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Abstract. In this article, a log del Pezzo surface of index two means a projective nor-

mal non-Gorenstein surface S such that (S, 0) is a log-terminal pair, the anti-canonical

divisor −KS is ample and that 2KS is Cartier. The log del Pezzo surfaces of index two

are shown to be constructed from data (X,E,∆) called fundamental triplets consisting

of a non-singular rational surface X, a simple normal crossing divisor E of X, and an

effective Cartier divisor ∆ of E satisfying a suitable condition. A geometric classification

of the fundamental triplets gives a classification of the log del Pezzo surfaces of index

two. As a result, any log del Pezzo surface of index two can be described explicitly as a

subvariety of a weighted projective space or of the product of two weighted projective

spaces. This classification does not use the theory of K3 lattices, which is essential for

the classification by Alexeev–Nikulin [3]. The comparison between two classifications is

also discussed.
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1. Introduction

In this article, we work in the category of algebraic schemes (or algebraic spaces) over

an algebraically closed field k. A del Pezzo surface is a non-singular projective surface

with ample anti-canonical divisor, by definition. Studying del Pezzo surfaces is one of the

main topics in the classification theory of algebraic surfaces or in the theory of rational

surfaces (cf. [9]). We shall study a generalization of the notion of del Pezzo surface to the
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singular normal surface case. From the point of view of logarithmic birational geometry,

it is natural to consider the pairs (S,B) such that S is a normal projective surface (or a

normal complete algebraic space of dimension two) and B is an effective Q-divisor on S

with −(KS +B) being ample in some sense. The precise definition of such pairs is given

in Section 3.1 below, and the pairs are called del Pezzo pairs. It is also natural to require

the pair (S,B) to have only log-terminal (or log-canonical) singularities in many cases.

According to the paper [1] of Alexeev–Nikulin, a log del Pezzo surface is defined to be

a normal projective surface S such that (S, 0) is a del Pezzo pair with only log-terminal

singularities. The index of a log del Pezzo surface S is the minimum positive integer i

with iKS being Cartier. Note that if the characteristic char k is zero, then, for a normal

surface S, the pair (S, 0) has only log-terminal singularities if and only if S has only

quotient singularities.

A log del Pezzo surface S of index one is a normal projective surface S with only rational

double points as singularities and with ample anti-canonical divisor. The surfaces S are

studied in many papers such as [7], [9], [12], [13], [30], [31], [32]. By the minimal resolution

α : M → S of singularities, the classification of S is equivalent to that of non-singular

projective surfaces M with nef and big anti-canonical divisor −KM .

The next non-trivial case should be the case of index two. The log del Pezzo surfaces

of index at most two defined over the complex number field k = C have been studied by

Alexeev–Nikulin [3] (cf. [1], [2]) by a method of K3 lattice. The paper [3] is an English

version of the old paper [1] written in Russian, and has been published recently as

Del Pezzo and K3 surfaces, MSJ Memoirs Vol. 15, Math. Soc. Japan, 2006.

The argument of [3] begins with proving the Smooth Divisor Theorem: a general

member CS ∈ |−2KS| is a non-singular curve of genus ≥ 2. Let X → S be the double-

covering étale outside CS∪SingS and let X → X be the minimal desingularization. Then

X is a K3 surface and the covering involution θ induced on X is non-symplectic in the

sense that θ∗ω = −ω for a nowhere vanishing holomorphic 2-form ω of X . The quotient

surface Y = X /〈θ〉 is non-singular and X → Y is branched along a non-singular divisor

CY + EY , where CY is the total transform of CS by the induced birational morphism

Y → S, and EY is a union of (−4)-curves. The birational morphism Y → S is called the

right resolution of S in [3], which is nothing but the canonical resolution in the sense of

Horikawa. A non-Gorenstein point of S is a singularity of type Kn (cf. Section 4.4), whose

minimal desingularization has a chain of rational curves as the exceptional divisor. The

right resolution is just the blowing up at the nodes of the chains. The pair (Y , CY +EY)

is called a right DPN pair of elliptic type in [3]. By comparing three objects (S,CS),
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(Y , CY +EY), and (X , θ), the classification of log del Pezzo surfaces index at most two is

reduced (in some sense) to that of K3 surfaces with non-symplectic involution.

The invariant lattice S = H2(X an,Z)θ∗ by the induced action θ∗ on the K3 lattice

H2(X an,Z) plays an important role in [3]. The sublattice S naturally contains the Néron–

Severi group NS(Y) = H2(Yan,Z) as a finite index subgroup. Moreover, S is shown to be

an even, hyperbolic, and 2-elementary lattice. Such a lattice is determined by the main

invariants (r, a, δ) by a result of Nikulin. The main invariants for all the sublattices S are

classified into 50 types, where 40 are for the case of index two. Another important notion

called root invariant is used for determining the nef cone of Y inside S ⊗ R. Especially,

the dual graph of the curves on Y with negative self-intersection number is determined

by the root invariant. Applying the Torelli theorem and the surjectivity of period maps

for K3 surfaces to S and to the nef cone of Y , the classification of S is reduced to that

of root invariants. The latter is reduced to the extremal case, where S has an extremal

root invariant if the Picard number is minimal among the log del Pezzo surfaces with

the same S. Therefore, the log del Pezzo surfaces of index at most two are classified by

the main invariants and the root invariants, up to suitable deformation equivalence. In

the case of index two with Picard number one, they succeeded in the classification up to

isomorphism, where the number of isomorphism classes is 18.

However, the results of [3] are far from geometric description of the log del Pezzo sur-

faces because of the use of Torelli type theorems. Recently, Kojima [19] has geometrically

classified the log del Pezzo surfaces of index two with Picard number one by a method of

the theory of open surfaces.

In this article, we present a geometric classification of log del Pezzo surfaces of index

two over an algebraically closed field k of any characteristic. The idea of our method

comes from a technique used in [14]. By the idea, we can classify furthermore all the

isomorphism classes of del Pezzo pairs of index at most two. In the most essential part

of the classification, we consider the following three objects:

• A del Pezzo pair (S,B) of index at most two of a certain class discussed from

Section 3.2.

• A basic pair (M,EM) consisting of a non-singular projective rational surface M

and an effective divisor EM satisfying the condition C in Definition 3.13.

• A fundamental triplet (X,E,∆) consisting of a rational surface X isomorphic

to a Hirzebruch surface Fn or P2, of an effective divisor E of X, and of a zero-

dimensional subscheme ∆ ⊂ E which satisfy the conditions in Section 4.1.

These objects are related as follows: From a del Pezzo pair (S,B) of index two in the class

above, we have a basic pair (M,EM) by the minimal desingularization α : M → S and by
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the formula −2KM = α∗(−2(KS +B))+EM . For a basic pair (M,EM), the linear system

|LM | is base point free for LM = −2KM − EM by Theorem 3.18, which gives another

proof of the Smooth Divisor Theorem in [3] when char k = 0. The linear system

|LM | defines the minimal desingularization α : M → S of a normal projective surface S

in which (S,B) is a del Pezzo pair of the class above for B = (1/2)α∗EM . By the cone

and the contraction theorems (cf. [22]) in the minimal model theory, from a basic pair

(M,EM), we have a minimal basic pair (X,E) (cf. Section 3.2) and a birational morphism

φ : M → X with KM + LM = φ∗(KX + L) for L = −2KX − E. Here, X is a Hirzebruch

surface Fn or P2. There exists a zero-dimensional subscheme ∆ ⊂ E such that νP (∆) = 1

for any P ∈ ∆ (cf. Definition 2.2) and that φ is expressed as the elimination of ∆ (cf.

Definition 2.5, Proposition 2.9). The triplet (X,E,∆) is a quasi-fundamental triplet (cf.

Definition 4.1), but we can replace the birational morphism φ : M → X so that (X,E,∆)

to satisfy the additional condition required for fundamental triplets. The fundamental

triplet (X,E,∆) is determined uniquely by the basic pair (M,EM) with the exception

mentioned in Theorem 4.9 (cf. Example 4.12). The minimal basic pairs are classified by

an elementary calculation (cf. Section 3.3). The fundamental triplets are classified also

by an information of ∆, which is done in Theorem 4.6. The type of the fundamental

triplet (X,E,∆) defined in Theorem 4.6 depends only on the associated del Pezzo pair

(S,B) (cf. Theorem 4.9). The list of types gives essentially the geometric classification

of del Pezzo pairs of the class.

The information on fundamental triplets enables us to study the structure of del Pezzo

pairs in detail. For example, we can determine the dual graph of exceptional divisors of

the minimal desingularization of S for any the rational del Pezzo pairs (S,B) of index two

(cf. Section 4.3), and also we can study several deformation types on (S,B), (M,EM),

and on (X,E,∆) (cf. Section 5). For a log del Pezzo surface S of index two, we shall

show in Theorem 5.16 that S is deformed to a non-singular del Pezzo surface of the same

genus g = K2
S + 1 under a Q-Gorenstein deformation. The author was informed the

result from Yongnam Lee in the case of char k = 0. For the positive characteristic case,

we need a local Q-Gorenstein smoothing of the singularity of type Kn, which is prepared

in Section 4.4.

There are exactly 41 types for the log del Pezzo surfaces S of index two, which are

listed in Table 6. The list of types corresponds to the list of equi-singular deformation

types of (M,EM) with one exception: basic pairs of type [2; 1, 2]0 and of type [0; 1, 1]0

are connected by equi-singular deformation (cf. Theorem 6.1, Proposition 5.10). We can

show in Theorem 6.28 below that if char k 6= 2, then the equi-singular deformation type

of a log del Pezzo surface S of index two is determined by the type of S and by the dual

graph of curves on M with negative self-intersection number.
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By Table 6, we infer that the list of equi-singular deformation type of (M,EM) cor-

responds to the list of the main invariants (r, a, δ) of S given in [3]. The numerical

information of ∆ for a given E seems to correspond to the root invariant of S. It is

interesting to define a root invariant directly from the data of fundamental triplet for the

comparison between the classification of [3] and our classification by fundamental triplets.

By Theorem 6.28, it is almost true that Alexeev and Nikulin have classified in [3] not the

isomorphism classes but the equi-singular deformation types of log del Pezzo surfaces of

index two.

We can describe a log del Pezzo surface of index two as a subvariety of a weighted

projective space or of the product of two weighted projective spaces with explicit defining

equations (cf. Section 7). The idea of description follows from a description of the blowing

up of X along ∆ as a divisor of a P1-bundle over X (cf. Section 2.3). We have a morphism

from S into a toric variety W by a certain linear system on the P1-bundle. If the nef

divisor KX +L = −(KX +E) is big, then the morphism is an embedding, and if KX +L

is not big, then it is a double-covering. In some cases, W is a weighted projective space

or is realized as a subvariety of a weighted projective space. In the case where E is a

minimal section of X ≃ Fn, the description of S and W seems to be complicated, and

we consider another method of description. In this case, S is obtained as the blowing

up of P(1, 1, 4) along a zero-dimensional subscheme of degree 4− n (cf. Proposition 7.1).

In particular, S ≃ P(1, 1, 4) is case n = 4. For other n, S is realized as a subvariety

of the product P(1, 1, n) × P(1, 1, 4) in case n > 0, and of the product P1 × P(1, 1, 4) in

case n = 0. In the case where S → W is a double-covering, W is P(1, 1, 4) or P(1, 1, 2).

Using some ad hoc method, we can describe S as a divisor of a weighted projective space

of dimension three. In the recent paper [15], we find another method of describing the

defining equations of S in a weighted projective space when char k = 0 and the genus is

small.

In many arguments in our study, the case of type [1; 2, 2]0 and the case of char k =

2 appear as exceptional cases. The log del Pezzo surfaces in the cases seem to have

interesting and complicated structure.

This article is organized as follows: The notion of elimination is introduced in Sec-

tion 2. The notions of del Pezzo pair and basic pair are introduced in Section 3, where

the minimal basic pairs are classified, and the anti log-canonical rings of del Pezzo pairs

of index at most two are studied. The notion of fundamental triplet is introduced and

the fundamental triplets are classified by types in Section 4.2. Here, in Tables 3 and

4, the list of the dual graphs of exceptional divisors for the minimal desingularization of

non-Gorenstein singular points of S is given. Section 5 is devoted to the study of deforma-

tion. Especially, deformations of fundamental triplets, and equi-singular deformations of



6

(M,EM) and of (S,B) are studied. In Sections 6 and 7, we consider only the log del Pezzo

surfaces of index two. The structure of the minimal desingularization M is studied in

Section 6. Here, we determine all the curves on M with negative self-intersection number.

Using it, we study the equi-singular deformations of (M,EM) and of S. The comparison

with the classification by Alexeev–Nikulin [3] is explained in Section 6.6. Section 7 is

devoted to giving an explicit description of the log del Pezzo surface from the data of

fundamental triplet.
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First, we explain things on divisors on a normal variety. Let X be a normal variety.

• A divisor on X means a Weil divisor. Thus a Q-divisor is a linear combination

D =
∑
aiΓi of prime divisors Γi with rational coefficients ai. The Q-divisor D is

called effective and we write D ≥ 0 if all ai ≥ 0. A Q-divisor D is called Q-Cartier

if some positive multiple mD is a Cartier divisor.

• For a reflexive sheaf L of rank one, a global section ξ of L defines a homo-

morphism OX → L. If ξ 6= 0, then the image of the dual homomorphism

L∨ = HomOX
(L,OX)→ OX is the ideal sheaf of an effective divisor. The divisor

is denoted by div(ξ) = div(ξ)L. If D = div(ξ)L, then ξ is called a defining equa-

tion of D in L. In this case, there is an injection from L into the sheaf of germs

of rational functions of X sending ξ to 1. The image is just the sheaf OX(D)

of germs of rational functions f with div(f) + D ≥ 0. The cohomology group

Hi(X,OX(D)) is denoted by Hi(X,D), for short.

• Suppose that X is complete. A Cartier divisor D is called nef if DC ≥ 0 for any

irreducible curve C, where DC denotes the intersection number of D and C. A

Cartier divisor D is called big if some positive multiple mD is linearly equivalent

to A+E for an ample divisor A and an effective divisor E. Note that a nef Cartier

divisor D is big if and only if Dn > 0 for n = dimX. The intersection theory is

generalized to divisors on normal surfaces by the Mumford pullback (cf. Section

3.1).

Second, we explain things related to surfaces. Let S be a non-singular surface.

• An irreducible complete curve γ on S is called a negative curve if the self-

intersection number γ2 is negative. If γ ≃ P1 in addition, then γ is called a

(−d)-curve for d = −γ2.

• The dual graph of a reduced divisor D =
∑
Dj on S is defined as follows in the

case where irreducible components Dj are all non-singular: A vertex corresponds

to an irreducible component Dj. Let vj be the vertex corresponding to Dj. If

DiDj = 0 for two irreducible components Di, Dj, then there is no edge joining vi

and vj. If DiDj = 1, then vi and vj are joined by a (simple) line. If DiDj = k > 1,

then vi and vj are joined by a thick line with the numbered box k : If the vertices

vj are written as black circles labelled by Dj, then

w
Di

w
Dj

in case DiDj = 1, w
Di

k w
Dj

in case DiDj = k > 1.

The set of vertices of such a dual graph Γ is denoted by Ver(Γ ).

• In the dual graphs of divisors, a vertex corresponding to a (−d)-curve is expressed

as follows:
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(−1)-curve (−2)-curve (−3)-curve (−4)-curve (−d)-curve

i y it id id

On the other hand, an arbitrary irreducible curve is expressed by the symbol⊘
when it is not necessarily a (−d)-curve.

• A straight chain of non-singular curves of length n on a non-singular surface means

a divisor D = D1 +D2 + · · ·+Dn such that

(1) any irreducible component Di of D is a non-singular projective curve,

(2) Di ∩Dj = ∅ for |i− j| > 1,

(3) D1D2 = D2D3 = · · · = Dn−1Dn = 1.

The dual graph of D is written as:

⊘
D1

⊘
D2

⊘
D3

⊘
Dn−1

⊘
Dn

• Let Fn → P1 denote the P1-bundle associated with the locally free sheaf O⊕O(n)

of P1 for n ≥ 0. The surface Fn is called the Hirzebruch surface of degree n. A

section σ ⊂ Fn with σ2 = −n is called a minimal section. If n > 0, then the

minimal section is called the negative section since it is a unique negative curve

on Fn. The contraction of the negative section is denoted by Fn → Fn. Here,

Fn is isomorphic to the weighted projective space P(1, 1, n). A section σ∞ with

σ∩σ∞ = ∅, which is necessarily linearly equivalent to σ+nℓ for a fiber ℓ, is called

a section at infinity.

Finally, we explain additional things.

• A weighted projective space P(a0, a1, . . . , al) over k is defined as ProjR for the

graded polynomial ring R = k[X0, X1, . . . , Xl] where Xi is a homogeneous element

of degree ai for 1 ≤ i ≤ l. The tautological sheaf O(n) for n ∈ Z is defined as

R(n)∼. If ai | n for any i, then O(n) is invertible. A homogeneous coordinate

(Y0, . . . , Yl) of P(a0, . . . , al) means that Yi is a global section of O(ai) for any i and

P(a0, . . . , al) ≃ Proj k[Y0, . . . , Yl].

• A lattice S means a free abelian group S of finite rank together with a non-

degenerate symmetric integral bilinear form (. , .) : S× S→ Z.

• The intersection C ∩ E of subschemes C, E ⊂ X means the scheme-theoretic

intersection.
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2. Elimination of zero-dimensional subschemes

We introduce the notion of elimination for a zero-dimensional subscheme of a non-

singular surface satisfying a suitable condition. A typical example of such a subscheme is

the scheme-theoretic intersection C∩E of a non-singular curve C and an effective divisor

E with C 6⊂ E. The notion of elimination is a generalization of the notion of separation

introduced in [14].

2.1. Succession of blowups. Let X be a non-singular surface and let ∆ be a zero-

dimensional subscheme of X. The defining ideal sheaf of ∆ is denoted by I∆.

Definition 2.1 (weak transform). Let f : Z → X be a proper birational morphism from

a non-singular surface.

(1) Then the image I∆OZ of f ∗I∆ → OZ is written as OZ(−G)J for an effective

f -exceptional divisor G of Z and an OZ-ideal J defining a subscheme of Z of

dimension ≤ 0. The ideal J is called the weak transform of I∆. Similarly, the

subscheme ∆Z defined by J is called the weak transform of ∆.

(2) Let E be an effective divisor on X. We define E∆
Z to be the effective divisor

f ∗E − f ∗E ∧G, where G is the f -exceptional divisor in (1) and

f ∗E ∧G :=
∑

Γ
min{multΓ(f ∗E),multΓ(G)}Γ.

Remark. If ∆ is a subscheme of an effective divisor E, i.e., OX(−E) ⊂ I∆ ⊂ OX , then the

weak transform ∆Z is a subscheme of E∆
Z . In fact, the inclusion OZ(−f ∗E) ⊂ I∆OZ =

JOZ(−G) implies that E∆
Z = f ∗E −G ≥ 0 and OZ(−E∆

Z ) ⊂ J = I∆Z
.

The following is related to the notion of multiplicity of ∆ at a point:

Definition 2.2. Let P be a point of the zero-dimensional subscheme ∆.

(1) The multiplicity multP (∆) at P is defined as the length of the Artinian local ring

O∆,P .

(2) The degree deg ∆ coincides with h0(O∆) =
∑

P∈∆ multP (∆).

(3) Let us define another invariant νP (∆) by

νP (∆) = max{ν ∈ N | I∆ ⊂ m
ν
P},

where mP ⊂ OX is the maximal ideal at P .

Remark. For an effective divisor D and for a point P , we have

max{ν ∈ N | OX(−D) ⊂ m
ν
P}

= min{multP (C ∩D) | a non-singular curve C 6⊂ D passing through P}.
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This number is called the multiplicity of D at P and is denoted by multP (D). For two

effective divisors D1, D2 with no common irreducible components, the local intersection

number (D1, D2)P at a point P is defined by multP (D1 ∩D2).

Remark. νP (∆) = 1 if and only if ∆ is an effective divisor of a non-singular curve over a

neighborhood of P . In fact, if νP (∆) = 1, then I∆,P = (x, yk) for a system of parameters

(x, y) of the regular local ring OX,P and for k = multP (∆).

Lemma 2.3. Assume that Supp ∆ is a point P with νP (∆) = 1 and k = multP (∆) ≥ 2.

Let V → X be the blowing-up along ∆. Then V is normal and has a unique singular

point Q ∈ V , which is an Ak−1-singularity.

Proof. We may assume that X = Spec k[x, y] and I∆ = (x, yk). Then V = V0 ∪ V1 for

V0 ≃ Spec k[x, y, z]/(xz− yk) and V1 ≃ Spec k[x, y, w]/(x− wyk).

Here, V1 is non-singular and V0 has the unique singular point (0, 0, 0) of type Ak−1. �

In what follows in Sections 2.1–2.3, we assume that νP (∆) = 1 for any P ∈ ∆.

We shall investigate the weak transform of ∆ by blowups. Let µ : Y → X be the

blowing-up at a point P ∈ ∆. If multP (∆) = 1, then I∆OY = OY (−l) for the exceptional

curve l = µ−1(P ) and hence the weak transform ∆Y is empty. If multP (∆) > 1, then

I∆OY = OY (−l) ⊗ I∆Y
and ℓ ∩ ∆Y = {P ′} for a point P ′, where νP ′(∆Y ) = 1 and

multP ′(∆Y ) = multP (∆)− 1. In fact, if I∆,P = (x, yk) for a local coordinate (x, y), then

I∆Y ,P ′ = (x′, y′k−1) and (x, y) = (x′y′, y′) for a local coordinate (x′, y′) around P ′. For an

effective divisor E on X, we have E∆
Y = µ∗E − l in case P ∈ E and E∆

Y = µ∗E in case

P 6∈ E.

By the argument above on the blowing-up at a point, we infer that if deg(∆) = n <∞,

then there exists a succession of blowups

(2–1) φ : M = Yn → Yn−1 → · · · → Y1 → Y0 = X

such that

(1) the weak transform ∆Yi
of ∆ in Yi is not empty for i < n and ∆Yn = ∅,

(2) Yi+1 → Yi is the blowing-up at a point Pi ∈ ∆Yi
for i < n.

In particular, the weak transform of ∆ is eliminated by the succession of blowups (2–1).

Lemma 2.4. The non-singular surface M in (2–1) is isomorphic over X to the minimal

desingularization of the blowup V of X along ∆.

Proof. By construction, I∆OM = OM(−G) for the φ-exceptional effective divisor G ∼
KM − φ∗KX . By the universality of blowing up, there is a morphism λ : M → V over
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X such that λ∗OV (1) ≃ OM(−G), where OV (1) denotes the tautological invertible sheaf

associated to the graded OX-algebra
⊕

m≥0 Im
∆ . In particular, KM ∼ λ∗KV . Hence,

λ : M → V is the minimal desingularization. �

Definition 2.5 (elimination). Let M → V be the minimal desingularization for the

blowing up V along ∆. The composite φ : M → X is called the elimination of ∆.

Even though the definition of elimination can be applied to arbitrary zero-dimensional

subscheme ∆, we consider only the case where νP (∆) = 1 for any P ∈ ∆.

Remark 2.6. The elimination φ : M → X of ∆ is characterized by the following two

conditions:

(1) The weak transform of ∆ is empty;

(2) KM ∼ φ∗KX +G for the effective divisor G determined by I∆OM = OM(−G).

In fact, there is a birational morphism λ : M → V by (1) and λ is the minimal desingu-

larization by (2). Conversely, the elimination φ : M → X satisfies these two conditions

by Lemma 2.4.

Lemma 2.7. Let φ : M → X be the elimination of ∆.

(1) Let ∆′ be a subscheme of ∆. Then φ factors through the elimination of ∆′.

(2) Let E be an effective divisor on X containing ∆ as a subscheme. Then E∆
M is a

unique effective divisor of M such that φ∗E
∆
M = E and KM +E∆

M ∼ φ∗(KX +E).

(3) For an effective divisor E on X, let M ′ → X be the elimination of ∆ ∩ E. Then

E∆
M is the total transform of E∆

M ′. In particular, if E is non-singular at ∆ ∩ E,

then E∆
M is the proper transform of E in M .

(4) Let E be an effective divisor on X such that ∆∩E consists of finitely many points.

Then the difference Θ = φ∗E − E∆
M is a complete φ-exceptional effective divisor

satisfying

−Θ2 = −ΘKM = ΘE∆
M = deg(∆ ∩ E).

(5) For two complete effective divisors D and E on X,

D∆
ME

∆
M = DE − deg(∆ ∩D ∩ E).

Proof. (1): In the expression (2–1) of the elimination φ of ∆ as a succession of blowups

at points, we can choose the center of blowing-up Yi+1 → Yi from points of the weak

transform of ∆′ whenever the weak transform is not empty. Hence φ factors through the

elimination of ∆′.

(2): Let G be the effective divisor on M such that OM(−G) = I∆OM . Then G ≤ φ∗E

by OX(−E) ⊂ I∆. Since G ∼ KM−φ∗KX , we have E∆
M = φ∗E−G ∼ φ∗(KX +E)−KM .
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(3): I∆∩EOM ′ = OM ′(−G′) for the φ′-exceptional effective divisor G′ on M ′ with

KM ′ ∼ φ′∗KX +G′. The equality I∆OM ′ +OM ′(−φ′∗E) = I∆∩EOM ′ implies ∆M ′∩E∆
M ′ =

∅. For the induced morphism φ′′ : M → M ′, there is an effective divisor G′′ such that

I∆M′
OM = OM(−G′′) and G = φ′′∗G′ +G′′. Hence, E∆

M = φ′′∗E∆
M ′ .

(4): Θ is complete by the assumption and it coincides with φ′′∗G′ in the proof of (3).

Thus −Θ2 = −G′2 = deg(∆ ∩ E), and

−ΘKM = −ΘG = −Θ2 = Θ(−φ∗E + E∆
M) = ΘE∆

M

by the equality G = φ′′∗G′ +G′′.

(5): We may assume ∆ ⊂ D by (3). Thus φ∗D −D∆
M = G. Hence, by (4), we have

D∆
ME

∆
M = (φ∗D −G)(φ∗E −Θ) = DE +GΘ = DE − deg(∆ ∩D ∩ E). �

Remark. Let C be a non-singular curve and let E be a non-zero effective divisor with

C 6⊂ E. Then the scheme-theoretic intersection ∆ = C ∩ E satisfies νP (∆) = 1 for any

P ∈ ∆. The separation of C and E defined in [14] is nothing but the elimination of ∆.

The following well-known result is important for showing some vanishing of coho-

mologies and for showing the base point freeness of some linear systems, especially in

characteristic p > 0 (cf. [4], [5]):

Lemma 2.8. Let E be a one-dimensional projective scheme satisfying H1(E,OE) = 0. If

L is a nef invertible sheaf of E, then L is generated by global sections and H1(E,L) = 0.

Proof. Let E1, E2, . . . , El be the one-dimensional irreducible components of E. We may

assume that E is connected, and hence E =
⋃l

i=1Ei. Let Ji ⊂ OE be the ideal sheaf

defining Ei. Then Jn
i is a skyscraper sheaf for n≫ 0. We set

a(E) :=
∑l

i=1

∑
n≥0

rankOEi
Jn

i /J
n+1
i .

Note that a(E) is an invariant for any one-dimensional algebraic scheme E. We also set

di = deg(L|Ei
) ≥ 0.

We first consider the case where L is numerically trivial; we shall show that if di = 0

for any i, then L ≃ OE. There is an exact sequence

0→ L⊗ Ji → L → OEi
→ 0

for any Ei, since Ei ≃ P1. Note that Ji is regarded as an ODi
-module for a subscheme

Di ⊂ E such that dimDi ≤ 0 or that dimDi = 1 with a(Di) = a(E) − 1. By using

the induction on a(E), we may assume L ⊗ Ji ≃ Ji. The surjection H0(E,OE) →
H0(Ei,OEi

) ≃ k and the vanishing H1(E,OE) = 0 induce H1(Ji) = 0. Therefore, the

restriction map

πi : H0(E,L)→ H0(Ei,OEi
)
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is surjective for any i. There is a section s ∈ H0(E,L) such that πi(s) 6= 0 for any i. Let

F be the cokernel of the homomorphism OE → L sending 1 to s. Then F ⊗OEi
= 0 for

any i. Thus OE → L is surjective, and is isomorphic.

Next, we consider the general case. For any i, let us take an arbitrary point Pi ∈ Ei

not contained in other irreducible components Ej. Then there is an effective Cartier

divisor Bi of E with SuppBi = {Pi} and Bi|Ei
= Pi. In fact, an open neighborhood

U of Pi can be regarded as a subscheme of an affine space A and there is a regular

function f on A with div(f) ∩ Ei ∩ U = Pi. Therefore the invertible sheaf L ⊗OE(−B)

is numerically trivial for the effective Cartier divisor B =
∑
diBi. Hence, L ≃ OE(B).

Thus L is generated by global sections by the freeness of the choice of {Pi}. Since

0→ OE → L ≃ OE(B)→ OB → 0 is exact, we have H1(E,L) = 0. �

Remark. In Lemma 2.8, we have H1(E ′,OE′) = 0 for any subscheme E ′ ⊂ E. In partic-

ular, if E is an effective divisor of a non-singular surface, then Ered =
∑
Ei is a simple

normal crossing divisor consisting of rational curves whose dual graph is a tree.

Proposition 2.9. Let φ : M → X be a non-isomorphic proper birational morphism of

non-singular surfaces such that −KM is φ-nef. Let G be the φ-exceptional effective divisor

with G ∼ KM −φ∗KX and let ∆ ⊂ X be the zero-dimensional scheme defined by the ideal

I∆ = φ∗OM(−G). Then νP (∆) = 1 for any P ∈ ∆, and φ is the elimination of ∆. If

EM be an effective divisor of M such that KM + EM is φ-numerically trivial, then ∆ is

a subscheme of the non-zero effective divisor E = φ∗EM and EM = E∆
M .

Proof. First, we shall show the following two properties to be satisfied for any φ-nef

divisor D:

(1) R1 φ∗OM(D) = 0;

(2) OM(D) is φ-generated, i.e., φ∗φ∗OM(D)→ OM(D) is surjective.

Let B be a φ-exceptional effective divisor ofM . Then H1(OB) = 0 by R1 φ∗OM = 0. Thus

H1(OB⊗OM(D)) = 0 by Lemma 2.8. Hence, we have the vanishing R1 φ∗OM(D) = 0 by

the theorem of holomorphic functions:
(
R1 φ∗OM(D)

)∧
x
≃ lim←−

m

H1(OmB ⊗OM(D)),

where x is an arbitrary point of X and B is an effective divisor of M with SuppB =

φ−1(x). Since D − G ∼ D −KM + φ∗KX is φ-nef, R1 φ∗OM(D − G) = 0, φ∗OM(D) →
φ∗OG(D|G) is surjective, and OG(D|G) is generated by global sections (cf. Lemma 2.8).

Hence, OM(D) is φ-generated, since SuppG is the exceptional locus of φ.
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Second, we shall show that φ is the elimination of ∆ by the characterization in Re-

mark 2.6. Since OM(−G) is φ-generated, I∆OM = OM(−G). In particular, the weak

transform of ∆ in M is empty. Since KM ∼ φ∗KX +G, φ is just the elimination of ∆.

Finally, we shall show the remaining thing. It is derived from 0 ≤ EM = φ∗E − G.

In fact, it induces OX(−E) ⊂ I∆; hence ∆ is a subscheme of E and EM = E∆
M by

Lemma 2.7, (2). �

2.2. Transformation of an effective divisor. Let E be a non-zero effective divisor of

X containing ∆ as a subscheme, i.e., OX(−E) ⊂ I∆. Note that ∆ is a Cartier divisor of

E if and only if I∆/OX(−E) is a locally free OE-module. We shall study the divisor E∆
M

for the elimination φ : M → X of ∆.

The following is easily derived from Lemma 2.7:

Lemma 2.10. Suppose that E is non-singular and ∆ is supported on a point P of E.

Then, for the elimination φ : M → X of ∆, the set-theoretic inverse image φ−1(P ) is a

straight chain
∑k

j=1 Γj of non-singular rational curves, E∆
M is the proper transform of E

in M , and the dual graph of φ−1(E) is as follows (cf. Notation and terminology):

y

Γ1

y

Γ2

y

Γk−1

i

Γk

⊘
E∆

M

Lemma 2.11. If ∆ is supported on a singular point P of E, then there exists a non-

singular curve C on an open neighborhood of P in X such that ∆ ⊂ C∩E. If furthermore

∆ is a Cartier divisor of E, then one can choose the non-singular curve C so that ∆ =

C ∩ E.

Proof. For a local defining equation η of E around P , we have η ∈ m
2
P for the maximal

ideal mP at P . Thus the ideal I∆ contains η and another function ξ ∈ mP \ m
2
P , since

νP (∆) = 1. Hence the divisor C = div(ξ) is non-singular at P and ∆ ⊂ C ∩ E. If ∆ is

a Cartier divisor of E, then we can choose ξ so that I∆ is generated by η and ξ; thus

∆ = C ∩ E. �

Lemma 2.12. Suppose that E = E1 + E2 for non-singular divisors E1, E2 and that E1

and E2 intersect transversally at a unique point P = E1 ∩ E2. Suppose also that the

zero-dimensional subscheme ∆ is supported on P . Then ∆ is contained in an effective

Cartier divisor ∆̂ of E supported on P with νP (∆̂) = 1. In particular, min{multP (∆ ∩
E1),multP (∆∩E2)} = 1. Furthermore, the following conditions are mutually equivalent :

(1) ∆ is a Cartier divisor of E;

(2) ∆ is neither a subscheme of E1 nor E2;
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(3) multP (∆) = multP (∆ ∩ E1) + multP (∆ ∩ E2).

Proof. We may assume that div(xi) = Ei for a regular function xi of X for i = 1, 2. Since

νP (∆) = 1, I∆,P contains a function ξ ∈ mP \m
2
P . We may assume that

ξ = λ1x
m2
1 + λ2x

m1
2

for unit functions λ1, λ2 at P and for positive integers m1, m2 with min{m1,m2} = 1. Let

∆̂ be the subscheme div(ξ)∩E, i.e., the subscheme defined by the ideal (ξ, x1x2). Then ∆̂

satisfies the required property. Moreover, multP (∆̂) = m1 +m2, and multP (∆̂∩Ei) = mi

for i = 1, 2. Suppose that m1 = 1 and ∆ 6= ∆̂. Then I∆,P = (ξ, x1x2, x
k
1) = (xk

1, x2)

for some 1 ≤ k ≤ m2. Hence, ∆ ⊂ E2, multP (∆) = k, multP (∆ ∩ E1) = 1, and

multP (∆ ∩ E2) = k. Thus the condition: ∆̂ = ∆, is equivalent to all the conditions

(1)–(3) above. �

Corollary 2.13. In the situation of Lemma 2.12, suppose that ∆ is a Cartier divisor of

E. If ∆′ ⊂ ∆ is a Cartier divisor of E, then ∆′ = ∅ or ∆′ = ∆.

Lemma 2.14. Suppose that E = E1+E2 satisfies the same assumption as in Lemma 2.12.

Suppose furthermore that ∆ is an effective Cartier divisor of E supported on P with

multP (∆ ∩ E1) = 1 and multP (∆ ∩ E2) = b ≥ 1. Then, for the elimination φ of ∆, the

set-theoretic inverse image φ−1(P ) is a straight chain
∑b+1

j=1 Γj of non-singular rational

curves, E∆
M = E1,M + E2,M +

∑b
j=1 Γj for the proper transform Ei,M of Ei for i = 1, 2,

and the dual graph of φ−1(E) is as follows :

⊘
E1,M

y

Γ1

y

Γb−1

y

Γb

⊘
E2,M

iΓb+1

Proof. Let φ♯ : M ♯ → X be the elimination of ∆ ∩ E2. By Lemma 2.10, (φ♯)−1(P ) is a

straight chain
∑b

j=1 Γ♯
j of non-singular rational curves. For the proper transform E♯

i of Ei

for i = 1, 2, the dual graph of the union (φ♯)−1(P ) ∪ E♯
1 ∪ E♯

2 is written as follows:

⊘
E♯

1

y

Γ♯
1

y

Γ♯
b−1

i

Γ♯
b

⊘
E♯

2

The weak transform ∆M♯ of ∆ in M ♯ is just a point P ♯ ∈ Γ♯
b \ (Γ♯

b−1∪E♯
2), where Γ♯

0 = E♯
1

in case b = 1. The elimination M of ∆ is obtained as the blowing-up M → M ♯ at P ♯.

Therefore, the expected dual graph of φ−1(E) is obtained. Here, Γb+1 is the exceptional
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curve for M → M ♯, and E1,M , E2,M , Γj for j ≤ b are the proper transforms in M of E♯
1,

E♯
2, Γ♯

j, respectively. The divisor E∆
M is just E1,M + E2,M +

∑b
j=1 Γj. �

Remark 2.15. In the situation of Lemma 2.14, the ideal I∆ is expressed as

I∆ = (φ♯)∗

(
mP ♯ ⊗OM♯

(
−
∑b

j=1
jΓ♯

j

))
.

Therefore, ∆ is determined by a point P ♯ lying on Γ♯
b \ (Γ♯

b−1 ∪ E♯
2). The point P ♯ ∈

Γ♯
b corresponds to the point (λ1(P ) :λ2(P )) ∈ P1 for λ1, λ2 appearing in the proof of

Lemma 2.12.

Lemma 2.16. Suppose that ∆ is supported on a point P of E and that E = mE0 for a

non-singular divisor E0 and for a positive integer m. Then multP (∆) ≤ mmultP (∆∩E0),

where the equality holds if and only if ∆ is a Cartier divisor of E.

Proof. We may assume that m ≥ 2 and that E0 = div(x) for a regular function x. Then

xm ∈ I∆. By using the induction on m, we may assume that xm−1 6∈ I∆. There is another

regular function ξ such that (ξ, xm) ⊂ I∆ and ξ ∈ mP \ m
2
P . If ∆ is a Cartier divisor of

E, then we can choose ξ so that I∆ = (ξ, xm) by Lemma 2.11.

Suppose that multP (∆∩E0) = 1. Then we may assume that ξ = y for a local coordinate

system (x, y) around P . Then I∆ = (xm, y) since xm−1 6∈ I∆. Thus ∆ is a Cartier divisor

of E with multP (∆) = m, multP (∆ ∩ E0) = 1.

Suppose that multP (∆ ∩ E0) = l ≥ 2. Then we may assume that ξ = x + εyl for a

local coordinate system (x, y) around P and a unit function ε at P . Here, (x+εyl, xm) =

(x + εyl, yml). Thus I∆ = (x + εyl, yk) for a positive integer k with (m − 1)l < k ≤ ml,

since (x + εyl, xm−1) = (x + εyl, y(m−1)l). Hence, the required inequality follows from

multP (∆) = k. Moreover if k = ml, then ∆ is a Cartier divisor of E. �

Lemma 2.17. In the situation of Lemma 2.16, let E0,M ⊂ M be the proper transform

of E0 for the elimination φ : M → X of ∆. Then

E∆
M = mE0,M +

∑l

i=1
i(m− 1)Γi +

∑k

i=l+1
(ml − i)Γi

for the straight chain φ−1(P ) =
∑k

i=1 Γi of non-singular rational curves, where k =

multP (∆) and l = multP (∆ ∩ E0). If k = l, then the dual graph of φ−1(E0) is the

same graph as in Lemma 2.10. If k > l, then the dual graph of φ−1(E0) is written as

follows :
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y

Γ1

y

Γl

y

Γk−1

i

Γk

⊘E0,M

Proof. The inverse image φ−1(P ) is a straight chain
∑k

i=1 Γi of non-singular rational curves

where an end curve Γk is the unique (−1)-curve of the chain. Let φ♯ : M ♯ → X be the

elimination of ∆∩E0 and let φ′ : M →M ♯ be the induced morphism. Then the curves Γi

for i > l are φ′-exceptional and the images Γ♯
i = φ′(Γi) for i ≤ l form the straight chain

(φ♯)−1(P ) =
∑l

i=1 Γ♯
i of rational curves. The proper transform E♯

0 ⊂ M ♯ of E0 intersects

only the unique (−1)-curve Γ♯
l in the chain (φ♯)−1(P ). Here, we have

(φ♯)∗E0 = E♯
0 +

∑l

i=1
iΓ♯

i,

E∆
M♯ = (φ♯)∗(mE0)− (KM♯ − (φ♯)∗KX) = mE♯

0 +
∑l

i=1
(m− 1)iΓ♯

i.

Thus we are done in the case where k = l, since ∆ ⊂ E0 and φ = φ♯. Hence, we may

assume k > l. Then the morphism φ′ is the elimination of the weak transform ∆♯ ⊂ M ♯

of ∆. The weak transform ∆♯ is supported on a point P ♯ of Γ♯
l which is not contained in

other components of (φ♯)∗E0. Thus

E∆
M =

(
(m− 1)lΓ♯

l

)∆♯

M
+ (φ′)∗

(
E∆

M♯ − (m− 1)lΓ♯
l

)
.

Let us consider the special case where k = m and l = 1. Then I∆ = (xm, y) and

E0 = div(x) for a local coordinate system (x, y) around P . Thus φ♯ : M ♯ →M is nothing

but the blowing up at P . Thus there is a local coordinate (x♯, y♯) around P ♯ such that

Γ♯
1 = div(x♯) and I∆♯ = ((x♯)m−1, y♯). Thus we have

E∆
M = mE0,M +

∑m−1

i=1
(m− i)Γi

by induction on m.

For a general case, by the proof of Lemma 2.16, we may assume I∆ = (x, yk) and

E0 = div(x− εyl) for a local coordinate system (x, y) around P and for a unit function ε

at P . Then there is a local coordinate system (x♯, y♯) around P ♯ such that Γ♯
l = div(x♯)

and I∆♯ = ((x♯)k−l, y♯) around P ♯. Thus the situation ∆♯ ⊂ (k − l)Γ♯
l belongs to the
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special case above. Hence,
(
(m− 1)lΓ♯

l

)∆♯

M
= (ml − k)(φ′)∗(Γ♯

l) +
(
(k − l)Γ♯

l

)∆♯

M

= (ml − k)
(
Γl +

∑k−l

j=1
Γl+j

)
+ (k − l)Γl +

∑k−l−1

j=1
(k − l − j)Γl+j

= (m− 1)lΓl +
∑k−l

j=1
((m− 1)l − j)Γl+j.

Thus we are done. �

2.3. Global description. Assume that ∆ is an effective Cartier divisor of a non-zero

effective divisor E of X and that there is a divisor L of X with L|E ∼ ∆, i.e., OX(L)|E ≃
OE(∆). We shall describe the blowup V → X along ∆ explicitly under the assumption.

We have an extension

(2–2) 0→ OX(L− E)→ E → OX → 0

of locally free sheaves which makes the commutative diagram

0 −−−→ OX(L− E) −−−→ I∆OX(L) −−−→ OE −−−→ 0∥∥∥∥
x

x

0 −−−→ OX(L− E) −−−→ E −−−→ OX −−−→ 0

of exact sequences, where the top sequence is derived from OX(−E) ⊂ I∆ and from the

isomorphism OX(L)|E ≃ OE(∆). The diagram induces another exact sequence

(2–3) 0→ OX(−E)→ E → I∆OX(L)→ 0.

Let p : P := PX(E) → X be the P1-bundle associated with E and let OE(1) denote the

tautological line bundle of P with respect to E .

Lemma 2.18. The blowing up V of X along ∆ is realized as a Cartier divisor of P with

OP(V ) ≃ OE(1)⊗ p∗OX(E).

Proof. By the exact sequence (2–3), we infer that
⊕

d≥0 Id
∆ is a quotient algebra of the

symmetric algebra of the locally free sheaf E ⊗ OX(−L). Hence, V is isomorphic to a

closed subspace of P. The inclusion OX(−E) ⊂ E of (2–3) defines an irreducible Cartier

divisor D ⊂ P with OP(D) ≃ OP(1)⊗ p∗OX(E) and V ⊂ D. Thus V = D. �

Proposition 2.19. The extension (2–2) is split if and only if div(ξ)∩E = ∆ for a global

section ξ of OX(L). In the split case, V is isomorphic to the divisor

V (ξ, η) := div (p∗(ξ)v− p∗(η)u) ⊂ P

for a defining equation η of E, where the section v ∈ H0(P,OE(1) ⊗ p∗OX(E − L))

corresponds to the injection OX(L − E) → E of (2–2) and the section u ∈ H0(P,OE(1))

corresponds to a splitting OX → E.
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Proof. If such a section ξ of OX(L) exists, then ξ gives an injection OX → I∆OX(L)

inducing a splitting OX → E of (2–2).

Next, suppose that (2–2) is split. Then we have E = OX(L − E)v ⊕ OXu. For

the injection OX(−E) → E of (2–3) and for the surjection E → OX of (2–2), the

composite η : OX(−E) → E → OX is an injection defining E. Thus η is regarded as

a defining equation of E. For the other projection E → OX(L − E)v, the composite

OX(−E) → E → OX(L − E)v defines a section ξ of OX(L). Replacing ξ with −ξ, we

infer that

• the twist OX → E ⊗ OX(E) of the injection OX(−E) → E of (2–3) is given by

1 7→ ηu− ξv, and

• the surjection E → I∆OX(L) in (2–3) is given by

OX(L− E)⊕OX ∋ (s1, s2) 7→ (s1η + s2ξ).

Therefore, V = V (ξ, η) and div(ξ) ∩ E = ∆. �

Remark. If H1(X,L−E) = 0 and if Bs |L−E| = ∅, then I∆OX(L) is generated by global

sections. In fact, (2–2) is split by H1(X,L − E) = 0, and thus E is generated by global

sections by Bs |L− E| = ∅. Hence, I∆OX(L) is so by the exact sequence (2–3).

2.4. Simultaneous elimination.

Lemma 2.20. Let X̃ → T be a smooth family of surfaces over a non-singular curve

T and let ∆̃ ⊂ X̃ be a subscheme such that ∆̃ → T is finite and flat and that the

fiber ∆t = ∆̃ ×T {t} satisfies νP (∆t) = 1 for any point P ∈ ∆t as a zero-dimensional

subscheme of the fiber Xt = X̃ ×T {t} over any t ∈ T . Then there exist a finite ramified

covering τ : T ′ → T from another non-singular curve T ′ and a simultaneous elimination

M̃ → X̃ ×T T
′ of ∆̃ ×T T

′ in the following sense: M̃ is smooth over T ′ and the fiber of

M̃ ×T ′ {t′} over any point t′ ∈ T ′ is the elimination of ∆t ⊂ Xt for t = τ(t′).

Proof. Taking a succession of base changes Γ̃→ T from the normalizations Γ̃ of irreducible

components Γ of Supp ∆̃, we may assume that any irreducible component of ∆̃ is a section

of X̃ → T . For a point P ∈ ∆̃, we have a local coordinate system (x, y, t) of X̃ such that

X → T is given by (x, y, t) 7→ t and that the defining ideal I
∆̃,P

of ∆̃ at P contains y.

Thus, locally on T , ∆̃ is a subscheme of a divisor Ẽ ⊂ X̃ which is smooth over T . Then

∆̃ is regarded as an effective divisor
∑
niΓi of Ẽ for sections Γi of Ẽ → T . Hence, we

may write

I
∆̃,P

= (y, xn1ϕ)

for a regular function ϕ at P , where {x = y = 0} = Γ1 and
∑

i≥2 niΓi is defined by

ϕ = y = 0. Let µ : Ỹ → X̃ be the blowing-up along the section Γ1. Then Ỹ → T is
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smooth and the weak transform ∆̃
Ỹ

of ∆̃ is defined by
(
y′, x′

n1−1
µ∗ϕ

)

for a coordinate system (x′, y′, t) of Ỹ satisfying µ∗x = x′, µ∗y = x′y′, µ∗t = t. Thus

∆̃
Ỹ
→ T is finite and flat, and the degree of ∆̃

Ỹ
→ T is less than the degree of ∆̃→ T by

one. Hence, we have a simultaneous elimination by taking a succession of blowups along

sections. �

Proposition 2.21. Suppose that E is a complete simple normal crossing divisor of a

non-singular surface X. Let ∆1 and ∆2 be zero-dimensional subschemes of E such that

(a) deg(∆1 ∩ Ej) = deg(∆2 ∩ Ej) for any irreducible component Ej of E,

(b) multP (∆1) = multP (∆2) and multP (∆1 ∩ Ej) = multP (∆2 ∩ Ej) for any node P

of E and for any Ej,

(c) νPi
(∆i) = 1 for any Pi ∈ ∆i for i = 1, 2.

Then there exist a connected curve T , a subscheme ∆̃ of E × T flat and finite over T ,

and two points t1, t2 ∈ T satisfying the following properties where ∆t is the restriction

∆̃ ∩ (E × {t}) for t ∈ T :

(1) ∆t1 = ∆1 and ∆t2 = ∆2.

(2) deg(∆t ∩ Ej) = deg(∆1 ∩ Ej) for any t ∈ T and Ej.

(3) multP (∆t) = multP (∆1) and multP (∆t ∩ Ej) = multP (∆1 ∩ Ej) for any t ∈ T ,

Ej, and for any node P of E.

(4) νPt(∆t) = 1 for any t ∈ T and Pt ∈ ∆t.

In particular, there is a birational morphism φ̃ : M̃ → X ×T such that M̃ is smooth over

T and the fiber

φ̃|ti : M̃ ×T {ti} → X × {ti} = X

is the elimination of ∆i for i = 1, 2.

Proof. Let ∆3 ⊂ ∆1 ∩∆2 be the subscheme supported on nodes of E such that

multP (∆3) = max{multP (∆1 ∩ Ej) | P ∈ Ej}

for any node P of E. Note that if P ∈ E1∩E2 and multP (∆1∩E1) = 1, then ∆3 = ∆1∩E2

near the point P . Let φ♯ : M ♯ → X be the elimination of ∆3. Let ∆♯
i be the weak

transform of ∆i in M ♯ for i = 1, 2, and set

E♯ := E∆3

M♯ ∼ φ♯∗(KX + E)−KM♯ .

Then ∆♯
i is empty or an effective divisor supported on the non-singular part E♯ \ SingE♯

by Lemma 2.12 (cf. Remark 2.15). Since the degrees of ∆♯
1 and ∆♯

2 on an irreducible

component of E♯ coincide, the divisors ∆♯
1 and ∆♯

2 of E♯ are algebraically equivalent to
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each other. Therefore, we have a connected non-singular curve T and a relative effective

Cartier divisor ∆̃♯ ⊂ E♯ × T such that ∆♯
i = ∆̃♯ ∩ (E♯ × {ti}) for a suitable point ti ∈ T

for i = 1, 2. By Lemma 2.20, we have a simultaneous elimination M̃ →M ♯× T of ∆̃♯ by

replacing T with a finite ramified covering of T . The subscheme ∆̃ ⊂ X × T defined by

the ideal

(φ♯ × idT )∗I∆̃♯
OM♯×T (−E♯ × T ) ⊂ OX×T

satisfies the required conditions and φ̃ : M̃ → M ♯ × T → X × T is the simultaneous

elimination. �

Lemma 2.22. Let E1, E2 be non-singular prime divisors of a non-singular surface X

which intersect transversely at one point P . Let ∆ be a zero-dimensional subscheme of

E = E1+E2 supported at {P} with νP (∆) = 1, multP (∆∩E1) = 1, and multP (∆∩E2) =

k ≥ 1. Then there exist a connected non-singular curve T , a point 0 ∈ T , a subscheme

∆̃ ⊂ E × T satisfying the following conditions :

(1) ∆̃→ T is flat and finite;

(2) ∆ is isomorphic to the fiber ∆0 = ∆̃×T {0} over the point 0 ∈ T ;

(3) P 6∈ ∆t for the fiber ∆t = ∆̃×T {t} over any point t 6= 0.

Proof. Let (x, y) be a local coordinate system of X around P such that E1 = div(x) and

E2 = div(y). We may assume that the defining ideal I∆ is one of the following two ideals

by the proof of Lemma 2.12:

(1) I∆ = (y, xk); (2) I∆ = (xy, y + εxk),

where ε is a unit function at P . Let T be the affine line A1 = Spec k[t]. We choose

mutually distinct non-zero constants a1, a2, . . . , ak ∈ k. In case (1), the subscheme ∆̃ of

X × T defined by the ideal (
y,
∏k

j=1
(x− ajt)

)

satisfies the required conditions. In case (2), the subscheme ∆̃ of X × T defined by the

ideal (
xy, y + ε

∏k

j=1
(x− ajt)

)

satisfies the required conditions. �

Lemma 2.23. Let E0 be a non-singular prime divisor of a non-singular surface X and

let ∆ be a zero-dimensional subscheme of E = mE0 for some m ≥ 1 such that ∆ is

supported at one point P ∈ E0. Then there exist a connected non-singular curve T , a

point 0 ∈ T , a subscheme ∆̃ ⊂ E × T satisfying the following conditions :

(1) ∆̃→ T is flat and finite;
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(2) ∆ is isomorphic to the fiber ∆0 = ∆̃×T {0} over the point 0 ∈ T ;

(3) ∆t ∩ E0 is reduced for the fiber ∆t = ∆̃×T {t} over any point t 6= 0.

Proof. Let (x, y) be a local coordinate system of X around P such that E0 = div(x). We

may assume that ∆ 6⊂ (m−1)E0 and multP (∆∩E0) = l ≥ 2. If m = 1, then the defining

ideal I∆,P at P can be written as (x, yl). If m ≥ 2, then, by the proof of Lemma 2.16,

we may assume that the defining ideal I∆,P at P is written as (x+ εyl, yk) for an integer

(m−1)l < k ≤ ml and for a unit function ε at P . Let T be the affine line A1 = Spec k[t].

We choose mutually distinct non-zero constants a1, a2, . . . , al ∈ k. In case m = 1, the

subscheme ∆̃ of X × T defined by the ideal
(
x,
∏l

i=1
(y− ait)

)

satisfies the required condition. In case m ≥ 2, the subscheme ∆̃ of X × T defined by

the ideal
(
x + ε

∏l

i=1
(y− ait),

(∏l

i=1
(y− ait)

)m−1∏k−(m−1)l

j=1
(y− ajt)

)

satisfies the required condition. �
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3. Del Pezzo pairs and basic pairs

We introduce the notions of del Pezzo pair and of basic pair in this section. The first

one is a generalization of the notion of del Pezzo surface to pairs (S,B) of surfaces S and

Q-divisors B, where the del Pezzo property for (S,B) are considered in the most general

situation. If (S, 0) is a log-terminal del Pezzo pair, then S is called a log del Pezzo surface.

The notion of basic pair naturally comes from studying the minimal desingularization of

S for del Pezzo pairs (S,B) of index at most two. The set of isomorphism classes of

basic pairs is in one-to-one correspondence with the set of isomorphism classes of rational

del Pezzo pairs (S,B) of index at most two and of genus at least two which are not (S, 0)

of index one. Applying a kind of minimal model program to a basic pair, we have a

birational morphism to a minimal basic pair, which is expressed as the elimination of a

zero-dimensional subscheme. The minimal basic pairs are classified by some numerical

data.

3.1. Definition of del Pezzo pairs. Let S be an irreducible normal algebraic space of

dimension two proper over Spec k. There is a birational morphism α : M → S from a non-

singular algebraic surface projective over Spec k, by Chow’s lemma and by the resolution

of singularities of algebraic surfaces. We may assume that there is no (−1)-curve of M

contracted to a point by α. Then α is uniquely determined up to isomorphism and is

called the minimal resolution of singularities (or the minimal desingularization) of S.

Let Θ be a Q-divisor of S. The Mumford pullback α∗Θ (cf. [23]) is defined to be a

Q-divisor of the form

ΘM +
∑

aiEi,

where ΘM is the proper transform of Θ in M , Ei is an irreducible component of the excep-

tional locus of α, and the coefficients ai are rational numbers determined by the condition:

ΘMEi = 0 for any i. We say that Θ is numerically Cartier if α∗Θ is Cartier. For another

Q-divisor Θ′ of S, the intersection number ΘΘ′ is well-defined to be (α∗Θ)(α∗Θ′). We

say that Θ is nef if ΘΓ ≥ 0 for any irreducible curve Γ on S. Similarly, we say that Θ is

numerically ample if ΘΓ > 0 for any irreducible curve Γ on S and if the self-intersection

number Θ2 is positive.

We recall the following results related to rational singularities (cf. [4, Theorem (2.3)]):

Theorem 3.1. If S has only rational singularities, i.e., R1 α∗OM = 0, then S is a

projective scheme over Spec k. For the minimal desingularization α : M → S and for any

α-nef divisor L of M , R1 α∗OM(L) = 0 and α∗α∗OM(L)→ OM(L) is surjective.

Proof. First, we shall show the latter half assertion. Let Z be the fundamental cycle, i.e.,

the smallest non-zero effective divisor supported on the α-exceptional locus
⋃
Ei such
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that −ZEi ≥ 0 for any i. Note that SuppZ =
⋃
Ei and L − nZ is α-nef for any n ≥ 0.

Thus H1(OnZ(L)) = 0 by Lemma 2.8. Hence, the vanishing R1 α∗OM(L) = 0 follows

from the theorem of holomorphic functions for algebraic spaces (cf. [18]). Applying the

vanishing for L− Z to the exact sequence

0→ OM(L− Z)→ OM(L)→ OZ(L)→ 0,

we infer that α∗OM(L)→ α∗OZ(L) is surjective. Let G(L) be the image of α∗α∗OM(L)→
OM(L). By Lemma 2.8, OZ(L) is generated by global sections. Thus G(L) ⊂ OM(L)→
OZ(L) is surjective. Since OM(L)/G(L) is supported in

⋃
Ei, we have G(L) = OM(L).

Next, we shall prove the projectivity of S. Let A be a very ample divisor of M with

H1(M,A) = 0 and let H be the pushforward α∗A. Then the Mumford pullback of H is

written by

α∗H = A+
∑

aiEi

for positive rational numbers ai. By multiplying A, we may assume ai are all integral;

thus α∗H is Cartier. By the previous argument, we infer that OZ(α∗H) ≃ OZ and

α∗OM(α∗H) → α∗OZ is surjective. In particular, there is an effective divisor D on a

Zariski-open neighborhood U of a connected component of Z such that D ∼ α∗H|U and

D ∩ Z = ∅. This implies that H is Cartier and α∗H coincides with the pullback as a

Cartier divisor. We shall show that H is an ample divisor of S. Let E be the effective

divisor
∑
aiEi. From the exact sequence

0→ OM(A)→ OM(α∗H)→ OE(α∗H) ≃ OE → 0

and the vanishing H1(M,A) = 0, we infer that |H| is base point free. If Cα∗H = 0 for

an irreducible curve C ⊂ M , then C ⊂ E. Hence, |H| defines a finite morphism from S

into a projective space. Therefore, H is ample and S is projective. �

Definition 3.2. Let B be an effective Q-divisor of S.

(1) The index of (S,B) is defined to be the minimum positive integer a with a(KS+B)

being numerically Cartier.

(2) Let f : Z → S be a birational morphism from a non-singular projective surface Z

such that the union of f−1(B) and the f -exceptional locus is a normal crossing

divisor
∑
Ei. The pair (S,B) is called log-terminal (resp. log-canonical) if δi > −1

(resp. δi ≥ −1 ) for any δi for the formula

KZ = f ∗(KS +B) +
∑

δiEi.

Note that the condition does not depend on the choice of f : Z → S.

(3) (S,B) is called a del Pezzo pair if −(KS +B) is numerically ample.

(4) A del Pezzo pair (S,B) is called rational if S is a rational surface.
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(5) If (S, 0) is a log-terminal del Pezzo pair, then S is called a log del Pezzo surface.

Note that a del Pezzo surface is a non-singular projective surface with ample anti-

canonical divisor, which is always rational.

Proposition 3.3 (cf. [26, Proposition 4.4]). Let M be a non-singular projective surface

with κ(−KM) = 2. Then M has only finitely many negative curves. If ρ(M) > 2 in

addition, then the cone NE(M) of numerical classes of effective 1-cycles on M (cf. [22])

is generated by the numerical classes of negative curves.

Proof. −KM is Q-linearly equivalent to A+D for an ample Q-divisor A and an effective

Q-divisor D. Let Γ be a negative curve. If KMΓ < 0, then Γ is a (−1)-curve. If KMΓ ≥ 0,

then Γ is an irreducible component of D.

Assume that there are infinitely many (−1)-curves Ci on M . By the cone theorem [22],

we may assume that the limit

ζ = lim
i→∞

1

ACi

[Ci]

exists in NE(M) with KMζ = 0. Since Aζ = 1, DCi < 0 for infinitely many i. This is a

contradiction, since Ci ⊂ SuppD. Therefore, M has only finitely many negative curves.

Suppose that ρ(M) ≥ 3. Then any extremal ray R ⊂ NE(M) with KMR < 0 is

generated by the class of a (−1)-curve by [22]. Let

Λ :=
∑

R≥0[Γj] ⊂ NE(M) ⊂ NE(M)

be the polyhedral cone generated by the set {Γj} of negative curves on M . Assume that

there is an element z ∈ NE(M) \ Λ. By the cone theorem [22], there exists an element

ζ1 ∈ Λ satisfying z−ζ1 ∈ NE(M) and KM(z−ζ1) ≥ 0. Since z 6= ζ1, we have A(z−ζ1) > 0

and D(z − ζ1) < 0. Thus the negative part of the Zariski-decomposition of z − ζ1 is not

zero. Hence z − ζ1 − ζ2 ∈ NE(M) for some ζ2 ∈ Λ \ {0}. Therefore, 0 < c(z) ≤ Az for

the number

c(z) = sup{Ay | y ∈ Λ, z − y ∈ NE(M)}.
Let {yi} be a sequence of elements of Λ such that z−yi ∈ NE(M) and limi→∞Ayi = c(z).

Then we have an accumulation point y∞ ∈ Λ of {yi}. Since z − y∞ ∈ NE(M) \ Λ, we

have a contradiction by 0 < c(z − y∞) ≤ c(z)− Ay∞ = 0. Hence NE(M) = Λ. �

Corollary 3.4. Let (S,B) be a del Pezzo pair and let α : M → S be the minimal desin-

gularization. Then M has only finitely many negative curves. If a negative curve Γ is

not α-exceptional, then Γ is a (−1)-curve or α(Γ) ⊂ SuppB.

Proof. For the nef and big Q-divisor L = −α∗(KS + B), there is an effective Q-divisor

E with −KM ∼Q L+ E. Thus κ(−KM) = 2. Hence, M has only finitely many negative
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curves by Proposition 3.3. Suppose that Γ is neither an α-exceptional curve nor a (−1)-

curve. Then KMΓ ≥ 0 and LΓ > 0. Hence, EΓ < 0 and α(Γ) ⊂ SuppB. �

Proposition 3.5. Let (S,B) be a rational del Pezzo pair of index a and let α : M →
S be the minimal desingularization. Then S is a projective surface with only rational

singularities, −a(KS + B) is an ample Cartier divisor, and the α-exceptional locus is a

simple normal crossing divisor whose dual graph is a tree.

Proof. Let BM be the proper transform of B. Let b be a positive integer such that abKS

and abB are numerically Cartier. For the α-exceptional locus
⋃
Ei, we define effective

divisors E(1), E(2) supported on the locus by

abKM = α∗(abKS)− E(1), abBM = α∗(abB)− E(2).

Then −E(1) and −E(2) are both α-nef. We set L := −aα∗(KS +B) and E := E(1) +E(2).

Then L is nef and big, LE = 0, and −ab(KM +BM) = bL+ E. Moreover,

(KM + E)L = KML ≤ (KM +BM)L = −a−1L2 < 0.

In particular H0(M,KM + E) = 0. By duality, we have H2(M,−E) = 0 and thus

H1(E,OE) = 0 from the exact sequence 0→ OM(−E)→ OM → OE → 0. Thus SuppE

is a simple normal crossing divisor whose dual graph is a tree. Since −E is α-nef, SuppE

is the inverse image of a finite set of S and H1(E,−jE|E) = 0 for any j ≥ 0 by Lemma 2.8.

Hence H1(mE,OmE) = 0 for any m ≥ 1 by the exact sequences

0→ OE(−(m− 1)E)→ OmE → O(m−1)E → 0,

and we infer that S has only rational singularities by applying the theorem of holomorphic

functions to R1 α∗OM . In particular, S is projective by Theorem 3.1 and OM(L) is the

pullback of an invertible sheaf of S. Hence −a(KS +B) is Cartier. �

Proposition 3.6. Let (S,B) be a del Pezzo pair.

(1) If (S,B) is log-terminal, then S is rational.

(2) Assume that S is not rational. Let φ : M → X be a birational morphism from the

minimal desingularization M of S into a P1-bundle X over a non-singular curve

C of genus g ≥ 1. Then X → C has a negative section Γ with −Γ2 > 2g − 2.

If (S,B) is log-canonical in addition, then C is an elliptic curve and the proper

transform ΓM of Γ in M is exceptional for M → S.

Proof. Suppose that S is not rational. Let α : M → S be the minimal desingularization

and π : X → C be the P1-bundle. Then −KM ∼Q LM + EM for the nef and big Q-

divisor LM = −α∗(KS + B) and for an effective Q-divisor EM . Thus −KX ∼Q L + E

for the nef and big Q-divisor L = φ∗LM and the effective Q-divisor E = φ∗EM . Since
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(−KX)2 = −8(g−1), E is not nef. Hence, there is a negative curve Γ on X with EΓ < 0.

Moreover, Γ is a unique negative curve of X since the cone NE(X) is spanned by Γ and

a fiber ℓ of π. Since Γ dominates C, we have (KX + Γ)Γ = 2pa(Γ)− 2 ≥ 2g − 2 ≥ 0. We

set c = multΓ(E) ∈ Q. Then

0 < Lℓ = (−KX − E)ℓ ≤ (−KX − cΓ)ℓ = 2− cΓℓ,
0 ≤ LΓ = (−KX − E)Γ ≤ (−KX − cΓ)Γ = −(KX + Γ)Γ + (1− c)Γ2.

Hence, 1 ≤ c < 2 and Γ is a section of π. In particular, (S,B) is not log-terminal, and

(S,B) is log-canonical only when c = 1.

Suppose that c = 1. Then g = 1, LΓ = 0, and E = Γ +D for an effective Q-divisor D

with D ∩ Γ = 0, Dℓ < 1. In particular, 0 ≤ LMΓM ≤ LΓ = 0 and α(ΓM) is a point.

If c > 1, then 2g − 2 ≤ (c − 1)(−Γ2) ≤ −Γ2. If c = 1, then 0 = 2g − 2 < −Γ2. Thus

we are done. �

Remark 3.7. Let X → C be a P1-bundle over a non-singular curve C of genus g ≥ 1

admitting a negative section σ with −σ2 > 2g − 2. Then X ≃ PC(OC ⊕ OC(A)) for an

ample divisor A with OC(A) ≃ Oσ(−σ). Thus there is a section σ∞ with σ ∩ σ∞ = ∅,
i.e., a section at infinity. Here Bs |mσ∞| = ∅ for m ≥ 2, since deg(mA −KC) ≥ 2. For

the contraction morphism µ : X → V of σ, V is a projective surface of Picard number

one, and OV (µ∗σ∞) is an ample generator.

In what follows, we consider only del Pezzo pairs (S,B) of index at most two.

Convention 3.8. For a del Pezzo pair (S,B) of index at most two, let α : M → S denote

the minimal desingularization of S. Then we can write

KM = α∗(KS +B)−
∑

δiEi

for δi ∈ (1/2)Z≥0, where
⋃
Ei is the union of α−1(B) and the α-exceptional locus. We

introduce two Cartier divisors on M by

EM := 2
∑

δiEi, LM := −2KM − EM .

Note that EM is effective, KM + LM = −KM − EM , and 2(KM + LM) = LM − EM .

The genus g = g(S,B) is defined by 2g − 2 = (KM + LM)LM . In other words, g =

(KS + B)(KS + 2B) + 1. If −2(KS + B) is Cartier and |−2(KS + B)| contains an

irreducible and reduced curve C, then the arithmetic genus pa(C) equals g(S,B).

Remark 3.9. Suppose that EM = 0. Then B = 0 and KM ∼ α∗KS. Thus −KS is

ample and S has only rational double points as singularities; in other words, S is a log

del Pezzo surface of index one. If (S, 0) is a rational del Pezzo pair of index one, then S
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has only rational double points by Proposition 3.5, and hence S is a log del Pezzo surface

of index one. The log del Pezzo surfaces S of index one have been studied by many people

as a degenerate case of del Pezzo surfaces (cf. [7], [9], [12], [13], [30], [31], [32]). Here,

2 ≤ g = K2
S + 1 ≤ 10 and the minimal desingularization M is obtained as the blowing

up of P2 at 10− g points in a general position in certain sense.

Lemma 3.10. Let (S,B) be a del Pezzo pair of index at most two. Assume that the

minimal desingularization M is a P1-bundle over a non-singular projective curve C of

genus g ≥ 1. Then S is projective, M has a negative section σ, and one of the following

cases occurs :

(1) C is an elliptic curve, EM = 2σ, LM ∼ 2σ∞ for a section σ∞ at infinity, and α

is the contraction morphism of σ. In particular, B = 0 and (S, 0) is log-canonical

of index one with g(S, 0) = K2
S + 1 = 2.

(2) C is an elliptic curve, EM = 2σ+σ∞, LM ∼ σ∞ for a section σ∞ at infinity, and

α is the contraction morphism of σ. In particular, B = (1/2)α∗σ∞ and (S,B) is

log-canonical of index two with g(S,B) = 1.

(3) EM = 3σ + π∗∆ for the projection π : M → C and for an effective divisor ∆ on

C with −σ2 ≥ 4g − 4 + deg(∆). In particular, (S,B) is of index two but not

log-canonical, and g(S,B) = g(C). Here, α contracts σ if and only if −σ2 =

4g − 4 + deg(∆).

Proof. By the proof of Proposition 3.6, we infer that M admits a negative section σ

with m := multσ(EM) ∈ {2, 3} and admits a section σ∞ at infinity (cf. Remark 3.7).

In particular, S is always projective. Let D be the effective divisor EM − mσ. By the

calculation of (1/2)LMγ = (−KM − (1/2)EM)γ for γ = ℓ and γ = σ in Proposition 3.6,

we have

0 < 2− (m/2)− (1/2)Dℓ and 0 ≤ −(2g − 2) + (1− (m/2))σ2 − (1/2)Dσ.

If m = 2, then g = 1, Dσ = 0, and Dℓ ≤ 1; hence, D = 0 or D = σ∞ for a section σ∞

with σ ∩ σ∞ = ∅. If m = 2 and D = 0, then LM ∼ 2σ∞ for a section σ∞ at infinity;

this is in the case (1). If m = 2 and D = σ∞, then LM ∼ σ∞; this is in the case (2). If

m = 3, then Dℓ = 0 and −σ2 ≥ 4g− 4 +Dσ; thus D = π∗∆ for an effective divisor ∆ on

C, and LM ∼ σ∞ + π∗(A− 2KC −∆) for a divisor A of C with OC(A) ≃ Oσ(−σ). Thus

the case (3) occurs. Since −σ2 > 2g − 2, S is projective (cf. Remark 3.7). �

Remark. In the case (3) of Lemma 3.10, suppose that α contracts σ. Then KS + B is

Q-Cartier if and only if A ∼Q 2KC + ∆. Here, the Cartier index of KS +B is the double

of the order of A− 2KC −∆ in Pic0(C).
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Proposition 3.11. If KM + LM is not nef, then (S,B) is one of the following :

(1) S ≃ P2 and deg(2B) ∈ {4, 5}.
(2) S ≃ Fn and 2B ∈ |3σ + (2n+ 4− b)ℓ| for n < b ≤ 2n+ 4.

(3) S ≃ P(1, 1, n) for n ≥ 2 and 2B ∈ |(n+ 4)ℓ| for a generating line ℓ.

(4) The case (2) of Lemma 3.10.

(5) The case (3) of Lemma 3.10.

In any case above, the genus g(S,B) coincides with the irregularity of M .

Proof. There exists an extremal ray R ⊂ NE(M) with (KM + LM)R < 0 by [22]. If R

contains the class of a (−1)-curve γ, then KMγ = −1 and LMγ = 0. This contradicts

the minimality of α. Hence, either M ≃ P2 with deg(KM +LM) < 0 or X is a P1-bundle

over a non-singular curve C with (KM + LM)ℓ < 0 for a fiber ℓ.

Suppose that M ≃ P2. Then (M, (1/2)EM) ≃ (S,B) and KM + LM corresponds to

−KS − 2B. Thus deg(KS + B) < 0 and deg(KS + 2B) > 0. Hence, 3 < 2 degB < 6.

Since 2B is Cartier, deg(2B) ∈ {4, 5}; equivalently, degLM = 1 or 2. Thus g = 0.

Suppose that M ≃ Fn for n ≥ 0. Then LMℓ = 1 for a fiber ℓ. Hence, LM ∼ σ + bℓ

for a minimal section σ and b ≥ n. In particular, g = 0. If n = 0, then b > 0. Here,

EM = −2KM − LM ∼ 3σ + (2n + 4 − b)ℓ. Thus n ≤ b ≤ 2n + 4. If b > n, then LM

is ample and α : M → S is isomorphic. If b = n, then n > 0 and S is isomorphic to

the cone Fn ≃ P(1, 1, n) and 2B ∼ (n + 4)ℓ. Here, the case n = 1 does not occur since

(KM + LM)σ = −1 for the negative section σ.

Suppose that M is a P1-bundle over C of genus q ≥ 1. Then (M,EM) is in one of the

three cases in Lemma 3.10. Here, (KM +LM)ℓ = 0 in the case (1), (KM +LM)ℓ = −1 in

the cases (2) and (3). We have g(S,B) = q by Lemma 3.10. �

Lemma 3.12. If KM + LM is nef and g(S,B) = 1, then S is a log del Pezzo surface of

index one and 2B ∼ −KS.

Proof. By the Hodge index theorem, we infer that KM + LM is numerically trivial. In

particular, −KM is nef and big, which implies that M is rational. Thus S is a log

del Pezzo surface of index one. Since EM ∼ LM ∼ −KM , we have the assertion. �

3.2. Definition of basic pairs. For the classification of del Pezzo pairs of index at most

two, there remains the case where EM 6= 0, KM + LM is nef, and g(S,B) ≥ 2. In order

to study the case, we introduce the following notion of basic pairs:

Definition 3.13. Let X be a non-singular projective surface and let E be a non-zero

effective divisor of X satisfying the following three conditions (C1)–(C3) for the divisor

L = −2KX − E:
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(C1) KX + L is nef;

(C2) (KX + L)L > 0;

(C3) LEi ≥ 0 for any irreducible component Ei of E.

If X is rational, then (X,E) is called a basic pair. The positive integer g ≥ 2 defined by

2g − 2 = (KX + L)L is called the genus of (X,E).

For a del Pezzo pair (S,B) of index at most two of the remaining case, the pair (M,EM)

satisfies (C1)–(C3) and g(S,B) coincides with the genus of (M,EM).

Lemma 3.14. Let (X,E) be a pair satisfying (C1)–(C3). Then the following two condi-

tions are also satisfied :

(C3′) L = −2KX − E is nef and big ;

(C4) K2
X ≥ 0.

If X is rational, then the following condition is also satisfied :

(C5) H1(E,OE) = 0.

Proof. We have L2 > 0 by 0 < 2(KX + L)L = L2 − LE ≤ L2. Thus either L or −L is

big by the Riemann–Roch formula for χ(X,mL). Now (KX +L)L > 0 for the nef divisor

KX + L. Thus L is big. If L is not nef, then Lγ = (L−E)γ +Eγ < 0 for an irreducible

curve γ. Since L − E = 2(KX + L) is nef, γ is an irreducible component of E, which

contradicts the condition (C3). Hence, L is nef and (C3′) is satisfied. The condition (C4)

is satisfied by

(3–4) K2
X = (KX + L)2 + LE ≥ LE ≥ 0.

Suppose that X is rational. We have H0(X,KX +E) ≃ H0(X,−KX −L) = 0 by (C1),

(C2), and (C3′). The Serre duality, the exact sequence 0→ OX(−E)→ OX → OE → 0,

and the rationality of X imply the vanishing H2(X,−E) ≃ H1(E,OE) = 0. Thus (C5) is

satisfied. �

Corollary 3.15. Let (X,E) be a pair satisfying (C1)–(C3). Suppose that X is irrational.

Then X is a P1-bundle over an elliptic curve and E = 2σ for a negative section σ.

Proof. It follows from (C4) and Lemma 3.10. �

Corollary 3.16. An irrational del Pezzo pair (S,B) of index at most two is one of the

three cases in Lemma 3.10. In particular, S is projective.

The rational del Pezzo pairs (S,B) of index at most two are classified by genus g as

follows (cf. Remark 3.9):

• If g = 0, then (S,B) is a pair in (1)–(3) of Proposition 3.11;
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• If g = 1, then (S,B) is a pair in Lemma 3.12;

• If g ≥ 2, then (S,B) is either the pair (S, 0) for a log del Pezzo surface S of index

one or has a basic pair as the minimal desingularization.

Therefore, the classification of del Pezzo pairs of index at most two is reduced to the

classifications of log del Pezzo surfaces of index one, and of basic pairs.

Let (X,E) be a basic pair and set L = −2KX−E. Suppose that −Eγ = (2KX +L)γ <

0 for a (−1)-curve γ. Then (KX +L)γ = 0 and Lγ = Eγ = 1. Let τ : X → Z be the blow-

down of γ to a point P ∈ Z. Then EZ := τ∗(E) is not zero and KX + L = τ ∗(KZ + LZ)

for the divisor LZ = −2KZ − EZ . Therefore, (Z,EZ) is a basic pair. Here, the genus of

(X,E) equals the genus of (Z,EZ) since (KX + L)L = (KZ + LZ)LZ .

A basic pair (X,E) is called minimal if −Eγ = (2KX + L)γ ≥ 0 for any (−1)-curve γ

of X. By the theory of extremal rays [22], if (X,E) is minimal, then there is an extremal

ray R ⊂ NE(X) with (2KX +L)R < 0 such that the contraction morphism of R is either

the structure morphism of a P1-bundle over P1 or the trivial morphism from X ≃ P2 to

a point.

Lemma 3.17. Any basic pair (X,E) satisfies the following stronger condition than (C1)

for L = −2KX − E:

(C1′) Bs |KX + L| = ∅.
Moreover, H1(X,m(KX + L)) = 0 for any m ≥ 0.

Proof. By successive contractions of (−1)-curves γ with (2KX +L)γ < 0, we may assume

that (X,E) is minimal. Then X ≃ P2 or X ≃ Fn. It is well known that H1(X,D) = 0

and OX(D) is generated by global sections for any nef divisor D of X. Thus we are

done. �

Theorem 3.18. Bs |L| = ∅ for L = −2KX − E for any basic pair (X,E). Moreover

H1(X,mL− jE) = 0 for any m ≥ j ≥ 0.

Proof. Since 2(KX + L) = L − E, we have Bs |L − E| = ∅ and H1(X,L − E) = 0

by Lemma 3.17. Hence the base point freeness follows from the exact sequence 0 →
OX(L− E)→ OX(L)→ OE(L|E)→ 0 and from Lemma 2.8. By the exact sequences

0→ OX(mL− (j + 1)E)→ OX(mL− jE)→ OE((mL− jE)|E)→ 0

and by Lemma 3.17, the vanishing of H1(X,mL − jE) is reduced to the vanishing of

H1(E, (mL−jE)|E), which follows from Lemma 2.8 since mL−jE = (m−j)L+j(L−E)

is nef. �

Proposition 3.19. Let (M,EM) be a basic pair. Then there exist a rational del Pezzo

pair (S,B) of index at most two with g(S,B) ≥ 2 such that (M,EM) is obtained as the
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minimal desingularization α : M → S. Here, (S,B) is log-terminal if and only if EM is

reduced ; (S,B) is log-canonical if and only if x(1/2)EMy is reduced.

Proof. Let Φ: M → |LM |∨ = P(H0(M,LM)) be the morphism associated to the linear

system |LM |. Let α : M → S be the Stein factorization of Φ. Then S is a normal

projective surface and LM ∼ α∗L0 for an ample divisor L0 of S. Since LM = −2KM−EM ,

we have L0 ∼ −2(KS +B) for B = (1/2)α∗EM . Then −(KS +B) is ample and

(3–5) KM ∼Q α
∗(KS +B)− (1/2)EM .

Hence, (S,B) is a rational del Pezzo pair of index at most two. If B = 0, then the index

of (S,B) is two by EM 6= 0. Since KM + LM is nef, α is the minimal desingularization.

The log-terminal and log-canonical properties follow from (3–5) and (C5). �

Corollary 3.20. Let (S,B) be a del Pezzo pair of index at most two. Suppose either that

S is rational or that (S,B) is log-canonical. Then the index of (S,B) coincides with the

Cartier index of KS +B and Bs |−2m(KS +B)| = ∅ for m ≥ 2. If Bs |−2(KS +B)| 6= ∅,
then (S,B) is one of the following :

(1) S is a log del Pezzo surface of index one with K2
S = 1 and 2B ∼ −KS;

(2) M is a P1-bundle over an elliptic curve with a negative section σ and a section

σ∞ at infinity such that σ2 = −1, B = (1/2)α∗σ∞, where α : M → S is the

contraction of σ.

In particular, |−2(KS +B)| contains a non-singular member if char k = 0.

Proof. If M is irrational, then Bs |LM | can be analyzed by Lemma 3.10. Here, we have

the exceptional case (2) above, where α∗σ∞ is a non-singular member of |−2(KS + B)|.
Thus, we may assume M to be rational. If EM = 0, then the property Bs |−2KM | = ∅
is well-known. If KM + LM is not nef, then M ≃ P2 or M ≃ Fn by Proposition 3.11,

and hence Bs |LM | = ∅ for the nef divisor LM . If KM + LM is nef and g(S,B) = 1, then

LM ∼ −KM by Lemma 3.12. In this case, it is well known that Bs |−KM | = ∅ for K2
M > 1

and that, in char k = 0, |−KM | contains a non-singular member even if Bs |−KM | 6= ∅.
The assertion for the remaining case follows from Theorem 3.18. �

Remark. A similar result to Corollary 3.20 has been proved as Smooth Divisor The-

orem in [3] in the case where B = 0, EM is reduced, and char k = 0, by the use of

Kawamata–Viehweg’s vanishing theorem ([16], [28]). The Smooth Divisor Theorem

asserts that a general member of |−2KS| is non-singular for a log del Pezzo surface S

of index ≤ 2. Even if char k > 0, it holds for S with K2
S ≥ 2 by Theorem 3.32 below.

However, it does not hold for certain S with K2
S = 1 in case char k = 2 as in Example 7.22

below.
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3.3. Minimal basic pairs. We shall classify all the minimal basic pairs. Let (X,E) be

a minimal basic pair and set L = −2KX − E. Then, either X ≃ P2 or X is a P1-bundle

over P1. In the latter case, (2KX +L)ℓ = −Eℓ < 0 for a fiber ℓ of the P1-bundle structure

X → P1.

Lemma 3.21. Let (X,E) be a minimal basic pair with X ≃ P2. Then degE = 1 or 2.

Proof. This follows from degL+ degE = deg(−2KX) = 6 and (KX + L)L > 0. �

Lemma 3.22. Let (X,E) be a minimal basic pair with X ≃ F0 = P1 × P1. Let ℓi be a

fiber of the i-th projection pi : X → P1 for i = 1, 2. Let (e1, e2) be the pair of non-negative

integers determined by E ∼ e1ℓ1 + e2ℓ2. Assume that e1 ≥ e2. Then

(e1, e2) ∈ {(1, 0), (1, 1), (2, 0), (2, 1)}.

In particular, E has at most three irreducible components.

Proof. Since KX ∼ −2ℓ1 − 2ℓ2 and L ∼ (4− e1)ℓ1 + (4− e2)ℓ2, we have 4 ≥ e1 ≥ e2, and

0 < (KX + L)L = 2(e1 − 3)(e2 − 3)− 2.

Hence, e1 ≤ 2 and e2 ≤ 1. Thus we are done. �

Convention 3.23. In what follows, for a minimal basic pair (X,E) with X ≃ F0, we fix

a P1-bundle structure π : X → P1 such that E ∼ e1σ + e2ℓ with e1 ≥ e2 for a fiber

ℓ and for a minimal section σ of π. Here, we express a fiber of π as ℓ and a fiber of

another projection to P1 as σ. The projection π is uniquely determined except for the

case (e1, e2) = (1, 1).

Lemma 3.24. Let (X,E) be a minimal basic pair with X ≃ Fn for n ≥ 1. Let σ ⊂ X be

the negative section and let ℓ be a fiber of the P1-bundle structure π : X → P1. Let (e1, e2)

be the pair of non-negative integers determined by E ∼ e1σ + e2ℓ. If E 6≥ 2σ, then n ≤ 4

and (e1, e2) is one of the following :

Case n = 1 : (1, 0), (1, 1), (2, 1), (2, 2).

Case n = 2 : (1, 0), (1, 1), (1, 2), (2, 2), (2, 3).

Case n = 3 : (1, 0), (1, 1), (2, 3), (2, 4).

Case n = 4 : (1, 0), (2, 4).

If E ≥ 2σ, then e1 = 2 and 0 ≤ e2 ≤ min{n+1, 4}. The number of irreducible components

of E is at most 3 in case E 6≥ 2σ, and is at most 5 in case E ≥ 2σ.
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Proof. The formula −KX ∼ 2σ + (n + 2)ℓ implies L ∼ (4 − e1)σ + (2n + 4 − e2)ℓ

and KX + L = (2 − e1)σ + (n + 2 − e2)ℓ. Here, 2 − e1 ≥ 0 by (KX + L)ℓ ≥ 0, and

e1 = Eℓ > 0 by (2KX + L)ℓ < 0. Hence e1 ∈ {1, 2}. The condition (C1) is equivalent to:

n+2−e2 ≥ n(2−e1). Similarly, (C3′) is equivalent to: 2n+4−e2 ≥ n(4−e1). Therefore

(3–6) e2 ≤ min{n(e1 − 1) + 2, n(e1 − 2) + 4} =





min{2, 4− n}, in case e1 = 1;

min{n+ 2, 4}, in case e1 = 2.

The genus g of (X,E) is calculated as follows:

2g − 2 = (KX + L)L

= −n(2− e1)(4− e1) + (2− e1)(2n+ 4− e2) + (4− e1)(n+ 2− e2)
= (2− e1)(n(e1 − 1) + 2− e2) + (2− e1)(4− e2) + 2(n+ 2− e2).

Therefore, we have

(3–7) 2 ≤ g =




n+ 3− e2, in case e1 = 2;

n+ 6− 2e2, in case e1 = 1.

Comparing with the inequality (3–6), we have a new inequality e2 ≤ n+1 in case e1 = 2,

but no new inequalities in case e1 = 1.

If E 6⊃ σ, then σE = e2−ne1 ≥ 0. If E ⊃ σ but E 6≥ 2σ, then E = σ+D for a divisor

D 6⊃ σ; thus σD = e2 − n(e1 − 1) ≥ 0. Combining with (3–6) and (3–7), we have

n ≤e2 ≤ min{2, 4− n}, in case e1 = 1, E 6⊃ σ;

0 ≤e2 ≤ min{2, 4− n}, in case e1 = 1, E ⊃ σ;

2n ≤e2 ≤ min{n+ 1, 4}, in case e1 = 2, E 6⊃ σ;

n ≤e2 ≤ min{n+ 1, 4}, in case e1 = 2, E 6≥ 2σ;

0 ≤e2 ≤ min{n+ 1, 4}, in case e1 = 2, E ≥ 2σ.

Therefore, n ≤ 4 in case E 6≥ 2σ, and the list of (e1, e2) is obtained for n ≥ 2. In case

n = 1, the minimality of (X,E) requires another condition: 0 ≤ (2KX + L)σ = −Eσ =

e1 − e2. Hence the case (e1, e2) = (1, 2) is erased and the list is obtained.

Finally, we bound the number kE of irreducible components of E. If E ≥ 2σ, then

E = 2σ +
∑
aiℓi for fibers ℓi with

∑
ai = e2 ≤ 4; thus kE ≤ 5. Suppose that E 6≥ 2σ. If

e1 = 1, then E is a section of π or the union of σ and at most two fibers, since e2 ≤ 2;

thus kE ≤ 3. The remaining case satisfies E 6≥ 2σ, e1 = 2, and 4 ≥ e2 ∈ {n, n + 1}. If

e2 = n, then E = σ + σ∞ for a section σ∞ at infinity; thus E is the disjoint union of two

copies of P1 and kE = 2. If e2 = n+ 1, then we have the following three possibilities:

(A) E 6⊃ σ.
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(B) E = σ +D for a section D ∼ σ + (n+ 1)ℓ of π.

(C) E = σ + σ∞ + ℓ0 for a section σ∞ at infinity and for a fiber ℓ0 of π.

Then kE = 2 in case (B), and kE = 3 in case (C). In case (A), we have n = 1 and kE ≤ 2.

In fact, if E ∼ 2σ+2ℓ is reducible, then E = D1 +D2 for two sections D1, D2 at infinity,

where D1D2 = 1. �

We can classify the minimal basic pairs (X,E) by the following types:

[e]: X ≃ P2 and degE = e ∈ {1, 2}.
[n; e1, e2]: X ≃ Fn with E ∼ e1σ + e2ℓ. Here, σ is a minimal section and ℓ is a fiber

for the P1-bundle structure π : X → P1 (cf. Convention 3.23).

The types of minimal basic pairs are listed in Table 1 with the invariants g, LE, and

(KX +L)2 by the results in Lemmas 3.21, 3.22, 3.24. We note that K2
X = (KX +L)2+LE

(cf. (3–4)).

Corollary 3.25. Let (X,E) be a minimal basic pair and set L = −2KX −E. If KX +L

is ample, then it is very ample. If KX + L is not ample but big, then (X,E) is of type

[2; 1, 2]. If KX +L is not big, then (X,E) is of type [n; 2, e2] with 0 ≤ e2 ≤ min{n+1, 4}.

Proof. An ample divisor on X is always very ample for X = P2 or X = Fn. If X = P2,

then KX +L is ample. Thus we have only to determine when KX +L is ample for X = Fn.

If we write KX + L ∼ d1σ + d2ℓ, then d1 = 2 − e1, d2 = n + 2 − e2. Here, KX + L is

ample if and only if d2 > nd1 and d1 > 0. Thus KX + L is not big if e1 = 2. If e1 = 1

and KX + L is not ample, then (X,E) is of type [2; 1, 2]. �

3.4. Anti log-canonical rings. For a graded k-algebra R =
⊕

m≥0Rm, the m-th piece

Rm denotes the module of homogeneous elements of degree m. The n-th truncation R(n)

for n > 0 is defined by R(n) =
⊕

m≥0Rnm, i.e., (R(n))m = Rnm.

For a normal complete variety Z and a Q-divisor D, we define a graded k-algebra by

R(Z,D) =
⊕

m≥0
R(Z,D)m =

⊕
m≥0

H0(Z, xmDy)

(cf. [10]), where x·y stands for the round-down. Here, R(Z,D)(n) ≃ R(Z, nD) for n > 0.

Let (S,B) be a del Pezzo pair of index at most two. We consider the anti log-canonical

ring R[S,B] := R(S,−KS−B) and its second truncation R[S,B](2) = R(S,−2(KS +B)).

The latter is isomorphic to R(M,LM). We set E◦
M =

x
(1/2)EMy

. Then EM − 2E◦
M is a

reduced divisor or zero. Note that E◦
M = 0 if (S,B) is log-terminal.

Lemma 3.26. There is an isomorphism

R[S,B]2k−1 = H0
(
S,

x
−(2k − 1)(KS +B)

y

)
≃ H0(M,KM + E◦

M + kLM)

for any positive integer k.
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Table 1. The types of minimal basic pairs (X,E)

Type g LE (KX + L)2 Type g LE (KX + L)2

[1] 6 5 4 [3; 1, 0] 9 1 7

[2] 3 8 1 [3; 1, 1] 7 3 5

[0; 1, 0] 6 4 4 [3; 2, 0] 6 8 0

[0; 1, 1] 4 6 2 [3; 2, 1] 5 8 0

[0; 2, 0] 3 8 0 [3; 2, 2] 4 8 0

[0; 2, 1] 2 8 0 [3; 2, 3] 3 8 0

[1; 1, 0] 7 3 5 [3; 2, 4] 2 8 0

[1; 1, 1] 5 5 3 [4; 1, 0] 10 0 8

[1; 2, 0] 4 8 0 [4; 2, 0] 7 8 0

[1; 2, 1] 3 8 0 [4; 2, 1] 6 8 0

[1; 2, 2] 2 8 0 [4; 2, 2] 5 8 0

[2; 1, 0] 8 2 6 [4; 2, 3] 4 8 0

[2; 1, 1] 6 4 4 [4; 2, 4] 3 8 0

[2; 1, 2] 4 6 2 [n ≥ 5; 2, 0] n + 3 8 0

[2; 2, 0] 5 8 0 [n ≥ 5; 2, 1] n + 2 8 0

[2; 2, 1] 4 8 0 [n ≥ 5; 2, 2] n + 1 8 0

[2; 2, 2] 3 8 0 [n ≥ 5; 2, 3] n 8 0

[2; 2, 3] 2 8 0 [n ≥ 5; 2, 4] n - 1 8 0

Proof. Let D be a Q-divisor on M which is relatively numerically trivial with respect to

the minimal desingularization α : M → S. Then α∗OM(xDy) is a reflexive sheaf. This

is shown as follows: We may replace S with an open subset freely since the property is

local. If it is not reflexive, then α∗OM(xDy) ( α∗OM(xDy + E ′) for an α-exceptional

effective divisor E ′. A section of α∗OM(xDy + E ′) defines an effective Q-divisor D′ on

M such that 〈D′〉 = 〈D〉 and D′ − (D + E ′) = xD′
y− (xDy + E ′) is linearly equivalent

to 0. Then D′ ≥ E ′, since DE ′
i = E ′E ′

i for any irreducible component E ′
i of E ′. This

argument says essentially that the negative part of the relative Zariski-decomposition of

D + E ′ is E ′. Therefore, the section defining D′ comes from a section of α∗OM(xDy).

Thus, α∗OM(xDy) is reflexive.

We can apply the reflexive property to the Q-divisor KM + (1/2)EM + kLM , since

KM + (1/2)EM + kLM = (k − (1/2))LM is α-numerically trivial. Hence,

α∗OM

(
x
KM + (1/2)EM + kLMy

)
≃ OS

(
x
−(2k − 1)(KS +B)

y

)
,

since α∗LM ∼ −2(KS +B) and (1/2)α∗EM = B. �
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Therefore, R[S,B] is isomorphic to the graded ring
⊕

m=2k, k≥0
H0(M,kLM) ⊕

⊕
m=2k−1, k≥1

H0(M,KM + E◦
M + kLM),

where R[S,B]2k−1 ⊗R[S,B]2l−1 → R[S,B]2(k+l−1) is induced from

H0(M, 2KM + 2E◦
M + (k + l)LM)

= H0(M,−EM + 2E◦
M + (k + l − 1)LM) ⊂ H0(M, (k + l − 1)LM).

Suppose that KM + LM is nef. For a positive integer k with R[S,B]2k−1 6= 0, equiva-

lently, |KM +E◦
M + kL| 6= 0, let us consider the set Sk of effective divisors N ≤ E◦

M such

that KM + E◦
M + kL−N is nef. Then E◦

M ∈ Sk. We define

N (k) :=
∑

Γ
min{multΓ(N) | N ∈ Sk}Γ.

Then N (k) ∈ Sk. In fact, for an irreducible curve γ on M , there is an effective divisor

N ∈ Sk with multγ(N) = multγ(N
(k)) and (N −N (k))γ ≥ 0; hence

(KM + E◦
M + kL−N (k))γ = (KM + E◦

M + kL−N)γ + (N −N (k))γ ≥ 0.

We define E
(k)
M := E◦

M −N (k) if R[S,B]2k−1 6= 0; and E
(k)
M := 0 if R[S,B]2k−1 = 0. Then

E
(k)
M ≤ E

(k+1)
M and KM +E

(k)
M + kLM is nef for any k > 0. We also define E

(∞)
M to be E

(k)
M

for k ≫ 0. Then KM + E
(∞)
M is α-nef with an isomorphism

α∗OM(KM + E
(∞)
M ) ≃ α∗OM(KM + E◦

M) ≃ OS

(
KS +

x
(1/2)B

y

)
.

Lemma 3.27. If KM + LM is nef, then there is an isomorphism

R[S,B]2k−1 = H0
(
S,

x
−(2k − 1)(KS +B)

y

)
≃ H0(M,KM + E

(k)
M + kLM)

for any positive integer k > 0.

Proof. Assume the contrary. Then R[S,B]2k−1 6= 0 and E◦
M 6= E

(k)
M by Lemma 3.26. Let

D′ ≤ E◦
M − E(k)

M be any non-zero effective divisor. Then (KM + E
(k)
M +D′ + kLM)γ < 0

for an irreducible curve γ. Here, D′ ≥ γ and

H0(M,KM + E
(k)
M + (D′ − γ) + kLM) ≃ H0(M,KM + E

(k)
M +D′ + kLM).

By induction on degD′, we have a contradiction. �

Lemma 3.28 (cf. [11, Lemma 1.8]). Let Z be a scheme and D an effective Cartier divisor.

For two invertible sheaves L andM on Z, the multiplication map H0(Z,L)⊗H0(Z,M)→
H0(Z,L ⊗M) is surjective provided that the following three conditions are satisfied :

(S1) H1(Z,L(−D)) = 0;

(S2) H0(D,L|D)⊗ H0(Z,M)→ H0(D,L ⊗M|D) is surjective;

(S3) H0(Z,L(−D))⊗ H0(Z,M)→ H0(Z,L ⊗M(−D)) is surjective.
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Proof. By the three conditions, we have a commutative diagram

H0(L(−D))⊗ H0(M) −−−→ H0(L)⊗ H0(M) −−−→ H0(L|D)⊗ H0(M) −−−→ 0y
y

y

H0(L ⊗M(−D)) −−−→ H0(L ⊗M) −−−→ H0((L ⊗M)|D)

of exact sequences in which the left and right vertical arrows are surjective. Thus the

middle vertical arrow is also surjective. �

Lemma 3.29. Let Z be a one-dimensional projective scheme with H1(Z,OZ) = 0, L a

nef invertible sheaf, and let F be a coherent sheaf on Z generated by global sections. Then

the multiplication map H0(Z,L)⊗ H0(Z,F)→ H0(Z,L ⊗ F) is surjective.

Proof. By the proof of Lemma 2.8, there is an effective Cartier divisor D of Z such that

L ≃ OZ(D) and F → F ⊗OZ(D) is injective outside a closed subset of dimension ≤ 0.

Let F ′ be the image of F → F ⊗OZ(D). Then H0(Z,F) → H0(Z,F ′) is surjective. As

in the proof of Lemma 3.28, we have a commutative diagram

H0(OZ)⊗ H0(F) −−−→ H0(OZ(D))⊗ H0(F) −−−→ H0(OZ(D)|D)⊗ H0(F) −−−→ 0y
y

y

H0(F ′) −−−→ H0(OZ(D)⊗F) −−−→ H0(OZ(D)⊗F ⊗OD)

of exact sequences, where the left vertical arrow is surjective, and the right vertical arrow

is surjective, since dimD = 0 and F is generated by global sections. Thus the middle

one is also surjective. �

Lemma 3.30. For a basic pair (M,EM), the following properties hold :

(1) H1(M,mLM + j(KM + LM)) = 0 for any m, j ≥ 0.

(2) H1(M,KM + mLM − jEM) = 0 and H1(M,KM + E
(m)
M + mLM) = 0 for any

m > j ≥ 0.

(3) If KM + LM is big, then H1(M, j(KM + LM)− EM) = 0 for j ≥ 0.

(4) H0(M,KM + LM)⊗m → H0(M,m(KM + LM)) is surjective for m ≥ 1.

(5) If KM + LM is not big, then

H0(M, j(KM + LM) + EM)⊗ H0(M,KM + LM)→ H0(M, (j + 1)(KM + LM) + EM)

is surjective for j ≥ 3.

(6) If KM + LM is not big with (KM + LM)LM > 2, then

H0(M, j(KM + LM))⊗ H0(EM ,OEM
)→ H0(EM , j(KM + LM)|EM

),(3–8)

H0(M, j(KM + LM))⊗ H0(EM , LM |EM
)→ H0(EM , (jKM + (j + 1)LM)|EM

)(3–9)

are surjective for j ≥ 0.
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(7) If KM + LM is not big with (KM + LM)LM = 2, then

H0(M, j(KM + LM))⊗ H0(EM , (KM + LM)|EM
)(3–10)

→ H0(EM , (j + 1)(KM + LM)|EM
),

H0(M, j(KM + LM))⊗ H0(EM , (KM + 2LM)|EM
)(3–11)

→ H0(EM , ((j + 1)KM + (j + 2)LM)|EM
)

are surjective for j ≥ 0.

Proof. Let φ : M → X be a birational map such that (X,E) is a minimal basic triplet

for E = φ∗(EM) and that KM + LM ∼ φ∗(KX + L). Since X ≃ P1 or Fn, we have a

non-singular member C ∈ |KM + LM |. If KM + LM is big, then C ≃ P1. If KM + LM is

not big, then C is a union of copies of P1, which are fibers of π ◦ φ : M → X → P1.

(1): The vanishing follows from

0→ H1(M,mLM + (i− 1)C)→ H1(M,mLM + iC)→ H1(C, (mLM + iC)|C) = 0

for 1 ≤ i ≤ j and the vanishing H1(M,mLM) = 0 by Theorem 3.18.

(2): The first vanishing follows from (1), since

KM +mLM − jEM = (m− j − 1)LM + (2j + 1)(KM + LM).

For the second, we may assume E
(m)
M 6= 0. Then H1(E

(m)
M ,O

E
(m)
M

) = 0 by E
(m)
M ≤ EM ,

and KM + E
(m)
M +mLM is nef. Therefore,

H1(E
(m)
M , (KM + E

(m)
M +mLM)|

E
(m)
M

) = 0

by Lemma 2.8. Combing with the first vanishing for j = 0, we have the second vanishing.

(3): We have

H1(M, j(KM + LM)− EM) ≃ H1(M, (j + 1)(KM + LM) +KM)

≃ H1(X, (j + 1)(KX + L) +KX).

Since KX + L is nef and big, this cohomology group vanishes for j ≥ 0 if char k = 0.

Since X ≃ P2 or Fn, X is a toric variety and thus this cohomology group is described by

combinatorial data which do not depend on char k. Thus we have the vanishing.

(4): The homomorphism is isomorphic to

H0(X,KX + L)⊗m → H0(X,m(KX + L))

If X ≃ P2, then this is surjective. If X ≃ Fn, then KX + L ∼ d1σ + d2ℓ for d1 ∈ {0, 1}
and d2 ≥ nd1. If d1 = 0, then the surjectivity follows from that of

H0(P1,O(1))⊗m → H0(P1,O(m)).
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If d1 = 1, then it also follows from the surjectivity of

Symm H0(P1,O(d2)⊕O(d2 − n))→ H0(P1, Symm(O(d2)⊕O(d2 − n))).

(5): We have KX + L ∼ d2ℓ for an integer d2 > 0. Since H1(M,LM − EM + EM) = 0,

we have

H1(P1,O(2d2)⊗ π∗φ∗OM(EM)) = 0.

Hence, π∗φ∗OM(EM) ≃ O(a1)⊕O(a2)⊕O(a3) for integers ai ≥ −2d2−1. If jd2 +ai ≥ 0

for any i, (this is satisfied for j ≥ 3), then the multiplication map in question is surjective

since so is

H0(P1,O(jd2 + ai))⊗ H0(P1,O(d2))→ H0(P1,O((j + 1)d2 + ai)).

(6): As in (5), we have KM + LM ∼ d2φ
∗ℓ. Then d2 > 1 by (KM + LM)LM > 2. For

the commutative diagram

H0(j(KM + LM))⊗ H0(OEM
) −−−→ H0(j(KM + LM))⊗ H1(−EM)y

y

H0(j(KM + LM)|EM
) −−−→ H1(j(KM + LM)− EM),

the horizontal arrows are surjective with the isomorphic kernels. The surjectivity of (3–8)

follows from that of the right vertical arrow, which is just the H1 of the surjection

H0(M, j(KM + LM))⊗k OM(−EM)→ OM(j(KM + LM)− EM).

Since we have an exact sequence

(3–12) 0→ O(−1)⊕m → H0(P1,O(m))⊗OP1 → O(m)→ 0

for m ≥ 1, the expected surjectivity follows from

H2(M,−φ∗ℓ− EM) ≃ H0(M,KM + EM + φ∗ℓ)∨ ≃ H0(M, (1− d2)φ
∗ℓ)∨ = 0.

For the homomorphism (3–9), it is enough to prove that the composite

H0(M, j(KM + LM))⊗ H0(M,LM)⊗ H0(EM ,OEM
)

→ H0(M, j(KM + LM))⊗ H0(EM , LM |EM
)→ H0(EM , (jKM + (j + 1)LM)|EM

)

is surjective. This is also written as the composite

H0(M, j(KM + LM))⊗ H0(M,LM)⊗ H0(EM ,OEM
)

→ H0(EM , j(KM +LM)|EM
)⊗H0(M,LM)→ H0(EM , j(KM +LM)|EM

)⊗H0(EM , LM |EM
)

→ H0(EM , (jKM + (j + 1)LM)|EM
).

This is surjective by the surjectivity of (3–8), H1(LM − EM) = 0, and by Lemma 3.29.

(7): We have KM + LM ∼ φ∗ℓ by assumption. For the commutative diagram
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H0(j(KM + LM))

⊗ H0((KM + LM)|EM
)
−−−→ H0(j(KM + LM))

⊗ H1(KM + LM − EM)y
y

H0((j + 1)(KM + LM)|EM
) −−−→ H1((j + 1)(KM + LM)− EM),

the horizontal arrows are surjective, and a surjection is induced between the kernels by

(4). Hence, the surjectivity of (3–10) follows from that of the right vertical arrow, which

is just the H1 of the surjection

H0(M, j(KM + LM))⊗k OM(KM + LM − EM)→ OM((j + 1)(KM + LM)− EM).

The kernel of the sheaf homomorphism is isomorphic to the direct sum of some copies of

OM(−φ∗ℓ)⊗OM(KM +LM −EM) ≃ OM(−EM) by the exact sequence (3–12) for m = j.

Since

H2(M,−EM) ≃ H0(M,KM + EM)∨ ≃ H0(M,−φ∗ℓ)∨ = 0,

the expected surjectivity follows. For the homomorphism (3–11), it is enough to show

the composite

H0(M, j(KM + LM))⊗ H0(M,LM)⊗ H0(EM , (KM + LM)|EM
)

→ H0(M, j(KM + LM))⊗ H0(EM , (KM + 2LM)|EM
)

→ H0(EM , ((j + 1)KM + (j + 2)LM)|EM
)

is surjective. This is written also as the composite

H0(M, j(KM + LM))⊗ H0(M,LM)⊗ H0(EM , (KM + LM)|EM
)

→ H0(EM , (j + 1)(KM + LM)|EM
)⊗ H0(M,LM)

→ H0(EM , ((j + 1)KM + (j + 2)LM)|EM
).

This is surjective by the surjectivity of (3–10), H1(LM−EM) = 0, and by Lemma 3.29. �

Proposition 3.31. Let (M,EM) be a basic pair. Then the multiplication maps

µm : H0(M,mLM)⊗ H0(M,LM)→ H0(M, (m+ 1)LM),

µ′
m : H0(M,KM +mLM)⊗ H0(M,LM)→ H0(M,KM + (m+ 1)LM)

µ′′
m : H0(M,KM + E

(m)
M +mLM)⊗ H0(M,LM)→ H0(M,KM + E

(m)
M + (m+ 1)LM)

are surjective for m ≥ 2. If (KM + LM)LM > 2, then these are surjective for m ≥ 1. If

(KM + LM)LM = 2, then the following homomorphism is also surjective:

µ′′′ :
(
H0(M,KM + LM)⊗ H0(KM + 2LM)

)
⊕ H0(M,LM)⊗2 → H0(M, 2LM).
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Proof. We have the following three cases of (M,EM):

(i) KM + LM is big;

(ii) KM + LM is not big and (KM + LM)LM > 2;

(iii) (KM + LM)LM = 2.

Note that (KM +LM)LM > 2 if KM +LM is big (cf. Table 1). In the proof below, Step 1

gives a reduction for the proof related to µm and µ′
m. We shall show the surjectivity of

µm and µ′
m in the cases (i) and (ii) in Step 2. The same thing in the case (iii) is shown

in Step 3. The surjectivity of µ′′
m is shown in Step 4, and that of µ′′′ in Step 5.

Step 1: Let us consider the following multiplication maps:

µm,j : H0(M,mLM − jEM)⊗ H0(M,LM)→ H0(M, (m+ 1)LM − jEM),

µ′
m,j : H0(M,KM +mLM − jEM)⊗ H0(M,LM)→ H0(M,KM + (m+ 1)LM − jEM)

for 0 ≤ j ≤ m. We have H1(M,mLM − jEM) = 0 for m ≥ j ≥ 0 and H1(M,KM +

mLM − jEM) = 0 for m > j ≥ 0 by Lemma 3.30, (1), (2). We infer that the natural

homomorphisms

H0(EM , (mLM − jEM)|EM
)⊗ H0(M,LM)→ H0(EM , ((m+ 1)LM − jEM)|EM

),

H0(EM , (KM +mLM − jEM)|EM
)⊗ H0(M,LM)

→ H0(EM , (KM + (m+ 1)LM − jEM)|EM
)

are both surjective by Lemma 3.29 and by H1(M,LM −EM) = 0. Applying Lemma 3.28

to the case Z = M , D = EM , L = O(mLM − jEM), M = OM(LM), for 0 ≤ j ≤ m, we

infer that the surjectivity of µm is reduced to that of µm,j for j ≤ m. Similarly, applying

Lemma 3.28 to the case Z = M , D = EM , L = O(KM +mLM − jEM),M = OM(LM),

for 0 ≤ j < m, we infer that the surjectivity of µ′
m is reduced to that of µ′

m,j for j < m.

Step 2: We consider the cases (i) and (ii). We shall check the surjectivity of µm,m

for m ≥ 1 by applying Lemma 3.28 to the case Z = M , D = EM , L = OM(LM),

M = OM(m(LM −EM)). Here, the condition (S1) is satisfied by H1(LM −EM) = 0. The

homomorphism of (S2) is

H0(M,m(LM − EM))⊗ H0(EM , L|EM
)→ H0(EM , ((m+ 1)LM −mEM)|EM

),

which is surjective by Lemma 3.30, (3), and Lemma 3.29 for the case (i), and by the

surjectivity of (3–9) for the case (ii). The homomorphism of (S3) is

H0(M,m(LM − EM))⊗ H0(M,LM − EM)→ H0(M, (m+ 1)(LM − EM)),

which is also surjective by Lemma 3.30, (4). Thus µm,m and µm are surjective.

Still in the cases (i) and (ii), we shall check the surjectivity of µ′
m,m−1 for m ≥ 1 by

applying Lemma 3.28 to the case Z = M , D = EM , L = OM(LM), M = OM(KM +
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mLM − (m− 1)EM)). Here, (S1) is satisfied by H1(LM −EM) = 0. The homomorphism

of (S2) is written as

H0(KM +mLM−(m−1)EM))⊗H0(EM , L|EM
)→ H0((KM +(m+1)LM−(m−1)EM)|EM

)

and it is surjective. In fact, in the case (i), it follows from the vanishing

H1(M,KM +m(LM − EM)) ≃ H1(X, (2m− 1)(KM + LM)− EM) = 0

shown in Lemma 3.30, (3), and from Lemma 3.29; in the case (ii), it is just the homo-

morphism (3–9) for j = 2m− 1. The homomorphism (S3) is

H0(KM +mLM − (m− 1)EM))⊗ H0(LM − EM)→ H0(KM + (m+ 1)LM −mEM),

which is surjective by Lemma 3.30, (4). Thus, µ′
m,m−1 and µ′

m are surjective. Hence, we

are done for µm and µ′
m in the cases (i) and (ii).

Step 3: We consider the case (iii). We shall check the surjectivity of µm,m−1 for

m ≥ 2 by applying Lemma 3.28 to the case Z = M , D = EM , L = OM(LM), M =

OM(mLM−(m−1)EM). Here, (S1) is satisfied by H1(LM−EM) = 0. The homomorphism

of (S2) is

H0(mLM − (m− 1)EM))⊗ H0(EM , L|EM
)→ H0(((m+ 1)LM − (m− 1)EM)|EM

),

which is surjective by Theorem 3.18 and Lemma 3.29. The homomorphism of (S3) is

H0(mLM − (m− 1)EM))⊗ H0(LM − EM)→ H0((m+ 1)LM −mEM),

which is surjective for 2m ≥ 3 by Lemma 3.30, (5). Thus, µm,m−1 and µm are surjective

for m ≥ 2.

We shall check the surjectivity of µ′
m,m−2 for m ≥ 2 by applying Lemma 3.28 to the

case Z = M , D = EM , L = OM(LM), M = OM(KM +mLM − (m− 2)EM). Here, (S1)

is satisfied by H1(LM − EM) = 0. The homomorphism of (S2) is

H0(KM +mLM − (m− 2)EM))⊗H0(EM , L|EM
)→ H0 (((m+ 1)LM − (m− 2)EM)|EM

) ,

which is surjective by Lemma 3.30, (1) and Lemma 3.29. The homomorphism of (S3) is

H0(KM +mLM − (m− 2)EM))⊗H0(LM −EM)→ H0(KM + (m+ 1)LM − (m− 1)EM),

which is surjective by (4), (5) of Lemma 3.30, since KM +mLM − (m− 2)EM = (2m−
1)(KM + LM) + EM . Hence, µ′

m,m−2 and µ′
m are surjective for m ≥ 2. Therefore, we are

done for µm and µ′
m.

Step 4: We shall show the surjectivity of µ′′
m for m ≥ 1 in the cases (i), (ii), and

for m ≥ 2 in the case (iii). We apply Lemma 3.28 to the case Z = M , D = E
(m)
M ,

L = OM(KM +E
(m)
M +mLM),M = OM(LM). Here, (S1) is satisfied by Lemma 3.30, (1).
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The homomorphism of (S3) is nothing but the surjection µ′
m,m−1. By H1(LM −EM) = 0,

(S2) is derived from the surjectivity of

H0(E
(m)
M , (KM + E

(m)
M +mLM)|

E
(m)
M

)⊗ H0(EM , LM |EM
)

→ H0(E
(m)
M , (KM + E

(m)
M + (m+ 1)LM)|

E
(m)
M

)

Here, F = OM(KM + E
(m)
M + mLM)|

E
(m)
M

is generated by global sections, since (KM +

E
(m)
M + mLM)|

E
(m)
M

is nef and H1(O
E

(m)
M

) = 0 (cf. Lemma 2.8). Since LM |EM
is nef, the

homomorphism above is surjective by Lemma 3.29. Therefore, µ′′
m is surjective.

Step 5: Since the composite H0(M,LM)⊗2 → H0(M, 2LM) → H0(EM , L|EM
) is surjec-

tive, it is enough to show the surjectivity of

H0(M,KM + LM)⊗ H0(M,KM + 2LM)→ H0(M, 2KM + 3LM) ≃ H0(M, 2LM − EM).

By Lemma 3.28 applied to the case Z = M , D = EM , L = OM(KM + 2LM), M =

OM(KM + LM) and by H1(KM + 2LM − EM) = 0, this is also reduced to showing the

surjectivity of

H0(KM + LM)⊗ H0(KM + 2LM − EM)→ H0(2KM + 3LM − EM) and

H0(M,KM + LM)⊗ H0(EM , (KM + 2LM)|EM
)→ H0(EM , (2KM + 3LM)|EM

).

The first one is surjective by Lemma 3.30, (4), and the second one is just the surjection

(3–11) for j = 1. Thus we are done. �

Theorem 3.32. Let (S,B) be a del Pezzo pair of index at most two obtained from a basic

pair (M,EM). Let m⋆ be the minimum positive integer m such that KM + E
(∞)
M +mLM

is nef.

(1) If xBy = 0, then m⋆ = 1. If xBy is reduced, then m⋆ ≤ 2.

(2) If g(S,B) > 2, then R[S,B](2) is simply generated. In particular, −2(KS + B) is

very ample and |LM | contains a non-singular member.

(3) Suppose that g(S,B) > 2. Then R[S,B]2k−1R[S,B]2 = R[S,B]2k+1 for k ≥ m⋆.

In particular, R[S,B] is generated by homogeneous elements of degree at most

max{2, 2m⋆ − 1}.
(4) If g(S,B) = 2, then R[S,B](2) is generated by homogeneous elements of degree at

most 2. If B = 0 in addition, then −2(KS +B) is not very ample and R[S,B](2)

is not simply generated.

(5) Suppose that g(S,B) = 2. Then R[S,B]4 = (R[S,B]2)
2 + R[S,B]1R[S,B]3 and

R[S,B]2k−1R[S,B]2 = R[S,B]2k+1 for k ≥ max{2,m⋆}. In particular, R[S,B] is

generated by homogeneous elements of degree at most max{2, 2m⋆ − 1}.
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Proof. (1): Suppose that xBy = 0. Then E
(∞)
M is α-exceptional and hence (KM +E

(∞)
M +

LM)γ ≥ 0 for any irreducible component γ of E
(∞)
M . Thus KM + E

(∞)
M + LM is nef, and

m⋆ = 1. Suppose next that xBy is reduced. If γ is an irreducible component of E
(∞)
M

with LMγ > 0, then multγ(E
(∞)
M ) = 1 and

(KM + E
(∞)
M + 2LM)γ ≥ −2 + 2LMγ ≥ 0.

Thus KM + E
(∞)
M + 2LM is nef, and m⋆ ≤ 2.

(2) follows from the surjectivity of µm for m ≥ 1 shown in Proposition 3.31. Here, the

existence of non-singular member of |LM | follows from the Bertini Theorem applied to

the very ample divisor −2(KS +B) of a variety S with only isolated singularities.

(3): By the surjectivity of µ′′
m for m ≥ 1 shown in Proposition 3.31, we infer that

R[S,B]2k−1R[S,B]2 = R[S,B]2k+1 if and only if E
(k)
M = E

(k+1)
M . Thus the assertion holds.

(4): The first assertion also follows from Proposition 3.31. If B = 0, then L2
M = 4 and

dim H0(M,LM) = χ(M,LM) = 4. If −2(KS + B) is very ample, then S is realized as a

quartic surface in P3, contradicting that S has a non-Gorenstein singular point.

(5) follows from the surjectivity of µ′′′ and µ′′
m shown in Proposition 3.31 and by the

same argument as in the proof of (3) above. �

Example 3.33. There is an example (M,EM) of basic pairs such that xBy is reduced

and m⋆ = 2. We use results in Section 4 in order to describe the example: Let (X,E,∆)

be a fundamental triplet of type [n; 2, 3]2 for n ≥ 2 in which ∆ = 0 and E = 2σ + F

for the union F of three fibers of π : X → P1. Then M = X = S, Lσ = 1, and

E◦
M = E

(∞)
M = xBy = σ. Thus KM + E

(∞)
M + kLM is nef if and only if k ≥ 2. Hence,

m⋆ = 2.

By using the classification of fundamental triplets in Section 4.2 below, we have:

Proposition 3.34. m⋆ ≤ 2 for any basic pair (M,EM).

Proof. A basic pair (M,EM) is obtained from a fundamental triplet (X,E,∆) by the

elimination of ∆. We may assume that xBy is not reduced. Let Γ ⊂ M be the proper

transform of an irreducible component of xBy with multiplicity > 1. We set mΓ =

multΓ(EM). Then mΓ ≥ 4 and

multΓ(xBy) = multΓ(E◦
M) = multΓ(E

(∞)
M ) =

x
(1/2)mΓy

> 1.

Let kΓ be the minimum positive integer k with (KM + E
(∞)
M + kLM)Γ ≥ 0. It is enough

to show that kΓ ≤ 2 for any such Γ.

Case 1. Γ is not φ-exceptional: Then φ(Γ) an irreducible component of E with mul-

tiplicity mΓ ≥ 4. By Theorem 4.6, the type of (X,E,∆) is [n; 2, 4]2 for n ≥ 3, mΓ = 4,
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E = 2σ + 4φ(Γ), φ(Γ) is a fiber of X = Fn → P1, and 2 = Lφ(Γ) > deg(∆∩ φ(Γ)). Thus

−1 ≤ Γ2 ≤ 0. If Γ2 = 0, then LMΓ = 2 and

(KM + E
(∞)
M + LM)Γ ≥ (KM + 2Γ + LM)Γ = 0.

Hence, kΓ ≤ 1. Suppose that Γ2 = −1. Then EM = 2σM + 3Γ1 + 4Γ for the proper

transform σM ⊂M of σ and a φ-exceptional curve Γ1 by Lemma 2.17. Here, LMσM = 0,

Γ2
1 = −1, and LMΓ = LMΓ1 = 1. Thus E◦

M = E
(∞)
M = σM + Γ1 + 2Γ. In particular,

(KM + E
(∞)
M + LM)Γ = 0, and hence kΓ = 1.

Case 2. Γ is φ-exceptional: Let E0 ⊂ E be the irreducible component containing the

point P = φ(Γ). Note that E0 is unique and m0 := multE0(E) ≥ 2 and that m0 ≤ 4 by

Theorem 4.6. Let E0,M ⊂ M be the proper transform of E0. Since (KM + LM)Γ = 0,

Γ is a (−1)-curve and LMΓ = 1. Since (KM + E
(∞)
M + kLM)Γ = (k − 1) + E

(∞)
M Γ, it is

enough to show E
(∞)
M Γ ≥ −1.

We set kP = multP (∆) and lP = multP (∆ ∩ E0). Over an open neighborhood of

φ−1(P ), φ−1(E0) is a the union of E0,M and a straight chain Γ1 + Γ2 + · · · + ΓkP
of

non-singular rational curves where the dual graph of φ−1(E0) is the same as that of

φ−1(E0) in Lemma 2.17. Here, LMΓi = 0 except for i = kP . Thus Γ = ΓkP
. Therefore,

mΓ = multΓ(EM) = lPm0 − kP by Lemma 2.17.

Subcase 2A. m0 = 2: Then lP ≥ 4. In particular, deg(∆ ∩E0) ≥ 4. Thus, (X,E,∆) is

of type [2]2 and Supp(∆) = {P} with lP = 4, by Theorem 4.6. Thus kP = 4 and

EM = 2E0,M + Γ1 + 2Γ2 + 3Γ3 + 4Γ

by Lemma 2.17. Here, LME0,M = LMΓi = 0 for 1 ≤ i ≤ 3. It implies that E◦
M =

E0,M + Γ2 + Γ3 + 2Γ and E
(∞)
M = E0,M + Γ3 + 2Γ. Therefore, E

(∞)
M Γ = 0.

Subcase 2B. m0 = 3: Then (X,E,∆) is of type [n; 2, e]2 with e ∈ {3, 4} and n ≥ 2, E0

is a fiber of π : X → P1, and E = 2σ + 3E0 + F for an effective divisor F ∼ (e − 3)E0

by Theorem 4.6. Since mΓ ≥ 4 and deg(∆ ∩ E0) ≤ 2, we have kP = lP = 2 and mΓ = 4.

Thus EM = 2σM + 3E0,M + 2Γ1 + 4Γ + F ′ for the proper transform σM ⊂ M of σ

and for an effective divisor F ′ with φ∗F
′ = F . Then E◦

M = σM + E0,M + Γ1 + 2Γ and

E
(∞)
M Γ = E◦

MΓ = 0.

Subcase 2C. m0 = 4: Then (X,E,∆) is of type [n; 2, 4]2 for n ≥ 3, and E0 is a fiber of

π : X → P1 with E ≥ 2σ + 4E0 by Theorem 4.6. Since mΓ ≥ 4 and deg(∆ ∩E0) ≤ 2, we

have lP = 2 and mΓ ≤ 6. Note that the proper transform σM ⊂ M of σ, and E0,M are

α-exceptional.

Suppose that mΓ = 6. Then kP = 2 and EM = 2σM + 4E0,M + 3Γ1 + 6Γ. Thus

E◦
M = σM + 2E0,M + Γ1 + 3Γ. Hence, E

(∞)
M = E◦

M and E
(∞)
M Γ = 0.
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Suppose that mΓ = 5. Then kP = 3 and EM = 2σM + 4E0,M + 3Γ1 + 6Γ2 + 5Γ. Thus

E◦
M = σM + 2E0,M + Γ1 + 3Γ2 + 2Γ and E

(∞)
M = σM + E0,M + Γ1 + 2Γ2 + 2Γ. Therefore,

E
(∞)
M Γ = 0.

Suppose that mΓ = 4. Then kP = 4 and EM = 2σM + 4E0,M + 3Γ1 + 6Γ2 + 5Γ3 + 4Γ.

Thus E◦
M = σM +2E0,M +Γ1+3Γ2+2Γ3+2Γ and E

(∞)
M = σM +E0,M +Γ1+2Γ2+2Γ3+2Γ.

Therefore, E
(∞)
M Γ = 0.

Thus, we are done. �

Hence, we have the following by Theorem 3.32 and Proposition 3.34:

Theorem 3.35. If (S,B) is a del Pezzo pair obtained from a basic pair (M,EM), then

R[S,B] is generated by homogeneous elements of degree at most 3, and R[S,B](2) is

generated by homogeneous elements of degree at most 2.

Next, we consider the rings R[S,B] and R[S,B](2) for a del Pezzo pair (S,B) of index

at most two which is not obtained from any basic pair.

Proposition 3.36. Let (S,B) be an irrational del Pezzo pair of index ≤ 2. If (S,B)

is log-canonical, then R[S,B] is generated by homogeneous elements of degree at most 6,

and R[S,B](2) is generated by homogeneous elements of degree at most 3. However, in

the non-log-canonical case, R[S,B] is not always finitely generated. Furthermore, there is

no bound of degrees of minimal generators of R[S,B] even if R[S,B] is finitely generated.

Proof. (S,B) is in one of the cases in Lemma 3.10. For the minimal desingularization

α : M → S, M has a P1-bundle structure π : M = PC(OC ⊕ OC(A)) → C over a non-

singular projective curve C of genus ≥ 1 for an ample divisor A.

Let σ be the negative section and let σ∞ be a section at infinity on M . We can calculate

R[S,B] in each case of Lemma 3.10 as follows:

Case (1) of Lemma 3.10: Then, C is an elliptic curve, EM = 2σ, LM ∼ 2σ∞, and

B = 0. Thus,

R[S,B] ≃ R(M,σ∞) ≃ R(C,A)[t]

for a variable t of degree one. Thus R[S,B] is generated by homogeneous elements of

degree at most 3 by the following well-known result for an elliptic curve C and an ample

divisor A:

• If degA ≥ 3, then R(C,A) is simply generated.

• If degA = 2, then R(C,A) is generated by homogeneous elements of degree ≤ 2.

• If degA = 1, then R(C,A) is generated by homogeneous elements of degree ≤ 3.
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Case (2) of Lemma 3.10: Then, C is an elliptic curve, EM = 2σ+σ∞ for a section σ∞

at infinity, LM ∼ σ∞, B = (1/2)α∗σ∞, and E◦
M = σ. Since KM + E◦

M ∼ −σ∞, we have

R[S,B] ≃ R(M, (1/2)σ∞) ≃ R(C,A)[θ, t]/(θ2 − f)

for two variables θ, t, where f ∈ R[S,B]2 = H0(M,σ∞) is a defining equation of σ∞ and

(R(C,A)[θ, t])m =
⊕

2k+i+j=m
R(C,A)kθ

itj.

Thus R[S,B] (resp. R[S,B](2)) is generated by homogeneous elements of degree at most

6 (resp. 3).

Case (3) of Lemma 3.10: Then, EM = 3σ + π∗∆ for an effective divisor ∆ on C

with deg(A − 2KC − ∆) ≥ 0 and LM ∼ σ + π∗(2A − 2KC − ∆). We can choose the

effective divisor ∆ so that OC(A − 2KC − ∆) is a non-torsion element of Pic0(C). In

this case, α is the contraction morphism of σ, but −(KS + B) is not Q-Cartier; hence

R[S,B](2) and R[S,B] are not finitely generated. On the other hand, we can take ∆ so

that OC(A−2KC−∆) is a torsion element of Pic0(C) with sufficiently large order. Thus

we can not bound the degree of homogeneous generators of R[S,B], even if R[S,B] is

finitely generated. �

Proposition 3.37. Let (S,B) be a del Pezzo pair of index at most two with g(S,B) = 0.

Then R[S,B](2) is simply generated, and R[S,B] is generated by homogeneous elements

of degree at most 5.

Proof. (S,B) is described as one of the cases (1), (2), (3) of Proposition 3.11. We first

consider the case (1). Then M ≃ S ≃ P2 and (deg(LM), deg(EM)) ∈ {(1, 5), (2, 4)}.
Thus R[S,B](2) ≃ R(M,LM) is simply generated. Since deg(KM +E◦

M + kLM) ≥ k − 3,

H0(KM + E◦
M + kLM)⊗ H0(LM)→ H0(KM + E◦

M + (k + 1)LM)

is surjective for k ≥ 3. Thus R[S,B] is generated by homogeneous elements of degree at

most 5.

Next, we consider the cases (2) and (3). Then M ≃ Fn, EM ∼ 3σ + (2n + 4 − b)ℓ,

LM ∼ σ + bℓ for a minimal section σ and a fiber ℓ of π : X → P1, and for a positive

integer b with n ≤ b ≤ 2n+ 4. Thus

R[S,B](2) ≃ R(M,LM) ≃
⊕

m≥0
H0(P1, Symm(O(b)⊕O(b− n)))

is simply generated. If we write E◦
M ∼ e◦1σ + e◦2ℓ, then

KM + E◦
M + kLM ∼ (k − 2 + e◦1)σ + (kb− (n+ 2) + e◦2)ℓ,
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and hence

H0(M,KM + E◦
M + kLM)

≃ H0
(
P1, Symk−2+e◦1

(
O(kb− 2n− 2 + e◦2)⊕O(kb− n− 2 + e◦2)

))

for k ≥ 2. Since b > n for the case 0 ≤ n ≤ 1, we have kb − 2n − 2 + e◦2 ≥ 0 for k ≥ 3.

Thus R[S,B] is generated by homogeneous elements of degree at most 5. �

Proposition 3.38. Let (S,B) be a rational del Pezzo pair of index at most two with

g(S,B) = 1. Then R[S,B](2) is generated by homogeneous elements of degree at most 3,

and R[S,B] is generated by homogeneous elements of degree at most 6.

Proof. S is a log del Pezzo surface of index one and 2B ∈ |−KS| (cf. Lemma 3.12). Hence,

R[S,B](2) ≃ R(S,−KS), which is known to be generated by homogeneous elements of

degree at most 3 (cf. [9, Chapter V, Proposition 2]). Since KM + LM ∼ 0 is nef, we

can define E
(m)
M for m ≥ 1 as above, i.e., E

(m)
M is the maximum divisor ≤ E◦

M with

E
(m)
M − (m− 1)KM being nef.

Suppose that α∗E
◦
M = xBy = 0. Then E

(m)
M = E

(∞)
M = 0 for any m ≥ 1, and

R[S,B]2k−1 ≃ H0(M,−(k − 1)KM) for k ≥ 1. Since R[S,B]1 ⊗ R[S,B]2k → R[S,B]2k+1

is just the isomorphism H0(M,OM)⊗H0(M,−kKM) ≃ H0(M,−kKM) for k ≥ 1, R[S,B]

is generated by homogeneous elements of degree at most 6.

Next, suppose α∗E
◦
M 6= 0. Then E

(∞)
M 6= 0. The dualizing sheaf ωEM

is isomorphic to

OEM
, since EM ∼ −KM . Furthermore, H1(OEM

) ≃ H2(M,KM) ≃ k. From the exact

sequence

0→ ω
E

(∞)
M

→ ωEM
≃ OEM

→ O
EM−E

(∞)
M

→ 0,

we have the vanishing

H1
(
O

E
(∞)
M

)
≃ H0

(
ω

E
(∞)
M

)∨
= 0.

An inequality K2
M = (−KM)EM ≥ 2LME

(∞)
M ≥ 2 follows from EM ≥ 2E

(∞)
M . Hence,

R[S,B](2) = R(S,−KS) is generated by homogeneous elements of degree at most 2.

Let γ be an irreducible curve with E
(∞)
M γ < 0. Then γ is a (−1)-curve, since any

(−2)-curve is α-exceptional. We set b = bγ = multγ(E
◦
M). Since −KM ∼ EM ≥ 2E

(∞)
M

and M has a (−1)-curve, we have 8 ≥ K2
M ≥ 2b.

We shall show b ≤ 2. First, we consider the case where K2
M = 8. Then M ≃ F1

and γ = σ. Since −KM − 2bγ is linearly equivalent to an effective divisor, we have

(−KM − 2bσ)ℓ = 2− 2b ≥ 0 for a fiber ℓ of π : M → P1. Hence, b ≤ 1. Next, we consider

the case where K2
M ≤ 7. Then there is a birational morphism M → Fn for 0 ≤ n ≤ 2.

Here, we may assume that γ is contained in a fiber of the compositeM → Fn → P1. Thus,

by replacing the birational morphism M → Fn if necessary, we may also assume that γ is
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the proper transform of a fiber ℓ of X = Fn → P1. Since −KX − 2bℓ ∼ 2σ+(n+2− 2b)ℓ

is linearly equivalent to an effective divisor, we have 2b ≤ n+ 2 ≤ 4. Hence, b ≤ 2.

Therefore, KM +E
(∞)
M +kLM ∼ E

(∞)
M − (k−1)KM is nef and E

(k)
M = E

(∞)
M for k ≥ 3. In

order to show R[S,B]2k−1R[S,B]2 = R[S,B]2k+1 for k ≥ 3, we shall apply Lemma 3.28 to

the case Z = M , D = E
(∞)
M , L = OM(−(k−1)KM +E

(∞)
M ),M = OM(−KM). Here, (S1)

follows from H1(M,−(k − 1)KM) = 0 for k ≥ 1. The homomorphism of (S3) is nothing

but H0(M,−(k− 1)KM)⊗H0(M,−KM)→ H0(M,−kKM), which is surjective for k ≥ 3,

since K2
S ≥ 2. The restriction map H0(M,−KM) → H0(EM ,−KM |EM

) is surjective by

H1(M,−KM − EM) = H1(−2KM) = 0. Thus (S2) is derived from the surjectivity of

H0
(
E

(∞)
M , (−(k − 1)KM + E

(∞)
M )|

E
(∞)
M

)
⊗ H0(EM ,−KM |EM

)

→ H0
(
E

(∞)
M , (−kKM + E

(∞)
M )|

E
(∞)
M

)
,

which is shown by Lemma 3.29. Therefore, R[S,B]2k−1R[S,B]2 = R[S,B]2k+1 for k ≥ 3,

and R[S,B] is generated by homogeneous elements of degree at most 6. �

Finally, we consider a rational del Pezzo pair (S,B) of index at most two of genus

g(S,B) ≥ 2 which is not obtained from any basic pair. Then S is a log del Pezzo

surface of index one and B = 0. Thus, R[S,B] = R(S,−KS). Hence, by [9, Chapter V,

Proposition 2], R[S,B](2) (resp. R[S,B]) is generated by homogeneous elements of degree

at most 2 (resp. 3), respectively.

Therefore, we have proved the following:

Theorem 3.39. Let (S,B) be a del Pezzo pair of index at most two. Suppose either that

S is rational or that (S,B) is log-canonical. Then R[S,B] is generated by homogeneous

elements of degree at most 6, and R[S,B](2) is generated by homogeneous elements of

degree at most 3.
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4. Fundamental triplets

In this section, the notion of fundamental triplet is introduced. Any basic pair is shown

to be obtained as the elimination of a fundamental triplet. The fundamental triplets are

classified by their types. The uniqueness of fundamental triplet for a given basic pair

does not hold in general but the type is uniquely determined. By the list of types, we

can classify all the non-Gorenstein singularities on S for rational del Pezzo pairs (S,B)

of index at most two.

4.1. Definition of fundamental triplet.

Definition 4.1. A triplet (X,E,∆) is called a quasi-fundamental triplet if the following

conditions (F1)–(F3) are satisfied:

(F1) (X,E) is a minimal basic pair;

(F2) ∆ is empty or a zero-dimensional subscheme of X with νP (∆) = 1 for any P ∈ ∆;

(F3) ∆ is a subscheme of E such that LEi ≥ deg(∆∩Ei) for any irreducible component

Ei of E, where L = −2KX − E.

Lemma 4.2. (1) Let (X,E,∆) be a quasi-fundamental triplet and let φ : M → X be

the elimination of ∆. Then (M,E∆
M) is a basic pair.

(2) If (M,EM) is a basic pair, then there exist a quasi-fundamental triplet (X,E,∆)

and a birational morphism φ : M → X such that φ is the elimination of ∆ and

EM = E∆
M .

Proof. (1): We set EM = E∆
M . By Lemma 2.7, (2), KM + EM ∼ φ∗(KX + E). Hence,

KM + LM ∼ φ∗(KX + L) for LM = −2KM − EM . Let G be the φ-exceptional effective

divisor determined by I∆OM = OM(−G). Then LM = φ∗L − G and φ∗OM(−G) ≃ I∆.

If Ei,M is the proper transform of an irreducible component Ei of E, then Ei,M = (Ei)
∆
M

and GEi,M = deg(∆ ∩ Ei) by Lemma 2.7; thus

LMEi,M = LEi − deg(∆ ∩ Ei) ≥ 0.

Since −KM is φ-nef, LMΓ = −KMΓ ≥ 0 for any φ-exceptional irreducible component Γ

of EM . Therefore, the conditions (C1)–(C3) are all satisfied for (M,EM).

(2): If (M,EM) is minimal, then (M,EM ,∆) is the expected quasi-fundamental triplet

for ∆ = ∅. If (M,EM) is not minimal, then by successive contractions of (−1)-curves,

we have a minimal basic pair (X,E) and a birational morphism φ : M → X such that

E = φ∗EM and KM +EM ∼ φ∗(KX +E). Hence KM +LM ∼ φ∗(KX +L) for nef divisors

LM = −2KM −EM and L = −2KX −E. Thus φ is the elimination of a zero-dimensional

subscheme ∆ ⊂ E with νP (∆) = 1 for any P and EM = E∆
M by Proposition 2.9. For an
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irreducible component Ei of E and for the proper transform Ei,M in M , we have

0 ≤ LMEi,M = (φ∗L−G)Ei,M = LEi − deg(∆ ∩ Ei).

Hence, (X,E,∆) is a quasi-fundamental triplet. �

For a quasi-fundamental triplet (X,E,∆), the basic pair (M,EM) obtained as above

by the elimination of ∆ is called the elimination of (X,E,∆).

Let (M,EM) be a basic pair and set LM = −2KM − EM .

Suppose that KM + LM is big. Then the quasi-fundamental triplet (X,E,∆) whose

elimination is (M,EM) is unique up to isomorphism. In fact, if the type of (M,EM)

is not [2; 1, 2], then elimination φ : M → X of ∆ is associated to the complete linear

system |KM + LM |, since KM + LM ∼ φ∗(KX + L) for the very ample divisor KX + L

(cf. Corollary 3.25). If the type is [2; 1, 2], then |KM + LM | gives a birational morphism

into F2 ≃ P(1, 1, 2); thus the morphism φ into the minimal desingularization X of F2 is

uniquely determined.

On the other hand, if KM +LM is not big, then the quasi-fundamental triplet (X,E,∆)

whose elimination is (M,EM) is not necessarily unique as in the proof of Proposition 4.4

below. In this case, X ≃ Fn and KX +L is linearly equivalent to a multiple of fiber of π.

Thus the linear system |KM + LM | defines only the composition M → X → P1.

The notion of fundamental triplet below is introduced for establishing similar unique-

ness also for the non-big case; However, the uniqueness does not hold in general even for

the artificial notion (cf. Theorem 4.9, Example 4.12).

Definition 4.3. A quasi-fundamental triplet (X,E,∆) is called a fundamental triplet

either if KX + L is big or if KX + L is not big and the following three conditions (F4)–

(F6) are satisfied:

(F4) ∆ ∩ σ = ∅ for a minimal section σ; In particular, ∆ = ∅ if X ≃ F0.

(F5) If E ≥ σ + D for a minimal section σ and a section D 6= σ, then D2 + n ≥
deg(∆ ∩D), where X ≃ Fn.

(F6) If E does not contain a minimal section σ and if E is either reducible or non-

reduced, then ∆ = ∅.

Proposition 4.4. Any basic pair is obtained as the elimination of a fundamental triplet.

For the proof, we need the following:

Lemma 4.5. Let f : Y → T be a proper surjective morphism from a non-singular surface

Y into a non-singular curve T such that a general fiber is isomorphic to P1. Let E ⊂ Y

be a section of f . Then OY (E) is f -generated and F = f∗OY (E) is a locally free sheaf of
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rank two. In particular, there is a birational morphism µ : Y → PT (F) over T such that

E = µ∗D for a section D of PT (F)→ T .

Proof. Y is a blowup of a P1-bundle over T . Hence, f∗OY ≃ OT and R1 f∗OY = 0. Thus,

from the exact sequence 0→ OY → OY (E)→ OE(E)→ 0, we have an exact sequence

0→ OT → F = f∗OY (E)→ f∗OE(E)→ 0.

Since E is a section, F is locally free of rank two. The surjectivity of f ∗F → OY (E)

follows from the commutative diagram

0 −−−→ f ∗OT −−−→ f ∗F −−−→ f ∗f∗OE(E) −−−→ 0y
y

y

0 −−−→ OY −−−→ OY (E) −−−→ OE(E) −−−→ 0

of exact sequences. The surjection defines the birational morphism µ and the injection

OT → F defines the section D with µ∗D = E. �

We shall prove Proposition 4.4.

Proof. Let (M,EM) be a basic pair and let (X,E,∆) be a quasi-fundamental triplet

whose elimination is (M,EM). We may assume that KX + LX is not big, i.e., the type

of (X,E) is [n, 2, e2]. Applying Lemma 4.5, we want to replace (X,E,∆) with another

quasi-fundamental triplet (X ′, E ′,∆′) which satisfies some conditions on fundamental

triplet.

Step 1 : We can find a quasi-fundamental triplet (X,E,∆) satisfying (F4).

Let σM ⊂ M be the proper transform of a minimal section of σ with σ ∩ ∆ 6= ∅.
By Lemma 4.5, there is a birational morphism φ′ : M → X ′ = Fn′ over P1 with n′ =

−(σM)2 = n+deg(∆∩σ) > n such that σM is the total transform of the negative section

σ′ of X ′ → P1. Since KM +EM is linearly equivalent to a multiple of a fiber of M → P1,

KM + EM ∼ φ′∗(KX′ + E ′) for the effective divisor E ′ = φ′
∗EM . By Proposition 2.9,

we infer that φ′ is the elimination of a zero-dimensional subscheme ∆′ ⊂ E ′. We infer

also that (X ′, E ′,∆′) is a quasi-fundamental triplet whose elimination is (M,EM). Here,

σ′ ∩∆′ = ∅ since φ′ is an isomorphism around σ′. Thus (F4) is satisfied.

Step 2 : The case where E contains a minimal section.

We may assume n > 0, ∆ 6= ∅, σ ∩ ∆ = ∅ for the negative section σ. Suppose that

E ≥ σ + D for a section D 6= σ with D2 + n < deg(∆ ∩ D). Then n′ := −D2
M =

−D2 + deg(∆ ∩D) > n for the proper transform DM ⊂ M of D. By Lemma 4.5, there

is a birational morphism φ′ : M → X ′ = Fn′ over P1 such that DM is the total transform

of the negative section σ′ of X ′. By the same argument as in Step 1, (M,EM) is the

elimination of a quasi-fundamental triplet (X ′, E ′,∆′) satisfying (F4), where E ′ = φ′
∗EM .
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For the proper transform σM ⊂M of σ, D′ = φ′
∗σM is a section with E ′ ≥ σ′ +D′. Since

σ2
M = σ2 = −n, we have −n = D′2 − deg(∆′ ∩D′). Thus (X ′, E ′,∆′) satisfies also (F5).

Since E ′ contains σ′, (X ′, E ′,∆′) is a fundamental triplet.

Final step: The case where E does not contain a minimal section.

We may assume that n > 0, ∆ 6= ∅, and that (X,E,∆) satisfies the condition (F4).

Then E ≥ D1 + D2 for sections D1 6= σ, D2 6= σ. Then 2n ≤ e2 ≤ min{n + 1, 4} by

the proof of Lemma 3.24. Hence, n = 1, e2 = 2, and E = D1 +D2 for the sections D1,

D2 at infinity. We may assume D1 ∩ ∆ 6= ∅. Let D1,M ⊂ M be the proper transform

of D1. Then −n′ := D2
1,M = D2

1 − deg(∆ ∩ D1) ≤ 0. Let φ′ : M → X ′ ≃ Fn′ be the

birational morphism such that D1,M is the total transform of a minimal section σ′ of

X ′ → P1. Then (M,EM) is the elimination of a quasi-fundamental triplet (X ′, E ′,∆′).

Let D′
2 ⊂ X ′ be the proper transform of D2. Then E ′ ≥ σ′ +D′

2. By Step 1, Step 2, we

have a fundamental triplet (X ′′, E ′′,∆′′) whose elimination is (M,EM). �

4.2. Classification of fundamental triplets. Let (X,E,∆) be a fundamental triplet

and let φ : (M,EM)→ (X,E,∆) be the elimination. We set EM = E∆
M , L = −2KX −E,

and LM = −2KM − EM . Let (S,B) be the del Pezzo pair associated to (M,EM) (cf.

Proposition 3.19). Here, the birational morphism α : M → S given by the linear system

|LM | is the minimal desingularization of S, and B = (1/2)α∗EM .

Theorem 4.6. The fundamental triplets (X,E,∆) are classified by the types defined as

follows :

The case X = P2 :

[1]0: E is a line and deg ∆ ≤ LE = 5.

[2]0: E is a non-singular conic and deg ∆ ≤ LE = 8.

[2]+(b): E = ℓ1 + ℓ2 for two lines ℓ1, ℓ2, and deg(∆∩ ℓi) ≤ Lℓi = 4 for i = 1, 2. For

P = ℓ1 ∩ ℓ2,

b = max{multP (∆ ∩ ℓ1),multP (∆ ∩ ℓ2)} ∈ {0, 1, 2, 3, 4}.

[2]2: E = 2ℓ for a line ℓ and deg(∆ ∩ ℓ) ≤ Lℓ = 4.

For X = Fn, let π : X → P1 be the P1-bundle structure, σ a minimal section, σ∞ a

section at infinity, and ℓ a fiber of π (cf. Convention 3.23).

The case X = F0 :

[0; 1, 0]0: E = σ and deg ∆ ≤ LE = 4.

[0; 1, 1]0: E ∼ σ + ℓ is non-singular and deg ∆ ≤ LE = 6.



55

[0; 1, 1]+(b): E = σ + ℓ, deg(∆ ∩ σ) ≤ Lσ = 3, and deg(∆ ∩ ℓ) ≤ Lℓ = 3. For

P = σ ∩ ℓ2,

b = max{multP (∆ ∩ σ),multP (∆ ∩ ℓ)} ∈ {0, 1, 2, 3}.

[0; 2, 0]00: E = σ1 + σ2 for two distinct minimal sections σ1 and σ2, and ∆ = ∅,
where Lσ1 = Lσ2 = 4.

[0; 2, 0]2: E = 2σ and ∆ = ∅, where Lσ = 4.

[0; 2, 1]0: E ∼ 2σ + ℓ is non-singular and ∆ = ∅, where LE = 8.

[0; 2, 1]+: E = σ + D for a section D ∼ σ + ℓ, and ∆ = ∅, where Lσ = 3 and

LD = 5.

[0; 2, 1]++: E = σ1 + σ2 + ℓ for two distinct minimal sections σ1, σ2, and ∆ = ∅,
where Lσ1 = Lσ2 = 3 and Lℓ = 2.

[0; 2, 1]2: E = 2σ + ℓ and ∆ = ∅, where Lσ = 3 and Lℓ = 2.

The case X = F1 :

[1; 1, 0]0: E = σ and deg ∆ ≤ LE = 3.

[1; 1, 1]0: E ∼ σ + ℓ is non-singular and deg ∆ ≤ LE = 5.

[1; 1, 1]+(a, b): E = σ + ℓ, deg(∆ ∩ σ) ≤ Lσ = 2, and deg(∆ ∩ ℓ) ≤ Lℓ = 3. For

P = σ ∩ ℓ,

(a, b) = (multP (∆ ∩ σ),multP (∆ ∩ ℓ)) ∈ {(0, 0), (1, 1), (2, 1), (1, 2), (1, 3)}.

[1; 2, e]2: 0 ≤ e ≤ 2, E = 2σ + F for an effective divisor F ∼ eℓ, ∆ ∩ σ = ∅, and

deg(∆ ∩ ℓ) ≤ Lℓ = 2 for any fiber ℓ ≤ F , where Lσ = 4− e.
[1; 2, 1]00: E = σ + σ∞ and ∆ ⊂ σ∞ with deg ∆ ≤ 2, where Lσ = 3 and Lσ∞ = 5.

[1; 2, 2]0: E ∼ 2σ + 2ℓ is non-singular and deg ∆ ≤ LE = 8.

[1; 2, 2]×: E = σ∞ + σ′
∞ for two distinct sections σ∞, σ′

∞ at infinity, and ∆ = ∅,
where Lσ∞ = Lσ′

∞ = 4.

[1; 2, 2]2∞: E = 2σ∞ and ∆ = ∅, where Lσ∞ = 4.

[1; 2, 2]+: E = σ+D for a section D ∼ σ+2ℓ and ∆ ⊂ D \σ with deg ∆ ≤ 4, where

Lσ = 2 and LD = 6.

[1; 2, 2]++(a, b): E = σ + σ∞ + ℓ, ∆∩ σ = ∅, deg(∆∩ σ∞) ≤ 2, and deg(∆∩ ℓ) ≤ 2,

where Lσ = 2, Lσ∞ = 4, and Lℓ = 2. For P = σ∞ ∩ ℓ,

(a, b) = (multP (∆ ∩ ℓ),multP (∆ ∩ σ∞)) ∈ {(0, 0), (1, 1), (2, 1), (1, 2)}.

The case X = F2 :

[2; 1, 0]0: E = σ and deg ∆ ≤ LE = 2.



56

[2; 1, 1]+(a, b): E = σ + ℓ, deg(∆ ∩ σ) ≤ Lσ = 1, and deg(∆ ∩ ℓ) ≤ Lℓ = 3. For

P = σ ∩ ℓ,

(a, b) = (multP (∆ ∩ σ),multP (∆ ∩ ℓ)) ∈ {(0, 0), (1, 1), (1, 2), (1, 3)}.

[2; 1, 2]0: E = σ∞ and deg ∆ ≤ LE = 6.

[2; 1, 2]++: E = σ+ℓ1+ℓ2 for two distinct fibers ℓ1 and ℓ2, ∆∩σ = ∅ and deg(∆∩ℓi) ≤
Lℓi = 3 for i = 1, 2, where Lσ = 0.

[2; 1, 2]2+: E = σ + 2ℓ for a fiber ℓ, and ∆ ∩ σ = ∅ and deg(∆ ∩ ℓ) ≤ Lℓ = 3, where

Lσ = 0.

[2; 2, e]2: 0 ≤ e ≤ 3, E = 2σ + F for an effective divisor F ∼ eℓ, ∆ ∩ σ = ∅, and

deg(∆ ∩ ℓ) ≤ Lℓ = 2 for any fiber ℓ ≤ F , where Lσ = 4− e.
[2; 2, 2]00: E = σ + σ∞ and ∆ ⊂ σ∞ with deg ∆ ≤ 4, where Lσ = 2 and Lσ∞ = 6.

[2; 2, 3]+: E = σ+D for a section D ∼ σ+3ℓ and ∆ ⊂ D \σ with deg ∆ ≤ 6, where

Lσ = 1 and LD = 7.

[2; 2, 3]++(a, b): E = σ + σ∞ + ℓ, ∆ ∩ σ = ∅, deg(∆ ∩ σ∞) ≤ 4, and deg(∆ ∩ ℓ) ≤
Lℓ = 2, where Lσ = 1 and Lσ∞ = 5. For P = σ∞ ∩ ℓ,

(a, b) = (multP (∆ ∩ ℓ),multP (∆ ∩ σ∞))

∈ {(0, 0), (1, 1), (2, 1), (1, 2), (1, 3), (1, 4)}.

The case X = F3 :

[3; 1, 0]0: E = σ and deg ∆ ≤ LE = 1.

[3; 1, 1]+: E = σ + ℓ, ∆ ∩ σ = ∅ and deg(∆) ≤ Lℓ = 3, where Lσ = 0.

[3; 2, e]2: 0 ≤ e ≤ 4, E = 2σ + F for an effective divisor F ∼ eℓ, ∆ ∩ σ = ∅, and

deg(∆ ∩ ℓ) ≤ Lℓ = 2 for any fiber ℓ ≤ F , where Lσ = 4− e.
[3; 2, 3]00: E = σ + σ∞ and ∆ ⊂ σ∞ with deg(∆) ≤ 6, where Lσ = 0 and Lσ∞ = 7.

[3; 2, 4]+: E = σ+D for a section D ∼ σ+4ℓ, ∆∩σ = ∅, and deg(∆∩D) ≤ LD = 8,

where Lσ = 0.

[3; 2, 4]++(a, b): E = σ + σ∞ + ℓ, ∆ ∩ σ = ∅, deg(∆ ∩ σ∞) ≤ Lσ∞ = 6, and

deg(∆ ∩ ℓ) ≤ Lℓ = 2, where Lσ = 0. For P = σ∞ ∩ ℓ,

(a, b) = (multP (∆ ∩ ℓ),multP (∆ ∩ σ∞))

∈ {(0, 0), (1, 1), (2, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}.

The case X = F4 :

[4; 1, 0]0: E = σ and ∆ = ∅, where LE = 0.

[4; 2, e]2: 0 ≤ e ≤ 4, E = 2σ + F for an effective divisor F ∼ eℓ, ∆ ∩ σ = ∅, and

deg(∆ ∩ ℓ) ≤ Lℓ = 2 for any fiber ℓ ≤ F , where Lσ = 4− e.
[4; 2, 4]00: E = σ + σ∞, ∆ ⊂ σ∞, and deg ∆ ≤ Lσ∞ = 8, where Lσ = 0.
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The case X = Fn for n ≥ 5 :

[n; 2; e]2: 0 ≤ e ≤ 4, E = 2σ + F for an effective divisor F ∼ eℓ, ∆ ∩ σ = ∅, and

deg(∆ ∩ ℓ) ≤ Lℓ = 2 for any fiber ℓ ≤ F , where Lσ = 4− e.
Here, [e] indicates that X ≃ P2 and degE = e; [n; e1, e2] indicates that X ≃ Fn and

E ∼ e1σ + e2ℓ. The subscripts 0, 00, +, ++, 2, × have the following meaning :

0 : E is non-singular and irreducible 00 : E is non-singular with two components

+ : E has exactly one node ++ : E has exactly two nodes

2 : E is not reduced × : E has exactly one node .

The subscript × is used for distinguishing the type [1; 2, 2]× from [1; 2, 2]+.

Proof. We consider the structure of fundamental triplet (X,E,∆) from properties of

(X,E).

We first consider the case X = P2. If (X,E) is of type [1], then deg ∆ ≤ LE = 5;

thus (X,E,∆) is of type [1]0. Suppose that (X,E) is of type [2]. If E is irreducible and

reduced, then E is a non-singular conic (even if char k = 2), and deg ∆ ≤ LE = 8; this

case is of type [2]0. If E is not reduced, then E = 2ℓ for a line ℓ and deg(∆∩ ℓ) ≤ Lℓ = 4;

this case is of type [2]2. Suppose E is reducible and reduced, then E = ℓ1+ℓ2 for two lines

ℓi with deg(∆∩ ℓi) ≤ Lℓi = 4 for i = 1, 2. Since min{multP (∆∩ ℓ1),multP (∆∩ ℓ2)} ≤ 1

by Lemma 2.12, the type is [2]+(b) for 0 ≤ b ≤ 4.

Next, we consider the case X = Fn. Then one of the following subcases occurs:

(1) E = σ + F for an effective divisor F supported on fibers of π;

(2) E = σ+D+F for a section D 6= σ and an effective divisor F supported on fibers;

(3) E = 2σ + F for an effective divisor F supported on fibers;

(4) E is irreducible and reduced with E 6= σ;

(5) E 6≥ σ and E is either non-reduced or reducible.

Case (1): (X,E) is of type [n; 1, e] for e = Fσ with 0 ≤ e ≤ min{2, 4 − n}; if n = 0,

then e ≤ 1 by Convention 3.23. If e = 0, then E = σ and deg ∆ ≤ Lσ = 4− n; this case

is of type [n; 1, 0]0 for 0 ≤ n ≤ 4.

Suppose that e = 1. Then n ≤ 3 and E = σ + ℓ for a fiber ℓ with deg(∆ ∩ σ) ≤
Lσ = 3 − n, deg(∆ ∩ ℓ) ≤ Lℓ = 3. This case is one of types [0; 1, 1]+(b), [1; 1, 1]+(a, b),

[2; 1, 1]+(a, b), and [3; 1, 1]+. Note that (a, b) = (0, 0) or min{a, b} = 1 by Lemma 2.12.

Suppose that e = 2. Then n = 2, since [1; 1, 2] is not a type of (X,E) (cf. Lemma 3.24).

Note that σ ∩∆ = ∅ by Lσ = 0. Thus this case is of type [2; 1, 2]++ or [2; 1, 2]2+.

Case (2): (X,E) is of type [n; 2, e] for n ≤ e ≤ min{n + 1, 4}, where D ∼ σ +mℓ for

n ≤ m ≤ e.
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Suppose that m = n + 1. Then e = n + 1, n ≤ 3, and E = σ + D, where Dσ = 1.

Here, ∆ ⊂ D by (F4), ∆ = ∅ for n = 0 by (F4), and deg ∆ ≤ D2 + n = 2n+ 2 by (F5).

This case is of type [n; 2, n+ 1]+ for 0 ≤ n ≤ 3.

Suppose that m = e = n. Then E = σ + σ∞ for a section D = σ∞ at infinity. Here

∆ ⊂ σ∞ by (F4) and deg ∆ ≤ 2n by (F5). This case is of type [n; 2, n]00 for 0 ≤ n ≤ 4.

Suppose that m = n and e = n + 1. Then n ≤ 3 and E = σ + σ∞ + ℓ for a section

D = σ∞ at infinity and a fiber ℓ. Here, ∆ ∩ σ = ∅ by (F4), ∆ = ∅ for n = 0 by (F4),

deg(∆ ∩ σ∞) ≤ 2n by (F5), and deg(∆ ∩ ℓ) ≤ Lℓ = 2. Thus the case is one of types

[0; 2, 1]++, [1; 2, 2]++(a, b), [2; 2, 3]++(a, b), [3; 2, 4]++(a, b).

Case (3): (X,E) is of type [n; 2, e] for e = Fσ with e ≤ min{n+1, 4}. Here ∆∩σ = ∅
by (F4) and deg(∆ ∩ ℓ) ≤ Lℓ = 2 for any fiber ℓ ≤ F . This case is of type [n; 2, e]2 for

0 ≤ e ≤ min{n+ 1, 4}, n ≥ 0.

Case (4): Suppose that (X,E) is of type [n; 1, e]. Then [n; 1, e] is one of [0; 1, 1], [1; 1, 1],

and [2; 1, 2] by Lemma 3.24. Here E is non-singular. Thus the type is one of [0; 1, 1]0,

[1; 1, 1]0, and [2; 1, 2]0.

Suppose that (X,E) is of type [n, 2, e]. Then 2n ≤ e ≤ min{n + 1, 4} by the proof of

Lemma 3.24. Hence [n; 2, e] is [0; 2, 1] or [1; 2, 2], where E is non-singular. Thus the type

is [0; 2, 1]0 or [1; 2, 2]0.

Case (5): This case is treated essentially in Final step of the proof of Proposition 4.4.

By the proof of Lemma 3.24, the case is of type [1; 2, 2]× or [1; 2, 2]2∞.

Thus we are done. �

Corollary 4.7. (1) For a fundamental triplet, the associated del Pezzo pair is log-

terminal if and only if the type is one of the followings :

[1]0, [2]0, [2]+(b),

[0; 1, 0]0, [0; 1, 1]0, [0; 1, 1]+(b), [0; 2, 0]00, [0; 2, 1]0, [0; 2, 1]+, [0; 2, 1]++,

[1; 1, 0]0, [1; 1, 1]0, [1; 1, 1]+(a, b), [1; 2, 1]00,

[1; 2, 2]0, [1; 2, 2]×, [1; 2, 2]+, [1; 2, 2]++(a, b),

[2; 1, 0]0, [2; 1, 1]+(a, b), [2; 1, 2]0, [2; 1, 2]++,

[2; 2, 2]00, [2; 2, 3]+, [2; 2, 3]++(a, b),

[3; 1, 0]0, [3; 1, 1]+, [3; 2, 3]00, [3; 2, 4]+, [3; 2, 4]++(a, b),

[4; 1, 0]0, [4; 2, 4]00.
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Table 2. The fundamental triplets with LE = deg ∆

Type deg ∆ Type deg ∆ Type deg ∆

[1]0 5 [1; 1, 0]0 3 [2; 1, 2]++ 6

[2]0 8 [1; 1, 1]0 5 [3; 1, 0]0 1

[2]+(b) 8 [1; 1, 1]+(a, b) 5 [3; 1, 1]+ 3

[2]2 8 [1; 2, 2]0 8 [3; 2, 4]+ 8

[0; 1, 0]0 4 [2; 1, 0]0 2 [3; 2, 4]++(a, b) 8

[0; 1, 1]0 6 [2; 1, 1]+(a, b) 2 [4; 1, 0]0 0

[0; 1, 1]+(b) 6 [2; 1, 2]0 6 [4; 2, 4]00 8

[n; 2, 4]2 (n ≥ 3) 8

(2) For a fundamental triplet, the associated del Pezzo pair is log-canonical but not

log-terminal if and only if it has one of the following types with extra condition:

[2]2 with multP (∆ ∩ ℓ) ≤ 2 for any P ∈ ℓ,
[0; 2, 0]2, [0; 2, 1]0, [0; 2, 1]2, [1; 2, e]2 for 0 ≤ e ≤ 2, [1; 2, 2]2∞,

[2; 1, 2]2+ with multP (∆ ∩ ℓ) ≤ 2 for any P ∈ ℓ,
[n; 2, e]2 for n ≥ 2, e ≤ 2,

[n; 2, e]2 for n ≥ 2, e ≥ 3 with multℓ F ≤ 2 for any ℓ ≤ F.

(3) For a fundamental triplet (X,E,∆), the associated del Pezzo pair (S,B) has B = 0

if and only if it belongs to one of the types with extra condition on deg ∆ listed in

Table 2. Here, if the type is not [2]2 nor [n; 2, 4]2, then the fundamental triplet

is log-terminal, i.e., defining a log del Pezzo surface of index two.

Proof. For a fundamental triplet (X,E,∆) and its elimination (M,EM), the log-terminal

condition is equivalent to that EM is reduced. This also equivalent to that E is re-

duced by Lemmas 2.10 and 2.14. Thus the list of (1) is obtained from Theorem 4.6.

The log-canonical condition is equivalent to that the multiplicity of EM along any irre-

ducible component is at most two. If (X,E,∆) is not log-terminal but log-canonical,

then max{multEi
(E)} = 2 for the irreducible components Ei ⊂ E. In this case, by The-

orem 4.6, ∆ does not contain any node of Ered. By Lemma 2.17, we infer that (X,E,∆)

is log-canonical if and only if max{multEi
(E)} = 2 and multP (∆ ∩ Ei) ≤ 2 for any irre-

ducible component Ei ⊂ E with multEi
(E) = 2. Thus we have the list of (2). For (3),

we note that the three conditions: B = 0, LMEM = 0, and LE = deg ∆ are mutually

equivalent. Thus we have Table 2. �
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Theorem 4.8. A del Pezzo pair (S,B) of index one with B 6= 0 is one of the following :

(1) S = P2 and degB ∈ {1, 2}.
(2) S = Fn and B is a minimal section of Fn → P1 for n ≥ 0.

(3) S = Fn and B ∼ σ+ℓ for a minimal section σ and a fiber ℓ of Fn → P1 for n ≥ 0.

(4) S = P(1, 1, n) and B ∼ 2ℓ for a generating line ℓ for n ≥ 2.

Proof. We infer that S is rational by Lemma 3.10, Proposition 3.11, and Corollary 3.16.

Moreover, if g(S,B) = 0, then S = P2 with degB = 2 by Proposition 3.11.

Suppose that g(S,B) = 1. Then S is a log del Pezzo surface of index one and −KS ∼
2B by Lemma 3.12. For the minimal desingularization α : M → S, KM ∼ α∗KS is

divisible by two; hence M has no (−1)-curve. Thus M = Fm for m ∈ {0, 2}. If m = 0,

then (S,B) belongs to the case (3) with n = 0. If m = 2, then (S,B) belongs to the case

(4) with n = 2.

Therefore, we may assume that (S,B) is obtained from a fundamental triplet (X,E,∆),

where (1/2)EM is Cartier for the elimination (M,EM) of (X,E,∆). Then ∆ does not

contain any nodes of Ered by Theorem 4.6. Furthermore, ∆ = ∅ by Lemma 2.17. By

Theorem 4.6, we have only the following types of possible (X,E,∆ = ∅):
(a) [2]2.

(b) [n; 2, 0]2 for n ≥ 0.

(c) [n; 2, 2]2 for n ≥ 1, where E = 2σ + 2ℓ,

(d) [1; 2, 2]2∞,

(e) [n; 2, 4]2 for n ≥ 3, where E = 2σ + 2F ′ for an effective divisor F ′ ∼ 2ℓ.

According to the cases (a), (b), (c), (d), (e), the associated del Pezzo pair (S,B) belongs

to (1), (2), (3), (3), (4). Hence, we have the list of (S,B 6= ∅) of index one. �

Theorem 4.9. Let (X,E,∆) be a fundamental triplet and let (M,EM) be the elimination.

Then the type of the fundamental triplet (X,E,∆) and deg(∆) depend only on (M,EM).

Moreover, the isomorphism class of (X,E,∆) depends only on (M,EM) except for the

following two cases :

• (X,E,∆) is of type [1; 2, 2]0.

• (X,E,∆) is of type [n; 2, n+ 1]++(1, b) for 1 ≤ n ≤ 3, where

deg(∆ ∩ σ∞) = 2n and multP (∆) + deg(∆ ∩ ℓ) = 2 + b

for the irreducible decomposition E = σ + σ∞ + ℓ and for the node P = σ∞ ∩ ℓ.

The proof needs the following:

Proposition 4.10. Let f : Y → T be a proper surjective morphism from a non-singular

surface Y into a non-singular curve T such that a general fiber is isomorphic to P1. Let
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E1 and E2 be two sections of f such that E1∩E2 = ∅ and KY +E1 +E2 is f -numerically

trivial. Let φ : Y → X = PT (f∗OY (E1)) be the morphism defined in Lemma 4.5 for E1.

Then Ei,X := φ(Ei) is a section of X → P1 for i = 1, 2 with E1,X ∩E2,X = ∅ and φ is the

elimination of a zero-dimensional subscheme ∆ ⊂ E2,X . In particular, there is an action

of the algebraic group Gm = Spec k[t, t−1] on Y such that it fixes every point of E1 ∪ E2

and that it acts non-trivially on every irreducible component of any fiber of f . Moreover,

if f∗OE1(E1) ≃ f∗OE2(E2), then the following assertions hold :

(1) Let ℓ be a non-singular fiber of f and let P1, P2 be any points of ℓ \ (E1 ∪ E2)

including the case P1 = P2. Then there exists an involution ι of Y over T such

that ι(E1) = E2 and ι(P1) = P2.

(2) Let Γ1 and Γ2 be irreducible components of a reducible fiber F of f with E1Γ1 =

E2Γ2 = 1. Then, for any points P1 ∈ Γ1\(E1∪SingF ) and P2 ∈ Γ2\(E2∪SingF ),

there is an involution ι of Y over T such that ι(E1) = E2 and ι(P1) = P2.

(3) Let Γ1 + Γ2 be a fiber of f , Ŷ → Y the blowing up along the intersection point

Γ1 ∩Γ2, G the exceptional curve for the blowing up, Γ̂i the proper transform of Γi

in Ŷ for i = 1, 2, and let P1, P2 be any points of G \ (Γ̂1 ∪ Γ̂2). Then there is an

involution ι̂ of Ŷ over T such that ι̂(Γ̂1) = Γ̂2 and ι̂(P1) = P2.

Proof. E1 = φ∗E1,X by Lemma 4.5. Thus φ is the elimination of a subscheme ∆ ⊂ E2,X

by Proposition 2.9. We have a natural action of Gm on the P1-bundle X which fixes

every point of E1,X ∪E2,X . Since Gm fixes the subscheme ∆, the action lifts to Y , by the

following observation:

Let A2 = Spec k[u, v] be an affine plane with an action of Gm = Spec k[t, t−1] given by

(u, v) 7→ (tu, v). Then every point of {u = 0} is fixed by the action. Let U → A2 be the

blowing up at the origin. Then U = U1∪U2 for two affine open subsets U1 = Spec k[u1, v1],

U2 = Spec k[u2, v2], where the morphism to A2 is described as

(u1, v1) 7→ (u, v) = (u1, u1v1) and (u2, v2) 7→ (u, v) = (u2v2, v2).

Here, {u1 = 0} ∪ {v2 = 0} is the exceptional divisor. Then the action of Gm lifts to U as

(u1, v1) 7→ (tu1, t
−1v1) and (u2, v2) 7→ (tu2, v2).

If we consider the blowing up of U at the point (u2, v2) = (0, 0) ∈ U2, then the action

also lifts to the blowing up in the same way.

Therefore, Gm acts on Y , and acts non-trivially on every irreducible component of a fiber

of f . Let Φt : Y → Y be the action of t ∈ Gm(k) = k\{0}. Let (x : y) be a coordinate of a

non-singular fiber Yo = f−1(o) ≃ P1 of f such that E1∩Yo = div(x) and E2∩Yo = div(y).

Then we may assume that Φt induces the automorphism (x : y) 7→ (tx : y) on Yo.
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Let L be an invertible sheaf on T and suppose that f∗OEi
(Ei) ≃ L for i = 1, 2. Then

we have an isomorphism

χ : f∗OE1+E2(E1 + E2) ≃ f∗OE1(E1 + E2)⊕ f∗OE2(E1 + E2)
≃−→ L⊕2.

For λ ∈ k \ {0}, let L⊕2 → L be the homomorphism given by (x, y) 7→ λx − y and let

Mλ ⊂ f∗OE1+E2(E1 + E2) be the subsheaf isomorphic via χ to the kernel of L⊕2 → L.

Then we have a locally free subsheaf Eλ of f∗OY (E1 + E2) and a commutative diagram

0 −−−→ OT −−−→ Eλ −−−→ Mλ −−−→ 0∥∥∥∥
y

y

0 −−−→ OT −−−→ f∗OY (E1 + E2) −−−→ f∗OE1+E2(E1 + E2) −−−→ 0

of exact sequences. Note that, under the isomorphism

f∗OY (E1 + E2)⊗ k(o) ≃ kx2 + kxy + ky2,

the fiber Eλ ⊗ k(o) corresponds to the subspace k(λx2 + y2) + kxy. Hence, Φ∗
tEλ = Et2λ.

The natural homomorphism f ∗Eλ → OY (E1+E2) is surjective since the projectionMλ →
f∗OEi

(E1+E2) is surjective for i = 1, 2. Hence, we have a morphism hλ : Y → P = PT (Eλ)

over T and a section Σ of P → T such that h∗λΣ = E1 + E2. We may assume that the

restriction of hλ to Yo is described as (x : y) 7→ (λx2 + y2 : xy). Let Y → Y ′ → P be the

Stein factorization. Then Y ′ → P is a separable double-covering and Y is the minimal

desingularization of Y ′. Thus the Galois involution ιλ acts on Y as an automorphism,

where ιλ(E1) = E2. Moreover the restriction of ιλ to Yo is described as (x : y) 7→ (y :λx).

Hence,

ιλ ◦ Φt = Φt ◦ ιt2λ = ιtλ.

For the assertions (1)–(3), it is enough to find an involution ιλ with ιλ(P1) = P2. The

existence of λ is shown as follows:

(1): Since the action of Gm on the fiber ℓ is non-trivial, Φt(P1) = P2 for some t. Hence,

ιλ(P1) = P2 for some λ.

(2): Since the action of Gm on Γ2 is non-trivial, Φt ◦ ιλ(P1) = P2 for some λ and t. Thus

ιt−1λ(P1) = P2.

(3): The involution ιλ lifts to an involution ι̂λ of Ŷ , since ιλ fixes the intersection

point Γ1 ∩ Γ2. Similarly, Gm acts on Ŷ . We infer that Gm acts non-trivially also on the

exceptional divisor G by the observation above. Hence, ι̂λ(P1) = P2 for some λ. �

We shall prove Theorem 4.9.

Proof. We may assume that KM + LM is not big and ∆ 6= ∅. Then (X,E) is of type

[n; 2, e] for n > 0 and e ≤ n+ 1. Let T be the type of the fundamental triplet (X,E,∆).

Let (X ′, E ′,∆′) be another fundamental triplet of type T
′ whose elimination is (M,EM).
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Let [n′; 2, e′] be the type of (X ′, E ′). We may assume that π◦φ = π′◦φ′ for the elimination

morphisms φ : M → X, φ′ : M → X ′, and the P1-bundle structures π : X → P1, π′ : X ′ →
P1, since π◦φ is just the morphism M → P1 associated with the linear system |KM +LM |.
Let σ and σ′ be the negative sections of X and X ′, respectively.

By Theorem 4.6, one of the following three cases occurs:

(1) E ≥ 2σ; (2) E ≥ σ +D for a section D 6= σ; (3) T = [1; 2; 2]0.

Case (1): T = [n, 2, e]2 by Theorem 4.6, and EM ≥ 2σM for the total transform σM

of σ in M . Thus E ′ = φ′
∗EM ≥ 2φ′

∗σM for the section φ′
∗σM . Then σ′ = φ′

∗σM and

T
′ = [n′; 2, e′]2 by Theorem 4.6. In particular, σM is also the total transform of σ′ and

n = n′. By Lemma 4.5, φ ≃ φ′ over P1, and hence (X,E,∆) ≃ (X ′, E ′,∆′).

Case (2): D2+n ≥ deg(∆∩D) by (F5). Hence EM ≥ σM +DM for the total transform

σM ⊂ M of σ and the proper transform DM ⊂ M of D, where D2
M ≥ −n. Moreover, T

is one of

[n; 2, n]00 (1 ≤ n ≤ 4), [n; 2, n+ 1]+ (1 ≤ n ≤ 3), [n; 2, n+ 1]++(a, b) (1 ≤ n ≤ 3),

by the proof of Theorem 4.6. Since E ′ = φ′
∗EM is also reducible and ∆′ 6= ∅, E ′ ≥ σ′ +D′

for a section D′ 6= σ′ by (F6). In particular, EM ≥ σ′
M + D′

M for the total transform

σ′
M ⊂M of σ′ and the proper transform D′

M ⊂M of D′, where D′2
M ≥ −n′. If σM = σ′

M ,

then φ ≃ φ′ and (X,E,∆) ≃ (X ′, E ′,∆′) by Lemma 4.5. Thus we may assume that

σM 6= σ′
M . Therefore, n = n′ = −D2

M = −D′2
M , σM = D′

M , and σM ′ = DM . In particular,

one of the following cases occurs:

(2-i) T = [n; 2, n]00 and deg ∆ = 2n;

(2-ii) T = [n; 2, n+ 1]+ and deg ∆ = 2n+ 2;

(2-iii) T = [n; 2, n+ 1]++(a, b) and deg(σ∞ ∩∆) = 2n for D = σ∞.

Subcase (2-i): Applying Proposition 4.10 to π ◦ φ : M → T = P1 and two sections σM ,

DM , we infer that ι(σM) = DM for an involution of M over P1. Hence, φ′ ≃ φ ◦ ι and

(X,E,∆) ≃ (X ′, E ′,∆′).

Subcase (2-ii): Let Y →M be the blowing up at the point P = σM∩DM and let Y → M̂

be the contraction of the proper transform ℓY ⊂ Y of the fiber ℓ of M → P1 passing

through P . Let σ̂ and D̂ be the proper transforms of σM and DM in M̂ , respectively.

Then σ̂ ∩ D̂ = ∅ and K
M̂

+ σ̂ + D̂ is relatively numerically trivial over P1. Let ℓ̂ be the

fiber of M̂ → P1 over the point π ◦ φ(P ) and let Q ∈ ℓ̂ be the image of ℓY . Applying

Proposition 4.10 to M̂ → P1, two sections σ̂, D̂, and to the point Q, we have an involution

ι̂ of M̂ over P1 such that ι̂(σ̂) = D̂ and ι̂(Q) = Q. Thus ι̂ induces an involution ι of M

over P1 with ι(σM) = DM . Hence, φ′ ≃ φ ◦ ι and (X,E,∆) ≃ (X ′, E ′,∆′).
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Subcase (2-iii): Then E = σ + σ∞ + ℓ for D = σ∞ and for a fiber ℓ of π. Let P be the

node σ∞ ∩ ℓ. We write DM = σ∞,M .

If (a, b) = (0, 0), then we have an involution ι of M over T with ι(σM) = σ∞,M by

Proposition 4.10 as above. Thus we may assume that (a, b) 6= (0, 0).

Suppose that (a, b) = (2, 1), i.e., multP (∆ ∩ ℓ) = 2. Then ∆ ∩ ℓ is supported on

P . Let φ♯ : M ♯ → X be the elimination of the subscheme (∆ \ P ) ∪ (∆ ∩ ℓ). Then

φ♯∗ℓ = ℓ♯ + 2Γ♯
1 + Γ♯

2 for the proper transform ℓ♯ ⊂ M ♯ of ℓ, a (−1)-curve Γ♯
1, and for

a (−2)-curve Γ♯
2 such that ℓ♯ + Γ♯

1 + Γ♯
2 is a chain of rational curves and that Γ♯

2 only

intersects the proper transform of σ∞ in M ♯. Suppose that ∆ is not a Cartier divisor of

E at P . Then M = M ♯, and by Proposition 4.10, (3), there is an involution ι of M over

P1 satisfying ι(σM) = σ∞,M . Thus φ′ ≃ φ ◦ ι and (X,E,∆) ≃ (X ′, E ′,∆′). Suppose next

that ∆ is a Cartier divisor of E at P . Then M → M ♯ is given as the blowing up along

a point P1 ∈ Γ♯
1 \ (ℓ♯ ∪ Γ♯

2). Thus by Proposition 4.10, (3), there is an involution ι of M

over P1 satisfying ι(σM) = σ∞,M . Thus φ′ ≃ φ ◦ ι and (X,E,∆) ≃ (X ′, E ′,∆′).

Suppose that a = 1, i.e., multP (∆ ∩ ℓ) = 1. Let φ♯ : M ♯ → X be the elimination

of ∆ ∩ σ∞. Then φ♯∗ℓ = ℓ♯ + Γ♯
1 + · · · + Γ♯

b is a chain of rational curves for the proper

transform ℓ♯ ⊂ M ♯ of ℓ, (−2)-curves Γ♯
i for i < b, and for a (−1)-curve Γ♯

b, such that Γ♯
b

only intersects the proper transform of σ∞ in M ♯.

If ∆ is not a Cartier divisor of E at P and if deg(∆ ∩ ℓ) = 1, then M ≃ M ♯ and

ι(σM) = σ∞,M for an involution of M by Proposition 4.10, (2). Thus, φ′ ≃ φ ◦ ι and

(X,E,∆) ≃ (X ′, E ′,∆′).

If ∆ is a Cartier divisor of E at P and if deg(∆∩ ℓ) = 2, then M →M ♯ is the blowing

up at certain two points P ♯
1 ∈ ℓ♯ and P ♯

b ∈ Γ♯
b, and hence ι(σM) = σ∞,M for an involution

of M by Proposition 4.10, (2). Thus, φ′ ≃ φ ◦ ι and (X,E,∆) ≃ (X ′, E ′,∆′).

Therefore, it remains only the case where multP (∆) + deg(∆ ∩ ℓ) = b + 2. This is

divided into the following two cases:

(A) ∆ is a Cartier divisor of E at P and deg(∆ ∩ ℓ) = 1;

(B) ∆ is not a Cartier divisor of E at P and deg(∆ ∩ ℓ) = 2.

We shall show that if (X,E,∆) belongs to the case (A), then (X ′, E ′,∆′) is also of type

[n; 2, n+ 1]++(1, b) belonging to the case (B), and vice versa.

Suppose that (X,E,∆) belongs to the case (A). Then M → M ♯ is the blowing-up

at a certain point P ♯
b ∈ Γ♯

b. By Proposition 4.10, (2), there is an involution ι♯ of M ♯

which interchanges the proper transforms of σ and σ∞ in M ♯. Thus φ′ : M → X ′ is the

composite of M →M ♯ and φ♯ ◦ ι♯. Hence, (X ′, E ′,∆′ \ ℓ′) ≃ (X,E,∆ \ ℓ) for the fiber ℓ′

over φ(ℓ), and (X ′, E ′,∆′) is of type [n; 2, n+ 1]++(1, b) belonging to (B).
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Similarly, if (X,E,∆) belongs to (B), then (X ′, E ′,∆′) is of type [n; 2, n + 1]++(1, b)

belonging to (A).

Case (3): We have T
′ = [1; 2, 2]0 by the results in the cases (1) and (2). Thus, we are

done. �

There are some ideas of dividing the type [1; 2, 2]0 into suitable subtypes by properties

related to the double-covering π|E : E ⊂ X → P1. For example, π|E is not necessarily

separable if char k = 2. For the type [1; 2, 2]0, (X,E) has the following explicit description:

Lemma 4.11. For the ruled surface π : X = F1 → P1, let E ⊂ X be a non-singular curve

linearly equivalent to 2σ+2ℓ for the negative section σ and a fiber ℓ of π. Then there exist

a homogeneous coordinate (X : Y : Z) of P2 and an isomorphism from X to the blowing up

of P2 at the point (0 : 0 : 1) such that π is induced from the projection (X : Y : Z) 7→ (X : Y)

and E corresponds to the total transform of the one of following curves :

(1) {Z2 = XY};
(2) {Z2 + XZ + Y2 = 0}.

If char k = 2, then π|E : E → P1 is inseparable in case (1), and separable in case (2). If

char k 6= 2, then (1) and (2) define the same (X,E) up to isomorphism.

Proof. Let g be a defining equation of σ and f be a defining equation of a section σ∞

at infinity. Let (s, t) denote a homogeneous coordinate of P1. A defining equation

η ∈ H0(X, 2σ + 2ℓ) of E is written by

η = f2 + a(s, t)fg + b(s, t)g2

for homogeneous polynomials a(s, t) and b(s, t) of degree 1 and 2, respectively. We can

replace f with f + c(s, t)g for a linear form c = c(s, t). By the replacement, (a, b) is

changed to (a + 2c, b + ac + c2). Thus we may assume one of the following two cases

occurs:

(i) a = 0; (ii) b = b21 for a linear form b1.

In fact, this is shown as follows: If char k 6= 2, then the case (i) can be occur since

a + 2c = 0 for some c; If char k = 2 and a 6= 0, then we can take (a, b) = (s, λt2) for a

non-zero constant λ ∈ k. If (i) and (ii) occur at the same time, then we have

f2 + afg + bg2 = (f +
√
−1b1g)(f−

√
−1b1g),

which contradicts the irreducibility of E. In case (i), we may assume b = st by a

suitable coordinate change of (s, t), and thus we have the case (1). In case (ii), we may

assume similarly a = s and b = t2, and thus we have the case (2). If char k 6= 2, then



66

(a, b) = (s, t2) is changed to

(a+ 2c, b+ ac+ c2) = (0, (t + (1/2)s)(t− (1/2)s))

by c = −(1/2)a; thus (1) and (2) define the same (X,E) up to isomorphism. �

Even if char k 6= 2, the uniqueness of fundamental triplet (cf. Theorem 4.9) does not

hold in general for the type [1; 2, 2]0 as follows:

Example 4.12. Let (X,E,∆) be a fundamental triplet of type [1; 2, 2]0 with a fiber ℓ

of π : X → P1 such that ℓ ∩ E consists of two points P1, P2. We set multPi
(∆) = mi for

i = 1, 2, and assume that m1 ≥ 2, m2 ≥ 0.

We shall show the existence of a section σ∞ at infinity with multP1(σ∞ ∩ E) = 2. In

fact, from the exact sequence

0→ H0(X,−σ − ℓ)→ H0(X, σ + ℓ)→ H0(E, (σ + ℓ)|E) ≃ H0(P1,O(2))→ 0,

there is an effective divisor D ∼ σ + ℓ with D|E = 2P1 on E. If D is reducible, then

D = σ + ℓ but ℓ ∩ E 6= 2P1; this is a contradiction. Thus D is a section at infinity.

Let φ−1(Pi) =
∑mi

j=1 Γ
(i)
j be the chain of φ-exceptional curves over Pi for i = 1, 2;

however we do not consider φ−1(P2) in case m2 = 0. Here, Γ(i)
mi

is an end (−1)-curve and

others are (−2)-curves. For the proper transform ℓM ⊂M of ℓ, the inverse image φ−1(ℓ)

is a straight chain of rational curves written as




∑m1
i=1 Γ

(1)
i + ℓM +

∑m2
j=1 Γ

(2)
j , if m2 > 0;

∑m1
i=1 Γ

(1)
i + ℓM , if m2 = 0,

where ℓM intersects only Γ
(1)
1 and Γ

(2)
1 in the chain φ−1(ℓ) when m2 > 0, and intersects

only Γ
(1)
1 when m2 = 0. The proper transform σ∞,M of σ∞ in M intersects only Γ

(1)
2 in the

chain φ−1(ℓ). Note that the section σ∞,M of M → P1 is a (−1)-curve with σ∞,M∩EM = ∅.
Let φ′ : M → X ′ be the morphism of Lemma 4.5 defined for the section σ∞,M , and let

σ′ ⊂ X ′ be the image φ′(σ∞,M). Then σ∞,M = φ′∗(σ′). Therefore, X ′ ≃ F1, φ
′ contracts

any irreducible component of φ−1(ℓ) except for Γ
(1)
2 , and σ′ ∩ φ′(EM) = ∅. Thus φ′ is

the elimination of a fundamental triplet (X ′, E ′,∆′) of type [1; 2, 2]0 which is isomorphic

to (X,E,∆) over P1 \ π(ℓ). Furthermore, for the fiber ℓ′ of X ′ → P1 over π(ℓ), we have

ℓ′ ∩E ′ = {P ′
1, P

′
2} with multP ′

1
(∆′) = m1− 2 and multP ′

2
(∆′) = m2 + 2. Thus (X ′, E ′,∆′)

is not isomorphic to (X,E,∆).

4.3. Non-Gorenstein exceptional graphs.

Lemma 4.13. Let (X,E,∆) be a fundamental triplet, (M,EM) the elimination of ∆,

and let (S,B) be the associated del Pezzo pair of index two. An irreducible curve Γ ⊂M

is exceptional for α : M → S if and only if one of the following conditions is satisfied :
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(1) Γ is a (−2)-curve contracted by the elimination φ : M → X of ∆;

(2) Γ is the proper transform in M of an irreducible component Ei ⊂ E with LEi =

deg(∆ ∩ Ei);

(3) Γ is the total transform in M of σ in the case of type [2; 1, 2]0;

(4) Γ is the proper transform in M of a fiber ℓ of π : X → P1 with deg(ℓ ∩∆) = 2 in

the case of type [1; 2, 2]0.

Moreover, if an irreducible component Γ of EM is α-exceptional, then m = multΓEM ≤ 4

and the following properties hold :

(i) If m = 1, then Γ2 ≥ −4, where the equality holds if and only if Γ is a connected

component of EM .

(ii) In case m = 1, Γ2 = −3 if and only if (EM − Γ)Γ = 1.

(iii) In case m = 2, Γ2 = −n ≥ −4 if and only if Γ is the proper transform of σ in the

case of type [n; 2, 4]2.

(iv) If m = 2 and Γ2 = −3, then Γ is one of the following curves :

(a) The proper transform of ℓ in the case of type [2]2;

(b) The proper transform of σ in the case of type [3; 2, 4]2;

(c) The proper transform of ℓ in the case of type [2; 1, 2]2+.

(v) If m ≥ 3, then Γ2 = −2.

Proof. We fix an irreducible curve Γ ⊂ M with Γ2 < 0. Note that Γ is α-exceptional if

and only if LMΓ = 0. Since −2KM = LM +EM , it is also equivalent to −2KMΓ = EMΓ.

If Γ is α-exceptional and φ-exceptional, then Γ is not a (−1)-curve by the minimality of

α, hence it is a (−2)-curve. Conversely, if Γ is a φ-exceptional (−2)-curve, then LMΓ = 0

by KM +LM ∼ φ∗(KX +L). Therefore, it is enough to consider only the case where Γ is

the proper transform in M of an irreducible curve γ of X. Then, by Lemma 2.7, we have

Γ2 = γ2 − deg(γ ∩∆), LMΓ = Lγ − deg(γ ∩∆), and EMΓ = Eγ − deg(γ ∩∆).

Suppose that γ ⊂ E. Then m = multΓEM = multγ E ≤ 4 by Theorem 4.6. If m = 4,

then γ is a fiber of π : X → P1 in the case of type [n; 2, 4]2 for n ≥ 3, and Γ2 ≥ −2. If

m = 3, then γ is also a fiber in the case of type [n; 2, e]2 for n ≥ 2, e ≥ 3, and Γ2 ≥ −2.

In particular, the property (v) holds. If m = 2 and Γ is α-exceptional, then one of the

following cases occurs:

• γ = ℓ in the case of type [2]2 and deg(∆ ∩ ℓ) = 4.

• γ = σ in the case of type [2; 1, 2]2+

• γ = ℓ in the case of type [2; 1, 2]2+ with deg(∆ ∩ ℓ) = 3.

• γ = ℓ in the case of type [n; 2, e]2 for n ≥ 1, e ≥ 2 with deg(∆ ∩ ℓ) = 2

• γ = σ in the case of type [n; 2, 4]2 for n ≥ 3.
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Thus the properties (iii) and (iv) hold. If m = 1 and Γ is α-exceptional, then LMΓ = 0

induces

−2 = (KM + Γ)Γ = −(1/2)EMΓ + Γ2 = −(1/2)(EM − Γ)Γ + (1/2)Γ2 ≤ (1/2)Γ2.

Thus the properties (i) and (ii) hold.

Then there remains only the case: γ 6⊂ E. Assume that Γ is α-exceptional. Then

KMΓ ≥ 0 and EMΓ ≥ 0 imply that Γ is a (−2)-curve and Lγ = Eγ = γ2+2 = deg(γ∩∆).

In particular, KX +L is not ample, since 2(KX +L) = L−E. If (X,E) is of type [2; 1, 2],

then (X,E,∆) is of type [2; 1, 2]0 and γ = σ. If KX + L is not big, then γ is a fiber ℓ of

π : X → P1 with deg(∆∩ ℓ) = 2; such a fiber ℓ exists only in the case of type [1; 2, 2]0 by

Theorem 4.6.

Conversely, assume that γ is the curve σ in (3) or the curve ℓ in (4). Then

LMΓ = Lγ − deg(γ ∩∆) = (KX + L)γ −KXγ − deg(γ ∩∆) = 2 + γ2 − deg(γ ∩∆) = 0.

Hence, Γ is α-exceptional. Thus, we are done. �

Theorem 4.14. For a rational del Pezzo pair (S,B) of index at most two, the dual graph

of the exceptional divisors for the minimal desingularization of a non-Gorenstein singular

point of S is one of the graphs listed in Tables 3 and 4.

The singularities having the graph Kl are discussed in Section 4.4 below.

Proof. We may assume that (S,B) is constructed from a fundamental triplet (X,E,∆)

by Proposition 3.11 and Lemma 3.12. Let φ : (M,EM) → (X,E,∆) be the elimination

and let α : M → S be the minimal desingularization. Let Ξ = ΞQ be the reduced

divisor α−1(Q) for a non-Gorenstein point Q ∈ S. Then Ξ ≤ EM by the equality

KM = α∗(KS +B)− (1/2)EM . Hence, Ξ is a connected component of the reduced divisor

αEM consisting of the irreducible components of EM exceptional for α. Conversely, a

connected component of αEM is the exceptional divisor ΞQ for a non-Gorenstein point

Q ∈ S.

Since Ξ defines a non-Gorenstein point, there is an irreducible component E1 ⊂ E such

that the proper transform E1,M in M is contained in Ξ and E2
1,M ≤ −3. By Theorem 4.6,

we can divide the argument into the following seven cases of (X,E,∆):

(1) E = E1.

(2) E = E1 + E2 for another irreducible component E2.

(3) The type [2; 1, 2]++ with deg(∆ ∩ ℓi) = 3 for i = 1 or 2.

(4) The type [3; 2, 4]++(a, b).

(5) The type [2]2 with deg(∆ ∩ ℓ) = 4.

(6) The type [2; 1, 2]2+ with deg(∆ ∩ ℓ) = 3.
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(7) The type [n; 2, 4]2 for n ≥ 3.

Case (1): EM is a (−4)-curve by Lemma 4.13. Hence the dual graph of Ξ = EM is K1.

Case (2): Let E2,M ⊂M be the proper transform of E2.

Subcase (2-1) E1 ∩ E2 = ∅: Then Ξ = Ei,M for i = 1 or 2 and the dual graph of Ξ is

K1 by Lemma 4.13.

In case E1 ∩ E2 6= ∅, let P denote the intersection point E1 ∩ E2.

Subcase (2-2) P 6∈ ∆: Then αEM = E1,M + E2,M or E1,M . Hence, the dual graph of

Ξ = αEM is K2 or A1(3).

In case P ∈ ∆, we may assume that b = multP (∆ ∩ E1) ≥ multP (∆ ∩ E2) = 1. Here

b ≤ 4 and the maximum is attained when the type is [2]+(4) by Theorem 4.6.

Subcase (2-3) ∆ is a Cartier divisor of E at P : If E2,M is also α-exceptional, then the

dual graph of αEM is of type Kb+2, since αEM consists of E1,M , E2,M , and of the (−2)-

curves contained in φ−1(P ). If E2,M is not α-exceptional, then the dual graph of αEM is

Ab+1(3).

Subcase (2-4) ∆ is not a Cartier divisor of E at P : Then multP (∆) = b. Hence EM

has two connected components; one is E1,M and the other component consists of E2,M

and of the (−2)-curves contained in φ−1(P ). Hence the dual graph of Ξ is A1(3) or Ab(3).

Case (3): We may assume E1 = ℓ1 and deg(∆ ∩ ℓ1) = 3. If deg(∆ ∩ ℓ2) = 3, then the

dual graph of αEM is K3. If deg(∆ ∩ ℓ2) < 3, then the dual graph of αEM is A2(3).

Case (4): We may assume E1 = σ. We set E2 = ℓ, E3 = σ∞, and P = E2 ∩E3. Let Ei,M

be the proper transform of Ei in M for 1 ≤ i ≤ 3.

Subcase (4-1) E2,M and E3,M are α-exceptional:

Subcase (4-1-1) ∆ is a Cartier divisor of E: Then EM is α-exceptional and connected.

If (a, b) = (0, 0), i.e., P 6∈ ∆, then the dual graph of EM is K3. If (a, b) 6= (0, 0), then the

dual graph is Ka+b+2. Hence, we have Kl for l ≤ 9.

Subcase (4-1-2) ∆ is not a Cartier divisor of E: Then (a, b) 6= (0, 0) and multP (∆) =

a+ b− 1. Hence, EM has two connected components; one contains E1,M +E2,M and the

other contains E3,M . Thus the dual graph of Ξ is Al(3) for l ≤ 7, where the maximum

l = 7 is attained in the case (a, b) = (1, 6).

Subcase (4-2) E2,M is α-exceptional but E3,M is not: Then b ≤ deg(∆ ∩ σ∞) < 6.

Subcase (4-2-1) ∆ is a Cartier divisor of E: Then αEM is connected and the dual

graph is A2(3) if (a, b) = (0, 0), and A1+a+b(3) if (a, b) 6= (0, 0). Thus we have Al(3) for

l ≤ 7, where the maximum l = 7 is attained in the case (a, b) = (1, 5).
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Table 3. Exceptional graphs of types K, A, D and D̃ (n ≥ 3)

K1 : id (= A1(4)) A3(n)′ : y in y

K2 : it it A4(n)′ : y in y y

Kl : it y y it (l ≥ 3 vertices) A5(n)′ : y in y y y

A1(n) : in A5(n)′′ : y y in y y

A2(n) : in y A6(n)′ : y y in y y y

Al(n) : in y y y (l ≥ 3 vertices) A7(n)′ : y y y in y y y

(The bounds of l: Kl for l ≤ 9; Al(n) for l ≤ 5 in case n ≥ 4; Al(3) for l ≤ 7)

D4 :

y

yy in D7(n) :

y

yy y in y y

D4(n)′ :

y

iny y D7(n)′ :

y

yy in y y y

D5(n) :

y

yy y in D8(n) :

y

yy y in y y y

D5(n)′ :

in

yy y y D̃4(n) :

y

in

y

y y

D5(n)′′ :

y

yy in y D̃5(n) :

y y

y y in y

D5(n)′′′ :

y

iny y y D̃6(n) :

y y

y y in y y

D6(n) :

y

yy y in y D̃6(n)′ :

y y

y y y in y

D6(n)′ :

in

yy y y y D̃7(n) :

y y

y y in y y y

D6(n)′′ :

y

yy in y y D̃8(n) :

y y

y y y in y y y

D6(n)′′′ :

y

iny y y y
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Table 4. Exceptional graphs of types E and Ẽ (n ≥ 3)

E6(n) :

y

in y y y y E8(n) :

y

in y y y y y y

E6(n)′ :

in

y y y y y Ẽ6(n) :

y

in

y y y y y

E6(n)′′ :

y

y in y y y Ẽ7(n) :

y

y in y y y y y

E7(n) :

y

in y y y y y Ẽ7(n)′ :

in

y y y y y y y

E7(n)′ :

y

y y y y in y Ẽ8(n) :

y

in y y y y y y y

E7(n)′′ :

in

y y y y y y

Subcase (4-2-2) ∆ is not a Cartier divisor of E: Then (a, b) 6= (0, 0) and multP (∆) =

a+b−1. Thus αEM is connected and its dual graph is Al(3) for l ≤ 6, where the maximum

l = 6 is attained in the case (a, b) = (1, 5).

Subcase (4-3) E3,M is α-exceptional but E2,M is not: Then Ξ = E1,M or Ξ contains

E3,M . Thus the dual graph of Ξ is Al(3) for 1 ≤ l ≤ 7, where the maximum l = 7 is

attained in the case (a, b) = (1, 6).

Subcase (4-4) E2,M and E3,M are not α-exceptional: Then Ξ = E1,M and the dual

graph is A1(3).

Case (5): Now E1 = ℓ. In fact, the proper transform of ℓ is an α-exceptional (−3)-curve

contained in Ξ. The dual graph of Ξ is obtained by using Lemma 2.17 as follows.

Subcase (5-1) ∆ ∩ ℓ = 4P for a point P : Then 4 ≤ k = multP (∆) ≤ 8 and the dual

graph of Ξ is as follows:

k 4 5 6 7 8

Graph A1(3) A5(3) D6(3)′ E7(3)′′ Ẽ7(3)′

Subcase (5-2) ∆ ∩ ℓ = 3P + P ′ for points P 6= P ′: Then 3 ≤ k ≤ 6 and 1 ≤ k′ ≤ 2 for

k = multP (∆) and k′ = multP (∆′). The dual graph of Ξ is as follows:
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(k, k′) (3, 1) (3, 2) (4, 1) (4, 2) (5, 1) (5, 2) (6, 1) (6, 2)

Graph A1(3) A2(3) A4(3) A5(3)′ D5(3)′ E6(3)′′ E6(3)′ Ẽ6(3)

Subcase (5-3) ∆ ∩ ℓ = 2P + 2P ′ for points P 6= P ′: Then 2 ≤ k, k′ ≤ 4 for k =

multP (∆) and k′ = multP (∆′). We may assume k ≥ k′. Then the dual graph of Ξ

is as follows:

(k, k′) (2, 2) (3, 2) (3, 3) (4, 2) (4, 3) (4, 4)

Graph A1(3) A3(3) A5(3)′′ D4(3) D6(3)′′ D̃6(3)

Subcase (5-4) ∆ ∩ ℓ = 2P + P ′ + P ′′ for three points P , P ′, P ′′: Then 2 ≤ k ≤ 4 and

1 ≤ k′, k′′ ≤ 2 for k = multP (∆), k′ = multP ′(∆), k′′ = multP ′′(∆). We set l = k′+k′′−2.

Then the dual graph of Ξ is as follows:

(k, l) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2) (4, 0) (4, 1) (4, 2)

Graph A1(3) A2(3) A3(3)′ A3(3) A4(3)′ D5(3)′′′ D4(3) D5(3)′′ D̃5(3)

Subcase (5-5) ∆ ∩ ℓ consists of 4 points: Then 1 ≤ multP (∆) ≤ 2 for P ∈ ∆ ∩ ℓ. Let l

be the number of points P ∈ ∆ ∩ ℓ with multP (∆) = 2. Then the dual graph of Ξ is as

follows:

l 0 1 2 3 4

Graph A1(3) A2(3) A3(3)′ D4(3)′ D̃4(3)

Case (6): Now E1 = ℓ. The proper transform of E isM is α-exceptional whose dual graph

is A2(3). It is contained in Ξ and the dual graph of Ξ is obtained by using Lemma 2.17

as follows.

Subcase (6-1) ∆ ∩ ℓ = 3P : Then 3 ≤ k = multP (∆) ≤ 6 and the dual graph is as

follows:

k 3 4 5 6

Graph A2(3) A5(3)′ E6(3)′′ Ẽ6(3)

Subcase (6-2) ∆ ∩ ℓ = 2P + P ′ for two points P , P ′ ∈ ℓ: Then 2 ≤ k = multP (∆) ≤ 4

and 1 ≤ k′ = multP ′(∆) ≤ 2. The dual graph is as follows:

(k, k′) (2, 1) (2, 2) (3, 1) (3, 2) (4, 1) (4, 2)

Graph A2(3) A3(3)′ A4(3)′ D5(3)′′′ D5(3)′′ D̃5(3)

Subcase (6-3) ∆ ∩ ℓ consists of three points: Then 1 ≤ multP (∆) ≤ 2 for any P ∈ ∆∩ℓ.
Let l be the number of points P with multP (∆) = 2. Then the dual graph is as follows:

l 0 1 2 3

Graph A2(3) A3(3)′ D4(3)′ D̃4(3)
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Case (7): We may assume E1 = σ. The proper transform E1,M ⊂M is a (−n)-curve.

Subcase (7-1) F = 4ℓ for a fiber ℓ of π: Then deg(∆∩ℓ) = 2, and the proper transform

in M of E is α-exceptional which is contained in Ξ.

Subcase (7-1-1) ∆ ∩ ℓ = 2P for a point P ∈ ℓ: Then 2 ≤ k = multP (∆) ≤ 8 and the

dual graph of Ξ is as follows:

k 2 3 4 5 6 7 8

Graph A2(n) A4(n) D5(n) E6(n) E7(n) E8(n) Ẽ8(n)

Subcase (7-1-2) ∆ ∩ ℓ = P + P ′ for two points P , P ′ ∈ ℓ: Then 1 ≤ k, k′ ≤ 4 for

k = multP (∆) and k′ = multP ′(∆). We may assume k ≥ k′. The dual graph of Ξ is as

follows:

(k, k′) (1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3) (4, 1) (4, 2) (4, 3) (4, 4)

Graph A2(n) A3(n) D4(n) A4(n) D5(n)′ E6(n)′ A5(n) D6(n)′ E7(n)′′ Ẽ7(n)′

Subcase (7-2) F = 3ℓ1 + ℓ2 for two fibers ℓ1, ℓ2 of π:

Subcase (7-2-1) ∆ ∩ ℓ1 = 2P for a point P ∈ ℓ1 and deg(∆ ∩ ℓ2) = 2: Then 2 ≤ k =

multP (∆) ≤ 6 and the dual graph of Ξ is as follows:

k 2 3 4 5 6

Graph A3(n)′ A5(n)′ D6(n) E7(n)′ Ẽ7(n)

Subcase (7-2-2) ∆ ∩ ℓ = 2P for a point P ∈ ℓ1 and deg(∆ ∩ ℓ2) < 2: Then 2 ≤ k =

multP (∆) ≤ 6 and the dual graph of Ξ is as follows:

k 2 3 4 5 6

Graph A2(n) A4(n) D5(n) E6(n) E7(n)

Subcase (7-2-3) ∆ ∩ ℓ1 = P + P ′ for two points P , P ′ ∈ ℓ1 and deg(∆ ∩ ℓ2) = 2: We

may assume 3 ≥ k ≥ k′ ≥ 1 for k = multP (∆) and k′ = multP ′(∆). Then the dual graph

of Ξ is as follows:

(k, k′) (1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3)

Graph A3(n)′ A4(n)′ D5(n)′′ A5(n)′ E6(n)′′ Ẽ6(n)

Subcase (7-2-4) ∆ ∩ ℓ1 = P + P ′ for two points P , P ′ ∈ ℓ1 and deg(∆ ∩ ℓ2) < 2: We

may assume 3 ≥ k ≥ k′ ≥ 1 for k = multP (∆) and k′ = multP ′(∆). Then the dual graph

of Ξ is as follows:

(k, k′) (1, 1) (2, 1) (2, 2) (3, 1) (3, 2) (3, 3)

Graph A2(n) A3(n) D4(n) A4(n) D5(n)′ E6(n)′
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Subcase (7-2-5) deg(∆ ∩ ℓ1) < 2: If deg(∆∩ℓ2) = 2, then the dual graph of Ξ is A2(n).

If deg(∆ ∩ ℓ2) < 2, then it is A1(n).

Subcase (7-3) F = 2ℓ1 + 2ℓ2 for two fibers ℓ1, ℓ2 of π:

Subcase (7-3-1) ∆ ∩ ℓ1 = 2P1 and ∆ ∩ ℓ2 = 2P2 for points P1 ∈ ℓ1, P2 ∈ ℓ2: Then 2 ≤
ki = multPi

(∆) ≤ 4 for i = 1, 2. We may assume k1 ≥ k2. Then the dual graph is as

follows:

(k1, k2) (2, 2) (3, 2) (3, 3) (4, 2) (4, 3) (4, 4)

Graph A3(n)′ A5(n)′ A7(n)′ D6(n) D8(n) D̃8(n)

Subcase (7-3-2) ∆ ∩ ℓ1 = 2P1 and ∆ ∩ ℓ2 = P2 + P ′
2 for a point P1 ∈ ℓ1 and for two

points P2, P
′
2 ∈ ℓ2: Then 2 ≤ k1 = multP1(∆) ≤ 4 and 1 ≤ k2, k

′
2 ≤ 2 for k2 = multP2(∆)

and k′2 = multP ′

2
(∆). Let l = k2 + k′2 − 2. Then the dual graph is as follows:

(k1, l) (2, 0) (2, 1) (2, 2) (3, 0) (3, 1) (3, 2) (4, 0) (4, 1) (4, 2)

Graph A3(n)′ A4(n)′ D5(n)′′ A5(n)′ A6(n)′ D7(n)′ D6(n) D7(n) D̃7(n)

Subcase (7-3-3) ∆ ∩ ℓ1 consists of two points and ∆ ∩ ℓ2 consists of two points: For

i = 1, 2, let li be the number of points P ∈ ∆ ∩ ℓi with multP (∆) = 2. We may assume

l1 ≥ l2. Then the dual graph is as follows:

(l1, l2) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1) (2, 2)

Graph A3(n)′ A4(n)′ A5(n)′′ D5(n)′′ D6(n)′′ D̃6(n)

Subcase (7-3-4) ∆ ∩ ℓ1 = 2P for a point P ∈ ℓ1 and deg(∆ ∩ ℓ2) < 2: Then 2 ≤ k =

multP (∆) ≤ 4 and the dual graph is as follows:

k 2 3 4

Graph A2(n) A4(n) D5(n)

Subcase (7-3-5) ∆ ∩ ℓ1 consists of two points and deg(∆ ∩ ℓ2) < 2: For the number l

of points P ∈ ∆ ∩ ℓ1 with multP (∆) = 2, the dual graph is as follows:

l 0 1 2

Graph A2(n) A3(n) D4(n)

Subcase (7-3-6) deg(∆ ∩ ℓ1) < 2 and deg(∆ ∩ ℓ2) < 2: Then Ξ = E1,M and the dual

graph is A1(n).

Subcase (7-4) F = 2ℓ1 + ℓ2 + ℓ3 for three fibers ℓ1, ℓ2, ℓ3 of π:

Subcase (7-4-1) ∆ ∩ ℓ1 = 2P for a point P ∈ ℓ: Then 2 ≤ k = multP (∆) ≤ 4. Let l

be the number of fibers ℓi for i = 2, 3 with deg(∆ ∩ ℓi) = 2. Then the dual graph is as

follows:
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(k, l) (2, 0) (3, 0) (4, 0) (2, 1) (3, 1) (4, 1) (2, 2) (3, 2) (4, 2)

Graph A2(n) A4(n) D5(n) A3(n)′ A5(n)′ D6(n) D4(n)′ D6(n)′′′ D̃6(n)′

Subcase (7-4-2) ∆ ∩ ℓ1 consists of two points: Let l be the number of points P ∈ ℓ1
with multP (∆) = 2 and l′ be the number of fibers ℓi for i = 2, 3 with deg(∆ ∩ ℓi) = 2.

Then 0 ≤ l, l′ ≤ 2 and the dual graph is as follows:

(l, l′) (0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (2, 1) (0, 2) (1, 2) (2, 2)

Graph A2(n) A3(n) D4(n) A3(n)′ A4(n)′ D5(n)′′ D4(n)′ D5(n)′′′ D̃5(n)

Subcase (7-4-3) deg(∆ ∩ ℓ1) < 2: Let l be the number of fibers ℓi for i = 2, 3 with

deg(∆ ∩ ℓi) = 2. Then the dual graph is as follows:

l 0 1 2

Graph A1(n) A2(n) A3(n)′

Subcase (7-5) F = ℓ1 + ℓ2 + ℓ3 + ℓ4 for 4 fibers ℓi (1 ≤ i ≤ 4) of π: Let l be the number

of fibers ℓi with deg(∆ ∩ ℓi) = 2. Then the dual graph is as follows:

l 0 1 2 3 4

Graph A1(n) A2(n) A3(n)′ D4(n)′ D̃4(n)

Thus we are done. �

4.4. Remarks on two-dimensional log-terminal singularity of index two. We

note on two-dimensional log-terminal singularities in arbitrary characteristics. Let S be

a germ of normal surface at a pointQ and let α : M → S be the minimal desingularization.

Suppose that 2KS is numerically Cartier and let EM be the effective divisor supported

in α−1(Q) determined by 2KM ∼ α∗(2KS)− EM .

Lemma 4.15. Under the situation, the following conditions are mutually equivalent :

(1) (S, 0) is log-terminal of index two;

(2) EM is a non-zero reduced divisor ;

(3) EM is a straight chain of non-singular rational curves whose dual graph is Kn

defined below (cf. Notation (1)):

K1 : id , K2 : it it ,

Kl : it y y it (consisting of l ≥ 3 vertices).

If the conditions above are satisfied, then S has only rational singularities.

The same symbol Kn is used in Table 3.
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Proof. (1) ⇒ (2) is trivial.

(2) ⇒ (3): Any irreducible component Ei,M of EM is isomorphic to P1 by

(KM + Ei,M)Ei,M = −(1/2)EMEi,M + E2
i,M = −(1/2)(EM − Ei,M)Ei,M + (1/2)E2

i,M < 0.

Moreover, we have

(4–13) E2
i,M = −4 + (EM − Ei,M)Ei,M ≥ −4.

If EM is irreducible, then EM is a (−4)-curve, thus the dual graph is K1. Hence we may

assume that EM is reducible.

If there are two irreducible components E1,M , E2,M with E1,ME2,M ≥ 2, then E2
1,M =

E2
2,M = −2, E1,ME2,M = 2 by (4–13); this induces (E1,M +E2,M)2 = 0 contradicting that

the intersection matrix (Ei,MEj,M) is negative definite. Thus Ei,MEj,M ≤ 1 for any i, j.

Suppose that there are three irreducible components E1,M , E2,M , E3,M which contain

the same point P . Then E1,M ∩E2,M = E2,M ∩E3,M = E3,M ∩E1,M = {P} and E2
i,M = −2

for 1 ≤ i ≤ 3 by (4–13). Thus we have a contradiction by (E1,M + E2,M + E3,M)2 = 0.

Therefore, EM is a simple normal crossing divisor consisting of non-singular rational

curves Ei,M such that Ei,MEj,M ≤ 1 for any i, j.

Suppose that E2
i,M = −2 for any i. Then (EM − Ei,M)Ei,M = 2 and the dual graph of

EM is a circle. Thus we have a contradiction by E2
M = 0.

Hence, there is an irreducible component E1,M with E2
1,M = −3. Let E2,M be the unique

irreducible component with E1,ME2,M = 1. If E2
2,M = −3, then EM = E1,M + E2,M and

the dual graph is K2. If E2
2,M = −2, then there is a unique irreducible component E3,M

with E1,ME3,M = 0 and E2,ME3,M = 1. In this way, we can show that the dual graph of

EM is Kn.

(3) ⇒ (1): The fundamental cycle of S is EM since EMEi,M = 0 if E2
i,M = −2, and

EMEi,M = −2 if E2
i,M = −3. Since (KM +EM)EM = (1/2)E2

M = −2, S has only rational

singularities. Furthermore, (2KM + EM)Ei,M = 0 for any i. Thus 2KM + EM ∼ α∗L for

a Cartier divisor by Theorem 3.1. Hence 2KS ∼ L is Cartier and (S, 0) is log-terminal of

index two. �

Definition 4.16. If the conditions in Lemma 4.15 are satisfied and if the number of

irreducible components of EM is n, then the singularity of S is called of type Kn.

Example 4.17. Let N be a free abelian group of rank two with a basis (e1, e2) and let

M be the dual Hom(N,Z). For a positive integer n, we set

N
′ = N + Z

1

4n
(e1 + (2n− 1)e2) ⊂ N⊗Q and M

′ = Hom(N′,Z).

For the first quadrant σ = R≥0e1 + R≥0e2, let X = X(N′,σ) be the affine toric variety

Spec k[σ∨∩M
′] associated with (N′,σ). Let x, y be the generators of the polynomial ring



77

k[σ∨ ∩M] in which (x, y) corresponds to the basis of M dual to (e1, e2). Then the toric

variety X(N,σ) is isomorphic to A2 and the natural morphism A2 ≃ X(N,σ) → X is

regarded as the quotient map for the following action of the algebraic subgroup µ4n =

Spec k[ζ]/(ζ4n − 1) of Gm = Spec k[ζ, ζ−1] on A2:

(x, y) 7→ (ζx, ζ2n−1y).

In fact, k[σ∨ ∩ M
′] is isomorphic to the invariant ring k[x, y]µ4n , which is generated by

five monomials

x4n, y4n, x2y2, x2n+1y, xy2n+1,

over k. Note that ζ2n 6= −1 if char k = 2. We write X = X((1, 2n − 1)/(4n)) and

k[x, y]µ4n = R((1, 2n − 1)/(4n)). Actually, X is a cyclic quotient singularity of type

(1, 2n− 1)/(4n) if 4n and char k are coprime. We define v0 = e2, vn+1 = e1, and

vj =
2j − 1

4n
e1 +

(
1

2
− 2j − 1

4n

)
e2 ∈ N

′

for 1 ≤ j ≤ n. Furthermore, we set σj = R≥0vj−1 + R≥0vj for 1 ≤ j ≤ n + 1. Since

Zvj−1 + Zvj = N
′ for any 1 ≤ j ≤ n + 1, X(N′,σj) is non-singular and the toric variety

X̃ = X(N′, {σj}) =
⋃
X(N′,σj) is a desingularization of X. Let Γj be the prime divisor

of X̃ corresponding to the ray R≥0vj. Then Γj ≃ P1 and
∑

Γj is a simple normal crossing

divisor whose dual graph is Kn. Thus X̃ → X is the minimal desingularization and the

singularity of X at the origin is Kn.

Proposition 4.18. For a singularity S of type Kn and for the minimal desingularization

α : M → S, suppose that Pic(M) → Pic(EM) ≃ Z⊕n is surjective. Then there is an

étale morphism from S into X((1, 2n − 1)/(4n)) in Example 4.17. In particular, the

Henselization of a singularity of type Kn is unique.

Proof. We may assume that S = SpecR for a two-dimensional local ring R essentially of

finite type over k.

First, we treat the case: n = 1. Then OM(−EM) ≃ L⊗4 for an invertible sheaf L,

by assumption. Then |L| is base point free by Theorem 3.1. Hence, we can choose two

sections s1 and s2 of L such that div(s1)∩div(s2)∩EM = ∅. Let y be a defining equation

of EM , i.e., y is a section of OM(EM) with div(y) = EM . Then we have the following five

regular functions

ξ1 = s4
1y, ξ2 = s4

2y, θ = s2
1s

2
2y, η1 = s3

1s2y, η2 = s1s
3
2y

over S. Since these five functions satisfy the same relation as the five generators of

R((1, 1)/4), there is a ring homomorphism R((1, 1)/4)→ R, and equivalently a morphism

S → X((1, 1)/4). Since EM is the fundamental cycle, the maximal ideal m ofR is regarded
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as α∗OM(−EM) and m/m2 is identified with H0(EM ,OEM
(−EM)) (cf. [5, Theorem 4]).

Therefore, the five regular functions above form a basis of m/m2, which implies that

R((1, 1)/4)→ R is étale.

Next, we treat the case n > 1. By assumption, there exist invertible sheaves L0 and

Ln+1 on M with degL0|Ej,M
= δ1,j and degLn+1|Ej,M

= δn,j for 1 ≤ j ≤ n. For i = 0,

n + 1, |Li| has no base points by Theorem 3.1. Thus there exist a section s0 of L0 and

a section sn+1 of Ln+1 such that div(s0) intersects E1,M transversely, div(sn+1) intersects

En,M transversely, div(s0)∩Ej,M = ∅ for j 6= 1, and div(sn+1)∩Ej,M = ∅ for j 6= n. Note

that

L0 +
∑n

j=1

(
1

2
− 2j − 1

4n

)
Ej,M and Ln+1 +

∑n

j=1

2j − 1

4n
Ej,M

are numerically trivial. Let yj be a defining equation of Ej,M . Then we have five regular

functions

ξ1 = s4n
0

∏n

j=1
y2n−2j+1

j , ξ2 = s4n
n+1

∏n

j=1
y2j−1

j , θ = s2
0s

2
n+1

∏n

j=1
yj,

η1 = s2n+1
0 sn+1

∏n

j=1
yn−j+1

j , η2 = s0s
2n+1
n+1

∏n

j=1
yj

j

over S. Hence, by the same argument as in the case of n = 1, there is an étale morphism

S → X((1, 2n − 1)/(4n)). The remaining assertion on Henselization follows from [20,

Lemma 14.3]. �

Proposition 4.19. There exists a Q-Gorenstein smoothing (of index two) of the singu-

larity Kn at the origin of X((1, 2n− 1)/(4n)).

Proof. In Example 4.17, we can consider another subgroup

N
′′ = N + Z

1

2n
(1, 2n− 1) ⊂ N

′

and the associated toric variety Y = X(N′′,σ). Then k[σ∨ ∩ M
′′] for the dual M

′′ =

Hom(N′′,Z) is the invariant subring of k[σ∨ ∩ M] = k[x, y] by the action (x, y) 7→
(ζ2x, ζ−2y) of ζ2, which is generated by three monomials xy, x2n, y2n. Thus the invariant

subring may be written as R((1, (2n− 1))/(2n)) and is isomorphic to

k[z, u, v]/(z2n − uv),

by z 7→ xy, u 7→ x2n, and v 7→ y2n. In particular, Y has a singularity of type A2n at the

origin. The action of ζ on k[x, y] induces an action on R((1, (2n − 1))/(2n)), which is

expressed as

(z, u, v) 7→ (ζ2nz, ζ2nu, ζ2nv).

Thus the quotient group µ2 = Spec k[ξ]/(ξ2 − 1) of µ4n acts on the polynomial ring

k[z, u, v] by the same way, where ζ2n is replaced with ξ. Note thatX = X((1, 2n−1)/(4n))

is the quotient of Y by the action of µ2. The invariant ring A = k[z, u, v]µ2 has a
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singularity only at the origin and it is a toric terminal singularity of index two. We

define a k-algebra homomorphism k[t] → A by t 7→ z2n − uv. For a constant c ∈ k,

let k[t] → k be the k-algebra homomorphism given by t 7→ c and let Ac be the tensor

product A⊗k[t] k. Then A0 ≃ R((1, 2n− 1)/(4n)). It is enough to show that SpecAc is

nonsingular for any c 6= 0. Note that SpecAc is covered by three open subsets {z2 6= 0},
{u2 6= 0}, and {v2 6= 0}, since c 6= 0.

The localization Ac[z
−2] contains u/z and v/z. Thus it is isomorphic to

k[z, z−1, u, v]/(zn − uvz − c)

by z 7→ z2, u 7→ u/z, v 7→ v/z. If the ring is not regular, then, by the Jacobian criterion,

u = v = nzn−1 = zn−c = 0 has a solution, but it is impossible. Hence, Ac[z
−2] is regular.

The localization Ac[u
−2] contains z/u and v/u. Thus it is isomorphic to

k[u, u−1, z, v]/(z2nun − uv − c)

by u 7→ u2, z 7→ z/u, v 7→ v/u. By the Jacobian criterion, the ring is regular since

∂

∂v
(z2nun − uv − c) = −u 6= 0.

Similarly, the localization Ac[v
−2] is also regular. Thus we are done. �
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5. Deformations

We shall study deformation of fundamental triplets, of basic pairs, and of del Pezzo

pairs of index at most two. The notion of equi-singular deformation is introduced.

5.1. Deformation of several objects.

Definition 5.1. (1) Let τ : X̃ → T be a proper surjective smooth morphism into a

connected curve T , Ẽ ⊂ X̃ an effective divisor flat over T , and let ∆̃ ⊂ X̃ be

a subscheme finite and flat over T . If (Xt, Et,∆t) is a fundamental triplet for

the fibers Xt = τ−1(t), Et = Ẽ ∩ Xt, and ∆t = ∆̃ ∩ Xt over any closed point

t ∈ T , then τ : (X̃, Ẽ, ∆̃) → T is called a family of fundamental triplets. If two

fundamental triplets appear as fibers of a family of fundamental triplets over a

connected curve, then the fundamental triplets are called deformation equivalent

to each other.

(2) Let h : M̃ → T be a proper surjective smooth morphism into a connected curve

T and let Ẽ ⊂ M̃ be an effective divisor flat over T . If (Mt, Et) is a basic pair

for the fibers Mt = h−1(t) and Et = Ẽ ∩Mt over any closed point t ∈ T , then

h : (M̃, Ẽ)→ T is called a family of basic pairs. If two basic pairs appear as fibers

of a family of basic pairs over a connected curve, then the basic pairs are called

deformation equivalent to each other.

(3) Let f : S̃ → T be a proper surjective flat morphism from a normal variety S̃ into

a connected non-singular curve T and let B̃ be an effective Q-divisor of S̃ such

that K
S̃
+ B̃ is Q-Cartier and Supp B̃ is flat over T . If, for any closed point t ∈ T ,

(St, Bt) is a del Pezzo pair for the fiber St = f−1(t) and for the Q-divisor Bt

defined by

(K
S̃

+ B̃)|St
= KSt +Bt,

then f : (S̃, B̃)→ T is called a family of del Pezzo pairs.

• The index of the family (S̃, B̃) → T is defined to be the Q-Cartier index of

K
S̃

+ B̃.

• If the index of KSt +Bt for any closed point t ∈ T is equal to the index k of

K
S̃

+ B̃, then (S̃, B̃)→ T is called to have the constant index k.

Two del Pezzo pairs (S1, B1) and (S2, B2) are called deformation equivalent to each

other if there exist finitely many families (S̃(j), B̃(j))→ T(j) of del Pezzo pairs over

connected non-singular curves T(j) (1 ≤ j ≤ l) and points ta(j), t
b
(j) ∈ T(j) such that

(S1, B1) ≃ (S(1),ta1
, B(1),ta1

), (S2, B2) ≃ (S(l),tb
l
, B(l),tb

l
), and

(S(j),tb
j
, B(j),tb

j
) ≃ (S(j+1),ta

j+1
, B(j+1),ta

j+1
)
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for 1 ≤ j ≤ l − 1. If any (S̃(j), B̃(j)) → T(j) has the same index (resp. con-

stant index) equal to k, then (S1, B1) and (S2, B2) are called to be connected by

deformations of index (resp. constant index) k.

Remark. The genus g is a deformation invariant for fundamental triplets (X,E,∆), basic

pairs (M,EM), and for del Pezzo pairs (S,B) of index two, where

2g − 2 = (KX + L)L = (KM + LM)LM = 2(KS + 2B)(KS +B)

for L = −2KX−E and LM = −2KM−EM . Moreover, LE and L2 are deformation invari-

ants for fundamental triplets (X,E,∆); and LMEM and L2
M are deformation invariants

for basic pairs (M,EM).

Lemma 5.2. (1) If two fundamental triplets are deformation equivalent to each other,

then their eliminations are also deformation equivalent to each other as basic pairs.

(2) For a family h : (M̃, Ẽ) → T of basic pairs over a smooth connected curve T ,

there exist a family f : (S̃, B̃)→ T of del Pezzo pairs of index at most two and a

birational morphism α̃ : M̃ → S̃ over T such that

−2K
M̃

= α∗(−2(K
S̃

+ B̃)) + Ẽ

and that, for any closed point t ∈ T , the restriction αt = α̃|Mt : Mt → St of α̃ to

the fibers Mt = h−1(t) and St = f−1(t) is the minimal desingularization.

Proof. (1) follows from Lemma 2.20.

(2): We set L̃ := −2K
M̃
− Ẽ and Lt := −2KMt − Et. By Theorem 3.18 and by the

upper semi-continuity theorem, we have an isomorphism

(5–14) h∗OM̃
(mL̃)⊗ k(t) ≃ H0(Mt,mLt)

for any closed point t ∈ T and for any m ≥ 0. Hence the natural homomorphism

(5–15) h∗h∗OM̃
(mL̃)→ O

M̃
(mL̃)

is surjective for anym ≥ 0 by Theorem 3.18. Since Lt is big, there exist a proper surjective

morphism f : S̃ → T from a normal variety S̃, and a birational morphism α̃ : M̃ → S̃

over T such that L̃ is linearly equivalent to the pullback of an f -ample divisor of S̃. Then

−2K
S̃
− α̃∗Ẽ is the f -ample divisor. The morphism α̃ is induced from the surjection

(5–15) for sufficiently large m. Hence, by the base change property (5–14), any fiber

St = f−1(t) is a normal variety, and αt = α̃|Mt : Mt → St is isomorphic to the birational

morphism into the del Pezzo pair constructed in Proposition 3.19. Thus f : (S̃, B̃) → T

is a family of del Pezzo pairs of index at most two for B̃ = (1/2)α̃∗Ẽ. �
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Lemma 5.3. (1) A fundamental triplet (X,E,∆) is deformation equivalent to the

fundamental triplet (X,E,∆′) for a zero-dimensional subscheme ∆′ ⊂ E such

that ∆′ contains no nodes of E and that ∆′ ∩ Ered is reduced.

(2) A fundamental triplet (X,E,∆) is deformation equivalent to the fundamental

triplet (X,E ′,∆′) for an effective divisor E ′ linearly equivalent to E and for a

reduced zero-dimensional subscheme ∆′ ⊂ E ′ such that ∆′ contains no nodes of

E ′ and that E ′ is reduced along ∆′.

(3) For a fundamental triplet (X,E,∆), suppose that E = E(1) + E(2) for effective

divisors E(1) and E(2) such that ∆ ∩ E(2) = ∅ and that E(1) is linearly equiva-

lent to a non-singular divisor. Then (X,E,∆) is deformation equivalent to the

fundamental triplet (X,E ′ +E(2),∆′) for a non-singular divisor E ′ and a reduced

subscheme ∆′ ⊂ E ′.

Proof. (1): If ∆ contains a node of E, then E is reduced by Theorem 4.6. Thus the

assertion follows from Lemmas 2.22 and 2.23.

(2): By (1) and Theorem 4.6, we may assume that ∆ ∩ Ered is reduced and that the

type of (X,E,∆) is one of [2]2, [2; 1, 2]2+, and [n; 2, e]2 for n ≥ 1, 2 ≤ e ≤ min{n+ 1, 4}.
Let Γ be an irreducible component Γ with ∆ ∩ Γ 6= ∅ such that multΓ(E) = m ≥ 2 and

that Γ 6= σ if the type is [n; 2, e]2. Thus Γ is a line of P2 or a fiber of the Hirzebruch

surface Fn. There exists an effective divisor D̃ ⊂ X × T for an open neighborhood T of

0 of the affine line A1 = Spec k[t] such that Dt = D̃ ∩ (X ×{t}) is a non-singular divisor

for t 6= 0 and that D0 = mΓ. We may assume that ∆ ∩ Γ is reduced by (1). For a point

P ∈ ∆∩Γ, ∆ is locally defined by the ideal (xm, y) for a local coordinate system (x, y) of

X at P , where Γ is defined by x = 0. Thus, for a suitable choice of D̃, we infer that the

divisor div(y) intersects transversely with Dt for any t 6= 0 on a neighborhood of P . By

replacing ∆ with div(y)∩Dt for t 6= 0 around P , we have a deformation to a fundamental

triplet (X,E ′,∆′) satisfying the required condition.

(3): We may assume that ∆ is reduced and is supported on the non-singular part

of E(1). There exist a non-singular connected curve T with a point 0 and an effective

divisor D̃ of X × T such that D̃ → T is flat, the fiber Dt = D̃ ∩ (X × {t}) over t ∈ T is

non-singular for t 6= 0, and that D0 = E(1). Since D̃ → T is smooth along ∆×{0}, there

exists a non-singular curve ∆̃ ⊂ D̃ smooth over T such that the fiber of ∆̃→ T over 0 is

∆. Thus (X,E,∆) is deformed to (X,Dt + E(2),∆t) for t 6= 0. �

We introduce a relation ⋖ for the types of fundamental triplets, as follows: T1 ⋖ T2

means that any fundamental triplet of type T1 is deformation equivalent to a fundamental

triplet of type T2.
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Table 5. A list of types of fundamental triplets

genus g Type genus g Type

2 [0; 2, 1]0, [1; 2, 2]0, [2; 2, 3]+ 7 [1; 1, 0]0

3 [2]0, [0; 2, 0]00, [1, 2, 1]00,

[2; 2, 2]00, [3; 2, 3]00, [4; 2, 4]00

8 [2; 1, 0]0

4 [0; 1, 1]0 9 [3; 1, 0]0

5 [1; 1, 1]0 10 [4; 1, 0]0

6 [1]0, [0; 1, 0]0 n+ 3− e [n; 2, e]2 for n ≥ 1,

e ≤ min{n− 1, 4}

Proposition 5.4. A fundamental triplet is deformation equivalent to a fundamental

triplet of one of the types listed in Table 5.

Proof. Let (X,E,∆) be a fundamental triplet. By Lemma 5.3, we may assume that ∆ is

reduced and that either E is non-singular or E = E(1) + E(2) for a non-singular divisor

E(1) and an effective divisor E(2) with ∆∩E(2) = ∅. More explicitly, we have the following

relations by Lemma 5.3:

[1; 1, 1]+(a, b) ⋖ [1; 1, 1]0; [n; 2, n+ 1]++(a, b) ⋖ [n; 2, n+ 1]+ for 1 ≤ n ≤ 3;

[n; 2, n]2 ⋖ [n; 2, n]00 for 0 ≤ n ≤ 4; [n; 2, n+ 1]2 ⋖ [n; 2, n+ 1]+ for 1 ≤ n ≤ 3;

[2]+(b) ⋖ [2]0; [2]2 ⋖ [2]0; [0; 1, 1]+(b) ⋖ [0; 1, 1]0; [1; 2, 2]+ ⋖ [1; 2, 2]0;

[1; 2, 2]2∞ ⋖ [1; 2, 2]× ⋖ [1; 2, 2]0; [0; 2, 1]2 ⋖ [0; 2, 1]++ ⋖ [0; 2, 1]+ ⋖ [0; 2, 1]0;

[2; 1, 1]+(a, b) ⋖ [2; 1, 1]+(0, 0); [2; 1, 2]2+ ⋖ [2; 1, 2]++ ⋖ [2; 1, 2]0.

In order to obtain Table 5, it is enough to show the following relations in addition:

[3; 1, 1]+ ⋖ [1; 1, 0]0; [2; 1, 1]+(0, 0)⋖ [0; 1, 0]0; [2; 1, 2]0 ⋖ [0; 1, 1]0; [3; 2, 4]+ ⋖ [1; 2, 2]0.

These are shown in Proposition 5.10, (1) below, in which Lemma 5.5 and Corollary 5.6

are required. �

In order to construct some interesting deformations, we note the following well-known:

Lemma 5.5. For positive integers n, a, b with a+ b = n, there exists an exact sequence

0→ p∗1OP1 → Ẽ → p∗1OP1(n)→ 0

on the product P1 × A1, where p1 denotes the projection P1 × A1 → P1, such that Ẽ is

isomorphic to p∗1(O(a)⊕O(b)) over P1×(A1\{0}) and that the restriction of Ẽ to P1×{0}
is isomorphic to O ⊕O(n).
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Proof. Let us take global sections ζ1 ∈ H0(P1,O(a)) and ζ2 ∈ H0(P1,O(b)) so that

div(ζ1) ∩ div(ζ2) = ∅. Then we have a short exact sequence 0 → O → O(a) ⊕ O(b) →
O(n)→ 0 over P1, where the surjection O(a)⊕O(b)→ O(n) is given by (x, y) 7→ xζ2−yζ1
and the injection O → O(a)⊕O(b) is given by z 7→ (zζ1, zζ2). Let η ∈ Ext1(P1;O(n),O)

be the extension class associated with the exact sequence above and let Ẽ be the locally

free sheaf of rank two given by the extension class

η ⊗ t ∈ Ext1(P1;O(n),O)⊗ H0(A1,O) ≃ Ext1(P1 × A1; p∗1O(n), p∗1O),

where A1 = Spec k[t]. Then Ẽ restricted to P1×{0} is O⊕O(n). The extensions defined

by η ⊗ t and by η ⊗ 1 are mutually isomorphic over P1 × (A1 \ {0}). Thus Ẽ restricted

to P1 × (A1 \ {0}) is isomorphic to p∗1(O(a)⊕O(b)). �

Corollary 5.6. Let n and a be positive integers with n ≥ 2a. Then there is a P1-bundle

X̃ → P1 × A1 such that the fiber Xt of X̃ → A1 over t ∈ A1 is isomorphic to Fn−2a if

t 6= 0 and to Fn if t = 0. Moreover, there exist a section Σ(1, n) and rational sections

Σ(1, a), Σ(1, n− a)∞ of the P1-bundle X̃ → P1 × A1 satisfying the following conditions :

(1) Σ(1, a) ∼ Σ(1, n) + p∗1O(a − n), Σ(1, n − a)∞ ∼ Σ(1, n) + p∗1O(−a), and Σ(1, n)

is a tautological divisor with respect to Ẽ.
(2) Suppose that t 6= 0. Then Σ(1, a)|Xt is a minimal section σ(n−2a) of Xt = Fn−2a,

Σ(1, n)|Xt ∼ σ(n−2a) + (n− a)ℓ for a fiber ℓ of Xt → P1, and Σ(1, n− a)∞|Xt is a

section at infinity.

(3) Σ(1, n)|X0 is a section at infinity of X0 = Fn, Σ(1, a)|X0 = σ(n) +F1, and Σ(1, n−
a)∞|X0 = σ(n) + F2 for a negative section σ(n) and effective divisors F1 ∼ aℓ,

F2 ∼ (n− a)ℓ with F1 ∩ F2 = ∅ for a fiber ℓ of X0 → P1.

Proof. The P1-bundle defined by X̃ = P(Ẽ) for the locally free sheaf Ẽ of Lemma 5.5

for b = n− a satisfies the first required condition. The section defined by the surjection

Ẽ → p∗1O(n) satisfies the condition of Σ(1, n). In order to find other rational sections, we

look at the isomorphism between Ẽ and p∗1(O(a)⊕O(n−a)) over P1×(A1\{0}) shown in

Lemma 5.5. Let Σ(1, a)⋆ and Σ(1, n−a)⋆
∞ be the sections over P1×(A1\{0}) corresponding

to the surjections to p∗1O(a) and to p∗1O(n − a), respectively. Here Σ(1, a)⋆ ∩ Σ(1, n) is

isomorphic to div(ζ1) × (A1 \ {0}) for the section ζ1 ∈ H0(P1,O(a)) in Lemma 5.5.

Similarly, Σ(1, n − a)⋆
∞ ∩ Σ(1, n) is isomorphic to div(ζ2) × (A1 \ {0}) for the section

ζ2 ∈ H0(P1,O(n − a)). Let Σ(1, a) and Σ(1, n − a)∞ be the closures of Σ(1, a)⋆ and

Σ(1, n−a)⋆
∞ in X̃, respectively. Then Σ(1, a)|X0 = σ(n)+π∗ div(ζ1) and Σ(1, n−a)∞|X0 =

σ(n) + π∗ div(ζ2) for the projection π : X0 = Fn → P1. Thus we are done. �

Example 5.7. Applying Corollary 5.6 to the case n = 4, a = 2, we have a P1-bundle

M → P1 × A1 and a tautological divisor Σ = Σ(1, 4) such that Mt ≃ F0 and Σ|Mt is
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ample for the fiber Mt of M → A1 over t 6= 0 and that M0 ≃ F4 and Σ|M0 is a section

at infinity. There is a birational morphism M → V into a normal variety V over A1

such that Σ is linearly equivalent to the pullback of a relatively ample divisor of V over

A1. Thus we have a flat surjective morphism V → A1 whose fiber Vt over t ∈ A1 is

isomorphic to Xt ≃ F0 if t 6= 0 and to F4 ≃ P(1, 1, 4) if t = 0. Note that P(1, 1, 4) is a

log del Pezzo surface of index two defined by the fundamental triplet (F4, σ, ∅) of type

[4; 1, 0]0. However, V is not Q-Gorenstein since the exceptional locus of M → V is just

the negative curve σ(4) of M0 ≃ F4 and KMσ
(4) > 0. Therefore, (V, 0) → A1 is not a

deformation of del Pezzo pairs in the sense of Definition 5.1. Indeed, K2
Vt

= 8 6= K2
V0

= 9

for t 6= 0.

The following generalizes the construction called sweeping out the cone with hyperplane

sections due to Pinkham [25, Remarks (7.6), iii)]:

Lemma 5.8. Let S be a non-singular projective variety and let A ⊂ S be an effective

ample divisor. Then there exist a proper flat morphism π : S̃ → P1 and a point 0 ∈ P1

such that π−1(t) ≃ S for t 6= 0 and that π−1(0) ≃ ProjR for the image R of the restriction

homomorphism

⊕
k≥0

H0
(
S, Symk(OS ⊕OS(A))

)
→
⊕

k≥0
H0
(
A, Symk(OA ⊕OA(A))

)
.

In particular, if A is a non-singular variety and if H1(S,OS(mA)) = 0 for m ≥ 0, then

π−1(0) is normal and is a cone over A.

Proof. Let p : Z → S be the P1-bundle associated with V = OS ⊕ OS(A) and let H

be a tautological divisor with respect to V . Let Σ and W ⊂ Z be the sections of p

corresponding to the first projection V → OS and the second projection V → OS(A),

respectively. Let Λ be the linear system consisting of the members of |H| containing

B := p−1(A) ∩W . Then Λ ≃ P1 and Bs Λ = B. Let 0 ∈ Λ correspond to p∗A+ Σ. Then

any another member of Λ corresponds to a section of p. The complete linear system

|mH| for suitable m > 0 defines a birational morphism µ : Z → Z ′ into the normal

variety Z ′ = Proj
⊕

k≥0 H0(S, Symk(V)) such that µ(Σ) is a point, Σ = µ−1(µ(Σ)), and

that µ is an isomorphism outside Σ. Thus Λ can be regarded as a linear system on Z ′.

Let S̃ → Z ′ be the blowing up along µ(B). Then the induced morphism π : S̃ → Λ is

flat, and the fiber over a point t ∈ Λ is isomorphic to the corresponding member of Λ as a

divisor of Z ′. In particular, π−1(t) ≃ S for t 6= 0 and π−1(0) is isomorphic to the image of

p−1(A) = PA(V|A) under the morphism µ. Thus π−1(0) ≃ ProjR. If A is a non-singular

variety and H1(S,OS(mA)) = 0 for m ≥ 0, then R ≃ ⊕
k≥0 H0(A, Symk(V)|A). Thus we

are done. �
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Example 5.9. Applying Lemma 5.8 to S = P2 and a non-singular conic A, we have

a proper flat morphism π : S̃ → P1 such that π−1(0) ≃ P(1, 1, 4) and π−1(t) ≃ P2 for

t 6= 0. Here, S̃ has a unique singular point, which is obtained by contracting a divisor

isomorphic to P2 with the normal bundle O(−2). Hence, the singularity of S̃ is terminal

of index two and (S̃, 0)→ P1 is a family of del Pezzo pairs of index two. The morphism

π gives a Q-Gorenstein smoothing of the rational singularity of type K1.

Remark. The formal moduli space of the cone P(1, 1, 4) has been shown to be reduced

with two components, of dimension 3 and 1 meeting transversely, by Pinkham [24], [25, (8.

6)]. Here, the 3-dimensional component corresponds to the deformation in Example 5.7

and the 1-dimensional component to the deformation in Example 5.9.

Proposition 5.10. (1) The following relations hold :

[3; 1, 1]+ ⋖ [1; 1, 0]0, [2; 1, 1]+(0, 0)⋖ [0; 1, 0]0, [2; 1, 2]0 ⋖ [0; 1, 1]0, [3; 2, 4]+ ⋖ [1; 2, 2]0.

(2) If (X,E,∆) is a fundamental triplet of type [2; 2, 3]+ with ∆ = ∅, then it is

deformation equivalent to a fundamental triplet of type [0; 2, 1]0.

(3) If (X,E,∆) is a fundamental triplet of type [2; 2, 3]+ with ∆ 6= ∅, then its elim-

ination is deformation equivalent to the elimination of a fundamental triplet of

type [1; 2, 2]0.

(4) The del Pezzo pair associated with a fundamental triplet of type [4; 2, 4]00 is de-

formation equivalent to the del Pezzo pair associated with a fundamental triplet

of type [2]0.

Proof. (1): For [3; 1, 1]+, applying Corollary 5.6 to n = 3 and a = 1, we have a family

X̃ → T of ruled surfaces and a rational section Σ = Σ(1, 1) such that Σ|X0 = σ(3) + ℓ

and Σ|Xt = σ(1) for t 6= 0 for the fiber Xt over t ∈ T ; moreover the zero-dimensional

subscheme ∆ of a fundamental triplet of type [3; 1, 1]+ on the central fiber X0 extends to

a subscheme ∆̃ of X̃ which is finite and flat over T . Therefore [3; 1, 1]+ ⋖ [1; 1, 0]0. For

[2; 1, 1]+(0, 0) ⋖ [0; 1, 0]0, it is similarly proved by applying Corollary 5.6 to n = 2 and

a = 1, and by considering Σ = Σ(1, 1). For [2; 1, 2]0 ⋖ [0; 1, 1]0, it is similarly proved by

applying Corollary 5.6 to n = 2 and a = 1, and by considering Σ = Σ(1, 2).

For [3; 2, 4]+ ⋖ [1; 2, 2]0, we need more complicated argument. Let (X,E,∆) be a

fundamental triplet of type [3; 2, 4]+. Then X ≃ F3, E = σ(3) + D for the negative

section σ(3) and a section D ∼ σ(3) + 4ℓ for a fiber ℓ of π : X → P1, and ∆ ⊂ D \ σ(3).

Let ℓ1 be the fiber passing through D ∩ σ(3) and let ℓ2 be another fiber with ℓ2 ∩∆ = ∅.
We set Pi = π(ℓi) for i = 1, 2. Then there exists a member Θ ∈ |σ(3) + 3ℓ| such that

Θ|D = 4ℓ2 ∩D as divisors on D by the exact sequence

0 = H0(X,−ℓ)→ H0(X, σ(3) + 3ℓ)→ H0(D,O(4))→ H1(X,−ℓ) = 0.
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Note that σ(3) 6≤ Θ since σ(3) ∩ D 6⊂ Θ ∩ D. Thus Θ is a section at infinity. The exact

sequence above shows that D is a member of the pencil spanned by σ(3) +4ℓ2 and Θ+ ℓ1.

Let X̃ → P1×A1 be the P1-bundle obtained by applying Corollary 5.6 to n = 3 and a = 1.

Let h, g, and f be defining equations of the rational sections Σ(1, 3), Σ(1, 1), and Σ(1, 2)∞

of the P1-bundle, respectively. We may assume that Σ(1, 3)|X0 = Θ, Σ(1, 1)|X0 = σ(3)+ℓ1,

and Σ(1, 2)∞|X0 = σ(3) + 2ℓ2. Thus E = div(f2 + cgh)|X0 for a non-zero constant c ∈ k.

For t 6= 0, Σ(1, 3)|Xt ∼ σ(1) +2ℓ is a section, Σ(1, 1)|Xt = σ(1), and Σ(1, 2)∞|Xt is a section

at infinity, where the point Σ(1, 3)∩Σ(1, 1)∩Xt lies on the fiber of Xt → P1 over P1, and

Σ(1, 3)∩Σ(1, 2)∞ ∩Xt is a zero-dimensional subscheme of multiplicity two supported on

the fiber of Xt → P1 over P2. If we consider Xt as the blowing up at a point P of P2, then

div(f)|Xt is the pullback of a line γ not containing the center P , and div(gh)|Xt is the

total transform of a non-singular conic C containing P , where γ is a tangent line of C.

Hence, div(f2 + cgh)|Xt is isomorphic to div(z2 + c(x2 + yz)) for a suitable homogeneous

coordinate (x, y, z) of P2. Therefore, the divisor Ẽ := div(f2 + cgh) of X̃ is smooth over

A1 \{0}. Moreover, ∆ is a fiber of a subscheme ∆̃ ⊂ Ẽ which is finite and flat over A1 by

Lemma 2.23. Thus we have a family (X̃, Ẽ, ∆̃)→ A1 of fundamental triplets, and hence

[3; 2, 4]+ ⋖ [1; 2, 2]0.

(2) and (3): Let (X,E,∆) be a fundamental triplet of type [2; 2, 3]+. Then X ≃ F2,

E = σ(2) +D for a section D ∼ σ(2) + 3ℓ for a fiber ℓ of π : X → P1, and ∆ ⊂ D \ σ(2).

Let ℓ1 be the fiber passing through D ∩ σ(2) and let ℓ2 be another fiber with ℓ2 ∩∆ = ∅.
We set Pi = π(ℓi) for i = 1, 2. Then there exists a member Θ ∈ |σ(2) + 2ℓ| such that

Θ|D = 3ℓ2 ∩D as divisors on D by the exact sequence

0 = H0(X,−ℓ)→ H0(X, σ(2) + 2ℓ)→ H0(D,O(3))→ H1(X,−ℓ) = 0.

Note that σ(2) 6≤ Θ since σ(2) ∩ D 6⊂ Θ ∩ D. Thus Θ is a section at infinity. The exact

sequence above shows that D is a member of the pencil spanned by σ(2) +3ℓ2 and Θ+ ℓ1.

Let X̃ → P1 × A1 be the P1-bundle obtained by applying Corollary 5.6 to n = 2 and

a = 1. Then Xt ≃ F0 for t ∈ A1\{0}. Let h, g, and f be defining equations of the rational

sections Σ(1, 2), Σ(1, 1), and Σ(1, 1)∞ of the P1-bundle, respectively. We may assume that

Σ(1, 2)|X0 = Θ, Σ(1, 1)|X0 = σ(2) + ℓ1, and Σ(1, 1)∞|X0 = σ(2) + ℓ2. Let s be a defining

equation of ℓ2, in other words, P2 ∈ P1 is defined by s = 0. Then E = div(sf2+cgh)|X0 for

a non-zero constant c ∈ k. For t 6= 0, Σ(1, 2)|Xt ∼ σ(0) + ℓ is a section, Σ(1, 1)|Xt = σ(0),

and Σ(1, 1)∞|Xt is a section at infinity, where the point Σ(1, 2) ∩ Σ(1, 1) ∩Xt lies on the

fiber of Xt → P1 over P1, and the point Σ(1, 2) ∩ Σ(1, 1)∞ ∩Xt lies on the fiber over P2.

Let Λ be the pencil on Xt generated by 2Σ(1, 1)∞|Xt + ℓ2,t and Σ(1, 2)|Xt + Σ(1, 1)|Xt ,

where ℓ2,t is the fiber of Xt → P1 over P2. Then Λ is a sublinear system of |2σ(0) + ℓ|
having no fixed components. We infer that a member of Λ is a section for the other
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projection π′ : Xt ≃ F0 → P1 except for 2Σ(1, 1)∞|Xt + ℓ2,t and Σ(1, 2)|Xt + Σ(1, 1)|Xt .

Thus div(sf2 + cgh)|Xt is a section of π′. Therefore, the divisor Ẽ = div(sf2 + cgh)

of X̃ is smooth over A1 \ {0}. Moreover, ∆ is a fiber of a subscheme ∆̃ ⊂ Ẽ which is

finite and flat over A1, by Lemma 2.23. Thus we have a family (X̃, Ẽ, ∆̃)→ A1 of quasi-

fundamental triplets, and is a family of fundamental triplets of type [0; 2, 1]0 when ∆ = ∅.
When ∆ 6= ∅, for the family of quasi-fundamental triplets, we also have a family of basic

pairs by taking the simultaneous eliminations as in Lemma 5.2, (1) (cf. Lemma 2.20).

If (X ′, E ′,∆′) is a quasi-fundamental triplet such that X ′ ≃ F0, E
′ ∼ σ(0) + 2ℓ is a

non-singular divisor, and ∆′ 6= ∅, then its elimination is the basic pair obtained from a

fundamental triplet of type [1; 2, 2]0 by Proposition 4.4. Thus the assertion is proved.

(4): For a fundamental triplet (X,E,∆) of type [4; 2, 4]00, E = σ+σ∞ and ∆ ⊂ σ∞ for

the negative section σ and a section σ∞ at infinity of X ≃ F4. Hence, the del Pezzo pair

associated with (X,E,∆) is constructed from the elimination of q(∆) for the contraction

morphism q : X → P(1, 1, 4) of σ. Here, q(σ∞) is a cross section of the cone P(1, 1, 4). We

consider the deformation V = S̃ → P1 in Example 5.9. Here, we may assume that there is

an effective divisor Q ⊂ V such that Q→ P1 is smooth and that the fiber Qt over t ∈ P1

is a non-singular conic of Vt ≃ P2 for t 6= 0 and that Q0 ≃ q(σ∞) for an isomorphism

V0 ≃ P(1, 1, 4). Since ∆ can be assumed to be reduced, it extends to an effective divisor

∆̃ of an open neighborhood of V0 in Q which is smooth over P1 (cf. Lemma 2.23). Hence,

(V0, q(σ∞), q(∆)) is deformed to a fundamental triplet of type [2]0. Thus the associated

del Pezzo pair with (X,E,∆) is deformation equivalent to the del Pezzo pair associated

with a fundamental triplet of type [2]0. �

5.2. Equi-singular deformations. We shall consider the equi-singular deformation

types of del Pezzo pairs of index two.

Definition 5.11. (1) A family h : (M̃, Ẽ) → T of basic pairs over a connected non-

singular curve T is called equi-singular if Ẽ is a relative simple normal crossing

divisor over T , i.e., any irreducible component Ẽj of Ẽ is smooth over T , any

non-empty intersection Ẽi ∩ Ẽj of two irreducible components is smooth over T ,

and any intersection Ẽi∩ Ẽj ∩ Ẽk of three irreducible components is an empty set.

(2) A family f : (S̃, B̃)→ T of del Pezzo pairs over a connected non-singular curve T

is called equi-singular if there exist a proper smooth morphism h : M̃ → T and a

birational morphism α̃ : M̃ → S̃ with h = f ◦ α̃ such that

(a) Mt = h−1(t) → St = f−1(t) is the minimal desingularization for any closed

point t ∈ T ,

(b) the union of the exceptional locus of α̃ and α̃−1(Supp B̃) is a relative simple

normal crossing divisor over T .
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If f : (S̃, B̃) → T is an equi-singular family of del Pezzo pairs whose fibers (St, Bt)

are constructed from basic pairs, then f is constructed from an equi-singular family

h : (M̃, Ẽ) → T of basic pairs by Lemma 5.2, (2). However, the family of del Pezzo

pairs constructed from an equi-singular family of basic pairs by Lemma 5.2, (2) is not

necessarily equi-singular.

Two basic pairs are called equi-singular deformation equivalent to each other if they are

connected by equi-singular families of basic pairs. Similarly, two del Pezzo pairs are called

equi-singular deformation equivalent to each other if they are connected by equi-singular

families of del Pezzo pairs.

Remark. Let (S,B) be a del Pezzo pair of index at most two associated with a basic

pair (M,EM). Then the number k of irreducible components of EM is an equi-singular

deformation invariant both for (M,EM) and for (S,B).

Definition 5.12. Let τ : (X̃, Ẽ, ∆̃)→ T be a family of fundamental triplets over a non-

singular connected curve T . The family is called equi-singular if the following conditions

are satisfied:

(1) Ẽ is a relative simple normal crossing divisor over T ;

(2) ∆̃ ∩ Ẽj is flat over T for any irreducible component Ẽj of Ẽ;

(3) ∆̃ ∩ Ẽi ∩ Ẽj are flat over T for any two irreducible components Ẽi and Ẽj.

If the following conditions are also satisfied, then the family τ is called strongly equi-

singular :

(4) Any two fibers of ∆̃ ∩ Ẽj → T are isomorphic to each other for any j;

(5) If a fiber (Xt, Et,∆t) of τ is of type [2; 1, 2]0, then any fiber is of type [2; 1, 2]0;

(6) Suppose that a fiber (Xt, Et,∆t) of τ is of type [1; 2, 2]0. Then there is an effective

divisor L̃ ⊂ X̃ smooth over T such that L̃ ∩ Ẽ is flat over T and that L̃ ∩Xt is

the union of fibers ℓ of Xt → P1 with deg(∆t ∩ ℓ) = 2.

Two fundamental triplets are called equi-singular (resp. strongly equi-singular) defor-

mation equivalent to each other if they are connected by equi-singular (resp. strongly

equi-singular) families of fundamental triplets.

Lemma 5.13. Let (X,E,∆) be a fundamental triplet of type [1; 2, 2]0 and let φ : (M,EM)

→ (X,E,∆) be the elimination. For a reducible fiber F of M → X → P1, the dual graph

of EM +F is one of the following, where the number of black vertices is at most 7 in (3),

and is at most 8 in (4):

(1) id�
�

i

@@ i (2) id i

y

y (3) y

i

y

di

y

i
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(4) id i y y

y

y

Proof. The image ℓ = φ(F ) is a fiber of π : X → P1 with ℓ ∩∆ 6= ∅, and F = φ−1(ℓ). If

ℓ ∩ E consists of two points Q1, Q2, then the dual graph of F + EM is either (1) or (3)

above, and the number of black vertices is multQ1(∆) + multQ2(∆)− 1. If ℓ intersects E

tangentially at a point P , then P ∈ ∆ and the dual graph of F + EM is one of (1), (2),

and (4) above. Here the number of black vertices equals multP (∆) if multP (∆) ≥ 2, and

equals 0 if multP (∆) = 1. Thus, we are done. �

Lemma 5.14. Let (X,E) be a minimal basic pair and ∆1, ∆2 be two zero-dimensional

subschemes of X such that

(1) (X,E,∆1) and (X,E,∆2) are fundamental triplets of the same type,

(2) deg(∆1 ∩ Ej) = deg(∆2 ∩ Ej) for any irreducible component Ej of E,

(3) multP (∆1) = multP (∆2) and multP (∆1 ∩ Ej) = multP (∆2 ∩ Ej) for any node P

of E and for any irreducible component Ej ∋ P .

Then (X,E,∆1) and (X,E,∆2) are equi-singular deformation equivalent to each other.

They are strongly equi-singular deformation equivalent if the following conditions are

satisfied in addition:

(4) ∆1 ∩ (Ej \ {node of E}) ≃ ∆2 ∩ (Ej \ {node of E}) as schemes for any Ej;

(5) Suppose that (X,E) is of type [1; 2, 2], E is non-singular, and π|E : E → P1 is

separable. Let Li ⊂ X be the union of fibers ℓ of π with deg(ℓ ∩ ∆i) = 2 for

i = 1, 2. Then there is an isomorphism ∆1 ≃ ∆2 inducing ∆1 ∩ L1 = E ∩ L1 ≃
∆2 ∩ L2 = E ∩ L2.

Proof. By Proposition 2.21, we have an equi-singular family (X × T,E × T, ∆̃) → T

of fundamental triplets over a connected non-singular curve T . Thus the first assertion

follows. Suppose that the latter two conditions are satisfied. Then, by (4), the subschemes

∆♯
1 and ∆♯

2 in the proof of Proposition 2.21 are isomorphic to each other on any irreducible

components of E♯. Thus ∆t = ∆̃ ∩ (X × {t}) is isomorphic to ∆1 for any t, and the

condition (4) of Definition 5.12 is satisfied. Since the condition (5) of Definition 5.12

is automatically satisfied, we may assume that (X,E) is of type [1; 2, 2] and E is non-

singular.

Suppose that π|E is inseparable. For i = 1, 2, and m ≥ 1, let ∆
[m]
i be the set of points

P with multP (∆i) = m. Then we can write

∆1 =
∑

m≥1
m∆

[m]
1 , ∆2 =

∑
m≥1

m∆
[m]
2 .
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Here ∆
[m]
1 is linearly equivalent to ∆

[m]
2 for any m ≥ 1, since ∆1 ≃ ∆2. Hence, we have a

smooth family ∆̃[m] ⊂ X × T of reduced effective divisors for m ≥ 1 over a non-singular

connected curve T such that ∆
[m]
i = ∆̃[m]∩(X×{ti}) for suitable point ti ∈ T for i = 1, 2.

We set ∆̃ =
∑

m≥1m∆̃[m]. For the union Li of fibers ℓ of π with deg(ℓ∩∆i) = 2 for i = 1,

2, we have Li ∩E = Li ∩∆ = 2
∑

m≥2 ∆
[m]
i . Thus, for the family (X × T,E × T, ∆̃)→ T

of fundamental triplets, we have an effective divisor L̃ ⊂ X × T satisfying the condition

(6) of Definition 5.12.

Suppose that π|E is separable. Then the set R of the ramification points of π|E consists

of one point if char k = 2, and two points if char k 6= 2, by Lemma 4.11. If multQ(∆1) =

m ≥ 2 for a point Q ∈ R, then ℓ ∩ E = 2Q for the fiber ℓ of π containing Q, and hence,

by (5), multQ(∆2) = m or multQ′(∆2) = m for the other point Q′ ∈ R. If char k 6= 2,

then, by Lemma 4.11, we have an involution of X preserving E and π, and interchanging

Q and Q′. Thus we may assume that if multQ(∆1) = m ≥ 2 for a point Q ∈ R, then

multQ(∆2) = m. Let LR
i be the union of fibers ℓ of π passing through a point Q ∈ R with

multQ(∆) ≥ 2 for i = 1, 2. Then LR
1 = LR

2 and LR
1 ∩ E = LR

1 ∩∆1 = LR
2 ∩ E = LR

2 ∩∆2

by the assumption. We set ∆0 to be the divisor
∑

P∈LR
1

multP (∆1)P =
∑

P∈LR
2

multP (∆2)P.

In order to construct a divisor L̃ ⊂ X × T satisfying the condition (6) of Definition 5.12,

it is enough to consider the restrictions of ∆1 and ∆2 to E \ Supp ∆0. Note that the

Galois involution ι associated with the double-covering π|E : E → P1 acts on E \ R
freely. We have a finite number of morphisms Pj : T → E \ (LR

1 ∩ E) from a connected

non-singular curve T with fixed points t1, t2, and natural numbers mj ≥ 1 such that

∆i =
∑
mjPj(ti)+∆0 for i = 1, 2. By the condition (5) and by replacing T with an open

subset, we may assume that, for a natural number k and for any t ∈ T ,

• Pj(t) 6= Pj′(t) for any j 6= j′,

• Pj(t) 6∈ R for 1 ≤ j ≤ 2k,

• ι ◦ Pj(t) = Pj+k(t) for 1 ≤ j ≤ k,

• ι ◦ Pj(t) 6= Pj′(t) for j, j′ > 2k, except for the case where j = j′ and Pj(t) ∈ R.

Let ∆̃ ⊂ X × T be the effective divisor
∑
mjΓj + (∆0 × T ), where Γj is the graph

of Pj. Then, for the family (X × T,E × T, ∆̃) → T , we can find an expected divisor

L̃ ⊂ X × E. �

Theorem 5.15. Let τ : (X̃, Ẽ, ∆̃)→ T be an equi-singular family of fundamental triplets

over a connected non-singular curve T . Then there is a simultaneous elimination M̃ → X̃

of ∆̃ over T if T is replaced with a finite covering over T . Moreover the induced family



92

h : (M̃, Ẽ
M̃

) → T of basic pairs is equi-singular. If τ is strongly equi-singular, then h

induces an equi-singular family f : (S̃, B̃)→ T of del Pezzo pairs.

Proof. The existence of the simultaneous elimination is shown by Lemma 2.20 and by

a similar argument to the proof of Proposition 2.21. By (1)–(3) of Definition 5.12, we

infer that Ẽ
M̃

is a relative simple normal crossing divisor over T . In order to show the

equi-singularity of f , we apply Lemma 4.13. The exceptional curves for the eliminations

and Ẽ
M̃

form a relative simple normal crossing divisor over T by (4) of Definition 5.12.

In case (Xt, Et,∆t) is of type [2; 1, 2]0, then the negative section σ on Xt forms a divisor

of M̃ smooth over T which does not intersect Ẽ
M̃

. If (Xt, Et,∆t) is of type [1; 2, 2]0, then

the proper transform of the divisor L̃ in M̃ is smooth over T and is away from Ẽ
M̃

. Thus

the induced family (S̃, B̃)→ T is equi-singular. �

5.3. Deformation of log del Pezzo surfaces of index two. Recall that S is called

a log del Pezzo surface if (S, 0) is a log-terminal del Pezzo pair. By a deformation of a

log del Pezzo surface S, we mean a deformation of the del Pezzo pair (S, 0) in the sense

of Definition 5.1, (3). If the index of S is at most two, then the genus g is a deformation

invariant, since 2g − 2 = (KM + LM)LM = 2K2
S. The author has learned the following

result in the case of characteristic zero from Yongnam Lee.

Theorem 5.16. A log del Pezzo surface of index two is deformation equivalent to a

(non-singular) del Pezzo surface by a deformation of index two of log del Pezzo surfaces

in the sense of Definition 5.1. In particular, a log del Pezzo surface of index at most two

admits a Q-Gorenstein smoothing.

Proof. A non-Gorenstein singular point of a log del Pezzo surface S of index two is of type

Kn for n ≤ 9 by Theorem 4.14. Moreover, the local ring of the singularity is isomorphic to

the local ring at the origin of X((1, 2n−1)/(4n)) of Example 4.17. In fact, the morphism

to X((1, 2n − 1)/(4n)) in Proposition 4.18 is birational by construction of the minimal

desingularization M . Thus, the singularity admits a Q-Gorenstein smoothing (of index

two) by Proposition 4.19.

In order to show that the smoothing extends to a global deformation of S, it is enough

to prove that H2(S, TS) = 0 for TS = Hom(Ω1
S,OS) (cf. [29, Proposition 6.4], [21, Lemma

1]). In fact, we have a formal global deformation by the vanishing, which is algebraizable

by H2(S,OS) = 0. Note that H2(S, TS) is dual to HomS(TS, ωS) for the dualizing sheaf

ωS ≃ OS(KS) and that a member of |−KS| induces an injection ωS →֒ OS. Thus

H2(S, TS) = 0 follows from another vanishing HomS(TS,OS) ≃ H0(S, (Ω1
S)∨∨) = 0. Since

S has only toric singularities, the double-dual (Ω1
S)∨∨ is isomorphic to α∗Ω

1
M (cf. [8]).
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Thus the vanishing is established by H0(M,Ω1
M) = 0. Hence, S admits a Q-Gorenstein

smoothing.

Let St be a smooth surface obtained as a smooth fiber of the Q-Gorenstein smoothing.

Since −2KS is an ample Cartier divisor, −KSt is also ample. Thus St is a del Pezzo

surface. �

Since the genus g can be taken between 2 and 10, any del Pezzo surface degenerates

into a log del Pezzo surface of index two by a Q-Gorenstein deformation.

For deformations of constant index two (cf. Definition 5.1, (3)), we have the following

result by Proposition 5.4 and Proposition 5.10.

Lemma 5.17. If two log del Pezzo surfaces of index two have the same genus g 6= 6,

then they are connected by deformations of constant index two. A log del Pezzo surface

of index two and of genus g = 6 is connected to a log del Pezzo surface of type [1]0 or

[0; 1, 0]0 by deformations of constant index two.

In the case of g = 6, we have exactly two deformation equivalence classes for deforma-

tions of constant index two by:

Lemma 5.18. Let f : S̃ → T be a flat family of normal surfaces over a non-singular

connected curve T such that 2K
S̃

is Cartier and that any fiber St = f−1(t) is a log

del Pezzo surface of index two. If a fiber So is of type [1]0, then so is any fiber St.

Proof. The type of a fiber St is one of [1]0, [0; 1, 0]0, [2; 1, 1]+(a, b), since these are the

types with genus 6. We have isomorphisms

ωSt ≃ Ext1
O

S̃

(OSt , ωS̃
) ≃ ω

S̃
⊗OSt and OSt(2KSt) ≃ OS̃

(2K
S̃
)⊗OSt

for any t ∈ T . Since −KSt = KSt + (−2KSt), we have

OSt(−KSt) ≃ OS̃
(−K

S̃
)⊗OSt .

We also have the base change isomorphism

f∗OS̃
(−K

S̃
)⊗OT

k(t) ≃ H0(St,−KSt)

by H1(St,−KSt) = 0. Let PT (E)→ T be the projective bundle associated with the locally

free sheaf E = f∗OS̃
(−K

S̃
) and let Φ: S̃ ···→ PT (E) be the rational map over T associated

with the homomorphism f ∗f∗E → OS̃
(−K

S̃
). Then the restriction of Φ to St coincides

with the rational map associated with the linear system |−KSt|. Thus Φ(So) ≃ P2, and

Φ(St) ≃





F0, if St is of type [0; 1, 0]0;

F2, if St is of type [2; 1, 1]+(a, b).
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Let V ⊂ PT (E) be the image of the rational map Φ. Then a general fiber Vt of V → T is

just the image Φ(St). For a tautological divisor H of PT (E) with respect to E , we have

Φ(St)H
2 = 6, since Φ|St is birational to the morphism associated with |KMt +Lt| for the

minimal desingularization αt : Mt → St and for Lt = α∗
t (−2KSt). Therefore, Vt = Φ(St)

for any t. Moreover, Vt ≃ P2, since Vo ≃ P2. Hence, St is of type [1]0 for any t. �

Therefore, the number of the deformation types of log del Pezzo surfaces of index two

with respect to the deformations of constant index two is 10.
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6. The structure of log del Pezzo surfaces of index two

In the remaining part of this paper, we consider only log del Pezzo surfaces S of index

two. In this section, the negative curves on the minimal desingularization M are studied.

We shall show that the dual graph of negative curves on M and the type of S almost

determine the equi-singular deformation equivalence class of S. We shall also compare

the classification of log del Pezzo surfaces of index two by the types of fundamental triplet

with the classification by Alexeev–Nikulin [3].

6.1. Types of log del Pezzo surfaces of index two. For a log del Pezzo surface S

of index two, let α : M → S be the minimal resolution of singularities. Then −2KM ∼
α∗(−2KS) + EM for a non-zero α-exceptional simple normal crossing divisor EM , and

(M,EM) is a basic pair with LMEM = 0 for LM = −2KM −EM . Conversely, S is deter-

mined by M since |−2KM | = |LM | + EM and since α is given as the Stein factorization

of the morphism associated with the base point free linear system |LM |.
Let (X,E,∆) be a fundamental triplet whose elimination φ : M → X of ∆ defines the

basic pair (M,EM) by EM = E∆
M . Here, E is also a non-zero simple normal crossing

divisor and LE = deg(∆) for L = −2KX − E.

There is an isomorphism α∗OM(KM + LM) ≃ OS(−KS) by KM + LM ∼ KM +

α∗(−2KS). Thus the morphism M → P|KM + LM | associated with the base point

free linear system |KM + LM | is birational to the rational map Φ|−KS | : S ···→ P|−KS|
associated with the anti-canonical linear system |−KS|, even though −KS is not Cartier.

If KX + L is ample, then X is the image of Φ|−KS | and E is the image of the non-

Gorenstein locus of S. If KX + L is not ample but big, then the rational map Φ|−KS |

induces the contraction morphism X ≃ F2 → F2 ≃ P(1, 1, 2) of the negative section

σ ⊂ X. If KM + LM is not big, then the morphism π ◦ φ : M → X → P1 is obtained as

the Stein factorization of the composite Φ|−KS | ◦ α.

A log del Pezzo surface S of index two determines the isomorphism class of the basic

pair (M,EM), and moreover, the isomorphism class of the fundamental triplet (X,E,∆)

except for the case where (X,E,∆) is of type [1; 2, 2]0, by Theorem 4.9 (cf. Example 4.12).

In particular, the type of (X,E,∆) depends only on S. Thus we define the type of S to

be the type of (X,E,∆). Let T be the type of S. Then the genus gT is defined as the

genus of the minimal basic pair (X,E), but it equals the genus of the basic pair (M,EM)

and also the genus of the del Pezzo pair (S, 0). In particular, gT = K2
S + 1.

The number of irreducible components of EM also depends on the type T, which is

denoted by kT. In Section 6.3 below, we shall introduce another invariant δT, which is

calculated in Proposition 6.14. We have Table 6 of the list of types T of log del Pezzo

surfaces of index two together with the invariants gT, kT, and δT.
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Table 6. The types of log del Pezzo surfaces of index two

Type T gT kT δT Type T gT kT δT Type T gT kT δT

[1]0 6 1 0 [1; 1, 1]0 5 1 1 [3; 1, 0]0 9 1 1

[2]0 3 1 1 [1; 1, 1]+(0, 0) 5 2 1 [3; 1, 1]+ 7 2 0

[2]+(0) 3 2 1 [1; 1, 1]+(1, 1) 5 3 1 [3; 2, 4]+ 2 2 1

[2]+(1) 3 3 1 [1; 1, 1]+(2, 1) 5 4 0 [3; 2, 4]++(0, 0) 2 3 1

[2]+(2) 3 4 1 [1; 1, 1]+(1, 2) 5 4 1 [3; 2, 4]++(1, 1) 2 4 1

[2]+(3) 3 5 1 [1; 1, 1]+(1, 3) 5 5 1 [3; 2, 4]++(2, 1) 2 5 0

[2]+(4) 3 6 0 [1; 2, 2]0 2 1 1 [3; 2, 4]++(1, 2) 2 5 1

[0; 1, 0]0 6 1 1 [2; 1, 0]0 8 1 1 [3; 2, 4]++(1, 3) 2 6 1

[0; 1, 1]0 4 1 1 [2; 1, 1]+(0, 0) 6 2 1 [3; 2, 4]++(1, 4) 2 7 1

[0; 1, 1]+(0) 4 2 1 [2; 1, 1]+(1, 1) 6 3 1 [3; 2, 4]++(1, 5) 2 8 1

[0; 1, 1]+(1) 4 3 1 [2; 1, 1]+(1, 2) 6 4 1 [3; 2, 4]++(1, 6) 2 9 0

[0; 1, 1]+(2) 4 4 1 [2; 1, 1]+(1, 3) 6 5 0 [4; 1, 0]0 10 1 0

[0; 1, 1]+(3) 4 5 1 [2; 1, 2]0 4 1 1 [4; 2, 4]00 3 2 0

[1; 1, 0]0 7 1 1 [2; 1, 2]++ 4 3 0

By Table 6, we shall show in Lemma 6.15 below that δT depends on the equi-singular

deformation equivalence class of basic pairs (M,EM) with LMEM = 0. In particular, we

have:

Theorem 6.1. The list of types of fundamental triplets coincides with the list of equi-

singular deformation equivalence classes of basic pairs defining log del Pezzo surfaces

of index two with one exception; The two types [0; 1, 1]0 and [2; 1, 2]0 define the same

equi-singular deformation equivalence class.

6.2. The negative curves on M .

Proposition 6.2. A negative curve γ on M is a (−d)-curve for 1 ≤ d ≤ 4. Moreover,

the (−d)-curves are classified as follows :

(1) A (−4)-curve is a connected component of EM and is the proper transform of an

irreducible connected component of E. A (−4)-curve exists if and only if E is

non-singular.

(2) A (−3)-curve γ is the proper transform of an irreducible component E1 of E with

(E − E1)E1 = 1. Here, (EM − γ)γ = 1.

(3) A φ-exceptional (−2)-curve is a φ-exceptional irreducible curve γ satisfying γ ∩
EM = ∅ or γ ⊂ EM . If γ ∩ EM = ∅, then φ(γ) is a non-singular point of E. If

γ ⊂ EM , then φ(γ) is a node of E.
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(4) A (−2)-curve which is not φ-exceptional is the proper transform of one of the

following curves on X ≃ Fn:

(a) The section σ when the type is [2; 1, 2]0 or [2; 1, 2]++;

(b) A fiber ℓ of π with ℓ ∩ E ⊂ ∆ when the type is [1; 2, 2]0.

(c) The fiber ℓ of π contained in E when the type is [3; 2, 4]++(a, b).

(5) A φ-exceptional (−1)-curve is either the curve Γk in the situation of Lemma 2.10

or the curve Γb+1 in the situation of Lemma 2.14.

(6) A (−1)-curve γ with LMγ = 1 which is not φ-exceptional is the proper transform

of a fiber ℓ of π : X ≃ Fn → P1 such that Eℓ = 2, ℓ 6⊂ E, and deg(∆ ∩ ℓ) = 1.

Here, γ ∩ EM is a non-singular point of EM .

(7) A (−1) curve γ with LMγ 6= 1 satisfies LMγ = 2 and EM ∩ γ = ∅, and is the

proper transform of one of the following curves:

(a) A line ℓ of P2 with deg(∆ ∩ ℓ) = 2 when degE = 2;

(b) A fiber ℓ of π with deg(∆ ∩ ℓ) = 1 when X ≃ Fn and Eℓ = 1;

(c) A minimal section σ with σ∩E ⊂ ∆ when the type is [0, 1, 1]0 or [0; 1, 1]+(b);

(d) The negative section σ when the type is [1; 1, 1]0;

(e) A section Θ at infinity with Θ ∩ E ⊂ ∆ in the case where the type is one

of [3; 2, 4]+, [3; 2, 4]++(0, 0), [3; 2, 4]++(1, 1), [3; 2, 4]++(1, 2), [3; 2, 4]++(1, 3).

Here, for a given Cartier divisor ∆′ ⊂ ∆ of E with ∆′ ∼ (σ + 3ℓ)|E, there

exists uniquely the section Θ at infinity with Θ ∩ E = ∆′;

(f) The negative section σ when the type is [1; 2, 2]0;

(g) A section Θ ∼ σ + mℓ of π with Θ ∩ E ⊂ ∆ for 1 ≤ m ≤ 4 when the type

is [1; 2, 2]0. Here, for a given Cartier divisor ∆′ ⊂ ∆ of E with deg ∆′ = 2m

such that E ∩ ℓ 6⊂ ∆′ for any fiber ℓ of π, there exists uniquely the section Θ

with Θ ∩ E = ∆′.

Note that the α-exceptional curves are classified in Lemma 4.13 for any basic pairs

(M,EM). However, here, we consider only the basic pairs with LMEM = 0. A part of

the proof below overlaps with the proof of Lemma 4.13.

Proof. If γ is φ-exceptional, then γ is a (−1)-curve or a (−2)-curve, and the assertions

(3) and (5) have been shown in Lemmas 2.10 and 2.14.

We have the following properties (i)–(iv) of a negative curve γ on M :

(i) If γ is not φ-exceptional, then the equality

γ2 = φ(γ)2 − deg(∆ ∩ φ(γ))

holds, by Lemma 2.7.

(ii) If γ 6⊂ EM , then γ is a (−1)-curve or a (−2)-curve, by −2KMγ = LMγ+EMγ ≥ 0.
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(iii) Suppose that φ(γ) is an irreducible component E1 of E in M . Then

−4 ≤ γ2 = −4 + (E − E1)E1 ≤ −3,

which is derived from

γ2 = E2
1 − deg(∆ ∩ E1) = E2

1 − LE1 = E2
1 − (−2KX − E)E1

= 2(KX + E1)E1 + (E − E1)E1 = −4 + (E − E1)E1.

In particular, γ is a (−3)-curve or a (−4)-curve.

(iv) If γ ⊂ EM , then LMγ = 0 and

−4 = 2(KM + γ)γ = −EMγ − LMγ + 2γ2 = γ2 − (EM − γ)γ ≤ γ2.

The properties above show that γ ≃ P1 with γ2 ≥ −4. The assertions (1) and (2)

follow from (iii), (iv). Note that if E has an irreducible connected component, then E is

non-singular by Theorem 4.6.

In the proof of (4), (6), (7) below, let e1, e2 be the integers with E ∼ e1σ + e2ℓ when

X ≃ Fn.

(4): Let γ be the (−2)-curve. Then LMγ = EMγ = 0 by −2KM = LM + EM and

LMEM = 0. In particular, (KM + LM)γ = (KX + L)φ(γ) = 0. Hence, KX + L is not

ample. If KX +L is big, then the type of (X,E,∆) is [2; 1, 2]0 or [2; 1, 2]++, and φ(γ) = σ.

Conversely, the proper transform of σ in the case [2; 1, 2]0 or [2; 1, 2]++ is a (−2)-curve

since ∆ ∩ σ = ∅. This is the case of (4a).

Suppose that KX + L is not big. Then e1 = 2. Since KX + L ∼ (n+ 2− e2)ℓ, φ(γ) is

a fiber ℓ of π. Conversely, if γ is the proper transform of ℓ in the case e1 = 2, then γ is a

(−2)-curve if and only if deg(∆ ∩ ℓ) = 2, by (i). Here, if ℓ 6⊂ E, then the type is [1; 2, 2]0

by 2 = deg(∆ ∩ ℓ) ≤ Eℓ, and we have ℓ ∩ E ⊂ ∆ by Eℓ ≤ 2. This is the case of (4b). If

ℓ ⊂ E, then the type is [3; 2, 4]++(a, b) and the fiber ℓ is unique, where deg(∆ ∩ ℓ) = 2.

This is the case of (4c).

(6): Now φ(γ) 6⊂ E by (iii) and KMγ = LMγ = EMγ = 1. Hence, (KX + L)φ(γ) = 0.

Thus KX +L is not ample. If KX +L is big, then X ≃ F2 and φ(γ) = σ, which contradicts

(i). Hence, KX + L is not big. Thus e1 = 2 and φ(γ) is a fiber ℓ of π. Conversely, if γ is

the proper transform of a fiber ℓ 6⊂ E in the case e1 = 2, then γ2 = − deg(∆ ∩ ℓ) by (i).

Thus γ is a (−1)-curve if and only if deg(∆ ∩ ℓ) = 1. If E has a node, then the type is

[3; 2, 4]+ or [3; 2, 4]++(a, b), but a fiber ℓ 6⊂ E with ∆ ∩ ℓ 6= ∅ does not contain the nodes

of E.

(7): The curve γ is not φ-exceptional by (5), and φ(γ) 6⊂ E by (iii). The equality

2 = −2KMγ = LMγ + EMγ implies that LMγ = 2 and EM ∩ γ = ∅. In particular,
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(KX + L)φ(γ) = 1. We consider the proof in the following cases:

(A) X ≃ P2; (B) X ≃ Fn and e1 = 1; (C) X ≃ Fn and e1 = 2.

Case (A): degE = 2 and φ(γ) is a line ℓ by deg(KX + L) = 3− degE. Conversely, if

γ is the proper transform of a line ℓ and if degE = 2, then γ is a (−1)-curve if and only

if deg(∆ ∩ ℓ) = 2, by (i). This is the case of (7a).

Case (B): KX + L ∼ σ + (n+ 2− e2)ℓ with e2 ≤ 2. Note that e2 = 2 only in the case

[2; 1, 2]++.

If φ(γ) is a fiber ℓ of π, then deg(∆∩ℓ) = ℓ2−γ2 = 1. Conversely, the proper transform

of a fiber ℓ with deg(∆ ∩ ℓ) = 1 is a (−1)-curve. This is the case of (7b).

If φ(γ) is a minimal section σ′, then e2 = 1, σ′ 6⊂ E, and deg(σ′ ∩∆) = −n+ 1; hence,

the type is [0; 1, 1]0, [0; 1, 1]+(b), or [1; 1, 1]0. For the types [0; 1, 1]0 and [0; 1, 1]+(b), we

have σ′∩E ⊂ ∆. This is the case of (7c). For the type [1; 1, 1]0, σ
′ is the negative section

σ and σ ∩ E = σ ∩∆ = ∅. This is the case of (7d).

Assume that φ(γ) is neither a fiber nor a minimal section. Then φ(γ)2 > 0. By the

Hodge index theorem, we have

1 = ((KX + L)φ(γ))2 ≥ (KX + L)2φ(γ)2 = (n+ 4− 2e2)φ(γ)2 > 0.

Thus 2e2 = n+ 3 and φ(γ)2 = 1. Then n = 1 and e2 = 2, which is a contradiction since

e2 ≤ 1 for n 6= 2.

Case (C): Then KX +L ∼ (n+2−e2)ℓ, where 0 ≤ e2 ≤ n+1. Since (KX +L)φ(γ) = 1,

φ(γ) is a section Θ ∼ σ + mℓ for some m and e2 = n + 1. Then the type is [1; 2, 2]0,

[3; 2, 4]+, or [3; 2, 4]++(a, b). We treat the case of types [3; 2, 4]+ and [3; 2, 4]++(a, b) in

Subcase (C1), and the case of type [1; 2, 2]0 in Subcase (C2) below.

Subcase (C1): This will corresponds to the case (7e). Here n = 3. Then m ≥ 3, since

σ ⊂ E and Θ 6⊂ E. Here,

2m− 2 = Θ2 − γ2 = deg(∆ ∩Θ) ≤ Θ(E − σ) = m+ 1.

Hence, m = 3 and Θ ∩ E ⊂ ∆. Conversely, let ∆′ ⊂ ∆ be a Cartier divisor such that

∆′ ∼ (σ + 3ℓ)|E. Since Hp(X, σ + 3ℓ − E) = Hp(X,−σ − ℓ) = 0 for any p, we have an

isomorphism

H0(X, σ + 3ℓ)
≃−→ H0(E,OE(σ + 3ℓ)).

Here the subspace H0(X, 3ℓ) of the left hand side is isomorphic to the kernel of

H0(E,OE(σ + 3ℓ))→ H0(σ,Oσ).

Since ∆ ∩ σ = ∅, there exists a unique section Θ ∼ σ + 3ℓ at infinity with Θ ∩ E = ∆′.

Furthermore, the proper transform of Θ in M is a (−1)-curve.



100

We have to consider the existence of ∆′ ∼ (σ + 3ℓ)|E with ∆′ ⊂ ∆. If the type is

[3; 2, 4]+, then ∆ does not contain the node of E and hence any subscheme ∆′ ⊂ ∆ with

deg ∆′ = 4 is linearly equivalent to (σ + 3ℓ)|E.

Suppose that the type is [3; 2, 4]++(a, b). Then E = σ + ℓ + σ∞ for a section σ∞ at

infinity and for a fiber ℓ of π, where ∆ ∩ σ = ∅. If (a, b) 6= (0, 0), then ∆ contains

the node P = ℓ ∩ σ∞ and hence multP (∆′ ∩ ℓ) = a, multP (∆′ ∩ σ∞) = b for any

Cartier divisor ∆′ ⊂ ∆ of E containing P by Corollary 2.13. If ∆′ ∼ (σ + 3ℓ)|E, then

deg(∆′ ∩ σ∞) = 3 ≤ deg(∆ ∩ σ∞) = 6 and deg(∆′ ∩ ℓ) = 1 ≤ deg(∆ ∩ ℓ) = 2. Therefore,

the Cartier divisor ∆′ ⊂ ∆ with ∆′ ∼ (σ + 3ℓ)|E exists if and only if the type is one of

[3; 2, 4]++(0, 0), [3; 2, 4]++(1, 1), [3; 2, 4]++(1, 2), [3; 2, 4]++(1, 3).

Subcase (C2): This will corresponds to the cases (7f), (7g). Here, E ∼ 2σ + 2ℓ is

non-singular and σ ∩ E = ∅. We have

2m = Θ2 − γ2 = deg(Θ ∩∆) ≤ ΘE = 2m.

Hence, Θ ∩ E ⊂ ∆ and 0 ≤ m ≤ 4 by 2m = ΘE ≤ deg ∆ = 8. If m = 0, then Θ = σ. In

the case m > 0, Θ is determined by Θ ∩ E. In fact, the vanishings Hp(X,−σ + jℓ) = 0

for p, j ∈ Z induce an isomorphism

H0(X, σ +mℓ)
≃−→ H0(E,O(2m)).

Hence, for a given subscheme ∆′ ⊂ ∆ of deg ∆′ = 2m such that ℓ ∩E 6⊂ ∆′ for any fiber

ℓ, the section Θ ∼ σ +mℓ with Θ ∩ E = ∆′ exists uniquely. Thus we are done. �

Let ψ : Y →M be the blowing-up at all the nodes of EM . Then the proper transform

EY of EM in Y is a disjoint union of (−4)-curves. Let Gq be the ψ-exceptional curve over

a node q of EM . Then EY = ψ∗(EM)− 2
∑
Gq and

(6–16) −2KY = ψ∗(−2KM)− 2
∑

Gq ∼ ψ∗(LM + EM)− 2
∑

Gq = ψ∗(LM) + EY .

Definition 6.3 (cf. [3]). The birational morphism β = α ◦ ψ : Y → S is called the right

resolution of S. If a non-singular projective surface Y is the right resolution of a log

del Pezzo surface of index two, then Y is called a DPN surface, for short.

In char k = 0, the notion of DPN surface above coincides with that of right DPN

surface of elliptic type in [3].

Lemma 6.4. For a DPN surface Y, suppose that there exists a negative curve γ ⊂ Y
such that γ is not ψ-exceptional and ψ(γ)2 ≥ 0. Then the type of (X,E,∆) is [3; 2, 4]+, γ

is a (−1)-curve, and φ ◦ ψ(γ) is the unique fiber of π : X → P1 passing through the node

of E.
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Proof. We have −2KYγ ≥ 0 by (6–16), since ψ(γ) 6⊂ EM . Since LMψ(γ) > 0 by the

Hodge index theorem, γ is a (−1)-curve and LMψ(γ) + EYγ = 2. Then

LMψ(γ) ≥ EYγ + 2
∑

Gqγ > EYγ,

since LM − EM is nef. Hence, LMγ = 2, EYγ = 0, and
∑
Gqγ = 1. It follows that

ψ(γ)2 = 0 and φ∗(KX + L)ψ(γ) = 0 by 2(KM + LM) ∼ LM − EM . Therefore, X ≃ Fn,

KX +L is not big, and φ◦ψ(γ) is a fiber ℓ0 of π. Here, ℓ0∩∆ = ∅ and ℓ0 contains a node

of E. Hence, the type of (X,E,∆) is [3; 2, 4]+ and ℓ0 is the unique fiber passing through

the node of E. Conversely, the proper transform of the fiber ℓ0 in Y is a (−1)-curve. �

Corollary 6.5. A negative curve on a DPN surface Y is a (−d)-curve for d = 1, 2, 4.

(1) The set of (−4)-curves on Y coincides with the set of the proper transforms of

irreducible components of EM .

(2) The set of (−2)-curves on Y coincides with the set of the total transforms of

(−2)-curves on M not contained in EM .

(3) The set of (−1)-curves on Y consists of the following curves :

(a) The ψ-exceptional curves ;

(b) The total transforms of (−1)-curves on M ;

(c) The proper transform of the fiber containing the node of E when the type is

[3; 2, 4]+.

Proof. By Lemma 6.4, it is enough to consider the proper transforms of negative curves

on M . Then the proper transform of any irreducible component of EM is a (−4)-curve

by (1), (2), and (4) of Proposition 6.2. The proper transform in Y of a (−2)-curve not

contained in EM is a (−2)-curve by (3) and (4) of Proposition 6.2. The proper transform

in Y of a (−1)-curve is a (−1)-curve by (5), (6), and (7) of Proposition 6.2. Thus we are

done. �

Corollary 6.6. The Picard number r = ρ(Y) of Y equals 11− gT + kT for the type T of

S.

Proof. EY is non-singular with kT components where any component is a (−4)-curve.

Hence, 4K2
Y = L2

M−4kT by (6–16). Since (KM +LM)LM = 2gT−2 induces L2
M = 4gT−4,

we have r = 10−K2
Y = 11− gT + kT. �

Let n(EM) be the number of nodes of EM . Then n(EM) = kT− 1 when the type is not

[4; 2, 4]00, and n(EM) = 0 when the type is [4; 2, 4]00.
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Corollary 6.7. The Picard number ρ(M) equals 10 − (KX + E)2. It is also calculated

as follows :

ρ(M) = 11− gT + kT − n(EM) =





12− gT, if the type is not [4; 2, 4]00;

13− gT = 10, if the type is [4; 2, 4]00.

Proof. The first equality follows from K2
M = (KM + LM)2 = (KX + L)2 = (KX +E)2 by

(3–4). The second follows from Corollary 6.6. �

We have the following characterization for a rational projective surface to be a DPN

surface:

Lemma 6.8. A non-singular projective rational surface Y is a DPN surface if and only

if there is a non-zero non-singular divisor EY such that LY = −2KY −EY is nef and big,

and LYEY = 0.

Proof. It is enough to show the ‘if’ part. Let β : Y → S be the birational morphism into

a normal complete algebraic space S of dimension two such that β-exceptional curves

are the curves γ with LYγ = 0. Then S is a log del Pezzo surface of index two (cf.

Definition 3.2, Proposition 3.5). Let α : M → S be the minimal desingularization. Then

β = α ◦ ψ for a birational morphism ψ : Y → M and ψ∗EM = EY + 2G for the ψ-

exceptional divisor G ∼ KY − ψ∗KM . Let Y = Ym → Ym−1 → · · · → Y1 → Y0 = M be

the succession of blowups at points representing ψ. For 0 ≤ i ≤ m− 1, let ψi : Yi+1 → Yi

be the blowing up, Gi+1 ⊂ Yi+1 the ψi-exceptional divisor, and let Ei ⊂ Yi be the

pushforward of EY . Then ψ∗
iEi = Ei+1 + 2Gi+1 for any i. In particular, the center of

ψi : Yi+1 → Yi is a node of Ei. Hence, ψ : Y → M is the blowing up at all the nodes of

EM . Therefore, β : Y → S is the right resolution. �

6.3. Another invariant δ. Let β : Y → S be the right resolution and let ψ : Y →M be

the blowing up at all the nodes of M , as before. For an irreducible component Ei,M of

EM , let Ei,Y be the proper transform in Y , which is a (−4)-curve. The proper transform

EY =
∑
Ei,Y of EM in Y is a disjoint union of the (−4)-curves. Moreover, EY is the

union of all the (−4)-curves on Y by Corollary 6.5. We infer that EY coincides with the

fixed part of the linear system |−2KY | by the relation (6–16). Since LY = −2KY −EY ∼
ψ∗LM ∼ β∗(−2KS), β : Y → S is induced from the morphism associated with |−2KY |.
We have

dim H0(Y ,−2KY) = dim H0(S,−2KS) = 3K2
S + 1 = 3gT − 2,(6–17)

dim H1(Y ,−2KY) = dim H0(Y ,−2KY)− χ(Y ,−2KY) = 3(K2
S −K2

Y) = 3kT,

by Theorem 3.18, H2(Y ,−2KY) = 0, E2
Y = −4kT, and by (6–16).
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Definition 6.9. We introduce an invariant δ ∈ {0, 1} for a DPN surface Y as follows:

For the number k of irreducible components of EY and for a vector ε = (ε1, . . . , εk) with

εi ∈ {1,−1}, we set

Bε
Y := LY +

∑k

i=1
εiEi,Y .

Then we define δ = 0 if there exists a vector ε ∈ {1,−1}k such that the numerical class

cl(Bε
Y) ∈ NS(Y) is divisible by 4, i.e., cl(Bε

Y) ∈ 4 NS(Y). If δ 6= 0, then we define δ = 1.

Note that δ can be considered as an invariant of S which depends only on the type of S.

Remark. The invariant δ above is nothing but the geometric interpretation of δ of the

main invariants (r, a, δ) for the invariant lattice S (cf. Section 6.6, [3, §2.3]).

Proposition 6.10. Let ̟ : Ỹ → T be a proper smooth morphism over a non-singular

connected curve T whose fibers Yt = ̟−1(t) are DPN surfaces. Then the invariant δ(Yt)

is constant on T .

Proof. We may replace T with another curve étale over T , since T is connected. The

rationality of Yt implies that the relative Picard scheme Pic
Ỹ/T

is étale over T . Hence,

we may assume that the restriction map Pic(Ỹ)→ Pic(Yo) is surjective for a given point

o ∈ T . The kernel of the restriction map is just the image of ̟∗ : Pic(T ) → Pic(Ỹ). In

fact, it is shown as follows: Suppose thatM|Yo ≃ OYo for an invertible sheafM∈ Pic(Ỹ).

Then (M|Yt)
2 = (M|Yt) · (A|Yt) = 0 for a ̟-ample invertible sheaf A on Ỹ and for any

point t ∈ T . It implies that M|Yt ≃ OYt by the Hodge index theorem and by the

rationality of Yt. Hence, ̟∗M is an invertible sheaf and ̟∗̟∗M≃M.

By (6–17), we have the base change isomorphism

̟∗OỸ
(−2K

Ỹ
)⊗ k(t) ≃ H0(Yt,−2KYt).

Hence there exist a family f : S̃ → T of log del Pezzo surfaces of index two, a birational

morphism β̃ : Ỹ → S̃ over T , and an effective divisor E
Ỹ
⊂ Ỹ such that

(1) β̃|Yt : Yt → St = f−1(t) is the right resolution of St,

(2) E
Ỹ
|Yt = EYt ,

(3) −2K
Ỹ
− E

Ỹ
∼ β̃∗(−2K

S̃
).

Here, E
Ỹ
→ T is smooth. Replacing T with a curve étale over T , we may assume that

any irreducible component E
i,Ỹ

of E
Ỹ

is a P1-bundle over T . Thus Ei,Yt = E
i,Ỹ
|Yt is an

irreducible component of EYt for t ∈ T .

For a vector ε = (εi), we consider a divisor

B̃ε = Bε
Ỹ

= β̃∗(−2K
S̃
) +

∑
εiEi,Ỹ

.

Then B̃ε|Yt = Bε
Yt

for any t ∈ T . Suppose that Bε
Yo
∼ 4Lo for a divisor Lo of Yo.

Then OYo(Lo) ≃ L|Yo for an invertible sheaf L of Ỹ . Thus the invertible sheaf M =
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L⊗4 ⊗ O
Ỹ
(−B̃ε) of Ỹ comes from T . Therefore, Bε

Yt
is divisible by 4 in Pic(Yt) for any

t ∈ T . Thus δ is constant. �

The following result is useful for calculating δ:

Lemma 6.11. Let f : S1 → S2 be a birational morphism between non-singular projective

varieties and let D be a divisor of S1. Then cl(D) ∈ 4 NS(S1) if and only if

(1) Dγ ∈ 4Z for any f -exceptional curve γ and,

(2) cl(f∗D) ∈ 4 NS(S2).

Proof. Since f is a succession of blowups at points, we may assume that f is the blowing-

up at a point. Let Γ be the exceptional divisor. It is enough to prove the ‘if’ part. If

the two conditions are satisfied, then f∗D− 4L is numerically trivial for a divisor L, and

f ∗(f∗D)−D = 4nΓ for some n ∈ Z; hence, D − 4(f ∗L− nΓ) is numerically trivial. �

Applying Lemma 6.11 to φ ◦ ψ : Y → X, we have:

Lemma 6.12. δ = 0 if and only if there exists a vector ε = (εi) ∈ {1,−1}k such that,

(1) εi + εj = 0 for i 6= j if Ei,M ∩ Ej,M 6= ∅,
(2) 1 + εi = 0 if there is a (−1)-curve γ with γ ∩ Ei,M 6= ∅,
(3) cl

(
φ∗

(
LM +

∑k
i=1 εiEi,M

))
∈ 4 NS(X).

Proof. An exceptional curve Γ for φ ◦ ψ is either a ψ-exceptional curve or the proper

transform of a φ-exceptional curve. In the former case, Bε
YΓ = εi + εj if ψ(Γ) = Ei,M ∩

Ej,M . In the second case, if ψ(Γ) is a (−2)-curve, then LMψ(Γ) = EMψ(Γ) = 0 and

Bε
YΓ ∈ 4Z. If ψ(Γ) is a (−1)-curve, then LMψ(Γ) = EMψ(Γ) = 1 and Bε

YΓ = 1 + εi for

the unique irreducible component Ei,M of EM intersecting ψ(Γ). Thus, we are done. �

Corollary 6.13. Suppose that cl(Bε
Y) ∈ 4 NS(Y) for a vector ε ∈ {1,−1}k.

(1) If E1,Y is the proper transform of an irreducible component E1 of E with ∆∩(E1 \
SingE) 6= ∅, then ε1 = −1.

(2) Let E1 and E2 be irreducible components of E intersecting with each other at a

point P such that multP (∆ ∩ E1) = 1 and multP (∆ ∩ E2) = b. Let Ei,Y be the

proper transform of Ei in Y for i = 1, 2. Then ε1 = (−1)b+1 and ε2 = 1.

Proof. (1): By Lemma 2.10, there is a (−1)-curve Γk 6⊂ EM such that ΓkEM = ΓkE1,M =

1 and Γk∩E1,M is a non-singular point of EM . Thus Bε
Yψ

∗(Γk) = LMΓk+ε1 = 1+ε1 ∈ 4Z.

(2): By Lemma 2.14, there is a straight chain
∑b+1

j=1 Γj of non-singular rational curves

on M such that

• E1,M +
∑b

j=1 Γj + E2,M is a straight chain of rational curves contained in EM ,

• the end Γb+1 is a (−1)-curve with Γb+1 ∩ EM = Γb ∩ Γb+1.
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Let Γj,Y be the proper transform of Γj in Y and let ε[j] be the coefficient of ε at Γj,Y for

1 ≤ j ≤ b. Then Bε
YΓb+1,Y = ε[b] + 1 ∈ 4Z. Thus ε[b] = −1. By (1) of Lemma 6.12, we

have ε[j] = (−1)b+1−j for 1 ≤ j ≤ b, ε1 = (−1)b+1, and ε2 = 1. �

Proposition 6.14. (1) Suppose that E is irreducible. Then δ = 1 except for the types

[1]0 and [4; 1, 0]0.

(2) Suppose that E is non-singular and reducible. Then the type is [4; 2, 4]00 and

δ = 0.

(3) Suppose that E is reducible and singular, and has no nodes P with P ∈ ∆. Then

δ = 1 except for the types [2; 1, 2]++ and [3; 1, 1]+.

(4) Suppose that E has exactly one node P and that multP (∆ ∩ E1) = 1, multP (∆ ∩
E2) = b for the irreducible components E1, E2 of E. Then δ = 1 except for the

types [2]+(4), [1; 1, 1]+(2, 1), and [2; 1, 1]+(1, 3).

(5) Suppose that E has two nodes P and P ′ and that multP (∆∩E1) = 1, multP (∆∩
E2) = b for the irreducible components E1, E2 of E. Then δ = 1 except for the

types [3; 2, 4]++(2, 1) and [3; 2, 4]++(1, 6).

Proof. (1): If ∆ = ∅, then (X,E,∆) is of type [4; 1, 0]0. In this case, X = M and

L + E ∼ 4(σ + 3ℓ). Hence, δ = 0. Suppose that ∆ 6= ∅. Then there is a (−1)-

curve γ ⊂ M contracted by φ : M → X. By Lemma 6.12, Corollary 6.13, and by

LM − EM ∼ −2φ∗(KX + E), we infer that δ = 0 if and only if cl(KX + E) ∈ 2 NS(X).

Here, cl(KX + E) 6∈ 2 NS(X) except for the type [1]0.

(2) follows from LM − EM ∼ −2φ∗(KX + E) ∼ 4φ∗(ℓ).

(3): Let E1, E2 be irreducible components of E with E1 ∩ E2 6= 0. Let Ei,Y be the

proper transform of Ei in Y for i = 1, 2. Suppose that cl(Bε
Y) ∈ 4 NS(Y) for some ε. If

deg(∆ ∩ E1) > 0 and deg(∆ ∩ E2) > 0, then ε1 = ε2 = −1 by Corollary 6.13. But it

contradicts Lemma 6.12. Hence, it is enough to consider the types [2; 1, 2]++, [3; 2, 4]+,

and [3; 1, 1]+.

Case [2; 1, 2]++: E = ℓ1 + ℓ2 + σ for two fibers ℓ1, ℓ2 of π and for the negative section

σ. Then L− ℓ1 − ℓ2 + σ ∼ 4(σ + ℓ). Here,

φ∗ψ∗(L− ℓ1 − ℓ2 + σ) = ψ∗LM − ℓ1,Y − ℓ2,Y + σY = Bε
Y

for a suitable ε ∈ {1,−1}k, where ℓ1,Y , ℓ2,Y , and σY are the proper transforms in Y . Thus

δ = 0.

Case [3; 2, 4]+: E = σ + D for the negative section σ and for a section D ∼ σ + 4ℓ.

Let σY and DY be the proper transforms in Y . Then cl(Bε
Y) ∈ 4 NS(Y) implies that

Bε
Y = ψ∗(LM)−DY + σY and hence cl(L−D+ σ) ∈ 4 NS(X) by Lemma 6.12. However,

cl(L−D + σ) = cl(2σ + 2ℓ) 6∈ 4 NS(X). Hence, δ = 1.



106

Case [3; 1, 1]+: E = σ + ℓ for a fiber ℓ of π and for the negative section σ. Then

L− ℓ+ σ ∼ 4(σ + 2ℓ). Here,

φ∗ψ∗(L− ℓ+ σ) = ψ∗LM − ℓY + σY = Bε
Y

for a suitable ε ∈ {1,−1}k, where ℓY and σY are the proper transforms in Y . Thus δ = 0.

(4): Suppose that Bε
Y ∈ 4 NS(Y) and let εi be the coefficient of ε at the proper

transform Ei,Y of Ei for i = 1, 2. Then ε2 = 1 by Corollary 6.13. Thus deg(∆ ∩ E2) = b

also by Corollary 6.13. If deg(∆ ∩ E1) > 1, then b is even since ε1 = −1 = (−1)b+1 by

Corollary 6.13.

Suppose that deg(∆ ∩ E1) = 1 and deg(∆ ∩ E2) = b. Then the type is [2; 1, 1]+(1, 3).

Here, E1 is the negative section σ, E2 is a fiber of π, and L ∼ −2KX − E ∼ 3σ + 7ℓ.

Then cl(L+ E1 + E2) ∈ 4 NS(X) by L+ E1 + E2 ∼ 4σ + 8ℓ. Thus

cl(ψ∗φ∗(L+ E1 + E2))− cl(LY + E1,Y + E2,Y − Γ1,Y + Γ2,Y − Γ3,Y) ∈ 4 NS(Y)

for the curves Γj,Y in the proof of Corollary 6.13, (2). Hence, δ = 0.

Suppose that deg(∆∩E1) > 1 and deg(∆∩E2) = b. Then b is even and the following

types remain: [2]+(4), [0; 1, 1]+(3), [1; 1, 1]+(2, 1), [1; 1, 1]+(1, 3). We can write

Bε
Y = ψ∗(LM)− E1,Y + E2,Y +

∑b

j=1
(−1)b+1−jΓj,Y

for the curves Γj,Y is the proof of Corollary 6.13, (2). Thus δ = 0 if and only if cl(L −
E1 + E2) ∈ 4 NS(X).

Case [2]+(4): E1 and E2 are lines of P2. Here degL = deg(L − E1 + E2) = 4. Hence

δ = 0.

Case [0; 1, 1]+(3): We may assume that E1 is a minimal section σ and E2 is a fiber.

Here L ∼ 3σ + 3ℓ and L− E1 + E2 ∼ 2σ + 4ℓ. Hence δ = 1.

Case [1; 1, 1]+(2, 1): E1 is a fiber ℓ of π and E2 is the negative section σ. Here,

L ∼ 3σ + 5ℓ and L− E1 + E2 ∼ 4σ + 4ℓ. Hence δ = 0.

Case [1; 1, 1]+(1, 3): E1 is the negative section σ and E2 is a fiber ℓ of π. Here L ∼
3σ + 5ℓ and L− E1 + E2 ∼ 2σ + 6ℓ. Hence δ = 1.

(5): The types in this case are [3; 2, 4]++(a, b). Here, E = σ + ℓ+ σ∞ for the negative

section σ, a fiber ℓ, and a section σ∞ at infinity, and furthermore P = ℓ ∩ σ∞. If δ = 0,

then (a, b) = (2, 1) or (1, 6) by the same argument as in the proof of (4) above.

Case (a, b) = (2, 1): Then E1 = σ∞ and E2 = ℓ. We set E3 = σ. As in the proof of

(4), we infer that δ = 0 if and only if cl(L−E1 +E2−E3) ∈ 4 NS(X). Now L ∼ 2σ+ 6ℓ

and L− E1 + E2 − E3 ∼ 4ℓ. Hence δ = 0.
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Case (a, b) = (1, 6): Then E1 = ℓ and E2 = σ∞. We set E3 = σ. As in the proof

of (4), we infer that δ = 0 if and only if cl(L − E1 + E2 + E3) ∈ 4 NS(X). Now

L− E1 + E2 + E3 ∼ 4σ + 8ℓ. Hence δ = 0. �

As a result, the invariant δ depends only on the type T of (X,E,∆) and is calculated

as in Table 6.

Lemma 6.15. For a log del Pezzo surface S of index two, the deformation type of the

right resolution Y depends only on the equi-singular deformation type of the basic pair

(M,EM), and vice versa. The invariant δ depends only on the equi-singular deformation

type of the basic pair.

Proof. Let h : (M̃, ẼM) → T be an equi-singular family of basic pairs over a connected

non-singular curve T whose fibers define log del Pezzo surfaces of index two. Then

there exist a family f : S̃ → T of log del Pezzo surfaces of index two and a birational

morphism α̃ : M̃ → S̃ over T by Lemma 5.2. Let ψ̃ : Ỹ → M̃ be the blowing up along

the double locus
⋃

(Ẽi ∩ Ẽj) of Ẽ =
∑
Ẽi. Then the induced smooth family ̟ : Ỹ → T

is a simultaneous right resolution of f . Thus, if two such basic pairs are equi-singular

deformation equivalent, then the associated right resolutions are deformation equivalent,

and they have the same δ by Proposition 6.10. Conversely, if two basic pairs have the

same invariants g, k, δ, then by Table 6, we infer that either they have the same type

or they are of types [0; 1, 1]0 and [2; 1, 2]0. In both cases, the basic pairs are equi-singular

deformation equivalent by results in Section 5.2 and by Proposition 5.10, (1). �

6.4. The singular points of S. We consider the singular points on S. A connected

component of the exceptional locus for α : M → S is written as α−1(Q) for a singular point

Q of S. If α−1(Q) ⊂ EM , then Q ∈ S is a singular point of type Kn. If α−1(Q) 6⊂ EM ,

then Q ∈ S is a rational double point, and an irreducible component of α−1(Q) is one of

following (−2)-curves by Proposition 6.2:

• A φ-exceptional (−2)-curve such that φ(γ) is a non-singular point of E;

• The proper transform of the negative section σ when the type is [2; 1, 2]0;

• The proper transform of a fiber ℓ of π with ℓ ∩ E ⊂ ∆ when the type is [1; 2, 2]0.

Lemma 6.16. (1) If the type is not [4; 2, 4]00, then S has a unique non-Gorenstein

singular point, which is of type Kk for the number k of irreducible components of

EM . If the type is [4; 2, 4]00, then S has two singular points, which are of type K1.

(2) Suppose that the type is neither [1; 2, 2]0 nor [2; 1, 2]0. Then a rational double point

Q ∈ S is of type Al−1 where α−1(Q) is the maximal straight chain of (−2)-curves

in φ−1(P ) for a non-singular point P of E with multP (∆) = l ≥ 2. In particular,

l ≤ deg ∆.
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(3) Suppose that the type is [2; 1, 2]0. Then the total transform of the negative section σ

in M is a (−2)-curve defining an A1-singularity on S. The other rational double

points Q ∈ S are of type Al−1, where α−1(Q) is the maximal straight chain of

(−2)-curves in φ−1(P ) for a point P ∈ E with multP (∆) = l ≥ 2.

(4) Suppose that the type is [1; 2, 2]0 and that π|E : E → P1 is separable. Then a

rational double point Q ∈ S is of type Al for 1 ≤ l ≤ 7 or of type Dl for 4 ≤ l ≤ 8.

(5) Suppose that the type is [1; 2, 2]0 and that π|E : E → P1 is inseparable. Then a

rational double point Q ∈ S is of type Al for l ∈ {1, 3} or of type Dl for 4 ≤ l ≤ 8.

Proof. (1): EM is connected if and only if the type is not [4; 2, 4]00. If the type is [4; 2, 4]00,

then EM is a disjoint union of two (−4)-curves. Thus (1) follows.

(2) and (3): If the type is neither [1; 2, 2]0 nor [2; 1, 2]0, then any (−2)-curve is contained

in φ−1(P ) for a non-singular point P of E with multP (∆) ≥ 2. If the type is [2; 1, 2]0,

then there is one more (−2)-curve which is the total transform of σ.

(4) and (5): Any (−2)-curve is contained in a fiber of M → P1. Thus the assertion

follows from Lemmas 5.13 and 4.11. �

Let Γ = Γ [M ] = Γ (S) = Γ (X,E,∆) be the dual graph of the negative curves on M .

The part ΓK is defined to be the subgraph consisting of the irreducible components of

EM . Another part ΓRDP is defined to be the subgraph consisting of the (−2)-curves not

contained in EM . Then a connected component of ΓK corresponds to a non-Gorenstein

point on S, and a connected component of ΓRDP corresponds to a rational double point

on S. Thus ΓK ⊔ ΓRDP is the dual graph of the minimal resolution of singularities of S.

By Lemma 6.16, (1), if S is not of type [4; 2, 4]00, then ΓK = Kk for k = kT; If S is of type

[4; 2, 4]00, then ΓK is the disjoint union of two K1. Thus ΓK depends on the type T of S.

Let a(i) be the number of singular points on S of type Ai for i ≥ 1. Similarly, let d(i)

be the number of singular points of type Di for i ≥ 4. The formal linear combination

D(S) = D(X,E,∆) =
∑

a(i)Ai +
∑

d(j)Dj

of Dynkin diagrams is called the distribution (of rational double points) of S. Then

Γ (S)RDP is identified with D(S). We define σ(S) = σ(X,E,∆) =
∑
ia(i) +

∑
jd(j).

Note that σ(S) is not determined by the type T, in general.

The birational morphism α : M → S contracts kT + σ(S) rational curves. Hence, the

Picard number ρ(S) equals ρ(M)− kT − σ(S), since S is Q-factorial. Therefore,

ρ(S) = 10− (KX + E)2 − kT − σ(S)

=





12− gT − kT − σ(S), if the type is not [4; 2, 4]00;

8− σ(S), if the type is [4; 2, 4]00.
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Table 7. The maximum and minimum Picard numbers

Type T ρmax
T

ρmin
T

Type T ρmax
T

ρmin
T

Type T ρmax
T

ρmin
T

[1]0 5 1 [1; 1, 1]0 6 2 [3; 1, 0]0 2 2

[2]0 8 1 [1; 1, 1]+(0, 0) 5 2 [3; 1, 1]+ 3 1

[2]+(0) 7 1 [1; 1, 1]+(1, 1) 4 3 [3; 2, 4]+ 8 1

[2]+(1) 6 2 [1; 1, 1]+(2, 1) 3 2 [3; 2, 4]++(0, 0) 7 1

[2]+(2) 5 2 [1; 1, 1]+(1, 2) 3 3 [3; 2, 4]++(1, 1) 6 2

[2]+(3) 4 2 [1; 1, 1]+(1, 3) 2 2 [3; 2, 4]++(2, 1) 5 1

[2]+(4) 3 1 [1; 2, 2]0 9 1 [3; 2, 4]++(1, 2) 5 2

[0; 1, 0]0 5 2 [2; 1, 0]0 3 2 [3; 2, 4]++(1, 3) 4 2

[0; 1, 1]0 7 2 [2; 1, 1]+(0, 0) 4 2 [3; 2, 4]++(1, 4) 3 2

[0; 1, 1]+(0) 6 2 [2; 1, 1]+(1, 1) 3 2 [3; 2, 4]++(1, 5) 2 2

[0; 1, 1]+(1) 5 3 [2; 1, 1]+(1, 2) 2 2 [3; 2, 4]++(1, 6) 1 1

[0; 1, 1]+(2) 4 3 [2; 1, 1]+(1, 3) 1 1 [4; 1, 0]0 1 1

[0; 1, 1]+(3) 3 2 [2; 1, 2]0 7 1 [4; 2, 4]00 8 1

[1; 1, 0]0 4 2 [2; 1, 2]++ 5 1

Definition 6.17. For a type T of fundamental triplet, we define σmax
T

(resp. σmin
T

) to

be the maximum (resp. the minimum) of σ(S) for the log del Pezzo surfaces S of index

two of type T. For a log del Pezzo surface S of type T, if σ(S) = σmax
T

, then S is called

extremal. If σ(S) = σmin
T

, then S is called generic. A fundamental triplet (X,E,∆) is

called extremal (resp. generic) if the associated log del Pezzo surface S is so. We also

define ρmin
T

(resp. ρmax
T

) to be the minimum (resp. the maximum) of ρ(S) for the log

del Pezzo surfaces S of index two of type T.

Remark. The notion of extremal in Definition 6.17 is slightly different from that used in

[3]; this is related to the equi-singular deformation equivalence between types [0; 1, 1]0

and [2; 1, 2]0 in Theorem 6.1.

By Lemma 6.16, (X,E,∆) is generic if and only if

• ∆ is reduced on E \ SingE when T 6= [1; 2, 2]0, and

• ∆ is reduced and deg(∆ ∩ ℓ) ≤ 1 for any fiber ℓ of π when T = [1; 2, 2]0.

In particular, σmin
T

= 0 for any T. Thus σmax
T

= ρmax
T
− ρmin

T
. If T 6= [4; 2, 4]00, then

ρmin
T

= 12−gT−kT−σmax
T

and ρmax
T

= 12−gT−kT. If T = [4; 2, 4]00, then ρmin
T

= 8−σmax
T

and ρmax
T

= 8. The numbers ρmax
T

and ρmin
T

are calculated as in Table 7, by:

Proposition 6.18.
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(1) Suppose that (X,E,∆) is not of type [1; 2, 2]0. Then (X,E,∆) is extremal if and

only if any irreducible component of E \ SingE has at most one point contained

in ∆.

(2) Suppose that char k 6= 2 and that (X,E,∆) is of type [1; 2, 2]0. Then (X,E,∆)

is extremal if and only if ∆ = n1P1 + n2P2 for the ramification points P1, P2 of

π|E : E → P1 where (max{n1, n2},min{n1, n2}) = (8, 0), (6, 2), (5, 3), or (4, 4).

(3) Suppose that char k = 2, (X,E,∆) is of type [1; 2, 2]0, and that π|E : E → P1

is separable. Then (X,E,∆) is extremal if and only if ∆ = 8P for the unique

ramification points P of π|E.

(4) Suppose that char k = 2, (X,E,∆) is of type [1; 2, 2]0, and that π|E : E → P1 is

inseparable. Then (X,E,∆) is extremal if and only if multP (∆) ≥ 2 for any point

P ∈ ∆.

Proof. (1): Suppose that Supp ∆ ∩ (Ei \ SingE) contains two points P1, P2 for an ir-

reducible component Ei ⊂ E. We set mi = multPi
(∆) for i = 1, 2 and set ∆′ =

∆ +m2(P1 − P2) which is an effective Cartier divisor of E. Then multP1(∆
′) = m1 +m2

and P2 6∈ ∆′. Since the Dynkin diagram Am1+m2−1 contains the disjoint union of Am1−1

and Am2−1, Γ (X,E,∆)RDP is regarded as a subgraph of Γ (X,E,∆′)RDP. In particular,

(X,E,∆) is not extremal.

Next suppose that Supp ∆∩(Ei\SingE) consists of at most one point for any irreducible

component Ei ⊂ E, then Γ (X,E,∆)RDP is uniquely determined by Lemma 6.16. Thus

(X,E,∆) is extremal.

(2): We define

∆′ = ∆ +
∑

P∈∆,P 6=P1,P2
multP (∆)(P1 − P ).

Since Am−1 ⊂ Dm, Γ (X,E,∆)RDP is a subgraph of Γ (X,E,∆′)RDP by Lemma 6.16. In

particular, if Supp(∆) 6⊂ {P1, P2}, then (X,E,∆) is not extremal.

Suppose that ∆ = n1P1 + n2P2 for n1 ≥ n2. Then n1 + n2 = 8. Then D(X,E,∆) is

calculated as follows:

n2 0 1 2 3 4

D(X,E,∆) D8 D7 D6 + 2A1 D5 + A3 2D4

Since D7 ⊂ D8, the case n1 = 1 is not extremal. The other cases are extremal.

(3) and (4) follow from a similar argument to (2) above and Lemma 6.16. �

We define an extremal distribution of type T to be D(S) for an extremal log del Pezzo

surface S of type T.

If T 6= [1; 2, 2]0, then an extremal distribution DT of type T is uniquely determined. In

fact, for an extremal fundamental triplet (X,E,∆) of type T, ∆ ∩ (Ei \ SingE) consists
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Table 8. Extremal distributions

Type T DT Type T DT Type T DT

[1]0 A4 [1; 1, 1]0 A4 [3; 1, 0]0 ∅
[2]0 A7 [1; 1, 1]+(0, 0) A2 + A1 [3; 1, 1]+ A2

[2]+(0) 2A3 [1; 1, 1]+(1, 1) A1 [3; 2, 4]+ A7

[2]+(1) 2A2 [1; 1, 1]+(2, 1) A1 [3; 2, 4]++(0, 0) A5 + A1

[2]+(2) A2 + A1 [1; 1, 1]+(1, 2) ∅ [3; 2, 4]++(1, 1) A4

[2]+(3) A2 [1; 1, 1]+(1, 3) ∅ [3; 2, 4]++(2, 1) A4

[2]+(4) A2 [1; 2, 2]0 see *) below [3; 2, 4]++(1, 2) A3

[0; 1, 0]0 A3 [2; 1, 0]0 A2 [3; 2, 4]++(1, 3) A2

[0; 1, 1]0 A5 [2; 1, 1]+(0, 0) A2 [3; 2, 4]++(1, 4) A1

[0; 1, 1]+(0) 2A2 [2; 1, 1]+(1, 1) A1 [3; 2, 4]++(1, 5) ∅
[0; 1, 1]+(1) 2A1 [2; 1, 1]+(1, 2) ∅ [3; 2, 4]++(1, 6) ∅
[0; 1, 1]+(2) A1 [2; 1, 1]+(1, 3) ∅ [4; 1, 0]0 ∅
[0; 1, 1]+(3) A1 [2; 1, 2]0 A5 + A1 [4; 2, 4]00 A7

[1; 1, 0]0 A2 [2; 1, 2]++ 2A2

*) Extremal distributions of type [1; 2, 2]0:

char k 6= 2 D8, D6 + 2A1, D5 + A3, 2D4

char k = 2 D8, D6 + 2A1, D5 + A3, 2D4, D4 + 4A1, 2A3 + 2A1, 8A1

at most one point for any irreducible component Ei ⊂ E, and hence DT is the direct sum
∑

di≥2 Adi−1 for the degree di = deg(∆∩ (Ei \SingE)), where the numbers di depend only

on T.

The extremal distributions of type [1; 2, 2]0 has been classified in Lemma 6.18, (2), (3),

when π|E : E ⊂ X → P1 is separable. Let (X,E,∆) be an extremal fundamental triplet

of type [1; 2, 2]0 such that π|E : E → P1 is inseparable. Then ∆ can be written as a divisor
∑l

i=1miPi of E for mi ≥ 2 with
∑
mi = 8. We may assume that m1 ≥ m2 ≥ · · · ≥ ml.

Then (m1, . . . ,ml) is one of

(8), (6, 2), (5, 3), (4, 4), (4, 2, 2), (3, 3, 2), (2, 2, 2, 2).

Therefore, the extremal distributions are classified as in Table 8, where the case [1; 2, 2]0

is treated in *).

Corollary 6.19. The distribution D(S) of rational double points of a log del Pezzo surface

S of type T is realized as a subdiagram of an extremal distribution of type T. Conversely,

any subdiagram of an extremal distribution of type T is realized as D(S) for a log del Pezzo
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surface S of type T, provided that T 6= [2; 1, 2]0. An extremal distribution of type [2; 1, 2]0

is K1 + A5 + A1 and any subdiagram containing the part K1 + A1 is realized as D(S) for

a log del Pezzo surface S of type [2; 1, 2]0.

Proof. The first assertion follows from Proposition 6.18. A subdiagram of Am−1 is also

a direct sum of Ami−1 with m ≥ ∑
mi. Similarly, a subdiagram of Dm is the sum of Dn

and Amj−1 with m ≥ n+
∑
mj. If (X,E,∆) is of type [2; 1, 2]0, then D(X,E,∆) always

contains A1 which corresponds to the total transform of the negative section σ ⊂ X.

Thus, we have the converse assertion. �

Theorem 6.20. For a given type T, an extremal fundamental triplet of type T is unique

up to isomorphism if T 6= [1; 2, 2]0. In case T = [1; 2, 2]0, the isomorphism class of ex-

tremal fundamental triplet is determined by the extremal distribution D either if char k 6=
2 or if D 6∈ {D8, 8A1}.

Proof. Suppose that the type T is not [2]0, [0; 1, 1]0, [1; 2, 2]0, [3; 2, 4]+, nor [3; 2, 4]++(a, b)

with (a, b) 6= (0, 0). Then for two extremal fundamental triplets (X,E,∆1), (X,E,∆2)

of type T, there exists an effective divisor E ′ such that ∆1 ∩ E ′ = ∆2 ∩ E ′ = ∅ and that

X \ (E + E ′) ⊂ X is a torus embedding. Since every irreducible component is an orbit

of the torus, we have an automorphism f of X such that f(Ei) = Ei for any irreducible

component Ei ⊂ E and f(∆1) = ∆2 outside the nodes of E. Suppose that E has a node

P contained in ∆1. Then P = E1 ∩E2 and E = E1 +E2 for two irreducible components

E1 and E2. We may assume the following properties to be satisfied:

• There is an effective divisor E ′ such that Supp(∆1) \P ⊂ E ′, Supp(∆2) \P ⊂ E ′,

and X \ (E + E ′) ⊂ X is a torus embedding.

• multP (∆1∩E1) = multP (∆2∩E1) = 1 and multP (∆1∩E2) = multP (∆2∩E2) = b.

Let φ♯ : M ♯ → X be the elimination of ∆1 ∩ (E2 \ E ′) = ∆2 ∩ (E2 \ E ′). Then φ♯ is a

toric blowing-up defined by a subdivision of the fan corresponding to X \ (E +E ′) ⊂ X.

The weak transform of ∆i is supported on a non-singular point Pi of an exceptional

curve Γ ⊂ (φ♯)−1(P ) and on nodes of (φ♯)−1(E + E ′) for i = 1, 2. The open torus acts

transitively on Γ\Sing(φ♯)−1(E+E ′). Therefore, we have an automorphism f of X with

f(∆1) = ∆2.

Next, we consider the exceptional types.

Case [2]0: E ≃ P1 ⊂ X ≃ P2 is considered as the Veronese embedding by |O(2)|. Thus

an automorphism of E lifts to an automorphism of X. An extremal fundamental triplet

(X,E,∆) is determined by a point P ∈ E by ∆ = 8P . Thus the isomorphism class of

the extremal fundamental triplet is unique.
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Case [0; 1, 1]0: We may assume that E is the diagonal locus of X = P1 × P1. Thus

an automorphism of E lifts to an automorphism of X. Thus the isomorphism class of

extremal fundamental triplet is unique by the same reason above.

Case [1; 2, 2]0: The extremal distributions are classified as in *) of Table 8 by Propo-

sition 6.18, (2)–(4). For an extremal fundamental triplet (X,E,∆), if char k 6= 2, then

∆ is supported on the two ramification points of π|E : E → P1. If char k = 2 and

D(X,E,∆) 6∈ {D8, 8A1}, then π|E : E → P1 is inseparable and ∆ is supported on at most

three points. Thus the isomorphism class of the extremal fundamental triplet (X,E,∆)

is determined by the distribution.

Case [3; 2, 4]+: E = σ + D for a section D ∼ σ + 4ℓ and an extremal fundamental

triplet (X,E,∆) is given by ∆ = 8P for a point P ∈ D \ σ. For given two points P1,

P2 ∈ D \ σ, we take another point Q ∈ D \ (σ ∪ {P1, P2}) and consider the elementary

transformation at Q: X ···→ X2 ≃ F2. Let Q2 ∈ X2 be the intersection point of the

proper transform D2 ⊂ X2 of D and the fiber over π(Q) and let X2 ···→ X1 ≃ F1 be

the elementary transformation at Q2. Let Q1 ∈ X1 be the intersection point of the

proper transform D1 ⊂ X1 of D and the fiber over π(P ) and let X1 ···→ X0 ≃ F0 be

the elementary transformation at Q1. Let σ0 ⊂ X0 be the proper transform of σ and let

Q0 ∈ X0 be the intersection point of the proper transform D0 ⊂ X0 of D and the fiber

over π(P ). Note that D0 is regarded as the diagonal of P1×P1. There is an automorphism

ϕ of D0 such that ϕ(D0 ∩ σ0) = D0 ∩ σ0, ϕ(Q0) = Q0, and ϕ(f(P1)) = ϕ(f(P2)) for the

rational map f : X ···→ X0. Then ϕ lists to an automorphism ϕ̃ of X0 which preserves the

section σ0, the fiber over π(P ), and D0. Hence ϕ̃ induces an automorphism ϕ̂ of X such

that ϕ̂(D) = D, ϕ̂(σ) = σ, and ϕ̂(P1) = P2. Hence, the isomorphism class of extremal

fundamental triplet is unique.

Case [3; 2, 4]++(a, b) with (a, b) 6= (0, 0): E = σ + ℓ + σ∞ for a fiber ℓ and a section

σ∞ at infinity. Let P be the point σ∞ ∩ ℓ. Let ∆1 and ∆2 be effective Cartier divisors

of E giving extremal fundamental triplet of this type. By the argument above, we may

assume that Supp(∆1 ∩ σ∞) = Supp(∆2 ∩ σ∞) = {P} ∪ (σ∞ ∩ ℓ′) for another fiber ℓ′ and

that Supp(∆1 ∩ ℓ) = Supp(∆2 ∩ ℓ). Let φ♯ : M ♯ → X be the elimination of ∆1 ∩ σ∞ in

case multP (∆1 ∩ ℓ) = 1, and the the elimination of ∆1 ∩ ℓ in case multP (∆1 ∩ σ∞) = 1.

Then the weak transform ∆♯
i for i = 1, 2 is supported on a non-singular point Pi of a φ♯-

exceptional curve Γ, on a point Q ∈ ℓ \ {P}, and on the inverse image of the intersection

point σ∞∩ℓ′. Since Γ and the proper transform of ℓ are two irreducible component of the

boundary of the torus imbedding into M ♯, an element of the open torus acts trivially on

the proper transform of ℓ and moves P ♯
1 to P ♯

2 . Thus f(∆1) = ∆2 for an automorphism

f of X. Hence, the isomorphism class of extremal fundamental triplet is unique. �
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Remark 6.21. In case char k = 2, the isomorphism class of an extremal fundamental

triplet of type [1; 2, 2]0 with the extremal distribution D is not unique if D = D8 or 8A1.

In fact, if D = D8, then there are two fundamental triplets (X,E, 8P ) and (X,E ′, 8P ′)

for X = F1 such that

• π|E : E → P1 is separable and P is the unique ramification point of π|E,

• π|E : E → P1 is inseparable and P is any point of E.

If (X,E,∆) is an extremal fundamental triplet with the distribution D = 8A1, then

π|E : E → P1 is inseparable and Supp ∆ consists of four points. Thus ∆ is not unique

up to isomorphism of E. Moreover, there are infinitely many isomorphism classes of

(X,E,∆) with D(X,E,∆) = 8A1; This fact was pointed out by Ohashi.

Corollary 6.22 (cf. [3], [19]). There is a one-to-one correspondence between the set of

isomorphism classes of log del Pezzo surfaces of index two with Picard number one and

the set of isomorphism classes of extremal fundamental triplets of the following types :

[1]0, [2]0, [2]+(0), [2]+(4), [1; 2, 2]0, [2; 1, 1]+(1, 3), [2; 1, 2]0, [2; 1, 2]++,

[3; 1, 1]+, [3; 2, 4]+, [3; 2, 4]+(0, 0), [3; 2, 4]++(2, 1), [3; 2, 4]++(1, 6),

[4; 1, 0]0, [4; 2, 4]00.

In particular, if char k 6= 2, then there are exactly 18 isomorphism classes of log del Pezzo

surfaces of index two with Picard number one, in which 4 isomorphism classes are of type

[1; 2, 2]0. If char k = 2, then there are exactly 14 isomorphism classes of log del Pezzo

surfaces of index two with Picard number one not of type [1; 2, 2]0, and there are infinitely

many isomorphism classes of log del Pezzo surfaces of index two with Picard number one

of type [1; 2, 2]0.

6.5. Dual graph of the negative curves. We consider the dual graph Γ = Γ (S) =

Γ [M ] of negative curves on M . The proper transform of an irreducible component Ej of

E in M is represented by a vertex in ΓK. Thus we have a natural injection ν : J (E) →
Ver(ΓK) from the set J (E) of irreducible components of E to the set Ver(ΓK) of vertices

of ΓK.

Let C(ΓRDP) be the set of connected components of ΓRDP. Let C(Am) and C(Dn) be

the sets of connected components of ΓRDP which are Dynkin diagrams of types Am and

Dn, respectively.

Let V be the subset of white vertices joined to ΓK. A vertex v ∈ V represents a (−1)-

curve γ on M with EM ∩ γ 6= ∅, equivalently a (−1)-curve belonging to the case (5) or

(6) of Proposition 6.2.
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Let Γ ♭ be the subgraph of Γ consisting of vertices of V ∪ ΓK ∪ ΓRDP. Let W be the

set of white vertices of Γ which is not joined to ΓK. Then a vertex in W represents a

(−1)-curve γ with EM ∩ γ = ∅. Thus

Ver(Γ ) = Ver(Γ ♭) ⊔W = Ver(ΓK) ⊔ Ver(ΓRDP) ⊔ V ⊔W.

Note that ΓK and ΓRDP are uniquely determined as the subgraphs of Γ ♭. In fact, ΓK ⊔
ΓRDP is the subgraph consisting of non-white vertices, and a connected component of ΓK

contains a non-black vertex.

Lemma 6.23. Suppose that S is not of type [1; 2, 2]0. Then, for any irreducible component

Ej ∈ J (E), the scheme

∆ ∩ (Ej \ SingE)

is uniquely determined up to isomorphism by the type T, the graph Γ ♭, and by ν(Ej) ∈ ΓK.

Moreover, the number ♯V of the finite set V is calculated as follows :

• If KM + LM is big, then ♯V = deg(∆) − σ(S) − bT for the number bT of black

vertices in ΓK.

• If T = [3; 2, 4]+ or [4; 2, 4]00, then ♯V = 16− 2σ(S).

• If T = [3; 2, 4]++(1, b), then ♯V = 15− 2σ(S)− 2b.

• If T = [3; 2, 4]++(2, 1), then ♯V = 12− 2σ(S).

• Suppose that T = [3; 2, 4]++(0, 0). If a vertex in ΓRDP joined to a vertex v ∈ V
and v is joined to a black vertex of ΓK, then ♯V = 15− 2σ(S). If there is no such

a vertex in ΓRDP above, then ♯V = 14− 2σ(S).

Proof. We have C(ΓRDP) =
⋃ C(Am). In case T = [2; 1, 2]0, we set C′ ⊂ C(ΓRDP) to be

the complement of a unique element of C(ΓRDP) representing the total transform of the

negative section of X ≃ F2. In case T 6= [2; 1, 2]0, we set C′ = C(ΓRDP). In the both cases,

we set C′(Am) = C′ ∩ C(Am).

Let Vφ ⊂ V be the subset of vertices representing a φ-exceptional (−1)-curve. Let

Pv ∈ X denote the point to which the (−1)-curve is contracted. Note that Vφ = V if

KM + LM is big. Let V+ be the set of vertices v ∈ Vφ such that Pv is a node of E. Let

Vm be the set of vertices v ∈ Vφ such that Pv 6∈ SingE and multPv(∆) = m ≥ 1. The

number ♯V+ is 0 or 1, which depends on the type T. There is a one to one correspondence

between C′(Al) and Vl+1 for l ≥ 1 as follows (cf. Lemma 6.16): A connected component

Γλ ∈ C′(Al) represents the set of (−2)-curves in the fiber φ−1(P ) over a point P ∈
∆ \ SingE with multP (∆) = l+ 1, where the end (−1)-curve of φ−1(P ) is represented by

a vertex vλ ∈ Vl+1. Here, ν(Ej) ∈ Ver(ΓK) is the unique vertex of ΓK joined to vλ for the

irreducible component Ej = Ej(λ) of E containing P . Conversely, for a vertex v ∈ Vl+1,
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the set of (−2)-curves in φ−1(Pv) is represented by a connected component Γλ(v) ∈ C′(Al).

Therefore, we have

{P ∈ Ej \ SingE | multP (∆) = l + 1} = {Pλ | Γλ ∈ C′(Al), j = j(λ)}

for any l ≥ 1 and for any irreducible component Ej of E. Since deg(∆∩ (Ej \ SingE)) is

determined by T, the scheme ∆ ∩ (Ej \ SingE) is determined up to isomorphism by T,

Γ ♭ and ν(Ej). We have

deg(∆ \ SingE) =
∑

l≥1
l ♯Vl and σ(S) =

∑
l≥2

(l − 1) ♯Vl.

If ∆ ∩ SingE 6= ∅, then deg(∆)− deg(∆ \ SingE) = 1 + bT. Therefore,

deg ∆− σ(S) = bT + ♯Vφ.

Hence, we may assume that KM +LM is not big, i.e., T is one of [3; 2, 4]+, [3; 2, 4]++(a, b),

or [4; 2, 4]00. Here, deg ∆ = 8. A vertex v ∈ V \ Vφ represents the proper transform in

M of a fiber of π passing through a point of ∆ \ SingE. Let E1 ⊂ E be the horizontal

component which is not the negative section. Then

♯(V \ Vφ) = ♯{v ∈ Vφ | 1 = j(v)}.

Thus ♯V = 2 ♯Vφ − ε for ε = ♯{v ∈ Vφ | j(v) 6= 1}. Here, ε = 0 for T = [3; 2, 4]+,

[3; 2, 4]++(2, 1), [4; 2, 4]00; and ε = 1 for [3; 2, 4]++(1, b). If T = [3; 2, 4]++(0, 0), then

ε =





1, if j(λ) 6= 1 for some Γλ ∈ C(A1),

2, otherwise.

Thus we are done. �

Corollary 6.24. If T 6= [1; 2, 2]0, then the graph Γ (S) depends only on the subgraph

Γ (S)♭.

Proof. It is enough to show the set W and the lines joining W and Γ ♭ ∪ W are all

determined. A vertex of W represents a (−1)-curve belonging to one of the cases (7a)–

(7e) of Proposition 6.2.

Case: X ≃ P2. Then W = ∅ if T = [1]0. Hence, we may assume that T = [2]0 or

[2]+(b). Then a vertex of W represents the proper transform in M of a line ℓ ⊂ X with

deg(ℓ∩∆) = 2, by Proposition 6.2. The line ℓ is not a component of E and is one of the

following:

• A line joining two distinct points of ∆.

• The tangent line of E at a point P ∈ ∆ \ SingE with multP (∆) ≥ 2.

• The line ℓ passing through the node P of E with multP (∆ ∩ ℓ) = 2 in the case

T = [2]+(1).
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Therefore, the set W is determined by the graph Γ (S)♭. Let ℓ1 and ℓ2 be two such lines

above. Then the proper transforms in M intersects if and only if the intersection point

ℓ1 ∩ ℓ2 is not contained in ∆. Therefore, the graph Γ (S) is also determined by Γ (S)♭.

Case: X ≃ Fn, KX + L is big, and T is not of type [0; 1, 1]0, [0; 1, 1]+(b), nor [1; 1, 1]0.

Then a vertex in W represents the proper transform of a fiber ℓ of π : X → P1 with

deg(∆∩ℓ) = 1 by Proposition 6.2. Since ∆∩ℓ is not a node of E, the setW is determined

by ∆\SingE. For P ∈ ∆∩ℓ, the proper transform ℓM ⊂M of ℓ intersects the (−1)-curve

φ−1(P ) if multP (∆) = 1, and intersects the end (−2)-curve of the straight chain φ−1(P )

if multP (∆) ≥ 2. There are no other negative curves intersecting ℓM . Therefore, Γ (S) is

also determined by Γ (S)♭.

Case: T = [0; 1, 1]0 or [0; 1, 1]+(b). A vertex in W represents the proper transform of

a fiber ℓ of π : X → P1 with deg(∆∩ ℓ) = 1 or the proper transform of a minimal section

σ with deg(∆ ∩ σ) = 1 by Proposition 6.2. Since ∆ ∩ ℓ is not a node of E, the set W
is determined by ∆ \ SingE. Let ℓ be such a fiber. Then a negative curve intersecting

the proper transform ℓM is either an end curve of the chain φ−1(P ) for P = ℓ∩∆ or the

proper transform σM of a minimal section σ with deg(∆∩σ) = 1, σ∩ ℓ∩∆ = ∅. We have

a similar assertion for a minimal section σ above. Therefore, Γ (S) is also determined by

Γ (S)♭.

Case: T = [1; 1, 1]0. A vertex in W represents the proper transform of a fiber ℓ of

π : X → P1 with deg(∆ ∩ ℓ) = 1 or the total transform of the negative section σ by

Proposition 6.2. By a similar argument to the cases above, we infer that Γ (S) is deter-

mined by Γ (S)♭.

In the remaining case, KM + LM is not big. The set W is empty for T = [4; 2, 4]00,

T = [3; 2, 4]++(2, 1), T = [3; 2, 4]++(1, b) with 4 ≤ b ≤ 6 by Proposition 6.2. Thus the

remaining types we must consider are T = [3; 2, 4]+, [3; 2, 4]++(0, 0), and [3; 2, 4]++(1, b)

with 1 ≤ b ≤ 3.

Case: T = [3; 2, 4]+. E = σ+D and D ∼ σ+4ℓ for a fiber ℓ. A vertex inW represents

the proper transform ΘM of a section Θ at infinity with Θ ∩D ⊂ ∆ by Proposition 6.2.

Moreover, the section Θ at infinity is uniquely determined by a subscheme ∆′ ⊂ ∆ of

degree 4 by ∆′ = Θ ∩ D. The (−2)-curves on M intersecting ΘM are determined from

the divisor ∆′. For i = 1, 2, let Θi be a section at infinity with ∆i = Θi ∩D ⊂ ∆, and

let Θi,M be the proper transform in M . Then

Θ1,MΘ2,M = Θ1Θ2 − deg(∆1 ∩∆2) = 3− deg(∆1 ∩∆2).

Therefore, W and Γ (S) are determined by Γ (S)♭.

Case: T = [3; 2, 4]++(a, b) for (a, b) ∈ {(0, 0), (1, 1), (1, 2), (1, 3)}. E = σ+ ℓ+ σ∞ for a

fiber ℓ and for a section σ∞ at infinity. A vertex in W represents the proper transform
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ΘM of a section Θ at infinity with Θ ∩E ⊂ ∆ by Proposition 6.2. Moreover, the section

Θ at infinity is uniquely determined by subschemes ∆′ ⊂ ∆ ∩ σ∞ of degree 3 − b and

∆′′ ⊂ ∆∩ ℓ of degree 1− a by ∆′ ∪∆′′ = Θ∩ (E \ SingE). Thus, by the same argument

as above, we infer that W and Γ (S) are determined by Γ (S)♭. �

The same assertion as Lemma 6.23 does not hold for type T = [1; 2, 2]0.

Example 6.25. Suppose that char k 6= 2. Let X = F1 and let E ∼ 2σ + 2ℓ be a non-

singular divisor. Let P ∈ E be a non-ramification point with respect to π|E : E → P1, ℓP

the fiber of π passing through P , and let P ′ be the other point of ℓP ∩ E. We consider

two divisors ∆1 := 8P and ∆2 := 7P + P ′ on E. Then (X,E,∆1) and (X,E,∆2) are

fundamental triplets of type [1; 2, 2]0, and Γ (X,E,∆1)
♭ ≃ Γ (X,E,∆2)

♭, which is written

as the graph (3) of Lemma 5.13 with 7 black vertices. However, the number of white

vertices of Γ (X,E,∆1) is 7 and the number for Γ (X,E,∆2) is 6, by Proposition 6.2, (7f),

(7g). In Table 12 below, we have the graphs Γ (X,E,∆1) and Γ (X,E,∆2).

Lemma 6.26. Suppose that S is of type [1; 2, 2]0. Let w ∈ W be the vertex representing

the total transform of the negative section σ of X ≃ F1. Let L be the union of the fibers

ℓ of π with deg(ℓ ∩ ∆) = 2. Then, (∆,∆ ∩ L = E ∩ L) (cf. Lemma 5.14) is uniquely

determined up to isomorphism by the graph Γ ♭ and w. Moreover, the dual graph Γ (S) is

determined by the subgraph consisting of Γ ♭ and w.

Proof. A reducible fiber F of M → P1 corresponds to a connected component of the

graph consisting of V ∪ ΓRDP, by Proposition 6.2 and Lemma 5.13. The image ℓ = φ(F )

a fiber of π : X → P1 and F = φ∗ℓ. Let ℓM be the proper transform of ℓ in M . Then ℓM

be the irreducible component of F which intersects the total transform σM of σ.

Suppose that the dual graph of F +EM is either (1) or (3) of Lemma 5.13. Then F is

written as the straight chain F0 + F1 + · · · + Fm of rational curves for m ≥ 1 such that

the end curves F0 and Fm are represented by vertices in V and that
∑m−1

i=1 Fi corresponds

to a connected component of ΓRDP. If ℓM = Fi for 0 < i < m, then ℓ ∩ E = ℓ ∩∆ and

it consists of two points Q1, Q2 with multQ1(∆) = i, multQ2(∆) = m− i. If ℓM = F0 or

Fm, then ℓ∩∆ consists of one point Q with multQ(∆) = m. If m = 1, then either that ℓ

intersects E transversely, or that ℓ ∩ E consists of two points.

Next, suppose that the dual graph of F + EM is either (2) or (4) of Lemma 5.13.

Then ℓ intersects E tangentially at a point P , and the number of (−2)-curves in F is

multP (∆) ≥ 2. The vertex representing ℓM is a black vertex joined to the unique white

vertex.

Hence, w and Γ ♭ determine the scheme structures of ∆ and ∆ ∩ L = E ∩ L.



119

By Proposition 6.2, a vertex wi ∈ W \ {w} represents the proper transform Θi,M in

M of a section Θi ∼ σ + niℓ of π with Θi ∩ E ⊂ ∆ for 1 ≤ ni ≤ 4. Furthermore, Θi

corresponds to a subscheme ∆i ⊂ ∆ with deg ∆i = 2ni, E ∩ ℓ 6⊂ ∆i ∩ ℓ. The unique

component of a reducible fiber F intersecting Θi,M is determined by the information on

ℓ∩∆i. We have Θi,MσM = ni−1. The intersection number Θi,MΘj,M for wi, wj ∈ W\{w}
is calculated as

(σ + niℓ)(σ + njℓ)− deg(∆i ∩∆j) = ni + nj − 1− deg(∆i ∩∆j).

Thus the full graph Γ = Γ (S) is also determined by w and Γ ♭. �

Lemma 6.27. Suppose that S is of type [1; 2, 2]0. Let Vi for 0 ≤ i ≤ 4 be the following

subsets of V :

• v ∈ V0 if and only if v is not joined to any black vertex.

• v ∈ V1 if and only if v is joined to exactly one black vertex and the black vertex is

an end of a connected component of ΓRDP of type Al for l ≥ 1.

• v ∈ V2 if and only if v is joined to two black vertices.

• v ∈ V3 if and only if v is joined to exactly one black vertices and the black vertex

is the middle vertex of a connected component of ΓRDP of type A3.

• v ∈ V4 if and only if v is joined to exactly one black vertices and the black vertex

is an end of a connected component of ΓRDP of type Dl for l ≥ 4.

Then V =
⊔4

i=0 Vi. Let V1,l ⊂ V1 be the subset of vertices v such that the connected

component joined to v is of type Al. Let V4,l ⊂ V4 be the subset of vertices v such that the

connected component joined to v is of type Dl. Then

σ(S) = 2 ♯V2 + 3 ♯V3 + (1/2)
∑

l≥1
l ♯V1,l +

∑
l≥4

l ♯V4,l,

deg ∆ = 8 = (1/2)♯V0 + 2 ♯V2 + 3 ♯V3 + (1/2)
∑

l≥1
(l + 1) ♯V1,l +

∑
l≥4

l ♯V4,l.

Proof. The subsets Vi are related to the graphs of Lemma 5.13 as follows: If v ∈ V0,

then v is one of the two white vertices of the graph (1). If v ∈ V1,l, then v is one of

the two white vertices of the graph (3) with l black vertices. If v ∈ V2, then v is the

white vertex of the graph (2). If v ∈ V3, then v is the white vertex of the graph (4)

with three black vertices. If v ∈ V4,l, then v is the white vertex of the graph (4) with

l black vertices. Thus V =
⊔Vi. Since any (−2)-curve of M is contained in a fiber of

M → P1, σ(S) is calculated as above. For a point P ∈ E, let ℓP be the fiber of π passing

through P , and mP := multP (∆). If P is not a ramification point of π|E : E → P1, then

ℓ ∩ E = {P, P ′} for another point P ′ ∈ E. In this case, if mP +mP ′ = 1, then the dual

graph of φ−1(ℓP )+EM is the graph (1); If mP +mP ′ = m > 1, then the dual graph is the

graph (3) with m − 1 black vertices. If mP = 2 and ℓP ∩ E = 2P , then the dual graph
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of φ−1(ℓP ) + EM is the graph (2). If mP = 3 and ℓP ∩ E = 2P , then the dual graph of

φ−1(ℓP ) + EM is the graph (4) with three black vertices. If mP ≥ 4 and ℓP ∩ E = 2P ,

then the dual graph of φ−1(ℓP ) + EM is the graph (4) with mP black vertices. Thus

deg ∆ = 8 =
∑

P∈∆mP is calculated as above. �

Theorem 6.28. Let S1 and S2 be log del Pezzo surfaces of index two. For i = 1, 2, let

(Mi, EMi
) be the basic pair associated with Si and let Γ (Si) be the dual graph of negative

curves on Mi. If char k 6= 2, then the following conditions are mutually equivalent :

(1) (M1, EM1) and (M2, EM2) are equi-singular deformation equivalent, and Γ (S1) and

Γ (S2) are isomorphic;

(2) S1 and S2 have the same type, and Γ (S1) and Γ (S2) are isomorphic;

(3) There exist fundamental triplets (X1, E1,∆1) and (X2, E2,∆2) defining S1 and

S2, respectively, such that (X1, E1,∆1) and (X2, E2,∆2) are strongly equi-singular

deformation equivalent ;

(4) S1 and S2 are equi-singular deformation equivalent.

Proof. (1) ⇒ (2): Let Ti be the type of Si for i = 1, 2. Then T1 = T2, (T1,T2) =

([0; 1, 1]0, [2; 1, 2]0), or (T1,T2) = ([2; 1, 2]0, [0; 1, 1]0) by Theorem 6.1. Under the iso-

morphism Γ (S1) ≃ Γ (S2), we have isomorphisms Γ (S1)K ≃ Γ (S2)K and Γ (S1)RDP ≃
Γ (S2)RDP. If T1 = [2; 1, 2]0, then there is an isolated black vertex in Γ (S1)RDP. If

T2 = [0; 1, 1]0, then there is no isolated black vertex in Γ (S2)RDP. Hence, T1 = T2.

(2) ⇒ (1) follows from Theorem 6.1.

(2) ⇒ (3) Since T1 = T2 and char k 6= 2, there exist a minimal basic pair (X,E) and

zero-dimensional subschemes ∆1 and ∆2 of E such that (Mi, EMi
) is obtained as the

elimination of the fundamental triplet (X,E,∆i) for i = 1, 2. Thus the assertion (3)

follows from Lemmas 5.14, 6.23, and 6.26.

(3) ⇒ (4) is shown in Theorem 5.15.

(4) ⇒ (2): Let f : S̃ → T be an equi-singular deformation of log del Pezzo surfaces

of index two over a non-singular connected curve T . Let M̃ → S̃ be the simultaneous

minimal resolution and h : (M̃, E
M̃

) → T be the induced equi-singular deformation of

basic pairs. Then, Γ (St)K ⊔ Γ (St)RDP is independent for any fiber St = f−1(t). In

particular, all the fibers St have the same type T by the argument in (1) ⇒ (2) above.

If γ is a (−1)-curve on the fiber M0 = h−1(o) over a point o ∈ T , then γ is the fiber over

o of a divisor Γ̃ of h−1(U) for a Zariski open neighborhood U of o such that any fiber

of Γ̃ → U is a (−1)-curve. In particular, the number of (−1)-curves on Mt for t ∈ T

defines a lower semi-continuous function. Let V(t) be the set of white vertices in Γ (S(t))

which are joined to Γ (S(t))RDP. Then t 7→ ♯V(t) is also lower semi-continuous. If ♯V(t)

is constant, then Γ (S(t))♭ is uniquely determined, and hence Γ (S(t)) is also constant by



121

Corollary 6.24 and Lemma 6.26. Thus, it is enough to show the function ♯V(t) is constant.

If T 6= [3; 2, 4]++(0, 0) and T 6= [1; 2, 2]0, then ♯V(t) is constant, since it is determined by

T and Γ (S(t)) by Lemma 6.23.

Suppose that T = [3; 2, 4]++(0, 0). Let V ′(t) ⊂ V(t) be the subset of vertices v which

is joined to a black vertex in Γ (S(t))K. Then ♯V ′(t) = 1 or 2, and t 7→ ♯V ′(t) is lower

semi-continuous. On the other hand, ♯V(t) = 16 − 2σ(S(t)) − ♯V ′(t) by Lemma 6.23.

Hence, V(t) and V ′(t) are constant.

Suppose that T = [1; 2, 2]0. Let Vi(t) be the set Vi for S(t) in Lemma 6.27. Similarly, we

define V1,l(t) and V4,l(t). Then ♯Vi(t), ♯V1,l(t), and ♯V4,l(t) are all lower semi-continuous

functions. Let a(l) be the number of connected components of Γ (S(t))RDP of type Al for

l ≥ 1 and let d(l) be the number of connected components of Γ (S(t))RDP of type Dl for

l ≥ 4. Then

a(1) = (1/2)♯V1,1(t) + 2♯V2(t), a(2) = ♯(1/2)V1,2(t),

a(3) = (3/2)♯V1,3(t) + 3♯V3(t), a(l) = (1/2)♯V1,l(t) for l ≥ 4,

d(l) = ♯V4,l(t) for l ≥ 4.

By the formula for deg(∆) in Lemma 6.27, we infer that all the ♯Vi(t) are constant. In

particular, ♯V(t) is constant. �

6.6. Comparison with the classification by Alexeev–Nikulin. The right resolution

plays an important role in the classification theory of log del Pezzo surfaces of index two

by Alexeev–Nikulin [3]. We assume char k = 0 in Section 6.6.

A general member CS ∈ |−2KS| is non-singular, by Bertini’s theorem. Let CY be the

total transform in Y . Then the divisor CY + EY is non-singular and linearly equivalent

to −2KY . The pair (Y , CY + EY) is called a right DPN pair of elliptic type in [3]. Let

τ : X → Y be the double-covering branched along CY + EY . Then X is non-singular

and is a K3 surface. Note that X does depend on the choice of CS. Let θ be the

covering involution of X with respect to τ . Then θ does not preserve a nowhere vanishing

holomorphic 2-form on X , i.e., θ is non-symplectic. The θ-fixed locus X θ is non-singular

and is isomorphic to τ(X θ) = CY +EY . We call X the K3 surface associated with (S,CS).

Remark. Let X → X ′ → S be the Stein factorization of the composite β ◦ τ : X → S.

Then X ′ → S is a double-covering étale outside SingCS∪SingS and OX ′ ≃ OS⊕OS(KS).

Moreover, X ′ has only rational double points as singularities and has a trivial dualizing

sheaf. Thus the notion of right resolution of S is just the notion of canonical resolution

in the sense of Horikawa with respect to the double-covering X ′ → S.
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Remark. Giving a non-singular member CS ∈ |−2KS| is equivalent to giving a non-

singular member CM ∈ |LM | for the associated basic pair (M,EM). Let (X,E,∆) be a

fundamental triplet defining the log del Pezzo surface S. Then a non-singular member

CS ∈ |−2KS| is the proper transform of a non-singular member C ∈ |L| with C ∩E = ∆.

Conversely, let us consider a K3 surface X with a non-symplectic involution θ. Then

the θ-fixed locus X θ is a non-singular divisor. Let Y be the quotient surface of X by the

action of θ and let τ : X → Y be the quotient map. Since KX ∼ τ ∗KY + X θ, τ(X θ) is a

non-singular divisor linearly equivalent to −2KY .

Lemma 6.29. Suppose that X θ is reducible and contains an irreducible curve of genus

g ≥ 2. Then (X , θ) is constructed from a log del Pezzo surface S of index two and a

non-singular member CS ∈ |−2KS| as above.

Proof. Let CY ⊂ Y be the image of the curve of genus g and let EY be the rest of τ(X θ).

Then KYCY + C2
Y = (1/2)C2

Y = 2g − 2 > 0. By the Hodge index theorem, E2
i,Y < 0 for

any irreducible component Ei,Y of EY . Thus, Ei,Y is a (−4)-curve by −2KYEi,Y = E2
i,Y .

Hence, Y is the right resolution of a log del Pezzo surface of index two by Lemma 6.8.

Moreover, CY is the total transform of a non-singular member CS of |−2KS|. Thus, we

are done. �

Therefore, the classification problem of log del Pezzo surfaces of index two is reduced

in some sense to the classification of K3 surfaces with non-symplectic involutions, if

char k = 0.

Let S1 and S2 be two log del Pezzo surfaces of index two whose right resolutions Y1

and Y2 are deformation equivalent. For i = 1, 2, let Xi be the K3 surface associated with

(Si, Ci) for a non-singular member Ci ∈ |−2KSi
|, and let θi ∈ Aut(Si) be the associated

non-symplectic involution. Then (X1, θ1) and (X2, θ2) are deformation equivalent by an

argument in Proposition 6.10. In fact, X1 and X2 appear as fibers of a smooth family

X̃ → T of K3 surfaces over a connected curve T where X̃ admits an involution θ̃ over T

and the restriction of θ̃ to Si is θi for i = 1, 2. Therefore, the deformation type of (X , θ)
depends on the deformation type of the DPN surface Y , and vice versa.

Assume further that k is the complex number field C. In order to study (X , θ), Alex-

eev and Nikulin have considered the invariant part S = H2(X an,Z)θ∗ of the K3 lattice

H2(X an,Z) by the induced involution θ∗. Then S is an even hyperbolic 2-elementary

lattice contained in NS(X ) in the following sense:

Let Λ be a non-degenerate lattice and let Q(x, y) ∈ Z denote the intersection pairing

for x, y ∈ Λ. Then Λ is called even if Q(x, x) ∈ 2Z for any x ∈ Λ. It is called
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hyperbolic if the signature of Q(·, ·) is (1, r − 1) for r = rank Λ. It is called 2-elementary

if Λ∗/Λ ≃ (Z/2Z)⊕a for the dual lattice Λ∗ = Hom(Λ,Z) ⊂ Λ⊗Q.

For an even hyperbolic 2-elementary lattice Λ, the main invariants are defined to be

(r, a, δ), where the remaining invariant δ ∈ {0, 1} is determined as follows: δ = 0 if and

only if Q(x∗, x∗) ∈ Z for any x∗ ∈ Λ∗. It is shown that the isomorphism classes of even

hyperbolic 2-elementary lattices are determined by the main invariants (cf. [3, §5.1]).

Furthermore, the main invariants for even hyperbolic 2-elementary lattices Λ admitting

primitive embeddings into a K3 lattice are classified in [3, §5.2] by an algebraic argument

of the lattice theory.

The main invariants of S have the following geometric interpretation (cf. [3, §2.3, §5.2]):

Let g be the genus of CS and let k be the number of irreducible components of EM . Note

that L2
M = 4g− 4, K2

S = g− 1 ≥ 1, and k equals the number of (−4)-curves on Y . Then

(g, k) and (r, a) are related by

k = (r − a)/2, g = (22− r − a)/2; r = 11− g + k, a = 11− g − k.

The invariant δ coincides with the δ of Definition 6.9 (cf. [3, §2.3]).

By the geometric interpretation and by Table 6, we have the list of the main invariants

for all the types of log del Pezzo surfaces of index two in Table 9. Here, the number N in

Table 9 is the entry number N used in [3, Table 1], which is given by the lexicographic

order with respect to (k, r, δ). Note that Alexeev and Nikulin [3] has treated also log

del Pezzo surfaces of index one and that the list with N ≤ 10 in [3, Table 1] corresponds

to the case of index one.

By the Torelli type theorem for K3 surfaces, Alexeev–Nikulin proved that the set of

the pairs (X , θ) of K3 surfaces X and non-symplectic involutions θ having fixed main

invariants (r, a, δ) forms a connected family.

In [3], the log del Pezzo surfaces of index at most two are classified not only by the

main invariants but also by another invariant called the root invariant. We omit the

explanation of the root invariant here, but it almost corresponds to an information on

the set of negative curves on the DPN surface Y . They classified the root invariants for

any (X , θ) by an algebraic argument of lattices and by the Torelli type theorem for K3

surfaces. The method of calculating the dual graph Γ [Y ] of the negative curves on Y
from the main invariants and a root invariant is explained in detail in [3]. The nef cone

of Y is determined by Γ [Y ] up to the action of certain Weyl group defined by the root

invariant. The nef cone is used for the Torelli type theorem.

Let Γ̂ (S) be the dual graph Γ [Y ]. Then we have a natural map Ver(Γ (S))→ Ver(Γ̂ (S))

by taking proper transforms in Y . Let Γ̂ (S)K be the subgraph of Γ̂ (S) consisting of the

vertices representing irreducible components of ψ∗EM . This is called the logarithmic part
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Table 9. The main invariants of fundamental triplets

Type T r a δ N Type T r a δ N

[1]0 6 4 0 15 [2; 1, 0]0 4 2 1 13

[2]0 9 7 1 19 [2; 1, 1]+(0, 0) 7 3 1 22

[2]+(0) 10 6 1 26 [2; 1, 1]+(1, 1) 8 2 1 28

[2]+(1) 11 5 1 32 [2; 1, 1]+(1, 2) 9 1 1 34

[2]+(2) 12 4 1 38 [2; 1, 1]+(1, 3) 10 0 0 40

[2]+(3) 13 3 1 43 [2; 1, 2]0 8 6 1 18

[2]+(4) 14 2 0 46 [2; 1, 2]++ 10 4 0 30

[0; 1, 0]0 6 4 1 16 [3; 1, 0]0 3 1 1 12

[0; 1, 1]0 8 6 1 18 [3; 1, 1]+ 6 2 0 21

[0; 1, 1]+(0) 9 5 1 24 [3; 2, 4]+ 11 7 1 27

[0; 1, 1]+(1) 10 4 1 31 [3; 2, 4]++(0, 0) 12 6 1 33

[0; 1, 1]+(2) 11 3 1 37 [3; 2, 4]++(1, 1) 13 5 1 39

[0; 1, 1]+(3) 12 2 1 42 [3; 2, 4]++(2, 1) 14 4 0 44

[1; 1, 0]0 5 3 1 14 [3; 2, 4]++(1, 2) 14 4 1 45

[1; 1, 1]0 7 5 1 17 [3; 2, 4]++(1, 3) 15 3 1 47

[1; 1, 1]+(0, 0) 8 4 1 23 [3; 2, 4]++(1, 4) 16 2 1 48

[1; 1, 1]+(1, 1) 9 3 1 29 [3; 2, 4]++(1, 5) 17 1 1 49

[1; 1, 1]+(2, 1) 10 2 0 35 [3; 2, 4]++(1, 6) 18 0 0 50

[1; 1, 1]+(1, 2) 10 2 1 36 [4; 1, 0]0 2 0 0 11

[1; 1, 1]+(1, 3) 11 1 1 41 [4; 2, 4]00 10 6 0 25

[1; 2, 2]0 10 8 1 20

of Γ [Y ] in [3]. If a connected component of Γ̂ (S)K corresponds to a singular point of S

of type Kn for n ≥ 2, then the component is written as

gc g gc g · · · g gc g gc

where the total number of the vertices is 2n+1. The subgraph Γ̂ (S)RDP ⊂ Γ̂ (S) consisting

of the (−2)-curves on Y is called the Du Val part of Γ [Y ] in [3], and is canonically

isomorphic to Γ (S)RDP. The union Γ̂ (S)K ⊔ Γ̂ (S)RDP is just the dual graph of the β-

exceptional curves. Note that Γ̂ (S) is determined by Γ (S) by Corollary 6.5.

Therefore, the classification of the main invariants and the root invariants seems to

correspond to the classification of equi-singular deformation types by Theorems 6.1, 6.28.
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6.7. Dual graph of the negative curves for extremal cases. We shall write the

graph Γ̂ (S) for an extremal log del Pezzo surface S of index two. The notion of extremal

in [3] is the same as our notion in Definition 6.17 if we erase the case of type [2; 1, 2]0.

Then we have the list of dual graphs for char k = 0 in [3, Table 3]. We can calculate

the graph by a geometric way by using results in Section 6.2. This method is completely

different from that in [3].

Let us fix an extremal fundamental triplet (X,E,∆) defining S. A negative curve on

Y is one of the following curves:

(1) An exceptional curve for the composite Y →M → X.

(2) The proper transform of an irreducible component of E; in other words, an irre-

ducible component of EY .

(3) The proper transform of an irreducible curve of X not contained in E.

By Proposition 6.2 and Corollary 6.5, we can classify the negative curves in the case (3)

as follows.

Proposition 6.30. Let S be the set of irreducible curves γ of X with γ 6⊂ E whose

proper transform in Y is negative. Then S is described as follows according to the type

T of the extremal fundamental triplet (X,E,∆):

(1) S = ∅ if T is one of

[1]0, [2]+(4), [1; 1, 1]+(2, 1), [2; 1, 1]+(1, 1), [2; 1, 1]+(1, 2), [2; 1, 1]+(1, 3),

[2; 1, 2]++, [3; 1, 1]+, [3; 2, 4]++(1, 6), [4; 1, 0]0.

(2) If T = [2]0, then ∆ = 8P for a point P of the non-singular conic E, and S

consists of the tangent line at P .

(3) Suppose that T = [2]+(b). Then E = E1 + E2 for two lines E1, E2. Let P

be the node E1 ∩ E2. If b = 0, then ∆ = 4Q1 + 4Q2 for points Q1 ∈ E1 \ {P},
Q2 ∈ E2 \{P}. If b > 0, then ∆ = 3Q1 +(4−b)Q2 +∆P for points Q1 ∈ E1 \{P},
Q2 ∈ E2 \ {P} and for an effective Cartier divisor ∆P of E supported on P with

multP (∆P ∩ E1) = 1, multP (∆P ∩ E2) = b.

(a) If b 6= 1, 4, then S consists of the line passing through Q1, Q2.

(b) If b = 1, then S consists of the line passing through Q1, Q2 and the unique

line ℓ with ℓ ∩ E = ∆P .



126

(4) S consists of one fiber of the P1-bundle π : X → P1 if T is one of

[0; 1, 0]0, [0; 1, 1]+(3),

[1; 1, 0]0, [1; 1, 1]+(0, 0), [1; 1, 1]+(1, 1), [1; 1, 1]+(1, 2), [1; 1, 1]+(1, 3)

[2; 1, 0]0, [2; 1, 1]+(0, 0),

[3; 1, 0]0, [3; 2, 4]++(2, 1), [3; 2, 4]++(1, 4), [3; 2, 4]++(1, 5),

[4; 2, 4]00.

(5) S consists of a fiber and a minimal section of π : X → P1 if T is one of

[0; 1, 1]0, [0; 1, 1]+(0), [0; 1, 1]+(1), [0; 1, 1]+(2), [1; 1, 1]0, [2; 1, 2]0.

(6) Suppose that T = [3; 2, 4]+. Then E = σ +D for a section D ∼ σ + 4ℓ. Let P be

the node σ ∩ D. Then ∆ = 8Q for a point Q ∈ D \ {P}. Let ℓP and ℓQ be the

fibers of π passing through P and Q, respectively. Then S consists of ℓP , ℓQ, and

the section Θ at infinity with Θ ∩ E = 4Q.

(7) Suppose that T = [3; 2, 4]++(a, b) for (a, b) ∈ {(0, 0), (1, 1), (1, 2), (1, 3)}. Then

E = σ + σ∞ + ℓ for a section σ∞ at infinity and a fiber ℓ of π. Let P be the

node σ∞ ∩ ℓ. Then ∆ = (6 − b)Q + (2 − a)Q′ + ∆P for points Q ∈ σ∞ \ {P},
Q′ ∈ ℓ \ {P} and for an effective Cartier divisor ∆P of E supported on P with

multP (∆P ∩σ∞) = b, multP (∆P ∩ ℓ) = a. Let ℓQ be the fiber of π passing through

Q.

(a) If (a, b) = (0, 0), then S consists of ℓQ and the section Θ with Θ∩E = 3Q+Q′.

(b) If (a, b) = (1, 1), then S consists of ℓQ and two sections Θ1, Θ2 at infinity

such that Θ1 ∩ E = 3Q+Q′ and Θ2 ∩ E = 2Q+ ∆P .

(c) If (a, b) = (1, 2), then S consists of ℓQ and two sections Θ1, Θ2 at infinity

such that Θ1 ∩ E = 3Q+Q′ and Θ2 ∩ E = Q+ ∆P .

(d) If (a, b) = (1, 3), then S consists of ℓQ and two sections Θ1, Θ2 at infinity

such that Θ1 ∩ E = 3Q+Q′ and Θ2 ∩ E = ∆P .

(8) Suppose that T = [1; 2, 2]0 and char k 6= 2. Then ∆ = n1P1 + n2P2 for the

ramification points P1, P2 ∈ E of the double-covering π|E : E → P1 and for

(n1, n2) ∈ {(8, 0), (6, 2), (5, 3), (4, 4)}. Let ℓi be the fiber of π passing through

Pi for i = 1, 2.

(a) If (n1, n2) = (8, 0), then S = {σ, ℓ1}.
(b) If (n1, n2) 6= (8, 0), then S consists of σ, the fibers ℓ1, ℓ2, and the section Θ

at infinity passing through P1 and P2.

(9) Suppose that T = [1; 2; 2]0 and char k = 2. If π|E : E → P1 is separable, then

∆ = 8P for the unique ramification point P ∈ E, and S consists of the fiber ℓP
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passing through P and σ. Suppose that π|E is inseparable. Then ∆ =
∑l

i=1miPi

for l distinct points P1, . . . , Pl for l ≤ 4, and m1 ≥ m2 ≥ · · · ≥ ml ≥ 2 with
∑l

i=1mi = 8. Let ℓi be the fiber of π passing through Pi.

(a) If l = 1, then S = {σ, ℓ1}.
(b) If 2 ≤ l ≤ 3, then S consists of σ, the fibers ℓi for 1 ≤ i ≤ l, and the sections

Θi,j at infinity with Θi,j|E = Pi + Pj for 1 ≤ i < j ≤ l.

(c) If l = 4, then S consists of σ, the fibers ℓi for 1 ≤ i ≤ 4, the sections Θi,j at

infinity with Θi,j|E = Pi + Pj for 1 ≤ i < j ≤ l, and the section Υ ∼ σ + 2ℓ

with Υ|E =
∑4

i=1 Pi.

Proof. (1), (2), (4), (5) are shown directly from Proposition 6.2 and Corollary 6.5.

(3): If b > 1, then there is no line ℓ with ℓ ∩ E ⊂ ∆P by Corollary 2.13. If b = 1,

then there exists uniquely the line ℓ with ℓ ∩ E = ∆P . Thus S is described as above by

Proposition 6.2, (7a).

(6): The proper transform of ℓQ in M is a (−1)-curve in Proposition 6.2, (6). The

proper transform of ℓP in Y is the (−1)-curve appearing at Lemma 6.4. Since ∆ = 8P

and (σ+ 3ℓ)D = 4, the section Θ at infinity with Θ∩E ⊂ ∆ is unique. Thus S consists

of these three curves.

(7): It is enough to determine the sections Θ at infinity satisfying Θ ∩ E ⊂ ∆. Since

Θσ∞ = 3, Θℓ = 1, we have the unique section Θ in case (a, b) = (0, 0) and the two

sections Θ1, Θ2 in other cases by Corollary 2.13.

(8) and (9): It is enough to determine the sections Θ ∼ σ + mℓ for 1 ≤ m ≤ 4 with

Θ∩E ⊂ ∆. For the fiber ℓP passing through a point P ∈ ∆, we have ℓP |E = 2P . Hence,

the sections Θ are determined by Proposition 6.2, (7g). Thus we are done. �

Using Proposition 6.30, we can calculate the graph Γ̂ (S) for any extremal log del Pezzo

surface S of index two. If the type T is not [1; 2, 2]0, then the extremal fundamental triplet

(X,E,∆) of type T is unique up to isomorphism by Theorem 6.20, so the graph Γ̂ (S) for

the extremal log del Pezzo surface S is denoted by Γ̂T for T 6= [1; 2, 2]0. We shall explain

how to calculate Γ̂ (S) for some types in each case of Proposition 6.30, and have the list

of graphs for some types in cases (1)–(7) in Table 10. In the cases (8)–(9), we list the

graph Γ̂ (S) for two extremal cases in Table 11. We can obtain the same graphs as in

[3, Table 3] for all the types if char k 6= 2, but we omit the calculation in the remaining

types.

In the graphs in Table 10, a vertex labeled with an irreducible curve γ of X represents

the proper transform of γ in Y .

Case (1): S = ∅. If T = [4; 1, 0]0, then gc is the graph Γ̂T since ∆ = 0 and Y ≃M ≃ X.

If T = [1]0, then ∆ = 5P for a point P of a line E of P2, Y ≃M , and hence Γ̂T is written



128

as in Table 10. For other types with S = ∅, E is reducible and Y → M → X is a

succession of blowups whose centers lie on the proper transform of E or on the inverse

image of the nodes of E. Thus Γ̂T is naturally obtained. For example, we consider the

case T = [2; 1, 1]+(1, 2). Then E = σ+ℓ and ∆ = Q+∆P for a point Q ∈ ℓ\σ and for an

effective Cartier divisor ∆P supported on the node P = σ∩ℓ such that multP (∆P ∩σ) = 1

and multP (∆P ∩ ℓ) = 2. Thus we have the graph Γ̂T as in Table 10.

Case (2): T = [2]0. E is a non-singular conic of P2 and ∆ = 8P . For the tangent line

ℓP of E at P , we have the graph Γ̂T in Table 10.

Case (3): T = [2]+(b). E = E1 + E2 for two lines E1, E2 of P1. Suppose that b = 0.

Then ∆ = 4Q1 + 4Q2. For the line ℓ0 passing through Q1 and Q2, we have the graph

Γ̂T in Table 10. For the case b 6= 1, Γ̂T is similarly obtained. Suppose that b = 1. Let

ℓ0 ∈ S be the line passing through Q1, Q2 and let ℓ1 ∈ S be the other line. Then the

point ℓ0 ∩ ℓ1 is not lying on E. Thus Γ̂T is as in Table 10.

Case (4): Here, we pick up three types [2; 1, 0]0, [1; 1, 1]+(1, 1), and [3; 2, 4]++(2, 1).

Suppose that T = [2; 1, 0]0. Then E = σ and ∆ = 2P . Thus we have the graph Γ̂T in

Table 10 for the fiber ℓP of π passing through P .

Suppose that T = [1; 1, 1]+(1, 1). Then E = σ + ℓ and ∆ = Q1 + 2Q2 + ∆P for

Q1 ∈ σ \ ℓ, Q2 ∈ ℓ \ σ, and for an effective Cartier divisor ∆P supported on P = σ ∩ ℓ
with multP (∆P ∩ σ) = multP (∆P ∩ ℓ) = 1. Thus we have the graph Γ̂T in Table 10 for

the fiber ℓ1 passing through Q1.

Suppose that T = [3; 2, 4]++(2, 1). Then E = σ + σ∞ + ℓ and ∆ = 5Q + ∆P for

Q ∈ σ∞ \ ℓ and for an effective Cartier divisor ∆P supported on P = σ∞ ∩ ℓ with

multP (∆P ∩ σ∞) = 1, multP (∆P ∩ ℓ) = 2. Thus we have the graph Γ̂T in Table 10 for

the fiber ℓQ passing through Q.

Case (5): Here, we pick up three types [0; 1, 1]0, [0; 1, 1]+(1), and [2; 1, 2]0. Suppose

that T = [0; 1, 1]0. Then E is regarded as the diagonal locus of X = P1×P1 and ∆ = 6P

for a point P ∈ E. Let ℓi be the fiber passing through P of the i-th projection X → P1

for i = 1, 2. Then Γ̂T is as in Table 10. Note that this graph is not included in [3]

since this is not extremal in the sense of [3]. In fact, the extremal distribution D[0;1,1]0 is

a subdiagram of D[2;1,2]0 .

Suppose that T = [0; 1, 1]+(1). Then E = σ+ℓ and ∆ = 2Q1+2Q2+∆P for Q1 ∈ σ\ℓ,
Q2 ∈ ℓ \ σ, and for an effective Cartier divisor ∆P supported on the node P = σ ∩ ℓ with

multP (∆P ∩ σ) = multP (∆P ∩ ℓ) = 1. Let ℓ1 be the fiber passing through Q1 and let σ2

be the minimal section passing through Q2. Then Γ̂T is as in Table 10.

Suppose that T = [2; 1, 2]0. Then E is a section at infinity and ∆ = 6P for P ∈ E.

Let ℓP be the fiber passing through P . Then E ∩ σ = ∅ and EℓP = σℓP = 1. Hence Γ̂T

is as in Table 10.
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Table 10. Some graphs Γ̂T

T [1]0 [2; 1, 1]+(1, 2)

Γ̂T gc
E

g w w w w gc
σ

g gc g gc

g

g gc
ℓ

g

T [2]0 [2]+(0)

Γ̂T gc
E

g w w w w w w

g
ℓP

w

g

w

w

w

gc
E1

g gc
E2

g

w

w

wg
ℓ0

T [2]+(1) [2; 1, 0]0

Γ̂T

gcE1

g

w

w

g gc g gcE2

g

w

w

g

gℓ1

g
ℓ0

gc
σ

g w g
ℓP

T [1; 1, 1]+(1, 1) [3; 2, 4]++(2, 1)

Γ̂T g
ℓ1

g gc
σ

g gc

g

g gc
ℓ

g w
g

gc
σ∞

w w w w g ℓQ

g gc g gc

g

g gc
ℓ

g gc
σ

T [0; 1, 1]0 [0; 1, 1]+(1)

Γ̂T

gc
E

g w w w w w

g
ℓ1

gℓ2
g w g

ℓ1

g

σ2

w g

gc
σ

g gc

g

g gc
ℓ

T [2; 1, 2]0 [3; 2, 4]+

Γ̂T gc
E

g w w w w w g
ℓP

w
σ

w

w

w

g gc
D

g gc
σ

gℓQ

w w

gΘ

gℓP
w

w

T [3; 2, 4]++(0, 0) [3; 2, 4]++(1, 2)

Γ̂T

w w w w w

gΘ

w

g

g

gc
σ∞

g gc
ℓ

g gc
σ

gℓQ 2

σσ∞ ℓ

Θ1Θ2

ℓQ
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Table 11. Graphs Γ (S) for two extremal cases of type [1; 2, 2]0

D(S) Γ̂ (S)

D8 gc
E

g w w w w w w

w

w

ℓ1

g

σ

8A1

σ

ℓ1 ℓ2

Θ1,2

E

Υ

Case (6): T = [3; 2, 4]+. Then E = σ + D for a section D ∼ σ + 4ℓ. For the node

P = σ ∩D, we have ∆ = 8Q for Q ∈ D \ {P}. Let ℓP , ℓQ, and Θ be the same divisors

as in Proposition 6.30, (6). Then Γ̂T is as in Table 10.

Case (7): We pick up two types [3; 2, 4]++(0, 0) and [3; 2, 4]++(1, 2). Let E = σ+σ∞+ℓ,

P = σ∞ ∩P , Q, Q′, ∆P , ℓQ, Θ, Θ1, Θ2 be the same as in Proposition 6.30, (7). Then Γ̂T

is as in Table 10 by the description of S.

Case (8): T = [1; 2, 2]0 and char k 6= 2. We pick up the case where D(S) = D8.

Then ∆ = 8P1 for a ramification P1 point of π|E : E → P1. Then Γ̂ (S) = Γ (S) is as in

Table 11 for the fiber ℓ1 of π : X → P1 passing through P1.
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Table 12. Graphs Γ (S) for two non-extremal cases of type [1; 2, 2]0 with

D(S) = A7

Γ (S)

∆1 = 8P

2

2

3E

ℓP

σ

γ1

γ2

γ3

γ4

∆2 = 7P + P ′
2E

ℓP

σ

γ1

γ2

γ3

Case (9): T = [1; 2, 2]0 and char k = 2. We pick up the case where ∆ consists of four

points P1, . . . , P4. This is just the case where D(S) = 8A1. Then ∆ = 2(P1 + · · ·+ P4).

Let Θi,j,M be the proper transform in M of the section Θi,j at infinity with Θi,j|E = Pi+Pj

for 1 ≤ i < j ≤ 4. Let σM be the proper transform in M of the negative section σ and let

ΥM be the proper transform in M of the section Υ ∼ σ + 2ℓ with Υ|E ∼
∑4

i=1 Pi. Then

ΥM ∩Θi,j,M = σM ∩Θi,j,M = ∅ for any i < j, ΥMσM = 1, and

Θi1,j1,MΘi2,j2,M =





1, if {i1, j1} ∩ {i2, j2} = ∅,
0, otherwise.

Therefore, Γ̂ (S) = Γ (S) is as in Table 11.
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Table 13. Two subgraphs A7 ⊂ D8 = ΓRDP defining non-extremal root invariants

Γ
gc g w w w w w w

w

w g

D(1)
w w w w w w

w

D(2)
w w w w w w w

Remark 6.31. Suppose that char k 6= 2. We have two isomorphism classes of log del Pezzo

surfaces S of index two of type [1; 2, 2]0 with D(S) = A7. These are constructed from the

fundamental triplets (X,E,∆1) and (X,E,∆2) for the two zero dimensional subschemes

∆1 = 8P and ∆2 = 7P + P ′ defined in Example 6.25. Let ℓP be the fiber of π : X → P1

passing through P . Then ℓP ∩ E = {P, P ′}. Let γj ∼ σ + jℓ be the unique section of π

with γj|E = 2jP for j ≥ 1 (cf. Proposition 6.2, (7g)). Then the dual graph Γ (X,E,∆i)

for i = 1, 2 is written as in Table 12.

For a ramification point P1 ∈ E of π|E, the fundamental triplet (X,E, 8P1) is extremal

and the dual graph Γ := Γ (X,E, 8P1) is given in Table 11. According to Alexeev–

Nikulin [3], we have a non-extremal root invariant from a subgraph D♯ of the Dynkin

diagram ΓRDP = D8 and we can calculate the dual graph Γ̂ (S♯) = Γ̂ (D♯) for a log del Pezzo

surface S♯ of type [1; 2, 2]0 having the same non-extremal root invariant determined by D♯.

Ohashi has calculated the graph Γ̂ (D♯) for the subgraph D♯ = D(1) or D(2) in Table 13.

As a result, we infer that Γ̂ (D(i)) coincides with Γ (X,E,∆i) for i = 1, 2.
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7. Description of log del Pezzo surfaces of index two

A log del Pezzo surface S of index two is determined by a fundamental triplet (X,E,∆)

with E reduced and with LE = deg(∆). The classification of fundamental triplets gives

the geometric description of S. From the information of the fundamental triplet, we shall

describe the surface S explicitly as a subvariety of a weighted projective space or of the

product of two weighted projective spaces.

7.1. Description by blowing up. Let (X,E,∆) be a fundamental triplet such that

X ≃ Fn and E is a section of the P1-bundle structure π : X → P1. For the elimination

φ : M → X of ∆, the proper transform EM ⊂ M of E is a section of π ◦ φ : M → P1

with E2
M = −4. By Lemma 4.5, there is a birational morphism µ : M → F4 over P1

such that EM is the total transform of the negative section σ(4) of F4. For an irreducible

curve γ ⊂M , it is µ-exceptional if and only if γ is an irreducible component of a fiber of

M → P1 with EM ∩ γ = ∅. In particular, KMγ ≤ 0 for any µ-exceptional curve γ. Thus

µ is isomorphic to the elimination of a zero-dimensional subscheme D′ ⊂ F4 such that

νP (D′) = 1 for any P ∈ D′ and D′ ∩ σ(4) = ∅, by Proposition 2.9.

The birational morphism α : M → S contracts EM to a singular point of type K1 and

φ-exceptional (−2)-curves to rational double points. In the case [2; 1, 2]0, α contracts also

the proper transform of σ to a singular point of type A1. The φ-exceptional (−2)-curves

are contracted by the morphism µ : M → F4, since these curves do not intersect EM .

Let σ(4)
∞ ⊂ F4 be a section at infinity and let ℓ be a fiber of F4 → P1. The contraction

morphism F4 → F4 of the negative section σ(4) gives an isomorphism F4 ≃ P(1, 1, 4). The

image of ℓ in P(1, 1, 4) is a generating line and the image of σ(4)
∞ is a cross section of the

cone P(1, 1, 4) over P1. The vertex v of the cone is a singular point of type K1. For a

homogeneous coordinate (X, Y, Z) of P(1, 1, 4), v is the point (0 : 0 : 1), div(Z) is a cross

section, and div(X) and div(Y) are generating lines. Thus there is a birational morphism

q : F4 → P(1, 1, 4) such that q(σ4) = {v}, q(σ(4)
∞ ) = div(Z), and q(ℓ) = div(X).

Proposition 7.1. Suppose that a log del Pezzo surface S of index two is of type [n; 1, 0]0

for 0 ≤ n ≤ 4. Then S is isomorphic to P(1, 1, 4) blown up along a zero-dimensional

subscheme D satisfying

(*) v 6∈ D, deg D = 4− n, and deg(D ∩ ℓ) ≤ 1 for any generating line ℓ.

Conversely, if D ⊂ P(1, 1, 4) is a zero-dimensional subscheme satisfying (*) for 0 ≤ n ≤ 4,

then D is a Cartier divisor of a cross section, and P(1, 1, 4) blown up along D is a log

del Pezzo surface of index two of type [n; 1, 0]0.

Proof. Let (X,E,∆) be a fundamental triplet defining S. Then E = σ and deg ∆ = 4−n.

The total transform ΘM = φ∗(σ∞) ⊂ M of a section σ∞ at infinity of X is a section of
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M → P1. Since KX + σ + σ∞ + 2ℓ ∼ 0, we have KM + EM + ΘM + 2φ∗ℓ ∼ 0. Since

EM = µ∗σ(4), we infer that µ(ΘM) ⊂ F4 is a section σ(4)
∞ at infinity and that µ is the

elimination of the Cartier divisor D′ ⊂ σ(4)
∞ , by Proposition 2.9. Here, D′ is isomorphic to

∆ under the isomorphism σ(4)
∞ ≃ E over P1. Let D be the image q∗D

′ for the birational

morphism q : F4 → P(1, 1, 4). Then D is a Cartier divisor of the cross section Θ = q(σ∞)

satisfying (*). The induced morphism S → P(1, 1, 4) is just the blowing-up along D.

Conversely, if D ⊂ P(1, 1, 4) is a zero-dimensional subscheme satisfying (*), then D

is a Cartier divisor of a cross section Θ by Lemma 7.2 below. Let D′ be the preimage

q−1(D) for q : F4 → P(1, 1, 4). The preimage q−1Θ is a section at infinity. Let µ : M → F4

be the elimination of D′. The proper transform ΘM ⊂ M of Θ and the total transform

EM ⊂ M of σ(4) are sections of M → P1, where KM + ΘM + EM + 2µ∗ℓ ∼ 0 and

Θ2
M = 4− (4− n) = n ≥ 0. We set LM = −2KM − EM . Then LM ∼ 2ΘM + EM + 4µ∗ℓ

and KM + LM = ΘM + 2µ∗ℓ imply that (M,EM) is a basic pair with LMEM = 0. The

log del Pezzo surface S associated with (M,EM) is just the blowing up of P(1, 1, 4) along

D. On the other hand, M is the elimination of (X,E,∆) for X = Fn, E = σ, and an

effective divisor ∆ of E with deg ∆ = 4− n. Hence, S is a log del Pezzo surface of index

two of type [n; 1, 0]0. �

Lemma 7.2. Let ∆ be a zero-dimensional subscheme of Fn such that ∆ ∩ σ = ∅ for a

minimal section σ and that deg(∆ ∩ ℓ) ≤ 1 for any fiber ℓ of Fn → P1.

(1) If deg ∆ ≤ n+ 1, then ∆ is a Cartier divisor of a section σ∞ at infinity.

(2) If deg ∆ = n+ 2, then ∆ is a Cartier divisor of σ∞ or of σ∞ ∪ ℓ for a section σ∞

at infinity and for a fiber ℓ.

In particular, νP (∆) = 1 for any P ∈ Supp ∆ if deg ∆ ≤ n+ 2.

Proof. (1) We may assume that deg ∆ = n+ 1. From the exact sequence

0→ I∆OX(σ + nℓ)→ OX(σ + nℓ)→ O∆ → 0

on X = Fn for the defining ideal I∆ of ∆, we infer that H0(X, I∆OX(σ + nℓ)) 6= 0 since

dim H0(X, σ + nℓ) = n + 2. Thus OX(−D) ⊂ I∆ for an effective divisor D ∼ σ + nℓ.

If D is irreducible, then D is a section at infinity. We shall derive a contradiction by

assuming that D is reducible. Then n > 0 and D = σ + F for an effective divisor

F ∼ nℓ. Thus OX(−F ) ⊂ I∆ since ∆ ∩ σ = ∅. The non-empty intersection ∆ ∩ ℓ for a

fiber ℓ ⊂ F is supported on a point P . For a defining equation t ∈ OX,P of ℓ at P , let

O∆,P → O∆,P be the multiplication map by t. Then this is a nilpotent endomorphism

with one-dimensional cokernel since deg(∆∩ℓ) = 1. Hence, tk ∈ I∆,P and tk−1 6∈ I∆,P for

k = multP ∆ = dimkO∆,P . Thus multP ∆ ≤ multℓ F . Considering any fiber ℓ contained

in F , we have deg ∆ ≤ n which contradicts deg ∆ = n+ 1.
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(2) Let us fix a point P ∈ Supp ∆ and let ℓ be the fiber containing P . Suppose that

multP (∆) = 1. Then ∆ = ∆′ ∪ {P} for a subscheme ∆′ with ∆′ ∩ ℓ = ∅. By (1), ∆′ is a

Cartier divisor of a section σ∞ at infinity. Thus ∆ is a Cartier divisor of σ∞ ∪ ℓ in this

case.

Suppose that k := multP (∆) − 1 > 0. Let t ∈ OX,P be a defining equation of ℓ

at P . Then the multiplication map O∆,P → O∆,P by t is a nilpotent endomorphism

with one-dimensional cokernel. Thus tk 6∈ I∆,P and tk+1 ∈ I∆,P . The image tO∆,P is

isomorphic to O∆,P/(t
k). Thus the image of the homomorphism O∆ → O∆ obtained by

tensoring O∆ with the inclusion OX(−ℓ) → OX is isomorphic to O∆′ for a subscheme

∆′ ⊂ ∆ with deg ∆′ = n + 1 and multP (∆′) = k. By (1), ∆′ is a Cartier divisor of a

section σ∞ at infinity. Thus I∆′,P is generated by (f, tk) for a defining equation f ∈ OX,P

of σ∞ at P . Since tk 6∈ I∆,P , there is a constant c ∈ k with f + ctk ∈ I∆,P . Thus

I∆,P = (f + ctk, tk+1). If c = 0, then OX(−σ∞) ⊂ I∆ and ∆ is a Cartier divisor of σ∞.

If c 6= 0, then I∆,P = (f + ctk, ft) and ∆ is a Cartier divisor of σ∞ ∪ ℓ. �

Proposition 7.3. Let S be a log del Pezzo surface of index two determined by a funda-

mental triplet (X,E,∆) such that X ≃ Fn and E is a non-minimal section of X → P1.

Then the type of S is one of [0; 1, 1]0, [1; 1, 1]0, and [2; 1, 2]0.

(1) If the type is [0; 1, 1]0, then S is isomorphic to P(1, 1, 4) blown up along a zero-

dimensional subscheme D satisfying the following conditions :

(a) v 6∈ D, deg D = 6, and deg(D ∩ ℓ) ≤ 1 for any generating line ℓ;

(b) D is not a Cartier divisor of any cross section of P(1, 1, 4).

Conversely, if a zero-dimensional subscheme D satisfies the conditions above, then

P(1, 1, 4) blown up along D is a log del Pezzo surface of index two of type [0; 1, 1]0.

(2) If the type is [1; 1, 1]0, then S is isomorphic to P(1, 1, 4) blown up along a zero-

dimensional subscheme D such that v 6∈ D, deg D = 5, and deg(D ∩ ℓ) ≤ 1 for

any generating line ℓ. Conversely, if D is a zero-dimensional subscheme satisfying

the same condition as above, then D is a Cartier divisor of a cross section, and

P(1, 1, 4) blown up along D is a log del Pezzo surface of index two of type [1; 1, 1]0.

(3) Suppose that the type is [2; 1, 2]0. Then there exist a cross section Θ of P(1, 1, 4),

an effective Cartier divisor D of Θ of deg D = 6, and a birational morphism Ŝ → S

for the blowing-up Ŝ → P(1, 1, 4) along D such that Ŝ → S is the contraction

morphism of the proper transform of Θ in Ŝ. Conversely, the surface S obtained

from an effective Cartier divisor D of a cross section Θ as above is a log del Pezzo

surface of index two of type [2; 1, 2]0.

Proof. The case [1; 1, 1]0 is proved by the same argument as in Proposition 7.1.
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Case [2; 1, 2]0: The negative section σ does not intersect E. The total transform ΘM

of σ in M is also a section satisfying KM + EM + ΘM + 2φ∗ℓ ∼ 0. Since EM is the total

transform of the negative section σ(4), µ(ΘM) is a section σ(4)
∞ at infinity, and µ is the

elimination of the divisor D′ ⊂ σ(4)
∞ . Here D′ is isomorphic to ∆ under the isomorphism

σ(4)
∞ ≃ E over P1. The image D = q∗D

′ ⊂ P(1, 1, 4) is a Cartier divisor of the cross

section Θ = q(σ(4)
∞ ) with deg D = 6. Let Ŝ → P(1, 1, 4) be the blowing-up along D. Then

the induced birational morphism M → Ŝ contracts all the φ-exceptional (−2)-curves on

M . Since α : M → S contracts also the proper transform of σ in M , S is obtained by

contracting the the proper transform Θ̂ of σ in Ŝ. Conversely, if D is a Cartier divisor

of a cross section Θ of deg D = 6, then for the elimination µ : M → F4 of D′ = q−1D, M

is obtained as the elimination for a fundamental triplet (X,E,∆) of type [2; 1, 2]0, where

E is the proper transform of Θ.

Case [0; 1, 1]0: Since deg ∆ = 6, we can take a minimal section σ such that E ∩σ ⊂ ∆.

Let X ′ → X be the blowing up at the point E ∩ σ. Then the proper transform ℓ′ of

the fiber through the point E ∩ σ is a (−1)-curve. Let X ′ → X1 be the blowdown of

ℓ′. Then the proper transform σ1 of σ in X1 is the negative section and the proper

transform E1 of E in X1 is a section at infinity. Here, the image Q ∈ X1 of ℓ′ is not

contained in σ1 ∪E1. The elimination M → X of ∆ induces a morphism M → X1 which

is regarded as the elimination of the zero-dimensional subscheme ∆′
1 ∪ {Q} for a Cartier

divisor ∆′
1 of E1 with deg ∆′

1 = 5. The proper transform of E1 in F4 by the rational map

µ ◦ φ−1 : X ···→M → F4 is the negative section σ(4) and the proper transform of σ1 in F4

is a section σ(4)
∞ at infinity. Let D′

1 be the Cartier divisor of σ(4)
∞ isomorphic to ∆′

1 under

the isomorphism σ(4)
∞ ≃ E1 over P1.

Suppose that ∆′
1 does not intersect the fiber ℓQ of X1 → P1 passing through Q. Then

the rational map X ···→ F4 is an isomorphism at Q and let Q′ ∈ F4 be the image of Q.

The morphism µ : M → F4 is considered as the elimination of D′
1 ∪ {Q′}. The image

D1 = q(D′
1) ⊂ P(1, 1, 4) is a Cartier divisor of the cross section Θ = q(σ∞) and q(Q′) 6∈ Θ.

Then the induced morphism S → P(1, 1, 4) is the blowing-up along the zero-dimensional

subscheme D = D1 ∪ {q(Q′)}, which satisfies the condition (a).

Next, suppose that ∆′
1 intersects the fiber ℓQ. Then X ···→M → F4 is not isomorphic

to Q. Let M̂ → F4 be the elimination of D′
1. Then M → M̂ is obtained as the blowing-up

at a point Q̂ of the proper transform of ℓQ in M̂ lying over Q. Thus µ : M → F4 is the

elimination of a Cartier divisor D′ of σ(4)
∞ ∪ ℓ′Q for the proper transform ℓ′Q of ℓQ in F4,

where D′ ∩σ(4)
∞ is isomorphic to ∆′

1 under the isomorphism σ(4)
∞ ≃ E1 over P1. The image

D = q(D′) ⊂ P(1, 1, 4) is a Cartier divisor of Θ∪ℓ for the cross section Θ = q(σ∞) and the

generating line ℓ = q(ℓQ′). Then the induced morphism S → P(1, 1, 4) is the blowing-up

along D, which satisfies the condition (a).
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Let D ⊂ P(1, 1, 4) be a zero-dimensional subscheme satisfying the condition (a). If it

does not satisfy the other condition (b), D is a Cartier divisor of a cross section Θ, and

the blowing-up Ŝ → P(1, 1, 4) along D gives a birational morphism from Ŝ into a log

del Pezzo surface S of index two of type [2; 1, 2]0 by (3). If D satisfies the condition (b),

then, by Lemma 7.2 and by considering the inverse construction of X1 ···→ M → F4,

we infer that P(1, 1, 4) blown up along D is a log del Pezzo surface of index two of type

[0; 1, 1]0. �

Proposition 7.4. Let S be a log del Pezzo surface of index two of type [1]0. Then there

exist a zero-dimensional subscheme D ⊂ P(1, 1, 4) of deg D = 5 and a cross section Θ

containing D such that the proper transform Θ̂ of Θ in the variety Ŝ obtained as the

blowing up of P(1, 1, 4) along D is a (−1)-curve and that S is obtained as the blowdown

Ŝ → S of the (−1)-curve Θ.

Proof. Let (X = P2, E,∆) be a fundamental triplet determining S. Let τ : X1 ≃ F1 → X

be the blowing-up at a point P 6∈ E. Then (X1, E1,∆1) is a fundamental triplet of type

[1; 1, 1]0 for the inverse images E1 = τ−1E and ∆1 = τ−1∆. By Proposition 7.3, the log

del Pezzo surface Ŝ determined by (X1, E1,∆1) is isomorphic to P(1, 1, 4) blown up along

a Cartier divisor D of a cross section Θ with deg D = 5. Here, the proper transform

Θ̂ ⊂ Ŝ is a (−1)-curve since it is the proper transform of the negative section σ1 ⊂ X1.

Thus the log del Pezzo surface S is obtained by contracting the (−1)-curve Θ̂. �

7.2. Remarks on weighted projective spaces. We insert here some notes on weighted

projective spaces which are useful in the subsequent subsections. The results mentioned

here are well known but we shall give proofs based on Demazure’s construction [10] of

normal graded rings.

Lemma 7.5. Let X be the weighted projective space P(a0, a1, . . . , ad) with a0 = 1 and let

π : P = P(O⊕O(e))→ X be the P1-bundle defined for a positive integer e > 0 divisible by

lcm{a1, . . . , ad}. Then there is a birational morphism P → P(a0, . . . , ad, e) such that the

exceptional locus is the section Σ ⊂ P(O ⊕ O(e)) of π corresponding to O ⊕ O(e) → O
and that Σ is contracted to the point (0 : 0 : · · · : 0 : 1).

Proof. We fix a homogeneous coordinate (X0, . . . , Xd) of X of weight (a0, . . . , ad). Let

Σ∞ ⊂ P be the section corresponding to a surjection O⊕O(e)→ O(e). Then Σ∩Σ∞ = ∅
and Σ∞ ∼ Σ + eπ∗E0 for the Weil divisor E0 = div(X0). Let us fix defining equations g

and f of Σ and Σ∞, respectively. We consider the Q-divisor

H =
1

e
Σ + π∗E0
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on P and the graded ring R = R(P, H) (cf. Section 3.4). Here, Rm = H0(P, xmHy) for

m ≥ 0. For a given positive integer m, we set k =
x
m/e

y
. Then

π∗OP(xmHy) = Symk(Og⊕O(−e)f)⊗O(m) =
⊕k

j=0
O(m− je)fjgk−j.

Hence, we have

(7–18) Rm =
⊕k

j=0
k[X0, . . . , Xd]m−jef

jgk−j,

where k[X0, . . . , Xd]l denotes the homogeneous part of degree l of the graded polynomial

ring k[X0, . . . , Xd]. Let Yi ∈ R for 0 ≤ i ≤ d be the homogeneous element of degree ai

corresponding to Xi as the element of the right hand side of (7–18). Let Yd+1 ∈ R be the

homogeneous element of degree e corresponding to f as the element of the right hand

side of (7–18). Since

Rm =
⊕k

j=0
k[Y0, . . . , Yd]m−jeY

j
d+1,

we infer that R = k[Y0, . . . , Yd, Yd+1] and R is isomorphic to the graded polynomial ring

of weight (a0, . . . , ad, e). Since H is a semi-ample big Q-divisor on P, we have a natural

birational morphism ϕ : P→ ProjR ≃ P(a0, . . . , ad, e) such that ϕ∗O(e) ≃ OP(eH),

ϕ∗Yd+1 = f, and ϕ∗Pe(Y1, . . . , Yd) = Pe(X1, . . . , Xd)g

for any weighted homogeneous polynomial Pe of degree e. Here, Σ is the exceptional

locus of ϕ and ϕ(Σ) = {(0 : 0 : · · · : 0 : 1)}. �

Lemma 7.6. The Hirzebruch surface X = Fn is isomorphic to the divisor

{XW = YZ} ⊂ P(1, 1, n+ 1, n+ 1)

for a homogeneous coordinate (X, Y, Z, W) of weight (1, 1, n+1, n+1), in which the restric-

tion of O(n+ 1) is isomorphic to OX(σ + (n+ 1)ℓ).

Proof. We consider the graded ring R = R(X,H) for the ample Q-divisor

H =
1

n+ 1
σ + ℓ.

Then X ≃ ProjR. Let g be a defining equation of a minimal section σ and let f

be a defining equation of a section at infinity. For a non-negative integer m and k =

x
m/(n+ 1)

y
, we have an equality

π∗OX(xmHy) = Symk(Og⊕O(−n)f)⊗O(m) =
⊕k

j=0
O(m− nj)fjgk−j

for π : X = Fn → P1. In particular,

(7–19) Rm =
⊕

j≥0
k[s, t]m−njf

jgk−j
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for a homogeneous coordinate (s, t) of P1. Let X ∈ R1 and Y ∈ R1 correspond to sgε and

tgε as the elements of the right hand side of (7–19), respectively, where ε =
x
1/(n+ 1)

y
.

Let Z ∈ Rn+1 and W ∈ Rn+1 correspond to sf and tf as the elements of the right

hand side of (7–19). Then XW = YZ. Let i1 and i2 be non-negative integers with m ≥
(n + 1)(i1 + i2). Then the element P (X, Y)Zi1Wi2 ∈ Rm for a homogeneous polynomial P

of degree m− (n+ 1)(i1 + i2) corresponds to

P (s, t)si1ti2fi1+i2gk−(i1+i2)

as the element of the right hand side of (7–19). Hence, R is generated by X, Y, Z, W

with the relation XW = YZ. Therefore, there is a closed immersion τ : X ≃ ProjR →֒
P(1, 1, n + 1, n + 1) such that τ ∗O(n + 1) ≃ OX(σ + (n + 1)ℓ) and τ(X) = {XW = YZ},
since {XW = YZ} is irreducible. �

Lemma 7.7. For positive integers n1, n2, let P be the fiber product of Fn1 and Fn2 over

P1. Let σ1 and σ2 be the negative sections of Fn1 → P1 and Fn2 → P1, respectively. Let

H be the Q-divisor on P defined by

H =
1

n1

p∗1σ1 +
1

n2

p∗2σ2 + F

for the projections p1 : P→ Fn1, p2 : P→ Fn2, and for a fiber F of π : P→ P1.

(1) The graded ring R = R(P, H) is isomorphic to the graded polynomial ring of four

variables with weight (1, 1, n1, n2).

(2) For the naturally defined birational map P ···→ ProjR = P(1, 1, n1, n2), the com-

posite P ···→ P(1, 1, ni) with the projection P(1, 1, n1, n2) ···→ P(1, 1, ni) is just the

composite P→ Fni
→ Fni

≃ P(1, 1, ni) for i = 1, 2.

Proof. (1): Let (s, t) be the homogeneous coordinate of P1. Let gi be a defining equation

of σi ⊂ Fni
for i = 1, 2. Let σ∞

i ∼ σi + niℓ be a section at infinity of Fni
→ P1 and

let fi be a defining equation of σ∞
i for i = 1, 2. For a fixed positive integer m, we set

ki =
x
m/niy

for i = 1, 2. Then

π∗OP(xmHy) = Symk1(Og1 ⊕O(−n1)f1)⊗ Symk2(Og2 ⊕O(−n2)f2)⊗O(m)

=
⊕

0≤j1≤k1,0≤j2≤k2
O(m− j1n1 − j2n2)f

j1
1 g

k1−j1
1 f

j2
2 g

k2−j2
2 .

In particular, we have

(7–20) Rm =
⊕

0≤j1≤k1,0≤j2≤k2
k[s, t]m−j1n1−j2n2f

j1
1 g

k1−j1
1 f

j2
2 g

k2−j2
2 .

We set δi =
x
1/niy

for i = 1, 2. Then δi = 0 unless ni = 1. Let X and Y ∈ R1 correspond

to sg
δ1
1 g

δ2
2 and tg

δ1
1 g

δ2
2 as the elements of the right hand side of (7–20), respectively. We

set e1 =
x
(n2/n1)y and e2 =

x
(n1/n2)y. If n1 = n2, then e1 = e2 = 1; if n1 < n2, then
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e1 ≥ 1 and e2 = 0. Let Z1 ∈ Rn1 and Z2 ∈ Rn2 correspond to f1g
e2
2 and f2g

e1
1 as the

elements of the right hand side of (7–20), respectively. Then, for a pair of non-negative

integers (j1, j2) with j1n1 + j2n2 ≤ m, the equality

f
j1
1 g

k1−j1
1 f

j2
2 g

k2−j2
2 = (f1g

e2
2 )j1(f2g

e1
1 )j2g

k1−j1−e1j2
1 g

k2−j2−e2j1
2

holds, and P (X, Y)Zj1
1 Z

j2
2 ∈ Rm for a homogeneous polynomial P of degree m− j1n1− j2n2

corresponds to

P (s, t)(f1g
e2
2 )j1(f2g

e
1)

j2g
k1−j1−e1j2
1 g

k2−j2−e2j1
2

as the element of the right hand side of (7–20). Therefore, R = k[X, Y, Z1, Z2] and R is

isomorphic to the graded polynomial ring of weight (1, 1, n1, n2).

(2): For i = 1, 2, we consider the semi-ample Q-divisor

Hi =
1

ni

σi + ℓ

on Fni
and the graded ring R♯i := R(Fni

, Hi). Then ProjR♯i ≃ P(1, 1, ni) and the natural

birational morphism Fni
→ ProjR♯i is isomorphic to the contraction morphism Fni

→ Fni

of σi, by Lemma 7.5. Since p∗iHi ≤ H, R♯i is regarded as a graded subring of R. We infer

that the inclusion R♯i ⊂ R induces the projection P(1, 1, n1, n2) ···→ P(1, 1, ni) from the

calculation in (1). Thus we are done. �

7.3. Embedding into weighted projective spaces, I. Let (X,E,∆) be a fundamen-

tal triplet defining a log del Pezzo surface S of index two. For the blowing-up V → X

along ∆ and for the minimal desingularization λ : M → V , the composite φ : M → X

is just the elimination (M,EM) → (X,E,∆). By Lemma 2.18 and by the vanishing

H1(X,L− E) = 0 (cf. Lemma 3.17), we infer that V is a Cartier divisor of P = P(E) for

the locally free sheaf E = OX(L−E)⊕OX , where λ∗OE(1)|V ≃ OM(LM). An irreducible

curve γ ⊂ M is λ-exceptional if and only if γ is φ-exceptional and LMγ = 0. Thus the

minimal desingularization α : M → S of S induces a morphism ϕ : V → S with α = ϕ◦λ.

In particular, OE(1)|V ≃ ϕ∗OS(−2KS).

Let u ∈ OE(1) and v ∈ OE(1) ⊗ p∗O(E − L) be the global sections over P defined by

the natural homomorphisms

u : OX ∋ s 7→ (0, s) ∈ OX(L− E)⊕OX ,

v : OX(L− E) ∋ s 7→ (s, 0) ∈ OX(L− E)⊕OX .

Let η ∈ H0(X,E) be a defining equation of E. There exists a section ξ ∈ H0(X,L) such

that div(ξ|E) = ∆ and V ≃ V (ξ, η) = div(p∗(ξ)v− p∗(η)u) by Proposition 2.19,

The linear system |OE(1)| is base point free since Bs |L − E| = Bs |2(KX + L)| = ∅
by Lemma 3.17. Let Φ′ : P→ P|OE(1)| be the morphism associated with |OE(1)| and let
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Φ: P→ W be induced morphism as the Stein factorization of Φ′. The Stein factorization

of V ⊂ P→ W is expresses as the composite of ϕ : V → S and a finite morphism S → W .

Proposition 7.8. Suppose that KX + L is big. Then W is a three-dimensional toric

variety and Φ: P → W is a birational toric morphism. Moreover, the image Φ(V ) is a

divisor of W and Φ(V ) ≃ S.

Proof. The morphism Φ: P→ W is birational since OE(1)3 = (L−E)2 > 0. If KX +L is

ample, then the Φ-exceptional locus is the divisor div(v), which is contracted to a point.

Since P has a structure of toric variety and div(v) is a T-invariant divisor for the open

torus T ⊂ P, the variety W and the morphism Φ are toric. If KX + L is not ample but

big, then X ≃ F2 and E is isomorphic to the pullback of the locally free sheaf O(4)⊕O
of P(1, 1, 2) by the contraction morphism X → F2 ≃ P(1, 1, 2) of the negative section.

Thus W is isomorphic to the weighted projective space P(1, 1, 2, 4) by Lemma 7.5; hence

W and Φ are also toric.

From the linear equivalences V ∼ OE(1) + p∗E, div(v) ∼ OE(1)− p∗(L−E), L−E ∼
2(KX + L), and KP ∼ p∗(KX + L− E)− 2OE(1), we infer that

−V − (1/2) div(v)−KP ∼Q (1/2)OE(1)

is relatively numerically trivial for Φ: P→ W . Hence, if char k = 0, then R1 Φ∗OP(−V ) =

0 by the relative Kawamata–Viehweg vanishing theorem. By Leray’s spectral sequence,

the vanishing R1 Φ∗OP(−V ) = 0 is equivalent to the vanishing H1(P,mΦ∗A − V ) = 0

for m ≫ 0 for a T-invariant ample divisor A of W . Recall that the cohomology group

of an invertible sheaf on a toric variety is described by combinatorial data. Hence the

vanishing is independent of char k. Therefore, R1 Φ∗OP(−V ) = 0 holds, and consequently,

OW ≃ Φ∗OP → Φ∗OV is surjective. It follows that Φ(V ) is normal and ϕ∗(−2KS) comes

from an ample divisor on Φ(V ). Therefore S ≃ Φ(V ) and ϕ ≃ Φ|V . �

Lemma 7.9. Suppose that KX +L is not big, i.e., the type of (X,E,∆) is one of [1; 2, 2]0,

[3; 2, 4]+, [3; 2, 4]++(a, b), and [4; 2, 4]00. If X ≃ F1 or X ≃ F3, then W ≃ P(1, 1, 2). If

X = F4, then W ≃ P(1, 1, 4). In the both cases, the induced finite morphism S → W is

a double-covering.

Proof. Suppose that (X,E) is of type [n; 2, e]. Then L−E ∼ 2(KX+L) ∼ 2(n+2−e)ℓ for a

fiber ℓ of π : X → P1. Hence, P ≃ F2d×P1X for d = n+2−e ≥ 1 and Φ is the composite of

the first projection P→ F2d and the contraction morphism F2d → F2d ≃ P(1, 1, 2d) of the

negative section. In particular, W ≃ P(1, 1, 2d). The isomorphisms Φ∗OW (2d) ≃ OE(1)

and λ∗(OE(1)|V ) ≃ OM(LM) induce

L2
M = deg(V/W )OW (2d)2 = 2d deg(V/W ).
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On the other hand, we have

L2
M = L2 − deg(∆) = L(L− E) = 4(n+ 2− e) = 4d.

Hence, deg(V/W ) = deg(S/W ) = 2. Note that d = 2 for the type [4; 2, 4]00, and d = 1

for the rest. �

In the rest of Section 7.3, we shall embed S into a weighted projective space and give

an explicit defining equation of S in the case where KX + L is big and S is not of type

[n; 1, 0]0. The case of types [n; 1, 0]0 is studied in Section 7.4 below by another method.

In Section 7.5 below, we treat the case where KX + L is not big by using Lemma 7.9.

Here, we use the following:

Notation 7.10.

(1) Let (s, t) denote a homogeneous coordinate of P1. For a morphism p : Z → P1,

the pullbacks p∗s and p∗t are global sections of p∗O(1). Here, we write p∗s = s

and p∗t = t for simplicity.

(2) For the Hirzebruch surface X = Fn with a fixed projection X → P1, let σ be a

minimal section and let σ∞ be a section at infinity. A defining equation of σ is

denoted by the symbol g and a defining equation of σ∞ is denoted by the symbol

f. Here, f and g are regarded as the natural injections

f : O ∋ s 7→ (s, 0) ∈ O ⊕O(n)

g : O(n) ∋ s 7→ (0, s) ∈ O ⊕O(n).

Similarly to s and t above, the pullbacks p∗f and p∗g by a morphism p : Z → X

are expressed by the same symbols f and g, respectively.

Proposition 7.11. Suppose that X = P2. Then W is isomorphic to the weighted projec-

tive space P(1, 1, 1, 2w) for w = (1/2) deg(L−E) = 3− degE ∈ {1, 2}. Let (X, Y, Z, U) be

a homogeneous coordinate system of P(1, 1, 1, 2w).

(1) Suppose that the type is [1]0. Then S is isomorphic to

{F5(Y, Z) = XU} ⊂ P(1, 1, 1, 4)

for a quintic homogeneous polynomial F5 6= 0.

(2) Suppose that the type is [2]0. Then S is isomorphic to

{F4(X, Y) + F3(X, Y)Z = (Z2 − XY)U} ⊂ P(1, 1, 1, 2)

for a cubic homogeneous polynomial F3 and a quartic homogeneous polynomial F4

with (F3, F4) 6= (0, 0).
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(3) Suppose that the type is [2]+(0). Then S is isomorphic to

{F3(X, Z)X +G3(Y, Z)Y + Z4 = XYU} ⊂ P(1, 1, 1, 2)

for cubic homogeneous polynomials F3 and G3.

(4) Suppose that the type is [2]+(b) for 1 ≤ b ≤ 4. Then S is isomorphic to

{F4−b(X, Z)X
b +G3(Y, Z)Y = XYU} ⊂ P(1, 1, 1, 2)

for a homogeneous polynomial F4−b of degree 4 − b and a cubic homogeneous

polynomial G3 with F4−b(0, 1) 6= 0, G3(0, 1) 6= 0.

In the descriptions above, (0 : 0 : 0 : 1) ∈W is the unique non-Gorenstein point of S.

Proof. W ≃ P(1, 1, 1, 2w) since E = O(L − E) ⊕ O = O(2w) ⊕ O. Let (x, y, z) be a

homogeneous coordinate of P2. We denote the pullbacks of x, y, and z to P by the

same symbols, respectively, for simplicity. Then Φ is regarded as a morphism determined

by the properties: Φ∗U = u and Φ∗P2w(X, Y, Z) = P2w(x, y, z)v for any homogeneous

polynomial P2w of weight 2w and for the homogeneous coordinate (X, Y, Z, U) of W . Since

λ∗ div(v) = EM , S has the unique non-Gorenstein point (0 : 0 : 0 : 1).

(1): We may assume that η = x and ξ = F5(y, z) for a quintic homogeneous polynomial

F5 6= 0. Then ξv − ηu = F5(y, z)v − xu and S is isomorphic to the non-Cartier divisor

{F5(Y, Z) = XU} of degree 5 of P(1, 1, 1, 4).

(2): We may assume that η = z2 − xy. Then E ≃ P1 has a coordinate (s, t) such that

x|E = s2, y|E = t2, and z|E = st. Let F8(s, t) 6= 0 be an octic homogeneous polynomial

such that ∆ = div(F8(s, t)) ⊂ E. We can write

F8(s, t) = F4(s
2, t2) + F3(s

2, t2)st

for a cubic homogeneous polynomial F3 and a quartic homogeneous polynomial F4. Then

div(ξ) ∩ E = ∆ and V = V (ξ, η) for the global section

ξ = F4(x, y) + F3(x, y)z

of OX(L) ≃ O(4). Since

ξv− ηu = (F4(x, y) + F3(x, y)z)v− (z2 − xy)u,

S is isomorphic to the Cartier divisor

{F4(X, Y) + F3(X, Y)Z = (Z2 − XY)U} ⊂ P(1, 1, 1, 2).

(3) and (4): We may assume that η = xy. Then ∆ = div(ξ) ∩ E for

ξ = F3(x, z)x +G3(y, z)y + cz4
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for cubic homogeneous polynomials F3 andG3, and for a constant c ∈ k. Here, c 6= 0 if and

only if the type of (X,E,∆) is [2]+(0). If c 6= 0, then we may assume c = 1 by replacing ξ

by a non-zero multiple of ξ. If the type is [2]+(b) for b > 0, then c = 0 and we may assume

that multP (∆ ∩ div(y)) = b and multP (∆ ∩ div(x)) = 1. Thus F3(x, y) = xb−1F4−b(x, y)

for a homogeneous polynomial F4−b of degree 4− b with F4−b(0, 1) 6= 0, and G3(0, 1) 6= 0.

Since

ξv− ηu = (F3(x, z)x +G3(y, z)y + cz4)v− xyu,

S is isomorphic to the Cartier divisor of P(1, 1, 1, 2) defined by

F3(X, Z)X +G3(Y, Z)Y + cZ4 = XYU. �

Proposition 7.12. Let (X, Y, Z, U) be a homogeneous coordinate of the weighted projective

space P(1, 1, 2, 4).

(1) A log del Pezzo surface of index two of type [2; 1, 2]0 is isomorphic to

{F6(X, Y) = ZU} ⊂ P(1, 1, 2, 4)

for a sextic homogeneous polynomial F6 6= 0.

(2) A log del Pezzo surface of index two of type [2; 1, 2]++ is isomorphic to

{Z3 + X2ZF1(Z, X
2) + Y2ZG1(Z, Y

2) = XYU} ⊂ P(1, 1, 2, 4)

for linear polynomials F1 and G1.

Proof. For the fundamental triplet (X,E,∆), we have X ≃ F2, E ∼ σ + 2ℓ, and L ∼
3(σ + 2ℓ). For a suitable homogeneous coordinate (X, Y, Z) of P(1, 1, 2), the contraction

morphism q : X → P(1, 1, 2) of the negative section satisfies the following properties:

q∗Z = f and q∗P2(X, Y) = P2(s, t)g for any quadric homogeneous polynomial P2. Note

that q∗O(2) ≃ OX(σ + 2ℓ) and PX(E) → X is isomorphic to the pullback of P(O(4) ⊕
O) → P(1, 1, 2) by q. Hence W ≃ P(1, 1, 2, 4) by Lemma 7.5. Thus the morphism

Φ: PX(E)→ W ≃ P(1, 1, 2, 4) satisfies the following properties:

• Φ∗U = u;

• Φ∗(XiYjZ) = sitjfv for (i, j) = (1, 0), (0, 1);

• Φ∗P4(X, Y) = P4(s, t)gv for any quartic homogeneous polynomial P4.

Case [2; 1, 2]0: We may assume η = f. There is a sextic homogeneous polynomial

F6 6= 0 such that div(ξ) ∩ E = ∆ for ξ = F6(s, t)g
3. Since

ξv− ηu = F6(s, t)g
3v− fu,

S is isomorphic to the divisor {F6(X, Y) = ZU} ⊂ P(1, 1, 2, 4).
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Case [2; 1, 2]++: We may assume η = stg. Moreover, we may assume that ∆ contains

the points {f = s = 0} and {f = t = 0}. Then div(ξ) ∩ E = ∆ for

ξ = f3 + s2fgF1(f, s
2g) + t2fgG1(f, t

2g)

for certain linear polynomials F1 and G1. Since

ξv− ηu =
(
f3 + s2fgF1(f, s

2g) + t2fgG1(f, t
2g)
)
v− stgu,

S is isomorphic to

{Z3 + X2ZF1(Z, X
2) + Y2ZG1(Z, Y

2) = XYU} ⊂ P(1, 1, 2, 4). �

Proposition 7.13. Let (X,E,∆) be a fundamental triplet for X ≃ Fn and E ∼ σ + ℓ.

Then W is isomorphic to the divisor

{XW = YZ} ⊂ P(1, 1, n+ 1, n+ 1, 2(n+ 1))

for a homogeneous coordinate (X, Y, Z, W, U) of weight (1, 1, n+1, n+1, 2(n+1)). Moreover,

the log del Pezzo surface S of index two associated with (X,E,∆) is isomorphic to a

subvariety of W defined by the following equations :

Type [0; 1, 1]0:

F2(Z, W)W +G2(W, Y)Y = (X− W)U,

for quadric polynomials F2 and G2 with (F2, G2) 6= (0, 0).

Type [0; 1, 1]+(0):

W3 + F1(Z, W)ZW = XU−G1(W, Y)YW,

for linear polynomials F1 and G1.

Type [0; 1, 1]+(1):

(W + cZ)ZW = XU− (W + c′Y)YW,

for constants c, c′ ∈ k.

Type [0; 1, 1]+(b) for b > 1:

(W + cZ)ZW = XU− W3−bYb,

for a constant c ∈ k.

Type [1; 1, 1]0:

F5(X, Y)X = ZU, F5(X, Y)Y = WU,

for a quintic homogeneous polynomial F5 6= 0.
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Type [1; 1, 1]+(0, 0):

(W + cZ)ZW = (XU−G1(W, Y
2)YW)X, (W + cZ)W2 = (XU−G1(W, Y

2)YW)Y,

for a constant c and a linear polynomial G1.

Type [1; 1, 1]+(1, 1):

Z2W = (XU− (W + cY2)YW)X, ZW2 = (XU− (W + cY2)YW)Y,

for a constant c ∈ k.

Type [1; 1, 1]+(2, 1):

Z3 = (XU− (W + cY2)YW)X, Z2W = (XU− (W + cY2)YW)Y,

for a constant c ∈ k.

Type [1; 1, 1]+(1, b) for b > 1:

Z2W = (XU− Y2b−1W3−b)X, ZW2 = (XU− Y2b−1W3−b)Y.

Type [2; 1, 1]+(0, 0):

Z2−iWi+1 = (XU−G1(W, Y
3)YW)X2−iYi,

for 0 ≤ i ≤ 2 for a linear polynomial G1.

Type [2; 1, 1]+(1, 1):

Z3−iWi = (XU− (W + cY3)YW)X2−iYi,

for 0 ≤ i ≤ 2 for a constant c ∈ k.

Type [2; 1, 1]+(1, b) for b > 1:

Z3−iWi = (XU− Y3b−2W3−b)X2−iYi,

for 0 ≤ i ≤ 2.

Type [3; 1, 1]+:

Z3−iWi = (XU−G1(W, Y
4)YW)X3−iYi,

for 0 ≤ i ≤ 3 for a linear polynomial G1.

Proof. LetX →֒ P(1, 1, n+1, n+1) be the embedding of Lemma 7.6. Then E is isomorphic

to the restriction of O(2(n+1))⊕O since L−E ∼ 2(σ+(n+1)ℓ). Hence, W is isomorphic

to {XW = YZ} in P(1, 1, n+ 1, n+ 1, 2(n+ 1)) by Lemma 7.5.

For a defining equation η ∈ H0(X, σ+ℓ) of E and for a section ξ ∈ H0(X, 3σ+(2n+3)ℓ)

with div(ξ) ∩ E = ∆, S is isomorphic to the image of V = V (ξ, η) under the morphism
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Φ: P(E)→ W ⊂ P(1, 1, n+ 1, n+ 1, 2(n+ 1)). Here, we have

Φ∗U = u, Φ∗Q2(Z, W) = Q2(s, t)f
2v,

Φ∗(Qn+1(X, Y)Z) = Qn+1(s, t)sfgv, Φ∗(Qn+1(X, Y)W) = Qn+1(s, t)tfgv,

Φ∗Q2(n+1)(X, Y) = Q2(n+1)(s, t)g
2v,

for any homogeneous polynomial Qj(s, t) of degree j ∈ {2, n + 1, 2(n + 1)}. The global

section ξ is written as

(7–21) ξ = P
(0)
3−n(s, t)f3 + P

(1)
3 (s, t)f2g + P

(2)
n+3(s, t)fg

2 + P
(3)
2n+3(s, t)g

3

for some homogeneous polynomials P
(i)
j (s, t) of degree j = 3 + n(i− 1) for 0 ≤ i ≤ 3.

We first treat the case where E is non-singular, i.e., the type is [0; 1, 1]0 or [1; 1, 1]0.

Case [0; 1, 1]0: We may assume η = sg−tf. We may assume that the point E∩div(t) =

{g = t = 0} is contained in ∆. By (7–21), ξ is written as

ξ = t
(
F2(s, t)f

3 +G2(f, g)t
2g
)

for certain quadric polynomials F2 and G2 with (F2, G2) 6= (0, 0). Thus

ξv− ηu = t
(
F2(s, t)f

3 +G2(f, g)t
2g
)
v− (sg− tf)u.

We define a weighted homogeneous polynomial Ξ = Ξ(X, Y, Z, W, U) of degree 3 by

Ξ := F2(Z, W)W +G2(W, Y)Y− (X− W)U.

Then we have

Φ∗(XΞ) = sgv(ξv− ηu), Φ∗(YΞ) = tgv(ξv− ηu),
Φ∗(ZΞ) = sfv(ξv− ηu), Φ∗(WΞ) = tfv(ξv− ηu).

Thus Φ(V (ξ, η)) is the prime divisor of W defined by {Ξ = 0}.
Case [1; 1, 1]0: We may assume η = f and ξ = F5(s, t)g

3 for a quintic homogeneous

polynomial F5 6= 0 by (7–21). Then ξv − ηu = F5(s, t)g
3v − fu. We define weighted

homogeneous polynomials Ξi = Ξi(X, Y, Z, W, U) for i = 1, 2 of degree 6 by

Ξ1 = F5(X, Y)X− ZU, Ξ2 = F5(X, Y)Y− WU.

Then we have

Φ∗(X2Ξ1) = s3gv(ξv− ηu), Φ∗(Y2Ξ2) = t3gv(ξv− ηu),(7–22)

Φ∗(ZΞ1) = s2fv(ξv− ηu), Φ∗(WΞ2) = t2fv(ξv− ηu).

Thus the prime divisor Φ(V (ξ, η)) of W is just the reduced part of the subscheme of

P(1, 1, 2, 2, 4) defined by the ideal J ⊂ k[X, Y, Z, W, U] generated by XW − YZ, Ξ1, and Ξ2.

We shall show that the subscheme is reduced and equals Φ(V (ξ, η)). Let A be the affine
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ring of the open subset {U 6= 0} in P(1, 1, 2, 2, 4). Then A is regarded as a subring of the

usual polynomial ring R = k[x, y, z, w] of four variables by X 7→ x, Y 7→ y, Z 7→ z, W 7→ w,

U 7→ 1. Let I ⊂ R be the ideal generated by xw − yz, F5(x, y)x − z, F5(x, y) − w. Then

R/I ≃ k[x, y] and hence J is reduced on the open subset U . Combining with (7–22), we

infer that Φ(V (ξ, η)) is defined by the ideal J .

Next, we treat the case where E is singular. Then E = σ + ℓ for a minimal section σ

and a fiber ℓ. We may assume that ℓ = div(s), η = sg, and

ξ = P3−n(s, t)f3 +G2(f, t
ng)t3g

for a homogeneous polynomial P3−n of degree 3 − n and for a quadric homogeneous

polynomial G2 by (7–21). Thus

ξv− ηu =
(
P3−n(s, t)f3 +G2(f, t

ng)t3g
)
v− sgu.

We define weighted homogeneous polynomials Ξi for 0 ≤ i ≤ n of degree 3(n + 1) with

respect to (X, Y, Z, W, U) by

Ξi := P3−n(Z, W)Zn−iWi + (G2(W, Y
n+1)Y− XU)Xn−iYi.

Then we have

Φ∗(Xn+1Ξi) = s2n+1−itigv(ξv− ηu), Φ∗(Yn+1Ξi) = sn−itn+1+igv(ξv− ηu),(7–23)

Φ∗(ZΞi) = sn+1−itifv(ξv− ηu), Φ∗(WΞi) = sn−iti+1fv(ξv− ηu),

for 0 ≤ i ≤ n.

Claim. The subscheme Φ(V (ξ, η)) of P(1, 1, n+1, n+1, 2(n+1)) is defined by XW− YZ =

Ξ0 = · · · = Ξn = 0.

Proof. Let A be the affine ring of {U 6= 0} in the weighted projective space P(1, 1, n +

1, n+ 1, 2(n+ 1)) = Proj k[X, Y, Z, W, U]. Then A is a subring of the usual polynomial ring

R = k[x, y, z, w] by X 7→ x, Y 7→ y, Z 7→ z, W 7→ w, U 7→ 1. Let I ⊂ R be the ideal generated

by xw− yz and

Ξi(x, y, z, w) = P3−n(z, w)zn−iwi +G2(w, y
n+1)xn−iyi+1 − xn+1−iyi

for 0 ≤ i ≤ n. By (7–23), it is enough to check that R/I has no non-zero ideal supported

at the origin. We set

Ψi = Ξi +G2(w, y
n+1)Ξi+1 + · · ·+G2(w, y

n+1)n−iΞn

for 0 ≤ i ≤ n. We have an isomorphism R/(Ψ0) ≃
⊕n

i=0 k[y, z, w]xi as a k[y, z, w]-module.

Hence, R/(Ξ0,Ξ1, . . . ,Ξn) = R/(Ψ0,Ψ1, . . . ,Ψn) is isomorphic to

k[y, z, w]⊕
⊕n

i=1

(
k[y, z, w]/(yn+1−i)

)
xi.
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Therefore, we have an isomorphism

R/I ≃ k[y, z, w]⊕
⊕n

i=1

(
k[y, z, w]/(yn+1−i, w)

)
xi

as a k[y, z, w]-module. In particular, R/I is a torsion-free k[z]-module. Hence, R/I has

no non-zero ideal supported at the origin. �

Proof of Proposition 7.13 continued. In the next step, we shall normalize P3−n and G2.

Let P be the node σ ∩ ℓ = {s = g = 0}. If ∆ ∩ σ \ {P} 6= ∅, then we may assume that

∆ ∩ σ contains {t = 0} ∩ σ by replacing (s, t) with (s, t + c1s) for a constant c1 ∈ k.

If ∆ ∩ ℓ \ {P} 6= ∅, then we may assume that ∆ ∩ ℓ contains {f = 0} ∩ ℓ by replacing

(f, g) with (f + c2t
ng, g) for a constant c2 ∈ k. We may also replace (P3−n, G2) with

(λ1P3−n, λ2G2) for any non-zero constants λ1, λ2 ∈ k. The normalization is done as

follows:

Case 1. P 6∈ ∆ = div(ξ) ∩ E: Then the type is one of [0; 1, 1]+(0), [1; 1, 1]+(0, 0),

[2; 1, 1]+(0, 0), and [3; 1, 1]+. Here, we have P3−n(0, 1) 6= 0. If n < 3, then P3−n(1, 0) = 0,

by the assumption. Similarly, G2(0, 1) = 0, by the assumption. Thus we can write

P3−n(s, t) = t3−n + stF1−n(s, t) and G2(x, y) = xG1(x, y)

for a homogeneous polynomial F1−n of degree 1− n and a linear polynomial G1.

Case 2. P ∈ ∆ and multP (∆ ∩ σ) > 1: If n = 0, then we may change the first and

second projections F0 → P1 and may assume that multP (∆∩σ) = 1; thus the case n = 0

is treated in Case 3 below. Then we may assume n > 0, and hence the type [1; 1, 1]+(2, 1)

remains only. Since multP (∆ ∩ σ) = 2 and multP (∆ ∩ ℓ) = 1, we can write

P3−n(s, t) = s2 and G2(x, y) = x(x+ cy)

for a constant c ∈ k.

Case 3. P ∈ ∆ and multP (∆ ∩ σ) = 1: Then 0 ≤ n ≤ 2 and 1 ≤ b ≤ 3 for

b = multP (∆ ∩ ℓ). If n ≤ 1, then P3−n(1, 0) = 0, and if b < 3, then G2(1, 0) = 0, by

assumption. Thus we can write

P3−n(s, t) =




st(t + cs), if n = 0;

st2−n, if n > 0,
and G2(x, y) =




x(x+ c′y), if b = 1;

x3−byb−1, if b > 1,

for constants c, c′ ∈ k.

Applying the normalization to each type, we have the list of defining equations of

Φ(V (ξ, η)). �

Remark 7.14. In Proposition 7.13, if n = 1, then S is defined by three equations in

P(1, 1, 2, 2, 4) as a subvariety of codimension two. These equations are written as the
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2×2-minors of a matrix of size 2×3. In particular, the description of S is the same style

as in [27, Theorem 1] (cf. [6, Theorem 5.1]).

7.4. Embedding into weighted projective spaces, II. In Section 7.3, we do not

consider the types [n; 1, 0]0 for 0 ≤ n ≤ 4 among the case where KX + L is big. The log

del Pezzo surfaces of these types are described by:

Theorem 7.15. Let S be a log del Pezzo surface of the type [n; 1, 0]0 for 0 ≤ n ≤ 4.

(1) If n = 4, then S ≃ P(1, 1, 4).

(2) If 1 ≤ n ≤ 3, then S is isomorphic to the subvariety of P(1, 1, n) × P(1, 1, 4)

defined by the following equations :

X0Y1 = X1Y0, Z1X
n−i
0 Yi

0 = Z0X
n−i
1 Yi

1F4−n(X1, Y1) for 0 ≤ i ≤ n,

where (X0, Y0, Z0) and (X1, Y1, Z1) are homogeneous coordinates of P(1, 1, n) and

P(1, 1, 4), respectively, and Fj is a non-zero homogeneous polynomial of degree j.

(3) If n = 0, then S is isomorphic to the subvariety of P1 × P(1, 1, 4) defined by

Z1X0 = Y0F4(X1, Y1)

for a quartic homogeneous polynomial F4 6= 0, where (X0, Y0) is a coordinate of

P1.

For the proof, we apply the result of Section 7.1. For a given S, the fundamental triplet

(X,E,∆) defining S is uniquely determined up to isomorphism. Here, X ≃ Fn, E = σ,

and deg ∆ = 4 − n. For the elimination φ : (M,EM) → (X,E,∆), M is obtained also

as the elimination µ : M → F4 of a zero-dimensional subscheme D′ of a section σ(4)
∞ at

infinity, by Section 7.1. Moreover, by Proposition 7.1, S is realized as the blowing up of

P(1, 1, 4) along the zero-dimensional subscheme D = q(D′) for the contraction morphism

q : F4 → P(1, 1, 4) of the negative section σ(4) of F4. In order to prove Theorem 7.15, it

suffices to consider the case: n 6= 4, since deg D = 4 − n. There is an effective divisor

B ∼ (4 − n)ℓ such that D′ = σ(4)
∞ ∩ B. Let u and v be the defining equation of σ(4)

∞

and σ(4), respectively. For the homogeneous coordinate (s, t) of P1, let Fd(s, t) be a

homogeneous polynomial of degree d = 4− n with B = div(Fd(s, t)) (cf. Notation 7.10).

Then D = div(u) ∩ div(vFd(s, t)). The proper transform of σ(4) in X ≃ Fn by the

birational map µ◦φ−1 : X ···→M ···→ F4 is just E = σ. Similarly, the proper transform of

σ(4)
∞ inX is a section σ∞ at infinity. We have fixed the defining equations f and g of σ∞ and

σ, respectively, of X ≃ Fn as in Notation 7.10. Then, the image of (φ, µ) : M → X×P1 F4

is a divisor V defined by

(7–24) ug = vfFd(s, t).
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We set W = P(1, 1, n) × P(1, 1, 4) in case n 6= 0, and W = P1 × P(1, 1, 4) in case n = 0.

Let h : X×P1 F4 → W be the natural morphism. We shall find explicit defining equations

of the image h(V ), and show that h(V ) ≃ S.

Suppose that 1 ≤ n ≤ 3. Then the image of h : X×P1F4 → W is defined by X0Y1 = X1Y0.

In fact, we can choose the homogeneous coordinates to satisfy h∗Pn(X0, Y0) = Pn(s, t)g,

h∗Z0 = f, h∗P4(X1, Y1) = P4(s, t)v, and h∗Z1 = u, for homogeneous polynomials Pj of

degree j. By the equation (7–24), h(V ) is contained in the subscheme S ′ ⊂ W defined by

(7–25) X0Y1 = X1Y0, Z1X
n−i
0 Yi = Z0X

n−i
1 YiFd(X1, Y1) for 0 ≤ i ≤ n.

Lemma 7.16. The subscheme S ′ is normal. In particular, h(V ) = S ′.

Proof. We consider the following standard open covering {Wj} of W :

W1 = {X0 6= 0, X1 6= 0}, W2 = {X0 6= 0, Y1 6= 0},
W3 = {Y0 6= 0, X1 6= 0}, W4 = {Y0 6= 0, Y1 6= 0},
W5 = {Z0 6= 0, X1 6= 0}, W6 = {Z0 6= 0, Y1 6= 0},
W7 = {X0 6= 0, Z1 6= 0}, W8 = {Y0 6= 0, Z1 6= 0},
W9 = {Z0 6= 0, Z1 6= 0}.

On the open subset W1, the regular functions y0 = Y0/X0, z0 = Z0/X
n
0 , y1 = Y1/X1, and

z1 = Z1/X
4
1 form a coordinate system, i.e.,

W1 = Spec k[y0, z0, y1, z1] ≃ A4.

Here, S ′ ∩W1 ≃ A2 is defined by

y1 = y0, z1 = z0Fd(1, y1).

Thus S ′ ∩W1 ≃ A2. Applying a similar argument to the open set W4, we have W4 ≃ A4

and S ′ ∩W4 ≃ A2.

On W2, the regular functions y0 = Y0/X0, z0 = Z0/X
n
0 , x1 = X1/Y1, and z1 = Z1/Y

4
1 form

a coordinate system of W2 ≃ A4. Here, S ′ ∩W2 is defined by

1 = x1y0, z1 = z0x
n
1Fd(x1, 1).

Thus S ′ ∩W2 ≃ (A1 \ {0})× A1. Similarly, W3 ≃ A4 and S ′ ∩W3 ≃ (A1 \ {0})× A1.

The open subset W5 is isomorphic to

Spec
(
k[x0, y0]

(n) ⊗ k[y1, z1]
)
,

where

• y1 = Y1/X1, z1 = Z1/X
4
1,
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• k[x0, y0]
(n) is the subring of the polynomial ring k[x0, y0] of two variables which is

generated by the monomials of degree divisible by n,

• Pn(x0, y0) = Pn(X0, Y0)/Z0 for any homogeneous polynomial Pn of degree n.

Then S ′ ∩W5 is defined by

y0 = x0y1, z1x
n
0 = Fd(1, y1).

Therefore,

S ′ ∩W5 ≃ Spec
(
k[xn

0 , y1, z1]
/

(z1x
n
0 − Fd(1, y1))

)

and hence S ′ ∩W5 has at most rational double points of type A as singularities. The

singularity of S ′ ∩W6 is similar.

The open subset W7 is isomorphic to

Spec
(
k[y0, z0]⊗ k[x1, y1]

(4)
)
,

where y0 = Y0/X0, z0 = Z0/X
n
0 , and P4(x1, y1) = P4(X1, Y1)/Z

4 for any quartic homogeneous

polynomial P4. Thus S ′ ∩W7 is defined by

y1 = x1y0, 1 = z0x
4
1Fd(1, y0).

Therefore,

S ′ ∩W7 ≃ Spec
(
k[y0, z0, x

4
1]
/

(z0x
4
1Fd(1, y0)− 1)

)
.

Thus S ′ ∩W7 is non-singular. Similarly, S ′ ∩W8 is non-singular.

The open subset W9 is written as

Spec
(
k[x0, y0]

(n) ⊗ k[x1, y1]
(4)
)
,

where Pn(x0, y0) = Pn(X0, Y0)/Z0 and P4(x1, y1) = P4(X1, Y1)/Z1 for homogeneous poly-

nomials Pj of degree j. Then S ′ ∩ W9 is defined by “x0y1 = x1y0” and xi
0y

n−i
0 =

xi
1y

n−i
1 Fd(x1, y1) for 0 ≤ i ≤ n. Therefore, S ′ ∩ W9 ≃ Spec k[x1, y1]

(4), which is iso-

morphic to an open neighborhood of the vertex of the cone P(1, 1, 4). Therefore, S ′ is

normal. �

Proof of Theorem 7.15. Suppose that 1 ≤ n ≤ 3. By construction of h, we have a

birational morphism S ′ → S so that the composite S ′ → S → P(1, 1, 4) is induced from

the second projection W → P(1, 1, 4). By Lemma 7.16, S ′ → P(1, 1, 4) is isomorphic

outside D = {Fd(X1, Y1) = Z1 = 0}, where (X1, Y1, Z1) is regarded as a homogeneous

coordinate of P(1, 1, 4). The description of S ′ ∩W5 and S ′ ∩W6 in Lemma 7.16 shows

that S ′ → P(1, 1, 4) is just the blowing up along D. Hence, S ′ ≃ S. Therefore, S is

isomorphic to the subvariety S ′ of P(1, 1, n)×P(1, 1, 4) defined by (7–25). This finish the

proof in the case 1 ≤ n ≤ 3.
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Finally suppose that n = 0. For the surjective morphism h : X ×P1 F4 → W =

P1×P(1, 1, 4), we can choose the homogeneous coordinates to satisfy h∗X0 = g, h∗Y0 = f,

h∗Z1 = u, and h∗P4(X1, Y1) = P4(s, t)v, for any quartic homogeneous polynomial P4. By

the equation (7–24), h(V ) is contained in the subscheme S ′ ⊂ W defined by

(7–26) Z1X0 = Y0F4(X1, Y1).

Let W1 ⊂ W be the open subset {X0 6= 0} and let W2 ⊂ W be {Y0 6= 0}. Then

S ′ ∩W1 ≃ Proj
(
(k[y0])[X1, Y1, Z1]

/
(Z1 − X4

1y0F4(1, y0))
)
≃ A1 × P1,

where y0 = Y0/X0. Moreover,

S ′ ∩W2 ≃ Proj
(
(k[x0])[X1, Y1, Z1]

/
(Z1x0 − F4(X1, Y1))

)

for x0 = X0/Y0. Thus S ′ is normal, h(V ) = S ′, and S ′ → P(1, 1, 4) is the blowing-up along

D = {Z1 = F4(X1, Y1) = 0}. In particular, S ′ ≃ S. Therefore S is defined by (7–26), and

we are done. �

Remark. If Supp ∆ consists of at most two points, then S is a toric variety. In fact,

S → P(1, 1, 4) is described as a toric blowup. In particular, S is toric if n ≤ 2.

7.5. Embedding into weighted projective spaces, III. In the non-big case, L−E ∼
wℓ for w = 2 or 4 on X = Fn and hence

P = PX(OX(L− E)⊕OX) ≃ Fw ×P1 ×X = Fw ×P1 Fn.

Let p1 : P→ Fw and p2 : P→ X ≃ Fn be the projections. The global sections u and v in

Section 7.3 descend to global sections of O(σ(w) +wℓ) and O(σ(w)) over Fw, respectively,

where σ(w) is the negative section and ℓ is a fiber on Fw. The divisor V = V (ξ, η) ⊂ P is

described by a quadric equation with respect to (f, g) over Fw, since the mapping degree

of V ⊂ P→ Fw is two.

The morphism Φ: P → W is the composite of p2 and the contraction morphism

q : Fw → Fw ≃ P(1, 1, w) ≃ W of the negative section σ(w). Let (X, Y, U) be a homo-

geneous coordinate of P(1, 1, w). We may assume that the morphism q : Fw → P(1, 1, w)

satisfies q∗U = u and q∗Pw(X, Y) = Pw(s, t)v for any homogeneous polynomial Pw of

degree w.

Finding suitable sections ξ and η, we shall describe the surface S explicitly.

Proposition 7.17. A log del Pezzo surface of index two of type [4; 2, 4]00 is isomorphic

to the divisor

{UZ = F8(X, Y)} ⊂ P(1, 1, 4, 4)

for a homogeneous coordinate (X, Y, Z, U) of weight (1, 1, 4, 4) and for an octic homogeneous

polynomial F8 6= 0.
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Proof. Since E = σ + σ∞ for a section σ∞ at infinity, we may assume η = fg. There is

an octic homogeneous polynomial F8(s, t) 6= 0 such that π∗(∆) = div(F8(s, t)). Thus

ξ = f2 + F8(s, t)g
2 ∈ H0(X,L) = H0(X, 2σ + 8ℓ)

satisfies div(ξ) ∩ E = ∆. Since

ξv− ηu = vf2 − ufg + F8(s, t)vg
2,

the first projection p1|V : V ⊂ P→ F4 is a finite morphism. For the isomorphism

P ≃ Fw ×P1 X ≃ F4 ×P1 F4,

we have a birational map P ···→ P(1, 1, 4, 4) by Lemma 7.7. We set U := Z1 and Z := Z2

for the homogeneous coordinate Zi defined in Lemma 7.7. Then the proper transform V ′

of V in P(1, 1, 4, 4) is a Cartier divisor of degree 8 defined by

Ψ := Z2 − UZ + F8(X, Y) = 0.

Note that V ′ is Cohen-Macaulay since so is P(1, 1, 4, 4). The projection (X : Y : U : Z) 7→
(X : Y : U) induces a finite morphism V ′ → P(1, 1, 4) which is birational to Φ|V : V ⊂ P→
W ≃ P(1, 1, 4). Since

∂

∂Z
Ψ = 2Z− U and

∂

∂U
Ψ = −Z,

and since Sing P(1, 1, 4, 4) ⊂ {X = Y = 0}, we have

Sing V ′ ⊂ {Z = U = F8(X, Y) = 0} ∪ {X = Y = Z(Z− U) = 0}.

Thus V ′ has only isolated singularities by F8 6= 0. Hence V ′ is normal, V ′ → W is the

Stein factorization of Φ|V : V → W , and thus S ≃ V ′. Replacing (U, Z) with (U + Z, Z),

we have the expected equation. �

Proposition 7.18. A log del Pezzo surface of index two of type [3; 2, 4]+ is isomorphic

to the divisor

{Z2 + (cY3 + XU)Z + F6(X, Y) = Y4U} ⊂ P(1, 1, 2, 3)

for a constant c ∈ k and a sextic homogeneous polynomial F6, where (X, Y, U, Z) is a

homogeneous coordinate of weight (1, 1, 2, 3).

Proof. In this type, E = σ + D for a section D ∼ σ + 4ℓ. We may assume that the

fiber ℓ passing through the intersection point σ ∩D is defined by {s = 0}. The divisor

π∗(∆) ⊂ P1 of degree 8 does not contain (0 : 1). Let F8(s, t) be an octic homogeneous

polynomial such that div(F8(s, t)) = π∗(∆). We may assume that

F8(s, t) = t8 + ct7s + F6(s, t)s
2
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for a constant c ∈ k and for a sextic homogeneous polynomial F6. For the sections f

and g, we have π∗OX(σ + 4ℓ) = O(4)g⊕O(1)f over P1. Hence, D = div(P4(s, t)g− sf)

for a quartic homogeneous polynomial P4 with P4(0, 1) 6= 0. We may replace f with

f+P3(s, t)g for any cubic polynomial P3. Hence, we may assume that P4 = t4. Therefore

D = div(t4g− sf) and E = div(η) for η = (t4g− sf)g. We consider a global section

ξ = F6(s, t)g
2 + ct3gf + f2 ∈ H0(X,L) = H0(X, 2σ + 6ℓ).

Then div(ξ) ∩ σ = ∅ and div(ξ) ∩D = ∆ by

s2ξ ≡ g2(F6(s, t)s
2 + cst7 + t8) mod (t4g− sf).

Thus V = V (ξ, η) ⊂ P. Since

ξv− ηu = vf2 + (ct3v + su)fg + (F6(s, t)v− t4u)g2,

we infer that p1|V : V ⊂ P → F2 is a finite morphism. Applying Lemma 7.7, we have a

birational map P ···→ P(1, 1, 2, 3) such that the proper transform V ′ of V in P(1, 1, 2, 3)

is a Cartier divisor of degree 6 given by

Ψ := Z2 + (cY3 + XU)Z + F6(X, Y)− Y4U = 0

for a homogeneous coordinate (X, Y, U, Z) of weight (1, 1, 2, 3). Note that the projection

(X : Y : U : Z) 7→ (X : Y : U) induces a finite morphism V ′ → W ≃ P(1, 1, 2), which is bira-

tional to Φ|V : V → W . Since

∂

∂Z
Ψ = 2Z + (cY3 + XU) and

∂

∂U
Ψ = XZ− Y4,

the singular locus of V ′ is contained in

{2Z + (cY3 + XU) = XZ− Y4 = Z2 + cY3Z + F6(X, Y) = 0} ∪ {X = Y = Z = 0}.

In particular, Sing V ′ ∩ {X 6= 0} is contained in the finite set

{(1 : y : z : u) | z = y4, u = −cy3 − 2y4, y8 + cy7 + F6(1, y) = 0}

and Sing V ′ ∩ {X = 0} ⊂ {(0 : 0 : 0 : 1)}. Hence, V ′ has only isolated singular points

and thus V ′ is normal. Thus S ≃ V ′, since V ′ → W gives the Stein factorization of

V → W . �

Proposition 7.19. Let S be a log del Pezzo surface of index two of type [3; 2, 4]++(a, b).

(1) If (a, b) = (0, 0), then S is isomorphic to the divisor

{Z2 + (cY3 + XU)Z + Y6 + XF5(X, Y) = 0} ⊂ P(1, 1, 2, 3)

for a quintic homogeneous polynomial F5 and for a constant c.
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(2) If (a, b) = (2, 1), then S is isomorphic to the divisor

{Z2 + XUZ + XY5 + X2F4(X, Y) = 0} ⊂ P(1, 1, 2, 3)

for a quartic homogeneous polynomial F4.

(3) If a = 1, then 1 ≤ b ≤ 6 and S is isomorphic to the divisor

{Z2 + (Y3 + XU)Z + XbY6−b + Xb+1F5−b(X, Y) = 0} ⊂ P(1, 1, 2, 3)

for a homogeneous polynomial F5−b of degree 5− b.

Proof. In this type, E = σ + σ∞ + ℓ for a section σ∞ at infinity and for a fiber ℓ. We

may assume that σ∞ = {f = 0}, ℓ = {s = 0}, and η = −fgs. A global section ξ of

OX(L) ≃ OX(2σ + 6ℓ) with div(ξ) ∩ E = ∆ can be written as

ξ = f2 + ct3fg + F6(s, t)g
2

for a constant c ∈ k and for a sextic homogeneous polynomial F6. Since

ξv− ηu = vf2 + (ct3v + su)fg + F6(s, t)vg
2,

we infer that V → F2 is not finite along {v = s = 0}. We can normalize F6 as follows:

Case (a, b) = (0, 0): Then F6(0, 1) 6= 0. Multiplying t by a non-zero constant, we may

assume F6(s, t) = t6 + sF5(s, t) for a quintic homogeneous polynomial F5. Here, c 6= 2

if and only if Supp(∆ ∩ ℓ) consists of two points.

Case (a, b) = (2, 1): Then c = 0 and F6(s, t) = sF5(s, t) for a quintic homogeneous

polynomial F5 with F5(0, 1) 6= 0. Multiplying t by a non-zero constant, we may assume

F6(s, t) = s(t5 + sF4(s, t)) for a quartic homogeneous polynomial F4.

Case (a, b) = (1, b): Then 1 ≤ b ≤ 6, c 6= 0, and F6(s, t) = sbF6−b(s, t) for a

homogeneous polynomial F6−b with F6−b(0, 1) 6= 0. Multiplying s and t by non-zero

constants, we may assume c = 1 and F6(s, t) = sb(tb−6 + sF5−b(s, t)) for a homogeneous

polynomial F5−b of degree 5− b, where F5−b = 0 in case b > 5.

Applying Lemma 7.7, we have a birational map P ···→ P(1, 1, 2, 3) such that the proper

transform V ′ of V in P(1, 1, 2, 3) is a Cartier divisor of degree 6 defined by

Ψ := Z2 + (cY3 + XU)Z + F6(X, Y) = 0

for the homogeneous coordinate (X, Y, U, Z) of weight (1, 1, 2, 3). Here, the projection

(X : Y : U : Z) 7→ (X : Y : U) induces a finite morphism V ′ → W ≃ P(1, 1, 2), which is bira-

tional to Φ|V : V → W . By the calculation

∂

∂Z
Ψ = 2Z + (cY3 + XU),

∂

∂U
Ψ = XZ,

∂

∂X
Ψ = UZ +

∂

∂X
F6(X, Y),
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we infer that Sing V ′ is contained in

{F6(X, Y) = Z = cY3 + XU = 0} ∪
{
X = 2Z + cY3 = F6(0, Y)− Z2 = UZ +

∂F6

∂X
(0, Y) = 0

}
.

Here, Sing V ′ ∩ {X = Z = 0} is contained in {(0 : 0 : 0 : 1)}. For, we have F6(0, Y) = Y6

in case (a, b) 6= (0, 0), (∂F6/∂X)(0, Y) = Y5 in case (a, b) = (2, 1), and c = 1 in case

(a, b) = (1, b). Furthermore, Sing V ′ ∩ {X 6= 0} is contained in the finite set

{(1 : y : 0 :−cy3) | F6(1, y) = 0}

and Sing V ′ ∩ {Z 6= 0} is contained in the finite set
{

(0 : y : 1 : u) | 2 + cy3 = F6(0, y)− 1 = u +
∂F6

∂X
(0, y) = 0

}
.

Hence, V ′ has only isolated singularities and thus V ′ is normal. Therefore S ≃ V ′, since

V ′ → W coincides with the Stein factorization of V → W . Therefore, we have the

expected defining equations. �

Proposition 7.20. Let S be a log del Pezzo surface of index two of type [1; 2, 2]0 and let

(X,E,∆) be a fundamental triplet defining S. Let (X, Y, U, Z) be a homogeneous coordinate

of P(1, 1, 2, 3).

(1) Either if char k 6= 2 or if the double-covering π|E : E ⊂ X → P1 is inseparable,

then S is isomorphic to the divisor of P(1, 1, 2, 3) defined by

Z2 = F3(X, Y)Z + F4(X, Y)U + XYU2

for a cubic polynomial F3 and a quartic polynomial F4 with (F3, F4) 6= (0, 0).

(2) If char k = 2 and if π|E : E ⊂ X → P1 is separable, then S is isomorphic to the

divisor of P(1, 1, 2, 3) defined by

Z2 = (F3(X, Y) + XU)Z + F4(X, Y)U + Y2U2

for a cubic polynomial F3 and a quartic polynomial F4 with (F3, F4) 6= (0, 0).

Proof. In this type, E ∼ 2σ + 2ℓ is non-singular. By Lemma 4.11, we may assume

η =




f2 − stg2, in the case (1);

f2 + sfg + t2g2, in the case (2).

Case (1): The fibers {s = 0} and {t = 0} intersect tangentially with E. Hence,

s|E = x2 and t|E = y2 for a homogeneous coordinate (x, y) of E ≃ P1. Moreover we can

identify g|E with 1 and f|E with xy by an isomorphism OE(σ) ≃ OE. Note that any

homogeneous polynomial P2m(x, y) of degree 2m is written as

P2m(x, y) = Pm(x2, y2) + Pm−1(x
2, y2)xy
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for some homogeneous polynomials Pj of degree j for j = m, m−1. Thus we may assume

ξ = F4(s, t)g
2 + F3(s, t)fg

for a cubic polynomial F3 and a quartic polynomial F4, where ∆ ⊂ E is defined by

F4(x
2, y2) + F3(x

2, y2)xy = 0. Since

ξv− ηu = (F4(s, t)v + stu)g2 + F3(s, t)vfg− uf2,

we infer that V → F2 is not finite along {u = F3(s, t) = F4(s, t) = 0}. Applying

Lemma 7.7, we have a birational map P ···→ P(1, 1, 1, 2) such that the proper transform

V ′ of V in P(1, 1, 1, 2) is a Cartier divisor of degree 4 defined by

−U0Z
2
0 + F3(X, Y)Z0 + F4(X, Y) + XYU0 = 0

for the homogeneous coordinate (X, Y, Z0, U0) of weight (1, 1, 1, 2). Note that the projection

(X : Y : Z0 : U0) 7→ (X : Y : U0) induces a rational map V ′ ···→ W = P(1, 1, 2) with non-empty

locus of indeterminacy. We consider the birational map

P(1, 1, 1, 2) ···→ P(1, 1, 2, 3); (X : Y : Z0 : U0) 7→ (X : Y : U : Z) = (X : Y : U0 : Z0U0).

Then the proper transform V ′′ of V in P(1, 1, 2, 3) is a Cartier divisor of degree 6 defined

by

Ψ := −Z2 + F3(X, Y)Z + F4(X, Y)U + XYU2 = 0

and the projection (X : Y : U : Z) 7→ (X : Y : U) induces a finite morphism V ′′ → W . By the

calculation

∂Ψ

∂Z
= −2Z + F3(X, Y),

∂Ψ

∂U
= F4(X, Y) + 2XYU,

∂Ψ

∂X
=
∂F3

∂X
(X, Y)Z +

∂F4

∂X
(X, Y)U + YU2,

∂Ψ

∂Y
=
∂F3

∂Y
(X, Y)Z +

∂F4

∂Y
(X, Y)U + XU2,

we infer that the singular locus of V ′′ is contained in the locus
{
F3(X, Y)− 2Z = F4(X, Y) + 2XYU = Z2 − XYU2 =

∂Ψ

∂X
=
∂Ψ

∂Y
= 0

}
.

We shall show Sing V ′′ is a finite set. Note that Sing V ′′ ∩ {X = Y = 0} ⊂ {(0 : 0 : 0 : 1)}.
Thus it suffices to consider two subsets Sing V ′′∩{X 6= 0} and Sing V ′′∩{Y 6= 0}. Suppose

first that char k 6= 2. Then Sing V ′′ ∩ {X 6= 0} is contained in the finite set
{

(1 : y : z : u)
∣∣∣ 2z− F3(1, y) = 2yu + F4(1, y) =

∂F3

∂Y
(1, y)z +

∂F4

∂Y
(1, y)u + u2 = 0

}

and Sing V ′′ ∩ {Y 6= 0} is contained in the finite set
{

(x : 1 : z : u)
∣∣∣ 2z− F3(x, 1) = 2xu + F4(x, 1) =

∂F3

∂X
(x, 1)z +

∂F4

∂X
(x, 1)u + u2 = 0

}
.
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Next, suppose that char k = 2. Then there are finitely many (x : y) ∈ P1 satisfying

F3(x, y) = F4(x, y) = 0. Hence, Sing V ′′ ∩ {X 6= 0} is contained in the finite set
{

(1 : y : z : u)
∣∣∣ F3(1, y) = F4(1; y) = z2 − yu2 =

∂F3

∂Y
(1, y)z +

∂F4

∂Y
(1, y)u + u2 = 0

}
,

and Sing V ′′ ∩ {Y 6= 0} is contained in the finite set
{

(x : 1 : z : u)
∣∣∣ F3(x, 1) = F4(x, 1) = z2 − xu2 =

∂F3

∂X
(x, 1)z +

∂F4

∂X
(x, 1)u + u2 = 0

}
.

Therefore, Sing V ′′ is a finite set. Thus V ′′ is normal and S ≃ V ′′.

Case (2): We can choose a homogeneous coordinate (x, y) of E ≃ P1 so that s|E = x2,

t|E = (x+ y)y and that g|E = 1 and f|E = y2 under an isomorphism OE(σ) ≃ OE. Note

that any homogeneous polynomial P2m(x, y) of degree 2m is written as

P2m(x, y) = Pm(x2, (x + y)y) + Pm−1(x
2, (x + y)y)y2

for homogeneous polynomials Pj of degree j for j = m, m− 1. In fact, this is shown by

using

xy = (x + y)y− y2 and y4 = −((x + y)y)2 + (2(x + y)y + x2)y2.

Thus we may assume that

ξ = F4(s, t)g
2 + F3(s, t)fg

for a cubic polynomial F3 and a quartic polynomial F4, where ∆ is defined by F4(x
2, (x+

y)y) + F3(x
2, (x + y)y)y2 = 0. Since

ξv− ηu = (F4(s, t)v− t2u)g2 + (F3(s, t)v− su)gf− uf2,

we infer that V → F2 is not finite over {u = F3(s, t) = F4(s, t) = 0}. Applying

Lemma 7.7, we have a birational map P ···→ P(1, 1, 1, 2) such that the proper transform

V ′ of V in P(1, 1, 1, 2) is a Cartier divisor of degree 4 defined by

−U0Z
2
0 + (F3(X, Y)− XU0)Z0 + F4(X, Y)− Y2U0 = 0

for the homogeneous coordinate (X, Y, Z0, U0) of weight (1, 1, 1, 2). However, the projection

(X : Y : Z0 : U0) 7→ (X : Y : U0) induces a rational map V ′ ···→ W = P(1, 1, 2) with non-empty

locus of indeterminacy. We consider the birational map

P(1, 1, 1, 2) ···→ P(1, 1, 2, 3); (X : Y : Z0 : U0) 7→ (X : Y : U : Z) = (X : Y : U0 : Z0U0).

Then the proper transform V ′′ of V in P(1, 1, 2, 3) is a Cartier divisor of degree 6 defined

by

Ψ := −Z2 + (F3(X, Y)− XU)Z + F4(X, Y)U− Y2U2 = 0
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and the projection (X : Y : U : Z) 7→ (X : Y : U) induces a finite morphism V ′′ → W . Since

char k = 2, we have

∂Ψ

∂Z
= F3(X, Y)− XU,

∂Ψ

∂U
= −XZ + F4(X, Y),

∂Ψ

∂X
=
∂F3

∂X
(X, Y)Z− UZ +

∂F4

∂X
(X, Y)U,

∂Ψ

∂Y
=
∂F3

∂Y
(X, Y)Z +

∂F4

∂Y
(X, Y)U.

Thus the singular locus of V ′′ is contained in the locus Σ defined by the following equa-

tions:

(i) Ψ = 0; (ii) XU = F3(X, Y), (iii) XZ = F4(X, Y),

(iv) UZ =
∂F3

∂X
(X, Y)Z +

∂F4

∂X
(X, Y)U.

In order to show, S ≃ V ′′, we have only to check that Σ is a finite set. The four equations

above induce the following (v) and (vi), where (v) follows from (i)–(iii), and (vi) follows

from (ii), (iii), and (v) multiplied by X2:

(v) Z2 − XUZ + Y2U2 = 0; (vi) F4(X, Y)
2 − XF3(X, Y)F4(X, Y) + Y2F3(X, Y)

2 = 0.

Note that (vi) does not hold identically on P1. This is shown as follows: Assume the

contrary. We may also assume that F3(X, Y) is not identically zero. Then the rational

function w = F4(X, Y)X
−1F3(X, Y)

−1 is related to the rational function y = Y/X by the

Artin-Schreier equation: w2−w+ y2 = 0. Here k(y)/k(y2) is inseparable but k(w)/k(y2)

is separable. However k(w) ⊂ k(y) by the assumption. Thus a contradiction is derived.

Therefore, Σ ∩ {X 6= 0} is a finite set. If (0 : 1 :u : z) ∈ Σ, then u = z by (v) and

u

(
∂F3

∂X
(0, 1) +

∂F4

∂X
(0, 1)− u

)
= 0

by (iv). Thus Σ ∩ {X = 0} is also finite. Therefore we finished the proof. �

Remark. The equations in Propositions 7.11–7.15 and 7.17–7.20 define log del Pezzo

surfaces of index two. In fact, the subvariety defined by the equations is really constructed

from a fundamental triplet (X,E,∆) of the same type, where E and ∆ are defined by

the data of the equations.

Example 7.21. Let (X,E,∆) be an extremal fundamental triplet of type [1; 2, 2]0 with

D(X,E,∆) = D8. Then the associated log del Pezzo surface S is defined by

Z2 = (X3 + YU)XU, if char k 6= 2 or E → P1 is inseparable,

Z2 = (XZ + X4 + Y2U)U, otherwise,

in P(1, 1, 2, 3) for the homogeneous coordinate (X, Y, U, Z) of weight (1, 1, 2, 3). In fact, we

can take F3 = 0 and F4 = X4 in Proposition 7.20.
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The following example shows that the Smooth Divisor Theorem in [3] does not hold in

general in characteristic two. This was pointed out by Ohashi in a special case.

Example 7.22. Suppose that char k = 2. Let S be a log del Pezzo surface defined by

the equation of Proposition 7.20, (1), with F3 = 0. Then π|E : E → P1 is inseparable.

We can show that any member C of |−2KS| has a singular point, as follows: A general

member C is defined by U−Q(X, Y) = 0 for a quadric polynomial Q. Thus C ⊂ P(1, 1, 3)

is defined by

Z2 = F4(X, Y)Q(X, Y) + XYQ(X, Y)2

for the homogeneous coordinate (X, Y, Z) of weight (1, 1, 3). Let (x, z) be the coordinate

system of the open subset {Y 6= 0} ≃ A2 defined by x = X/Y and z = Z/Y3. Then

C ∩ {Y 6= 0} is defined by z2 = Φ(x) for the polynomial

Φ(x) = Q(x, 1)F4(x, 1) + xQ(x, 1)2.

Thus a point (x0, z0) ∈ A2 is contained in SingC∩{Y 6= 0} if and only if (dΦ/ dx)(x0) = 0

and z2
0 = Φ(x0). Thus SingC 6= ∅.

Remark 7.23. We consider a fundamental triplet (X,E,∆) is of type [1; 2, 2]0 with ∆ = 8P

for a non-ramification point P ∈ E for π|E. Let φ : M → X be the elimination of ∆. The

dual graph Γ [M ] = Γ (X,E,∆) of negative curves on M is written in Table 12. We shall

give further information on the set of negative curves by using the description of E and

∆ in Proposition 7.20, in case char k ≥ 5. Let (x : y) be the coordinate of E ≃ P1 used in

Case (1) of the proof of Proposition 7.20. Then we may assume that P ∈ E is defined by

x+ y = 0. Let us define homogeneous polynomials Pn(s, t) and Qn(s, t) ∈ Z[1/2, s, t] of

degree n ≥ 0 by

(x + y)2n = Pn(x2, y2) + 2xyQn−1(x
2, y2).

Here, Q−1(s, t) = 0, P0(s, t) = Q0(s, t) = 1, and we have

2Pn(x2, y2) = (x + y)2n + (x− y)2n =
∏2n−1

k=0
((x + y)− ζ2k+1(x− y)),

4xyQn−1(x
2, y2) = (x + y)2n − (x− y)2n =

∏2n−1

k=0
((x + y)− ζ2k(x− y))

for ζ = exp(2π
√
−1/(4n)) for n ≥ 1. Therefore,

Pn(s, t) = 2n−1
∏n−1

k=0

(
(s + t)− cos

(
2k+1
2n

π
)

(s− t)
)
,

Qn−1(s, t) = 2n−1
∏n−1

k=1

(
(s + t)− cos

(
k
n
π
)

(s− t)
)
.

In particular, Pn(s, t) and Qn(s, t) have only simple roots on P1 if gcd(char k, 2n) = 1.

We also have the equality

(7–27) Pi(s, t)Qj−1(s, t)− Pj(s, t)Qi−1(s, t) = (s− t)2iQj−i−1(s, t)
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for 0 < i < j by calculation. Let γj be the unique section of π with γj|E = 2jP (cf.

Proposition 6.2, (7g)) for 1 ≤ j ≤ 4. Then

γj = div(Pj(s, t)g + 2Qj−1(s, t)f).

We set γ0 to be σ. Then

γi ∩ γj = γi ∩ div((s− t)2iQj−i−1(s, t))

for 0 ≤ i < j ≤ 4 by (7–27). Let γj,M ⊂ M be the proper transform of γj in M for

0 ≤ j ≤ 4, which is a (−1)-curve. If γi,M ∩ γj,M 6= ∅ for i < j, then i + 1 < j, and the

following assertions hold:

• γi,M ∩ γj,M is a reduced point lying over the point (1 :−1) ∈ P1 for j = i+ 2,

• γi,M ∩ γj,M is reduced consisting of two points lying over {(3 :−1), (1 :−3)} ⊂ P1

for j = i+ 3,

• γ0,M ∩ γ4,M is reduced consisting of three points lying over
{(

1 +
√

2 : 1−
√

2
)
, (1 :−1),

(
1−
√

2 : 1 +
√

2
)}
⊂ P1.

In particular, γ0,M∩γ2,M = γ2,M∩γ4,M is a point PM lying over the point {g = s+t = 0},
and the union of negative curves on M is not normal crossing at the point PM . From the

dual graph Γ [M ] in Table 12, we can not obtain directly the property that γ0,M , γ2,M ,

and γ4,M meet at a point.

Remark 7.24. For a log del Pezzo surface S of index two, we have proved in Theorem 3.32

that −4KS is very ample, and that −2KS is very ample if and only if K2
S > 1. We can

check it by our explicit description of S as follows:

If S is one of surfaces treated in Section 7.3, i.e., KM + LM is big and S is not of

type [n; 1, 0]0, then S is expressed as a subvariety of a weighted projective space. Here,

OS(−2KS) is just the restriction of a very ample invertible sheaf of the weighted projective

space, by construction.

The surfaces S of type [n; 1, 0]0 are treated in Section 7.4, where K2
S = 5 + n > 1.

If n = 4, then S ≃ P(1, 1, 4) and OS(−2KS) = O(4) is very ample. If 0 < n < 4,

then S is a subvariety of P(1, 1, n) × P(1, 1, 4) where OS(−2KS) is just the restriction

of O(2n) ⊠ O(4) by Proposition 7.1; thus −2KS is very ample. If n = 0, then S is

a subvariety of P1 × P(1, 1, 4) and OS(−2KS) is just the restriction of the very ample

invertible sheaf O(2) ⊠O(4) also by Proposition 7.1.

If S is of type [4; 2, 4]00, then K2
S = 2, and OS(−2KS) is the restriction of the very

ample invertible sheaf O(4) of P(1, 1, 4, 4) by Proposition 7.17.

Thus, the remaining types are [3; 2, 4]+, [3; 2, 4]++(a, b), and [1; 2, 2]0. These are just

the cases of S with K2
S = 1. In this case, S is a prime divisor of P(1, 1, 2, 3) not containing
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the point (0 : 0 : 0 : 1) and OS(−2KS) ≃ O(2)|S, by Propositions 7.18, 7.19, 7.20. We note

that −2KS is not very ample, since O(2)|S is the pullback of O(2) by the projection

S → P(1, 1, 2). It is enough to check that O(4)|S ≃ OS(−4KS) is very ample, since O(6)

is very ample on P(1, 1, 2, 3). Let (X, Y, U, Z) be the homogeneous coordinate of P(1, 1, 2, 3)

as before. Then the vector space H0(P(1, 1, 2, 3),O(4)) is generated by

X4−iYi, X2−jYjU, XZ, YZ

for 0 ≤ i ≤ 4 and 0 ≤ j ≤ 2. Now S is covered by three affine open subsets {X 6= 0},
{Y 6= 0}, {U 6= 0}. The affine ring of {X 6= 0} is isomorphic to the polynomial ring of

three variables generated by

Y/X = X3Y/X4, U/X2 = X2U/X4, Z/X3 = XZ/X4.

Thus the linear system |O(4)| gives an embedding of the open subset {X 6= 0} into the

projective space |O(4)|∨ = P(H0(P(1, 1, 2, 3),O(4))). Similarly, it gives an embedding of

{Y 6= 0}. The affine ring of {U 6= 0} is isomorphic to the subring k[x, y, z](2) generated by

monomials of degree two of the polynomial ring k[x, y, z] of three variables. This ring is

generated by

x2−jyj = X2−jYj/U, xz = XZ/U2, yz = YZ/U2, z2 = Z2/U3

for 0 ≤ j ≤ 2. Since Z2 6∈ H0(P(1, 1, 2, 3),O(4)), the linear system |O(4)| does not give

an embedding of {U 6= 0}. However, the defining equations of S obtained in Proposi-

tions 7.18, 7.19, 7.20 express z2 = Z2/U3 by other generators of the affine ring. Hence,

O(4)|S is very ample.
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