U)(Σ)). (This follows from the existence of the “compactifica-
tion” of p(r)r+1 |U(r+1)

U(r+1)

p(r)r+1|U(r+1)
×pr(r+1)r+1|U(r+1)

−−−−−−−−−−−−−−−−−−−→ U(r) ×K X

p(r)r+1|U(r+1)

y
ypr1

U(r) U(r) .)

(ii) The kernel of the natural morphism

Out∗(π1(U)(Σ)) −→ Aut((π1(U
cpt)(Σ))ab)

is pro-Σ. (This follows from [7], Lemma 3.1, (i).)

Therefore, it is enough to show that the natural representation

π1(U(r)) −→ Aut((π1(U
cpt)(Σ))ab)

induced by the above outer representation factors through π1(U(r))
(Σ). Now

this is immediate. This completes the proof of assertion (iii).
Next, we prove (iv). The assertion that the first morphism is an isomor-

phism follows immediately from (i). Let x → X(r) be a geometric point of
X(r) whose image lies on U(r). Then, by considering the Hochschild-Serre
spectral sequence ([11], Theorem 2.1.5) associated to the exact sequence ob-
tained in (iii)

1 −→ π −→ Πlog
(r+1)

via plog
(r)r+1
−→ Πlog

(r) −→ 1

26



(where π = π1(X
log
(r+1)×Xlog

(r)
x)(Σ)) and the Leray spectral sequence associated

to the morphism p(r)r+1 |U(r+1)
, we obtain the following morphism of spectral

sequences:

Ep,q
2 Hp(Πlog

(r), H
q(π, A)) =⇒ Hp+q(Πlog

(r+1), A) Ep+q

y
y

E
′ p,q
2 Hp

ét(U(r), R
q(p(r)r+1 |U(r)

)∗FA) =⇒ Hp+q
ét (U(r+1),FA) E

′ p+q .

Now, by considering the “compactification” of p(r)r+1 |U(r+1)

U(r+1)

p(r)r+1|U(r+1)
×pr(r+1)r+1|U(r+1)

−−−−−−−−−−−−−−−−−−−→ U(r) ×K X

p(r)r+1|U(r+1)

y
ypr1

U(r) U(r) ,

it follows that the sheaf Rq(p(r)r+1 |U(r)
)∗FA is locally constant and con-

structible ([2], Corollary 10.3); moreover, the Π(r+1)-module (Rq(p(r)r+1 |U(r)

)∗FA)x is naturally isomorphic to Hq(U,FA |U) ([2], Theorem 7.3). Therefore,
it is enough to show that the natural morphism

Hn(π, A) −→ Hn
ét(U,FA |U)

is an isomorphism, where U is the interior of X log
(r+1) ×Xlog

(r)
x. Thus, one then

verifies immediately that it is enough to verify that every étale cohomology
class of U (with coefficients in FA |U) vanishes upon pull-back to some (con-
nected) finite étale Σ-covering V → U . Moreover, by passing to an appro-
priate U , we may assume that FA |U is trivial. Then the vanishing assertion
in question is immediate (respectively, a tautology) for n = 0 (respectively,
n = 1). Moreover, the vanishing assertion in question is immediate for n ≥ 3
by [2], Theorem 9.1. If U is affine, then since Hn

ét(U,FA |U) vanishes for
n = 2 ([2], Theorem 9.1), the assertion is immediate. If U is proper, then it
is enough to take V → U so that the degree of V → U annihilates A (cf.,
e.g., the discussion at the bottom of [2], p. 136).

Finally, we prove (v). The assertion that the first morphism is an isomor-
phism follows from (i). Moreover, by a similar argument to the argument
used in the proof of (iv), the second morphism is also an isomorphism.

Remark 2.8.

(i) By Lemma 2.7, (iv), (v), together with a similar argument to the argu-
ment used in [9], Lemma 4.3, any invertible sheaf on X log

(r) or X log
(r)×KP

log
K

satisfies the condition (∗) in [4], Proposition 4.22.
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(ii) By (i) and Lemma 2.7, (iv), (v), the equivalence class of the extension
of Πlog

(r) (respectively, Πlog
(r) ×GK

Πlog
P

) associated to an invertible sheaf

L on X(r) (respectively, X(r) ×K P1
K) (cf. [4], Definition 4.23) depends

only on the (étale-theoretic) first Chern class of L |U(r)
(respectively,

L |U(r)×KUP
). In particular, for example, the extension

1 −→ Λ −→ Πlog
(r+1){1,2}

alog
(r+1){1,2}
−→ Πlog

(r) −→ 1

of Πlog
(r) by Λ (i.e., the extension of Πlog

(r) associated to (a−1
(r+1){1,2})

∗L(r+1){1,2})

is isomorphic to the extension of Πlog
(r) by Λ associated to the invertible

sheaf (a−1
(r+1){1,2})

∗(p(r)i |D(r+1){1,2}
)∗(L(r){1,2}) (i 6= 1, 2) (cf. Lemma 1.21,

(i)).

Lemma 2.9.

(i) Let r ≥ 2 be an integer and 2 ≤ i ≤ r an integer. Then the following

diagram is cartesian:

Πlog
(r+1){1,2}

via plog
(r)i+1

−−−−−−→ Πlog
(r){1,2}

via alog
(r+1){1,2}

y
yvia alog

(r){1,2}

Πlog
(r) −−−−−−→

via plog
(r−1)i

Πlog
(r−1) .

(ii) Let r ≥ 2 be an integer. Then the following diagram is cartesian:

Πlog
(r+1){2,3}

via plog
(r)1

−−−−→ Πlog
(r){1,2}

via alog
(r+1){2,3}

y
yvia alog

(r){1,2}

Πlog
(r) −−−−−−→

via plog
(r−1)1

Πlog
(r−1) .

(iii) Let r ≥ 3 be an integer and 3 ≤ i ≤ r an integer. Then the following

diagram is cartesian:

Πlog
(r+1){2,3}

via plog
(r)i+1

−−−−−−→ Πlog
(r){2,3}

via alog
(r+1){2,3}

y
yvia alog

(r){2,3}

Πlog
(r) −−−−−−→

via plog
(r−1)i

Πlog
(r−1) .
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(iv) Let r ≥ 2 be an integer, and j = 1, 2, or 3. Then the following diagram

is cartesian:

Πlog
(r+1){1,2,3}

via plog
(r)j

−−−−→ Πlog
(r){1,2}

via blog
(r+1){1,2,3}

y
yvia alog

(r){1,2}

Πlog
(r−1) ×GK

Πlog
P
−−−→
via pr1

Πlog
(r−1) .

(v) Let r ≥ 3 be an integer and 2 ≤ i ≤ r − 1 be an integer. Then the

following diagram is cartesian:

Πlog
(r+1){1,2,3}

via plog
(r)i+2

−−−−−−→ Πlog
(r){1,2,3}

via blog
(r){1,2,3}

y
yvia blog

(r){1,2,3}

Πlog
(r−1) ×GK

Πlog
P
−−−−−−−−−−→
via p(r−2)i×id

Plog

Πlog
(r−2) ×GK

Πlog
P

.

Proof. First, we prove assertion (i). By Remark 2.8, (ii), the extension

1 −→ Λ −→ Πlog
(r+1){1,2}

via alog
(r){1,2}
−→ Πlog

(r) −→ 1

of Πlog
(r) by Λ is isomorphic to the extension of Πlog

(r) associated to

(a−1
(r+1){1,2})

∗(p(r)j |D(r+1){1,2}
)∗L(r){1,2}

(j 6= 1, 2). On the other hand, by the commutativity of the diagram

X(r)

a(r+1){1,2}
∼

←−−−−−− D(r+1){1,2}

δ(r+1){1,2}
−−−−−−→ X(r+1)

p(r−1)i

y
y

yp(r)i+1

X(r−1) ←−−−−
a(r){1,2}
∼

D(r){1,2} −−−−→
δ(r){1,2}

X(r)

(cf. the definition of “a(∗){1,2}” in Definition 1.15) implies that
(a−1

(r+1){1,2})
∗(p(r)i+1 |D(r+1){1,2}

)∗L(r){1,2} is naturally isomorphic to

p∗(r−1)i(a
−1
(r){1,2})

∗L(r){1,2}. Therefore, the fiber product of

Πlog
(r){1,2}yvia alog

(r){1,2}

Πlog
(r) −−−−−−→

via plog
(r−1)i

Πlog
(r−1) ,
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is isomorphic to the extension of Πlog
(r) associated to (a−1

(r+1){1,2})
∗(p(r)i+1 |D(r+1){1,2}

)∗L(r){1,2}; thus, by Lemma 1.21, (i) (cf. also the argument in Remark 2.8,

(ii)), this fiber product is isomorphic to Πlog
(r+1){1,2}.

Assertion (ii) (respectively, (iii); respectively, (iv); respectively, (v)) fol-
lows from a similar argument to the argument used in the proof of assertion
(i), Lemma 1.21, (ii) (respectively, (ii); respectively, (iii); respectively, (iii))
(cf. also the argument in Remark 2.8, (ii)), together with the commutativity
of the following diagram:

X(r)

a(r+1){2,3}
∼

←−−−−−− D(r+1){2,3}

δ(r+1){2,3}
−−−−−−→ X(r+1)

p(r−1)1

y
y

yp(r)1

X(r−1) ←−−−−
a(r){1,2}
∼

D(r){1,2} −−−−→
δ(r){1,2}

X(r)

(cf. the definitions of “a(∗){1,2}” and “a(∗){2,3}” in Definition 1.15) (respec-
tively,

X(r)

a(r+1){2,3}
∼

←−−−−−− D(r+1){2,3}

δ(r+1){2,3}
−−−−−−→ X(r+1)

p(r−1)i

y
y

yp(r)i+1

X(r−1) ←−−−−
a(r){2,3}
∼

D(r){2,3} −−−−→
δ(r){2,3}

X(r)

[cf. the definition of “a(∗){2,3}” in Definition 1.15]; respectively,

X(r−1) ×K P1
K

b(r+1){1,2,3}
∼

←−−−−−− D(r+1){1,2,3}

δ(r+1){1,2,3}
−−−−−−→ X(r+1)

pr1

y
y

yp(r)j

X(r−1) ←−−−−
a(r){1,2}
∼

D(r){1,2} −−−−→
δ(r){1,2}

X(r) ,

[cf. the definitions of “a(∗){1,2}” and “b(∗){1,2,3}” in Definition 1.15 and Defi-
nition 1.18]; respectively,

X(r−1) ×K P1
K

b(r+1){1,2,3}
∼

←−−−−−− D(r+1){1,2,3}

δ(r+1){1,2,3}
−−−−−−→ X(r+1)

p(r−2)i×id
P1
K

y
y

yp(r)i+2

X(r−2) ×K P1
K ←−−−−−

b(r){1,2,3}
∼

D(r){1,2,3} −−−−−→
δ(r){1,2,3}

X(r)

[cf. the definition of “b(∗){1,2,3}” in Definition 1.18]).
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Lemma 2.10.

(i) Let r ≥ 2 be an integer, and I = {i, i+1} (i = 1, 2). Then the following

diagram is cartesian:

Πlog
(r)I

via prlog
(r)i,i+1

−−−−−−−→ Πlog
(2){1,2}

via alog
(r)I

y
yvia alog

(2){1,2}

Πlog
(r−1) −−−−−−→

via prlog
(r−1)i

ΠX .

(ii) Let r ≥ 3 be an integer. Then the following diagram is cartesian:

Πlog
(r){1,2,3}

via prlog
(r)1,2

−−−−−−→ Πlog
(2){1,2}

via blog
(r){1,2,3}

y
yvia alog

(2){1,2}

Πlog
(r−2) ×GK

Πlog
P

−−−→
pr1

Πlog
(r−2) −−−−−−→

via prlog
(r−1)1

ΠX .

Proof. Assertion (i) (respectively, assertion (ii)) follows immediately from
Lemma 2.9, (i), (ii) (respectively, (i), (ii), and (iv)), by induction on r.

Definition 2.11.

(i) Let r ≥ 2 be an integer, and I = {i, i + 1} (i = 1, 2). Then, by
Lemma 2.10, (i), the morphism Πlog

X(r)I
→ Πlog

X(r−1)
induced by alog

X(r)I

and the morphism Πlog
X(r)I

→ Πlog
X(2){1,2} induced by prlog

X(r)i,i+1 induces

an isomorphism Πlog
X(r)I

∼
→ Πlog

X(r−1)
×ΠX

Πlog
X(2){1,2}. We shall denote this

isomorphism by αlog
X(r)I

. For simplicity, we shall write αlog
(r)I instead of

αlog
X(r)I

when there is no danger of confusion.

(ii) Let r ≥ 3 be an integer. Then, by Lemma 2.10, (ii), the morphism
Πlog

X(r){1,2,3} → Πlog
X(r−2)

×GK
Πlog

PK
induced by blog

X(r){1,2,3} and the morphism

Πlog
X(r){1,2,3} → Πlog

X(2){1,2} induced by prlog
X(r)1,2 induces an isomorphism

Πlog
X(r){1,2,3}

∼
→ Πlog

PK
×GK

Πlog
X(r−2)

×ΠX
Πlog

X(2){1,2}. We shall denote this iso-

morphism by β log
X(r){1,2,3}. For simplicity, we shall write β log

(r){1,2,3} instead

of β log
X(r){1,2,3} when there is no danger of confusion.
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Definition 2.12. Let ∗ = 0, 1 or ∞, and D ⊆ π1(P
log
K ) the decompositon

group at ∗ ∈ P1
K (well-defined up to conjugation by an element of π1(P

log
K )).

Then we shall refer to the quotient of D by the kernel of the composite

D ↪→ π1(P
log
K ) −→ Πlog

P

as the pro-(Σ) decomposition group at ∗ ∈ P1
K .

Next, we will define the collection of data used in the reconstruction

of the fundamental groups of higher dimensional log configuration schemes

performed in Theorem 2.16 below.

Definition 2.13. Let r ≥ 2 be an integer.

(i) We shall denote by DX(Σ), or DX(1)
(Σ) the collection of data consisting

of

• the profinite groups

Πlog
X(2)

, Πlog
X(2){1,2}, ΠX , GK, and Πlog

PK
;

• the morphisms

Πlog
X(2)

via plog
X(1)i

−→ ΠX (i = 1, 2),

Πlog
X(2){1,2}

via δlog
X(2){1,2}

−→ Πlog
X(2)

,

and the morphisms induced by the respective structure morphisms

ΠX −→ GK ,

Πlog
PK
−→ GK ; and

• the subgroups
D

log
K ∗ ⊆ Πlog

PK

determined by the pro-(Σ) decomposition groups D
log
K ∗ at ∗ ∈ P1

K

(∗ = 0, 1 and ∞).

(ii) We shall denote by DX(r)
(Σ) the collection of data consisting of

• the profinite groups

Πlog
X(k)

(1 ≤ k ≤ r + 1), Πlog
X(2){1,2}, GK, and Πlog

PK
;
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• the morphisms

Πlog
X(k)

via plog
X(k−1)i

−→ Πlog
X(k−1)

(2 ≤ k ≤ r + 1, 1 ≤ i ≤ k),

Πlog
X(2){1,2}

via alog
X(2){1,2}

−→ ΠX ,

and the morphisms induced by the respective structure morphisms

ΠX −→ GK ,

Πlog
PK
−→ GK ;

• the composites

Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

(αlog
X(r){1,2}

)−1

∼
−→ Πlog

X(r+1){1,2}

via δlog
X(r+1){1,2}

−→ Πlog
X(r+1)

(where the morphism implicit in the fiber product Πlog
X(r)
→ ΠX is

Πlog
X(r)

via prlog
X(r)1

→ ΠX),

Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

(αlog
X(r){2,3}

)−1

∼
−→ Πlog

X(r+1){2,3}

via δlog
X(r+1){2,3}

−→ Πlog
X(r+1)

(where the morphism implicit in the fiber product Πlog
X(r)
→ ΠX is

Πlog
X(r)

via prlog
X(r)2

→ ΠX) and

Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

(βlog
X(r){1,2,3}

)−1

∼
−→ Πlog

X(r+1){1,2,3}

via δlog
X(r+1){1,2,3}

−→ Πlog
X(r+1)

(where the morphism implicit in the fiber product Πlog
X(r−1)

→ ΠX

is Πlog
X(r−1)

via prlog
X(r−1)1

→ ΠX); and

• the subgroups
D

log
K ∗ ⊆ Πlog

PK

determined by the pro-(Σ) decomposition groups D
log
K ∗ at ∗ ∈ P1

K

(∗ = 0, 1 and ∞).
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(iii) We shall denote by DGX(r)
(Σ) the collection of data consisting of

• the profinite groups

ΠGX(r+1)
, Πlog

X(k)
(1 ≤ k ≤ r), Πlog

X(2){1,2}, GK , and Πlog
PK

;

• the morphisms

ΠGX(r+1)

via plog
X(r)i

◦f log
X(r)

(Σ)

−→ Πlog
X(r)

(1 ≤ i ≤ r + 1),

Πlog
X(k)

via plog
X(k−1)i

−→ Πlog
X(k−1)

(2 ≤ k ≤ r, 1 ≤ i ≤ k),

Πlog
X(2){1,2}

via alog
X(2){1,2}

−→ ΠX ,

and the morphisms induced by the respective structure morphisms

ΠX −→ GK ,

Πlog
PK
−→ GK ;

• the composites

Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

(αlog
X(r){1,2}

)−1

∼
−→ Πlog

X(r+1){1,2}

via δG log
X(r+1){1,2}

−→ ΠGX(r+1)

(where the morphism implicit in the fiber product Πlog
X(r)
→ ΠX is

Πlog
X(r)

via prlog
X(r)1

→ ΠX),

Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

(αlog
X(r){2,3}

)−1

∼
−→ Πlog

X(r+1){2,3}

via δG log
X(r+1){2,3}

−→ ΠGX(r+1)

(where the morphism implicit in the fiber product Πlog
X(r)
→ ΠX is

Πlog
X(r)

via prlog
X(r)2

→ ΠX) and

Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

(βlog
X(r){1,2,3}

)−1

∼
−→ Πlog

X(r+1){1,2,3}

via δG log
X(r+1){1,2,3}

−→ ΠGX(r+1)

(where the morphism implicit in the fiber product Πlog
X(r−1)

→ ΠX

is Πlog
X(r−1)

via prlog
X(r−1)1

→ ΠX); and
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• the subgroups
D

log
K ∗ ⊆ Πlog

PK

determined by the pro-(Σ) decomposition groups D
log
K ∗ at ∗ ∈ P1

K

(∗ = 0, 1 and ∞).

In the following, let Y be a smooth, proper, geometrically connected
curve of genus gY ≥ 2 over a field L, and P

log
L the log scheme obtained by

equipping P1
L with the log structure associated to the divisor {0, 1,∞} ⊆ P1

L.
Moreover, we shall fix a separable closure Lsep of L and denote by GL the
absolute Galois group Gal(Lsep/L) of L.

Definition 2.14. Let r ≥ 2 be an integer. Let ΣY be a (non-empty) set of
prime numbers that is L-innocuous.

(i) We shall refer to isomorphisms

φ
Πlog

(k)

(1) : Πlog
X(k)

∼
−→ Πlog

Y(k)
(k = 1, 2);

φ
Πlog

(2){1,2}

(1) : Πlog
X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ;

φG
(1) : GK

∼
−→ GL ; and

φ
Πlog

P

(1) : Πlog
PK

∼
−→ Πlog

PL

which are compatible with the morphisms and subgroups given in the
definitions of DX(Σ) and DY (ΣY ) as an isomorphism of DX(Σ) with

DY (ΣY ).

(ii) We shall refer to isomorphisms

φ
Πlog

(k)

(r) : Πlog
X(k)

∼
−→ Πlog

Y(k)
(1 ≤ k ≤ r + 1);

φ
Πlog

(2){1,2}

(r) : Πlog
X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ;

φG
(r) : GK

∼
−→ GL ; and

φ
Πlog

P

(r) : Πlog
PK

∼
−→ Πlog

PL

which are compatible with the morphisms and subgroups given in the
definitions of DX(r)

(Σ) and DY(r)
(ΣY ) as an isomorphism of DX(r)

(Σ)
with DY(r)

(ΣY ).
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(iii) We shall refer to isomorphisms

φ
Glog

(r+1)

(r) : ΠGX(r+1)

∼
−→ ΠGY(r+1)

;

φ
G Πlog

(k)

(r) : Πlog
X(k)

∼
−→ Πlog

Y(k)
(1 ≤ k ≤ r);

φ
GΠlog

(2){1,2}

(r) : Πlog
X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ;

φGG
(r) : GK

∼
−→ GL ; and

φ
GΠlog

P

(r) : Πlog
PK

∼
−→ Πlog

PL

which are compatible with the morphisms and subgroups given in the
definitions of DGX(r)

(Σ) and DGY(r)
(ΣY ) as an isomorphism of DGX(r)

(Σ)

with DGY(r)
(ΣY ).

Proposition 2.15. Let r ≥ 2 be an integer, and ΣX (respectively, ΣY ) a

set of prime numbers that is innocuous in K (respectively, L). Let φG(r) :

DGX(r)
(ΣX)

∼
→ DGY(r)

(ΣY ) be an isomorphism. Then the following hold:

(i) There exists an isomorphism F Ǧ−1(φ
G
(r)) : DX(r−1)

(ΣX)
∼
→ DY(r−1)

(ΣY ).
Moreover, the correspondence

φG(r) 7→ F Ǧ−1(φ
G
(r))

is functorial.

(ii) If φ
Glog

(r+1)

(r) : ΠGX(r+1)

∼
→ ΠGY(r+1)

induces an isomorphism of the kernel of

the morphism ΠGX(r+1)
→ Πlog

X(r+1)
induced by f log

X(r+1)
(Σ) with the kernel

of the morphism ΠGY(r+1)
→ Πlog

Y(r+1)
induced by f log

Y(r+1)
(Σ), then there

exists an isomorphism F Ǧ(φG(r)) : DX(r)
(ΣX)

∼
→ DY(r)

(ΣY ). Moreover,

the correspondence

φG(r) 7→ F Ǧ(φG(r))

is functorial.

Proof. First, we prove assertion (i). If we write

F Ǧ−1(φ
G
(r))

Πlog
(k)

def
= φ

GΠlog
(k)

(r) (1 ≤ k ≤ r) ,

F Ǧ−1(φ
G
(r))

Πlog
(2){1,2}

def
= φ

GΠlog
(2){1,2}

(r) ,
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F Ǧ−1(φ
G
(r))

G def
= φGG

(r) , and

F Ǧ−1(φ
G
(r))

Πlog
P

def
= φ

GΠlog
P

(r) ,

then we obtain an isomorphism F Ǧ−1(φ(r)) of the desired type.
Next, we prove Assertion (ii). We denote by NX (respectively, NY ) the

kernel of the morphism ΠGX(r+1)
→ Πlog

X(r+1)
(respectively, ΠGY(r+1)

→ Πlog
Y(r+1)

) in-

duced by f log
X(r+1)

(Σ) (respectively, f log
Y(r+1)

(Σ)). Then, by the assumption, the

isomorphism φ
Glog

(r+1)

(r) : ΠGX(r+1)

∼
→ ΠGY(r+1)

induces an isomorphism φ
Glog

(r+1)

(r) |NX
:

NX
∼
→ NY . Therefore, the isomorphism φ

Glog
(r+1)

(r) induces an isomorphism

φ
Glog

(r+1)

(r) /N : ΠGX(r+1)
/NX

∼
→ ΠGY(r+1)

/NY . Since the morphism ΠGX(r+1)
→

Πlog
X(r+1)

(respectively, ΠGY(r+1)
→ Πlog

Y(r+1)
) induced by f log

X(r+1)
(Σ) (respectively,

f log
Y(r+1)

(Σ)) is surjective (Theorem 2.5), we obtain that φ
Glog

(r+1)

(r) /N : Πlog
X(r+1)

∼
→

Πlog
Y(r+1)

. Therefore, if we write

F Ǧ(φG(r))
Πlog

(r+1)
def
= φ

Glog
(r+1)

(r) /N : Πlog
X(r+1)

∼
→ Πlog

Y(r+1)
,

F Ǧ(φG(r))
Πlog

(k)
def
= φ

GΠlog
(k)

(r) (1 ≤ k ≤ r) ,

F Ǧ(φG(r))
Πlog

(2){1,2}
def
= φ

GΠlog
(2){1,2}

(r) ,

F Ǧ(φG(r))
G def

= φGG
(r) , and

F Ǧ(φG(r))
Πlog

P
def
= φ

GΠlog
P

(r) ,

then we obtain an isomorphism F Ǧ(φ(r)) of the desired type.

Theorem 2.16. Let r ≥ 2 be an integer, and ΣX (respectively, ΣY ) a

set of prime numbers that is K-innocuous (respectively, L-innocuous). Let

φ(r−1) : DX(r−1)
(ΣX)

∼
→ DY(r−1)

(ΣY ) be an isomorphism. Then there exists an

isomorphism F G+1(φ(r−1)) : DGX(r)
(ΣX)

∼
→ DGY(r)

(ΣY ) such that

F Ǧ−1(F
G
+1(φ(r−1))) = φ(r−1) ,

and, moreover, the isomorphism F G+1(φ(r−1))
Glog

(r+1) arises from an isomorphism

of graphs of groups of G log
X(r+1)

(ΣX) with G log
Y(r+1)

(ΣY ). Moreover, the correspon-

dence

φ(r−1) 7→ F G+1(φ(r−1))

is functorial.
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Proof. First, we define a profinite groups ΠGX(r+1){1,2}, ΠGX(r+1){2,3}, and ΠGX(r+1){1,2,3}

(respectively, ΠGY(r+1){1,2}, ΠGY(r+1){2,3}, and ΠGY(r+1){1,2,3}) as follows:

(i) ΠGX(r+1){1,2}

def
= Πlog

X(r)
×ΠX

Πlog
X(2){1,2} (respectively, ΠGY(r+1){1,2}

def
= Πlog

Y(r)
×ΠY

Πlog
Y(2){1,2}), where the morphism implicit in the fiber product ΠX(r)

→

ΠX (respectively, ΠY(r)
→ ΠY ) is the morphism induced by prlog

X(r)1

(respectively, prlog
Y(r)1

) (cf. Lemma 2.10, (i)).

(ii) ΠGX(r+1){2,3}

def
= Πlog

X(r)
×ΠX

Πlog
X(2){1,2} (respectively, ΠGY(r+1){2,3}

def
= Πlog

Y(r)
×ΠY

Πlog
Y(2){1,2}), where the morphism implicit in the fiber product ΠX(r)

→

ΠX (respectively, ΠY(r)
→ ΠY ) is the morphism induced by prlog

X(r)2

(respectively, prlog
Y(r)2

) (cf. Lemma 2.10, (i)).

(iii) ΠGX(r+1){1,2,3}

def
= Πlog

PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2} (respectively, ΠGY(r+1){1,2,3}

def
=

Πlog
PL
×GL

Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2}), where the morphism implicit in the fiber

product ΠX(r−1)
→ ΠX (respectively, ΠY(r−1)

→ ΠY ) is the morphism

induced by prlog
X(r−1)1

(respectively, prlog
Y(r−1)1

) (cf. Lemma 2.10, (ii)).

Then we define a profinite group “ΠGX(r+1)
” (respectively, “ΠGY(r+1)

”) as the

inductive limit of the diagram

ΠGX(r+1){1,2} ←− {1} −→ ΠGX(r+1){1,2,3} ←− {1} −→ ΠGX(r+1){2,3}

(respectively,

ΠGY(r+1){1,2} ←− {1} −→ ΠGY(r+1){1,2,3} ←− {1} −→ ΠGY(r+1){2,3})

(cf. Definition 2.2, Lemma 2.10). Moreover, for an integer 1 ≤ i ≤ r + 1, we
define a “projection” qX(r)i : ΠGX(r+1)

→ Πlog
X(r)

(respectively, qY(r)i : ΠGX(r+1)
→

Πlog
X(r)

) as follows:

(i) If i = 1 or 2, then we define a morphism q
{1,2}
X(r)i

: ΠGX(r+1){1,2} = Πlog
X(r)
×ΠX

Πlog
X(2){1,2} → Πlog

X(r)
(respectively, q

{1,2}
Y(r)i

: ΠGY(r+1){1,2} = Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2} →

Πlog
Y(r)

) as the first projection (cf. Lemma 2.10, (i)). If i ≥ 3, then we

define a morphism q
{1,2}
X(r)i

: ΠGX(r+1){1,2} = Πlog
X(r)
×ΠX

Πlog
X(2){1,2} → Πlog

X(r)
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(respectively, q
{1,2}
Y(r)i

: ΠGY(r+1){1,2} = Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2} → Πlog

Y(r)
) as the

composite

Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

via plog
X(r−1)i−1×id

D
log
X(2){1,2}

−→ Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

(αlog
X(r){1,2}

)−1

−→ Πlog
X(r){1,2}

via δlog
X(r){1,2}

−→ Πlog
X(r)

(respectively,

Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2}

via plog
Y(r−1)i−1×id

D
log
Y(2){1,2}

−→ Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2}

(αlog
Y(r){1,2}

)−1

−→ Πlog
Y(r){1,2}

via δlog
Y(r){1,2}

−→ Πlog
Y(r)

)

(cf. Lemmas 2.9, (i); 2.10, (i)).

(ii) We define a morphism q
{2,3}
X(r)1

: ΠGX(r+1){2,3} = Πlog
X(r)
×ΠX

Πlog
X(2){2,3} →

Πlog
X(r)

(respectively, q
{2,3}
Y(r)1

: ΠGY(r+1){2,3} = Πlog
Y(r)
×ΠY

Πlog
Y(2){2,3} → Πlog

Y(r)
) as

the composite

Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

via plog
X(r−1)1

×id
D

log
X(2){1,2}

−→ Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

(αlog
X(r){1,2}

)−1

−→ Πlog
X(r){1,2}

via δlog
X(r){1,2}

−→ Πlog
X(r)

(respectively,

Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2}

via plog
Y(r−1)1

×id
D

log
Y(2){1,2}

−→ Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2}

(αlog
Y(r){1,2}

)−1

−→ Πlog
Y(r){1,2}

via δlog
Y(r){1,2}

−→ Πlog
Y(r)

)

(cf. Lemmas 2.9, (ii); 2.10, (i)). If i = 2 or 3, then we define a

morphism q
{2,3}
X(r)i

: ΠGX(r+1){2,3} = Πlog
X(r)
×ΠX

Πlog
X(2){1,2} → Πlog

X(r)
(respec-

tively, q
{2,3}
Y(r)i

: ΠGY(r+1){2,3} = Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2} → Πlog

Y(r)
) as the first
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projection (cf. Lemma 2.10, (i)). If i ≥ 4, then we define a mor-

phism q
{2,3}
X(r)i

: ΠGX(r+1){2,3} = Πlog
X(r)
×ΠX

Πlog
X(2){1,2} → Πlog

X(r)
(respectively,

q
{2,3}
Y(r)i

: ΠGY(r+1){2,3} = Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2} → Πlog

Y(r)
) as the composite

Πlog
X(r)
×ΠX

Πlog
X(2){2,3}

via plog
X(r−1)i−1×id

D
log
X(2){1,2}

−→ Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

(αlog
X(r){2,3}

)−1

−→ Πlog
X(r){2,3}

via δlog
X(r){2,3}

−→ Πlog
X(r)

(respectively,

Πlog
Y(r)
×ΠY

Πlog
Y(2){1,2}

via plog
Y(r−1)i−1×id

D
log
Y(2){1,2}

−→ Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2}

(αlog
Y(r){2,3}

)−1

−→ Πlog
Y(r){1,2}

via δlog
Y(r){2,3}

−→ Πlog
Y(r)

)

(cf. Lemmas 2.9, (iii); 2.10, (i)).

(iii) If i = 1, 2, or 3, then we define a morphism q
{1,2,3}
X(r)i

: ΠGX(r+1){1,2,3} =

Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2} → Πlog
X(r)

(respectively, q
{1,2,3}
Y(r)i

: ΠGY(r+1){1,2,3} =

Πlog
PL
×GL

Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2} → Πlog
Y(r)

) as the composite

Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

projection
−→ Πlog

X(r−1)
×ΠX

Πlog
X(2){1,2}

(αlog
X(r){1,2}

)−1

−→ Πlog
X(r){1,2}

via δlog
X(r){1,2}

−→ Πlog
X(r)

(respectively,

Πlog
PL
×GL

Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2}

projection
−→ Πlog

Y(r−1)
×ΠY

Πlog
Y(2){1,2}

(αlog
Y(r){1,2}

)−1

−→ Πlog
Y(r){1,2}

via δlog
Y(r){1,2}

−→ Πlog
Y(r)

)

(cf. Lemmas 2.9, (iv)) If i ≥ 4, then we define a morphism q
{1,2,3}
X(r)i

:

ΠGX(r+1){1,2,3} = Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2} → Πlog
X(r)

(respectively,

q
{1,2,3}
Y(r)i

: ΠGY(r+1){1,2,3} = Πlog
PL
×GL

Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2} → Πlog
Y(r)

) as the

composite

Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){2,3}

via id
P
log
K

×plog
X(r−1)i−1×id

D
log
X(2){1,2}

−→ Πlog
PK
×GK

Πlog
X(r−2)

×ΠX
Πlog

X(2){1,2}
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(βlog
X(r){1,2,3}

)−1

−→ Πlog
X(r){1,2,3}

via δlog
X(r){1,2,3}

−→ Πlog
X(r)

(respectively,

Πlog
PL
×GL

Πlog
Y(r−1)

×ΠY
Πlog

Y(2){2,3}

via id
P
log
L

×plog
Y(r−1)i−1×id

D
log
Y(2){1,2}

−→ Πlog
PL
×GL

Πlog
Y(r−2)

×ΠY
Πlog

Y(2){1,2}

(βlog
Y(r){1,2,3}

)−1

−→ Πlog
Y(r){1,2,3}

via δlog
Y(r){1,2,3}

−→ Πlog
Y(r)

(cf. Lemmas 2.9, (v); 2.10, (ii)).

These morphisms q
{1,2}
X(r)i

, q
{2,3}
X(r)i

, and q
{1,2,3}
X(r)i

(respectively, q
{1,2}
Y(r)i

, q
{2,3}
Y(r)i

, and

q
{1,2,3}
Y(r)i

) induce a morphism ΠGX(r+1)
→ Πlog

X(r)
(respectively, ΠGY(r+1)

→ Πlog
Y(r)

).

We denote this morphism by qX(r)i (respectively, qY(r)i).

Next, we define an isomorphism φG : ΠGX(r+1)

∼
→ ΠGY(r+1)

as follows:

(i) we define an isomorphism

φG{1,2} : ΠGX(r+1){1,2} = Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

∼
−→ Πlog

Y(r)
×ΠY

Πlog
Y(2){1,2} = ΠGY(r+1){1,2}

as

φ
Πlog

(r)

(r−1) ×φΠ
(r−1)

φ
Πlog

(2){1,2}

(r−1) .

(ii) we define an isomorphism

φG{2,3} : ΠGX(r+1){2,3} = Πlog
X(r)
×ΠX

Πlog
X(2){1,2}

∼
−→ Πlog

Y(r)
×ΠY

Πlog
Y(2){1,2} = ΠGY(r+1){2,3}

as

φ
Πlog

(r)

(r−1) ×φΠ
(r−1)

φ
Πlog

(2){1,2}

(r−1) .

(iii) we define an isomorphism

φG{1,2,3} : ΠGX(r+1){1,2,3} = Πlog
PK
×GK

Πlog
X(r−1)

×ΠX
Πlog

X(2){1,2}

∼
−→ Πlog

PL
×GL

Πlog
Y(r−1)

×ΠY
Πlog

Y(2){1,2} = ΠGY(r+1){1,2,3}

as

φ
Πlog

P

(r−1) ×φG
(r−1)

φ
Πlog

(r−1)

(r−1) ×φΠ
(r−1)

φ
Πlog

(2){1,2}

(r−1) .
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These isomorphisms φ
GΠlog

(r+1){1,2,3}

(r) , φ
GΠlog

(r+1){1,2,3}

(r) , and φ
GΠlog

(r+1){1,2,3}

(r) induce an

isomorphism ΠGX(r+1)

∼
→ ΠGY(r+1)

. We denote this isomorphism by φG.

Then, by the constructions, for any 1 ≤ i ≤ r + 1, the following diagram
commutes:

ΠGX(r+1)

φG

∼
−−−→ ΠGX(r+1)

qX(r)i

y
yqY(r)i

Πlog
X(r)

−−−→
∼

φ
Π

log
(r)

(r−1)

Πlog
Y(r)

.

Therefore, the isomorphisms

F G+1(φ(r−1))
Glog

(r+1)
def
= φG : ΠGX(r+1)

∼
−→ ΠGY(r+1)

;

F G+1(φ(r−1))
GΠlog

(k)
def
= φ

Πlog
(k)

(r−1) : Πlog
X(k)

∼
−→ Πlog

Y(k)
(1 ≤ k ≤ r);

F G+1(φ(r−1))
G Πlog

(2){1,2}
def
= φ

Πlog
(2){1,2}

(r−1) : Πlog
X(2){1,2}

∼
−→ Πlog

Y(2){1,2} ;

F G+1(φ(r−1))
GG def

= φG
(r−1) : GK

∼
−→ GL ; and

F G+1(φ(r−1))
G Πlog

P
def
= φ

Πlog
P

(r−1) : Πlog
PK

∼
−→ Πlog

PL

form an isomorphism F G+1(φ(r−1)) of DGX(r)
(ΣX) with DGY(r)

(ΣY ) of the desired
type.
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