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Abstract

A matroid-like structure defined on a convex geometry, called a cg-matroid, is
defined by S. Fujishige, G. A. Koshevoy, and Y. Sano in [9]. A cg-matroid whose
rank function is naturally defined is called a strict cg-matroid. In this paper, we give
characterizations of strict cg-matroids by their rank functions.

1. Introduction
A matroid is one of the most important structures in combinatorial optimization. Many
researchers have studied and extended the matroid theory. Dunstan, Ingleton, and Welsh
[3] introduced the concept of a supermatroid defined on a poset in 1972 as a generalization
of the concept of an ordinary matroid ([14]; also see [13] and [10]). In 1980 Faigle [6]
considered a geometric structure on a poset (a special case of a supermatroid), and Tardos
[12] showed a matroid-type intersection theorem for distributive supermatroids in 1990.
A distributive supermatroid is also called a poset matroid. Peled and Srinivasan [11]
considered a matroid-type independent matching problem for poset matroids in 1993.
Moreover, in 1993 and 1998 Barnabei, Nicoletti, and Pezzoli [1, 2] studied poset matroids
in terms of the poset structure of the ground set.

In [9], S. Fujishige, G. A. Koshevoy, and Y. Sano generalized poset matroids by con-
sidering convex geometries, instead of posets, as underlying combinatorial structures on
which they define matroid-like structures, called cg-matroids. For a cg-matroid they de-
fined independent sets, bases, and other related concepts, and examined their combina-
torial structural properties. They have shown characterizations of the families of bases,
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independent sets, and spanning sets of cg-matroids. It is shown that cg-matroids are not
special cases of supermatroids.

They also considered a special class of cg-matroids, called strict cg-matroids, for
which rank functions are naturally defined, and they show the equivalence of the concept
of a strict cg-matroid and that of a supermatroid defined on the lattice of closed sets of a
convex geometry. (See Figure 1.)
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Figure 1: Generalizations of matroids.

The rank functions of strict cg-matroids were defined. And they have shown some
properties which the rank function satisfy. But it was unknown to characterize strict cg-
matroids in terms of rank functions.

In this paper, we give characterizations of the rank functions of strict cg-matroids. Our
main results are as follows. Let Z+ be the set of nonnegative integers.

Theorem 1.1. Let (E,F) be a convex geometry and ρ : F → Z+ be a function on F .
Then ρ is the rank function of a strict cg-matroid on (E,F) if and only if ρ satisfies the
following properties.

(RL0) ρ(∅) = 0.

(RL1) X ∈ F , e ∈ ex∗(X) =⇒ ρ(X) ≤ ρ(X ∪ {e}) ≤ ρ(X) + 1.

(RGE) (Global Extension Property)
For any X,Y ∈ F such that X ⊆ Y and ρ(X) = |X| < ρ(Y ),
there exists Z ∈ F such that X ( Z ⊆ Y and ρ(Z) = |Z| = ρ(Y ).
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Theorem 1.2. Let (E,F) be a convex geometry and ρ : F → Z+ be a function on F .
Then ρ is the rank function of a strict cg-matroid on (E,F) if and only if ρ satisfies the
following properties.

(RG0) 0 ≤ ρ(X) ≤ |X| for any X ∈ F .

(RG1) X,Y ∈ F , X ⊆ Y =⇒ ρ(X) ≤ ρ(Y ).

(RGS) (Global Submodularity)
For any X,Y ∈ F such that X ∪ Y ∈ F ,
ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ).

(RLE) (Local Extension Property)
For any X,Y ∈ F such that X ⊆ Y and ρ(X) = |X| < ρ(Y ),
there exists e ∈ ex∗(X) ∩ Y such that ρ(X ∪ {e}) = ρ(X) + 1.

This paper is organized as follows. In Section 2, we give definitions and some pre-
liminaries on convex geometries, matroids on convex geometries (cg-matroids), and strict
cg-matroids. In Section 3, we give the proofs of Theorem 1.1 and Theorem 1.2, and make
some remarks.

2. Definitions and Preliminaries

2.1. Convex geometries
First, we define a convex geometry which is a fundamental combinatorial structure de-
fined on a finite set. (See [4].)

Definition 2.1 (Convex geometries). Let E be a nonempty finite set and F be a family of
subsets of E. The pair (E,F) is called a convex geometry on E if it satisfies the following
three conditions:

(F0) ∅, E ∈ F .

(F1) X,Y ∈ F =⇒ X ∩ Y ∈ F .

(F2) ∀X ∈ F \ {E}, ∃e ∈ E \ X: X ∪ {e} ∈ F .

The set E is called the ground set of the convex geometry (E,F), and each member of F
is called a closed set. It should be noted that Condition (F2) is equivalent to the following
condition:

(F2)′ Every maximal chain ∅ = X0 ⊂ X1 ⊂ · · · ⊂ Xn = E in F has length n =
|E|.
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Next, we define operators associated with the convex geometry (E,F).

Definition 2.2 (Closure operators). For a convex geometry (E,F), we define τ : 2E →
F , called the closure operator of (E,F), by

τ(X) =
∩

{Y ∈ F | X ⊆ Y } (X ∈ 2E). (2.1)

That is, τ(X) is the unique minimal closed set containing X .

Definition 2.3 (Extreme-point operators). For a convex geometry (E,F), we define
dual operators, ex and ex∗. The first operator ex : F → 2E , called the extreme-point
operator of (E,F), is defined by

ex(X) = {e ∈ X | X \ {e} ∈ F} (X ∈ F). (2.2)

An element in ex(X) is called an extreme point of X .
The second operator ex∗ : F → 2E , called the co-extreme-point operator of (E,F),

is defined by
ex∗(X) = {e ∈ E \ X | X ∪ {e} ∈ F} (X ∈ F). (2.3)

An element in ex∗(X) is called a co-extreme point of X .

2.2. Matroids on convex geometries (cg-matroids)
Let (E,F) be a convex geometry on E with a family F of closed sets. Let τ : 2E → F
be the closure operator of the convex geometry (E,F), and ex : F → 2E be the extreme-
point operator of the convex geometry (E,F).

2.2.1. Bases

First, we give the definition of a cg-matroid.

Definition 2.4 (Matroids on convex geometries). For a convex geometry (E,F) and a
family B ⊆ F , suppose that B satisfies the following three conditions:

(B0) B 6= ∅.

(B1) B1, B2 ∈ B , B1 ⊆ B2 =⇒ B1 = B2.

(BM) (Middle Base Property)
For any B1, B2 ∈ B and X,Y ∈ F with X ⊆ B1, B2 ⊆ Y , and X ⊆ Y ,

there exists B ∈ B such that X ⊆ B ⊆ Y .

Then we call (E,F ;B) a matroid on the convex geometry (E,F) or a cg-matroid for short.
Each B ∈ B is called a base, and B the family of bases of the cg-matroid (E,F ;B).
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The family of bases satisfies the following.

Theorem 2.5 ([9]). For any cg-matroid (E,F ;B), all the bases in B have the same car-
dinality, i.e.,

(B1)′ B1, B2 ∈ B =⇒ |B1| = |B2|.

In [9], Fujishige, Koshevoy, and Sano have shown a characterization of the family of
bases of a cg-matroid by ‘Exchange Property’ as follows.

Theorem 2.6 ([9]). Let (E,F) be a convex geometry and B ⊆ F be a subfamily of F .
Then, B is the family of bases of a cg-matroid on (E,F) if and only if B satisfies (B0) and
(BE).

(BE) (Exchange Property)
For any B1, B2 ∈ B and any e1 ∈ ex(τ(B1 ∪ B2)) ∩ ex(B1) \ B2,
there exists e2 ∈ τ(B1 ∪ B2) \ B1 such that (B1 \ {e1}) ∪ {e2} ∈ B.

2.2.2. Independent sets

We define a family of independent sets for a cg-matroid, similarly as for ordinary ma-
troids.

Definition 2.7 (Independent sets). For a cg-matroid (E,F ;B) with a family B of bases,
we put

I(B) = {X ∈ F | X ⊆ B for some B ∈ B}. (2.4)

Each element in I(B) is called an independent set of the cg-matroid (E,F ;B), and I =
I(B) is called the family of independent sets of the cg-matroid (E,F ;B).

In [9], they have also shown a characterization of the family of independent sets of a
cg-matroid. For a family I ⊆ F , we put

B(I) = {X ∈ F | X ∈ I : maximal }. (2.5)

Theorem 2.8 ([9]). The family I = I(B) of independent sets of a cg-matroid (E,F ;B)
with a family B of bases satisfies the following three properties.

(I0) ∅ ∈ I.

(I1) I1 ∈ F , I2 ∈ I, I1 ⊆ I2 =⇒ I1 ∈ I.

(IA) (Augmentation Property)
For any I1, I2 ∈ I with |I1| < |I2| and I2 being maximal in I,
there exists e ∈ τ(I1 ∪ I2) \ I1 such that I1 ∪ {e} ∈ I.

Conversely, if a family I ⊆ F satisfies the above three conditions, then (E,F ;B(I)) is a
cg-matroid with a family B(I) of bases.
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2.3. Strict cg-matroids
In this subsection, we consider a special class of cg-matroids, called strict cg-matroids.

2.3.1. Independent sets

Definition 2.9 (Strict cg-matroids). Let (E,F) be a convex geometry. If I ⊆ F satisfies
(I0), (I1), and the Strict Augmentation Property (IsA), then we call (E,F ; I) a strict cg-
matroid with a family I of independent sets.

(I0) ∅ ∈ I.

(I1) I1 ∈ F , I2 ∈ I, I1 ⊆ I2 =⇒ I1 ∈ I.

(IsA) (Strict Augmentation Property)
For any I1, I2 ∈ I with |I1| < |I2|,
there exists e ∈ τ(I1 ∪ I2) \ I1 such that I1 ∪ {e} ∈ I.

Theorem 2.10 ([9]). Let (E,F) be a convex geometry. Suppose that a family I ⊆ F
satisfies (I0) and (I1). Then the Strict Augmentation Property (IsA) is equivalent to one
of the following properties.

(ILA) (Local Augmentation Property)
For any I1, I2 ∈ I with |I1| + 1 = |I2|,
there exists e ∈ τ(I1 ∪ I2) \ I1 such that I1 ∪ {e} ∈ I.

(IS) For each X ∈ F , all the maximal elements of I(X) ≡ {X ∩ I | I ∈ I} have the
same cardinality (as subsets of E).

Axioms (I0), (I1), and (IS) are exactly those for what is called a supermatroid [3] when
restricted on the lattices of closed sets of convex geometries. Hence the above theorem
establish the following.

Theorem 2.11 ([9]). The concept of a strict cg-matroid is equivalent to that of a super-
matroid on the lattice of closed sets of a convex geometry.

2.3.2. Rank functions (of strict cg-matroids)

In [9], the rank functions of strict cg-matroids are defined as follows.

Definition 2.12 (Rank functions of strict cg-matroids). Let (E,F ; I) be a strict cg-
matroid with a family I of independent sets. Define a function ρ : F → Z+ by

ρ(X) = max{|I| | I ∈ I, I ⊆ X} (X ∈ F). (2.6)

We call the function ρ the rank function of the strict cg-matroid (E,F ; I). We call ρ(X)
the rank of X for X ∈ F .
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In [9], they studied properties of the rank functions, and they have shown the following
theorems. See Theorem 1.1 for (RL0) and (RL1), and Theorem 1.2 for (RG0), (RG1), and
(RGS).

Theorem 2.13 ([9]). The rank function ρ : F → Z+ of a strict cg-matroid (E,F ; I) with
a family I of independent sets satisfies properties (RL0), (RL1), and (RLS).

(RLS) (Local Submodularity)
For any X ∈ F and e1, e2 ∈ ex∗(X) such that X ∪ {e1, e2} ∈ F ,
if ρ(X) = ρ(X ∪ {e1}) = ρ(X ∪ {e2}), then ρ(X) = ρ(X ∪ {e1, e2}).

Theorem 2.14 ([9]). The rank function ρ : F → Z+ of a strict cg-matroid (E,F ; I) with
a family I of independent sets satisfies properties (RG0), (RG1), and (RGS).

In ordinary matroid theory, both the local conditions (RL0), (RL1), and (RLG), and
the global conditions (RG0), (RG1), and (RGS) characterize the rank functions of ma-
troids. But, for strict cg-matroids, these properties do not characterize the rank functions
of strict cg-matroids. The following example tells us this fact.

Example 2.15 ([9]). Let E = {1, 2, 3, 4}. Consider a tree with a vertex set E and an
edge set {{1, 2}, {2, 3}, {3, 4}} that forms a path of length three. Let (E,F) be the
tree shelling of the tree, i.e., F = {∅, {1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3},
{2, 3, 4}, {1, 2, 3, 4}}. (See Figure 2.) Define a function ρ : F → Z+ as follows: ρ(∅) =
0, ρ({1}) = ρ({2}) = ρ({3}) = ρ({4}) = ρ({2, 3}) = 1, ρ({1, 2}) = ρ({3, 4}) =
ρ({1, 2, 3}) = ρ({2, 3, 4}) = 2, ρ({1, 2, 3, 4}) = 3. Then the function ρ : F → Z+

satisfies both the conditions (RL0), (RL1), and (RLS), and the conditions (RG0), (RG1),
and (RGS). But we have I(ρ) = {∅, {1}, {2}, {3}, {4}, {1, 2}, {3, 4}}, where I(ρ) is
defined by (3.1) in Section 3, and the obtained I(ρ) is not a family of independent sets of
a strict cg-matroid on (E,F).

It was an open problem to give a characterization of the rank functions of strict cg-
matroids.

3. Main Results
In this section, we give the proofs Theorem 1.1 and Theorem 1.2.

First we show the necessary conditions (only-if part).

Proposition 3.1. The rank function ρ : F → Z+ of a strict cg-matroid (E,F ; I) with a
family I of independent sets satisfies the following property.

(RLE) (Local Extension Property)
For any X,Y ∈ F such that X ⊆ Y and ρ(X) = |X| < ρ(Y ),
there exists e ∈ ex∗(X) ∩ Y such that ρ(X ∪ {e}) = ρ(X) + 1.
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Figure 2: A path of length three and its tree shelling.

Proof. Take any X,Y ∈ F such that X ⊆ Y and ρ(X) = |X| < ρ(Y ). Then, from the
definition of the rank function, we have X ∈ I. Let IY ∈ F be an independent set such
that IY ∈ I, IY ⊆ Y , and ρ(Y ) = |IY |. Here X, IY ∈ I and |X| = ρ(X) < ρ(Y ) = |IY |
hold. Hence, from the Strict Augmentation Property (IsA), there exists e ∈ τ(X∪IY )\X
such that X ∪ {e} ∈ I. Since X ⊆ Y and IY ⊆ Y imply τ(X ∪ IY ) ⊆ Y and since
X ∪ {e} ∈ F , we have e ∈ ex∗(X) ∩ Y . Moreover, since X ∪ {e} ∈ I, we have
ρ(X ∪ {e}) = |X ∪ {e}| = |X| + 1 = ρ(X) + 1. Hence the Local Extension Property
(RLE) holds.

Proposition 3.2. The rank function ρ : F → Z+ of a strict cg-matroid (E,F ; I) with a
family I of independent sets satisfies the following property.

(RGE) (Global Extension Property)
For any X,Y ∈ F such that X ⊆ Y and ρ(X) = |X| < ρ(Y ),
there exists Z ∈ F such that X ( Z ⊆ Y and ρ(Z) = |Z| = ρ(Y ).

Proof. Take any X,Y ∈ F such that X ⊆ Y and ρ(X) = |X| < ρ(Y ). We will show
(RGE) by induction on k := ρ(Y )−ρ(X). First, we consider the case when k = 1. Then,
from Proposition 3.1, we get e ∈ ex∗(X) ∩ Y such that ρ(X ∪ {e}) = ρ(X) + 1. Put
Z = X ∪ {e}. Then Z satisfies Z ∈ F , X ( Z ⊆ Y , and ρ(Z) = |Z| = ρ(Y ). Hence
(RGE) holds for k = 1.
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Next, suppose that (RGE) holds for k = n(≥ 1), and consider the case when k =
n + 1. From Proposition 3.1, as well as when k = 1, we get e ∈ ex∗(X) ∩ Y such
that ρ(X ∪ {e}) = ρ(X) + 1. Put X ′ = X ∪ {e}. Then X ′ ∈ F , X ′ ⊆ Y , and
ρ(X ′) = |X ′| = ρ(X) + 1 < ρ(Y ) hold, and also ρ(Y ) − ρ(X ′) = n holds. Using the
assumption of induction, we can easily see that (RGE) holds for k = n + 1.

Thus the Global Extension Property (RGE) holds.

Next, we show the sufficient conditions (if part).
For any convex geometry (E,F) and any function ρ : F → Z+, we put

I(ρ) = {X ∈ F | ρ(X) = |X|}. (3.1)

Theorem 3.3. Let (E,F) be a convex geometry. Suppose that a function ρ : F → Z+

satisfies properties (RL0), (RL1), and (RGE). Then (E,F ; I(ρ)) is a strict cg-matroid
with the family I(ρ) of independent sets.

Proof. We will show that I(ρ) satisfies properties (I0), (I1), and (IsA).
From (RL0), we have ρ(∅) = 0 = |∅|. Hence ∅ ∈ I(ρ) and (I0) holds.
Take I1 ∈ F and I2 ∈ I(ρ) such that I1 ⊆ I2. Then ρ(I2) = |I2|. We will show

ρ(I1) = |I1|. If I1 = I2 then (I1) holds, so we suppose that I1 ( I2. Consider a maximal
chain in F which contains I1 and I2. ∅ ( ... ( I1 ( ... ( I2 ( ... ( E. From (RL1), we
must have ρ(I1) = |I1| since ρ(I2) = |I2|. Thus (I1) holds.

Next we will show (IsA). Take I1, I2 ∈ I(ρ) such that |I1| < |I2|. (In the property
(RGE), we consider X = I1, Y = τ(I1 ∪ I2). ) Here I1, τ(I1 ∪ I2) ∈ F , I1 ⊆ τ(I1 ∪ I2),
and ρ(I1) = |I1| < |I2| = ρ(I2) ≤ ρ(τ(I1 ∪ I2)) holds. (The last inequality follows from
(RL1). ) It follows from (RGE) that there exists Z ∈ F such that I1 ( Z ⊆ τ(I1 ∪ I2)
and ρ(Z) = |Z| = ρ(τ(I1 ∪ I2)). Then Z ∈ I(ρ) and there exists e ∈ ex∗(I1) such that
I1 ∪ {e} ⊆ Z. If Z = I1 ∪ {e}, then this implies that (IsA) holds. If Z ) I1 ∪ {e}, then
from (I1) we have I1 ∪{e} ∈ I(ρ). And we have e ∈ Z \ I1 ⊆ τ(I1 ∪ I2) \ I1. Thus (IsA)
holds.

Now we have a proof of Theorem 1.1.

Proof of Theorem 1.1. The present theorem follows from Theorem 2.13, Proposition 3.2,
and Theorem 3.3.

Remark 3.4. Since the Local Extension Property (RLE) is apparently stronger than the
Global Extension Property (RGE), the rank functions of strict cg-matroids are also char-
acterized by only the local conditions (RL0), (RL1), and (RLE).

Remark 3.5. Although the submodularity of rank functions is very important in ordinary
matroid theory, the submodularity does not appear explicitly in Theorem 1.1. But we can
show that the three conditions (RL0), (RL1), and (RGE) imply the Local Submodularity
(RLS) directly.
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Theorem 3.6. Let (E,F) be a convex geometry. Suppose that a function ρ : F → Z+

satisfies properties (RG0), (RG1), (RGS) and (RLE). Then (E,F ; I(ρ)) is a strict cg-
matroid with the family I(ρ) of independent sets.

Proof. We will show that I(ρ) satisfies properties (I0), (I1), and (IsA).
From (RG0), we have 0 ≤ ρ(∅) ≤ |∅| = 0, i.e., ρ(∅) = |∅|. Hence ∅ ∈ I(ρ), and (I0)

holds.
Take any I1 ∈ F and I2 ∈ I(ρ) such that I1 ⊆ I2. Then ρ(I2) = |I2|. We will show

ρ(I1) = |I1|. If I1 = I2 then (I1) holds, so we suppose that I1 ( I2. Put k := |I2|,
l := |I1|(< k). Since ∅, I2 ∈ I(ρ), ∅ ⊆ I2, and ρ(∅) = 0 < ρ(I2) hold, using (RLE)
repeatedly, we have a chain in I(ρ) as follows.

∅ = I2,0 ( I2,1 ( ... ( I2,k−1 ( I2,k = I2,
where I2,j := {e1, ..., ej} ∈ I(ρ) for j = 1, ..., k and I2,0 := ∅.
Since I1 ⊆ I2, we can denote I1 = {ei1 , ..., eil} where 1 ≤ i1 < ... < il ≤ k. And we
put I1,j := {ei1 , ..., eij} for j = 1, ..., l and I1,0 := ∅. Then, for each j = 1, ..., l, we have
that for I1,j ∈ F and I2,ij−1 ∈ F , I1,j ∩ I2,ij−1 = I1,j−1(∈ F) and I1,j ∪ I2,ij−1 = I2,ij ∈
F . Therefore, from (RGS), we have ρ(I1,j) + ρ(I2,ij−1) ≥ ρ(I1,j−1) + ρ(I2,ij). Since
ρ(I2,j) = j, we have ρ(I1,j−1) + 1 ≤ ρ(I1,j) for j = 1, ..., l. From these inequalities with
ρ(I1,0) = 0, we have l ≤ ρ(I1). Also we have ρ(I1) ≤ |I1| = l from (RG0). Hence we
have ρ(I1) = |I1|(= l), i.e., I1 ∈ I(ρ). Hence (I1) holds.

Finally, we will show (IsA). Take I1, I2 ∈ I(ρ) such that |I1| < |I2|. (In the property
(RLE), we consider X = I1, Y = τ(I1 ∪ I2). ) Here I1, τ(I1 ∪ I2) ∈ F , I1 ⊆ τ(I1 ∪ I2),
and ρ(I1) = |I1| < |I2| = ρ(I2) ≤ ρ(τ(I1 ∪ I2)) hold. (The last inequality follows from
(RG1). ) From (RLE), there exists e ∈ ex∗(I1) ∩ τ(I1 ∪ I2) ⊆ τ(I1 ∪ I2) \ I1 such that
ρ(I1 ∪ {e}) = ρ(I1) + 1 = |I1| + 1 = |I1 ∪ {e}|, i.e., I1 ∪ {e} ∈ I(ρ). Hence (IsA)
holds.

Now we have a proof of Theorem 1.2.

Proof of Theorem 1.2. The present theorem follows from Theorem 2.14, Proposition 3.1,
and Theorem 3.6.

Remark 3.7. It should be noted that, in Theorem 3.6, the Local Extension Property (RLE)
cannot be replaced by the Global Extension Property (RGE).

An example of Remark 3.7 is given as follows.

Example 3.8. Let E = {1, 2, 3, 4} be a linearly ordered set on four elements with order
relations 1 < 2 < 3 < 4, and (E,F) be a poset shelling of the poset (E,<), i.e.,
F = {∅, {1}, {1, 2}, {1, 2, 3}, {1, 2, 3, 4}}. Define a function ρ : F → Z+ by ρ(∅) = 0,
ρ({1}) = 1, ρ({1, 2}) = 1, ρ({1, 2, 3}) = 3, ρ({1, 2, 3, 4}) = 3.
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Then ρ satisfies (RG0), (RG1), (RGS), and (RGE). (But ρ does not satisfy either (RLE)
or (RL1).)

Now, I(ρ) = {∅, {1}, {1, 2, 3}}. And then (E,F ; I(ρ)) is not a strict cg-matroid
because I(ρ) does not satisfy property (I1). (See Figure 3.)
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Figure 3: A poset and its poset shelling.

Remark 3.9. It should also be noted that Theorem 3.6, requires the Global Submodularity
(RGS).

Example 3.10. Let E = {1, 2, 3} be a poset on three elements with partial order re-
lations 1 < 3, 2 < 3, and (E,F) be a poset shelling of the poset (E,<), i.e., F =
{∅, {1}, {2}, {1, 2}, {1, 2, 3}}. Define a function ρ : F → Z+ by ρ(∅) = 0, ρ({1}) = 1,
ρ({2}) = 0, ρ({1, 2}) = 2, ρ({1, 2, 3}) = 2.

Then ρ satisfies (RG0), (RG1), and (RLE). (So ρ also satisfies (RL0) and (RGE).) But
ρ does not satisfy either (RGS) or (RL1).

Now I(ρ) = {∅, {1}, {1, 2}}. And then (E,F ; I(ρ)) is not a strict cg-matroid be-
cause I(ρ) does not satisfy property (I1). (See Figure 4.)

From Theorem 1.1 and Theorem 1.2, for a convex geometry (E,F) and a function ρ :
F → Z+ which satisfies conditions (RL0), (RL1), and (RGE), or the conditions (RG0),
(RG1), (RGS), and (RLE), we call (E,F ; ρ) a strict cg-matroid with a rank function ρ.
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