ON THE FIRST AND SECOND K-GROUPS OF AN ELLIPTIC CURVE
OVER GLOBAL FIELDS OF POSITIVE CHARACTERISTIC

SATOSHI KONDO AND SEIDAI YASUDA

ABSTRACT. Let E be an elliptic curve over a global field of positive characteristic. Let r be
the order of zero at s = 0 of the Hasse-Weil L-function with bad factors removed. Parshin
conjecture on the vanishing of higher rational K-theory of projective smooth schemes over finite
fields implies dimg K2(F) ®z Q = r. It is shown that dimg K2(E) ®2z Q > r.

As applications, some information on the structure of the torsion of the first and second K-
groups of the elliptic curve, as well as the motivic cohomology groups of open elliptic surfaces
over finite fields are obtained.

1. INTRODUCTION

Let E be an elliptic curve over a global field k of positive characteristic. Let C' be the proper
smooth curve over a finite field whose function field is k. We take the flat proper regular minimal
model £ — C of E.

Let us identify the K-theory and the G-theory of regular noetherian schemes. There is the
localization sequence of G-theory:

Ks(€) = Ka(B) 222 @D Gr(E,y) — Ki(€)
§©

where @ runs over all primes of k, £, = £ x¢ Speck(p), and k(gp) is the residue field at .
We use the subscript —g to mean — ®z Q.

Theorem 1.1. Let the notations be as above. The homomorphism

K2(E)g 2% @ Gi(&)o

s€Sy

18 surjective.

Parshin conjecture says that, in particular, K;(£)g = K2(€)g = 0. Hence the validity of the
conjecture implies that the homomorphism in Theorem 1.1 is an isomorphism.
Our principal motivation was to prove the following corollary.

Corollary 1.2. Let Sy be the set of primes of k (or, equivalently, closed points of C') at which E
has split multiplicative reduction. Letr be the order of pole at s = 0 of the Hasse- Weil L-function
L% (hY(E), s) with bad factors removed. Then dimg Ko(F) ®7Q > r.

During this research, the first author was supported as a Twenty-First Century COE Kyoto Mathematics
Fellow and was partially supported by JSPS Grant-in-Aid for Scientific Research 17740016. The second author
was partially supported by JSPS Grant-in-Aid for Scientific Research 16244120.
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2 SATOSHI KONDO AND SEIDAI YASUDA

Theorem 1.1 implies Corollary 1.2. The reduction of an elliptic curve is well understood; one
can verify directly (cf. [BI-Gr]) that

. 1 if pe Sy,
dlm@Gl(s@)@:{ 0 if§¢s§.

Since |Sp| = r, the claim follows. O

The analogue of Corollary 1.2 over number fields is that the rational rank of the K-group is
greater than or equal to |So| + [k : Q] (see [Ro-Sc, Section 1.2]). It is a consequence of (a strong
form of) Beilinson’s conjectures, and is not yet proved. Bloch and Grayson gives a method
([BI-Gr]) for constructing elements in K5 such that the boundary map is not trivial, but one
needs that the image of Gal(k/k) — [[,; Endg, (Ty(E(k)) (where k is the separable closure of k
and ¢ runs over all primes) is small, and is not applicable in general.

We have other applications. Using Theorem 1.1, we obtain some information on the motivic
cohomology and K-groups of lower degrees of an elliptic curve and an elliptic surface over a
finite field associated to it. The following theorem is on K-groups of an elliptic curve. For other
main results, we refer to Theorems 12.1, 12.2, 12.3, 13.1, 13.2. In the following theorem, T(’l) is
the twisted Mordell-Weil group and S, is the set of bad primes. For the precise definitions, we
refer to Section 2 and the beginning of Section 12.

Theorem 1.3. (1) The dimension of the Q-vector space (Ka(E)™)q is 7.
(2) The cokernel of the boundary map 92 : Ka(E) — @D e, G1(Ep) is a finite group of order

(g — 1?*|L(R°(Irr(Es,)), —1)]
T, ILUOC S),—D)]

(3) The group Ki(E)aiy is uniquely divisible.

(4) The kernel of the boundary map 01 : Ki(E)™* — Docc, Go(Ep) is a finite group of
order (q — 1)2|T(’1)| -|L(E,0)|, where L(E,s) is the L-function of E. The cokernel of 0y
is a finitely generated abelian group of rank 2 + |Irr(Eg, )| — |S2| whose torsion subgroup
is isomorphic to Jac(C)(F,)®2, where Jac(C) denotes the Jacobian of C.

(5) Suppose that the Bloch-Kato conjecture holds. Then the group Ko(F)gi is uniquely
divisible, and the kernel of the boundary map 0 : Ko(E)' — Docc, G1(&p) is a finite
group of order |L(h?(E),0)L(h'(C),—1)|.

To prove Theorem 1.1, we use the analogue of Beilinson elements, constructed in [Ko-Ya],
for Drinfeld modular curves. The key idea is that, over function fields, one has an analogue of
Beilinson elements for every place at which the elliptic curve has split multiplicative reduction.
The linear independence of the elements amounts to the integrality of the elements.

The sections are organized as follows. The paper is divided in two parts: Sections 3-8 and
Sections 9-13. In the first half, we prove Theorem 1.1. In the second half, we compute motivic
cohomology and K-groups of elliptic surfaces over finite fields and elliptic curves over function
fields.

In Section 3, we consider curves over local fields. We compare the triviality of Chern class
map and the triviality of the boundary map. We use this to avoid the construction of morphisms
between integral models. It may be possible to actually construct them, however. In Section 4,
we define Weil pairing morphism. This has already been done by van den Heiden [vdHe] using



ON K; AND K> OF AN ELLIPTIC CURVE 3

the theory of A-motives. Here we take a different approach using the theory of elliptic sheaves.
In Section 5, we study bad reduction of Drinfeld modular curves. The essential part of the
results is due to Drinfeld; there are also papers [Ged], [Geb], [Ge3]| by Gekeler. The results in
the case of elliptic modular curves are found in the book of Katz-Mazur [Ka-Mal. In Section 6,
we prove the integrality of certain elements in Ko of Drinfeld modular curves. This section is
the function field analogue of [Sc-Sc, Section 7], and we do follow the same line. In Section 7,
we construct, starting from the elements of [Ko-Yal, a subspace in the rational Ky of (the limit
of) compactified Drinfeld modular curves which does not vanish under the boundary map at the
infinity prime. In Section 8, we give the proof of Theorem 1.1.

In Section 9, we compute the motivic cohomology groups of smooth surfaces X over finite
fields. The difficult case is that of H},(X,Z(2)) and is treated in Section 9.2. In Section 10,
we define Chern characters for singular curves over finite fields. The treatment is quite ad hoc.
In Section 11, we give the relation via the Chern class map between K; and K» of curves over
function fields and the motivic cohomology groups. In Section 12, we restrict ourselves to the
case of elliptic surfaces. Applying the results in the previous three sections, and using the special
features of elliptic surfaces, including Theorem 1.1, we compute the explicit orders of certain
torsion groups. We treat the p-part separately in Appendix A. See its introduction for more
technical details. In Section 13, we assume that the Bloch-Kato conjecture holds and generalize
the results in Section 12. Appendix B is a digression; we determine the structure of the higher
Chow groups CHY™(X,4) for i = 1,2 where X is a scheme of dimension less than or equal to d,
separated, and of finite type over a finite field. This is a generalization of the result of Akhtar
[AK].
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and to the University of Chicago for hospitality. He also thanks Masanori Asakura for his
interest.

The second author would like to thank Kazuya Kato for his comments about the logarithmic
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2. NOTATIONS

For a finite set M, we let |M| denote the cardinality of M. For a prime number ¢, we let
| ¢ : Q¢ — Q denote the f-adic absolute value normalized so that ||, = £~1. For an abelian group
M, let Miops (resp. Mgiy) denote the torsion subgroup (resp. the maximal divisible subgroup)
of M. We also put M™ = M/My;,. For a prime number ¢, we put T,M = Hom(Q,/Z, M).
For a scheme X, let Xy (resp. Irr(X)) denote the set of the closed points (resp. the irreducible
components) of X.

3. FROM SPECIAL FIBER TO GENERIC FIBER

Let S be the spectrum of a henselian discrete valuation ring whose residue field is a finite
field of characteristic p > 0. We denote by s (resp. n) the closed (resp. generic) point in S. Let
X — S be a proper, flat, and surjective morphism from a regular scheme X to S such that the
generic fiber X, is a smooth curve over 7. We let Y denote the complement X \ X, with the
reduced scheme structure. We consider the boundary map

9 : K2(Xp)o — G1(Y)o-
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We fix a prime number ¢ different from p. We consider the etale Chern class map

cap t Ka(Xy) = HE (X, Qu(2)),

(or more precisely, the limit of etale Chern class maps with finite coefficients) introduced in [Gi,
Definition 2.22].
The aim of this section is to prove the following

Proposition 3.1. For an element x € K2(X,), Og(x) = 0 if and only if ca2(x) = 0.

Lemma 3.2. The diagram

P
KXy ——  Gi(Y)g

Cz,2l lc{l
:

Oe
He2t(X7]7Q£(2)) — H%’,et(XaQE(Q))
is commutative. Here where c{l is the Chern class map and Oe is a part of the long exact
sequence

(3.1) o HE(X,Qu(2) — HZ (X, Qu(2)) 25 HY (X, Qu(2)) — -

of cohomology with support.

Proof. By definition of the Chern class maps in [Gi], the map ¢z 2 (resp. c{l) is described as the
composition

Ko(Xyy) — H;2(Xy, ZooBeGL(Ox)) — Hy2 (X, K(4,T(2))) — HE (X, Qu(2))

Zar
(resp.

G1(Y) 2 KY (X) = Hy 7, (X, ZocBaGL(Ox)) — Hy 7, (X, K(4,T(2))) — Hy (X, Qe(2))).
Here ZooBeGL(Ox) and K(4,T'(2)) are as in [Gi] (as the cohomology theory I'(x), we take the
f-adic etale cohomology theory on the category of schemes which is separated and is of finite
type over S (cf. [Gi, Example 1.4 (iii)])). Then the claim follows from the commutativity of the
diagram

Ka(Xy) — Ky (X)

Hy2 (X, ZeoBGL(Ox)) —— Hyh (X, 2o BuGL(O))

Hy2(X,, K(4,T(2)))  ——  Hyp (X, K(4,T(2)))

Hth(Xn?QZ(Q)) - HX?)/,et(Xv @5(2))
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Lemma 3.3. The Chern class map
Y 3
Co1: Gl(Y)@ - HY7et(Xa Qe(2))
18 injective.

Proof. Let Ysing denote the singular locus of Y. We set Yo, =Y \ Yiing. By [Gi, Lemma 2.23],
the diagram

Gi(Y)g —— G1(Yem)o

c;’,ll lcgsf“
HY (X, Qe(2)) —— Hy, (X — Yeing, Qu(2))

is commutative. Since G1(Ysing)g = 0, the upper horizontal arrow is injective. Hence it suffices
to show that c%/f{“ is injective. The diagram

Gi1(Ysm)g —— G1(Yem)o

Ye
_0171\[ lCQSlm
»

H' (Yom, Qe(1)) —— H (X — Yaing, Qu(2))

is commutative by Riemann-Roch theorem ([Gi, Theorem 3.1]. See also [Gi, Corollary 3.7]).
Here c; ; is the Chern class map. Thus it suffices to show that c; ; is injective. It is known that
the map —cq,1 equals the composition

Gl(Yém)@ - HO(Yéma Gm)@ - Hl(nmv@f(l))

where the last map is given by Kummer sequence. From the localization sequence

= P Gi@) = Ci(Yew)o — P Gila) =,

IGYsm,o -’Eenm,l

we see that G1(Ysm)o — H %(Yam, Gm)q is an isomorphism. Hence by Kummer theory the map
c1,1 1s injective. ]

Proof of Proposition 3.1. By the lemma above, for an element z € Ky(X,)g, Og(x) = 0 if and
only if Oet(c22(z)) = 0. Therefore, to prove Proposition 3.1, it suffices to show that e is
injective.

Let us consider the exact sequence,

H2 (X, Qu(2)) — H2 (X, Qu(2)) & Hi o (X, Qu(2)).

By [SGA4-3, XII, Corollaire 5.5], we have H2 (X, Qy(2)) = HZ(X xg5,Qu(2)) = H2Z(Y,Q(2)).
The weight argument shows that the group HZ%(Y,Q¢(2)) is zero. This proves Proposition 3.1.
O
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4. DRINFELD MODULES, ELLIPTIC SHEAVES, AND WEIL PAIRING

To compute the bad reduction as in Katz-Mazur’s book [Ka-Ma], we need Weil pairing.
Instead of actually defining the pairing, we construct a morphism, which we call Weil pairing
morphism, from the moduli of rank d Drinfeld modules to the moduli of rank 1 Drinfeld modules.
This has already been done by van den Heiden [vdHe] using the theory of A-motives. Here we
take a different approach using the notion of elliptic sheaves, which is equivalent to that of
Drinfeld modules (see [Dr3], [Bl-St, Theorem 3.2.1]). The result will be used in Section 5 when
we study the bad reduction of Drinfeld modular curves.

4.1. Setting. Let C be a projective smooth geometrically irreducible curve over a finite field
[F, of ¢ elements of characteristic p. We let k = [F;(C') denote the function field of C. We fix a
closed point oo € C. Let A= H%(C'\ {00}, O¢) denote the coordinate ring of C'\ {co}.

4.2. Drinfeld modules.

4.2.1. We recall the definition of a Drinfeld module. Let S be an A-scheme. Let d be a positive
integer. A Drinfeld module of rank d over S is an A-module scheme E over S satisfying the
following three conditions.

(1) Zariski locally on S, E is isomorphic to G, as a commutative group scheme.

(2) If we denote the A-action on E by ¢ : A — Endg_group(£), then, for every a € A\ {0},
the a-action ¢(a) : E — E on E is finite, locally free of constant degree |a|2,.

(3) The A-action on Lie F induced by ¢ coincide with the A-action on Lie E' which comes
from the structure homomorphism A — I'(S, Og).

4.2.2. Drinfeld level structure and modular variety. Let d be a positive integer. Let E be a
Drinfeld module of rank d over an A-scheme S. Let E(S) be the A-module of the sections of
E — S. We regard an element in F(S) as an effective Cartier divisor in E/S (in the sense
of [Ka-Ma, 1.1.1]). Let I C A be a non-zero ideal. Let E[I] denote the I-torsion part of E.
If we take generators ai,...,a,, € I of I, then E[I] is identified with the fiber product of the
morphism (aj,...,ay) : E™ — E™ and the diagonal embedding E — E™ (here E™ denotes
the m-fold fiber product of E over S). A Drinfeld level I structure on E is a homomorphism
¢ : (I71/A)® — E(S) of A-modules such that > ac(i-1/ayed $(a) equals E[I] as an effective
Cartier divisor in E/S.

Suppose that I # A. Then Drinfeld [Drl, Proposition 5.3] shows that the functor which
associates to an A-scheme S the set of isomorphism classes of Drinfeld modules of rank d over
S with a Drinfeld level I structure is representable by an affine A-scheme M}j. Moreover the
A-scheme M}l has the following properties.

Lemma 4.1. (1) M}j 1 a reqular equidimensional scheme of Krull dimension d.
(2) The structure morphism M}l — Spec A is of finite type, flat, and surjective, and is
smooth when restricted to the open Ur = Spec A \ Spec(A/I) C Spec A.
(3) For two non-zero ideals I,J of A with J C I ;Cé A, the canonical “level-lowering” mor-
phism Mf,l — Mfl s finite flat.

Proof. All assertions, except the flatness and the surjectivity in (2), are immediate consequences
of [Dr1, Proposition 5.3] and its corollary. The flatness follows from the local description of M¢
in [Drl1, Proposition 5.4]. Surjectivity follows from [Drl, §8, Corollary]. O
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4.3. Elliptic sheaves.

4.3.1. We recall the definition of an elliptic sheaf. Let S be a scheme over X. Let d be a positive
integer. An elliptic sheaf of rank d over S is a sequence (&;, ji, t;)icz, where & are locally free
OCXFqS—modules of rank d and where j; : & — &1, t; : 7E — &1 are injective OCXFqS—linear
homomorphisms. We put "&; := (idg x Frobg)*E;, where Frobg denotes the g-power absolute
Frobenius endomorphism of S. The following conditions should hold.

(1) The diagrams are commutative:

(2) For each i there exists an isomorphism & g.deg(c0) = €i(00) := & ®0c, s (Oc(00)HOg)
q

where Oc(00) K Og = pri(Oc(o0)) ® pr3(Os) is a sheaf on C xp, S such that the
composite
Ei = Eit1 = - = Eiyddeg(oo) = Ei(00)
is the canonical embedding.
(3) The direct image of & 11/7i(&;) under the projection prg : C' xp, S — S is a locally free
Og-module of rank one.
(4) The cokernel Cokert; is supported by the graph of the structure morphism ¢; : S — C,

and is the direct image of a locally free module on S of rank one by this graph morphism

g ) o 8.

(5) For any closed point s € S, one has deg(go\cqu{s}) =d(g — 1) + 1 where g is the genus
of the curve C/F,.

4.3.2. Level structure. Let I C A be an ideal. Let S be a scheme over C' \ Spec(A/I). Let
(&, Ji, ti)iez be an elliptic sheaf of rank d over S. The morphisms j; for i € Z identify the restric-
tions gi|Spec(A/I)><]FqS' The homomorphism ¢g induces tj : T50|Spec(A/I)><]FqS — 51|Spec(A/I)><]FqS =

[

50|Spec(A/I)><]FqS- A level I structure on (&;, ji, t;)icz is an isomorphism ¢ : 80|Spec(A/I)><]FqS —

d . . .
Ogapec(A/I)X]FqS such that the isomorphism "¢ : TSOISpeC(A/I)XFqS = T(OSpec(A/I)X]FqS)EBd =

Oge;lec( A/D)xg,S equals ¢ o t;. If S is a scheme over Spec A, there is a canonical one-to-one
correspondence between the isomorphism classes of Drinfeld modules of rank d over S with a
Drinfeld level I structure and those of elliptic sheaves of rank d over S with a level I structure

([Dr3], [BLSt)).

4.3.3. Let I g A be a non-zero ideal. Let us recall the fundamental properties of the moduli
scheme M Il

Lemma 4.2. The k-scheme M} ® 4 k is isomorphic to the spectrum of a finite abelian extension
of k which is completely split at oo and unramified outside the primes dividing I. The A-scheme
M} is identified with the normalization of A in M[1 R4 k.

Proof. This follows from [Drl, §8, Theorem 1] and its proof. O
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4.4. Weil pairing morphism. Let [ ; A be a non-zero ideal. Let S be a scheme over C'\
Spec(A/I). Given an elliptic sheaf (&;,1;, j;)icz over S of rank d with a level I structure (*&y =

(’)gaglec( A/D)xg 50 We define its determinant elliptic sheaf to be the triple (F;,t/,j/), where F; =

det (& (a-1)(g-1))s B/ = Ai—(a—1)(g—1), and ji" = A%i_(a1)(9—1)-
Lemma 4.3. The triple (F;,t}, 3/ )icz is an elliptic sheaf of rank one.

Proof. We prove Fjdeg(o0) = Fi(00). Other conditions in the definition of elliptic sheaves are
easily checked. We may assume that S is connected and is of finite type over A. By the conditions
(ii) and (iii) in the definition of elliptic sheaves, the scheme {oco} x S decomposes into a disjoint

union {oo} x S = H?igl(oo) S; of deg(co) connected components, and for each i the Ocxy, s-
module F;;1/F; is the direct image of an invertible module on S}, for some j;. By the conditions
(iii) and (iv) in the definition of elliptic sheaves, t; induces an isomorphism 7 (F; /F;_1) = Fiy1/Fi
for each ¢. This implies that the components Sj,, -, Sj,, des(ooy_1 aT€ pairwise distinct. Hence
Fitdeg(oo)/Fi is the direct image of an invertible module on {oo} x S. Since Fj{ deg(00)/Fi is a

submodule of F;{ g.deg(o0)/Fi = Fi(doo)/F;, it is identified with F;(—oc)/F;. O

Since Fy = det(&p), the level I structure 1*&y = Oga;lec(A/l)X]FqS on (&;,t, ji)icz induces a level
I structure o*Fo = Ogpec(a/1)xg,s 00 (Fis 17, 7 )icz-

We set Ur = Spec A \ Spec(A/I). Passing to the moduli schemes, we obtain a canonical
morphism M}l XspecA Ur — MI1 XspecA Ur. By Lemma 4.2, Mll is identified with the nor-
malization of A in M 11 Xspec A Ur. Since MId is regular (in particular normal), the morphism
M}l XspecA Ur — M} Xspec 4 Ur is uniquely extended to a morphism w : M}l — M}, which we
call the Weil pairing morphism.

4.5. Adelic description of the Weil pairing morphism. We denote by A the ring of adeles
of k, by A® the ring of finite adeles of k, and by A the projective limit lim A/I where I runs
over all non-zero ideals of A. Let d be a positive integer. Let ko, denote the completion of k
at oco. Let X4 be the Drinfeld symmetric space for GLy. (When d = 1, this is just one point.)
Then M¢ ®4 koo has the following rigid analytic description (cf. [Drl], [Bl-St, 4.3]):

(Mf ®4 koo)™ 2 GLa(k)\(GL4(A%) /Ky x X4)

where K; = Kgq; = Ker[GLg(A) — GL4(A/I)]. Since X; is a point, there exists a canonical
morphism

GLd(k‘)\(GLd(AOO)/KdJ X %d) — GLd(k>\(GLd(AOO)/Kd7] X %1)

0 K\ (A%)" Ky s x 1)

where the last map r is induced by the determinant homomorphism det : GLg(A>) — (A>)*.

(4.1)

Lemma 4.4. The morphism r in (4.1) is bijective. The composite morphism in (4.1) is com-
patible with the Weil pairing morphism w : M}l — M}, that is, the diagram

(M{ @4 koo)™ —— GLa(k)\(GLa(A®)/Kq7 x Xa)

gl l

(M} @4 koo)™ ——  K*\((A%®)*/Ky,7 x X1)
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18 commutative.

Proof. The surjectivity of r is clear. We prove the injectivity. We write X1 = {z}. Suppose that
r(GL4(k)91Kq 1, z) = 7(GL4(k)g2Ka 1, ). Replacing go by an element in GL4(k)g2Ky 7, we may
assume that det(g1) = det(g2). Since SL4(k) is dense in SL;(A>°) by the strong approximation
theorem, the intersection SL4(k) N ¢1Kq 195 !'is non-empty. This implies that GL4(k)g1Kg s =
GL4(k)g2Kg ;. Hence r is injective.

Let ng? be the Fy-scheme in [Bl-St, Definition 4.1.5]. There is a canonical specialization map

sp:Xqg— QC(;Z,) (which is a continuous map of topological spaces). Let M}i « be the moduli stack

of elliptic sheaves of rank d of “infinite characteristic”, which is the fiber at oo of the moduli
stack Mfi,c over C of the elliptic sheaves of rank d (cf. [Bl-St]). The definition of Weil pairing

morphism is canonically extended, and gives rise to a morphism w¢ : MI‘{C — 1170. Let |M ﬁ ol

denote the set of points of the stack M}{OO with Zariski topology (cf.[La-Mo]). By [BI-St, 4.1],

M 1“—{ ~ 1s canonically isomorphic to GLg(k)\(GLg(A*)/Kq 1 % Qgﬁ)). Hence the map sp induces

amap sp : (M&®4 ko)™ = GLg(k)\(GL4(A®) /Ky X X4) — ]Mﬁw] which makes the diagram

(M} @4 ko)™ —— |M{,|
o we |

(M] ©4 ko)™ —=— |M] |

commutative. Since the composite
(M7 ®4 koo)™ — GL4(K)\(GLa(A%)/Ka,1 x X4) — GLa(k)\GLa(A™)/Ka 1
factors as
(Mf @4 kioo)™ = |Mf | = GL4(k)\GLqa(A®) /Ka,1,

it suffices to show the commutativity of the diagram

|Mf | —— GLa(k)\GLq(A>®)/Kq,r

we | |

[Mj ool ——  R\(A%)* /Ky

This follows from the definition of we and the construction of the horizontal arrows. O

5. BAD REDUCTION OF DRINFELD MODULAR CURVES

We study bad reduction of Drinfeld modular curves in this section. The local study using the
Serre-Tate theory is due to Drinfeld [Drl]. The modular curves considered in Section 5.4 are
the analogue of exotic Igusa curve in the elliptic modular case [Ka-Ma, p.385]. The description
of deformation spaces in the case of elliptic D-sheaves is found in [Bo]. He treats the higher
dimensional cases as well.
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5.1.  Throughout this section we fix a prime ideal p C A. We denote by A, the p-adic com-

pletion of A. Let k(p) denote the residue field at p of A. We fix an algebraic closure k(p) of

r(p).
Let I G A be a non-zero ideal. We write Mld/n(p) (resp. M;l/@) for M¢ Xgpec 4 Speck(p)
(resp. M¢ Xspec 4 Speck(gp)). Let w: M? — M} be the Weil pairing morphism on M?. Let us

consider the following cartesian diagram:

2 2
My Sy My —— M

lf [

1 1
My — M

where the morphism at the bottom is the canonical closed immersion.

Lemma 5.1. Suppose that I is prime to p. Then

(1) f is smooth.
(2) The fibers of f are geometrically connected.

Proof. The claim (1) follows from the smoothness of the morphism M? x mM 7 Jn(p) — Spec k(p)
and the etaleness of the morphism M}/H(@) — Speck(p).

The compactification M? of M?, constructed by Drinfeld [Drl, §9], is a regular scheme which
is proper over A. Since the generic fiber M? ®4 k is the smooth compactification of the curve
M12 ®4 k, the Weil pairing morphism M12 — M} gives a morphism M? R4k — MII ®4 k. This
morphism is uniquely extended to the morphism H? — M } since H? is regular and M } equals
the normalization of A in M 11 ®4 k (by Lemma 4.2). The morphism M? — M 11 is proper,
since M? — Spec A is proper. We apply the theory of the Stein factorization to the morphism

M? — M}. To prove the claim (2), it suffices to prove that the generic fiber of M? — M} is
geometrically connected. It can be checked using the rigid analytic description of M12 R4 Foo in
Lemma 4.4. U

5.2. Supersingular Drinfeld modules of rank 2. A Drinfeld module of rank 2 over k() is
called ordinary (resp. supersingular) if the corresponding formal Ag,-module is of height 1 (resp.
2) (see [Drl, §1] for the definition of formal A -modules). We refer to [Ge3, Proposition 4.1]

for other equivalent definitions. For a non-zero ideal [ ; A, a closed point in M]2 Ire) is

called ordinary (resp. supersingular) if the corresponding Drinfeld module is ordinary (resp.
supersingular).

5.2.1. Adelic description. A supersingular Drinfeld module E of rank 2 over @ is known to
exist. We fix one such E and put O = End(E). Then O is an A-algebra. Moreover, B=0®4k
is a quaternion algebra over k which ramifies exactly at p and at oo, and O is a maximal A-order
of B (this is due to Drinfeld ([Dr2, §2])). We say that a left O-module M is invertible if M ®4 A
is a free O ®4 Ay-module of rank one for each finite prime ¢’. Let M, My be two invertible
left O-modules. An isogeny from M; to Ms is an injective homomorphism M; — My of left
O-modules. We say that an isogeny M} — M> is prime to g if its cokernel has no p-torsion.
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Proposition 5.2. There exists a canonical equivalence between the following two categories.

(1) The category whose objects are the invertible left O-modules, and whose morphisms are
the isogenies between them.

(2) The category whose objects are the supersingular Drinfeld modules over m, and whose
morphisms are the isogenies between them.

Moreover the notions of prime-to-p isogeny in both categories coincide. If a prime-to-p isogeny
My — My corresponds to a prime-to-g isogeny E1 — FEo, then there is a canonical isomorphism
between the cokernel of My — My and the kernel of F1(k(p)) — E2(k(p)).

Proof. The essential part of this proposition is a consequence of the results in §2 of [Dr2]. Let us
remark that the description using left ideals is an analogue of Deuring’s result for elliptic curves
and is adapted from [Ge3]. O

We fix an isomorphism O ®4 Ay = Maty(Ag) for each finite prime ¢’ of & different from p.
For a non-zero ideal I C A prime to g, it induces an isomorphism O/IO = Maty(A/I). Let E be
a supersingular Drinfeld module of rank 2 over x(p) and let M be the invertible left O-module
corresponding to E. Then the set of Drinfeld level I structures on F is canonically identified, as
a GLao(A/I)-set, with the set of surjective homomorphisms M — O/IO = Mato(A/I). We set
AP = lim J A/J, where J runs over the non-zero ideals of A which is prime to p. We let A°®
denote the prime-to-p-part of A°°, which is identified with A9 ® Ak. We set 0% =0 A AP, Ttis
identified with Maty(A¥). Let K’ denote the kernel of the homomorphism (O9)% — (O/I0)*.

For z € B ®; A>®¥#, let M, denote the intersection B N O¢.271in B Qp A¥®. Then M, is an
invertible left O-module and the composite

M, — 09 .27 = 0% - O/IO

gives a canonical surjection M, — O/IQO. Hence it corresponds to a supersingular Drinfeld mod-
ule of rank 2 over k(p) with a Drinfeld level I structure. This gives an (O/I0)* = GLg(A/I)-
equivariant bijection between the set ¥j ,, of the isomorphism classes of supersingular Drinfeld

modules of rank 2 over x(p) with a Drinfeld level I structure and the double coset
B*A> "\ (B @ A%9)* /K].
5.3. Local description of M? . For a non-zero ideal I C A, we set ]\/[I2 — = M?/H(p) Qk(p)

- 1/k(p) /5()
k().

Let g, denote the cardinality of x(p). We fix a prime element 7 € A,. The canonical
projection A, — k(p) has a unique left inverse x(p) — A, which identifies A, with the ring
k(p)[[r]] of formal power series.

5.3.1. Universal deformation space of formal Ag-modules over k(p) with a Drinfeld level struc-
ture: height one case. We define a formal A,-module F over A, as follows. As a formal group,
Fy, = G,. The action of a € k(p) C Ag on F is given by the power series aX, and the action
of 7 is given by the power series f1(X) = 7X + X%. We put F} = ﬁl ®a, k(p). Then Fj is
a formal Ag-module of height 1 over x(p). By [Drl, Proposition 1.6], any formal Ag,-module

over k(p) of height 1 is isomorphic to F} @,{(p)/ﬁ(p). Let A{Y denote the completion of the strict
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henselization of A,,. Then it is easily checked that the formal A,-module E® A@A‘;r is identified
with the universal deformation of F1®,€(p)m(p).

The following description of the universal deformation ring D, of F1®,{(p)f£(p) of level n is
due to Drinfeld [Drl, §4]. For r > 0 let g1, = f1 0--- o f1 be the r-th iteration of f;. Then for

n > 1 the ring D, is isomorphic to A\}p‘r[[xﬂ/(glm(x)/gl,n,l(:n)). We note that the reduction

modulo 7 of Dy, is isomorphic to (p)[[:z:}]/(:cqg*qgil).
Let I ; A be a non-zero ideal which is prime to p. We set I,, = Ip™. Let P, denote the set
of A-submodules of (p~"/A)®? which is free of rank one over A/p".

Let T € ]\412 fre) be an ordinary point, and let Ez be the corresponding Drinfeld module of

rank 2 over k(p). The following description of the formal completion M2 of M?

I/ k(p) @ I /k(p)

along the fiber M12 ron of z is due to Drinfeld. If we fix an isomorphism of the formal A-

module associated to Ez to Fi, then ]\/ZI2 o E is canonically isomorphic to the disjoint union
’ 1

Llgep, Spf (D1n/(m)[[y]]) of copies of Spf (D1 /(m)[[y]]) = Spf a(p)[[w, y]l/(x%~% ).

5.3.2. Universal deformation space of formal Ag-modules over k(p) with a Drinfeld level struc-
ture: height two case. We define a formal A -module F, over the ring Ay [[t] of formal power
series as follows. As a formal group, B = ((/}:1 The action of a € k(p) C A, on F is given by
the power series aX, and the action of 7 is given by the power series fo(X) = 7 X +tX% + X %.
We put F, = F ®a,[) k(). Then F3 is a formal Ag-module of height 2 over £(p). By [Drl,
Proposition 1.6], any formal A,-module over x(gp) of height 2 is isomorphic to Fg@,i(p)@.

Lemma 5.3. The formal A,-module ﬁg@)A@[[t]]E;r[[t]] is identified with the universal deforma-
tion of Fg@n(p)fi(p).

Proof. Piy [Drl, Proposition 4.2], the universal deformation rinngf the formAal Ag-module Fy
equals AJY[[t1]]. The universality gives the homomorphism ¢ : AZ[[t:]] — AZ[[t]]. Since the
coefficient of X in fy is 7, ¢ is a homomorphism of A{'-algebra. It suffices to prove that the
image ¢(t1) is a topological generator of Al"[[t]]. Let Aa, (resp. Aa,) be the graded ring Ao
(resp. Ap) defined in [Drl, §1] for O = A,. In [Drl, Proposition 1.4], Drinfeld shows that
A4, equals the polynomial ring with generators gi,g2, - € Aa,, degg; = 4. In view of his
construction of the g;’s, we may choose gq,—1 in such a way that the image of gq,—1 in Aga,
equals the element u in [Drl, Proposition 1.3 (2)] for n = g,. By the construction of E}g[[tl]],

there exists a canonical ring homomorphism A4, — X}p‘r[[tl]] such that the image of gy, 1 equals
t1. This implies that (t1) = —t/(1 — w9 =) + O(t2). O

The following description of the universal deformation ring D5, of FQ@K(@H(Q) of level n is
due to Drinfeld [Drl, §4]:

-1 -1
Do & A\ur[[t 01.0 H/(Tr—l—t@qp_l _1_‘9‘121_1 t+ u
2,1 = Ay » U1, V2 1 1 ’ eggg—l _ Qgp_l

).
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For r > 0 let g2, = fo0---0 fa be the r-th iteration of f,,. Then for n > 1 the ring Do, is
isomorphic to
Do ([y1, 2]/ (92.0-1(y1) — 01, 92.n—-1(y2) — 02).

Let T € M12 Ire) be a supersingular point, £z be the corresponding Drinfeld module of rank

. .. . 172 2
2 over k(gp). The following description of the formal completion M L) of M L /R along

the fiber M12 oz of T is due to Drinfeld. If we fix an isomorphism of the formal A, -module

associated to Ez to Fy, then ]\7}2 ror is canonically isomorphic to Spf (Ds,,/(7)).

5.3.3. Let I ; A be a non-zero ideal which is prime to g. As in Section 5.2.1, we denote by

Y1 o the set of supersingular points of M12 Imoh Let St , denote the set of connected components

of MIQ/@' There is a canonical map Xj,, — S7,p.

We fix an algebraic closure ko, of k. For an integer n > 0, let Cuspy n denote the set
of cusps of Mlzpn ®4 koo, that is, the set of the complement of M?pn ®4 koo in its smooth
compactification.

Let Xiim,o (resp. Stim,e, resp. Cusplim,p") denote the profinite set liLnI Y1, (resp. liin[ ST,
resp. lln s Cusp Lpn) where I runs over the non-zero ideals I ; A. There is a canonical morphism
Ylim,e — Slim,p of profinite sets. The group GL2(A°>®) acts continuously on the sets lim, e
Slim,p, and the above canonical morphism is GLo (A°®)-equivariant.

By the description of ¥, given in Section 5.2.1, we have an isomorphism

Slim,p = BXA®P*\ (B @4 AF)*
of (B ®4 A®)* = GL4(A%9)-sets.
Lemma 5.4. Let T C GLy (resp. N C GLgy) denote the diagonal torus (resp. the subgroup of
upper triangular unipotent matrices) of GLq.
(1) There are canonical isomorphisms
Ste = \A®/Ker(A% — (4/1)%),
Cuspyn = T(k)N(A®)\GL2(A%)/Kypn.
(2) There are canonical isomorphisms
Stim,p =K \A®/AZ,
Cusplig on = T(k)N(A*)\GL2(A™) /(1 + p"Mata(Ay))
of GL2(A%¥)-sets. Here GLa(A®¥) acts on A% /AZ via det : GLa(A¥) — (A9)*.

Proof. The set of cusps Cusp; . is isomorphic to the double coset GLa(k)\(GLs(A>)/Kpn x
Pl(k)) = T (k)N (k)\GL2(A®)/Kron (see, for example, [Ge2]). The claim follows since N (k) is
dense in N(A®°).

We prove the claim for S7,. By Lemma 5.1, Sy, is identified with the set of connected

components of MI1 I ok Since M 11 Xspec A Ur is finite etale, it is also isomorphic to the set

of connected components of M 11 ®4 koo By the adelic description of (M } ®a ko)™, it is also
isomorphic to the double coset

E*\A® /Ker(A* — (A/I)%).



14 SATOSHI KONDO AND SEIDAI YASUDA

This proves (1). Passing to the projective limit, we have (2). O

5.4. Fix an integer n > 1. For a non-zero ideal [ ; A which is prime to p, we put I,, = Ip".
Let us describe the reduction at p of the moduli scheme MIQn
For Q € P,, we let an Jn(e),0 C M?n Jn() denote the closed subscheme which classifies the
Drinfeld modules of rank 2 with a Drinfeld level I,, structure ¢ such that ) C Ker¢. We set
2 _ A2 IS,
Mln/@,cg = Mi, ju(o).@ *n(e) r(p)-

Lemma 5.5. (1) As a topological space MI Jn(e) equals the union of MIQn/K(p) oS
(2) For Q,Q" € P, with Q@ # Q', M 1 Jr(9),Q intersects M[ Jr(9),@ only at supersingular
points.
(3) M?n/n(p) o s a smooth curve over K(p).
(4) The morphism MIQH/R(@)Q — M?/R(p) is finite, flat, surjective, of constant degree and is
totally ramified at every supersingular point on 12/,@( ) This also induces a bijection

2
1 /ee).Q and that ofMI )

Proof. We will prove the following four statements for every closed point * € M ; /ﬁ :

2 2 2 )
(1) The fiber M or of Mln/n( ) at T is non-empty and is the union of M LR S
2 In/w(0)2 >

(2)
(3)" The scheme M12 I or is smooth over k(p) in a neighborhood of M2
(4)’

If Z is a supersingular point, then the morphism A2

between the set of connected components of M2

\-ﬁ

If 7 is an ordinary point, then M 2 is the disjoint union of M 2

L /r(9),Q)7
I /(6)Q
/()QHM/()Q

ramified at T, whose ramification index does not depend on the choice of T.

It is clear that the assertions (1), (2) and (3) follow from (1), (2), and (3)". Let us denote
by f the morphism M? Tn/r(e).0 12/’{( ) in the statement of (4). Then f is finite flat since

is totally

MIQW — M? is finite flat. By (1), f is surjective. The remaining assertions in (4) follow from
2
I/k(p)’

Let £ — T denote the Drinfeld module of rank 2 over T corresponding to the geometric point
Z. Then the gF-torsion subgroup of the A-module E(Z) is a free A/p"-module of rank < 1.
Hence for any A-module homomorphism (J~1/A)®? — E(7), its kernel contains an element Q

in P1(A/p"). This implies (1)'.
The group GL2(A/p) acts both on 73 and on M12 /o~ The action of g € GL2(A/p) on M12 /o

maps M; 2 In/0@ isomorphically onto M In /090" Since the group GLa(A/p™) acts transitively on

(4)" and the existence of a supersingular point on each connected component of M

Py = PHA/p"), all M12 /o, S are isomorphic as M? /o-Schemes. Hence it suffices to show that

(3) and (4) hold for Q = Qg, where Qy is the second direct summand p~—"/A of (p~"/A)®2.
It follows from the description in Section 5.3.1 that the completion of M 1 /o).Q at the
ordinary point equals

(D10 @ g 6011/ (2) = £(0)[[y]]-

1

This proves (2).
The claim (3)" for ordinary T immediately follows from the argument in the proof of (2)’.
Suppose that T is a supersingular point. It follows from the description in Section 5.3.2 that the
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completion of M12 along the fiber of T equals

n/vaO

(D2 @ 3 5(90)/(92) = ROt 61,01/ (¢ + 6" g ) — 00).

From this description, we easily see that the canonical homomorphism x(p)[[y1]] — (D2n ® fur
©

k())/(y2) is an isomorphism. Hence M?n /0.0 18 smooth over (p) in an neighborhood of
M?n/p QO z’ and M?n
Let T be a supersingular point. Then, using the notations in the proof of (3)', the ring

homomorphism from the completion of M12 Ire) at T to the completion of MIQn el along the

fiber of 7 is identified with the homomorphism

/0.0 1\4]2/p is totally ramified at Z. This proves (3)’.

AN — (Do @ 3 W)/ (v2) = Rl

This homomorphism is totally ramified and its ramification index is independent of the choice
of Z. This proves (4)’. O

5.5. Fix a nonzero ideal I ;Cé A which is prime to p. Let n > 0 be an integer. We write
I, = Ip". Let us consider the compactification M?ﬂ of an constructed by Drinfeld [Drl, §9].

Lemma 5.6. For Q € P, let Mi/n(p),Q C M?n denote the closure of M12 Then

n/K(9),Q"

(1) Mi/ﬂ(p)y(g is a projective smooth curve over k(gp).

(2) For Q' € P, with Q # @, M?n/ﬁ(p)’Q and Mi/n(p),@’ do not intersect at a point in the
boundary Mi \ M]2n

Proof. First we note that, to prove (1), it suffices to prove that M?ﬂ /r(9),Q 18 nonsingular at the

-9
boundary M[n/,{(p)@ \ MIQn/m(p),Q'

Since Mlzn Jr(0),Q is a smooth curve and M?ﬂ is regular, M?n (), 18 reduced. Hence both

©);
(1) and (2) follow if we prove that (M?n ®4 K(9))red 1s regular at the boundary.

We know that the boundary M?ﬂ \ M?n is a disjoint union of finite number of copies of M.
Let us write M 11 = Spec R. Then for each component of Mi \ M?n, the completion of M?ﬂ

along it is isomorphic to R[[t]] (cf. [Leh, Chapter 5]). The claim follows since (R ® 4 x(9)[[t]])red
is regular. O

6. INTEGRALITY

We give the Drinfeld modular analogue of the result of Beilinson on integrality in the form
presented by Schappacher and Scholl [Sc-Sc, Section 7].

6.1. Let M be an abelian group. We write M[¥; ], M[Ss,,|, for the groups of M-valued
functions on the sets ¥y, St,, respectively. The canonical map Xy, — Sr induces the
homomorphism 7 : M[Sre] — M[Zr,]. We set C(Zyim,p, M) = lim M[¥ ] and similarly
define C(Stim, o, M), C(Cusphm’so, M), Yiim-
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Lemma 6.1. The cokernel of Yiim : C(Siim,p: C) — C(Etim,p, C) is a direct sum of irreducible
admissible representations of GLg(A°®). Fach direct summand is cuspidal automorphic, that
18, 1somorphic to the A ¥ -component of a cuspidal irreducible automorphic representations of

GLq(A)

Proof. This follows from the adelic description of Yy, (, given in Section 5.2.1 and the argument
in [Ja-La, Section 14] related to Jacquet-Langlands correspondence. O

6.2. For Q € P,, let M]%;Q denote the complement

2,Q _ 242 2
Mln = an XA Ag) \ U Mln,n(p),Q"
Q'€Pn, Q'#Q

2,0rd . . 2,Q
Let M In%(p),Q denote the ordinary locus of MIQ” Jr(9),Q" It is a regular closed subscheme of M}’

and its open complement equals MIQ” ®4 kg. The localization sequence induces the homomor-
phism

,ord ~ ,ord
O+ Ka(Mf, @ kg) = Ka(Mp 90 ) ) = O(MPT0) o).

Here the last isomorphism follows from [Ba-Mi-Se, Corollary 4.3].

6.2.1. Take a prime element m € A,. Let us consider the composite

fino: OME ©4k)% — OMZ2 ©4 k) L5 Ko(M2 @4 ky)

01,,Q 2,0rd
= O 0),0)

Lemma 6.2. For u € O(M?n ®a k), fir,.0(uw) has the same order of pole or zero at each
supersingular point of M?n/n(p) 0

Proof. Let us consider the composite

Br,,Q 2,0rd div
O(MIQn ®a k) —= O(M]n?;’Q)X — Z[X1,p)-
We prove that its image lies in the image of y7 : Z[St o] — Z[¥1,,].
Consider the composite with the quotient map, and extend the scalars:
O(M}, ®4 k)" — C[Sr,0]/C[S10)-

We prove that this map is zero.
We write the above map as the composite

(6.1) O(M}, @4 k) — OM; ) o) ©2Q = C[S1,0]/C[Srg]

By Lemmas 5.1 and 5.5, M12n ®4 k is a connected smooth curve over k. Let k(I,,) denote its field
of constants. Then it is easily checked that the first map of (6.1) factors through the quotient
O(M} ®a k) /k(I,)*. Let J,J' C A be two non-zero ideals such that J, J' are prime to o and
J divides J'. Let us consider a diagram

(AP EN S (A
in the category of A-modules such that ¢ is injective and w is surjective. To a Drinfeld module

E of rank 2 over an Ag-scheme S with a Drinfeld level J’ structure ¢ : (J7HA)P? - B(S),
we associate the Drinfeld module E' = E/¢ o (Ker w) and endow E’ with the canonical level .J
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structure (J1/A)®2 5 (771 /A)®2/,(Ker w) — E'(S) where 7 is the homomorphism induced
by ¢. It defines the morphism M} e Mg ®4 Ap, inducing a finite flat morphism M 2Q

M?TLQ Since M?;O/rg(m o is canonically isomorphic to the fiber product Mio/rs(p) Q X M2 M3, the
diagram
) 8 ;5 T
O(Mj ®4 k)" L K2<M3n ®akp) -2, O(Mio/:(p),Q)X —  CXJel/ClS]

! ! ! !

T O T
oM oak) YL K3 wak,) R ok o O[S )/ClSr)

)X
Jn/r(9).Q
is commutative. Passing to the inductive limit with respect to the inclusion (J~1/A)%2 =
(J71/A)®2 — (71 /A)®2 we have a homomorphism

pim@ ¢ im O(M3 @4 k)* /K — lim OM75 ) ) @2 Q = C(Siimp, C)/C(Siim,p, C),
I otd I 0]
of GLy(A¥)-modules. It suffices to prove that the image of juim g is zero. The group O(M3F ®4

k)*/k7 is canonically regarded as a subgroup of Z[Cusp,,»|. Passing to the inductive limit,
we have an injective homomorphism

O(Mgn ®A k)x/k;n - C(Cusplim,p"7 Z)7

from which we see that Image 1jim g ®z C is isomorphic to a subquotient of C(Cuspy;y, n, C). By
the adelic description of Cuspyy, ,» in Lemma 5.4, no irreducible subquotient of Image pijim @ ®zC
is cuspidal automorphic. By Lemma 6.1, any irreducible subquotient of C(Xiim,p, C)/C(Stim,e, C)
of f4im,q is cuspidal automorphic. Hence juim g ®7 C is zero. O

Lemma 5.6 together with Lemma 6.2 implies the following corollary (cf. [Sc-Sc, Section 7]):

Corollary 6.3. Let © € Kg(Mlgn ®a k) be an element which lies in both the image of the

symbol map O(M} @4 k)* @ O(M} ®4 k)" — Ky(M} ©a k) and the kernel of the boundary

map Ko(M7 @4 k) — Kl(ﬂi \ M} )® Q. Then for any Q € Pp, the element Oy, o(x) €

(’)(M?:}ij(p)@)x is of finite order. O
7. A NON-VANISHING RESULT

The aim of this section is to show that there exist certain elements in the Ky of the compact-
ification of Drinfeld modular curves such that the boundary at the infinity prime is nontrivial.
We start with elements in the (open) Drinfeld modular curves such that the image under the reg-
ulator is nontrivial. The tasks are then to apply Bloch’s method, and to compare the regulator
map and the Chern class map.

7.1. Let k, EZ, C' be as in Section 1. We fix a prime oo of k at which E has split multiplicative
reduction. Let A = H°(C'\ {c0},O¢). We use the notations in Section 4 and Section 5. We
also fix a separable closure koo Of koo.

Let Ml%m,k (resp. Hﬁm’k) denote the projective limit lln[(MIQ ®4 k) (resp. &nl(ﬂi ®ak))
of schemes. The function field analogue of Shimura-Taniyama conjecture is proved by Drinfeld,
and is worked out in detail by Gekeler and Reversat ([Ge-Re]). Thus there exists a non-constant
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morphism ¢p : Mimk — I of k-schemes, which is called “Weil uniformization” or “modular
parametrization”. The morphism ¢g factors through the canonical projection Hﬁm,k — M?@ Ak

for sufficiently small I. For J C I, let ¢ ; denote the composite MQJ ®ak — M? ®k— E.
We fix a prime number ¢ different from p. For each prime p of k, we put

HE (M, > Qe(2)) = lim, HE (M7 ®4 kp, Qe(2)),

HE (Mg, Qe(2) = lim H2 (V] @4 ki, Qe(2)).
The homomorphism
1

deg(¢p,)

gives rise to the homomorphism H2 (Mﬁmkp, Qe(2)) — HZ(E ®4 kg, Q(2)) which we denote by
SD*»K)?et'

com,  H2 (M @4 kp, Qu(2)) — HZ(E ® kp, Qu(2))

Lemma 7.1. The homomorphism . et is surjective.

Proof. Let us consider the morphism ¢p ; for a sufficiently small I. Take a separable closure k,
of k,. We have a commutative diagram

Hth(M3 ®A k@a@é@)) I Hl(kvaelt(M? XA EP7Q€(2)))

WE,I*l l
HG(E @1 kg, Qu(2)) —— H'(kg, Hy(E @ kp, Qu(2))).
Since ¢g ;1 is non-constant, the homomorphism
72 — —
Helt(MI ®a ko, Qe(2)) — Helt(E ®p ko, Qe(2))
of Gal(k,/k)-modules is split surjective. Hence ¢p 1, is surjective. O
For each prime @ of k, the homomorphism
——2 ——2 , ——2
Ko(M; @ k) = Ko(M7 @4 k) =% HE(M] ©4 ko, Qe(2)
gives rise to the homomorphism Kg(Mimk) — H2 (Mﬁm’kp, Q¢(2)) which we denote by cz2 .
For each non-zero ideal I G A, let W; = Image[O(M7 ®4k)* @ O(M} @4 k)* — Ko(M7®4k)].
We let Wy 1 denote the inverse image of W7 by the homomorphism K5 (M? ®ak) — K 2(M12® Ak).

We put W = lim W;, Wy = lim, Wy ;. By Corollary 6.3, it follows that cz2,,(Wo) = 0 for
p # 00. The aim of this section is to prove the following proposition.

Proposition 7.2. The composite

C2,2 00

—2 —2
Wo ®z Qp — Ka(Myy, ) ®z Qe —— Hezt(Mlim,koo7@é(2))
18 surjective.

Proof. Let BT denote the Bruhat-Tits building for PGLa(kw). Let I & A be a non-zero ideal.
In [Ko-Yal, the authors defined the regulator map

reg; : Ko(M7 ®a k) — Hp
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to the module H; of GLa(k)-invariant harmonic 1-cochains on the simplicial complex

GL2(A®) /Ky x BT = 11 BT.
YEGL2(A>®) /K

Let Ho; C Hy denote the submodule of GLa(k)-invariant harmonic 1-cochains whose support
is finite modulo GLy(k). We put H = h_H)lI H;, Hy = h_II)lI Hy ;. Passing to the inductive limit
we obtain a GLa(A)-equivariant homomorphism

reg : KQ(MEmk) — H.

Let Z C GLa(ko) denote the Iwahori subgroup. Since the set of pointed edges in B7 is
canonically isomorphic to GLa(kso)/kX Zoo, we can regard H (resp. Hp) as a module of locally
constant (resp. locally constant, compactly supported) Z-valued functions on the double coset
GL2(k)\GL2(A)/kX Zss. There is the analogue of Petersson inner product (, ) : Hygx Hg — Q
defined as (fi, fo) = fGLg(k)kéo\GLz(A) fi1(g)f2(g)dg, where dg denotes the Haar measure of
GL2(A) with vol(J[, GL2(Ag)) = 1. Since the restriction of ( , ) to Ho,r,g % Ho,r,q is non-
degenerate, there exists a unique homomorphism P; : Hyg — Hp g such that (fi, fo) =
(f1, Prfa) for all fi € Ho g, fo € Hrg. Passing to the inductive limit we obtain a GLa(A)-
equivariant homomorphism P : Hgp — Ho .

In [Ko-Yal, it is shown that the composite

regf@ : Wo Tee, Hg Ei Hy o

is surjective.
We apply Bloch’s method ([De-Wi, Lemma 5.2]) in the case of elliptic curves to our Drinfeld
modular context. By the Weil pairing morphism, we may regard elements of O(M} x 4 k) as

elements of O(M? x 4 k). We note that every cusp of M? ®4k is M} ®4 k-rational and that the
Drinfeld modular analogue of Drinfeld-Manin theorem is proved by Gekeler ([Ge2]). Thus for

each k € Ko(M?®4k), one can find an integer N > 1 and an element & in Image[Ko(M?®4k) —
lim Ky(M? ®4 k)] such that & — Nk € Im[O(M? @4 k)* @ O(M} @4 k)* — Ko(M? ®4 k).
Lemma 7.3. Let u1a € O(M}] x4 k)* @ O(M? x4 k)*. Then reg;(u12) equals zero.

Proof. Using the formula [Ko-Ya, Lemma 6.3] for the regulator on symbols it is easy to see that
the harmonic 1-cochain reg;(u12) is a 1-coboundary. This implies that (f,reg;(ui2)) = 0 for all
f € Ho . Hence regr(u12) = 0. O

The above lemma shows that the composite

reg

P
regfy : Wo,o — Ka(Mi, 1)o — Hg — Hog

is surjective.
We now use the following lemma, whose proof will be given in Section 7.2.

Lemma 7.4. The kernel of reg; contains the kernel of the composite

Ko(M? @4 k) — Ko(M} @4 ko) —2 H2 (M} ©4 koo, Qu(2)).
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We use the subscript —g, to mean — ®z Q. This lemma implies that Hg g, is a quotient of
the image W of

—2 €22, 00 —2
Wog, — KoM ) gy ——— Ho (M k.. Qe(2)).

We have a canonical isomorphism Hy g, = Homgr,(r..)(St, Acusp) of GL2(A%)-modules,
where Acysp denote the space of Qp-valued cusp forms on GL2(k)\GL2(A), and St denotes
the Steinberg representation of GLa(ks). Let V; be a two dimensional Q-representation of

Gal(koo/kso) which admits a non-split exact sequence
0—Qr— Ve — Q1) — 0.

Such V} is unique up to an isomorphism. By the fundamental theorem in [Drl, §11], we have an
isomorphism

. <72 A
lim , H (koo, HL (M7 ® 4 koo, Qe(2))

-2
HZ (M i, Qe(2)) N,
H (kom W) ®Q[ HomGLg(koo)<Stv Acusp)

[rale

of GLg(A>)-modules. Since H'(k,Vy) is one-dimensional, the module Hgt(ﬂﬁm’kw,(@g@))
is isomorphic to Hp g, as a GLa(A*)-module. On the other hand, Hy g, is a quotient of the

GL32(A>)-submodule Wy of lim, H2 (M? ®4 koo, Q(2)). Since Hy g, is an admissible GLa(A>)-

module, we conclude that Wy equals H2 (Hﬁmkw, Q¢(2)). This completes the proof of Propo-
sition 7.2. O

7.2. Proof of Lemma 7.4. Let X be the Drinfeld upper half plane over ko,. The rigid analytic
uniformization of M12 gives a canonical morphism

[T x—feik)™
YEGL (4%) /Ky

of rigid analytic spaces. For v € GLy(A™), let vy, : X — (M} ®4 ko)™ denote its vK;-
component.

There is the specialization map: sp : X — B7. Let e be an oriented edge (including the
endpoints) in the Bruhat-Tits building B7. Then sp~!(e) is isomorphic to Spm B, for some
affinoid algebra B.. Let Y. denote the special fiber of the formal model of Spm B.. Let v, :
Spm Be — (M? @4 koo)™ denote the restriction of v, to sp~!(e).

Lemma 7.5. Associated to v, ., there ezists a canonical ring homomorphism C’)(M]2 ®A ko) —
Spm Be.

Proof of Lemma 7.5. We take an embedding M12 R4 koo — V of M12 into an affine space V' over
koo. Let B(r) denote the open ball in V' centered at the origin of radius r. Then V; = M? N B(i)
is an affinoid, say Spm A;. There is a canonical ring homomorphism O(M?) — A;. Now since
Spm B, is quasi-compact, Spm B, — (M]2 ® A koo)®™ factors through V,, for some n. This means
that there is a ring homomorphism A,, — B.. The composition A — A,, — B, does not depends
on the choice of an embedding M12 ®4 ks — V and gives the desired ring homomorphism. [
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By the definition of reg; given in [Ko-Yal, the kernel of reg; contains the kernel of the
composite

KQ(MI2 ®A k) - HKZ(Be) i HGI( - HGI /Gl )tors
v,e

Let K, L. denote the total quotient ring of O(M? ®4 ko), O(Ye), respectively. Consider the
following commutative diagram:

Ko(M? @4 keo) ——  Ko(B.) —2— G1(Ye)/G1(Ye)tors

| | |
Ko (K) —— Ky(Frac(B.)) —2— Ki(Le)/K1(Le)tors

Where Frac(B.) is the field of fractions of B.. We note that the right vertical homomorphism
G1(Ye)/G1(Ye)tors — K1(Le)/K1(Le)tors 18 injective since Y, is a normal crossing curve over a
finite field. Hence the kernel of reg; contains the kernel of the composite

Ko(M? @4 k) — Ky(K) — HK2 (Frac(B,)) 2 HK1 )/ K1(Le)tors-

For an abelian group M, let M = @n M/1" @7 Q. The following diagram is commutative:

KQ(K) e H%e Gl (Le)/Gl (Le)tors

| o)
KQ(K)/\ - (H'y,e GYl (Le>/Gl(Le)tors)/\~
Since L. is the product of two copies of the field of rational functions over a finite field,

G1(Le)/G1(Le)tors is a free abelian group. Hence the map (1) is injective. Therefore, the
kernel of reg; contains the kernel of the composite

(7.1) KoM} @4 k) — Ko(K) — Ko(K)".

We note that K is the product of finite number of fields. By the theorem of Merkurjev-
Suslin ([Me-Sul]), the symbol map K»(K) — H2(K,Q(2)) gives an isomorphism Ko(K)" =
H2(K,Q(2)). Since the diagram

Ko(Mf @a k) —— Ky (K) —  Ky(K)"

l 5

KQ(MIQ ®A km) I HQ(sz XA kOOaQK(Q)) - HZ(Kan(Q))

€2,2

is commutative, the kernel of (7.1) contains the kernel of Ko(M? ®4 k) — Kao(M? ®4 ko) —
H?(M? ®4 koo, Q¢(2)). This completes the proof of Lemma 7.4. O
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8. PROOF OF THEOREM 1.1

Assume Sy # ) and take s € Sy. We use the notations in Section 7 for co = s. Combining
Proposition 7.2 with Lemma 7.1, we see that there exists an element x € Wy whose image by
the composite

—2 2
Wy — K2(M1im,k) - Hth(Mhm,kooa@E(Q))
Px,00,et
5 HG (B @y, koo, Qe(2))
is non-zero. Let us consider the morphism ¢g ; for a sufficiently small I. The homomorphism
1 -2
———— i1, Ko(M;®a k) — Ko(E
deg(pr.1) YE, (M7 ) (E)o
gives rise to the homomorphism ¢,  : Kg(Mﬁmk) — Ko(E)g. We put ks = ¢y g (k) € K2(E)qg.
Lemma 8.1. For s,s' € Sy, 0y(ks) =0 if and only if s # 5.
Proof. For each s’ € Sy, we have a commutative diagram,
——2 ——2
Ko(Miip, 1) Hgt(Mlim,kS/ ;Qe(2))
J/(,D*J( lcp*,s/,et
Co o ol
Ky(B)  —=5 HE(E @ by, Qu(2)).

Hence ¢ ¢/ (Koo) = 0 if 8" # 00 and ¢22,00k00 7# 0. Now Proposition 3.1 gives the claim. O

€22 4/

Proof of Theorem 1.1. Consider the subspace of K3(E)g generated by {ks|s € Sp}. Using
Lemma 8.1 one sees that it maps surjectively onto the right hand side. This completes the
proof of Theorem 1.1. U O

9. MOTIVIC COHOMOLOGY GROUPS OF SMOOTH SURFACES

Aside from the uniquely divisible part, we understand the motivic cohomology groups of
smooth surfaces over finite fields fairly well. The divisible part is conjecturally zero.

9.1. Motivic cohomology of surfaces over a finite field. Let F, be a finite field of charac-
teristic p.

For a separated scheme X which is essentially of finite type over F,, we define the motivic
cohomology group H,(X,Z(j)) as the homology group H',(X,Z(j)) = Haj—i(2?(X,e)) of
Bloch’s cycle complex z7(X,e) ([Bl2] see also [Ge-Le2, 2.5] to remove the condition that X is
quasi-projective). When X is essentially smooth over F,, it coincides with the motivic cohomol-
ogy group defined in [Levl] or [Vo-Su-Fr| (cf. [Lev2], [Vo2]). For a discrete abelian group M, we
put Hj\/t(X,M(])) :ng_i(zj(X,o) Kz M) '

We will compute the motivic cohomology group Hj (X, Z(j)) modulo uniquely divisible sub-
group when X is a smooth surface over F,. The group H} (X, Z(j)) for j < 1 has been computed.
By definition, H'(X,Z(j)) = 0 for j < 0 and (4,j) # (0,0), and HY,(X,Z(0)) = HY, (X,Z).
We also have H',(X,Z(1)) =0 for i # 1,2, Hy,(X,Z(1)) = Hy, .(X,Gp,), and Hy(X,Z(1)) =
Pic(X) ([Bl2, Theorem 6.3]).

The following conjecture is a part of the Bloch-Kato conjecture ([Ka, §1, Conjecture 1]).
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Conjecture 9.1. Let j > 1 be an integer. Then for any finitely generated field K over Fy and
for any £ # p, the symbol map KJM(K) — H?,(Spec K,Z/((j)) is surjective.

Conjecture 9.1 is known to hold when j < 2 or ¢ = 2 (cf. [Me-Sul], [Vol]). We note that
Conjecture 9.1 for j implies Conjecture 9.1 for any j' < j.

Definition 9.2. Let M be an abelian group. We say that M is finitely generated modulo uniquely
divisible subgroup (resp. finite modulo uniquely divisible subgroup) if Mg, is uniquely divisible
and M9 is finitely generated (resp. Mgs, is uniquely divisible and M™¢ is finite).

We note that, if M is finite modulo uniquely divisible subgroup, then My is a finite group
and M = Mgy ® Miors-
The aim of Section 9.1 is to prove the following theorem.

Theorem 9.3. Let X be a smooth surface over Fy. Let R denote the number of connected
components of X which is projective over IFy.

(1) The group Hj\/l (X,7Z(2)) is finitely generated modulo uniquely divisible subgroup if i # 3
or if X is projective. More precisely,
(a) The group H),(X,7Z(2)) is zero fori > 5.
(b) The group Hjlvl (X,Z(2)) is a finitely generated abelian group of rank R.
c) If i <1 or if X is projective and i < 3, the group H' (X,7Z(2)) is finite modulo
M
uniquely divisible subgroup.
(d) The group HJQVI (X,Z(2)) is finitely generated modulo uniquely divisible subgroup.
(e) Fori < 2, the group H'(X,Z(2))tors is canonically isomorphic to the direct sum
HIYX,Qp/Z¢(2)). In particular, the group H' (X, Z(2)) is uniquely divisi-
l#£p “Tet M
ble for i <0.
) If X is projective, then the group H (X, Z(2))iors 45 isomorphic to the direct sum o
M
the group @y, H2(X,Qq¢/Z(2)) and a finite p-group of order |H0m(Png(/Fq, Gm)|-
|L(h2(X),0)|;1. Here Hom(Picg(/Fq,Gm) denotes the set of morphisms Pic% p —
Gy, of Fy-group schemes.

(2) Let j > 3 be an integer and suppose that Conjecture 9.1 is true for j. Then for any
integer i, the group H),(X,Z(j)) is finite modulo uniquely divisible subgroup. More
precisely, ‘ _

(a) The group H,(X,Z(j)) is zero for i > max(6,j + 1), is isomorphic to (Z/(¢"~% —
)R for (i,5) = (5,3), (5,4), and is finite for (i,5) = (4,3).

(b) The group Hj\A(X,Z(j))tors is canonically isomorphic to B, , HLY X, Qu/Z4(4)).
In particular, the group H' (X, Z(j)) is uniquely divisible for 1 < 0 or 5 <i < j,
and the group H/lvt (X,Z(4))tors is cyclic of order ¢7 — 1.

In the following table, we summarize the description of the groups H',(X,Z(j)) stated in
Theorem 9.3. For j > 3, we assume that Conjecture 9.1 for j holds. Here we write u.d, f./u.d.,
f.g./u.d., f., f.g. for uniquely divisible, finite modulo uniquely divisible, finite generated modulo



24 SATOSHI KONDO AND SEIDAI YASUDA

uniquely divisible, finite, finitely generated respectively.

[j\i[<0] 0 Jo<i<j| j [ j+1 [j+2[>j+3
0 0 [H(z) - 0
1 0 - HO(G,,) | Pic(X) 0
f.g./u. d. ?
2 u. d. £./u. d. f./u. d. if projective f e 0
3 . d. f/u. d. f. 0
4 u. d. f./u. d. £ 0
f./u. d.
25 u. d. Ldif6<i<; 0

Lemma 9.4. Let X be a separated scheme which is essentially of finite type over Fy. Let i,j be
integers. If both Hj\gl(X, Q/Z(j)) and lim H'\(X,Z/m(j)) are finite, then H' (X, Z(j)) is fi-
nite modulo uniquely divisible subgroup and its torsion subgroup is isomorphic to Hj\zl (X,Q/Z(j))-
Proof. Let us consider the exact sequence
(91) 0= Hi'(X,2())) @ Q/Z — Hyy (X, Q/Z(j)) = Hu(X, Z(j))tors — 0.
Since Hj\gl(X ,Q/Z(3)) is a finite group, all the groups in the above exact sequence are finite
groups. Then the group H''(X,Z(j)) ® Q/Z must be zero since it is finite and divisible.
Hence we have a canonical isomorphism Hﬁl(X ,Q/Z(j)) — H'(X,Z(j))tors- The finiteness of
H'\ (X, Z(j))tors implies that the group H,(X,Z(j))aiv is uniquely divisible and the canonical
homomorphism . '

Hj((X,Z(5))" — lim Hjy (X, Z(j)) /m

m

is injective. The latter group lim H' (X, Z(j))/m is canonically embedded in the finite group
lim Hi,(X,Z/m(j)). Hence we conclude that Hi (X, Z(j))™ is finite. This proves the claing

Lemma 9.5. Let X be a smooth projective surface over Fy. Let j be an integer and suppose that
Conjecture 9.1 is true for j. Then the group Hj (X, Q/Z(j)) and the group lim H} (X, Z/m(j))
are finite if i # 2§ or j > 3.

Proof. The claim for j < 1 is clear. Suppose that 7 = 2. Then the claim for ¢ > 5 is clear.
If p t m, by [Ge-Le2, Corollary 1.2. See also Corollary 1.4] and Merkurjev-Suslin theorem,
the cycle class map H)((X,Z/m(2)) — H4(X,Z/m(2)) is an isomorphism for ¢ < 2 and is
injective for i = 3. By [Co-Sa-So, Théoreme 2| and the exact sequence [Co-Sa-So, 2.1 (29)
p.781], the group lim ~ H¢ (X, Z/m(2)) and the group @m’mm H! (X,Z/m(2)) are finite for

pf
i < 3. Let W,,Q% ), denote the logarithmic de Rham-Witt sheaf (cf. [Il1, I, 5.7]). This was
introduced by Milne in [Mil]. There is an isomorphism H'((X,Z/p"(2)) = Hy 2(X, Wa02 .,

(cf. [Ge-Lel, Theorem 8.4]). In particular, we have H),(X,Q,/Zy(2)) = 0 for i < 1. By
[Co-Sa-So, §2, Théoreme 3|, lim HE (X, WnQ?leog) is a finite group for ¢ = 0,1. Using the
argument in [Co-Sa-So, 2.2], we see that lim Hg (X, Wan(,log) is also finite for i = 0,1 and is
isomorphic to hi>nn Hgt_ 1(X , Wn@%(,log)' Since the homomorphism

H%ar(Xv WnQ?X',log) - Hét(X> WnQ%(,log)?
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induced by the change of topology € : Xot — X7zar, is an isomorphism for ¢ = 0 and is injective
for i = 1, we see that lim H3,(X,Z/p"(2)) is zero, and that both H3,(X,Q,/Z,(2)) and
lim | H%,(X,Z/p"(2)) are finite groups. This proves the claim for j = 2.

Suppose 7 > 3. The claim for ¢ > 2j is clear. Since j > 3, we have ij(X, Z]p"(j)) =

Hgf (X, W”Qqc;,log) = 0. Assume Conjecture 9.1 for j. Then by [Ge-Le2, Theorem 1.1], the group

H'\,(X,Z/m(j)) is isomorphic to the group HY (X, 7<;Re.Z/m(j)) if p f m. Since any affine
surface over F, has ¢-cohomological dimension 3 for any ¢ # p, we have Hy, (X, 7<;Re Z/m(j)) =
H! (X,Z/m(35)) for all i. Hence by [Co-Sa-So, Théoréme 2] and the exact sequence [Co-Sa-So,
2.1 (29) p.781], the group H,(X,Q/Z(j)) and the group lim Hi,(X,Z/m(j)) are finite for
1 < 25 — 1. This proves the claim for j > 3. g

Lemma 9.6. Let Y be a scheme of dimension d < 1 which is of finite type over F,. Then
vat(Y,Z(j)) is a torsion group unless 0 < j < d and j <i < 2j.

Proof. By taking a smooth affine open of Y;,q whose complement is of dimension zero, and
using the localization sequence of motivic cohomology, we are reduced to the case where Y
is connected, affine, and smooth over F,. When d = 0 (resp. d = 1), the claim follows from
the result of Quillen [Qu] (resp. Harder [Hard, Korollar 3.2.3] (see [Gr, Theorem 0.5] for the
correct interpretation of his result)) on the structure of the K-groups of Y, combined with the
Riemann-Roch theorem for higher Chow groups [BI2, Theorem 9.1]. O

We use the following lemma, whose proof is easy and is left to the reader.

Lemma 9.7. Let ¢ : M — M’ be a homomorphism of abelian groups such that Ker ¢ is finite
and (Coker ¢)qiy = 0. If Maiy or M), is uniquely divisible, then ¢ induces an isomorphism
Mgy = M.,
Proof of Theorem 9.3 (1). Without loss of generality, we may assume that X is connected. We
first prove the claims assuming X is projective. It is clear that the group Hj,(X,Z(j)) is zero
for i > min(j + 3,25 + 1). It is known that the degree map H},(X,Z(2)) = CHy(X) — Z
has finite kernel and cokernel ([Bl1, p.232 (5)], [Mi2], see also [Co-Sa-So]). This proves the
claim for i > min(j + 3,2j). Fix j > 2 and assume Conjecture 9.1 for j. For i < 2j — 1, the
group H,(X,Z(j)) is finite modulo uniquely divisible subgroup by Lemmas 9.4 and 9.5. The
claim on the identification of H',(X,Z(j)) with the etale cohomology follows immediately from
the argument in the proof of Lemma 9.5 except for the p-primary part of H J?(/[ (X,Z(2)), which
follows from Proposition A.1. '

To finish the proof, it remains to prove that H (X, Z(j))aiv is zero for j > 3and i = j+1, j+2.
It suffices to prove that Hj\,l (X,Z(j)) is a torsion group for j > 3 and i > j + 1. Consider the
limit

lim HYy *(Y, Z(j — 1)) = Hiy (X, Z(j)) — lim Hj (X \ Y, Z(5))
Y Y

of the localization sequence where Y runs over the reduced closed subschemes of X of pure codi-
mension one. The group Hj\f(Y, Z(j —1)) is torsion by Lemma 9.6 and we have lim,, H}\ZQ(X \
Y,Z(j — 1)) = 0 for dimension reasons. Hence the claim follows. This completes the proof in
the case where X is projective.

For general connected X, take an embedding X — X’ of X into a smooth projective surface
X' over F, such that Y = X'\ X is of pure codimension one in X’. We can show that such an
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X' exists by using [Na] and a resolution of singularities ([Ab], [Lip]). Then the claims, except
for that on the identification of H, (X, Z(j))tors With the etale cohomology, easily follow from
Lemma 9.7 and by using the localization sequence

o= HYPA (Y Z(5 - 1)) — Hiy (X', Z(5)) — Hig (X, Z(5)) — -+

The claim on the identification of H (X, Z(j))tors with the etale cohomology can be obtained
in a way similar to that in the proof of Lemma 9.5. This completes the proof. O

9.2. A criterion for the finiteness of H%A (X, 7Z(2))tors-

Proposition 9.8. Let X be a smooth surface over F,. Let X — X' be an open immersion
such that X' is smooth projective and Y = X'\ X is of pure codimension one in X'. Then the
following conditions are equivalent.

(1) The group H3(X,Z(2)) is finitely generated modulo uniquely divisible subgroup.

(2) The group Hy,(X,Z(2))tors is finite.

(3) The pull-back H3,(X' Z(2)) — H3,(X,Z(2)) induces an isomorphism

H (X', Z(2)) i — Hig(X,Z(2)) div-

(4) The kernel of the pull-back map Hy, (X', Z(2)) — H3,(X,Z(2)) is finite.

(5) The cokernel of the boundary homomorphism 0 : H3,(X,Z(2)) — H,(Y,Z(1)) is finite.
Moreover, if the above equivalent conditions are satisfied, then the group H;’\A(X,Z@))tors 18
isomorphic to the direct sum of the group @,,, H2(X,Q¢/Z¢(2))Y and a finite group of p-
power order, and the localization sequence induces the long exact sequence

(9.2) = Hi A (Y, 2(1) — Hiy (X' Z(2)) — Hiy(X,Z(2))7 — -
of finitely generated abelian groups.

Proof. The condition (1) clearly implies the condition (2). The localization sequence shows that
the conditions (4) and (5) are equivalent and the condition (3) implies the condition (1). By the
localization sequence and Lemma 9.7, the condition (4) implies the condition (3).

We claim that the condition (2) implies the condition (4). Assume the condition (2) and
suppose that the condition (4) is not satisfied. We put M = Ker[H3 (X', Z(2)) — Hy (X, Z(2))].
The localization sequence shows M is finitely generated. By assumption, M is not torsion. Since
H %/t (X',7Z(2)) is finite modulo uniquely divisible subgroup, the intersection H ?\/( (X', Z(2))aivNM
is a non-trivial free abelian group of finite rank. Hence the group H%,(X,Z(2)) contains a group
isomorphic to H3,(X',Z(2))aw/(H3 (X', Z(2))aiv N M), which contradicts the condition (2).
Hence the condition (2) implies the condition (4). This completes the proof the equivalence of
the conditions (1)-(5).

Suppose that the conditions (1)-(5) are satisfied. The localization sequence shows that the ker-
nel (resp. the cokernel) of the pull-back H(X,Z(2)) — H' (X', Z(2)) is a torsion group (resp.
has no non-trivial divisible subgroup) for any i € Z. Hence, by Lemma 9.7, H (X, Z(2))qiy is
uniquely divisible and the sequence (9.2) is exact. The condition (2) and the exact sequence (9.1)
for (i,7) = (3,2) give the isomorphism H%,(X,Z(2))tors = H3,(X,Q/Z(2))™. Then the claim
on the structure of H3,(X,Z(2))tors follows from [Ge-Le2, Corollary 1.2. See also Corollary 1.4]
and Merkurjev-Suslin theorem. This completes the proof. O
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Let X be a smooth projective surface over F,. Suppose that X admits a flat, surjective and
generically smooth morphism f : X — C to a connected, smooth projective curve C' over F,.
For each point p € C, let X, denote the fiber of f at p.

Corollary 9.9. Let the notations be as above. Let n € C' denote the generic point. Suppose that
the cokernel of the homomorphism 0 : H3,(X,,Z(2)) — Doco, H}\, (X, Z(1)), which is the
inductive limit of the boundary maps of the localization sequences, is a torsion group. Then the
group H (X, Z(2))aiy is uniquely divisible for all i € Z and the inductive limit of localization
sequences induces the long exact sequence
= @D HIE (X, Z(1) = Hi(X,Z(2)) — Hiy (X, Z2(2)) — -
peCo

Proof. Since the group @ 0eCo H' (X, Z(1)) has no non-trivial divisible subgroup for all i € Z,
and is torsion for i # 1 by Lemma 9.6, the claim follows from Lemma 9.7. g

10. Motivic CHERN CHARACTERS FOR SINGULAR CURVES OVER FINITE FIELDS

We construct Chern characters for singular curves over finite fields in an ad hoc manner. We
apply them to the bad reductions of an elliptic curve.

10.1. Given an essentially smooth scheme X over [, and integers 4, j > 0, we let ¢; j : K;(X) —
HY 7' (X,Z(5)) denote the Chern class map, which is constructed and is denoted by ¢%*~" in
[Levl]. The map ¢; ; is a group homomorphism if i > 1 or (4, j) = (0,1). We let chg : Ko(X) —
H$,(X,Z(0)) = HY, (X,Z) denote the homomorphism which sends the class of locally free
Ox-module F to the rank of F. For ¢ > 1 and a € K;(X), we put formally ch; ¢(a) = 0.

Lemma 10.1. Let X be an Fy-scheme which is a localization of a smooth quasi-projective F-
scheme. LetY C X be a closed subscheme of pure codimension d which is essentially smooth
over Fq. Then fori,j > 1 or (i,5) = (0,1), the diagram

K(Y) s HY MUY, Z( - d))
Ki(X) ——  HY (X Z())
(10.1)

K(X\Y) . HIT(X\Y,Z()))

Kia(Y) 2 gY2 Ny z( - d))
is commutative. Here the homomorphism oy ; is defined as follows: fora € K;(Y), a; j(a) equals
Ga j-a(chio(a), cii(a), ..., cija(a); con(N), ..., coj-a(N)),

where G g j_q is the universal polynomial in [SGAG6, Exposé 0, Appendice, Proposition 1.5] and N
is the conormal sheaf of Y in X ), and the left (resp. the right) vertical sequence is the localization
sequence of K -theory (resp. of higher Chow groups established in [Bl3]).
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Proof. We may assume that X is quasi-projective and smooth over Fy. It follows from [Lev1, Part
I, Chapter III, 1.5.2] and the Riemann-Roch theorem without denominators [Gi, Theorem 3.1]
that the diagram (10.1) is commutative if we replace the right vertical sequence by the Gysin
sequence in [Levl, Part I, Chapter III, 2.1]. It suffices to show that the Gysin sequence is
identified with the localization sequence of higher Chow groups. We use the notations in [Levl,
Part I, Chapter I, II]. Suppose that S = SpecF, and V is the category of essentially smooth
F,-schemes. We put I' = Zx y (5)[2j — i] which we regard as an object in C% (V)*. We have
canonical homomorphisms
0 HO cl(I)
H"(Zmot (L, %)) — CH(I') — Hompy (1,y(1,T).
These homomorphisms give a canonical homomorphism
CHI=4(Y, ) & Hy(Cone(+(X, e) — 3(X \ Y, 0)[~1]))
. . . 25 —1 N\~ 772i—i—2d .
— Hompy (L Zxy ()2 — i) = ¥ (X, 2()) = B (Y, 20 - d)).
Using the deformation diagram [Leyl, Parfc I, Chapt‘er I11, (2.1.2.1)], we see that this homo-
morphism equals the isomorphism clg/_d’%_z_zd o i{,_d’z - CH/=4(Y, i) = Hifl_z_w(Y, Z(j — d)) in
[Levl, Part I, Chapter II, Theorem 3.6.6]. This proves the claim. O
Remark 10.2. For j = d, we have a; g = (—1)471(d — 1)! - ch;o. Fori > 1 and j =d + 1, we
have O d+1 = (—1)dd! ©Ci1-
Suppose that d = 1 and N’ = Oy. Then we have a; 1 = ch; o and
aijla) = (=1 7'Q;j-1(cia(a), . .., cij-1(a))
for i > 0, j > 2, where Qj_1 denotes the (j — 1)-st Newton polynomial which expresses the

(j—1)-st power sum polynomial in terms of the elementary symmetric polynomials. In particular,
ajo = —c;q fori >0, and a; j = —(j — 1)¢; j—1 and for i > 1, j > 2.

10.2. Let Z be an Fg-scheme of pure dimension one which is separated of finite type over IF,.
We construct a canonical homomorphism ch; ; : Gi(Z) — H/Q\f[_z(Z,Z(j)) for (i,7) = (0,0),
(0,1), (1,1), and (1,2). Then we will show (Proposition 10.4) that the homomorphism

(10.2) (i, ) : Gi(Z) — Hig(Z,2(0)) © HY2(Z, 200 + 1))

(3
is an isomorphism for ¢ = 0, 1. Since G-theory of Z and Z,.q are isomorphic, and the same holds
for motivic cohomology, it suffices to treat the case where Z is reduced.
Take a dense affine open smooth subscheme Z) C Z, and let Z(;) = Z \ Z(() be the comple-
ment of Zp) with the reduced scheme structure. We define Chijo to be the composite

cho,o

Go(Z) — Ko(Z9)) — H3(Z(0), Z(0)) = H}(Z, Z(0)).
We use the following lemma.
Lemma 10.3. Fori =0 (resp. i = 1), the diagram
Kit1(Z(0)) — Ki(Zn)
Cz‘+1,i+1l lc“ (resp. cho,0)
HHN(Z(0), 2+ 1) —— Hi(Z), Z(0))
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where each horizontal arrow is a part of localization sequence, is commutative.

Proof. Let Z denote the normalization of Z. We write Z(O) = Zo) Xz Z(% Z(p)) and Z(l) =
(Zy xz Z)red. Comparing the diagrams

Kin1(Zo) — KiZy)) HiNZoy, 2+ 1)) —  Hiy(Za), Z(i))
| Lad Tl
Kin1(Zo) — Ki(Zqy) Hy N (Zo), Z(i+ 1)) —  Hj(Zq), Z(i))
reduces us to proving the same claim for Z(O) and Z(l), which follows from Lemma 10.1. O

We define ch’l’l to be the composite

le(Z) — Ker[Kl(Z(O)) — KQ(Z(l))]
=5 Ker[HY, (Z0), Z(1)) — HY(Z1y, Z(0))] = HA,(Z, Z(1)).

Next we define ch , when Z is connected. If Z is not proper, then H3},(Z,Z(2)) is zero by
Proposition B.1. We put ch’m = 0 in this case. If Z is proper, then the push-forward map
H3,(Z,Z(2)) — H},(Spec H*(Z,07),Z(1)) = K1(H%(Z,Oy)) is an isomorphism. We define
chi 5 to be (—1)-times the composite

G1(Z) — K (Spec H(Z,02)) = HX(Z,7Z(2)).

We define ch’l’z for non-connected Z to be the direct sum of ch’1’2 for each connected component
of Z.
Observe that the group Go(Z) is generated by the two subgroups M; = Image[Ko(Z(1)) —

Go(Z)] and My = Image[Ko(Z) — Go(Z)]. One can see by using Lemma 10.3 and the local-
ization sequences that the isomorphism chg o : Ko(Z(1)) = HY(Z(1),Z(0)) induces a homomor-
phism chg , : My — H3(Z,Z(1)). The kernel of Ko(Z) — Go(Z) is contained in the image of
KO(Z(I)) — Ko(Z). Tt is easily checked that the composite

= >\ €o,1

Ko(Zy)) — Ko(Z) == Hiu(Z,Z(1)) — Hi,(Z.Z(1))

equals the composite
~ ch/
Ko(Zgy) — Ko(Z)) —» My — H3(Z,Z(1)).

Hence the homomorphism cq ; : Ko(Z) — HJQVI(Z ,Z(1)) induces a homomorphism chg; : My —
H3,(Z,Z(1)) such that the two homomorphisms chg : M; — H3(Z,Z(1)), i = 1,2, coincide
on M; N Ma. Thus we obtain a homomorphism chy , : Go(Z) — H3,(Z,Z(1)).

It is easily seen that the four homomorphisms chf)’o, Ch&l, Ch/Ll, and Ch/172 do not depend on
the choice of Zg).

Proposition 10.4. The homomorphism (10.2) for i = 0,1 is an isomorphism.

Proof. It follows from [Ba-Mi-Se, Corollary 4.3] that the map c11 : K1(Z(g)) — H}((Z(0), Z(1))
is an isomorphism. Hence, by construction, ch’m is surjective and its kernel equals the image
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of K1(Z(1)) — G1(Z). It follows from the vanishing of K2 groups of finite fields that the homo-
morphism ¢a9 : Ka(Z(g)) — H3(Z(0), Z(2)) is an isomorphism. We then have isomorphisms

Image[K1(Z(1)) — G1(Z)] = Tmage[H,(Z(1), Z(1)) — Hj(Z,Z(2))] = Hi((Z,Z(2)),
the first of which is by Lemma 10.3, and the second is by [Ba-Mi-Se, Corollary 4.3]. Therefore

h/
the composite Kerch} ; — G1(2) g #4(Z,Z(2)) is an isomorphism. This proves the claim
for G1(Z).
By the construction of chy;, the image of chp, contains the image of HY,(Z ), Z(0)) —

~ h’
H2,(Z,7(1)), and the composite Ko(Z) — Go(Z) —25 H2(Z,Z(1)) — H3(Z0), Z(1)) equals

€0,1

the composite Ko(Z) — Ko(Zqy) = Ko(Z(0)) —= H34(Z(),Z(1)). This implies that ch; is
surjective and the homomorphism

0,1

Ker chy; — Ker[Ko(Z()) — H34(Z(0), Z(1))]

is an isomorphism. This proves the claim for Go(Z). O

11. K-GROUPS AND MOTIVIC COHOMOLOGY OF CURVES OVER A FUNCTION FIELD

From the computations of motivic cohomology of a surface with a fibration, we deduce some
results concerning the K-groups of low degrees of the generic fiber. We relate the two using
Chern class maps and by taking the limit.

Let C' be a smooth projective, geometrically connected curve over a finite field F,. Let k
denote the function field of C. Let X be a smooth projective geometrically connected curve over
k. Let X be a regular model of X which is proper and flat over C.

Lemma 11.1. The map

) (c1,1,¢1,2)
TRy

K (X KXo HY(X,7(2))

is an isomorphism. The group Hjlvl (X,7Z(3)) is a torsion group and there exists a canonical short
exact sequence
c2,2

0 — H{((X,2(3)) & Ka(X) =2 Hi((X.Z(2) = 0
such that the composite ca 3 o B equals the multiplication-by-2 map.

Proof. Let Xy denote the set of closed points of X. Construct a commutative diagram by
connecting the localization sequence

Direx, Ko(r(2)) = Ko(X) — Kz (k(X))
= Duex, Ki(s(z)) = Ki(X) = Ki(k(X)) = Dpex, Kolz)
with the localization sequence
Bex, HYy(Specr(x), Z(1)) — H3,(X, Z(2)) — H3((Spec k(X), Z(2))
= @aex, Hu(Specr(z), Z(1)) — H3, (X, Z(2)) — H},(Spec k(X), Z(2)),
using the Chern class maps. Since H°(Specr(z),Z(1)) = 0 and the K-groups and motivic

cohomology groups of fields agree in low degrees, the claim for K;(X) follows from diagram
chasing.



ON K; AND K> OF AN ELLIPTIC CURVE 31

It also follows from diagram chasing that

€2,2

K3(k(X)) = €D Ka(r(x)) — K2(X) = Hi, (X, Z(2)) — 0
reXp

is exact. By [Ne-Su| and [To], the group H3,(k(X),Z(3)) and the group H3,(Specr(z),Z(2))
for each z € X are isomorphic to the Milnor K-groups K3 (k(X)) and K2 (k(z)) respec-
tively. We easily see from the definition of these isomorphisms in [To] that the boundary map
H?,(k(X),Z(3)) — H3,(Speck(z),Z(2)) is identified with the boundary map K2/ (k(X)) —
K} (k(x)) under these isomorphisms. Hence by [Me-Su2, Proposition 11.11], we have isomor-
phisms

Coker[K3(k(X)) = D,y K2(r(z))]
Coker[H3((k(X),Z(3)) — @D,cx, Hiq(Spec k(x), Z(2))]
= HY,(X,Z(3)).

R|IR

This gives the desired short exact sequence. The identity cp 303 = 2 follows from Remark 10.2.
Since H3,(Specr(z),Z(2)) is a torsion group for each x € X, the group H4,(X,Z(3)) is a
torsion group. This completes the proof. ]

Lemma 11.2. Let U C C be a non-empty open. We denote by XY the complement X\ X xc U
with the reduced scheme structure. Then For (i,7) = (0,0), (0,1) or (1,1), the diagram

Kit1(X) — Gi(xY)
(11.1) cirit | (-vet |
HY X2+ 1) —— HY (XY L))
where each horizontal arrow is a part of localization sequence, is commutative.

Proof. Let XY c XY denote the smooth locus. The commutativity of the diagram (11.1) for
(4,7) = (1,1) (resp. for (i,7) = (0,0)) follows from the commutativity of the diagram

Ki1(X) — Ki(XZ)

Cit1.i41 —c1,1
it+lj+ (resp. chg o)

Hizl—i—i-l(X’Z(j_'_l)) _ Hiﬁl_l(XU Z(]))

sm?

and the injectivity of Hy, (XY, Z(j)) — HY (XY, Z(5)).

sm?

By Lemma 11.1, the group K;(X) is generated by the image of the push-forward homomor-
phism ¢ x, K1(k(z)) — K1(X) and the image of the pull-back K;(k) — Ki(X). Then the
commutativity of the diagram (11.1) for (¢,5) = (0,1) follows from the commutativity of the
diagram

Ko(Y) ——  Go(xY)

ChOYOJ/ Ch;)’lJ/

HRy(Y, Z(0)) —— HZ, (XY, Z(1))
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*

for any finite reduced closed subscheme Y C XY, and the fact that the composite Ko(C'\U) EAdN
h/
Go(xY) Zoa, H3,(XY,Z(1)) is zero. Here fU : XU — C'\ U denotes the morphism induced by

the morphism X — C. ([l
Lemma 11.3. The diagram
0—  HL(X,Z3) —  KyX) 22, H3,(X,Z(2)) —0
! ! !
(11.2) vy
0= PHUX,Z(2) - PGix) —5 P HUX,Z(1) —0
©eCo peCo peCo

with exact rows, is commutative.

Proof. The commutativity of the right square follows from Lemma 11.2. For each closed point
x € Xo, let D, denotes the closure of x in X and write D, , = D, X¢ Speck(p). Then the
commutativity of the left square in (11.2) follows from the commutativity of the diagram

Hmi,mza)) — HMspecfw),m)) = KQ(T(x)) - K2$X>
P H(X.2(2) — P HL(Drp.Z() = PGCi(Dey) — PG
p€Co p€Co p€Co p€Co
]

Lemma 11.4. Let 9 : HY (X x¢ U, Z(3)) — H3(XY,Z(2)) denote the boundary map of the
localization sequence. Then the composite

o : Coker 0 — Hj((X,Z(3)) — Hj,(SpecFq, Z(1)) = F

s an tsomorphism.

Proof. For each closed point x € Xo, let D, denote the closure of z in X. We put D,y =
D, xcU. Let DJCU denote the complement D, \ D, with the reduced scheme structure. Let
tyg 2 Dy — X, 10 : Dey — A, Lg : D:EU < XU denote the canonical inclusions. Let us
consider the commutative diagram

H3(Dov, 22)) —— Hj(DY,7(1)) —— HY(Ds,7(2))

l L;f{g
HY (X xc U, Z(3)) —2— H3(XV,Z(2)) —— Cokerd — 0
with exact rows. Since X is geometrically connected, the Stein factorization shows that ev-
ery fiber of X — C is connected. In particular D, intersects every connected component
of XV. This implies that the homomorphism .Y _ in the above diagram is surjective. Hence
we have a surjective homomorphism Image3 — Cokerd. Let F(x) denote the finite field
H°(D,,Op,). The push-forward H3,(Dy,Z(2)) — Hj,(SpecF(z),Z(1)) = F(z)* gives an
isomorphism Image 8 = F(x)*. Hence |Cokerd| divides ged, ¢ x, (|F(z)*|) = ¢ — 1, where the
equality follows from Lemma B.8. It is easily checked that the composite

F(z)* = Image 3 — Coker 0 - F
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equals the norm map F(x)* — Fy, which implies [Coker d| > ¢ — 1. Hence |Cokerd| = ¢ — 1

and the homomorphism « is an isomorphism. The claim is proved. O

12. APPLICATIONS

We give some applications of Theorem 1.1. In this section, we do not use the Bloch-Kato
conjecture. The objective is to prove Theorems 12.1, 12.2, 12.3. The statements give some
information on the structures of K-groups and motivic cohomology groups of elliptic curves over
global fields and of the (open) complement of some fibers of elliptic surfaces over finite fields.
Milne [Mi2] expresses the special values of zeta functions in terms of the order of arithmetic
etale cohomology groups. We compute the orders of some torsion groups, in terms of the special
values of L-functions, the torsion subgroup of (twisted) Mordell-Weil group, and some invariants
of the base curve.

Let us list the ingredients of the proof. Using Theorem 1.1, we deduce that the torsion
subgroups we are interested in are actually finite. Then the theorems of Geisser-Levine and
Merkurjev-Suslin relate the motivic cohomology groups modulo uniquely divisible part and the
etale cohomology and the cohomology of de-Rham Witt complexes. We use the arguments which
appear in [Mil], [Co-Sa-So], [Gro-Su] to compute such cohomology groups. The computation of
the exact orders of the torsion may be new. One geometric property of elliptic surfaces which
makes this explicit calculation possible is that the (abelian) fundamental group is isomorphic to
that of the base curve. This follows from a theorem in [Sh] for the prime-to-p part. The use of
the class field theory of Kato-Saito for surfaces over finite fields ([Ka-Sa]) is somewhat indirect
but we then know that the groups of zero-cycles on the elliptic surface and on the base curve
are isomorphic.

12.1. Notations. Let k, E, Sy, r, C, and & be as in Section 1. We also let S (resp. S2)
denote the set of primes of k at which E has multiplicative (resp. bad) reduction. Thus we have
So C S1 C Sy. Let p denote the characteristic of k. The closure of the origin of E in £ gives
a section to & — C, which we denote by ¢ : C — £. Throughout this section, we assume that
the structure morphism f : £€ — C is not smooth. For any scheme X over C, let £x denote the
base change £ x¢ X. For any non-empty open U C C, we denote by £V the complement & \ &
with the reduced scheme structure.

Let F, denote the field of constants of C. We take an algebraic closure F, of F,. Let
Frob € Gy, = Gal(F,/F,) denote the geometric Frobenius. For a scheme X over Fy, we denote

by X its base change X = X ®F, F, to F;. We often regard the set Irr(X) as a finite etale

IF4-scheme corresponding to the G, -set Irr(X).

12.2. Results. We put T = E(k ®p, Fy)tors and, for each integer j € Z, T(’j) = D, (T ®z
Z()) .

Theorem 12.1. Let the notations and the assumptions be as above. Let L(E,s) denote the
L-function of the elliptic curve E over the global field k.

(1) The Q-vector space (K2(E)™Y)q is of dimension r.
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(2) The cokernel of the boundary map 0 : K2(E) — @D cc,

(4~ DAIL(R (Irx(Es,)), ~1)|
77| [ERO(C Sa).— 1]

G1(&y) is a finite group of order

(3) The group Ki(E)aiy is uniquely divisible.

(4) The kernel of the boundary map 0 : Ki(E)™*! — D cc, Go(&p) is a finite group of
order (q — 1)2|T(’1)\ -|L(E,0)|. The cokernel of 01 is a finitely generated abelian group of
rank 2 + |Irr(Es,)| — |S2| whose torsion subgroup is isomorphic to Jac(C)(F4)®?, where
Jac(C') denotes the Jacobian of C.

For an F,-scheme X of finite type and for ¢ € Z, choose a prime number ¢ # p and put
L(h*(X),s) = det(1 — Frob - ¢=%; H,(X,Qy)). In all the cases considered in this paper, the
function L(h'(X), s) does not depend on the choice of /.

For each non-empty open U C C, let Ty denote the torsion subgroup of the group Div(Ey)/ ~alg
of divisors on £ modulo algebraic equivalence. For each integer j € Z, we put Tl/J,(j) =
Dy (Tv @7, Z( 7)€% Tt is easily checked that the canonical homomorphism Ty — lim,, Ty is
injective and is an isomorphism if £y — U is smooth. By [Sh], there is a canonical isomorphism
lim , Ty = T. In particular, we have an injection Tl/f,(j) — T(’j) which is an isomorphism if
Ey — U is smooth.

In Section 12.7, we deduce Theorem 12.1 from the following two theorems.

red _

Theorem 12.2. Let the notations and the assumptions be as above. Let aj\/l,j : HY (B, Z(5))

®pECo qul(é'p, Z(j — 1)) denote the homomorphism induced by the boundary map of the local-
ization sequence established in [Bl3].
(1) For any i € Z, the group H'\((E,Z(2))ay is uniquely divisible.
(2) Fori <0, the group H'\((E,Z(2)) is uniquely divisible. The group H},(E,Z(2)) is finite
modulo uniquely divisible subgroup and the group H/l\/l (E,7Z(2))tors is cyclic of order ¢>—1.
(3) The kernel (resp. cokernel) of 8/2\472 is a finite group of order |L(h*(C),—1)| (resp. of
order
(¢ = DIL(A(Irr(Es,)), —1))|
TV - IL(AY(C\ S2), 1)

).

e kernel (resp. cokernel) of the homomorphism is a finite group of order (q —

4) The kernel kernel) of the h hi 35’\/172']2' f ord
1)|T(’1)\ -|L(E,0)| (resp. is isomorphic to Pic(C)).

(5) Fori >4, the group H),(E,Z(2)) is zero.

(6) The group HY\(E,Z(3)) is a torsion group, and the cokernel of the homomorphism 8?‘\473
s a finite cyclic group of order ¢ — 1.

Theorem 12.3. Let U C C' be a non-empty open. Then
(1) For any i € Z, the group H'(Eu,Z(2)) is finitely generated modulo uniquely divisible
subgroup. '
(2) For i <0, the group H'((Eu,Z(2)) is uniquely divisible. The group H),(Ey,Z(2)) is
finite modulo uniquely divisible subgroup and the group H}M(gU,Z(Q))tors is cyclic of
order ¢* — 1.
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(3) The rank of H%,(Ev, Z(2))d is |So\U|. IfU = C (resp. U # C), the torsion subgroup of
H3,(Eu,Z(2)) is of order |L(RY(C), —1)| (resp. of order ]T’U7(1)|-|L(h1(0), —1)L(h°(C\
U), =Dl/(g—=1)).

(4) If U = C (resp. U # C), the cokernel of H3,(Ev,Z(2)) — H,(EY,Z(1)) is zero (resp.
1$ finite of order

(g — D|L(hO(Irr(£Y)), —1)|)

Tyl - IL(B(C\U), =)

(5) The rank of H3((Eu, Z(2))* is max(|C\U|—1,0). If U = C (resp. U # C), the torsion
subgroup H3,(Eu, Z(2))tors is finite of order |L(h*(E),0)| (resp. of order

Tl IU#(E,0L 0, 0105\ D), 1)

(¢ = DIL(RO(Irr(EY)), —1))

Here
L*(h(€7),0) = lim(slog q)"*\IIL(R! (£7), 5)

is the leading coefficient of L(h'(EY), s).
(6) The group H},(Ey,Z(2)) is canonically isomorphic to Pic(U). For i > 5, the group
H'(Eu,Z(2)) is zero.

12.3. Relation between L(E,s) and the congruence zeta function of £. Let ¢ # p be a
prime number. By the Grothendieck-Lefschetz trace formula, we have

2
L(E,s) = [] det(1 - Frob- ¢~ HY(C, R £.Q¢) V"
i=0
Lemma 12.4. Let D be a proper Fq-scheme of dimension < 1. Let £ # p be an integer. Then the
group HE (D, Zy) is torsion free for any i € Z, and is zero for i # 0,1,2. The group H% (D, Qy)
is pure of weight i for i # 1, and is mized of weight {0,1} for i = 1. The group H} (D, Q) is
pure of weight one (resp. pure of weight zero) if D is smooth (resp. every irreducible component
of D is rational).

Proof. We may assume that D is reduced. Let D’ be the normalization of D. Let 7 : D' — D
denote the canonical morphism. Let F, denote the cokernel of the homomorphism Z/¢" —
m«(Z/0") of etale sheaves. The sheaf F,, is supported on the singular locus Dging of D and is
isomorphic to i,(Coker[Z/{" — Tging«(Z/€")]), where i : Dgng — D is the canonical inclusion
and 7ging : D' Xp Dsing — Dsing is the base change of m. Then the claim follows from the long
exact sequence

- — H(D,z/t") — H:\(D', /0" — Hi(D, Fp) — - .

Lemma 12.5. Fori# 1, H.(C, R'f.Q,) = 0.

Proof. For any point x € G(Fq) lying over a closed point o € C, the canonical homomorphism
HY(C, R f,Q¢) — HY (€, Qp) is injective since H, .(C\{x}, R' f.Q,) = 0. By Lemma 12.4, the
module HY (E;, Q) is pure of weight 1 (resp. of weight 0) if £, is smooth (resp. is not smooth).
Since we have assumed that & — C'is not smooth, HS(C, R' £.Qy) = 0.
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Take a non-empty open U C C such that fy : &g — U is smooth. By Poincare duality,
the group HZ (C,R'f.Q) = HZ (U, R'fy.Qy) is the dual of HY (U, R' fy.Qe(1)). Assume
HY (U, R f.Qq(1)) # 0. Let Ty(E) denote the f-adic Tate module of E. The etale fundamental
group 71 (U) acts on Ty(E). By the assumption, the 71 (U)-invariant part V = (T;(E) ® Q)™ V)
is non-zero. Since £ — (' is not smooth, V' is one dimensional. Hence we have a non-zero
homomorphism 71 (U)** — Hom(T}(E) ® Q¢/V,V) of Gg,-module. By the weight argument, we

see that this is impossible. Hence HZ(C, R' f.Qq(1)) = 0. 0
Corollary 12.6. The spectral sequence

By’ = Hy(C, R .Qu) = Hy ' (€, R/ £.Q0)
18 Fa-degenerate.

Lemma 12.7. Let U C C be a non-empty open such that fyr : &y — U is smooth. Let
Irr?(EY) € Irr(EY) denote the subscheme of the irreducible components of EV which does not
intersect (C'). Then

(1_(]_5)7 ZfZ:O7

, L(h(C),s), ifi=1,
L(h'(E),s) = (1—q¢'=%)2L(E, s)L(hO(IrrO(SU)), s—1), ifi=2,
L(RY(C),s — 1), if i =3,

1—-¢*), ifi = 4.

Proof. We prove the lemma for i = 2; other cases are easy. Since R2fr.Q; = Qu(—1), there
exists an exact sequence

0— He?t(au sz*(@f) - Hgt(gT7 Qf) - Hét,c(Uv @f(_l))
The map HZ(EV, Q) — H}; (U, Q¢(—1)) decomposes as

Hgt(gT7 QZ) - Hgt(é \ U? QZ(_]-)) - Helt,c(Ua Qf(_l))
Hence Hiot(é, R%£.Qy) is isomorphic to the inverse image of the image oj Hiot(é, Qe(-1)) —
HY(C'\ U,Q¢(—1)) by the surjective homomorphism HZ (EV,Q,) — HS%(C\ U,Qy(—1)). This
proves the claim. O

12.4. The fundamental group of £.
Lemma 12.8. Fori = 0,1, the pull-back H'(C,O¢) — H'(E,O¢) is an isomorphism.

Proof. The claim for i = 0 is clear. We prove the claim for i = 1. Let us write £ = R'f,O¢. It
suffices to prove H(C, L) = 0. We note that £ is an invertible Og-module since £ — C has no
multiple fiber. The Leray spectral sequence Ey’ = H'(C, R/ f.Og) = H""(E,O¢) shows that
the Euler-Poincare characteristic x(Og) equals x(Oc¢) — x(£) = —deg L. By the well-known
inequality x(Og) > 0 (cf.[Og], [Do], or [Ogu, Theorem 2|), we have degL < 0. This proves
H°(C, L) = 0. O

Lemma 12.9. (1) The canonical homomorphism wiP(E) — miP(C) between the abelian

(etale) fundamental groups is an isomorphism.
2) The canonical morphism Pic? — Pic? between the identity components of the Pi-
C/F, £/F,
card schemes is an isomorphism.
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Proof. The homomorphism Pic‘é/Fq — Picg /B, red is an isomorphism by [Sh, Theorem 4.1].
This, combined with the cohomology long exact sequence of the Kummer sequence, shows that
HL(C,Z/m) — HL(E,7Z/m) is an isomorphism if p { m. Hence, to prove (1), we are reduced
to showing that HL (C,Z/p") — HL(E,Z/p"™) is an isomorphism for all n > 1. For any smooth
Fg-scheme X, there exists an exact sequence

0—Z/p"Z — W,O0x 1o, W,O0x — 0

of etale sheaves, where W, Ox is the sheaf of Witt vectors and o : W,,0x — W,Ox is the
Frobenius endomorphism. This gives rise to the following commutative diagram with exact
rOwWS:

-0

2% HOY(C,W,00) — HL(C,Z/p") — HYC,W,0c) —Z ...
! ! !
2% HYE,W,08) — HL(EZ/) — HYEW,08) ...

By Lemma 12.8 and induction on n, we see that H'(C,W,,0¢) — H'(E, W,O¢) is an isomor-
phism for i = 0,1. Thus the homomorphism HY(C,Z/p") — HL(E,Z/p") is an isomorphism.
This proves the claim (1).

For (2), it suffices to prove that the homomorphism Lie Pico/r, — LiePicg/p, between the
tangent spaces is an isomorphism. Since this homomorphism is identified with the homomor-
phism H'(C,O¢) — H(E,O¢), the claim (2) follows from Lemma 12.8. O

Remark 12.10. Using Lemma 12.9 (1), we can prove that the homomorphism 71 (&) — 71 (C)
is an isomorphism. Since it is not used in this paper, let us only sketch the proof.

Let x — C be a geometric point. Since the morphism f : £ — C has a section, the fiber &,
of f at x has a reduced irreducible component. Hence, by the same argument as in the proof of
[SGAL, X, Proposition 1.2, Théoreme 1.3], we have an exact sequence

m (&) — m(E) —» m(C) — 1.

In particular, the kernel of m1(€) — m1(C) is abelian. Applying Lemma 12.9(1) to £ xc C" — C’
for each finite connected etale cover C" — C, we obtain the bijectivity of 71 (&) — m1(C).

The statements in Lemma 12.9 and the statement above that the fundamental groups are
isomorphic are also valid for £ a regular, proper, non-smooth, minimal elliptic fibration with a
section over C' a proper smooth curve over an arbitrary perfect base field.

Corollary 12.11. For any prime number £ # p and for any i € Z, the group HE (€, Qu/Zy) is
divisible.

Proof. The claim for i # 1,2 is obvious. By Lemma 12.9, we have Hg, (€, Q¢/Zy) = HY(C,Qq/Zy).
Hence HL (E,Qq¢/7Zy) is divisible. The group H2(E,Qq¢/7Zy) is divisible since H2 (€, Qq/Zs)™ is
isomorphic to the Pontryagin dual of HY (€, Qp/Ze(2))". O
Corollary 12.12. For i € Z, we put M; = Drsp H(E,Qu/Z4(5)). For a rational number a,
we write |a|®) = |a| - |al,.

(1) Fori < —1 ori> 6, the group MJ’ 18 zero.

(2) For j #2 (resp. j =2), the group M]5 is zero (resp. is isomorphic to @, Qe/Zq).
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(3) For j # 0, the group MJQ is cyclic of order ¢Vl — 1. The group M(()) is isomorphic to
Dy Qu/Ze.

(4) For#;% 0, the group ]\Ij1 is finite of order |L(R*(C),1 — j)|®").

(5) For j # 1, the group Mf is finite of order |L(h?(E),2 — 7)|®".

(6) For j # 1, the group M;’ is finite of order |L(h'(C),2 — j)|®".

(7) For j # 2, the group M;-l is cyclic of order ¢>=3l — 1. The group Mg is isomorphic to
Disp Qe/ Ze.

Proof. By Corollary 12.11, if i # 2j + 1 and £ # p, H(E,Q¢/Z(j)) is isomorphic to the
Gr,-invariant part of HL(E,Qu/Z4(5)). Hence by Poincare duality,

[ Heo (€, Qu/Zo(5))] = |L(R*(€),2 = )"
for i #£ 24,27 4+ 1. Hence the claim follows from Lemma 12.7. O

12.5. Torsion in the etale cohomology of open elliptic surfaces. We fix a non-empty
open subscheme U C C.

Lemma 12.13. Let £ # p be a prime number. For i € Z, let v; denote the pull-back ~y; :
Hét (?7 Zf) - Hét(ﬁv ZZ)'
(1) For i +# 0,2, the homomorphism ~; is zero.
(2) (Cokervys)q, is isomorphic to the kernel of HY(C'\ U, Qu(—1)) — HS (SpecFy, Qu(—1)).
(3) There is a canonical isomorphism

HomZ(TUa @@/Zé(_l)) = (Coker 72)tors‘

Proof. By Lemma 12.9, the pull-back HL(C,Zy) — HL(E,Zy) is an isomorphism. Hence the
homomorphism Hg (€, Zy) — HY(EY, Zy) is zero. The claim (1) follows.
Let NS(€) = Picgp, (Fq) /Picg 5 (Fg) denote the Neron-Severi group of £.
We have an exact sequence
0 — NS(€) ®z Z¢ 25 HZ(E,Z4(1)) — THZ(E,Gyy) — 0.
We note that TyHZ, (€, Gy,) is torsion free. For D € Irr(EV), let [D] € NS(E) denote the class
of the Weil divisor D,.q on £. By [SGA4%, Cycle, 2.3], the D-component of the homomorphism

Yo : HA(E,Zy) — HZ(EV, Zy) = Map(Irr(EV), Zy(—1)) is identified with the homomorphism
HE,(E0, 20) 220 BA(EV, Z4(1)) = Zo(-1).

Let M C NS(E) denote the subgroup generated by {[D] | D € Irr(EV)}. This is a free abelian
group with basis Irt®(EV) U { D'}, where D’ is an arbitrary element in Trr(€V) \ Irr®(EV). This
proves (2).

By Corollary 12.11, the cup-product
HZ (€, (1)) x HZ(E,Zo(1)) — Hey(€,Ze(2)) = Ly

is a perfect pairing. Since Coker cly is torsion free as we noted, this pairing gives a duality between
the torsion part of Coker v and the torsion part of (NS(£)/M) ®z Z¢ = (Div(Ey)/ ~alg) @7 Zy.
Thus we have the claim (3). O
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Corollary 12.14. For i # 3, H. (Eu,Zy) is torsion free, and H3 (Eu, Zg)tors s canonically
isomorphic to Homy, (Ty, Q¢/Ze(—1)). We put

L(h4(Ev), s) = det(1 — Frob - ¢~ % H. (Ev, Qo).
Then if U # C, we have

1, ifi <0 ori>5h,
—q b
L( ZC,Z(EU)7 3) = L@ )’S() ,(hl (s)g(hé(é}lljo)(ci\U%Sil) ZfZ = 27
M()ﬁU(WWWHl) ifi—3
1—q'—s )
[ 1- ¢, ifi = 4.

Proof. This follows from Lemmas 12.7 and 12.13, and the long exact sequence

S H (8U7Z£) - Hét(gv Zf) - Hgt(ﬁv ZZ) -

et,c

O

Remark 12.15. Corollary 12.14 in particular shows that the function L(hi,z(gU) s) is indepen-

dent of ¢ # p. We can show the /-independence of L(hi}E(X), s) = det(1—Frob-q—*%; H. et (X5 Qr))
for any normal surface X over F, which is not necessarily proper. Since we will not need it, let
us only give a sketch. There is a proper smooth surface X’ and a closed subset D C X’ of pure
codimension one such that X = X'\ D. One can express the cokernel and kernel of the restric-
tion map HL (X', Q;) — HL(D,Q,) in terms of Picy//p, and the Jacobian of the normalization
of each irreducible component of D. Then we apply the same method as above to obtain the
result.

Corollary 12.16. Suppose that U # C. Then

(1) The group HE (Ev,Qu/Z4(j)) is zero for i < —1 ori > 5. ‘

(2) For j # 0, the group HO(Eu,Q¢/Z4(j)) is isomorphic to Z¢/(¢® — 1), and we have
HY(Eu, Qu/Ze(0)) = Q¢/Ze.

(3) For j # 0,1, the group H%(Ev,Qe/Z4(j)) is finite of order

T, e [L(RH(C), 1 = HL(O(C\U), 1 =)l
1]

The group HX (v, Qu/Z(0)) is isomorphic to the direct sum of Qu/Z¢ and a finite group
of order

ITh le ' [L(RH(C), DL(RO(C\ U), 1) !

g = 11"

(4) For j # 1,2, the group H%(Ey,Qu/Z¢(j)) is finite of order

T} onle - [L(R2(€),2 = LA (EY), 2 = HIL(WO(C\U), 1 = j)[;*
(@=t = L(h2(EY),2 = j)I;

(5) For j # 1,2, the group H3.(Ey,Qu/Z¢(j)) is finite of order

[L(H(C),2 = HLA(C\ V), 2 = )l
72 = 11"
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The group H3 (Ey,Qu/Z(1)) is isomorphic to the direct sum of (Qq/Zg)®IC\VI=1 and a
finite group of order
[L((C), DL(AO(C\ U), 1)
g =1l ‘
(6) For j # 2 (resp. j = 2), the group HZ(Ey,Qu/Ze(5)) is zero (resp. is isomorphic to
(Qe/Z)®1NI1),

Proof. The group HZ (Ey,Q¢/Ze(7)) is the Pontryagin dual of the group Hg’tjci(SU,Zg(Q - 7).
The claim follows from Corollary 12.14 and the short exact sequence

0 — Hio(Ev, Ze(2 = §)) g, — Hoo (v, Z0(2 = §)) — Ho ol (Eu, Ze(2 — )" — 0.

c,et c,et c,et

Lemma 12.17. Suppose that U # C. Then HZ (Ev,Qu/Ze(2))' is finite of order
Ty, 7+ ILGR(E), 0) L (R (EV), ) L(H(C\ 1), 1)
(g = DL(RO(Trx(€Y)), ~1) [ ‘

Proof. We note that the group HZ(Ey,Q¢/Z¢(2))*? is canonically isomorphic to the group
H3.(Eu,74(2))tors- Let us consider the long exact sequence

s Hiy (€, Z(2)) 25 HI(€,24(2)) — H\ (€0, Zo(2) — -+

The group Ker py is isomorphic to the Pontryagin dual of the cokernel of HL(E,Q¢/Z) —
HL(EY,Q¢/Zy). By Lemma 12.9, this homomorphism factors through HL(C \ U, Q,/Zs) —
HL(EY,Q¢/Zy). In particular, (Ker fi4)tors is isomorphic to the Pontryagin dual of the group
(HL(EV,Qy/Z)%a) 4, By the weight argument we see that Coker 3 is a finite group. It follows
that

|H2.(EU, Z0(2))tors| = |L*(RH(EY),0)] - |Coker p3|.
Let y/ denote the homomorphism Hz—U (€,74(2)) — HZ(E,Z¢(2)). We have the exact sequence

et

(12.1) Ker pug — HS—U et(f, Z4(2))%Fa — (Coker M/)qu — Coker ug — 0.

Since Ker 3 = Coker[HZ (€, Z¢(2)) — H2(Ey, Ze(2))], the cokernel of

Ker s — 3y (€, Z¢(2))%

is isomorphic to the cokernel of the homomorphism

V' H2(Eu, Zy(2)) e — HE (€, Z(2))%Fa.

Let us consider the diagram with exact rows

0 —— Cokerp/ —— H(Eu,Zu(2)) —— HZ (€,Z4(2))

EU et

1 —Frobl 1 —Frobl 1 —Frobl

0 —— Cokery/ —— HZ(Ev,Z4(2)) —— H; (€, Z(2)).
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Since (Coker v)%fa ¢ H3,(E,74(2))F« = 0, Coker v/ is isomorphic to the kernel of (Coker 1/ )Ge, —
HZ(Ey, Z4(2))cy,- Hence by (12.1), [Coker pi3| equals the order of

M = Tmagel(Coker )y, — H3(Ev,Za(2)) s
= Image[Hgt(57 ZE(Q))G]F(I - He2t (5U7 ZZ(Q))G]FQ]'

We put M’ = TImage[HZ (£,Z(2)) — HZ(Eu,Z¢(2))]. From the commutative diagram with
exact rows

0— NS(€) ®z Zy —  HX:(E,7Z,(1) — T,HA(E,Gp) —0

(12.2) o 7l 1
0— (Div(Ey)/ ~alg) ©2Z¢ — HE(Eu,Ze(1) — THG(Ev,Gm) —0

and the exact sequence

0— Hgt(gv Gp) — Hezt(?U>Gm) - Hgt(giq Q/Z),
we obtain an exact sequence

0— M’ — HZ(Ev, Zo(2)) — TeHY(EY, Qu/Zo(1)).

By the weight argument, we have (TyHL (€U, Qy/Z¢(1)))Fa = {0}. Hence the canonical surjec-
tion Mg, — M" is an isomorphism. From (12.2) we have an exact sequence
q

0 — (Div(Ep)/ ~alg) @z Ze(1) — M — THZ(E, G)(1) — 0.
By the weight argument, we have (TyHZ (€, G, )(1))%Fa = 0. Hence

0 — ((Div(Ew)/ ~aig) @2 Ze(1))a, — M,
— (THZ(E,Gm)(1)Ge, — 0

is exact. Therefore |Coker us| = [M, | equals
q
(T ®2 Ze(1))Gy, | - | det(1 — Frob; HZ (€, Qe(2)))];
| det(1 — Frob; Ker[NS(E) — Div(Er)/ ~alg] ®@z Qu(1))[,
This proves the claim. O

12.6. Fix a non-empty open U C C. Let fU : €Y — C\ U denote the structure morphism and
let (Y : C\ U — EY denote the morphism induced from ¢ : C' — &.

Lemma 12.18. The homomorphism
(bl 1, £) : Gi(EY) — Hj (€Y, Z(1)) ® K1 (C\ U)
s an isomorphism.

Proof. The morphism fU : €Y — €'\ U has connected fibers. Hence the claim follows from
Proposition 10.4 and the construction of ch’172. g

Lemma 12.19. The group H3(EY,Z(1)) is finitely generated of rank |C \ U|. Moreover, the
group H3(EYV,Z(1))tors is of order |[L*(h'(EY),0)].
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Proof. 1t suffices to prove the following claim: if E has good reduction (resp. non-split multiplica-
tive reduction, resp. split multiplicative or additive reduction) at p € Co, then H3 (&, Z(1)) is
a finitely generated abelian group of rank one, and |H%,(Ep, Z(1))tors| equals |E,(k(g))| (resp.
2, resp. 1). We put &, o) = (Epred)sm \ t(p) and &, (1) = EV\ &, 0)- We have an exact sequence

Hi(Eq 0y, Z(1)) = HY((E (1), Z(0)) — Hiy(Ep, Z(1)) — Pic(€, () — 0.

First suppose that E does not have non-split multiplicative reduction at g, or E has non-split
multiplicative reduction at p and &, ®, () F, has an even number of irreducible components.
Then, using the classification due to Kodaira, Neron and Tate (cf. [Liu, 10.2]) of singular fibers
of &€ — C, we can verify the equality

Image[H Y}, (Ep,(1), Z(0)) — H34(Ep, Z(1))]
— Tmagelu, : HY(Spec (), Z(0)) — Hi,(Eg Z(1))].

This shows that H3,(&, Z(1)) is isomorphic to the direct sum of HY,(Spec k(p), Z(0)) = Z and
Pic(&, (o)) In particular, we have H3,(Ey, Z(1))tors = Pic(E, (0)), from which we easily deduce
the claim. B

Now suppose that E has non-split multiplicative reduction at p and &, ®y(,) F, has an
odd number of irreducible components. In this case, we can directly verify that the image of
HRA(&'@(U,Z(O)) — H3,(&,,Z(1)) is isomorphic to Z & Z/2 and Pic(&, (o)) = 0. The claim in
this case follows. U

Lemma 12.20. The diagram
Ki(E) ——  Go(&Y)

L*J/ LU*J/

Ki(k) —— Ko(C\U)
18 commutative.
Proof. The group K;(F) is generated by the image of f* : Ki(k) — K;1(E) and the image of
D.ep, Ki(k(r)) — Ki(E). The claim follows from the fact that the localization sequence in
G-theory commutes with flat pull-backs and finite push-forwards. O

12.7. Proofs of Theorems 12.1, 12.2, and 12.3.
Lemma 12.21. For any non-empty open U C C, the cokernel of the boundary map Oy :
H3,(Eu,Z(2)) — H},(EY,Z(1)) is finite.

Proof. 1f suffices to prove the claim for sufficiently small U. Hence we may assume that &g — U
is smooth. Since K2(E&y)gp — K2(E)g is an isomorphism in this case, the claim follows from
Theorem 1.1 and Lemma 11.2. O

Proof of Theorem 12.3. The claims (1) and (2) follow from Theorem 9.3, Proposition 9.8 and
Lemma 12.21. Proposition 9.8 gives the exact sequence
0— H%A(S,Z(Q))tors - HJQ\A(EU,Z(Q))red
82
4 H(EY,Z(1) — H3(E,Z(2))sors — HYy(Ev, Z(2))"

%

— H3,(EY,Z(1)) — CHy(€) — CHy(&y) — 0.
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By Lemma 12.21, Coker 7 is a finite group, which implies that the group H/Q\/t (Ev, Z(2)) is
of rank |Sy \ U|. By Theorem 9.3, |H3 (v, Z(2) )tors| equals

[T 1 He(Ev, Qe/Ze(2))).
L#p

By Corollaries 12.12 and 12.16, it equals
|T(/],(1)’ - |L(R'(C), =1)L(R°(C\ U, —1)/(q — 1)|.

This proves the claim (3).

As we have noted in the proof of Theorem 9.3 (1), the group CH(€) is a finitely generated
abelian group of rank one and CHg(€y) is finite if U # C. By Lemma 12.19, H3,(EY,Z(1)) is
a finitely generated abelian group of rank |C \ U|. Hence the rank of H3,(Ey,Z(2))™ equals
max(|C'\ U| —1,0).

From the class field theory of varieties over finite fields ([Ka-Sa, Theorem 1], see also the
introduction in [Co-Ra]) and Lemma 12.9, it follows that the push-forward map CHy(€) —
Pic(C) is an isomorphism. Hence the homomorphism H3 (€Y, Z(1)) — CHy(€) = Pic(C) factors
though the push-forward map fU : H%,(EY,Z(1)) — HY,(C \ U,Z(0)). By the surjectivity of
fY, we have isomorphisms

CHy(£Y) = Coker[HY(C'\ U, Z(0)) — Pic(C)] = Pic(U),

which proves the claim (6). Since the group HY,(C \ U,Z(0)) is torsion free, the image of
H3,(EY,Z(1))ors in CH(€) is zero. Thus we have the exact sequence

0 — Coker 0% — Hiy(E,2(2))tors — Hi(Evs Z(2))tors — HAA(EY, Z(1))tors — 0.
By Proposition 9.8 and Lemma 12.17, the group H}O’w (&, Z(2))tors is finite of order
PTG | - [L(RP(E), 0)L* (M (EY), 0)L(R°(C\ U), 1))
(q — D)|L(RO(Irr(£Y)), —1)]

for some m € Z. By Lemma 12.19, the group H3,(EY, Z(1))tors is finite of order |L*(h1(EY),0)].
By Lemma 12.9, Picg p is an abelian variety and in particular Hom(Picg g ,Gm) = {0}. Hence

by Theorem 9.3 and Corollary 12.12, the group H3,(&,Z(2))tors is of order |L(h*(€),0)|. There-
fore,

|H5’\A(5az(2))tor8| : |H/2\4(5U7Z(1))t0r5‘ _ p (g — l)fL(hO(Irr(SU)), —1)|
34 (€0,2(2) oo T3, |- IL(O(C N 1), —1)]

|Coker 97| =

Since |Coker 07| is prime to p, we have m = 0. This proves the claims (4) and (5). This
completes the proof. O

Proof of Theorem 12.2. The claim (5) is clear. The claim (1) follows from Corollary 9.9 and
Theorem 1.1. It is easily checked that HY,(EY,Z(1)) is zero for i < 0. By the localization
sequence of higher Chow groups (cf.[Bl3]), we have H),(€,7%(2)) = H),(Ev,Z(2)) for i < 1.
Taking the inductive limit with respect to U, we obtain the claim (2).
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By Corollary 9.9, we have an exact sequence

0— H3(E,Z(2))tors — H3((E,Z(2))™4

82
2 D HA(Ep (1) — Hy (. Z2))hors. — Hi((E.2(2))
(123) 0€eCo
83
2 @ HR(E,. Z(1)) — Pic(C) — 0.
p€Co

Hence by Theorem 9.3 and Corollary 12.12, the group Ker 8/2\/[’2 is finite of order |L(h'(C), —1)|.
For a non-empty open subsets U C C, let us consider the group Coker 8?] in the proof of
Theorem 12.3. For two non-empty open subsets U’',U C C with U’ C U, the homomorphism
Coker 93 — Coker 87, is injective since both Coker 93 and Coker 87, canonically inject into
H34(E,7(2))tors- The claim (3) follows from the claim (4) of Theorem 12.3 by passing to the
inductive limit. The claim (4) follows from the exact sequence (12.3) and Lemma 12.7.

By the localization sequence, we see that the push-forward @, p, H?,(Spec k(z), Z(2)) —
H},(E,Z(3)) is surjective. Hence H},(E,Z(3)) is a torsion group and the claim (6) follows from
Lemma 11.4. This completes the proof. O

Proof of Theorem 12.1. Let us consider the restriction v : Kercog — H3((E,Z(2)) of ca2 to
Kercy 3. By Lemma 11.1, both Kery and Coker «y are killed by 2. This implies that the image
of 7 contains H3,(E,Z(2))aiy and that the group Exty(H3,(E,Z(2))aiv, Kery) is zero. Hence
the map v induces an isomorphism (Ker ¢ 3)qiv =N H3,(E,Z(2))div- This shows that the homo-
morphism Ko (E)"*d — H3,(E,Z(2))* induced by co is surjective with torsion kernel. Thus
the claim (1) follows from Theorem 12.2 (3).

The claim (3) follows from Theorem 12.2 (1) and Lemma 11.1.

For p € Cy, let v, : Spec k(p) — &, denote the fiber of the morphism ¢ : C' — €. The diagram
(11.2) gives an exact sequence

Coker 8}1\473 — Coker 0o — Coker 8/2\/[,2 — 0.

By Lemma 11.4, we have an isomorphism Coker 6?‘\473 = ;. By the construction of this isomor-
phism, we see that the composite

Fy = Coker 8;1\4’3 — Coker 0y — K1(£) — K1(SpecF,) =Ty
equals the identity. Hence the map Coker 8?‘\473 — Coker 0y is injective. Then the claim (2)
follows from Theorem 12.2 (3).

From Proposition 10.4 and Lemmas 11.1, 11.2, and 12.20, it follows that the homomorphism
o1 : Ky (B)*d — D cc, Go(Ep) is identified with the direct sum of

0k — €D Hly(Speck(p), Z(0)) — @D H(Ep, Z(0))
peCo ®
and 9%, 5+ HY,(E,Z(2)) — &b, H3,(Ey,Z(1)). We have isomorphisms
Ker | = T, Cokerd] = Pic(C) & D,, ARGl
Ker 65’\472 >~ HY (€, Z(2))tors/ Coker 8?\472, Coker 8%,172 = Pic(C).
The claim (4) follows. This completes the proof of Theorem 12.1. O
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13. SOME CONSEQUENCES OF THE BLOCH-KATO CONJECTURE

In this section we assume that the Bloch-Kato conjecture holds. We obtain results generalizing
the theorems in Section 12, but the proofs of the results use neither class field theory nor Drinfeld
modular curves.

For integers i, j, let us consider the boundary map

Oy - Hiu(B, Z(5))° — €D Hi (£, Z(j — 1)).
0€Co
Theorem 13.1. Let j > 3 be an integer. Suppose that Conjecture 9.1 is true for j.
(1) For any i € Z, both Ker Bj'\/l,j and Coker ajw are finite groups.

(2) We have
0, ifi <0 ori>5,
. 1 . . .
Kerdy, ;| = ’L(h (©),1 =4I, ifi=2,
Kerdj| T} oo B2 E) 2=
j 1_1 9 'le = 37
IL(h1(C),2 = j)l, ifi=4.
Moreover, the group KeraM’j is cyclic of order ¢/ — 1.
(3) We have
0, ifi<1,i=3, ori>5,
. 1 s
|Coker Oy ;| = H ifi=2,

U, (
[L(WN(C),2 = 7)l, ifi=4
(4) Let U C C be a non-empty open. Then the group H'(Eu,Z(j)) is finite modulo uniquely
divisible subgroup for any i € Z. The group H},(Ey,Z(j)) is zero if i > max(6,j), and
is ﬁnZte fOT‘ (Zhy) = (47 3)7 (57 3)7 (47 4)7 (574)7 or (57 5)
(5) The group Hj,(Ey,Z(j)) is uniquely divisible for i < 0 or 6 < i < j, and the group
H}(Eu, Z(j) )sors s cyclic of order ¢ — 1.
(6) Suppose that U = C (resp. U # C). Then the group H? U (EusZ(j§))tors s of order
|L(RY(C),1 — §)| (resp. of order
Tyl IO C) 1= DLONCA )1 ),
¢~ —1
the group HM(EU, (1)tors s of order |L(R?(E),2 — j)| (resp. of order
T oy - IL(R(E),2 = J)L(R'(EY),2 = j)L(K(C\ U),1 —j)!)
(@71 = DIL(A*(EY), 2 = j)] ’
the group HM(SU, (1)tors is of order |L(h'(C),2 — 7)| (resp. of order

[L(h'(C),2 — j)L (hO(C\U)J—j)!)’

@21
and the group HR,(Eu,Z(j))tors is cyclic of order ¢7~ 2 1 (resp. is zero).

)

Theorem 13.2. Suppose that Conjecture 9.1 is true for j = 3. Then
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1) The group Ko(E)giy is uniquely divisible and the map coo induces an isomorphism
(1) group quely p 2, Z
KZ(E)div = H/2\/[ (Ea Z(2))div-
2) The kernel of the boundary map 0 : Ko(E)d — G1(&,) is a finite group of order
peCo §©
]L(h2(€),0)L(h1(C),—1)\.

Lemma 13.3. Let X be a smooth projective geometrically connected curve over a global field
K'. Let k'(X) denote the function field of X. Then the Milnor K-group KM (k'(X)) is torsion
forn > 2+ gon(X), and is of exponent 2 (resp. is zero) for n > 3 + gon(X) if char(k’) = 0
(resp. char(k’) > 0). Here gon(X) denotes the gonality of X, namely, the minimal degree of
morphisms from X to PL,.

Proof. The field k¥'(X) is an extension of degree gon(X) of a subfield K of the form K = k'(t).
Looking at the split exact sequence

0— KMk) - KM(K @ M (K'[t]/P) — 0

n [Milno, Theorem 2.3] (where P runs over the irreducible monic polynomials in £’[t]), and
using [Ba-Ta, Chapter II, (2.1)], we see that KM (K) is torsion for n > 3, and is of exponent
2 (resp. is zero) for n > 4 if char(k’) = 0 (resp. char(k’) > 0). Take a flag K = V; C
Vo C -+ C Vion(x)y = K'(X) of K-subspaces of k'(X) with dimg V; = 4. For each i we put
V¥ = V; \ {0}. Suppose i > 2 and «, € V; \ Vi_1. Then there exists a,b € K* such that
v=aa+b3 € Vi_y. If v =0 (resp. v # 0), then {ac,b8} = 0 (resp. {ac/v,b3/7v} = 0) in
KM(K'(X)). Expanding this equality, we see that {3, v} belongs to the subgroup of K31 (k'(X))
generated by {V* Vit Hence for n > gon(X) — 1, the group KM (k'(X)) generated by the

image of {V* won(X)r 2 Vo }x KX gon( x) 41 (&), which proves the claim. O

Lemma 13.4. Suppose that Conjecture 9.1 is true for j. Then the push-forward homomorphism
H3,(EY,Z(j — 1)) — HA(E,Z(3)) is zero.
Proof. Let us consider the composite
. . f* .
H34(EY,2(j = 1)) — H(E,2(j)) = H3((C,Z(j — 1))

of push-forwards. This is the zero map since this factors through the group HS,(C\ U, Z(j —2))
which is zero by [Ge-Le2, Corollary 1.2]. By Lemma 9.6, the group H/2\/l (EY,7Z(j —1)) is torsion.
Hence it suffices to show that the homomorphism fi tors : Hjlvl (E,72(7))tors — HJQM(C’, Z(5—1))tors
induced by f, is an isomorphism.

Let us consider the commutative diagram

. f*,tors .
Hﬁ/l(&Z(J))tors - H/2\4(C7Z(J —1))tors

| |

HY(E,Q/Z(j))  ——  Hj(C,Q/Z(j — 1))

| |

D HE(E, Qu/Zu() " —— EHL(C, Qe/Ze(j — 1)
L#£p l#p
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The homomorphism at the bottom is an isomorphism by Lemma 12.9. Hence fi tors is an
isomorphism, as desired. O

Proof of Theorem 13.1. Let j > 3 and assume Conjecture 9.1 for j. The claims (4) and (5) follow
from Theorem 9.3 and Lemma 13.3. The claim (6) follows from Theorem 9.3 and Corollary 12.16.
In a manner similar to that in the proof of Corollary 9.9, we can show that the pull-back induces

~

an isomorphism H'((€,Z(5))aiv = Hiy(E,Z(j))aiv for all i € Z, and the localization sequence
induces the long exact sequence

(13-1) B @ H/Z\ZQ(‘C/’@Z(]' - 1)) - H/Z\/l(gaZ(j))tors - H}\A(E7Z(j))tors AR

peCo
By assumption, Conjecture 9.1 holds for j — 1. From this we easily see that for any o € Cp, the
group H'((&,,Z(j — 1)) is finite for all 4, is zero for i < 0 or i > 4, and is cyclic of order ¢/ =1 —1
for i = 1. By looking at the exact sequence (13.1) and using Lemma 13.4, we can deduce the
claims (1), (2) and (3) from the claims (4), (5) and (6). This completes the proof. O

Proof of Theorem 13.2. Let U # C' and suppose that Conjecture 9.1 is true for j = 3. Then by
Lemmas 11.4 and 13.4, the sequence

0 — Hi(£,Z(3)) — Hi(Ev. Z(3)) & H((EY, 2(2)) S Ff — 1

is exact. By taking the inductive limit, we obtain the exact sequence

84
(13.2) 0 — Hi(E.2(3)) > Hi((E, Z(3)) =5 €D Hiy(Ep, 2(2)) — Fy — 1.
p€Co

By Theorem 9.3 and Corollary 9.9, the group H},(E,Z(3))aiv is zero. Hence we have
Ky(E)aiv C Kercgs. In the proof of Theorem 12.1, we saw that the map cp2 induces an
isomorphism (Ker ¢ 3)qiv =N H%(E,Z@))div. Hence the map cp2 induces an isomorphism
Ky(E)aw = H3,(E,Z(2))aiv, which proves the claim (1). The claim (2) follows from The-
orems 12.1 and 12.2, the commutative diagram (11.2), and the exact sequence (13.2). This
completes the proof. O

APPENDIX A. A PROPOSITION ON THE p-PART

The aim of this Appendix is to give a proof of Proposition A.1 below. It is used in the proof
of Theorem 9.3. Nothing in this Appendix is new except possibly the definition of the Frobenius
map on the inductive limit (not on the inverse limit) given in Section A.3. A similar situation
has already appeared in the work of Milne ([Mil]) and Nygaard ([Ny]).

Proposition A.1. Let X be a smooth projective geometrically connected surface over a finite
field Iy of characteristic p. Let WnQZXJOg denote the logarithmic de Rham-Witt sheaf (cf.[Il1, I,

5.7]). Then the inductive limit lim HY (X, Wnﬂ%{,log) with respect to the multiplication-by-p is
finite of order ]Hom(Picg(/Fq, G|yt - [L(R*(X),0)|, 1. Here Hom(Pic% 5 ,Gm) denotes the set
of homomorphisms Pic% . — Gm of Fg-group schemes, and L(h%*(X),s) is the (Hasse-Weil)
L-function of h*(X).
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A.1. The de Rham-Witt complex. In this Appendix, let k be a perfect field of characteristic
p. Let X be a smooth k-scheme of dimension §. For i,n € Z, let W,,Q% denote the de Rham-
Witt complex (cf. [Il11]) of the ringed topos of schemes over X with Zariski topology. We let
R : WanX — n—193(, F WnQZX — n_lﬁix, and V WnQ’X — n+1Q§( denote the
restriction, the Frobenius, and the Verschiebung, respectively. For each ¢ € Z, the sheaf W, Qi
has a canonical structure of coherent W, Ox-modules, which enables us to regard W, % as an
etale sheaf. From now on until the end of section, we work on the category of etale sheaves on
schemes over X.

A.2. Logarithmic de Rham-Witt sheaves. For n € Z, let W, QX log C W, Q% denote the
logarithmic de Rham-Witt sheaf (cf. [Il1, I, 5.7]).

Lemma A.2. The homomorphism V : WnQ:‘X — n+1Q§( sends WnQé(,log mto WnHQiX,log-

Proof. Let = € W”Qg(,log be an etale local section. By the definition of Wnﬁé{,log’ there exists
an etale local section y € WnHQé{,log such that x = Ry. We easily see that Ry = F'y. Hence
Vi=VRy=VFy=pyeWnQ,,- d

Let CWQ?X denote the inductive limit CWQ& = hi)nn v WnQ’X with respect to V. The above

lemma, enables us to define the inductive limit CWQfX’lOg = h_n)1n v WnQ&JOg.

)

A.3. Modified Frobenius operator. In this subsection we define an operator F’ : CW Q% —
CWQfX such that the sequence

is exact.
For n > 0, let WanX denote the cokernel of the homomorphism V" : QfX = WlQé( —

Wn+1QX The homomorphisms R, F' and V on Wn+1ﬂk induce homomorphisms on W, QX
which we denote by the same notations. If n > 1, the homomorphlsms R F: Wn+1Q — W,Q%

factor through the canonical surjection Wy,+1Q% — W Q’ . We let R F: W QL — W, Q’
denote the induced homomorphisms. Then both R and F commute with R, F and V. For
n > 0, we let Wnﬂé{,log denote the image of W,,11Q% log DY the canonical surjection Wi1 Q5 —

WnQ’X The restriction of R : Wnﬂfx — WanX to WnQé{,log gives a surjective homomorphism
Rlog : WanX,log - WanX,log‘

Lemma A.3. The homomorphisms E, Rlog induce isomorphisms

li_I)n WanX’ = CWQle hi>n ang(,log = CWQ%(,Iog‘
n>0,V n>0,V
Proof. The surjectivity is clear. By [I11, I, Proposition 3.2], the kernel of R equals the image of

the composite W1 Q% avr, 19— WanX Since Vd = pdV, we have V (Ker é) = 0. This
proves the injectivity. ([l
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We easily see that WnQS{ log is contained in the kernel of R — F : WnQ?X — WnQ’X Hence
(A.2) 0 — Wy 1o — Wak 25 W, — 0
is a complex.

Lemma A.4. The inductive limit
0— lim Wnﬁgﬂog — lim WnQ’X — CWQy% —0
n>0,V n>0,V
of (A.2) with respect to V is exact.

Proof. The argument in the proof of 11, I, Théoreme 5.7.2] shows that the kernel of R —
F: W,1Q% — W,Q% is contained in WnHQZX,log + Ker R. Hence the claim follows from

Lemma A.3. O

The inductive limit of F' : WnQZX — NnHQiX gives the endomorphism F’ : CWQi =
@nz L WanX — CWQfX. By Lemma A.3 and Lemma A.4, we have a canonical exact sequence
(A.1).

A.4. The duality. Suppose further that X is proper. Let H*(X, W, Q%) denote the cohomol-
ogy groups of W, Q% with respect to the Zariski topology.

The trace map Tr : HO(X, W, Q%) = W,(F,) is defined in [112]. This commutes with the
homomorphisms R, F' and V. For 0 < 4,5 < 4, the product m : anx X Wnﬂg;i — anlg(
gives a W, (k)-bilinear paring

(,): HI (X, W, Q%) x H (X, W, Q%) — H (X, W, Q%) = W, (k).
By [I12], this pairing is perfect.
Since mo (iId® V) =V omo (F ®id), the diagram

W1 Q5 x Wn+19§(_i — Wi (k)

S d
W,k x W05 ——  Wi(k)
is commutative. Hence this induces an isomorphism
(A.3) H(X,CWQY ™) = lim Homyy, (1) (HY (X, W, Q% ), Wy (k)
where the transition map in the inductive limit of the right hand side is given by f — Vo
foF. We endow each H’(X, W, ) with the discrete topology. We put H?(X,W’'QY%) =
lianF HI(X,W,Q%) and endow it with the induced topology. We turn H(X, W'Q%) into a
W (k)-module by letting a - (by,) = (67 "(a)by) for a € W(k), b, € HI(X,W,Q%). We put
D =lim _ W,(k) and endow it with the discrete topology. We make D into a W (k)-module
—n,V
by letting a- ¢, = 0~ "(a)c, for a € W(k), ¢, € Wy (k). Then the right hand side of (A.3) equals
Homyy (1) cont (H? (X, W), D). The homomorphism R : H/(X, W,Q%) — H/(X, W, 1Q%)
induces the endomorphism R’ : HY (X, W'Q%.) — H’(X,W’'Q%). The Frobenius endomorphism
o : Wy(k) — W, (k) induces the endomorphism ¢ : D — D.
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Lemma A.5. Under the isomorphism (A.3), the endomorphism F' : H°7J(X, CWQg;i) —
H I (X, CWQﬁ(_i) is identiﬁgd with the endomorphism of Homyy () cont (H? (X, W'QY), D) which
send a homomorphism f : H)(X,W'Q%) — D to the homomorphism o o f o R'.

Proof. Immediate from the definition of the isomorphism (A.3) and the module D. O

A.5. We are mainly concerned with the case where i = 0. We denote H’(X, W’Qg() by

HI(X,W'Ox). Recall that F : Wnﬂ% — n_ng( equals the composite W,,0x = W,,Ox LA
W,—10x. By [Il1, II, Proposition 2.1], H (X, WQ%) — lim | RHj(X, W, Q%) is an isomor-

phism. Hence H’ (X, W’'Ox) is isomorphic to the projective limit
HI(X,WOx) =lim[--- & H/ (X, WOx) & HI (X, WOx)].
The endomorphism o : H/ (X, WOx) — H’(X,WOx) induces an automorphism
o H(X,WOx) = H/(X,WOx).

We easily see that the endomorphism R’ on H7(X,W’'Ox) corresponds to the endomorphism
o' on HI(X, WOx).

Let K = FracW (k) denote the field of fractions of W (k). The homomorphism ¢"/p" :
Whn(k) — K/W(k) for each n > 1 induces a canonical isomorphism D = K/W (k) of W (k)-
modules which commutes with the action of o.

A.6. Proof of Proposition A.l. Suppose that k = F,. Then by Lemma A.5, H’(X, CWQ%)
is isomorphic to the Pontryagin dual of H° (X, WOx). Hence the group

HO(X, CWQ% 10p) = Ker[HO(X, CWO%) 5 HO(X, CWO%))]
is isomorphic to the Pontryagin dual of the cokernel of 1 — o' on H 5(X ,WOx).

Proposition A.6. Let k = F, be a finite field and X be a projective smooth k-scheme of
dimension &. Suppose that the V -torsion part T of H?(X, W Ox) is finite. Then H(X,CW Q%)
is a finite group of order |T?| - |L(h%(X),0) 1. Here T° denotes the o-invariant part of T

Proof. By the argument above, the order of H°(X, C’WQg() equals the order of the cokernel of
1—0 on ITI‘S(X, WQOx) if it is finite. The torsion subgroup of fI‘S(X, WQOx) is finite since it
injects into 7. By [I11, II, Corollaire 3.5], fNI‘S(X, WOx) ®z, Qp is isomorphic to the slope zero
part of ngys(X /W (k)) ®z, Qp. Hence the claim follows. O

Proof of Proposition A.1. Let the notations be as above, and suppose that § = 2. Then by [Il1,
I1, Remarque 6.4], the module 7" in the above proposition is canonically isomorphic to the group

HomW(Fq) (M(Picg(/Fq /Picg(/Fq,red)7 K/W(FQ))

where M ( ) denotes the contravariant Dieudonne module functor. In particular, T is a fi-
nite group. Let T, denote the o-coinvariant of 7. Then by Dieudonne theory (cf. [Dem)),
Homyy g,y (1o, K/W (F,)) is canonically isomorphic to Hom(Picy g, , Gm). Hence the claim fol-
lows from Proposition A.6. g
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APPENDIX B. ON SOME MOTIVIC COHOMOLOGY GROUPS OF SCHEMES OVER FINITE FIELDS

Let I, be a finite field of characteristic p. For a separated scheme X of finite type over
F,, and a discrete abelian group M, let ij (X,Z(j)) be as in Section 9.1. In particular, the
group H',(X,Z(j)) equals Bloch’s higher Chow group CHY(X,2j — ). This coincides with the
standard notation when X is essentially smooth over F,. The aim of Appendix B is to prove
the following proposition.

Proposition B.1. Let X be a connected scheme of pure dimension d which is separated and of
finite type over F,. Then for i = 1,2, the push-forward map

H(X,Z(d + 1)) — H}4(Spec H*(X, Ox), Z(i))
is an isomorphism if X is proper, and the group Hifllﬂ(X,Z(d +1)) is zero if X is not proper.

Remark B.2. We note that, for a proper [F;-scheme X, the cycle class map gives an isomorphism

H}(Spec HY(X, Ox), Z(i)) = HY,(Spec H*(X, 0x), Q/Z(i)) = @D HY (X, Qe /Za(i))
t#p

for i = 1,2, by [Ge-Le2, Corollary 1.2] and Merkurjev-Suslin theorem. In particular, if X is a
connected scheme of pure dimension d which is proper over F,, Proposition B.1 shows that the
group H/Q\fllH(Spec HY(X,Ox),Z(d + 1)) is cyclic of order |H*(Xeq, Ox,.,)|* — 1 for i = 1,2.

Remark B.3. Let X be a scheme of dimension less than or equal to d which is separated of finite
type over Fy. If we let X’ C X denote the union of the irreducible components of X of dimension
d, then it is immediate from definition that the push-forward map H%fl“(X’ J(d + 1) —
H/Q\fltﬂ(X ,Z(d + 7)) is an isomorphism for any i € Z. Hence Proposition B.1 determines the
structure of sz\flﬁl(X,Z(d +i)) fori=1,2.

Remark B.4. Proposition B.1 generalizes [Ak, Theorem 3.1] where the claim is proved for i = 1
and X smooth projective over F,. Our proof of Proposition B.1 is independent of [Ak], and we
do not require a Bertini-type theorem.

Lemma B.5. Let F, F), be two finite extensions of Fq with F} C F. Then for i = 1,2, the
push-forward map H},(SpecFh, Z(i)) — H},(SpecF}, Z(1)) is surjective.

Proof. By Remark B.2, the cycle class map gives an isomorphism a : H},(Spec IF;,Z(Z)) =

Dy H (SpecF), Qq/Zy(i)) for j = 1,2. Thus the claim follows from the compatibility of the
cycle class maps with finite push-forwards. O

Lemma B.6. Fori = 1,2, the group H;’V[(U,Z(l + 1)) is zero for any smooth affine curve U
over F,.

Remark B.7. The claim for ¢ = 1 follows from the fact that SK;(U) = 0 proved in [Ba-Mi-Se,
Corollary 4.3], or from [Ge-Le2, Corollary 1.2] and Merkurjev-Suslin theorem. Our proof of
Lemma B.6 below, specialized to the case i = 1, gives another proof of the fact that SK;(U) =
0. We also note that the claim for i = 2 follows from [Ge-Le2, Corollary 1.2] if we assume
Conjecture 9.1 for j = 3.



52 SATOSHI KONDO AND SEIDAI YASUDA

Proof. We may assume that U is geometrically connected. Let K denote the function field of
U. Let i € {1,2}. We know that the push-forward map M = @, H},(Speck(z), Z(i)) —
H}”W(U,Z(l + 7)) is surjective. This is clear for ¢ = 1, and is a consequence of the fact that
KM(K) = 0 proved in [Ba-Ta, Chapter 11, (2.1)] for i = 2. Hence the group H3,(U, Z(1 + 1)) is
isomorphic to the cokernel of the boundary map 0 = (8;)zcv, : H34(Spec K, Z(1+1i)) — M. In
particular, H/Q\A(U ,Z(1 4 1)) is a torsion group whose p-primary part is zero.

We claim that H%,(U,Z(1 + i))aiv = 0. By Lemma 10.1, we have the commutative diagram

D.cv, K2i-1(x) —— Koi1(U)

—i~62i—1,zi 02i71,1+@i

M ——— H2,(U,Z(1 +1i)) —— 0.

By [So, IV.2], the cokernel of the left vertical homomorphism is killed by i2. Hence the same
holds for the right vertical homomorphism. The group Ko;—1(U) is finitely generated by [Gr,
Theorem 0.4] (for ¢ = 1, it also follows from the argument in [Se, Chapitre II] and the stability
[Ba, Chapter V, (4.2)]). Hence the group H3,(U, Z(1 + ))div is zero, as we claimed.

It suffices to prove, for any fixed integer m > 1 with p { m, that the group (Coker d)/m is
zero. We fix an integer n > 1 satsifying m|¢™ — 1. Take a smooth compactification U — C, and
a closed point co € C'\ U. Let 2 € Uy be a closed point. Take a closed point 2’ € Uy lying over
z. Then the divisor [2] — [00] of C gives a Fy-rational point of Jac(C). The homomorphism
1 — Frob™ : Jac(C)(F,) — Jac(C)(F,) is surjective since Jac(C)(F,) is a divisible torsion group
whose Pontryagin dual is topologically finitely generated and Ker(1—Frob") is finite. Hence there
is a divisor D on C and an element f € (K ®p, Fy)* such that div(f) = [2'] —[o0] + (Frob™ —1)D.
Let F’ be a finite extension of F, contained in F,, such that f, 2/, co and D are defined over F’. For
a € H}, (SpecF,Z(i)), let ¢y o € H3, (Spec K,Z(1 + 7)) be the image under the push-forward
map of the restriction of the product fUa € H3,(Spec(K ®w, F') Xgpecr, SpecF, Z(1 + i))
to Spec(K ®p, F') = Spec(K ®p, ') Xgpecr SpecF’. Then it is easily checked that, modulo
(¢™ — 1)M, 9y(cyq) is congruent to zero for y € Uy, y # z, and 9,(cyq) is congruent to the
image of a under the push-forward map H},(SpecF’,Z(i)) — H},(Speck(z), Z(i)). Hence, by
Lemma B.5, we have M = Image d + (¢" — 1) M. This proves the claim. O

Lemma B.8. Let X be an integral scheme which is of finite type over F,. Let F be the algebraic
closure of Fy in H°(X,0x). Then we have [F : Fy]|[k(z) : F,] for all closed points z € Xj.
Moreover, if X is normal, we have the equality [F : F,] = ged, e x, [5(x) : Fyl.

Proof. For each z € Xj, the composite F — H°(X,0x) — r(z) is injective since F is a
field. Hence [F : F,] divides [k(x) : Fy]. Suppose that X is normal of dimension d. Let
us consider the zeta function Z(X,s) = [[,cx, (1 — |s(z)|7*)~!. Take a prime £ # p. Then
Z(X,s) = H?io det(1—Frob-¢~*; H! (X, Q,))"V""". By assumption, we have Hffét (X,Qy)) =
H(Spec(F ®p, Fq),Qe(—d)) and H/ (X, Q)) is mixed of weight < 2d — 1 for ¢ < 2d — 1. This
implies that ged,c x,[s(x) : Fy] divides [F : Fg]. This proves the claim. O
Lemma B.9. Let d > 0 be an integer. Suppose that Proposition B.1 holds for all connected nor-
mal non-proper Fy-schemes of pure dimension d. Then Proposition B.1 holds for all connected
normal proper Fy-schemes of pure dimension d.
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Proof. Let X be a connected normal proper F,-scheme of pure dimension d. Let ¢ € {1,2}. For a
closed point z € X, the group HJQ\‘/il+1(X \{z},Z(d+1)) is zero by assumption. Hence the local-
ization sequence shows that the push-forward map H},(Spec (), Z(i)) — H/Z\fllH(X, Z(d + 1))
is surjective. This implies that the group HJQ\ZH(X, Z(d+1)) is of order dividing ged,.¢ x, |#(z)*|
and the push-forward map ax : lr{/%ﬁllH(X7 Z(d+1)) — Hj},(Spec H*(X, Ox), Z(i)) is surjective.
Hence the bijectivity of ax follows from Lemma B.8. g

Lemma B.10. Let d > 0 be an integer. Suppose that Proposition B.1 holds for all connected
proper Fy-schemes of pure dimension < d and for all connected normal Fq-schemes of pure
dimension d. Then Proposition B.1 holds for all connected proper F,-schemes of pure dimension
d.

Proof. Let X be a connected proper F,-scheme of pure dimension d. Without loss of generality
we may assume that X is reduced. Suppose that X is not normal. Let 7 : X’ — X denote the
normalization of X. The Fy-scheme X’ is proper since 7 is finite by [EGAIIL, Remarque 6.3.10].
Take a reduced closed subscheme Y C X of pure codimension one such that X \ Y is normal and
put Y/ = (Y xx X')eq- By assumption, Proposition B.1 holds for each connected component
of X\Y, XY and Y.

Let i € {1,2}. Let us consider the commutative diagram

HX Y Y, 2(d—141) ——  HXH(X,Z(d + 1))

ol o
H},(Spec H'(Y, Oy), Z(i)) —— H},(Spec H(X, Ox), Z(i))
where all the morphisms are push-forwards. Since ay is an isomorphism and + is surjective, the

homomorphism «x is surjective. Since H%itﬂ(X \Y,Z(d+ 1)) is zero, the localization sequence
shows that the map ( is surjective. Since the diagram

Hg (X, Z/m(~i)) —— HY(X',Z/m(~i))

! !

HQ (Y, Z/m(~1)) —— HQ(Y',Z/m(—))
is cartesian for all integers m > 1 with p t m, the diagram
H},(Spec H(Y',Oy), Z(i)) —— Hj,(Spec H*(X', Ox/), Z(1))

| |

H},(Spec H'(Y, Oy),Z(i)) —— H,,(Spec H*(X,Ox),Z(i))
is cocartesian. Hence the surjective homomorphism 3 factors through the homomorphism
HYYY,Z(d — 1 +1)) = H}(Spec H(Y, Oy), Z(i)) — H,(Spec HY(X, Ox), Z(i)).

This proves that |H/2\fl[+1(X,Z(d + i))| divides |H},(Spec HY(X,Ox),Z(i))|. Hence ax is an
isomorphism. This completes the proof. O

Proof of Proposition B.1. First suppose d = 1. The claim for X normal and non-proper fol-
lows from Lemma B.6. Then the claim for X proper follows from Lemmas B.9 and B.10.
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To prove the claim for non-proper X, we are easily reduced, by induction on the number
of irreducible components of X, to the case where X is integral. Take an open immersion
from X to a connected proper Fg,-scheme X’ of dimension one such that the complement
X'\ X is zero dimensional. Let i € {1,2}. We have proved that the push-forward map
H3,(X,Z(141)) — H},(Spec HY(X,Ox),Z(i)) is an isomorphism. This implies that the push-
forward map H (X' \ X,Z(i)) — H3,(X',Z(1 + 1)) is surjective. Hence, by the localization
sequence, we have H3 (X, Z(1+ 1)) = 0.

Next suppose that d > 2 and X is affine. Let i € {1,2}. The localization sequence gives an
exact sequence

lim H34 (Y, Z(d — 1 +14)) — HygH (X, Z(d + ) — lim Hyg ™ (X \ Y, Z(d + 1)),

Y Y
where Y runs over the reduced closed subschemes of X of pure codimension one. For dimen-
sion reasons, we have lim,, HJQ\fIlH(X \Y,Z(d +i)) = 0. Hence by induction on d, we have
H3N (X, Z(d + 1)) = 0.

Next suppose that d > 2 and X is not proper. We are easily reduced, by induction on the

number of irreducible components of X, to the case where X is integral. Take an open immersion
from X to a connected proper Fg-scheme X' of pure dimension d such that X is dense in X’.

Take a non-empty affine open U C X and put Y = X'\ U. Let us take an algebraic closure
F, of Fy. By [Go] and [Hart, Chapter II, §3, §6], each irreducible component X" of X’ ®p, Iy,

X"\U @, Fq is connected and is of pure codimension one in X’. This shows that Y is connected
and is of pure codimension one in X’. In particular, every connected component of Y N X is not
proper. Let i € {1,2}. Since U is affine, the localization sequence

H(Y N X, Z(d —1+1)) — H33 X, Z(d + i) — H3 (U, Z(d +9))

shows by induction on d that sz\fl[H(X ,Z(d + 1)) is zero (to remove the hypothesis that the
schemes in the localization sequence are quasi-projective, we refer to [Lev2]| and [Ge-Le2, 2.6]).
This proves the claim for X not proper.

The claim for X proper follows from Lemmas B.9 and B.10. This completes the proof. U
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