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Abstract

In the present paper, we study the cuspidalization problem of the
fundamental group of a curve by means of the log geometry of the log
configuration space, which is a natural compactification of the usual
configuration space of the curve. The goal of this paper is to show that
the fundamental group of the configuration space is generated by the
images from morphisms from a group extension of the fundamental
groups of the configuration spaces of lower dimension, and that the
fundamental group of the configuration space can be partially recon-
structed from a collection of data concerning the fundamental groups
of the configuration spaces of lower dimension.

Contents
0 Introduction 1
1 Log configuration schemes 6

2 Reconstruction of the fundamental groups of higher dimen-
sional log configuration schemes 20

0 Introduction

In this paper, we consider the cuspidalization problem of the fundamental
group of a curve. Let X be a smooth, proper, geometrically connected curve
of genus g > 2 over a field K whose (not necessarily positive) characteristic
we denote by p.



Problem 0.1. Let U — X be an open subscheme of X. Then can one
reconstruct the (arithmetic) fundamental group

m(U)
of U from the (arithmetic) fundamental group m (X) of X ?
More “generally”,

Problem 0.2. Let r be a natural number. Then can one reconstruct the
(arithmetic) fundamental group

1 (Ugr)

of the r-th configuration space Uy of X (i.e., the open subscheme of the r-th
product of X [over K] whose complement consists of the diagonals “D )i ;4 =
{(x1,-+,2) | @i = ;17 (i # 7)) from the (arithmetic) fundamental group
m(X) of X7

In this paper, we study Problem 1.2 by means of the log geometry of the
log configuration scheme of X, which is a natural compactification of U.

Let ﬂ;ﬁ be the log stack obtained by equipping the moduli stack ./\_/lgm
of r-pointed stable curves of genus g whose r sections are equipped with an
ordering with the log structure associated to the divisor with normal crossings
which parametrizes singular curves. Then, for a natural number r, we define

the (r-th) log configuration scheme X é;’)g as the fiber product

—log
Spec K X o M,

where the (1-)morphism Spec K — ng is the classifying (1-)morphism
determined by the curve X — Spec K, and the (1-)morphism Mlgo’f — Mlgo’% is
the (1-)morphism obtained by forgetting the sections. Note that the interior
of Xé;’)g (i.e., the largest open subset of the underlying scheme of X é;’)g on
which the log structure is trivial) is the usual (r-th) configuration space U,
of X, and that the natural inclusion Uy — X Ef)g induces an isomorphism
of the geometrically maximal pro-prime to p quotient of m1(Uyy) (i.e., the
quotient of 7 (Uj,y) by the kernel of the natural surjection 7 (U X g K5%P) —
T1(Upy Xk K5P)®) where 1 (U X ¢ K5P)®) is the maximal pro-prime to p
quotient) with the geometrically mazimal pro-prime to p quotient of w1 (X é?)g)

Let ¥ be a (non-empty) set of prime numbers. We shall denote by Hl)?i)

the geometrically maximal pro-3 quotient of 7y (X é;’)g), by Hlllfi the geometri-
cally maximal pro-> quotient of the log fundamental group of the log scheme
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IPllgg obtained by equipping the projective line PL. with the log structure as-
sociated to the divisor {0, 1,00} C PL., and by G the absolute Galois group
of K. Then the first main result of this paper is as follows (cf. Theorem 2.5):

Theorem 0.3. Let r > 3 be an integer. Then there exist extensions
I, 1
of Hl)?i,l) by Z™(1), an extension
I,

of Hl)?f X Gy H;)lg by Z™) (1), and continuous homomorphisms
r— K

2)
I, — Hg‘;i) (1<i<3)

over Gi such that the morphism

def Im(Ily «— {1} = Iy « {1} = II3) — Hl;;i)

g
HX(r)
induced by the morphisms 11; — Hl)‘}i) 15 surjective, where the inductive limait
1s taken in the category of profinite groups.

Note that Theorem 0.3 can be regarded as a logarithmic analogue of [7],
Remark 1.2.

We shall denote by pl)‘}i)i cXls X Ef)g the morphism induced by the

(r+1)
(1-)morphism Mg, 1 — My, obtained by forgetting the i-th section. Then
the second main result of this paper is as follows (cf. Theorem 2.16):

Theorem 0.4. Let r > 2 be an integer. Moreover, we assume that

the set of all prime numbers or {l} if p=0
Y= .
{l} ifp>2.
If the collection of data consisting of the profinite groups Hl)?i) (0<k<r),
the profinite group H%;g, the surjections Hl)?i) — Hl)?i_l) (2 <k <) induced
by the pl)‘}i_l)i’s (2 <k <r1<i<k), the morphisms llx — Gk and

Hlﬂfg — G induced by the respective structure morphisms, and some data
concerning the log fundamental groups of the irreducible components of the
divisor at infinity (i.e., the divisor with normal crossings which defines the
log structure) of X éf)g s given, then we can “reconstruct” the profinite group

g
X(r41)
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defined in Theorem 0.3 and morphisms

- T19 log ;
Ax i, 0%, — TIRE (1<i<r+1)

such that gx,,, factors as the composite

. log
via px>
g log (r) log

—
X(rt1) HX(M) Xy

where the first morphism is the morphism obtained in Theorem (.3.

In Theorem 0.4, we use the terminology “reconstruct” as a sort of “abbre-
viation” for the somewhat lengthy but mathematically precise formulation
given in the statement of Theorem 2.16.

By Theorem 0.3 and Theorem 0.4, if one can also reconstruct group-
theoretically the kernel of the surjection Hi(rﬂ) l)?im (which appears in
the above composite), then, by taking the quotient by this kernel, one can
reconstruct the profinite group Hl)?iﬂ) (cf. Proposition 2.15, (ii)). However,
unfortunately, reconstruction of this kernel is not performed in this paper.
Moreover, it seems to the author that if such a reconstruction should prove
to be possible, it is likely that the method of reconstruction of this kernel
should depend on the “arithmetic” of K in an essential way.

This paper is organized as follows:

In Section 1, we consider the scheme-theoretic and log scheme-theoretic
properties of log configuration schemes. Moreover, we study the geometry of
the divisor at infinity of X é?’;g in more detail.

In Section 2, we consider the reconstruction of the fundamental groups

of higher dimensional log configuration schemes.
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Notation

Symbols:

We shall denote by Z the set of rational integers, by N the set of rational
integers n > 0, by Q the set of rational numbers and by Z the profinite
completion of Z.



Subscripts:

For a ring A (respectively, a scheme X), we shall denote by A.eq (re-
spectively, X,.q) the quotient ring by the ideal of all nilpotent elements of
A (respectively, the reduced closed subscheme of X associated to X). For
a ring A, we shall denote by A* the group of unity of A. For a field k, we
shall use the notation k°P to denote a separable closure of k. For a monoid
P, (respectively, a sheaf of monoids P) we shall denote by P#P the group
associated to P (respectively, P#P the sheaf of groups associated to P). For
a group G, we shall denote by G® the abelianization of G.

Log schemes:

For a log scheme X%, we shall denote by M x the sheaf of monoids that
defines the log structure of X8,

Let P be a property of schemes [for example, “quasi-compact”, “con-
nected”, “normal”, “regular”] (respectively, morphisms of schemes [for ex-
ample, “proper”, “finite”, “étale”, “smooth”]). Then we shall say that a log
scheme (respectively, a morphism of log schemes) satisfies P if the underlying
scheme (respectively, the underlying morphism of schemes) satisfies P.

For a log scheme X'°¢ (respectively, a morphism f!°¢ of log schemes), we
shall denote by X the underlying scheme (respectively, by f the underlying
morphism of schemes). For fs log schemes X8, Y& and Z'°¢, we shall denote
by X8 xy10s 7198 the fiber product of X'°8 and Z'°¢ over Y'°¢ in the category
of fs log schemes. In general, the underlying scheme of X'°8 Xy10; Z'°¢ is not
X xy Z. However, since strictness (a morphism f°¢ : X8 — Y8 ig called
strict if the induced morphism f*My — My on X is an isomorphism) is
stable under base-change in the category of arbitrary log schemes, if X8 —
Y98 is strict, then the underlying scheme of X'°% xy1; Z'°8 is X xy Z. Note
that since the natural morphism from the saturation of a fine log scheme
to the original fine log scheme is finite, properness and finiteness are stable
under fs base-change.

If there exist both schemes and log schemes in a commutative diagram,
then we regard each scheme in the diagram as the log scheme obtained by
equipping the scheme with the trivial log structure.

Terminologies:

We shall assume that the underlying topological space of a connected
scheme is not empty. In particular, if a morphism is geometrically connected,
then it is surjective.

Let ¥ be a set of prime numbers, and n an integer. Then we shall say
that n is a X-integer if the prime divisors of n are in X. Let I' be a profinite



group. Then we shall refer to the quotient
limI'/H

(where the projective limit is over all open normoal subgroups H C I" whose
orders are Y-integers) as the mazimal pro-% quotient of I'. We shall denote
by I'®) the maximal pro-Y quotient of T

We shall refer to the largest open subset (possibly empty) of the under-
lying scheme of an fs log scheme on which the log structure is trivial as the
interior of the fs log scheme. We shall refer to a Kummer log étale (respec-
tively, finite Kummer log étale) morphism of fs log schemes as a ket morphism
(respectively, a ket covering).

Let X' and Y'°® be log schemes, and f1°% : X6 — Y°¢ 3 morphism of
log schemes. Then we shall refer to the quotient of M x by the image of the
morphism (f°8)* My — Mx induced by f'°¢ as the relative characteristic
sheaf of f'°¢. Moreover, we shall refer to the relative characteristic sheaf of
the morphism X6 — X induced by the natural inclusion 0% < Mx as the
characteristic sheaf of X'°8.

1 Log configuration schemes

In this Section, we define the log configuration scheme of a curve over a field
and consider the geometry of such log configuration schemes.

Throughout this Section, we shall denote by X a smooth, proper, geomet-
rically connected curve of genus g > 2 over a field K whose (not necessarily
positive) characteristic we denote by p, by }P’lgg the log scheme obtained by
equipping P} with the log structure associated to the divisor {0,1, 00} C Pk,
and by Up the interior of P2

Let Mg,r be the moduli stack of r-pointed stable curves of genus g whose r
sections are equipped with an ordering, and M, C Mg,r the open substack
of M,, parametrizing smooth curves ([6]). Then M, \ M,, is a divisor
with normal crossings in M, ([6], Theorem 2.7). Let us write M, = M,
and M, = M,,. By considering the (1-)morphism p%rﬂ My — M,
obtained by forgetting the (r+1)-st section, we obtain a natural isomorphism
of M, ;1 with the universal r-pointed stable curve over M, . ([6], Corollary
2.6). Now we have a natural action of S, (where S, is the symmetric group on
r letters) on ﬂg,r which is given by permuting the sections. For 1 <1 < r,
we shall denote by p{‘;ﬁi : My,41 — M,, the (1-)morphism obtained by
forgetting the i-th section.

Let us denote by ﬂ;ﬁ the log stack obtained by equipping ﬂgm with the
log structure associated to the divisor with normal crossings ﬂw \ Mg,
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Since the action of S, on Mw preserves the divisor Mg,r \ M,,., the action
_ . _1
of §, on M, extends to an action on /\/lg(jf

First, we define the log configuration scheme X éﬁ)g as follows:

Definition 1.1. We define X, by the following (1-)commutative diagram

<|

Xpy —

g,r
Spec K —— M
[X/K]
[X/K]

where the bottom horizontal arrow Spec K "= M, is the classifying (1-
)morphlsm determined by the curve X — Spec K, the right-hand vertical
arrow M, , — M, the (1-)morphism obtained by forgetting the sections, and
the (1- )commutatlve diagram is cartesian in the (2-)category of stacks. Since
M,, — M, is representable, X(r) is a scheme. We shall denote by X ¢ the fs

()
log scheme obtalned by equlppmg X(ry with the log structure induced by the

log structure of M;‘jf. We shall denote by Uy, the interior of X g?)g’ and by
Dx,,, the complement of Uy, of X(. Note that, by definition, the scheme
Ux,,, is isomorphic to the usual r-th configuration space of X. For simplicity,
we shall write U, (respectively, D) instead of Ux, (respectively, Dx,,)
when there is no danger of confusion. By the definition of X,y (respectively,
X(lo)g) the action of S, on M,, (respectively, ./\/llo

X (respectively, X éﬁ)g)

) induces an action on

As is Well known, the pull-back of the divisor M, \ M, via the (1-

)morphism p(r)wr1 : My,01 — M, is a subdivisor of the divisor M, .1 \

M, 41 (cf. [6], the proof of Theorem 2.7). Thus, there exists a unique (1-
Jmorphism p?r/;iofl : M:jf 1 Mlgo’f whose underlying morphism is the (1-
Jmorphism p{‘r’g

11+ Moreover, for an integer 1 < ¢ < r, since the composite

of the automorphism of ﬂg,rﬂ determined by the action of

i—th
(1,2, r+ 1) = (1,2, i—1L,r4+ 1,00 +1,,7) €Sy

and p(‘;ﬁr ., coincides with the (I-)morphism p% the (1-)morphism p%i

77

We shall denote this (1-

also extends to a (1-)morphism M;E 1 /\/llog

Jmorphism by pM log

The (1-)morphism p{vﬁ : Mg 1 — Mg - (respectively, Z\/;log : M;E 1

Xlog)

M ) determines a morphism X, 1) — X, (respectively, X8 (1) ™)
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We denote this morphism by px,; (respectively, pl)‘}i) ;). Thus, we obtain the

following (1-)cartesian diagrams:

Note that, by the definition of a stable curve, px

DX, i P .
(r)* X(r)l

lo lo

Xet1y — X X X
Myris —— M, v v
g,r+1 o g MWH p(vl)l.og o

i 1s proper, flat, geomet-

rically connected, and geometrically reduced. For simplicity, we shall write
P(ryi (respectively, pl(‘;i) instead of px,i (respectively, pl)‘}i)i) when there is

no danger of confusion.

Definition 1.2.

(i)

Let 1 <4 <r be an integer. Then we shall denote by

log . log
Py i X(r) — X

the composite

log o log 6.0 log o log o log 6.0 log o log
pX(1)2 pX(2)2 pX(r—i—l)Q pX(r—i)z pX(r—i+l)1 pX(r—Q)l pX(o"—l)l )

and by pry i the underlying morphism of schemes of prl)‘zi) ;- For sim-
plicity, we shall write prl((;‘; (respectively, pr(,;) instead of prl)?i)i (re-

spectively, pry (r)i) when there is no danger of confusion.
Let 1 <i < 7 <r be integers. Then we shall denote by

log . log log
PrX (s Xy > X

the composite

log o log 0.0 log o log o log o
Px(23 % Px3 Px(oy3 O PX(rojin3 O PX ooy

log log log log log
OPX, 129 PX 29 Px )1 07 O PX 01 O PX (g1
. : 1
and by pry s the underlying morphism of schemes of pr )‘}i)m. For

log
X(mybd

log
(respectively, pry (r)i,j) when there is no danger of confusion.

simplicity, we shall write pr (respectively, pr(r)w‘) instead of pr



Remark 1.3. Let 1 < i < r (respectively, 1 < i < j < r) be an inte-
ger (respectively, integers). Then, by the definiitons of pr(,; (respectively,
DI ), the restriction of pr,),; (respectively, pr,) ;) to U coincides with
the composite

T
A\

U(T)‘HXXK"'XKXi

(respectively, factors through U(s), the resulting morphism U,y — Uy coin-
cides with the composite

T
A\

U(r) ‘HXXK XKXWAU(Q))

Next, let us consider the scheme-theoretic and log scheme-theoretic prop-
erties of X é;’)g in more detail.
Proposition 1.4. X, is connected.
Proof. Since X(g) = Spec K is connected, and the p(;’s are proper and
geometrically connected, it follows immediately that X, is connected. [
Proposition 1.5. pl((;i is log smooth. In particular, since Spec K (equipped

with the trivial log structure) is log reqular, X é;’)g 15 log reqular.

Proof. The assertion for pl(‘;fr ,1 follows from the fact that the (1-)morphism

p%}ffl : M;ﬁ = M;E is log smooth. (See [5], Section 4.) Since pl(?ﬁi

is a composite of an automorphism of X é?)g (obtained by permuting of the
sections) and pl((;%r Iy pl((;i is also log smooth. O]

Remark 1.6. By Propositions 1.4; 1.5 and [4], Proposition A.10, U,y — X(lf’gg

induces a natural equivalence between the Galois category of ket cover-
ings over Xéf)g and the Galois category of coverings over Uy tamely ram-
ified along the divisor with normal crossings D)y C X(. In particular,
(X iy, Diny) =~ (X éf)g) (Concerning m{*™*(X ), D)), see [3], Corollary
2.4.4.)

Proposition 1.7. Let 7'°¢ — Xlﬁg be a strict geometric point. Then, for any
integer 1 < i < r+ 1, the following sequence is exact:

T (p(5,)

T (X1%8) — 1.

lim (X s T3°) = m(X %) o)

‘;) (r+1

2

Here, the projective limit is over all reduced covering points T,* — T'°¢, and

s is induced by the natural morphism X;?il) X ylos flfg — X(lffil).
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Proof. This follows immediately from Propositions 1.4; 1.5 and [4], Theorem
2.3. O

Proposition 1.8. Let S be a log reqular fs log scheme, and 5 — S a
geometric point of S. If the stalk (Mg/O%)s of the characteristic sheaf of
S¢ gt 5 — S is isomorphic to N®" for some n € N, then S is reqular at
the image of 3 — S, and the log structure of S'® is given by a divisor with
normal crossings around the image of 5 — S.

Proof. We take a clean chart o : N¥" — Qg3 of Slog at 5 — S, and write

i—th
LY ale;) € Ogs (where e; = (0,---,0, 1,0,--+,0) € N®"). Then, by the

definition of log regularity, the following assertions are satisfied:

(1) Oss/(f1,-.-, fn) is regular.
(i) (d )dim Ogs = dim (Os5/(f1, ..., fa)) + n.

Thus, there exist elements f,,11,..., fa of Ogs such that fi,..., f; generate
the maximal ideal of Og5. Therefore, Ogs is regular, and the log structure
of S8 is given by the divisor with normal crossings defined by fi--- f, €
Ogs. O

Proposition 1.9. X, is reqular, and the log structure of X o8 js given by a
divisor with normal crossings.

Proof. Since the natural morphism X (1?’;5 — Mlﬁ is strict, for any geometric
point T — X, the stalk (Mx, /O% )z of characteristic sheaf of X(lff)g at
Z — X is isomorphic to N®" for some n € N. Thus, the assertion follows

immediately from Proposition 1.8. O

Definition 1.10. Let r > 2 be a natural number, and [ a subset of {1,2,--- r}
of cardinality I# > 2 equipped with an ordering. Then we shall denote by

(Coyr — Xp_r# iy X kMo g#11; S1,- 0 Sr 2 Xty Xk Mo g#11 — Cir)

the r-pointed stable curve of genus g (whose r sections are equipped with an
ordering) obtained by applying the clutching (1-)morphism ([6], Definition
3.8)

ﬁo,g,l,{l,z,---,r}\l : MOJ#H X Mg77-7[#+1 — Mg,,«

(where {1,2,---,r}\ is equipped with the natural ordering) to the (1% +1)-
pointed stable curve of genus 0

Xo—r#41) Xk Mo #qo — Xp_r#11) XK Mo#4
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obtained by base-changing the universal curve MO, [#19 — MO, [#41 OVer
M 1#41 and the (r — I¥ + 1)-pointed stable curve of genus g

Xr—r#42) X Mo#p1 — Xp—r# 1) Xx Mo #4

p _
X(T7[#+1)r 1#42

obtained by base-changing X, _r# ) — X—r#41)- [Note that
“the clutching locus” of

Xo—r#41) Xk Mo #qo — Xp—r# 1) Xx Mo #4

(respectively, Xr—1#42) XK MOJ#H — X(—r#41) XK MO,I#H)

is the (I + 1)-st (respectively, (r — I 4 1)-st) section [cf. [6], Definition
3.8].]

Then it is immediate that the classifying (1-)morphism X _#.1) Xk
MQ #41 — M, of this curve factors through X(ry, and this morphism
Xp—r#41) Xk Mo s — X is a closed immersion (since it is a proper
monomorphism). We shall denote by & Xl this closed immersion, by D Xl
the scheme-theoretic image of dx, 1, by Dl)?(gr) ; the log scheme obtained by
equipping D ; with the log structure induced by the log structure of X g;))g’
and by 5;3) = Dl)?(gr) — X é;’)g the strict closed immersion whose underlying
morphism is 5)(( - Note that, by the construction of DX( 1, the closed
subscheme DX ! C X does not depend on the imposed ordering of I.
For simplicity, we shall erte Dy (respectively, D}Oi, respectively, dq)r;

respectively, 5?)%1) instead of Dx s (respectively, D Ogg) ;; respectively, o XI5

respectively, 58 X ;) when there is no danger of confusion.

Remark 1.11. Let r > 2 be a natural number, and I a subset of {1,2,--- r}
of cardinality > 2. By the definition of D7, D is irreducible. (Indeed,

lo lo o
(si“ : X(s-g‘rl) - X(Sg and the (1-

Jmorphism MOt 1= MOt [obtained by forgetting the (¢ + 1)-st section]
[s, t € N] imply the log regularity [hence in particular, the normality of the

the log smoothness of the morphism p

underlying scheme]| of X TR KMO 1#41; moreover, by a similar argument
to the argument used 1n the proof of Proposition 1.4, Dy is connected,
hence, [in light of the normality just observed| irreducible) Thus, Dy is
an irreducible component of D). Moreover, D,y = |J; D). (Indeed, if the
image of a geometric point T — X, lies on D , then by considering the
curve which corresponds to the composite T — X(T) — M, there exists

a subset I of {1,2,---,r} of cardinality > 2 such that the image of the
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geometric point T — X,y lies on D(;y;.) Therefore, the log structure of X Ef)g

is the log structure associated to the divisor with normal crossings

U Dy € Xy s

I#>2

ie., if we denote by M(D(;) the log structure on X,y associated to the
divisor D(;); € X(y, then the log structure of X éf)g is

> M(Dgyr)
#>2
(cf. [4], Definition 4.6).

Proposition 1.12. Let r > 2 be a natural number, I a subset of {1,2,--- r}
of cardinality I* > 2, and 1 <1i <r+ 1 an integer.

(1) The closed subscheme of X 41y determined by the composite of the
natural closed immersions (defined in Definition 1.10)

X(T—I#+1) XK MO,[#+2 — C(T)[ — X(r+1)

18 D(rg1)10fr+1} -

(7) The closed subscheme of X1y determined by the composite of the
natural closed immersions (defined in Definition 1.10)

Xr_r# g2y X5 Mo e = Coyr = X
8 Dirq1yr-

(71) The inverse image of Dyr C Xy via peryi 18 Diri1y1ugr+1p)7i YD g y1)104
where
i—th
or=012,---;r+1)— (1,2,---i—1r+1,4i+1,---,7)) €Sry1,
and 17 = {o;(k) | k € I}.

(i) The closed subscheme Dy y1ygijy C Xey1y) (J # 1) is the image of a
section of p(r);-

Proof. First, we prove assertion (i). By the definition of the r-pointed stable

curve
(Coyt — Dgyrs 81,580+ Doyt — Cioyr)
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the (r +1)-pointed stable curve determined by the closed immersion Cy; —
X(r41) is obtained as the stabilization ([6], Definition 2.3) of the r-pointed
stable curve of genus g

(Ctyr XDy Cioyr RN Ciyr; 31,580 2 Ciyr — Coyr Xp(y; Cir) s

(where 3; is the section obtained by base-changing s;) with the extra section
obtained as the diagnal morphism C.y; — Cgyr X D1 Ciyr- Therefore,
since the operation of stabilization commutes with base-change, the closed
immersion in question

X(r71#+1) XK MO,I#+2 — C(r)] — X(r+1)

determines the (r 4 1)-pointed stable curve obtained as the stabilization of
the r-pointed stable curve of genus g

((X(r—1#+1) XK MO,I#-‘,—Q) XDy1 Cir o Xr—1#11) XK MO,I#J,-Q;

S~

5’17 Ty St X(r—1#+1) XKMO,I#H — (X(r—1#+1) XKMO,I#-%Q)XD(T)IC(T)I) (*1)

~

(where s is the section obtained by base-changing s;) with the extra section
induced by the diagonal morphism of X, _# 1) X MO, r#42 over Dgyr. On
the other hand, since the operation of clutching commutes with the base-
change, the r-pointed stable curve of genus g (1) is obtained by applying

the clutching (1-)morphism B g s 1.2....,p1 to the (I#+1)-pointed stable curve

- - or -
(Xr—r#1) X kMo r#42) X Dy (X 1y Xk Mo r#42) — Xppp iy Xk Mo #12 (%2)

obtained by base-changing the (I# + 1)-pointed stable curve Xo—r#11) XK
MOJ#H — Dy defined in Definition 1.10 and the (r — I# + 1)-pointed
stable curve

(X(rfI#Jrl) XKMO,I#J&)XD(r)I(X(rfI#JrQ) XKMO,I#+1) S (r—I#41) XKMO,I#H (*3)
obtained by base-changing the (r — I# +1)-pointed stable curve X (r—1#+42) XK
MOJ#H — D)1 defined in Definition 1.10. Note that then, by definition,
the stable curve (*3) is isomorphic to the (r — I# + 1)-pointed stable curve

Xr—r#42) Xix Mo #o — Xp_r#41) X Mo 1#49

obtained by base-changing the (r — I# + 1)-pointed stable curve

Pl 1# 41)r—1#
(r—I#41)r—I# 42 . .
Xr—1#42) X—r#41)- Moreover, since the image of the ex-

tra section of the r-pointed stable curve of genus g (%;) lies on the stable
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curve (%), the (r+ 1)-pointed stable curve determined by the closed immer-
sion in question is the (r 4 1)-pointed stable curve obtained by applying the
clutching (1-)morphism By, 1u{r41},{1,2,r+11\(1u{r+1}) t0 the (I#+2)-pointed
stable curve

Xo—r#41) Xix Mo #is — X1 41) X Mo 1#42

obtained by base-changing the universal curve MQ [#43 — MQ [#19 OVer
M r#12 and the (r — I* + 1)-pointed stable curve

Xo—r#42) Xix Mo #10 — Xp_1#41) X Mo 1#42

obtained by base-changing the (r — I# + 1)-pointed stable curve

p r—I# r—I# . .
(e X—r#+41)- This completes the proof of assertion

X(T‘—I#+2)
(i).

Assertion (ii) follows from a similar argument to the argument used in
the proof of assertion (i).

Assertion (iii) follows from assertion (i) and (ii), together with the fact
that p(); coincides with the composite of the automorphism of X,y deter-
mined by o; € 41 and pgyr41-

Finally, we prove assertion (iv). By the definition of D1y ,4+13, the

composite

6 .
(r+1){j,r+1} Pryr+1
Doty —  Xevy — X

is the classifying morphism of the r-pointed stable curve X4 Porh Xy

Thus, the composite p)r41 © d(r41){jr+1} is an isomorphism. This completes
the proof of the assertion in the case where ¢ = r + 1. In general, the
assertion follows from the fact that p(,); coincides with the composite of the
automorphism of X,y determined by o; € S,41 and pgyr41- O

Remark 1.13. Let » > 2 and 1 < ¢ < r + 1 be natural numbers, and o;
the element of S,; defined in Proposition 1.12, (iii). Then one may verify
easily that the image of the k-th section (1 < k <) of the r-pointed stable
curve poyri1 ¢ Xeg) — X)) 18 Dogiygkr+1y (see Proposition 1.12, (iv)).
Therefore, by taking the composite of the sections of the r-pointed stable
curve poyr41 ¢ Xp+1) — X( and the automorphism of X,y determined
by o;, we obtain a r-pointed stable curve p.); : X 41) — X, such that the
image of the k-th section (1 <k <r) is

{ Dpinesy Gk <i—1)
Doinygigry (A1 <E).
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Thus, in particular, if j # 5’ then D41y 53 N Dgy1)(i,73 is empty. More-
over, we obtain

D (r+1) UD r+1){i,5} Up(r)ZD(r) .
JFi

(See the proof of [6], Theorem 2.7. Note that the restriction of S 7:::1 in

the proof of [6], Theorem 2.7 to X(,41) IS Deny1){int13-) On the other

hand, the morphism pl(of : Xé:i )

(X(r+1), p(r)l.D(r )'°8 obtained by equipping X ;1) with the log structure as-

— X éf)g factors through the log scheme

sociated to the divisor with normal crossings p(’r;D(r), the morphism

(X1, P53 D)) — X

is log smooth, and the morphism X '°8 v — (X41)s p(jn;iD(r))log is obtained by

+1)
“forgetting” the portion of the log structure of X é:-gu) defined by the divisors
determined by the sections D(,11y(,;3 € Xry1) (J # @) (e, ZjeiM(Diry1)gigy))-

Lemma 1.14. Let r > 3 be a natural number, and i = 1 or 2. Then the
composite

60 plog )
log (r){i,i+1} log “(r—1)i <-log
Diyuiryy  —— Xy — X2y

coincides with the composite

log
log (T){1 i+1} log p(r it+1 log
MARAN — .
Dytiisny X X1

Moreover, this is a morphism of type N.

Proof. The assersion that pti%l)z 051 i1} o 1)ip1© 510 Vi)

follows from the fact that pl(‘:fi it 001nc1des with the composite of the auto-

coincides with p(

morphism of X Ef)g determined by

o=1,2,--,r)— (1,2, i—1,i+ 1,4,i+2,---,7)) €S,

log
(r—1)a

of X, log determined by o to the closed subscheme D}(;?{Z. i+1y is the identity

and p together with the fact that the restriction of the automorphism

morphlsm of D O){Z e

Now p(r—1)i © d(r)fi,i+1} is an isomorphism by Proposition 1.12, (iv). More-
51

over, since pl( is obtained by “forgetting” the portion of the

1)2
log structure of D )

r){i,i+1}
(i1} that originates from

Diygiiv1y © X

15



(e, M(Dgygiit1y) |poypiie,) (see Remark 1.13), the composite pl(‘;g_l)i o

5%{2. i+1y is a morphism of type N. O

Definition 1.15. Let » > 3 be a natural number, and ¢ = 1 or 2. Then we
shall denote by a'ee the composite

Xy {isi+1}
log o plog )
log Xy toiti} log Xr-1)? log
X(T){’i,i-‘rl} (7") X(T‘—l) ?
. . log
and by ax,, fii+13 the underlying morphism of schemes of Ax (it} By
log

Lemma 1.14, a is a morphism of type N.

Xy {ii+1}
We shall denote by £ Xy {iri+1} the invertible sheaf on DXm{i,iH} which

corresponds to al)?f i1} under the bijection ¢ in [4], Theorem 4.13. Note
that, by the definition of ¢ and the proof of Lemma 1.14, EX(T){i,iH} is iso-
morphic to the conormal sheaf of Dy, i1y in X (cf. [4], Remark 4.14).
We shall denote by UX(T){MH} the open subscheme of DX(T){MH} deter-

mined by the open immersion

o=l

Xy {ii+1}

Uxo_yy = Xe—1y  — Dxifiit1} -

For simplicity, we shall write al(f,% (respectively, a(qiit1}; respectively,

{i,i+1}
L) {ii+13; respectively, Ugyg iq13) instead of al)?% {ivit1) (respectively, AX () (i1}
respectively, Lx . {ii+1}; respectively, U X(T){i,i+1}) when there is no danger of
confusion.

Definition 1.16. Let » > 3 be a natural number, and I = {1,2}, {2,3} or
{1,3}. Then we shall denote by Dx,, {1,233y the closed subscheme Dx ;N
DX(T){17273} of DX(T)I and DX(T){17273}. For simplicity, we shall write D ,)r.{1,2.3}
instead of DX(T)1:{17273} when there is no danger of confusion.

Lemma 1.17. Let r > 3 be a natural number. Then the composite

9(r){1,2,3} P(r—1)
Diyposy  — Xy " Xgoy

factors through D._yy1,2y. Moreover, this resulting morphism Dgyq12,33 —
Dg_1y1,2y determines a trivial P-bundle over D112y, and Dy1,23:41,2,3)
Dyg2,3y:01,23) > and Dy13y:41,2,3) determine sections of this P -bundle.

Proof. The assertion that the composite p—1y1 0 d¢)1,2,33 factors through
D_1){1,2; follows from the fact that the inverse image of D(,_1yf1,2) — X(r—1)
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via pr—1)1 18 Dyp2,3 U Dyqa,2,3p (Proposition 1.12, (iii)). Moreover, by the
proof of Proposition 1.12, (i), the resulting morphism D123 — D—1){1,2}
determined by p(—1)1 © d(r){1,2,3) is isomorphic to the stable curve

Xr—2) XK MOA — X(r—2) XK MO,B

obtained by base-changing the universal curve ﬂoA — Mo,g over Mo,g;
thus, the resulting morphism D(;y1,23) — Dg—1){1,2) determines a trivial Pl
bundle. The assertion that D(r){LQ}:{LQ’g}, D(r){2,3}2{1’2,3}, and D(,«){173}:{1’2’3}
determine sections of this P!-bundle follows from the fact that by the def-
inition of the operation of clutching and Remark 1.13, the images of the
1-st and 2-nd sections of the resulting morphism D,y¢12,33 — D—1)(1,2) are
Dyg1,2y:41,2,3y and D(pyq1,33:1,2,3), Tespectively, together with the fact that by
Proposition 1.12, (iii), the image of the 3-rd section (i.e., “the clutching lo-
cus” of the stable curve determined by the closed immersion §(_1){1,23) is
D2z N Dryzzy = Diyi2ay:01.23)- O

Definition 1.18. Let » > 3 be a natural number. Then we shall denote by
bx,, (1,23 the isomorphism Dy (123 = X(y_2) Xg P} such that

e the composite

bX () {1,2,3}
~ 1 P
Dx, 23 —  Xe-2) Xk P — X9

coincides with the composite

aX(Til){1,2}

DX(T){1,2,3} — DX(r_l){l,Z} — X(r—2) s

where the first morphism is the morphism determined by px_,1 o
0x, {123y (cf. Lemma 1.17); and

e the closed subscheme of D X {1,2,3} determined by the closed immersion

—1

bX(T){1,2,3}

1 ~

Xr—2) XK {0} — Xp—2)y Xg Pie — DX(r){LQ,?’}
—1

bX(T){l,Q,S}

(respectively, X _2) Xx {1} — X(_2) Xk P = Dx (1,23} ;

b;(zr){m,s}
respectively, X(,_g) Xx {00} — X9y Xxg P}y — Dx,,01.2:3))

is Dx,,,{1,2):{1,2,3) (vespectively, Dx (2 3).(1,2,3); respectively, Dx 13):1,2,3})-
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We shall denote by UX(T){LQ’E}} the open subscheme of DX(T){17273} deter-
mined by the open immersion

-1
bx(r){1,2,3}

UX(T_Q) Xg Up — X(r—2) XK P}( — DX(T){1,2,3} .

For simplicity, we shall write bg)(1,23) (respectively, Upyg,2,33) instead of
bx,,){1,2,3} (respectively, U X(T){l’zg}) when there is no danger of confusion.

Lemma 1.19. Let r > 3 be a natural number. Then the isomorphism
biryf1,2,3) D( ){1,2,3} = X(r—2) XK Pl extends to a unique morphism of log

schemes D( Y23 — X;?Z) X P of type N.

Proof. 1t is immediate that if b(y1,23) extends to such a morphism, then
it is unique. Thus, it is enough to show that b1 2.3; extends to such a
morphism.

) ]i)ly Remark 1.13, the morphism D( 123 X;r 9) XK P} determined
y the composite
log via P 11990 (12,31 1o WD o
D( ){1,2,3} - D(rg iy . Xp g2) (%)

and the composite

b(r){1,2,3} .
lo ~ T2 ol

D(r§{1,2,3} = Dpypizsy  —  Xp-2) Xk Py = Py
is obtained by “forgetting” the portion of the log structure of D}‘:,f{l 2.3} de-
fined by D 1{1,2}:{1,2,3}> D( 1{2,3}:{1,2,3} and D(r {1,3}:{1,2,3} (1 €. M( {1, 2} (12,3} 1
Dyq2,3y:41,2,33 FD(r){1,3):{1,2,3} ) ) and the portion of the log structure of D(T){1 2,3}
that originates from D(T){l 231 € Xy (e, M(Dy123)) [Dy(10)- There-
fore, the morphism D(T) 2 X gf“f 2 XK IP’Kg determined by the above
composite (*) and the composite

DlO

"log lo,
2z D — Py

(r{1,2,3}

(where D( 1(1.2.3) is the log scheme obtained by equipping D ,){1,2,3; With the
log structure associated to the divisors

D(r){1,2}:{1,2,3}7 D(r){2,3}:{1,2,3} and D(r){1,3}:{1,2,3} - D(r){1,2,3}7

the first morphism is the natural morphism obtained by “forgetting” the
portion of the log structure of D ) that originates from the divisors
other than

{1,2,3}

D(r){1,2}:{1,2,3}7 D(r){2,3}:{1,2,3} and D(r){1,3}:{1,2,3} C D(r){1,2,3}7
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lamong the divisors of the form D, |D(7"){123} [where I C {1,2,---,r} of
cardinarity > 2]] and the second morphlsm is the strict morphism induced
by the natural morphism

b(r){i,z:a} o
D(T){17273} - X(T’—Q) XK ]P)}( _2) P}( )

is an extension of b(y(1,23) of the desired type. O

Definition 1.20. Let » > 3 be a natural number. Then we shall denote by

bl;f (12.3) the morphism

log

log log
— X X5 P
X({1,2,3} (r—2) ~K LK >

obtained in Lemma 1.19. Note that this is a morphism of type N by Lemma 1.19.
We shall denote by £ X {1,2,3} the invertible sheaf on DX(T){LQ’;),} which
corresponds to the morphism bl)‘zg {123} under the bijection ¢ in [4], Theorem

4.13. Note that, by the deﬁnltlon of v and the proof of Lemma 1.19, L, (12,3}
is isomorphic to the conormal sheaf of Dx {123y in X (cf. [4], Remark

4.14). For simplicity, we shall write bl(‘;f{mﬁ} (respectively, Lyq1,2,31) instead

of bl)‘;(r (1.2.3) (respectively, £ X(r){1,2,3}) when there is no danger of confusion.
Lemma 1.21. Let r > 2 be a natural number.
(i) ‘C(T'H){LQ} |U(qn+1){1,2}2 (p(r)i |U(m+1){1,2})*£(7"){172} fori#1, 2.

(ii) L(T+1){273} ‘U(r+1){2,3}2 (p(r)l |U(r+1){2,3})*£(ﬂ{1»2} = (p(r)i |U(r+1){2,3})*£(7“){273}
fori#1,2,3

(m) ‘C(T+1){123} |U(r+1){123}_ (p(TJ |U(r+1){123}) ‘C(T){l»Q} = (p(T)i |U(7‘+1){1,2,3}
V' Loy forj=1,2,3 andi#1, 2,

Proof. First, we prove assertion (i). It follows from the fact that L2
is the conormal sheaf of D12 in X, together with the flatness of p(,y,
that pfr)l./l(r){m} is naturally isomorphic to the conormal sheaf of the closed
subscheme of X,y obtained as the fiber product of

Dy,

l‘sm{l,z}
P@ryi

Xy —— Xpy -

Thus, by Proposition 1.12, (iii), and the fact that £ 41){1,23 is the conormal
sheaf of D(,41)1,2y in X(,11), together with the fact that the intersection of

19



Dg11y1,2y and D(,y1)(1,2,43 is contained in D(,41)(1,2) \ Ur4+1){1,2}, the restric-
tion Ofp?r)iﬁ(r){lﬂ} to Ug41yf1,2y 1s naturally isomorphic to £ 41y41,2) |U(T+1){1,z}-
This completes the proof of (i).

Assertions (ii) and (iii) follow from a similar argument to the argument
used in the proof of (i). O

2 Reconstruction of the fundamental groups
of higher dimensional log configuration schemes

We continue with the notation of the preceding Section. Let ¥ be a (non-
empty) set of prime numbers, and [ a prime number that is invertible in K.
(Thus, it makes sense to speak of ¥-integers.) Then we shall say that X is
K-innocuous if

o the set of all prime numbers or {l} if p=0
n {l} ifp>2.

We shall fix a separable closure K*® of K and denote by Gi the absolute
Galois group Gal(K*®/K) of K. Moreover, we shall denote by A the maximal
pro-X quotient of Z(1).

Definition 2.1.
(i) Let r be a positive natural number. We shall denote by Hl)‘}i) the
quotient of (X é?)g) by the closed normal subgroup

Ker(m(Xéf)g X ¢ Ksep) N ﬂ.l(XéfrJ)g X Ksep)(E))

and write IIx for Hl)?i). For simplicity, we shall write Hl(:ﬁ; instead of

I . :
I1 ;;g) when there is no danger of confusion.
”

(ii) Let r > 2 be a natural number, and [ a subset of {1,2,--- 7} of
cardinality > 2. We shall denote by Hl)‘}i) ; the quotient of ﬂl(Dl)?i) )
by the closed normal subgroup

Ker(m (DY? | xx K°P) — m(DYE | xx K°P)®).

For simplicity, we shall write Hl(ffl instead of Hl)?i) ; when there is no
danger of confusion.
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(iii) We shall denote by ITY ® the quotient of 7 (P'%%) by the closed normal
subgroup

Ker(m (P8 x ¢ K°P) — my (P8 x ;o K°P)®))

For simplicity, we shall write H%ng instead of H%P?Ig( when there is no
danger of confusion.

Definition 2.2. Let » > 3 be a natural number. We shall denote by gkgi) (2)
the graph of groups defined as follows:

log log log
HX(T){1,2} HX(T){1,2,3} Hx(r){2,3}

GaE)=( o —uy e —py e

[P

Here, {1} is the trivial group; the symbols “e” (respectively, “—") denote
the vertices (respectively, the edges) of the underlying graphs; and the group
that lies above a vertex (respectively, below an edge) denotes the group that
corresponds to the vertex (respectively, edge). We shall denote by Him the

profinite group

. 1o, lo, lo,
1£H(Hxi){1,2} — {1} — Hxi){m,g} — {1} — HXi){Q,?)}) )

where the inductive limit is taken in the category of profinite groups. For
simplicity, we shall write gi;’;g(z) (respectively, II7 ) instead of Q;?(gr)(Z) (re-
spectively, H%m) when there is no danger of confusion.

Definition 2.3. Let G be a group. Then we shall denote by G, the graph

of groups whose underlying graph has one vertex that corresponds to G and
no edges.

Definition 2.4. Let r > 3 be an integer.

(i) We shall denote by
75 () 0% (%) — (1% ),

(cf. Definition 2.3) the morphism of graphs of groups determined by

log

the morphisms Dl;()i)] o X(lff)g (I ={1,2}, {2,3}, and {1,2,3}). For
simplicity, we shall shall write f(lf)g(Z) instead of f;?i : (2) when there is

no danger of confusion.
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(i) Let I ={1,2}, {2,3}, or {1,2,3}. Then, by the definition of QX( )( )
we have a natural morphism of graphs of groups

lo lo
We shall denote this morphism by 5%‘:)3}.

First, we will show the following theorem.

Theorem 2.5. For a set of prime numbers ¥ (which is not necessary K-
log

innocuous), f,¥(X) induces a surjection H(gr) — Hl(‘;f.
Proof. First, we prove the assertion in the case where ¥ is the set of all prime

. : log log log log
numbers. Since the morphism p( \Dto% W Ayia3y - D( Y2.3) X(T N
is a morphism of type N, the comp051te

g . lo.
X 12,3} Hg via f("“)g %) log via p("“ 13 Hlog

log
II o — g (r1)

(r){2,3}

is surjective ([4], Lemma 4.5). Thus, the morphism

g log
Gy — M2y
induced by the composite of pl((ﬁ 13 © f(lf)g(Z) is surjective. In particular, it
is enough to show that the image of the morphism H(g) — Hl(()% induced
by flog( ) generates the kernel of the morphism H(Of — Hl(o ) induced
by p( 13- Let 7% — X; ¢ . be a strict geometric point of X " such

that the image of the underlymg morphism of schemes of 7'%¢ — Xé;’g N

lies on U_1)(1,2y- Then it follows from Proposition 1.7 that the kernel of
the morphism Hl(of — Hl(og induced by plog 13 15 generated by the im-

age of the natural morphism 7 (X;‘;)gilog) — HI(O%, where X% is the log

(ryes
scheme determined by the base-change of pi% .. : X Ef)g — Xéog )y via T8 —

(r—1)3
log log
XEE . Lot D% oy

mined by the base-change of P

log
(r){1,2,3}z'°8
lo; lo; .
g D( ?{1 2 — X(rg N (respectively,
log log log —log log log
PeEas o, Pz = Xe 1>) via T = X% DSz s

log log log log .
fiber product Dy, gyzios X xiox Doy 2 ayaos (5 Diryga apaon Dy 2

G8  the graph of groups deﬁned by

(T.)$log

(respectively, D ) be the log scheme deter-

log ‘Dlog

the

log log
™D 1 2ytos) ™D (1,2,3y7108)
[ ]

log ) 7
(r){1,2}:{1,2,3}zlog

lo;
Giryrios = (

_7r1(D
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and m(g ) the group definied by

( log

hm(m(D log

lo
(m{1,2}z o) < (D

log
(m{1,2}: {1,2,3}9010&) - 7T1(D

(n.2ayzes))

(where the inductive limit is taken in the category of profinite groups). Then

the natural strict closed immersions D( ?{1 pyzior — X (lo)g g and Dlof{l 2,3)5

Xéo)g e (nOte that, by construction, the underlying schemes of Dtof{l 2)ios

and D' are the irreducible components of the underlying scheme of

(){1,2,3}7'8
Xlos ) induce a morphism of graphs of groups Ggle . m (X %8 oe)e SUCh

(T‘)Elog ( )—log ( ) log
that the following diagram commutes:
lo lo
g(r)gflog —_— 7T1 (X(r)gflog ).

| |

lo lo;
Gy (2) — (ILG)e -
11%5()

Now since the underlying schemes of D'eg and D' are the

(m{v,2yz'e (r{1,2,3}z'8

irreducible components of the underlying scheme of X (Yo if we naturally

regard Q’ pygiox 85 & graph of anabelioids (cf. [10]), then the underlying graph

of the graph of anabelioids determined as the pull-back of a ket covering

ylog _, Xéo)g,log of Xlo)g,log via the morphism Qlo)g,log — ﬁl(Xlog )e cOIN-

r)zios
cides with the dual graph of the pointed stable curve Y;eq. Thus, it follows
that m(glogilog) — m (Xé‘;)gilog) is surjective. Therefore, since the image of

(r)
™ (Xlog

o )—1og) — Hl(()% generates the kernel of the morphism Hl(‘;% — Hl((;g; ) in-

log

o8 the image of H(T) in H( ) via the morphism induced by

(r—-1)3»

1°8(%)) generates the kernel of the morphism 1% — II°% . induced by
(r) (r) (r=1)

pl((;g 13" This completes the proof of the desired surjectivity in the case where
. is the set of all prime numbers.
In the general case, the assertion follows immediately from the assertion

in the case where X is the set of all prime numbers. O

duced by p1

Remark 2.6. Theorem 2.5 can be regarded as a logarithmic analogue of [7],
Remark 1.2.

In the rest of this Section, we assume that

Y is K-innocuous.
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Next, we prove fundamental facts concerning the fundamental groups of
the log configuration schemes.

Lemma 2.7.

(2)

(4)

(iid)

The natural morphism Ugy — X(lff)g induces a natural isomorphism

T (Upy)® = Hl(‘;f, where 71(Uqy)®) is the quotient of m1(Uyy) by the

closed normal subgroup

Ker(m (Upy xg K°F) — 1 (Upy Xk Ksep)(z))-

The natural morphism U123 — Xéf)g X K Plf‘}g mduces a natural iso-
morphism 7T1(U(r){172’3})(2) . Hl((;f X G Hlﬂfg, where 7T1(U(r){172’3})(2) is
the quotient of m(Uqpyp,2,3y) by the closed normal subgroup

Ker(m (Upyn,23r Xx K°) = 1 (Upy2.3) Xk Ker) 3y

Let 1 <i <r+1 be an integer, and T — Xy a geometric point of X,
whose image lies on Uy. Then the cartesian diagram

Xlog

XXlogf — E

(r+1) ()
log log
——
Xt — Xy
p(r)i
induces the following exact sequence:
lo,
via p(r)’L

L — m(Xhy e DY — gk, — I — 1.
For a profinite group T (respectively, a scheme S), we shall denote by
S(T) (respectively, Sg) the classifying site of T, (i.e., the site defined by
considering the category of finite sets equipped with a continuous action
of T' [and coverings given by surjections of such sets]) (respectively, the
¢tale site of S). Then we have natural morphisms of sites

(Ur))et — S(wl(U(lf)g)(Z)) . S(Hl(?,%).

Let A be a finite Hl((;%—module whose order is a X-integer, and n an
integer. Then the natural morphisms

H™ (T35, A) — H™ (m (U5)®), A) — HE (U, Fa)

induced by the above morphisms of sites are isomorphisms, where F 4
is the locally constant sheaf on U,y determined by A.
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(v) Let A be a finite I1°% %, I1%%-module whose order is a S-integer, and
(ry XGr Hp
n an integer. Then the natural morphisms of sites

lo lo lo
Umr2sp)ee — S(WI(U(r)g{Lz,s})@)) - S(H(r% Xy 1p*)
induce isomorphisms

Hn(Hl(?n%XGKnlugga A) — Hn(ﬂl(U(lfﬁg{Lz,:z)})@)a A) = Hg(Uey23), Fa)

where F 4 is the locally constant sheaf determined by A.

Proof. First, we prove (i). It is immediate that we may assume that K
is separably closed. Let V' — U be a Galois covering whose order is a

Y-integer (i.e., a Galois covering determined by an open normal subgroup
of Wl(U(lf)g)@) = Wl(U(lf)g)(E)), Y — X( the normalization of X, in V, and
7 — X(;) a geometric point over the generic point of an irreducible component
of D(yy = Xy \ Uy € X(r). Then it follows from the Galoisness of V' — U,
and the fact that the order of V' — U,y is prime to p (whenever p > 2)
that the base-change Y x x, Spec Ox ,, 5 — Spec Ox,, 5 is a tamely ramified
covering (along the unique closed point of Spec OX(r)ﬁ)' Thus, by the log
purity theorem ([8], Theorem 3.3. cf. also [4], Remark 1.10), ¥ — X,
extends to a ket covering Y1°¢ — X éf;g In particular, Wl(U(lf)g)(E) — Hl((;“)g is
injective, hence an isomorphism.

Next, we prove (ii). By [4], Proposition 2.4, (ii), the natural morphism
T (X é?)g X P%) — my (X é?)g) X, T (P'%) is an isomorphism. Moreover, it
is immediate that we may assume that K is separably closed. Therefore, by

taking pro-X completions, (Xéf)g X PEY®) 5 (7 (ng)g) x i (PE)) ) 5

Hl(:% X H]l}f €. On the other hand, by a similar argument to the argument used
in the proof of (i), we obtain an isomorphism 71 (Ugy(1233) ) — wl(X(lf’;g X
P'%)®) . This completes the proof of (ii).

Next, we prove (iii). To prove (iii), we may assume that K is separably
closed field. Moreover, if ¥ is the set of all prime numbers, then this follows
from [7], Lemma 2.4, together with (i). Thus, we may assume that > = {l}
for a prime number [ which is invertible in K. By [12], Proposition 2.7, we
have an exact sequence

1 — 7T1<U)(2) — 7Tl<U(r+1)>(l) — m(Uy) — 1,

where U is the interior of X éfil) X xlos 7, and the profinite group 7 (Uy1))")

is the quotient of 71 (U(;41)) by the kernel of the natural surjection

m(U) — 7T1(U)(2) )
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Now, by a similar argument to the argument used in the proof of (i), the group
71 (U)®) is naturally isomorphic to Wl(Xé:«gH) X 10 7)), By the exactness
(r)
of
via pl(c;%i

1 — m(U)® — m(Upsr)) —" m(Uy) — 1,

it is enough to show that the outer representation
T (Upy) — Out (7 (U)®)

induced by the above sequence factors through ;(U,))® ([1], Proposition
3). On the other hand, if we denote by U®* a (unique) compactification of
U, then the following hold:

(i) If we denote by Out*(m;(U)®)) the subgroup of Out(r; (U)*)) whose
elements preserve the kernel of the surjection 7, (U)®) — 7 (UP*)®)
then the outer representation 71 (U) — Out(m; (U)®) factors through
Out*(m1(U)®). (This follows from the existence of the “compactifica-

3 7
tion” of p(yren [,

p(r)v"+1‘U(,r+1) Xpr(r+1)7‘+1‘U(,’,+1)

Utr+1) Uy xx X
p(’l‘)’l‘+1|U(r+1)J/ lprl
Ut — Ugy -)

(ii) The kernel of the natural morphism
Out™(my (U)™)) — Aut((m (U) ™))
is pro-X. (This follows from [7], Lemma 3.1, (i).)
Therefore, it is enough to show that the natural representation
1 (Ury) — Aut((m (UP)))

induced by the above outer representation factors through Wl(U(T))(E). Now
this is immediate. This completes the proof of assertion (iii).

Next, we prove (iv). The assertion that the first morphism is an isomor-
phism follows immediately from (i). Let Z — X,y be a geometric point of
X whose image lies on Ug,). Then, by considering the Hochschild-Serre
spectral sequence ([11], Theorem 2.1.5) associated to the exact sequence ob-
tained in (iii)
via pl(?%r o

N Hlog 1

(r)

lo;
l— 77— H(Til)
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(where m = m (X gfil) X xlos 7)*)) and the Leray spectral sequence associated
to the morphism p(),41 |U(r 1> We obtain the following morphism of spectral
sequences:

EPY —— HP(IT%, He(m, A)) = HPFI(ITE ) A) — Erta
E2p’q p— Hgt(U(r)aRq(p(r)T-i-l |U(T))*FA) — ngq(U(r_A,_l),fA) p— El ptq .

Now, by considering the “compactification” of p(y,41 | Uiy

p(r)v"+1‘U(,r+1) Xpr(r+1)7‘+1‘U(,’,+1)

U1 U Xg X
p(’l‘)’l‘+1|U(r+1)J/ J/pl"l
Ut — Uy ;

it follows that the sheaf R?(p(,41 |U(r))*F 4 is locally constant and con-
structible ([2], Corollary 10.3); moreover, the Il 1)-module (RY(p(yr41 |v,,
)«Fa)z is naturally isomorphic to HY(U, Fa |v) ([2], Theorem 7.3). Therefore,
it is enough to show that the natural morphism
Hn(ﬂ-vA) - Hgt(U7 Fa |U)

is an isomorphism, where U is the interior of X g?il) X Xo 7. Thus, one then
verifies immediately that it is enough to verify that every étale cohomology
class of U (with coefficients in F4 |7) vanishes upon pull-back to some (con-
nected) finite étale Y-covering V' — U. Moreover, by passing to an appro-
priate U, we may assume that F4 |y is trivial. Then the vanishing assertion
in question is immediate (respectively, a tautology) for n = 0 (respectively,
n = 1). Moreover, the vanishing assertion in question is immediate for n > 3
by [2], Theorem 9.1. If U is affine, then since HZ (U, F4 |y) vanishes for
n = 2 ([2], Theorem 9.1), the assertion is immediate. If U is proper, then it
is enough to take V' — U so that the degree of V' — U annihilates A (cf.,
e.g., the discussion at the bottom of [2], p. 136).

Finally, we prove (v). The assertion that the first morphism is an isomor-
phism follows from (i). Moreover, by a similar argument to the argument
used in the proof of (iv), the second morphism is also an isomorphism. O

Remark 2.8.

(i) By Lemma 2.7, (iv), (v), together with a similar argument to the argu-
ment used in [9], Lemma 4.3, any invertible sheaf on X Ef)g or X éf;g X P8
satisfies the condition (x) in [4], Proposition 4.22.

27



(ii) By (i) and Lemma 2.7, (iv), (v), the equivalence class of the extension
of Hl(‘;% (respectively, Hl((;f X, TI%) associated to an invertible sheaf
L on X,y (respectively, Xy xx Pk) (cf. [4], Definition 4.23) depends
only on the (étale-theoretic) first Chern class of £ [y, (respectively,

L |U(r)x «Up)- In particular, for example, the extension

log

lo 4r31){1,2} o
1—A— I8, — 05— 1

of Hl(‘g by A (i.e., the extension of Hl((;% associated to <a(:«£r1){1,2}>*£(r+1){1,2})
is isomorphic to the extension of Hl((;‘? by A associated to the invertible
sheaf (a(ri1){1,2})*(p(r)i ‘D(r+1){1,2}>*<£(7‘){172}) (Z 75 1, 2) (Cf. Lemma 1.21,
(i)

Lemma 2.9.

(i) Let r > 2 be an integer and 2 < i < r an integer. Then the following
diagram s cartesian:

. log
VI& P ()1

log log

Heipsy — Hopy
. lo. . lo;
via “(ril){u}l l“a a0y

log log

Oey  —— Oy
. log
Via P.” 1y,

(it) Let r > 2 be an integer. Then the following diagram is cartesian:

1.

log V18 P(ry1 log

Hries — oy
. lo. . 1o
via “(rg+1>{2,3}l l“a a2y

Hlog Hlog

(r) . log (r=1) "
via p(r—l)l

(ii1) Let v > 3 be an integer and 3 < i < 1 an integer. Then the following
diagram is cartesian:

i log
V1A P(ryit1

log log
Hoines = Hees
. 1 . 1
via a(‘:‘il){?,?)} J{ J/Vla a/((”)‘%{2y3}
log log
Moy ——— 7y

log

viap,” ),
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(iv) Letr > 2 be an integer, and j =1, 2, or 3. Then the following diagram

18 cartesian:
. log
VI3 Py

log log
Uoinpesy  — Upjuy
. 1 . 1
via b(ﬁn{l,w}l l“a 51,2y
] ] 1
H((;gin X G Mp? —— H((;gq) .
via pry

(v) Let r > 3 be an integer and 2 < i < r — 1 be an integer. Then the
following diagram is cartesian:

. log
V& Pyt

Hlog Hlog

(r+1){1,2,3} (r){1,2,3}
. 1o . 1o
via bS5z l l“a b1.2.3)
log log log log
L.~ 1) Xay 1p ") Xay 1™

via P(r—2)i X id]plog

Proof. First, we prove assertion (i). By Remark 2.8, (ii), the extension

via al%8
l—A— Hl((;il)u 2} 4 Hl((;% — 1

of Hl(‘;f by A is isomorphic to the extension of Hl((;% associated to

—1 * *
(a(r+1){1,2}) (P ID(H—I){I,Q}) Ly1,2)
(j # 1, 2). On the other hand, by the commutativity of the diagram

“r+n {2} O(r41){1,2}
Xy —— Diynpzy — X+

p(r—l)zi J{ J/p(r)i-kl

Xe-1y ——— Deopzy —— Xp
“r){1.2) O(r){1.2}
(cf. the definition of “a.(1,2;” in Definition 1.15) implies that
(a(:,il){m})*(p(r)iﬂ |D(r+1){1,2})*£(r){1,2} is naturally isomorphic to
pzkr—nz‘(a(;;{l,z})*E(r){LZ}- Therefore, the fiber product of

log
!

. log
l“"“ %(ry{1,2}

Hlog Hlog
O T =
V1A P21y
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is isomorphic to the extension of Hl((;% associated to (a(;il){m})*(p(r)iﬂ |Deriny 12y

) Lryg1,2y; thus, by Lemma 1.21, (i) (cf. also the argument in Remark 2.8,
1(?“il){l,Z}'

Assertion (ii) (respectively, (iii); respectively, (iv); respectively, (v)) fol-
lows from a similar argument to the argument used in the proof of assertion
(i), Lemma 1.21, (ii) (respectively, (ii); respectively, (iii); respectively, (iii))
(cf. also the argument in Remark 2.8, (ii)), together with the commutativity
of the following diagram:

(ii)), this fiber product is isomorphic to II

“r+1{2.3} O(r41){2,3}
Xy Dy ——— X+

p(r—l)lJ/ l J/p(r)l

Xp—1)y ——— Duppzyy —— X
“(r){1.2} O(r){1,2}

(cf. the definitions of “ag)(1,2y” and “a(y)2,3y” in Definition 1.15) (respec-
tively,

“r+1){2.3} O(r41){2,3}
Xy —— Diynpesy —— X+

p(r&)zi l J{p(r)¢+1

X1y ——— Dupypsyy ——  Xp
“(r){2,3} O(r){2,3}

[cf. the definition of “a(){2,3)” in Definition 1.15]; respectively,

b(r+1)N{1,2,3}

S(r 2,
Xr—1) XK P}( — D23} AR LN X(rg1)
prlJ/ l lp(f)j
Xr-1) —  Dppz — Xp,

“(r){1.2} O(r){1,2}

[cf. the definitions of “a(r1,23” and “buyq1,2,3)” in Definition 1.15 and Defi-
nition 1.18]; respectively,

b(r+1)N{1,2,3}

5
1 (r+1){1,2,3}
X(r71) XK PK A — D(r+1){1,2,3} E—

X@+41)

P(r72)¢Xidp}< J J Jp(r)wz

1
Xe-oy %k P ——— Diypasyy ——  Xp
br{1,2:3) O(r){1.,2,3}

[cf. the definition of “b(.)f1,2,3)” in Definition 1.18]). O
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Lemma 2.10.

(i) Letr > 2 be an integer, and I = {i,1+1} (i = 1, 2). Then the following
diagram is cartesian:

. log
V18 PL (1) i1

log log
_
ey efe)
via al%8 via a!

(r)I (2){1 2}
log

Ooly ——— Ix.

via pr

(7‘ 1)

(i) Let r > 3 be an integer. Then the following diagram is cartesian:

via pr

log (T)l 2 log
X o))
via b(r){1 5 S}J, J{Vla a(2){1 2}
O% ) %o I —— I8, ———  lx.

pri via pr(r 1

Proof. Assertion (i) (respectively, assertion (ii)) follows immediately from
Lemma 2.9, (i), (ii) (respectively, (i), (ii), and (iv)), by induction on r. O

Definition 2.11.

(i) Let » > 2 be an integer, and [ = {i,i + 1} (i = 1, 2). Then, by
Lemma 2.10, (i), the morphism Hlog Hlog _,, induced by al)?i) I

and the morphism Hl)‘}i) ; = HlX {12} mduced by er( il induces

Hl)?i,l) XTIy HIOg {12} We shall denote this

NE For simplicity, we shall write a( ) ; instead of

~

. . 1
an isomorphism Iy Og =
isomorphism by oo o

(r
1
a ;g% 1 when there is no danger of confusion.

(ii) Let » > 3 be an integer. Then by Lemma 2.10, (ii), the morphism

lo; lo . .
HX%T){LQ,E.} — T, Xex Iy induced by bX {123 and the morphism
Hl)?i) (1235 — 1_[l {12} mduced by pr'y X 12 induces an isomorphism
Hl;gi) (1.23) = 1'[10g X Gy Hl)?% Hl;gi) (1.2- We shall denote this iso-

morphism by Bls X For snnph(:lty, we shall write ﬁ }1.2,3) instead

{123}
of g8 X {1.2,3} when there is no danger of confusion.
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Definition 2.12. Let % = 0, 1 or co, and D C m;(P%#) the decompositon
group at * € P} (well-defined up to conjugation by an element of m; (IP’lfég)).
Then we shall refer to the quotient of D by the kernel of the composite

D — m (B¥) — IIg*
as the pro-(X) decomposition group at * € Pl

Next, we will define the collection of data used in the reconstruction
of the fundamental groups of higher dimensional log configuration schemes
performed in Theorem 2.16 below.

Definition 2.13. Let » > 2 be an integer.

() We shall denote by Dx (%), or Dx,,(¥) the collection of data consisting
of

e the profinite groups

log log log .
HX(2)7 HX(Q){LQ}’ Hx, GK, and H]P’K7

e the morphisms

Px A
lo, 1 .
X%) X (Z = 17 2)7
via §
log X(2) {12} log
X(Q){LQ} X(g) 7

and the morphisms induced by the respective structure morphisms
HX — GK7
Hllpf’i — Gk ; and
e the subgroups
log log
determined by the pro-(X) decomposition groups @lfgg* at * € PL
(* =0, 1 and o0).

(ii) We shall denote by Dx,,(¥) the collection of data consisting of
e the profinite groups

lo; lo; lo
HXi) (1<k<r+1), HXi){l,Q}’ Gk, and IIp% ;
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e the morphisms

log
abx i
k—1
Hl)(;g (k—1) Hlog
(k)

VL 2<k<r+1,1<i<h),

via a'o®
X(2){1,2}

log x
)

X(2){1,2}
and the morphisms induced by the respective structure morphisms
HX — GK7
Hlﬂflg( — G ;

e the composites

log -1

(axm 2y via 6108
'8 xp. 1798 EAEN I1'°s Kot log
Xy THx 22X (g {1,2} Xeryn{l,2} Xr+1)

(where the morphism implicit in the fiber product Hl;i) — Ilx is
. via prl;g(; )1
og r

Xo  — Hx),

1 —
O aa)!

Hlog log ~ log

. log

y - via 6X(r+1){2’3}
—

Xy Mx HiX(g){1,2} Xr+1){2,3}

log

X(r+1)

whnere € 1mor 1S 1MMplic1t 1n e €er produc — x 1S
(where th phism implicit in the fiber prod tng‘;i) My i

My, — 1 x) and

1o —
(ﬁX(gr){l,Q,S}) ! via 5log
log log log - log X1 (123} o0
- e
HPK X G HX(TA) X1Ix HX@){LQ} HX(T+1){1,2,3} X(r41)

(where the morphism implicit in the fiber product Hl)‘}i_l) — Iy

via prlog
X(p—1)l

is Hl)?i,l) ITy); and
e the subgroups
1 1
D C gy

determined by the pro-(X) decomposition groups @?g* at x € P
(* =0, 1 and o0).

33



(iii) We shall denote by D)g((r) (32) the collection of data consisting of

e the profinite groups

g log log log .
HX(,,,+1)’ HX(k) (1 S k: S T); HX(Q){l,Q}’ GK, and H]PK 3

e the morphisms

. log log
via pyt ofy® (B
g (r) (r) log .
X — Iy, (1<i<r+1)

log

[lor G s 9 ko 1< < k
X X (k1) 2<k<r 1<i<k)

via a'o®
X(gy{1,2}

log %
)

X2){1,2}

and the morphisms induced by the respective structure morphisms
HX — GK7
Hlﬂflg( — G ;
e the composites

1 _
(ay® {1,2}) ! . Glog
HlOg HlOg (r)N log via 6X(r+1){1’2} g
X —_— —
Xy THx HX(g){1,2} Xer+{l,2} X(r41)

whnere € mor 1S 1MmMplicit 1n e €er produc — x 1S
(where th phism implicit in the fiber prod tng‘;i) My i

. via prl;(’% )1
og T
Xo, I,

1 _
(O‘)?f ){2,3}) ! ia 59108
T via
log log ~ log X(r+1)12:3} g
II II —

X —
X(r) Ix X@{1,2} Xr41)12,3} X(r+1)

whnere € mor 1S 1MMplicit 1n e €er produc — x 1S
(where th phism implicit in the fiber prod tHI;;i) Iy i

log -1
(5;((”{1,2,3}) via 69
1 ~
I og « Cx Hlog « Hlog Hlog

Pr X1y TIX X0 (1,2} Xer+1){1,2,3}

(where the morphism implicit in the fiber product Hl)‘}i_l) — Iy

log
X(T+1){1,2,3} G



e the subgroups

D C T

determined by the pro-(X) decomposition groups @
(* =0, 1 and o).

at x € Pk

K %

In the following, let Y be a smooth, proper, geometrically connected
curve of genus gy > 2 over a field L, and IP’lLOg the log scheme obtained by
equipping P} with the log structure associated to the divisor {0, 1,00} C PL.
Moreover, we shall fix a separable closure L*® of L and denote by G, the
absolute Galois group Gal(L*® /L) of L.

Definition 2.14. Let > 2 be an integer. Let Xy be a (non-empty) set of
prime numbers that is L-innocuous.

(i) We shall refer to isomorphisms

log

(k) C[es log — .
1
gbnﬁm} . Tqlog ~  rylog
(1) T X (o {1,2} Yo {1, 2} ;
G . ~ )
¢qy: Gk — G and

11 lo ~ lo
‘b(f; gy — Iy
which are compatible with the morphisms and subgroups given in the
definitions of Dx(X) and Dy (Xy) as an isomorphism of Dx(X) with

Dy(zy).

(ii) We shall refer to isomorphisms

log

Uy Ires ™, yles .
Qb(r X(k) — Hy(k) (1<k<r+1)
I—Ilog
@){1,2} . 1ylog log
Sy TR ey — TV 1y
(b(ci) :Gxg — G ; and

log N
Oy T T

which are compatible with the morphisms and subgroups given in the
definitions of Dx  (¥) and Dy, (Xy) as an isomorphism of Dx,,, (%)
with D)/(T‘) (Ey)
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(iii) We shall refer to isomorphisms

glog

(r+1) . 176 N 1Y .
(b(r) HX(r+1> HY(rH) ’
ngog ) N )
(b( ) ™ Hog H;/)(i) (1 <k< T)Q
GIT % ~
2{1,2} , ylog log
¢(7") X){1,2} HY(Q){l 2}

gb(gr)G :Gxg — G ; and
GIIpe log ~ lo
Py g — Mgy
which are compatible with the morphisms and subgroups given in the
definitions of D%(T)(E) and Dg (Zy) as an isomorphism of DX( )(E)
with, D}g,m(Ey).

Proposition 2.15. Let r > 2 be an integer, and Xx (respectively, Yy) a
set of prime numbers that is innocuous in K (respectively, L). Let qb(gr)

D)g((r)(EX) = D%T)(Ey) be an isomorphism. Then the following hold:

(i) There ezists an isomorphism F§1(¢(g7,)) : Dx(,_,,(Ex) =5 Dy, _,,(Zy).
Moreover, the correspondence

¢(gr) = F—gl(gb(gr))

is functorial.
log
(i) If qb 0 X(r+1> = H%TH) induces an isomorphism of the kernel of
the morphzsm H‘j}(rﬂ) — Hl)‘zi induced by flog ,(2) with the kernel
of the morphism H%Hl) — Hl;)i induced by flog ( ), then there
exists an isomorphism Fg(¢%r)) : DX(T)(ZX) = D)/(T)(Ey). Moreover,
the correspondence )
¢(gr) = Fg(gb(gr))
s functorial.
Proof. First, we prove assertion (i). If we write

. o8 do gHIOg
F9 (g0, Y def b " (1<k<r),

. Q'H
F9, (¢, )" Soa & ¢(r) 2)“2},
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3 def
Fgl(ﬁb(gr))G:QSgG and
T1oe def gnlog
FO (60" < ¢

then we obtain an isomorphism Ffl(gb(r)) of the desired type.
Next, we prove Assertion (ii). We denote by Nx (respectively, Ny) the

kernel of the morphism Hg o Hl)?f o (respectively, H%T — T1los ) in-

+1) Yir+1)
duced by fX(T (2) (respectlvely, Og )(E)). Then, by the assumption, the

log log

g 9

(r+1) g g (r+1)

isomorphism (b I Xty = HYTH) induces an isomorphism gb(r | Ny
log

Nx = Ny. Therefore, the isomorphism gb(( " induces an isomorphism
glog

'r+1) . ~

N —

/N HX( o/ Nx
log
X(r+1)
log

fgil)( )) is surjective (Theorem 2.5), we obtain that qﬁ(““) /N : ;‘}iﬂ) =

g
Iy, _H)/Ny. Since the morphism Hx( .

lo lo
(respectively, H% vy Hy(g ) induced by fX(g+l)( ) (respectively,

1
1% . Therefore, if we write
Yirtn) ’

log
g 1'[1 def g(r+1) . 11log ~ 1tlog
(gb ) (7’) /N : HX(T-FI) - HY(T-H) ’

o log
FI(62,)18 & g0 10 (1< k<),
FG(¢Q ) (2){1 2} dif ¢g (2){1 2}
def
Fg(ﬁb(r))G ¢(7») , and

1o def  GII log

FOT)™ = 0"
then we obtain an isomorphism Fg(¢(r)) of the desired type. O

I

Theorem 2.16. Let v > 2 be an integer, and Xx (respectively, ¥y ) a
set of prime numbers that is K-innocuous (respectively, L-innocuous). Let
Pr—1) : DX(PU(EX) = DY(PI)(EY) be an isomorphism. Then there exists an
isomorphism FY,(¢—1)) : Dg(m(ZX) = D%r)(Zy) such that

F9(F§1($0—1)) = b1y

. . IOg . . .
and, moreover, the zsomorphzsm Ff1(¢(r_1))g(r+1) arises from an isomorphism

of graphs of groups of G Yx) with Q’;?(il)(ily). Moreover, the correspon-
dence

-

1) = F (b))
is functorial.
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Proof. First, we define a profinite groups Hg( e {l2h jiK) and I19

X(ri1) {23}
) as follows:

X(r41){1,2,3}

(respectively, IIY Iy and TIY

Yorrn{l2} Yq1){2,3) Yir+1){1,2,3}

. G def ~log log def ~log
(i) HX(T+1){1,2} = ;(T) XTIy HX (12} (respectively, H {12y = H;}w Iy
1Y°(g2) 0 2}), where the morphism implicit in the ﬁber product Iy, —

IIx (vespectively, Ily,, — Ily) is the morphism induced by prl)?i)l

(respectively, pr?f)l) (cf. Lemma 2.10, (i)).

(ii) T19 o Hlog XL Hle (1.2) (respectively, H

def 1o
Iy g X
Xr+ni23Y {230 Iy
log

HYQ) (1.2)); Where the morphism implicit in the ﬁber product H Xy —
IIx (respectively, Uy, — I1y) is the morphism induced by p1rl)‘§g)2

(respectively, prl;’(grﬂ) (cf. Lemma 2.10, (i)).

G def 1og log log def
(iii) HX(T+1){172,3} gy X My, XHXHX@){LQ} (respectively, 1§ Voun {123} —
H%p?f Xa, Hlyoi ) XTIy Hl;;i) {1,2}), where the morphism implicit in the fiber

product Ilx _,, — Ilx (respectively, Ily, _,, — Ily) is the morphism

)
induced by prl)?iil)l (respectively, prlyo(gril)l) (cf. Lemma 2.10, (ii)).

7

Then we define a profinite group “H‘j}r

: w179 ”
i) (respectively, HY(TH) ) as the

inductive limit of the diagram

g g g
HX(TH){LQ} — {1} — HX(T+1){1,2,3} — {1} — HX(T+1){2,3}
(respectively,
g

— (1) — 1

g
— {1} — 11 Youn(2.3})

IT
Yv(r+1){172} Y('r+1){172»3}

(cf. Definition 2.2, Lemma 2.10). Moreover, for an integer 1 < i <r+ 1, we
define a “projection” ¢x,; : ¢ — Hl)cgi) (respectively, 4y, I

1 Xir+1) X(r+1)
og :
I X(r)) as follows:

(i) Ifi =1 or 2, then we define a morphism q{1 2 X( 2 = Hl)?%) XTIy
lo lo {1,2} | _ 1lo log
Xiy{l,?} — HX%T) (respectively, gy "} - Hy( (12} = Hy(g) 1y 118 Yoy {12} —

Hlyo(gr)) as the first projection (cf. Lemma 2.10, (i)). If ¢ > 3, then we

. {1,2} . ¢ _ trlog log log
define a morphism Ax i HX(rH){LQ} = HX(T) XTIy HX(Q){LZ} — HX(T)
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. 1,2 lo; log lo
(respectively, qﬁ{/ )Z} DI Yo {12} = Hy(gr) H 12y — II gr)) as the

composite
via pl)‘;i_l)i_l xid _jog
Hlog « Hlog X112} Hlog « Hlog
X( ) 115% X(g){l,Q} X(Tfl) Ix X(g){l,Q}
log 1 5
(e X(T){l 2}) log via X(T){l 2 Hlog
r){172} X(r)
(respectively,
via pl;’)(gr,l)i—l Xileog
lo lo 2) lo lo
T sy, T19% TR s s
Yoy Sy H0vg) {12} Yoy Ty Y9 {1,2)
log -1 51
Y(T){l 2}) log via Yir {12} Hlog )
Yim{1,2} Yr)
(cf. Lemmas 2.9, (i); 2.10, (i)).
{2,3} g log log

(ii) We define a morphism X1 HX(T+1){2 5 = HX() XTIy HX(Q){2 3y —
1o . {2 3} 10 lo
Hxi) (respectively, Tyl Hy( (23} = Hy( | X1y H (2.3} — 11 gr)) as
the composite

. log .
via py 1 Xid _jog
Hlog % Hlog (T_l)_)DX(Q){lg} Hlog X Hlog
Xy THx 21X (9 {1,2} Xr—1y T x 21X o) {1,2}
log 1 V1a6
(ox X 1 2))” log (T)m} log
X {12} Xr)
(respectively,
via pY 1)1>< id 1og
HlOg X HlOg ( SN (2){1 2} HlOg X Hlog
Yy Ty g {12} Yir—1y Ty 2y {1,2}
log 1 via 6198
(e Yy 1t 2))” log Yy 11,2} I1os )
Yv(r){1»2} Y(’")
(cf. Lemmas 2.9, (ii); 2.10, (i)). If i = 2 or 3, then we define a
. {2,3} G log log log
;o = X — -
morphlsr{n zx( i Hx(r+1){273} HX(T) Iy HX(Q){LQ} HX(T) (respec
. 2,3 log log log
. = —_—
tively, gy,; I Youn(zay = Wy Xy T o Hy(r)) as the first
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projection (cf. Lemma 2.10, (i)). If ¢ > 4, then we define a mor-

. {2,3} g log log log :
. = X —
p?lS?l X, HX(r+1){273} HX(T) My HX(Q){LZ} HX(T) (respectively,
2,3} . G - Hlog log log .
! = X1y 11 — 11 as the composite
q}/('f)l )/ir+l){273} 3/(r) Iy Y(Q){l,Q} Y'(T)) p
via pl)‘;g i1 xid 1og
Hlog « Hlog =D X(2){1,2} Hlog > Hlog
—
X(T) IIx X(g){2,3} X(Tfl) Ix X(g){l,Q}
log 1 . log
(aX(r){2’3}) log via 5X(7~){273} log
X('r){273} X(?”)
(respectively,
via pI;,)g i—1 Xid _1og
Hlog « Hlog =D Y(2){1,2} log > Hlog
—
Yoy Ty Ty {12} Yiron Ty v {12}
log —1 . log
« ia §
( Y(r>{273}) I1os Y (2,3 I1os )
Yv(r){1»2} Y(’")

(cf. Lemmas 2.9, (iii); 2.10, (i)).

(iii) If ¢« = 1, 2, or 3, then we define a morphism q{1’2’3} 119

X(nyi Xoin{12,3} —
log log log log : {17273} . g _
H]P’KXGKHX(T_I) XHXHX(Q){Lz} — HX(T) (respectively, Uy i HY(T+1){172,3} =
log log log log :
p, ey Iy, >y HY(2){1,2} — HY(r)) as the composite
log log log projection —log log
H]P’}( XGK HX(T,U ><HX HX(Q){LQ} HX(T,D ><HX HX(Q){LQ}
log -1 via 58
CX02) T e X2} og
X('r){lvz} X(")
(respectively,
log log log projection - log log
HPL e HY(r—l) Iy HY(z){lﬂ} HY(r—l) Xy HY(2){1»2}
log 1 . log
a via ¢
( Y(r){l,z}) log Y i62h g )
Y(r){172} Y(’")

(cf. Lemmas 2.9, (iv)) If ¢ > 4, then we define a morphism q}{(l(f);’ -

g _ yrlog log log log .
HX<T+1>{172,3} = p, Xag HX(T_D XTIy HX(Q){LQ} — HX(T) (respectively,

{1,2,3} G log log log log
i’ : = —
qY(T)Z . HY(T+1){17273} HPL XGL HY("“*l) XHY H)/iQ){l’Q} HY(T)> as the
composite
PR log :
1 1 1 Vi plon XPx(_yyi-1 deDlQ?z){l 2} 1 1
og og og ’ og og og
Up, Xy, XmxIlx, 12 Hpye X el ¥y 1)
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_ .l
(ﬁx 11,2 3}) ! via 5)?3){1,2,3}
—

log log
X0 {1,2,3} ’ X(m)
(respectively,
via id_jog ><pl;,)g i—1 Xid _1og
log log log g = v Y(2) 11,2} log log log
g, %6y HY(r—l) XHYHY(z){273} e, %, HY(r—?) XHYHY@){LZ}
1
(ﬁyrﬂl 281" log via oy, Yy (12,3} log
Y {1,2,3} Y
(cf. Lemmas 2.9, (v); 2.10, (ii)).
. {1,2} {23} {1,2,3} . {1,2} {23}
These morphisms qX( jir AX i and qx i (respectively, Qyyir Qv and
{1,2,3}y - log . log
Iy ) induce a morphism HX(rH) — HX(T) (respectively, HY(r+1) Y(r))'
We denote this morphism by ¢x,,i (respectively, qy(r)i).
Next, we define an isomorphism ¢9 : 11, SO0 as follows:
(r+1) (r+1)

(i) we define an isomorphism

g Hg((rﬂ){m} = Hl)?i) xHbeg 1{1,2} Hl)?(gr) XHynlog {12y =
as log Ilog
a7, o
(ii) we define an isomorphism
¢g{2’3} . Hg((r+1){2,3} o Hlogr XHXHIO (12} -~ Hogr Xnyﬂlog =
as log I1log
ﬁb(r@n Xon ¢(r<2>1{)1 2)
(iii) we define an isomorphism
g2 Hg((rﬂ){m,?,} = Hlﬂ;);g( XGx Hl)?i_l) X1 Hl)?i){m}

log log log g
HPL XGp HY(TA) Xy HY(Q){l 2} HY(TH){L273}

as
log log

IT IT
(r—1) (2){1,2}
X .
Plry Xoll_,) Do)

Hlog

gb(rpﬁl) X .G

Pr-1)
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HY(r-H){LQ}

g
HY’(T«FI) {273}



log

g
These isomorphisms gb( G qb 0, >3 and qb G induce an

isomorphism I1 Xorin) = H)g,(wl). We denote this 1som0rphlsm by ¢9.

Then, by the constructions, for any 1 <+¢ < r + 1, the following diagram
commutes:
¢g
g ~ g
X(r+1) HX(T-H)

qX(r)il lqy(r)i

log log
Ilx o) ~ HY(r) :

1_Ilog
(r)
Sy
Therefore, the isomorphisms
” et G . ~ g .
+1(¢(7" 1)) ( S ¢ X(r+1) HY(r+1) !

GII'os def lo ~ lo '
Ffl ((b(r—l)) * (b(r(k) HXi) - HY(i) (1 < k < T)?

g G, 5y def LS TR ~ . T7los :
F(e—n)" 002 = ¢, 207 L, gy — I gy s

def ~

F§\ (¢p-1)99 = ¢ 1) : Gk —> Gp; and
log def lo ~ lo

FJ€1<¢( ) = ¢r 1) HP;% - HPLg

form an isomorphism FY,(¢¢_1)) of D)%m (Xx) with D%T) (3y) of the desired
type. 0

References

[1] M. P. Anderson, Exactness properties of profinite completion functors,
Topology 13 (1974), 229-239.

2] E. Freitag and R. Kiehl, Etale cohomology and the Weil conjecture,
Springer-Verlag (1988).

[3] A. Grothendieck and J. P. Murre, The tame fundamental group of a
formal neighbourhood of a divisor with normal crossings on a scheme,
Lecture Notes in Math. 208, Springer-Verlag (1971).

[4] Y. Hoshi, The exactness of the log homotopy sequence, RIMS Preprint
1558 (2006).

42



[5]

F. Kato, Log smooth deformation and moduli of log smooth curves,
Internat. J. Math. 11 (2000), 215-232.

F. F. Knudsen, The projectivity of the moduli space of stable curves II,
Math. Scand. 52 (1983), 161-199.

M. Matsumoto, Galois representations on profinite braid groups on
curves, J. Reine. Angew. Math. 474 (1996), 169-219.

S. Mochizuki, Extending families of curves over log regular schemes, J.
Reine. Angew. Math. 511 (1999), 43-71.

S. Mochizuki, Topics surrounding the anabelian geometry of hyperbolic
curves, Galois Groups and Fundamental Groups, Math. Sci. Res. Inst.
Publ. 41 (2003), 119-165.

S. Mochizuki, Semi-graphs of anabelioids, RIMS Preprint 1477 (2004).

J. Neukirch, A. Schmidt and K. Wingberg, Cohomology of number fields,
Grundlehren der Mathematischen Wissenschaften 323, Springer-Verlag
(2000).

J. Stix, A monodromy criterion for extending curves,
arXiv:math.AG/0408315.

43



