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Abstract. This article is a continuation of the paper [2]. Smooth complex projective

3-folds with nonnegative Kodaira dimension admitting nontrivial surjective endomor-

phisms are completely determined. Especially, it is proved that, for such a 3-fold X,

there exist a finite étale Galois covering X̃ → X and an abelian scheme structure X̃ → T

over a smooth variety T of dimension ≤ 2.

1. Introduction

A surjective endomorphism f : X → X of a variety X is called nontrivial if it is not an

automorphism. Our purpose is to determine the structure of smooth complex projective

3-folds X with nonnegative Kodaira dimension admitting nontrivial surjective endomor-

phisms. Since the objects of our interest are not the endomorphisms f but the varieties

X, we replace freely f with a power fk = f ◦ · · · ◦ f in the discussion below. Abelian

varieties and toric varieties are typical examples of varieties admitting nontrivial surjec-

tive endomorphisms. Moreover, the direct product X × Y admits a nontrivial surjective

endomorphism if so does X. On the other hand, the existence of nontrivial surjective

endomorphisms f induces strong restrictions on the varieties X, as follows:

• X is not of general type, i.e., the Kodaira dimension κ(X) is less than dimX.

• If κ(X) ≥ 0, then f is étale. In particular, the Euler–Poincaré characteristic

χ(X,OX) and the Euler number χtop(X) are zero.

A smooth projective curve C admits a nontrivial surjective endomorphism if and only

if C is isomorphic to the projective line P1 or an elliptic curve. The classification of the

compact complex varietiesX of dimX > 1 admitting nontrivial surjective endomorphisms

has been done in the following cases: smooth projective surfaces (cf. [2], [20]); smooth

compact complex surfaces (cf. [3]); projective bundles (cf. [1]); smooth projective 3-folds
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with κ ≥ 0 except for the case where a general fiber of the Iitaka fibration is an abelian

surface (cf. [2]).

The purpose of this paper is to complete the classification of smooth complex projec-

tive 3-folds with nonnegative Kodaira dimension admitting nontrivial surjective endomor-

phisms by showing the following:

Main Theorem. Let X be a smooth complex projective 3-fold with κ(X) ≥ 0. Then

the following conditions are equivalent to each other :

(A) X admits a nontrivial surjective endomorphism.

(B) There exist a finite étale Galois covering τ : X̃ → X and an abelian scheme struc-

ture ϕ : X̃ → T over a variety T of dimension ≤ 2 such that the Galois group

Gal(τ) acts on T and ϕ is Gal(τ)-equivariant.

The implication (B) ⇒ (A) holds in any dimension by Theorem 2.26 below. The

implication (A) ⇒ (B) can be checked easily for smooth projective 3-folds classified in

our previous paper [2] (cf. Section 3.3). Therefore, we shall focus our attention to the

remaining case, i.e., the case where the Iitaka fibration is an abelian fibration over a curve.

Note that Main Theorem solves the question En,a for n = 3 in [2], and gives a refinement

of En,a. Our method in [2] and in this article is not enough for solving the question En,a

for n > 3. Indeed, our proof in dimension three uses special properties of threefolds and

elliptic curves; especially, the existence of flips, flops, and the abundance theorem in the

minimal model theory and the finiteness of the order of automorphism group of an elliptic

curve preserving the origin.

In order to study compact complex manifolds X admitting nontrivial surjective en-

domorphisms, it is important to analyze data of X preserved by the endomorphisms,

since they reveal much of the deeper structure of the variety X. We have considered the

following data in our previous papers [2], [3], [20]:

(1) Iitaka fibration: Let ϕ : X ···→Z be the Iitaka fibration ofX. Then for a surjective

endomorphism f of X, there exists an automorphism h of Z with ϕ ◦ f = h ◦ ϕ.

(2) Extremal rays : A surjective endomorphism of X with κ(X) ≥ 0 induces a permu-

tation of the set of extremal rays of X (cf. [2]).

(3) Curves with negative self-intersection number : If dimX = 2, then X has only

finitely many irreducible curves with negative self-intersection number, and any

surjective endomorphism of X induces a permutation of the set of such curves (cf.

[3], [20]).

The automorphism h of (1) is expected to be of finite order. If Z is a curve and a general

fiber of ϕ is an abelian variety, then this is true by a similar argument to Lemma 3.7
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below using Corollary 2.12. In particular, combined with results in [2], the finiteness of

order of h is established in case dimX ≤ 3.

Our proof of Main Theorem is based on an argument used in [2]. The outline is as

follows: Let f : X → X be a nontrivial surjective endomorphism of a smooth projective

3-fold X with κ(X) ≥ 0. In the first step, we assume that X is not minimal, i.e., the

canonical bundle KX is not nef. We apply the minimal model program. For any extremal

ray R of NE(X), the contraction morphism ContR : X → X ′ associated to R is just the

blowing up of a smooth projective 3-fold X ′ along an elliptic curve E. This is shown by

Mori’s cone theorem and the classification of extremal rays on smooth projective 3-folds

in [13]. Since the exceptional divisor of ContR is contained in the fixed part of the linear

systems |mKX | for m > 0, X has only finitely many extremal rays. Thus f induces a

permutation of the finite set of extremal rays. By replacing f with a suitable power fk,

we may assume that f∗R = R for any extremal ray R. Then the contraction morphism

ContR induces a nontrivial surjective endomorphism f ′ of X ′ such that f ′−1E = E and

ContR ◦f = f ′ ◦ ContR. Taking contractions of extremal rays successively, we eventually

obtain a nontrivial surjective endomorphism fmin of a smooth minimal model Xmin of X.

In the second step, we assume that X is minimal. Then KX is semi-ample by the

abundance theorem (cf. [8], [11], [12]). Let ϕ : X → Z be the Iitaka fibration. Then

ϕ ◦ f = h ◦ ϕ for an automorphism h of Z of finite order (cf. [2], Proposition 3.7). We

can prove that a suitable finite étale Galois covering X̃ of X has a structure of an abelian

scheme over a variety of dimension at most two. In fact, this is shown as follows:

(i) If κ(X) = 0, then this is a consequence of Bogomolov’s decomposition theorem.

(ii) If κ(X) = 2, then ϕ is an elliptic fibration. By considering the equi-dimensional

models of ϕ in the sense of [18, Appendix A] and by an argument in [15], [16], we

can find a finite étale Galois covering X̃ isomorphic to E × S for an elliptic curve

E and a smooth surface S of general type.

(iii) If κ(X) = 1 and a general fiber of ϕ is a hyperelliptic surface, then we can find a

finite étale covering X̃ isomorphic to E×S for an elliptic curve E and a surface S

by applying Fujiki’s generic quotient theorem [5], [6], and by a similar argument

to (ii).

(iv) In the remaining case, a general fiber of ϕ is an abelian surface. The existence of

X̃ is proved in Sections 4 and 5 below. For the proof, we need some results related

to abelian fibrations prepared in Section 2 and the theory of global structure of

elliptic fibrations in [19].

In the final step, we go back to the situation where X is not minimal. Then a finite

étale Galois covering X̃min of the smooth minimal model Xmin is isomorphic to E×S ′ for
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an elliptic curve E and a smooth projective surface S ′ by the second step (cf. [2, MAIN

THEOREM (A)] for (i)–(iii), Sections 4 and 5 for (iv)). Let X̃ → X be the étale covering

obtained as the pullback of X̃min → Xmin by the birational morphism X → Xmin. Then,

by analyzing the centers of blowups connecting X to Xmin, we can show that X̃ ≃ E × S

for another smooth projective surface S and that fmin can be lifted to recover the original

endomorphism f or a suitable power fk.

We shall explain more on the situation (iv). Let ϕ : X → C be an abelian fibration

from a smooth projective 3-fold X to a smooth curve C and let f : X → X be a nontrivial

surjective endomorphism satisfying ϕ◦f = f . Then the natural homomorphism π1(Xt) →

π1(X) of fundamental groups is not a zero map for a general fiber Xt = ϕ−1(t). If

π1(Xt) → π1(X) is injective, then ϕ is called primitive; if not, called imprimitive. In

the imprimitive case, the kernel of π1(Xt) → π1(X) contains a nonzero proper Hodge

substructure of π1(Xt) ≃ H1(Xt,Z) by Corollary 2.15 below.

Suppose that ϕ is primitive. The proof of Main Theorem in this case is treated in

Section 4. If X is minimal, then ϕ is a Seifert abelian fibration by Corollary 2.11; Thus

there exists a finite étale Galois covering X̃ → X such that the Stein factorization of

X̃ → X → C induces an abelian scheme X̃ → C̃ over a smooth curve C̃ (cf. Lemma 2.4).

In particular, Main Theorem holds in this case. If a fiber of ϕ is a simple abelian surface,

then X is minimal and Main Theorem holds in this case, by Theorem 4.1. If any smooth

fiber of ϕ is not simple and if X is not minimal, then ϕ is factored by elliptic fibrations

X → S and S → C in which X → S is an elliptic bundle (cf. Proposition 4.2). This

essentially follows from the argument on H-factorization in Section 2.3 based on an idea

of Ueno in [22]. From the elliptic bundle X → S, we can find an expected finite étale

Galois covering of X.

Suppose that ϕ is imprimitive. The proof of Main Theorem in this case is treated

in Section 5. We apply the argument on H-factorization to a nonzero proper Hodge

substructure of H1(Xt,Z) contained in the kernel of H1(Xt,Z) ≃ π1(Xt) → π1(X) and

perform a finite succession of flops to X as in [2] (cf. [18, Appendix]). Then we infer

that the Iitaka fibration of the minimal model Y = Xmin is factored as Y → T → C,

where Y → T is an equi-dimensional elliptic fibration over a normal projective surface T

with only quotient singularities. Moreover, the endomorphism f of X induces a nontrivial

surjective endomorphism T → T , and the fibers of Y → T over a certain prime divisor of

T consist of rational curves. We can find a suitable finite ramified covering C̃ → C such

that the normalization T̃ of T ×C C̃ is étale in codimension one over T and T̃ ≃ E × C̃

for an elliptic curve E. Here, the normalization Ỹ of Y ×C C̃ is also étale over Y . By

the ∂-étale cohomological description [19] of the elliptic fibration Ỹ → T̃ , we have a finite
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étale covering E ′ → E such that E ′ ×E Ỹ ≃ E ′ × S for an elliptic surface S → C̃ (cf.

Theorem 5.10). This part is a core of our proof in the imprimitive case.

This article is organized as follows: In Section 2, we study abelian fibrations in a general

setting from the viewpoint of variation of Hodge structures. Especially, we analyze Seifert

abelian fibrations, primitive and imprimitive abelian fibrations, simple and non-simple

abelian fibrations, the construction of H-factorization, and abelian fibrations admitting

endomorphisms. In Section 3, we summarize known results on smooth projective 3-folds

X of κ(X) ≥ 0 admitting nontrivial surjective endomorphisms f , recall the construction

of the minimal reduction of f , and note special properties in the case where the Iitaka

fibration of X is an abelian fibration over a curve. Sections 4, 5 are devoted to the proof

of Main Theorem for the case not treated in our previous paper [2].

Acknowledgement. The authors express their gratitude to Professor Yongnam Lee who

joined the seminars in RIMS, Kyoto Univ. on this subject and gave invaluable comment.

Notation and Terminology. In this article, we work over the complex number field C.

Varieties : A variety means a reduced and irreducible complex algebraic scheme, or a

reduced and irreducible complex analytic space. A projective variety is a complex variety

embedded in a projective space Pn, and a quasi-projective variety is a Zariski open subset

of a projective variety. A smooth projective n-fold means a nonsingular projective variety

of dimension n. The following symbols are used for a variety X as usual:

KX : the canonical divisor of X (when X is normal).

κ(X) : the Kodaira dimension of X.

pg(X) : the (geometric) genus of X.

χ(OX) : the Euler–Poincaré characteristic of the structure sheaf OX .

χtop(X) : the topological Euler characteristic of X.

bi(X) : the i-th Betti number of X.

Sing(X) : the singular locus of X.

Aut(X) : the space of holomorphic automorphisms of X.

Aut0(X) : the identity component of Aut(X).

For a scheme Y , the reduced part is denoted by Yred, which is a reduced scheme with the

same support as Y .

Minimal models : A normal projective variety X is called a minimal model if X has

only terminal singularities and KX is nef. Let π : Y → Z be a projective morphism from

a normal quasi-projective variety. A Cartier divisor D on Y is called π-nef (or relatively

nef over Z) if DΓ ≥ 0 for any irreducible curve Γ with π(Γ) being a point. If Y has only
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terminal singularities and KY is relatively nef over Z, then Y is called a relative minimal

model over Z.

Fibrations : A proper surjective morphism π : V → S is called a fibration or a fiber

space if V and S are normal complex varieties and f has a connected fiber. Then all the

fibers of a fibration are connected. The closed subset

∆π = {s ∈ S | π is not smooth at some point of π−1(s)}

is called the discriminant locus of π. The restriction V ⋆ → S⋆ of π to S⋆ = S \ ∆π and

V ⋆ = π−1(S⋆) is called the smooth part of π. The smooth part is a topological fiber

bundle.

Abelian fiber spaces : If a general fiber of a fiber space π : V → S is an abelian variety,

then π is called an abelian fibration or an abelian fiber space. If a general fiber of π is

an elliptic curve, then π is called an elliptic fibration or an elliptic fiber space. If π is

a holomorphic fiber bundle of an elliptic curve, then it is called an elliptic bundle. If π

is a smooth abelian fibration, then the local constant system R1π∗ZV forms a variation

of Hodge structure H(π) of weight −1 on S. Conversely, if H is a polarized variation of

Hodge structure of weight −1 on S, then there exists uniquely up to isomorphism a smooth

abelian fiber space p : B(H) → S such that p admits a global section and H(p) ≃ H. This

is called the smooth basic abelian fibration associated with H. An abelian scheme is a

proper smooth morphism π : X → S of schemes such that π has a structure of S-group

scheme. In this case, any fiber of π is an abelian variety.

Relative settings : Let u : X → S and v : Y → S be two morphisms into the same

variety S. A morphism h : X → Y is called a morphism over S if u = v ◦h. If there is an

isomorphism X
∼
−→ Y over S, then X and Y are called isomorphic to each other over S.

Similarly, if X and Y are algebraic varieties and there is a birational map X ···→Y over

S, then X and Y are called birational to each other over S.

Endomorphisms : A nontrivial endomorphism f : X → X of a complex variety X is, by

definition, a nonconstant non-isomorphic morphism from X to itself. The subset

Fix(f) := {x ∈ X | f(x) = x}

is called the fixed point set by f . For a positive integer k, the power fk stands for the

k-times composite f ◦ · · · ◦ f of f .

Hilbert schemes : Let V be a quasi-projective variety and let V → T be a projective

morphism into another variety. We set:
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Hilb(V ) : the Hilbert scheme of V .

Z(V ) : the universal family ⊂ V × Hilb(V ).

Hilb(V/T ) : the relative Hilbert scheme of V/T .

Z(V/T ) : the universal family ⊂ V ×T Hilb(V/T ).

For a scheme S over T and for a proper flat morphism ϕ : U → S over T from a subscheme

U of V , the graph Γϕ of ϕ is a subscheme of V ×T S which is proper and flat over S. Hence

Γϕ coincides with the pullback of Z(V/T ) by a morphism u : S → Hilb(V/T ), which is

called the universal morphism associated with ϕ.

Rigidity Lemma: The following is referred as the rigidity lemma (cf. [14, Proposition

6.1]): Let f : X → Y and q : Y → S be morphisms of varieties such that the composite

p = q ◦ f : X → S is a proper smooth morphism with connected fibers. Suppose that

f(p−1(s)) is set-theoretically a single point for one point s ∈ S, then there exists a section

η : S → Y of q such that f = η ◦ p.

2. Abelian fiber spaces

2.1. Seifert abelian fibrations. We recall some facts on abelian fibrations which are

almost smooth in a certain sense. To begin with, we recall the following result on smooth

abelian fibration by Kollár [10, Proposition 5.9], which is generalized to the Kähler situ-

ation in [17, Lemma 2.20]:

Lemma 2.1. Let π : M → S be a smooth abelian fibration over a smooth projective

variety S. Then κ(M) = κ(S).

In the statement for the Kähler situation, we need to assume that the variation of Hodge

structure R1π∗ZM admits an R-polarization.

Lemma 2.2. Let ϕ : M → S be a smooth abelian fibration over a smooth quasi-

projective variety S. Then there is a finite étale morphism S̃ → S such that M ×S S̃ → S̃

is an abelian scheme.

Proof. Let H = H(ϕ) be the variation of Hodge structure R1ϕ∗ZM . Let p : B = B(H) →

S be the associated basic smooth abelian fibration. Then p is an abelian scheme and ϕ

is regarded as a torsor associated with an element η of H1(S,SH), where SH is the sheaf

of germs of sections of p (cf. [17, Section 2]). Since ϕ is projective, there is a subvariety

S̃ ⊂M such that S̃ → S is finite étale by [17, Corollary 2.13]. Then ϕ×S ideS : M×S S̃ → S̃

has a section, thus M ×S S̃ is isomorphic to the abelian scheme B ×S S̃ over S̃. �

Definition 2.3 (cf. [17]). Let V → S be a projective fiber space from a smooth variety

V onto a normal variety S whose general fibers are abelian varieties. It is called a Seifert
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abelian fiber space if there exist finite surjective morphisms W → V and T → S satisfying

the following conditions:

(1) W and T are smooth varieties;

(2) W is isomorphic to the normalization of V ×S T over V ;

(3) W → V is étale;

(4) W → T is smooth.

If V → S is a Seifert abelian fiber space, then V is a unique relative minimal model over

S, since KV is relatively numerically trivial and there are no rational curves contained in

fibers. If S is compact and dimV = dimS + 1, then we may replace the condition (4)

with that W ≃ E × T over T for an elliptic curve E. The notion of Seifert abelian fiber

space is introduced in [17] as the name of Q-smooth abelian fibration.

Lemma 2.4. Let V → S be a Seifert abelian fiber space. Then there exists a finite

Galois covering T → S such that the normalization W of V ×S T is étale over V and W

is an abelian scheme over T .

Proof. By Definition 2.3 and by Lemma 2.2, we have a finite surjective morphism T → S

satisfying the required properties except for that T → S is Galois. Taking the Galois

closure T̂ → S of T → S is equivalent to taking the Galois closure Ŵ → V of the finite

étale covering W → V . Hence, Ŵ is isomorphic to the normalization of V ×S T̂ and also

to the fiber product W ×T T̂ . Therefore, T̂ → S satisfies the required condition. �

The following gives a sufficient condition on elliptic fibrations to be Seifert:

Theorem 2.5 (cf. [15], [16]). Let π : V → S be an elliptic fibration from a smooth

projective n-fold V into a normal projective variety S. Suppose that

(a) no prime divisor Θ of V with codim π(Θ) ≥ 2 is uniruled,

(b) no prime divisor Θ of V with codimπ(Θ) = 1 is covered by a family of rational

curves contained in fibers of π,

(c) KV is π-numerically trivial.

Then there exists a generically finite surjective morphism T → S satisfying the following

conditions :

(1) T is a smooth projective variety.

(2) For the normalization W of the main component V ×S T , the induced morphism

W → V is a finite étale covering.

(3) W is isomorphic to the product E × T over T for an elliptic curve E.
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Corollary 2.6. Let π : V → S be an elliptic fibration from a smooth projective n-fold

V onto a normal projective variety S. If the following conditions are satisfied, then π is

a Seifert elliptic fibration:

(1) π is equi-dimensional ;

(2) KV is π-numerically trivial ;

(3) For an irreducible divisor Γ contained in the discriminant locus ∆ of π, the singular

fiber type of π along Γ is mI0 for some m ≥ 1.

Here, the singular fiber type is defined as follows (cf. [18], [19]): For a generic analytic arc

C in S intersecting Γ transversally at a general point x ∈ Γ, π−1(C) → C is a nonsingular

minimal elliptic surface over C. The singular fiber type of f along Γ is defined to be the

type of singular fiber π−1(x) in the sense of Kodaira. A singular fiber of type mI0 of an

elliptic surface is expressed as a divisor mE for an elliptic curve E.

Proposition 2.7. Let π : V → C be an abelian fiber space over a smooth curve C. If

the normalization of any fiber is an abelian variety, then π is a Seifert abelian fibration.

The following proof contains an argument used in the proof of [17, Theorem 4.3].

Proof. By localizing C, we may assume C to be the unit disc {t ∈ C ; |t| < 1}. Moreover,

the scheme-theoretic fiber Vt = π−1(t) is abelian for t 6= 0. The reduced part V0,red of the

central fiber V0 is irreducible and the normalization V ν
0,red of V0,red is abelian by assumption.

Let m be the multiplicity of V0, i.e., V0 = mV0,red and let C ′ = {t′ ∈ C ; |t′| < 1} → C be

the cyclic covering given by t′ 7→ t = t′m. Let V ′ be the normalization of V ×C C
′ and let

Ṽ → V ′ be the resolution of singularities. Then V ′ → V is étale outside Sing V0,red, and

the scheme-theoretic fiber V ′
0 of π′ : V ′ → C ′ over 0 ∈ C ′ is reduced. The scheme-theoretic

fiber Ṽt′ of Ṽ → C ′ over t′ is isomorphic to Vt for t = t′m if t′ 6= 0. Let Ṽ0 =
⋃

Γj be the

irreducible decomposition. We have the lower semicontinuity 1 = pg(Vt) ≥
∑
pg(Γj) of the

geometric genus pg for the degeneration Ṽ → C ′ of abelian varieties. On the other hand,

Γj → V0,red is a finite surjective morphism if Γj is not exceptional for Ṽ → V ′. Therefore,

by the characterization [9] (cf. [21, Theorem 10.3]) of abelian varieties for varieties finite

over an abelian variety, V ′
0 is irreducible and its normalization is an abelian variety. Since

π′
∗ωV ′ → π′

∗ωV ′(V ′
0) is not isomorphic, π′∗π′

∗ωV ′ → ωV ′ is an isomorphism. In particular,

V ′ and V ′
0 are Gorenstein, and ωV ′

0
≃ OV ′

0
. Hence, the conductor of the normalization of

V ′
0 is zero. Thus V ′

0 is an abelian variety and π′ : V ′ → C ′ is a smooth abelian fibration.

The variety V is regarded as the quotient space of V ′ by an action of the Galois group

Gal(C ′/C) ≃ Z/mZ. Similarly, the normalization V ν
0,red of V0,red is regarded as the quotient

space of V ′
0 . Here, V ′

0 → V ν
0,red is étale since both are abelian varieties. Thus the action of
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Gal(C ′/C) on V ′
0 is free and that on V ′ is also free. Hence, V is nonsingular, V ′ → V is

étale, and V0,red is abelian. Therefore, V → C is a Seifert abelian fibration. �

Proposition 2.8. Let π : M → C be a smooth abelian fibration over a smooth curve

C. Suppose that a subvariety Y ⊂M defines a proper surjective morphism Y → C whose

general fiber is an abelian variety. Then Y → C is a smooth abelian fibration.

Proof. By localizing C, we may assume C to be a unit disc {t ∈ C ; |t| < 1} and Y → C to

be smooth outside 0 ∈ C. Let Mt be the scheme-theoretic fiber of π over t ∈ C and let Yt

be the scheme-theoretic intersectionMt∩Y . Let ν : V → Y be the normalization and let Vt

be the scheme-theoretic fiber of π|Y ◦ν : V → C over t. For the irreducible decomposition

V0 =
⋃

Γj, we have pg(Γj) ≤ 1 by the lower semi-continuity pg(Vt) ≥
∑
pg(Γj) for t 6= 0.

By [9], we infer that V0 is irreducible and that Y0,red and the normalization of V0,red are

abelian varieties. By Proposition 2.7, V → C is a Seifert abelian fibration and V0,red is

also abelian.

Let m be the multiplicity of V0 and let C ′ = {t′ ∈ C ; |t′| < 1} → C be the cyclic

covering given by t′ 7→ t′m. Then the normalization V ′ of V ×C C
′ is smooth over C ′

by the proof of Proposition 2.7. For the morphism V ′ → M ′ = M ×C C
′, the induced

homomorphism H1(V
′
0 ,Z) → H1(M0,Z) between the first homology groups of central

fibers are isomorphic to the homomorphism H1(Yt,Z) → H1(Mt,Z) for t 6= 0 induced

from Yt ⊂Mt. In particular, H1(V
′
0 ,Z) → H1(M0,Z) is injective and its cokernel is torsion

free. Hence, the composite H1(V
′
0 ,Z) → H1(V0,red,Z) → H1(Y0,red,Z) is an isomorphism.

Therefore, m = 1, V0 is reduced, and V0 ≃ Y0. Hence, V ≃ Y , and Y → C is smooth. �

2.2. Primitive and imprimitive abelian fibrations. The following result of Kollár

[10] plays a key role in our argument below (the result itself is generalized to the compact

Kähler situation in [17]):

Theorem 2.9 (cf. [10, 6.5–6.8], [17, Proposition 8.5]). Let ϕ : M → S be a proper

surjective morphism between smooth projective varieties such that which is smooth outside

a normal crossing divisor D ⊂ S. Suppose that

• Ms is birationally equivalent to an abelian variety,

• the kernel of π1(Ms) → π1(M) contains no nonzero proper Hodge substructure of

H1(Ms,Z) ≃ π1(Ms),

for a general smooth fiber Ms = ϕ−1(s). Then the following properties hold :

(1) The local monodromies of (R1ϕ∗ZM)|S⋆ around D are finite, where S⋆ := S \D.
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(2) There is a finite étale morphism M ′ → M such that, for the Stein factorization

M ′ → S ′ → S, the local monodromies of the associated variation of Hodge struc-

ture on S ′⋆ = S ′ ×S S
⋆ around S ′ \ S ′⋆ are trivial.

(3) ϕ is birationally equivalent over S to a Seifert abelian fibration.

The assertion (3) above is derived from an idea used in the proof of the following:

Lemma 2.10. Let ϕ : M → S be an abelian fiber space between smooth quasi-projective

varieties. Let S⋆ be the complement of the discriminant locus ∆ϕ. Suppose that

(1) the variation of Hodge structure H(ϕ) = R1ϕ∗ZM |S⋆ of weight −1 extends to S,

(2) for any point s ∈ ∆ϕ, there exists a holomorphic section of ϕ over an open neigh-

borhood of s.

Then ϕ is birational to a smooth abelian fibration over S.

Proof. LetH be the variation of Hodge structure extended to S and let p : B = B(H) → S

be the smooth basic abelian fibration associated with H, i.e., an abelian scheme with

an isomorphism R1p∗ZB ≃ H. There exist an analytic open covering {Uλ} and analytic

sections σλ : Uλ →M of ϕ by assumption. If ϕ is smooth, then σλ induces a bimeromorphic

morphism φλ : ϕ−1(Uλ) → p−1(Uλ) as the relative Albanese map over Uλ (cf. [17]). Even if

ϕ is not smooth, we have the bimeromorphic morphism φλ by [17, Proposition 1.6]. The

difference φλ◦φ
−1
ν is described as the translation map of B/S by a section ηλ,ν : Uλ∩Uν →

M . Gluing {p−1(Uλ)} by the translation maps, we have a new smooth torus fibration

Bη → S, which depends on the cohomology class η ∈ H1(S,SH) of the collection {ηλ,µ},

where SH denotes the sheaf of germs of holomorphic sections of B → S. In other words,

Bη → S is an analytic torsor of B → S associated with η. It is known that η is of

finite order if and only if ϕ is a projective morphism. For the bimeromorphic morphism

M → Bη over S, the image of an intersection of general ample divisors of M in Bη

dominates S and has the same dimension as dimS. Thus η is of finite order and Bη → S

is a projective morphism by [17, Corollary 2.13]. �

Corollary 2.11. Let π : X → C be an abelian fiber space from a smooth projective

variety X onto a smooth projective curve C such that KX is π-nef. Suppose that the kernel

of π1(Xt) → π1(X) contains no nonzero proper Hodge substructure of H1(Xt,Z) ≃ π1(Xt).

Then π is a Seifert abelian fiber space.

Proof. By Theorem 2.9, there exists a finite covering Ĉ → C such that the normalization

X̂ of X ×C Ĉ is étale over X and X̂ → Ĉ is birationally equivalent to a smooth abelian

fibration Ŷ → Ĉ over Ĉ. Since KX is nef, X̂ → Ĉ is also a relative minimal model.

Thus Ŷ and X̂ are isomorphic in codimension one. Since any fiber of Ŷ → Ĉ contains no
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rational curves, the rational map X̂ → Ŷ is holomorphic, and hence isomorphic. Thus

X → C is a Seifert abelian fibration. �

Corollary 2.12. Let ϕ : M → C be an abelian fibration over a smooth rational curve

C. If ϕ is smooth outside two points of C, then κ(M) = −∞.

Proof. Let U ⊂ C be the complement of the two points. Then U ≃ C⋆. Hence the period

map of the variation of Hodge structure H := R1ϕ∗ZM |U is constant by the hyperbolicity

of the Siegel upper half spaces. In particular, the image of the monodromy representation

Z ≃ π1(U, u) → Aut(Hu) is finite. Let C ′ ≃ P1 → C be the finite cyclic covering

extending C \ {0} ∋ z → zm ∈ C \ {0} ≃ U for suitable m. Let M ′ be a nonsingular

model of M ×C C
′. Then we may assume that the following conditions are satisfied:

(1) the pullback of H to C ′ is a trivial variation of Hodge structure;

(2) M ′ → C ′ admits a local section over any point of C.

Then there exist a smooth abelian fibration Y → C ′ and a birational morphism M ′ → Y

over C ′ by Lemma 2.10. In particular,

κ(M) ≤ κ(M ′) = κ(Y ) = κ(C ′) = −∞. �

Definition 2.13. Let ϕ : M → S be an abelian fiber space between smooth varieties

and let Ms denote the fiber ϕ−1(s) for a point s ∈ S. Let M⋆ → S⋆ = S \ ∆ϕ be the

smooth part of ϕ. If π1(Ms) → π1(M) is injective for a point s ∈ S⋆, then it is so for

any other point of S⋆. In this case, ϕ is called a primitive abelian fiber space. If ϕ is not

primitive, then it is called imprimitive.

Remark 2.14. A primitive abelian fibration is called a homotopically Q-smooth abelian

fibration in [17, Section 7]. A smooth abelian fiber space is primitive if it is a projective

morphism. In fact, the homomorphism π2(S) → π1(Ms) appearing at the homotopy exact

sequence

π2(S) → π1(Ms) → π1(M) → π1(S) → 1

is zero by [17, Corollary 2.18]. If S is a smooth curve, then this is shown as follows: If S is

not isomorphic to P1, then it follows from the vanishing π2(S) = 0. Suppose that S ≃ P1.

Then a smooth projective abelian fibration ϕ : M → S has a constant variation of Hodge

structure H = R1ϕ∗ZM and B ≃ A × S for the basic abelian fibration B = B(H) → S

associated with H and for an abelian variety A. The sheaf SH of germs of holomorphic

sections of B → S is represented by an exact sequence 0 → H = Z
⊕2g
S → O⊕g

S → SH → 0

for g = dimM − dimS. Thus H1(S,SH) ≃ H2(S,Z⊕2g) ≃ Z⊕2g is torsion free. Thus

M ≃ B ≃ A × S, since M is isomorphic to the torsor of B associated with a torsion
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element of H1(S,SH). Therefore, π2(S) → π1(Ms) is zero. We infer also that a Seifert

abelian fibration is primitive, since it has an étale covering from an abelian scheme.

As a corollary of Theorem 2.9, we have:

Corollary 2.15. If ϕ : M → S is an imprimitive abelian fiber space, then the kernel of

π1(Ms) → π1(M) contains a nonzero proper Hodge substructure of H1(Ms,Z) ≃ π1(Ms)

for any s ∈ S⋆.

Proof. Assume the contrary. Then, by Theorem 2.9, there exist a finite covering S ′ → S,

a finite étale covering M ′ → M , a smooth abelian fiber space Y → S ′, a birational

morphism M ′ →M ×S S
′ over M , and a birational morphism M ′ → Y over S ′. Let s be

a point of S⋆ over which S ′ → S is étale and let s′ ∈ S ′ be a point lying over s. Then we

have a contradiction by

π1(Ms) ≃ π1(M
′
s′) ≃ π1(Ys′) ⊂ π1(Y ) ≃ π1(M

′) ⊂ π1(M). �

2.3. Non-simple abelian fibrations. We shall study abelian fibrations whose very gen-

eral fiber is a non-simple abelian variety. We follow several arguments by Ueno in [22]

which deal with Hilbert schemes.

Lemma 2.16. Let ψ : M → T be a proper flat surjective morphism of smooth projective

varieties. Suppose that dim H0(Mt,OMt
) = 1 for the scheme-theoretic fiber Mt = ψ−1(t)

over a point t ∈ T . Then the universal morphism u : T → Hilb(M) associated with ψ is

a local isomorphism at t and u(T ) is an irreducible component of Hilb(M).

Proof. We have dim H0(Mt, NMt/M) = n for n = dimT since the normal sheaf NMt/M is a

free sheaf of rank n. In particular, the Zariski tangent space of Hilb(M) at the point [Mt]

corresponding to Mt is n-dimensional. Hence, Hilb(M) is nonsingular of dimension n at

[Mt], since the morphism u is injective by construction. Thus the assertion holds. �

Let ϕ : M → T be a projective flat surjective morphism of smooth quasi-projective

varieties and let M⋆ → T ⋆ be the smooth part of ϕ. Suppose that ϕ is an abelian

fibration and that there is a proper positive-dimensional abelian subvariety At of the

fiber Mt = ϕ−1(t) over a fixed point t ∈ T ⋆. Let [At] denote the point of Hilb(M/T )

corresponding to the subscheme At ⊂ Mt. Then, by Lemma 2.16, [At] is a nonsingular

point of Hilb(M/T ) ×T {t} = Hilb(Mt) and the connected component Lt of Hilb(Mt)

containing [At] is isomorphic to an abelian variety. In fact, At is a fiber of a surjective

morphism Mt → Lt. Let S be an irreducible component of Hilb(M/T ) containing Lt and

let q : S → T be the induced morphism. If s is a point of an open neighborhood of [At] in

S, then s defines an abelian subvariety A(s) of the fiber Mq(s) of M → T over q(s) with
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dimAt = dimA(s). Moreover, any point s of S ×T T
⋆ defines also an abelian subvariety

A(s) ⊂Mq(s) with dimAt = dimA(s) by Proposition 2.8.

Lemma 2.17. Suppose that q : S → T is surjective. Then q is smooth over T ⋆.

Proof. The scheme-theoretic fiber of S → T over t is smooth at the point s0 = [At].

Hence, the dimension of the Zariski tangent space of S at s0 is at most dimT + dimLt.

For a point s of an open neighborhood of s0 ∈ S with q(s) 6= t, the connected component

L(s) of Hilb(M/T )×T {q(s)} = Hilb(Mq(s)) containing s is an abelian variety and A(s) is

a fiber of a surjective morphism Mq(s) → L(s). In particular, L(s) contains any irreducible

component of the fiber S×T {q(s)} containing s. Since Hilb(M/T ) has at most countably

many irreducible components, there exist an irreducible component S ′ of Hilb(M/T ) and

a dense subset U ⊂ S×T T
⋆ such that L(s) ⊂ S ′ for s ∈ U . Hence, S = S ′ by U ⊂ S ∩S ′.

Therefore, dimS = dimT + dimLt. Consequently, q : S → T is smooth at s0. For any

other point s ∈ S ×T T
⋆, we have

dimL(s) = dims Hilb(Mq(s)) ≥ dims S ×T {q(s)} ≥ dimL(s0) = dimL(s).

Hence S is an irreducible component of Hilb(M/T ) containing L(s). Therefore, q : S → T

is smooth over T ⋆. �

Since Hilb(M/T ) has only countably many irreducible components, the following con-

ditions are equivalent to each other:

• One smooth fiber of M → T is a simple abelian variety;

• A very general fiber of M → T is a simple abelian variety;

• If At ⊂ Mt is a positive-dimensional proper abelian subvariety of a smooth fiber

Mt, then an irreducible component S of Hilb(M/T ) containing [At] does not dom-

inate T .

Definition 2.18. If one of these conditions above is satisfied, then M → T is called a

simple abelian fibration; If not, it is called a non-simple abelian fibration.

Theorem 2.19. Let ϕ : M → T be a non-simple abelian fibration between smooth

quasi-projective varieties and let T ⋆ be the complement of the discriminant locus ∆ϕ of

ϕ. Then there exist a finite morphism T̂ → T étale over T ⋆ and a birational morphism

M̂ →M ×T T̂ from a smooth quasi-projective variety M̂ such that the induced morphism

ϕ̂ : M̂ → T̂ is the composite β ◦ α for abelian fibrations α : M̂ → Ŝ and β : Ŝ → T̂ , where

α and β are smooth over the inverse image of T ⋆, and dimM > dim Ŝ > dimT .

Proof. Let S be an irreducible component of Hilb(M/T ) discussed in Lemma 2.17. Here,

q : S → T is proper surjective, the restriction S⋆ = q−1(T ⋆) → T ⋆ is smooth, and any
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irreducible component of the fiber over a point of T ⋆ is an abelian variety. Let Ŝ be the

normalization of S and let Ŝ → T̂ → T be the Stein factorization. Then the induced

morphism β : Ŝ → T̂ is an abelian fibration, and T̂ → T is a finite morphism étale over T ⋆.

We set Z = Z(M/T ) ∩ (M ×T S) for the universal family Z(M/T ) ⊂M ×T Hilb(M/T ).

Then the second projection Z → S is an abelian fibration smooth over S⋆ and any

connected component of Z ×T {t} is isomorphic to Mt for t ∈ T ⋆. Thus the composite

Z →֒M ×T S ···→M ×T Ŝ →M ′ := M ×T T̂

is an isomorphism over T ⋆. Hence we have the factorization M ′ ···→Z ···→ Ŝ → T̂ of

ϕ ×T idbT : M ′ → T̂ . By taking a suitable birational morphism M̂ → M ′, we have a

desired factorization. �

Proposition 2.20. Let ϕ : M → T be an abelian fibration between smooth quasi-

projective varieties. Let M⋆ → T ⋆ be the smooth part of ϕ and let H̃ be the induced

variation of Hodge structure R1ϕ∗ZM |T ⋆ of weight −1 defined over T ⋆. For a variation of

Hodge substructure H ⊂ H̃, there exist a rational abelian fibration α : M ···→S and an

abelian fibration β : S → T with ϕ = β ◦ α such that

(1) α : M ···→S is holomorphic and smooth over T ⋆,

(2) β : S → T is smooth over T ⋆,

(3) H1(α
−1(s),Z) = Hβ(s) ⊂ H̃β(s) = H1(ϕ

−1(β(s)),Z) for any point s ∈ β−1(T ⋆).

Proof. Let B(H̃) → T ⋆ and B(H) → T ⋆ be the basic abelian fibrations associated with

H̃ and with H, respectively. Then B(H̃) → T ⋆ is an abelian scheme and B(H) → T ⋆ is

an abelian subscheme. The smooth abelian fibration M⋆ → T ⋆ is regarded as a torsor of

B(H̃) → T ⋆. Thus we have the quotient torsor β : S⋆ → T ⋆ of M⋆ → T ⋆ by the relative

action of B(H) → T ⋆. Let α : M⋆ → S⋆ be the induced morphism. Then the condition

(3) is satisfied for any s ∈ S⋆, i.e., H1(α
−1(s),Z) = Hβ(s) ⊂ H̃β(s) = H1(ϕ

−1(β(s)),Z).

Therefore, it suffices to extend α and β to a rational map and a morphism defined over

T , respectively.

Let u : S⋆ → Hilb(M/T ) be the universal morphism associated with M⋆ → S⋆. Then

the graph ofM⋆ → S⋆ isomorphic to the pullback of the universal family Z(M/T ) ⊂M×T

Hilb(M/T ) by u. By Lemma 2.16, u(S⋆) is a connected component of Hilb(M⋆/T ⋆) =

Hilb(M/T )|T ⋆ and S⋆ → u(S⋆) is an isomorphism. Thus there is an irreducible component

S ⊂ Hilb(M/T ) containing u(S⋆). For the scheme-theoretic intersection Z = Z(M/T ) ∩

(M ×T S), the first projection Z → M is an isomorphism over T ⋆. Thus the morphism

α extends to the rational map M ···→Z → S and the other morphism β extends to the

natural morphism S → T . �
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The factorization M
α

···−→ S
β
−→ T is called an H-factorization of ϕ : M → T .

Lemma 2.21. Let ϕ : M → T be a smooth non-simple abelian fiber space between

smooth compact varieties with dimM = dimT +2. Then there exist a finite étale covering

T̃ → T and a non-simple abelian surface A such that M ×T T̃ ≃ A× T̃ over T̃ .

Proof. We may assume that ϕ is factorized as M → S → T for two smooth elliptic

fibrations M → S and S → T , by Theorem 2.19. Since T is compact, any fiber of S → T

is isomorphic to a constant elliptic curve F . By replacing T with a suitable étale covering

of T , we may assume that S ≃ F ×T over T . The fibers of M → S are also constant. Let

F ′ be the fiber. Then the fiber Mt over a point t ∈ T is an abelian surface which gives an

extension of F by F ′. In particular, Mt is isogenous to F ×F ′. Therefore, the period map

associated with the abelian fibration M → T is also constant. Hence, M ×T T̃ ≃ A× T̃

over a finite étale covering T̃ of T . �

2.4. Abelian fibration with endomorphisms.

Lemma 2.22. Let f : A → A be a nontrivial surjective endomorphism of an abelian

variety A.

(1) If A is simple, then the fixed point locus Fix(f) is a non-empty finite set.

(2) Suppose that there is a simple abelian subvariety B ⊂ A of codimension one sat-

isfying f−1(B) = B. Then there is a positive integer k such that dim Fix(fk) = 1

and the subgroup H1(B,Z) ⊂ H1(A,Z) is just the primitive hull of the image of

fk∗ − id : H1(A,Z) → H1(A,Z).

Proof. Let us consider A to be a commutative group scheme and let 0 be the zero element.

For the point a = f(0) ∈ A and for the translation map T−a : A→ A, the composite g :=

T−a ◦ f : A→ A is a group homomorphism of A. Moreover h := g− idA : A→ A is a non-

zero group homomorphism of A, since g : A→ A is a nontrivial surjective endomorphism.

Here, Fix(f) 6= ∅ if and only if −a is contained in the image of h. Furthermore, in case

Fix(f) 6= ∅, Fix(f) is a translate of Ker(h) since, for a closed point x ∈ Fix(f) and for a

closed point x′ ∈ A, x′ ∈ Fix(f) if and only if x− x′ ∈ Ker(h).

If A is simple, then h is surjective and Ker(h) is finite; thus the assertion (1) follows.

For the abelian subvariety B in (2), the restriction f |B : B → B is a nontrivial surjective

endomorphism since deg(f |B) = deg(f) > 1. In particular, f has a fixed point in B by

(1). Hence, we may assume 0 ∈ Fix(f), i.e., a = 0. Then f = g and Fix(f) = Ker(h). Let

p : A → E be the projection to the quotient space E = A/B, which is an elliptic curve.

There is a group automorphism u : E → E with p ◦ f = u ◦ p. Here uk = idE for some
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k ≥ 1, since E is an elliptic curve. The fiber p−1(b) over any point b ∈ B is a translate of B.

Thus the restriction of fk to p−1(b) has a fixed point by (1). Therefore, Fix(fk) dominates

E and dim Fix(fk) = 1. The homomorphism fk∗ − id : H1(B,Z) → H1(B,Z) is not zero

since deg(f |B) > 1. The kernel of fk∗ −id defines a proper Hodge substructure of H1(B,Z),

which is zero since B is simple. Hence, fk∗ − id : H1(B,Z) → H1(B,Z) is injective. On

the other hand, uk∗ − id : H1(E,Z) → H1(E,Z) is zero. Hence, the primitive hull of the

image of fk∗ − id : H1(A,Z) → H1(A,Z) is just the subgroup H1(B,Z) ⊂ H1(A,Z). �

Theorem 2.23. Let ϕ : M → T be a smooth abelian fibration over a quasi-projective

variety T and let f : M → M be a nontrivial surjective endomorphism with ϕ ◦ f = ϕ.

Suppose that there is a simple abelian subvariety A of codimension one in a fiber Mo =

ϕ−1(o) satisfying f−1A = A. Then there exist a smooth abelian fibration α : M → S and

a smooth elliptic fibration β : S → T such that ϕ = β ◦ α, A is a fiber of β, and that

α ◦ f = v ◦ α for an automorphism v ∈ Aut(S). In particular, ϕ is a non-simple abelian

fibration.

Proof. Let H̃ be the variation of Hodge structure R1ϕ∗ZM and let f∗ : H̃ → H̃ be the

homomorphism induced from f . Let H ⊂ H̃ be the primitive hull of the image of fk∗ −

id : H̃ → H̃. Then Ho = H1(A,Z) ⊂ H̃o = H1(Mo,Z) for some k by Lemma 2.22.

Applying Proposition 2.20, we have an H-factorization M → S → T . Then A and f−1(A)

are fibers of α : M → S. We set P = α(A) and Q = α(f−1(A)). Since α◦f(α−1(Q)) = P ,

we have a morphism v : S → S satisfying α ◦ f = v ◦ α by the rigidity lemma. Here, v

is a finite étale morphism with β ◦ v = β, since ϕ is smooth and α is surjective. Since

v−1(P ) = Q, we have deg v = 1, and hence, v ∈ Aut(S). �

Theorem 2.24. Let ϕ : M → T be a smooth simple abelian fibration over a quasi-

projective variety T . Suppose that there is a nontrivial surjective endomorphism f : M →

M with ϕ ◦ f = ϕ. Then Fix(f) → T is a finite étale surjective morphism. In particular,

for any point t ∈ T , the fiber Mt = ϕ−1(t) does not contain any simple abelian subvariety

A of codimension one with f−1(A) = A.

Proof. By Lemma 2.22, Fix(f) ∩Mo is a non-empty finite set for a very general point

o ∈ T . Hence, ϕ : T̃ → T is generically finite and surjective for an irreducible component

T̃ of Fix(f). The pullback ϕ̃ : M̃ := M ×T T̃ → T̃ of ϕ is a smooth abelian fibration

with a section. The pullback f̃ := f ×T ideT : M̃ → M̃ of f is also a nontrivial surjective

endomorphism defined over T̃ . Therefore, for the proof, we may assume ϕ : M → T to

admit a section σ : T →M satisfying f ◦ σ = σ. Thus ϕ : M → T has an abelian scheme

structure whose zero section is σ, and f : M → M is a relative group homomorphism.
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Since f is not an isomorphism, h := f − idM : M → M is a non-zero relative group

homomorphism over T . Since the fiber Mo over a very general point o ∈ T is a simple

abelian variety, the restriction of h to Mo is surjective. Hence h : M → M is surjective.

In particular, the restriction of h to the fiber Mt over any point t ∈ T is a finite étale

surjective morphism. Therefore, Fix(f) ∩Mt is a finite set isomorphic to Ker(h) ∩Mt by

the proof of Lemma 2.22. Hence, Fix(f) → T is finite, étale, and surjective.

If f−1(A) = A for a simple abelian subvariety A of codimension one of a fiber Mt, then

dim Fix(fk) ∩Mt = 1 for some k ≥ 1 by Lemma 2.22. This is a contradiction. �

Lemma 2.25. Let f be a nontrivial surjective endomorphism of the product A× T for

a simple abelian variety A and a smooth projective variety T such that p2 ◦ f = p2 for the

second projection p2. Then there is a finite étale Galois covering T̃ → T such that the lift

f̃ of f to A× T̃ is written as φ× ideT for an endomorphism φ of A with respect to a given

group structure.

Proof. An irreducible component T̃ of the fixed point locus Fix(f) is finite and étale over

T by Theorem 2.24. By replacing T with T̃ and by considering a suitable automorphism

of A × T , we may assume that f preserves {0} × T for the zero element 0 ∈ A. Then

f(a, t) = (φt(a), t) for holomorphic maps φt : A → A for t ∈ T , a ∈ A. Here, the induced

homomorphism φt∗ : H1(A,Z) → H1(A,Z) is independent of the choice of t ∈ T . Since

φt(0) = 0, there exists an endomorphism φ : A → A with φ(0) = 0 and φt = φ for any

t ∈ T . �

2.5. A part of the proof of Main Theorem. The implication (B) ⇒ (A) of Main

Theorem follows from:

Theorem 2.26. Let X be a smooth projective n-fold. Suppose that there exist a finite

Galois étale covering τ : M → X and an abelian scheme structure ϕ : M → T such that

the Galois group G of τ acts also on T with ϕ ◦ σ = σ ◦ ϕ for σ ∈ G. Then there is a

nontrivial surjective endomorphism Φ of M such that ϕ ◦ Φ = ϕ and σ ◦ Φ = Φ ◦ σ for

any σ ∈ G. In particular, X admits a nontrivial surjective endomorphism.

Proof. The action of σ ∈ G on M is written as the composite Tr(hσ) ◦ ψσ for an auto-

morphism ψσ of M over T preserving the zero section and for the translation map Tr(hσ)

by a section hσ : T → M . Then ψσ is a homomorphism between two abelian schemes

σ ◦ϕ : M → T and ϕ : M → T . The set F of sections of ϕ over T has a natural structure

of abelian group, and furthermore, a structure of left G-module by

h 7→ σ · h = ψσ ◦ h ◦ σ−1
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for h ∈ F and σ ∈ G. Then σ 7→ hσ gives a 1-cocycle and defines an element η ∈ H1(G,F ).

Since the order m of η is finite, we have a section a ∈ F such that mhσ = σ · a− a.

Let µm+1 : M → M be the multiplication map by m + 1 with respect to the group

structure of M over T and let Φ: M →M be the composite Tr(a) ◦ µm+1. Then σ ◦Φ =

Φ ◦ σ for any σ ∈ G. �

Combining with Lemma 2.4, we have:

Corollary 2.27. Let X → S be a Seifert abelian fiber space from a smooth projective

n-fold X onto a normal projective variety S. Then X admits a nontrivial surjective

endomorphism.

Lemma 2.28. Let ϕ : M → T be a smooth abelian fiber space from smooth projective

n-fold M to a smooth projective variety T , and let f : M → M be a nontrivial surjective

endomorphism with ϕ ◦ f = v ◦ϕ for an automorphism v ∈ Aut(T ). Suppose that a finite

group G acts on M and that σ ◦ f = f ◦ σ for any σ ∈ G. If dimT = n − 1, then the

condition (1) below is satisfied ; If dimT = n− 2 and v = idT , then one of the conditions

(1), (2) below is satisfied :

(1) G acts on T and ϕ is G-equivariant.

(2) There exists a smooth elliptic fibration α : M → S over T such that α ◦ fk = α for

a power fk, G acts on S, and that α is G-equivariant.

Proof. We set Mt = ϕ−1(t) for t ∈ T . Then we have f−1Mv(t) = Mt. Hence,

f−1(σ(Mv(t))) = σ(f−1(Mv(t))) = σ(Mt)

for any σ ∈ G. In particular,

f |σ(Mt) : σ(Mt) → σ(Mv(t))

an étale surjective morphism of degree deg(f) > 1. If ϕ(σ(Mt)) is a point for a point

t ∈ T , then there is an automorphism σT ∈ Aut(T ) with ϕ ◦ σ = σT ◦ ϕ, by the rigidity

lemma. In particular, ϕ(σ(Mt)) is a point for any t ∈ T . Hence, if, for a point t ∈ T ,

ϕ(σ(Mt)) is a point for any σ ∈ G, then (1) is satisfied. By the commutative diagram

σ(Mt)
f

−−−→ σ(Mv(t))

ϕ

y
yϕ

ϕ(σ(Mt))
v

−−−→ ϕ(σ(Mv(t))),

we have dimσ(Mt) > dimϕ(σ(Mt)) by considering the mapping degree. Hence, if dimT =

n − 1, then dimϕ(σ(Mt)) = 0 and thus (1) is satisfied. We may assume dimT = n − 2,
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v = idT , and dimϕ(σ(Mt)) = 1 for any t ∈ T . Let σ(Mt) → C → ϕ(σ(Mt)) be the

Stein factorization. Since Mt is an abelian surface, C is an elliptic curve and Mt is not

simple. For a fiber E of σ(Mt) → C, we have f−1E = E. Hence, the elliptic curve

E ′ = σ−1(E) ⊂ Mt also satisfies f−1E ′ = E ′. By Theorem 2.23, we have a factorization

M → S → T of ϕ into smooth elliptic fibrations α : M → S and β : S → T , and

α ◦ f = u ◦ α for an automorphism u of S over T . Here, u fixes the point α(E ′) ∈ β−1(t).

Since this property holds for any point t ∈ T and since β is an elliptic fibration, we infer

that the order of u is finite. Thus α ◦ fk = α for suitable k > 0. Since dimS = n − 1,

M → S is G-equivariant by the argument above. �

The following is useful in order to show the other implication (A) ⇒ (B) in Main

Theorem:

Proposition 2.29. Let X be a smooth projective 3-fold of κ(X) ≥ 0. If one of the

following conditions is satisfied, then the condition (B) of Main Theorem is satisfied :

(1) There is a finite étale covering X̃ → X from an abelian 3-fold X̃.

(2) There exist a finite étale Galois covering X̃ → X, a smooth abelian fibration

ϕ : X̃ → T over a variety T of dimension ≤ 2, and a nontrivial surjective endo-

morphism f̃ of X̃ such that

(a) σ ◦ f̃ = f̃ ◦ σ for any element σ of the Galois group of X̃ → X,

(b) ϕ ◦ f̃ = v ◦ ϕ for an automorphism v ∈ Aut(T ) if dimT = 2,

(c) ϕ ◦ f̃ = ϕ if dimT = 1.

Proof. (1) ⇒ (B): By Bogomolov’s decomposition theorem, we may assume X̃ → X to

be Galois. Thus (B) is satisfied.

(2) ⇒ (B): Let G be the Galois group of X̃ → X. By Lemma 2.28, we may assume

that ϕ is G-equivariant. Let G0 be the kernel of G → Aut(T ) and let X be the quotient

space of X̃ by G0. Then X → T is a G/G0-equivariant smooth abelian fibration and the

induced nontrivial surjective endomorphism f̄ of X from f̃ commutes with any element

of G/G0. By replacing X̃ with X, we may assume that G → Aut(T ) is injective. Thus,

we have a Seifert abelian fibration X → G\T . Hence, the condition (B) is satisfied by

Lemma 2.4. �

3. Threefolds admitting nontrivial surjective endomorphisms

3.1. Basic properties on varieties with nontrivial surjective endomorphisms.

We recall some basic properties of nontrivial surjective endomorphisms from [2].

Proposition 3.1. Let f : X → X be a surjective endomorphism of a smooth projective

n-fold X. Then f is a finite morphism. Moreover, the following properties hold :
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(1) If X is not uniruled or KX is pseudo-effective, then f is étale;

(2) Suppose that κ(X) ≥ 0 and let φ : X ···→Z be the Iitaka fibration of X. Then

there exists a biregular automorphism h of Z with φ ◦ f = h ◦ φ;

(3) If X is of general type, then f is an automorphism;

(4) If f is not an automorphism and κ(X) ≥ 0, then χ(OX) = χtop(X) = 0.

For a smooth projective n-fold X, let NS(X) be the Néron–Severi group. The Picard

number ρ(X) is the rank of NS(X). We set

N1(X) := NS(X) ⊗ R, N1(X) := Hom(NS(X),R).

For an algebraic 1-cycle Z =
∑
niZi, the numerical equivalence class cl(Z) ∈ N1(X)

is defined by D 7→ DZ =
∑
niDZi for divisors D. Let NE(X) ⊂ N1(X) be the cone

generated by cl(Z) for all the effective 1-cycles Z, and let NE(X) denote the closure of

NE(X). The cone NE(X) is often called the Kleiman–Mori cone. An extremal ray (more

precisely, a KX-negative extremal ray) is a 1-dimensional face R of NE(X) with KXR < 0.

An extremal ray R defines a nontrivial proper surjective morphism ContR : X → Y with

connected fibers into a normal variety such that, for an irreducible curve C ⊂ X, ContR(C)

is a point if and only if cl(C) ∈ R. This is called the contraction morphism of R. We

have proved the following results related to the extremal rays in [2]:

Proposition 3.2 (cf. [2, Propositions 4.2 and 4.12]). Let f : Y → X be a finite surjec-

tive morphism between smooth projective n-folds with ρ(X) = ρ(Y ). Then, the following

assertions hold :

(1) The push-forward map f∗ : N1(Y ) → N1(X) is an isomorphism and f∗ NE(Y ) =

NE(X).

(2) Let f∗ : N1(Y ) → N1(X) be the map induced from the push-forward map D 7→ f∗D

of divisors D. Then the dual f ∗ : N1(X) → N1(Y ) (called the pullback map) is

an isomorphism and f ∗ NE(X) = NE(Y ).

(3) If f is étale and the canonical divisor KX is not nef, then there is a one-to-one

correspondence between the set of extremal rays of X and the set of extremal rays

of Y .

(4) Under the same assumption as in (3), let φ : X → X ′ be the contraction morphism

ContR associated to an extremal ray R ⊂ NE(X) and let ψ : Y → Y ′ be the

contraction morphism associated to the extremal ray f ∗R. Then there exists a

finite surjective morphism f ′ : Y ′ → X ′ such that φ ◦ f = f ′ ◦ ψ.

Theorem 3.3 (cf. [2, Theorem 4.8]). Let f : X → X be a nontrivial surjective endo-

morphism of a smooth projective 3-fold X with κ(X) ≥ 0. If KX is not nef, then the
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extremal contraction ContR : X → X ′ associated to any extremal ray R of NE(X) is a

divisorial contraction which is (the inverse of ) the blowing up along an elliptic curve on

X ′.

3.2. Construction of minimal reduction of an endomorphism. Let us recall a

construction of the minimal reduction of a nontrivial surjective endomorphism f : X → X

of a smooth projective 3-fold X with κ(X) ≥ 0. We apply the minimal model program

to X. Assume that KX is not nef. Then there exist only finitely many extremal rays of

NE(X) (cf. [2, Proposition 4.6]). Hence, by replacing f with a suitable power fk (k > 0),

we may assume from the beginning that f∗R = R for any extremal ray R ⊂ NE(X).

Theorem 3.3 and Proposition 3.2 imply that the contraction morphism µ := ContR : X →

X1 associated with any extremal ray R is the blowing up along an elliptic curve of X1,

where a nontrivial surjective endomorphism f1 : X1 → X1 with f1 ◦ µ = µ ◦ f is induced.

If KX1 is not nef, then, by the same way as above, we replace f1 with a suitable power

of f1 so that (f1)∗R1 = R1 for any extremal ray R1 of X1, and we take the contraction

morphism ContR1 associated with an extremal ray R1. In this way, we have successive

contractions of extremal rays X → X1 → X2 → · · · with a strictly decreasing sequence

ρ(X) > ρ(X1) > · · · of Picard numbers. Thus, after a finite number of steps, we obtain

a smooth minimal model Xn of X and a nontrivial surjective endomorphism fn of Xn.

To sum up, after replacing f by a suitable power fk, we have a sequence of extremal

contractions

X = X0
µ0
−→ X1

µ1
−→ · · ·

µn−1
−−−→ Xn

and nontrivial surjective endomorphisms fi : Xi → Xi for 0 ≤ i ≤ n such that

(1) µ0 = µ, f0 = f , µi ◦ fi = fi+1 ◦ µi for 0 ≤ i ≤ n,

(2) µi−1 : Xi−1 → Xi is (the inverse of) the blowing up along an elliptic curve Ci on

Xi with f−1
i (Ci) = Ci for 1 ≤ i ≤ n,

(3) Xn is a smooth minimal model.

Definition 3.4. The final endomorphism fn : Xn → Xn is called a minimal reduction

of f : X → X.

Corollary 3.5. Let X be a smooth non-minimal projective 3-fold with κ(X) ≥ 0 admit-

ting a nontrivial surjective endomorphism f : X → X. Then Fix(fk) 6= ∅ for a suitable

power fk.

Proof. Let µ = µ0 : X = X0 → X1 be the blowing up and f1 : X1 → X1 be the endomor-

phism above. Then f1|C1 : C1 → C1 is a nontrivial surjective endomorphism of the elliptic
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curve C1. In particular, Fix(f1)∩C1 6= ∅. For a point x ∈ Fix(f1)∩C1, f |µ−1(x) : µ
−1(x) →

µ−1(x) is a surjective endomorphism of µ−1(x) ≃ P1. Hence Fix(f) ∩ µ−1(x) 6= ∅. �

The abundance theorem for 3-folds (cf. [11], [12], [8]) says that KXn
is semi-ample. In

particular, the Iitaka fibration ϕ : X → W is holomorphic for the canonical model

W = Proj
⊕

m≥0
H0(X,OX(mKX)),

where ϕ = ϕn ◦ µn−1 ◦ · · · ◦ µ0 for the Iitaka fibration ϕn : Xn → W . There is an

automorphism h ∈ Aut(W ) with ϕ ◦ f = h ◦ ϕ, since

f ∗ : H0(X,OX(mKX)) → H0(X,OX(mKX))

is isomorphic for any m. The canonical model W is denoted by C when it is one-

dimensional, i.e., κ(X) = 1.

Lemma 3.6. Suppose that κ(X) = 1. Let Γ ⊂ X be a smooth curve such that f−1Γ = Γ

for the endomorphism f of X. Let µ : X̂ → X be the blowing up along Γ. Then Γ

is an elliptic curve contained in a fiber of the Iitaka fibration of X and f induces an

endomorphism f̂ of X̂ with µ ◦ f̂ = f ◦ µ.

Proof. If Γ dominates C, then we have deg(f−1Γ/C) = (deg f) deg(Γ/C) by ϕ◦f = h◦ϕ;

this contradicts f−1(Γ) = Γ and deg f > 1. Moreover, Γ is an elliptic curve, since f

induces a nontrivial surjective endomorphism of Γ. Let I be the defining ideal of Γ in X.

Then f ∗I is the defining ideal of f−1Γ = Γ. Hence, we have a morphism f̂ : X̂ → X̂ with

µ ◦ f̂ = f ◦ µ by the universality of blowing up. �

In particular, the center Ci of the i-th blowing-up µi−1 : Xi−1 → Xi, which appears

at the sequence X → X1 → · · · → Xn connecting X and the minimal reduction Xn, is

contained in a fiber of the Iitaka fibration Xi → C.

3.3. The class of smooth projective 3-folds of our interest. In order to prove Main

Theorem, it is enough to show the implication (A) ⇒ (B), by Theorem 2.26. To begin

with, we shall show it for smooth projective 3-folds classified in our previous paper [2].

Let X be a smooth projective 3-fold with κ(X) ≥ 0 admitting a nontrivial surjective

endomorphism. In [2], the following cases are treated:

(1) κ(X) = 0.

(2) κ(X) = 1 and the general fiber of the Iitaka fibration of X is a hyperelliptic

surface.

(3) κ(X) = 2.

If X belongs to one of the cases, then, by [2, MAIN THEOREM (A)],
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• X has an abelian 3-fold as a finite étale covering, or

• X has a structure of Seifert elliptic fibration over a surface.

Hence, X satisfies the condition (B) by Lemma 2.4.

Thus, in what follows, we consider smooth projective 3-folds X satisfying the following

three conditions:

(*1) There is a nontrivial surjective endomorphism f : X → X;

(*2) κ(X) = 1;

(*3) A general fiber of the Iitaka fibration ϕ : X → C is an abelian surface.

As is explained in Section 3.2, there is a birational morphism X → Xmin to a smooth

minimal model Xmin which is described as a succession of blowups along elliptic curves

contained in fibers of the Iitaka fibrations. Therefore, the Iitaka fibration ϕ : X → C is

holomorphic and is isomorphic to the Iitaka fibration Xmin → C over C outside finitely

many points of C.

Let Xt be the fiber ϕ−1(t) over a point t ∈ C. Let h ∈ Aut(C) be the automorphism

determined by ϕ ◦ f = h ◦ ϕ (cf. Proposition 3.1).

Proposition 3.7. The automorphism h is of finite order.

Proof. If κ(C) = 1, then the automorphism group of C is finite. If ϕ is smooth, then

κ(X) = κ(C) = 1 by Lemma 2.1. Thus we may assume that ϕ admits at least one

singular fiber. Thus the discriminant locus ∆ = ∆ϕ is not empty. If C is an elliptic curve,

then h preserves the finite set ∆ 6= ∅, and hence h is of finite order. If C is a smooth

rational curve, then ∆ consists of at least three points by Corollary 2.12; thus h is of finite

order. �

By Proposition 3.7, by taking a power of f , we may replace the condition (*1) with the

following stronger condition:

(*1′) There exists a nontrivial surjective endomorphism f : X → X over the curve C,

i.e., ϕ ◦ f = ϕ.

Thus it is enough to consider only the endomorphisms f defined over C. For such an f ,

let ft : Xt → Xt denote the restriction of f to the fiber Xt = ϕ−1(t) for t ∈ C.

Lemma 3.8. The image of the natural homomorphism π1(Xt) → π1(X) of fundamental

groups is not finite for a general fiber Xt.

Proof. Assume the contrary. Let Ut → Xt be the finite étale covering associated with the

kernel of π1(Xt) → π1(X). Since π1(Ut) → π1(X) is a zero map, the the fiber product

Ut ×X,fk X by any power fk : X → X for k ≥ 1 is a disjoint union of copies of Ut. Since



25

f−1(Xt) = Xt is connected, we have natural inclusions π1(Ut) ⊂ ft∗π1(Xt) ⊂ π1(Xt).

Iterating f , we have a sequence of inclusions

π1(Ut) ⊂ ft
k
∗π1(Xt) ⊂ · · · ⊂ ft∗π1(Xt) ⊂ π1(Xt).

However, the mapping degree of the power fkt : Xt → Xt and the index of the subgroup

fkt ∗
π1(Xt) ⊂ π1(Xt) coincide with k deg f > 1. Since the index of the subgroup π1(Ut) in

π1(Xt) is finite, we have a contradiction. �

Corollary 3.9. Suppose that the Iitaka fibration ϕ : X → C is an imprimitive abelian

fibration. Let H̃ be the variation of Hodge structure R1ϕ∗ZX |C⋆ defined on C⋆ = C \∆ϕ.

Then there is uniquely a variation of Hodge substructure H ⊂ H̃ of rank two such that

the stalk Ht is contained in the kernel of H1(Xt,Z) = π1(Xt) → π1(X) and f−1
t∗ Ht = Ht

for any t ∈ C⋆.

Proof. Lemma 3.8 implies that the Hodge substructure Ht of H1(Xt,Z) contained in the

kernel of π1(Xt) → π1(X) is uniquely determined. In particular, f−1
t∗ Ht = Ht for the

endomorphism f over C. Since the Hodge substructure is preserved by the action of

monodromy, it defines a variation of Hodge substructure H ⊂ H̃ over C⋆. �

Suppose that the Iitaka fibration ϕ : X → C is a primitive abelian fibration. By

Theorem 2.9 and Lemma 2.1, there is a finite morphism τ : C̃ → C from a smooth curve

C̃ of genus ≥ 2 such that the normalization X̃ of X ×C C̃ is smooth over C̃. A nontrivial

surjective endomorphism f of X satisfying ϕ ◦ f = f induces a nontrivial surjective

endomorphism f̃ of X̃ over C̃.

4. The primitive case

In this section, we shall prove Main Theorem in the primitive case, i.e., the case where

X is a smooth projective 3-fold admitting a nontrivial surjective endomorphism with

κ(X) = 1 such that the Iitaka fibration X → C is a primitive abelian fiber space. We

fix a smooth minimal model Y = Xmin of X with a minimal reduction g = fmin : Y → Y

of powers of f . For the Iitaka fibration ϕY : Y → C, we assume that ϕY ◦ g = g (cf.

Section 3.3).

4.1. The case of simple abelian fibration. Suppose that the Iitaka fibration ϕ : X →

C is a simple abelian fibration. Then (A) ⇒ (B) in Main Theorem in this case is derived

from Lemma 2.4 and:

Theorem 4.1. Let X be a smooth projective 3-folds of κ(X) = 1 admitting a nontrivial

surjective endomorphism. If the Iitaka fibration ϕ : X → C is a simple abelian fibration,

then X is minimal and ϕ is a Seifert fibration.
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Proof. By Corollary 2.11 and Lemma 2.4, we infer that ϕY is a Seifert fibration. In

particular, for a finite ramified covering C̃ → C, the normalization Ỹ of Y ×C C̃ is

smooth over C̃ and is étale over Y . Here, Ỹ → C̃ is a smooth abelian fibration whose

very general fiber is a simple abelian surface. Since ϕY ◦ g = g, there exists a nontrivial

surjective endomorphism g̃ : Ỹ → Ỹ with g ◦ τ = τ ◦ g̃ for the étale covering τ : Ỹ → Y .

Therefore, any fiber of Ỹ → C̃ does not contain any elliptic curve Ẽ with g̃−1(Ẽ) = Ẽ by

Theorem 2.24. The birational morphism Ψ: X = X0 → X1 → · · · → Xn = Y explained

in Section 3.2 is a succession of blowups along elliptic curves contained in fibers over C.

However, every fiber of Y → C does not contain any elliptic curve E with g−1E = E.

In fact, the pullback of the elliptic curve by the étale morphism τ is a union of elliptic

curves which are preserved by a power of g̃. Therefore, X ≃ Y . �

4.2. The case of non-simple abelian fibration. Suppose next that the Iitaka fibration

ϕ : X → C is a non-simple abelian fibration.

Proposition 4.2. Suppose that ϕY is a smooth non-simple abelian fiber space. If X is

not minimal, then ϕ = β ◦ α for elliptic fibrations α : X → S and β : S → C satisfying

the following properties :

(1) α : X → S is an elliptic bundle over a smooth projective surface with κ(S) = 1;

(2) β : S → C is an elliptic fibration whose relative minimal model is an elliptic bundle

over C;

(3) α ◦ fk = v ◦ α for an automorphism v of S and for a positive integer k.

Proof. We replace f freely with a power fk of f . Let µi : Xi → Xi+1 for 0 ≤ i ≤ n−1 and

fi : Xi → Xi for 0 ≤ i ≤ n be the blowups and endomorphisms explained in Section 3.2 for

the minimal reduction of f . Note that the center Ci of µi−1 is an elliptic curve contained

in a fiber of Xi → C by Lemma 3.6. Applying Theorem 2.23 to Xn = Y → C, fn = g,

and to the elliptic curve Cn ⊂ Xn, we have a factorization Xn → Sn → C such that

αn : Xn → Sn and βn : Sn → C are smooth elliptic fibrations, and that Cn is a fiber of

αn. Moreover αn ◦ fn = vn ◦ αn for an automorphism vn ∈ Aut(Sn) fixing the point

bn = αn(Cn).

For the blowing up Sn−1 → Sn at bn, the induced rational map αn−1 : Xn−1 → Sn−1 is

also a smooth elliptic fibration and the induced birational map vn−1 : Sn−1 → Sn−1 by vn

is also holomorphic. Then αn−1 ◦ fn−1 = vn−1 ◦αn−1. If Cn−1 is not contained in a fiber of

αn−1, then we have a contradiction concerning with the degree of Cn−1 → αn−1(Cn−1) as

in the proof of Lemma 3.6. Thus Cn−1 is a fiber of αn−1 and the point bn−1 = αn−1(Cn−1)

is fixed by vn−1. By continuing the same argument, we have a smooth elliptic fibration
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α : X = X0 → S, a birational morphism S → Sn, and an automorphism v ∈ Aut(S) such

that α ◦ f = v ◦ α. �

In the primitive non-simple case, Main Theorem is derived from:

Theorem 4.3. Let X be a smooth projective 3-fold of κ(X) = 1 admitting a nontrivial

surjective endomorphism. Suppose that the Iitaka fibration ϕ : X → C is a primitive

non-simple abelian fiber space.

(1) If X is minimal, then ϕ : X → C is a Seifert abelian fibration. Furthermore, there

exist a non-simple abelian surface A and a finite ramified Galois covering C̃ → C

such that the normalization of X×C C̃ is étale over X and is isomorphic to A× C̃

over C̃.

(2) If X is not minimal, then there exist a smooth projective surface S of κ(S) = 1,

an elliptic curve E, and a finite étale Galois covering τ : S × E → X such that

the action of the Galois group of τ on S × E is compatible with the projection

S × E → S.

Proof. (1) follows from Corollary 2.11 and Lemma 2.21.

(2): Let Ψ: X → Y be the birational morphism giving the minimal reduction g : Y → Y

of a nontrivial surjective endomorphism f of X. Here, ϕY ◦ g = ϕY . By (1), there is a

finite Galois covering C̃ → C such that the normalization Ỹ of Y ×C C̃ is smooth over

C̃ and is étale over Y . Note that the Galois group G = Gal(Ỹ /Y ) is isomorphic to

Gal(C̃/C). Thus, for the abelian fibration ϕ̃ : Ỹ → C̃, we have σ ◦ ϕ̃ = ϕ̃ ◦ σ for σ ∈ G.

Let g̃ be the induced endomorphism of Ỹ from g×C id eC . Then σ◦ g̃ = g̃◦σ for any σ ∈ G.

Let X̃ → X be the pullback of the étale Galois covering Ỹ → Y by Ψ: X → Y . Then g̃

induces a nontrivial surjective endomorphism f̃ of X̃, and g̃ is regarded as the minimal

reduction of f̃ . By Proposition 4.2, there exist a smooth elliptic fibration α : X̃ → S and

an automorphism v ∈ Aut(S) such that α ◦ f̃ = v ◦ α. Since σ ◦ f̃ = f̃ ◦ σ for σ ∈ G, the

condition (B) of Main Theorem is satisfied by Proposition 2.29. �

5. The imprimitive case

In this section, we treat the imprimitive case. Before proving Main Theorem, we prepare

some results on non-Seifert elliptic surfaces in Section 5.1.

5.1. Remarks on non-Seifert elliptic surfaces. Let S → C be a minimal elliptic

fibration over a smooth projective curve. Suppose that S → C is not a Seifert elliptic

fibration. Then any surjective étale endomorphism of S is an automorphism (cf. [2]). In

fact, the existence of a nontrivial surjective étale endomorphism implies that χtop(S) = 0,
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but χtop(S) 6= 0 for any non-Seifert elliptic surface S. We also have the following results

on the automorphism group of the non-Seifert elliptic surface.

Theorem 5.1. Let f : S → C be a non-Seifert projective elliptic surface with κ(S) ≥ 0.

Then Aut0(S) is trivial.

For the proof, we recall the following:

Proposition 5.2 (cf. [7]). Let X be a normal compact complex space. Suppose that

there exists a compact complex Lie subgroup G of Aut0X. Then, for every x ∈ X, the

orbit map ϕx : G→ X defined by σ 7→ σ · x for σ ∈ G is a finite morphism.

Proof. Assume the contrary. Then there exists a point x0 ∈ X such that the isotropy

subgroup T := Gx0 of G at x0 is positive-dimensional. Let ψ : T × X → X be the

evaluation map defined by (t, x) 7→ t ·x for t ∈ T , x ∈ X. Then ψ(p−1(x0)) = {x0} for the

second projection p : T × X → X. Since T is compact, the rigidity lemma implies that

ψ(p−1(x)) is a point for any x ∈ X. Hence ψ factors throughX, and T is zero-dimensional.

This is a contradiction. �

Corollary 5.3. dim Aut0(X) ≤ dimX for any normal compact complex space X in

the class C with κ(X) ≥ 0. If the equality holds, then X has a complex torus as its finite

unramified covering.

Proof. By [4], Aut0(X) is a complex torus and hence is compact. �

Proof of Theorem 5.1. Assume the contrary. By Corollary 5.3, E := Aut0(S) is at most

2-dimensional. Moreover, if dimE = 2, then S is covered by a 2-dimensional complex

torus and contains no rational curves. This is a contradiction. Hence E is an elliptic

curve. By [4, (5.1)], there exists a natural complex space structure on the orbit space

V := S/E such that the natural projection p : S → V gives a Seifert elliptic fibration.

Thus χtop(S) = 0. This is a contradiction. �

Lemma 5.4. Let X1 and X2 be smooth projective varieties and let f be a surjective

endomorphism of X1 ×X2. Assume that the following conditions are satisfied :

(1) p1 ◦ f = f1 ◦ p1 for the first projection p1 and for an endomorphism f1 of X1.

(2) Any surjective endomorphism of X2 is an automorphism.

(3) Aut0(X2) is trivial.

Then f = f1 × f2 for an automorphism f2 of X2.

Proof. By (1), f is written as

X1 ×X2 ∋ (x, y) 7→ (f1(x),Φx(y)),
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where Φx is a surjective endomorphism of X2. Then Φx is an automorphism by (2). The

map x 7→ Φx gives rise to a holomorphic map X1 → Aut(X2), which is constant by (3).

Thus f = f1 × f2 for an automorphism f2 ∈ Aut(X2). �

Corollary 5.5. Let S → C be a non-Seifert elliptic surface with κ(S) ≥ 0. Let f be a

surjective endomorphism of Z×S for a smooth projective variety Z such that p1◦f = f1◦p1

for the first projection p1 and for an endomorphism f1 of Z. Then f = f1 × f2 for an

automorphism f2 ∈ Aut(S).

5.2. Structure of an H-factorization. The following result is not related to the exis-

tence of nontrivial surjective endomorphisms:

Theorem 5.6. Let X be a smooth minimal projective 3-fold of κ(X) = 1 whose Iitaka

fibration ϕ : X → C is an imprimitive abelian fibration. Let C⋆ be the complement of

the discriminant locus ∆ϕ ⊂ C of ϕ and let H be the variation of Hodge substructure of

R1ϕ∗ZX |C⋆ defined in Corollary 3.9. Then there exist equi-dimensional elliptic fibrations

π : Y → T and q : T → C for a smooth minimal projective 3-fold Y and for a normal

projective surface T satisfying the following conditions :

(1) KY ∼Q π
∗(KT + Λ) for a Q-divisor Λ with (T,Λ) log-terminal.

(2) π is a non-Seifert elliptic fibration.

(3) ϕ : X → C and q ◦ π : Y → C are birationally equivalent to each other over C.

Moreover, these are isomorphic to each other over C⋆.

(4) Y → T → C gives the H-factorization of ϕ (cf. Proposition 2.20).

Here, the surface T above is uniquely determined up to isomorphism.

Proof. Let us take an H-factorization X ···→S → C of ϕ. Note that X ···→S and S → C

are smooth elliptic fibrations over the open subset C⋆. Thus X̂ → S is an elliptic fibration

for a certain blowing up X̂ → X. Let us consider the equi-dimensional model of a relative

minimal model of X̂ → S (cf. [18, Appendix A, Proposition A.6]). Then we have a

birational morphism S ′ → S from a normal variety and a birational map X ′ ···→ X̂ such

that

• X ′ is Q-factorial with only terminal singularities,

• the induced map h′ : X ′ → S ′ is an equi-dimensional elliptic fibration,

• KX′ ∼Q h
′∗(KS′ +D′) for a Q-divisor with (S ′, D′) log-terminal.

By the same argument as in Step 2 of the proof of [18, Theorem B2], we have a birational

morphism S ′ → T into a normal surface and a birational map X ′ ···→Y such that

• Y is Q-factorial with only terminal singularities,

• the induced map π : Y → T is an equi-dimensional elliptic fibration,
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• KY ∼Q π
∗(KT + Λ) for a Q-divisor Λ with (T,Λ) log-terminal,

• KY is nef.

Since X and Y are connected by a finite sequence of flops, Y is also smooth. The Iitaka

fibration of Y is the composite q ◦π for a morphism q : T → C. Since X×CC
⋆ ≃ Y ×CC

⋆

and S ×C C
⋆ ≃ T ×C C

⋆, the required conditions except for (2) are satisfied for Y → T

and T → C. By a property of H-factorization, π1(Yt) → π1(Y ) ≃ π1(X) is zero for the

fiber Yt over any point t ∈ T ×C C
⋆. In particular, π : Y → T is non-Seifert, and the

condition (2) is also satisfied. It remains to show the uniqueness of T . Let π′ : Y ′ → T ′

and q′ : T ′ → C be equi-dimensional elliptic fibrations satisfying the same conditions. By

the construction of H-factorization, there is a birational map T ···→T ′ over C, which

commutes with the birational map Y ···→X ···→Y ′. Since the birational map Y ···→Y ′

is an isomorphism in codimension one, and since π and π′ are equi-dimensional, T ···→T ′

is also an isomorphism in codimension one. Thus T ≃ T ′ by the Zariski main theorem

(cf. [18, Appendix A. Remark A.7]). �

In the rest of Section 5.2, we fix a smooth minimal projective 3-fold X admitting a

nontrivial surjective endomorphism f such that the Iitaka fibration ϕ : X → C of X is an

imprimitive abelian fibration over a curve C. By replacing f with its power, we assume

that ϕ ◦ f = ϕ. Let π : Y → T and q : T → C be the elliptic fibrations satisfying the

conditions of Theorem 5.6 for X.

Proposition 5.7. There is a nontrivial surjective endomorphism β of T over C such

that β is étale in codimension one and π ◦ f = β ◦ π. Moreover, there is a finite Galois

covering C̃ → C satisfying the following properties :

(1) The normalization T̃ of T ×C C̃ is isomorphic over C̃ to the product E× C̃ for an

elliptic curve E, and T̃ → T is étale in codimension one.

(2) Let Ỹ be the normalization of Y ×C C̃. Then Ỹ → Y is étale. Furthermore, the

induced elliptic fibration π̃ : Ỹ → T̃ is relatively minimal, the discriminant locus

∆π̃ is a non-empty subset of E× (C̃ \ C̃⋆), where C̃⋆ = C̃ ×C C
⋆, and the singular

fiber type of π̃ over any component of ∆π̃ is not of type mI0.

(3) The lift β̃ of β to T̃ is written as φ × id eC as an endomorphism of E × C̃ for an

endomorphism φ of E.

Proof. Step 1: Existence of β : T → T .

Let φ : X ···→Y be the birational map over C. Then an isomorphism φ∗ : π1(X) ≃

π1(Y ) is induced. Let f (1) : Y (1) → Y be the finite étale covering corresponding the image

of φ∗ ◦ f∗ : π1(X) → π1(X) ≃ π1(Y ). Then φ ◦ f = f (1) ◦ φ(1) for a birational map



31

φ(1) : X ···→Y (1). Let us consider the Stein factorization

Y (1) π(1)

−−→ T (1) β(1)

−−→ T

of π ◦ f (1). Then π(1) is an elliptic fibration birational to π by φ(1) ◦ φ−1 : Y ···→Y (1),

since the variation of Hodge substructure H is preserved by the induced homomorphism

f∗ : H̃ → H̃. Let ψ(1) : T ···→T (1) be the birational map. Since π and π(1) are equi-

dimensional and since φ(1) ◦φ−1 is isomorphic in codimension one, ψ(1) is an isomorphism

by the Zariski main theorem. Therefore, we have the following commutative diagram of

rational maps:

X
φ

−−−→ Y
π

−−−→ T
q

−−−→ C∥∥∥
y

yψ(1)

∥∥∥

X
φ(1)

−−−→ Y (1) π(1)

−−−→ T (1) q(1)

−−−→ C

f

y
yf (1)

yβ(1)

∥∥∥

X
φ

−−−→ Y
π

−−−→ T
q

−−−→ C.

Thus we have a surjective endomorphism β = β(1) ◦ ψ(1) : T → T . Assume that β is

an isomorphism. Let γ be a rational curve contained in the fiber of π over a general

point of ∆π. Such a rational curve γ exists since π is non-Seifert. Then (f (1))−1γ is a

reducible curve consisting of rational components by deg f > 1. Since ∆π has finitely

many components, we have a contradiction. Hence, β is not an isomorphism.

Step 2: Any fiber of q : T → C is irreducible and β is étale in codimension one.

Let F be a fiber of q. By replacing β with a power of β, we may assume that β∗γ = γ

for any irreducible component γ of F . Hence (deg β − 1)γ2 = 0. Therefore, γ2 = 0 and

F is irreducible. As a consequence, we infer that the canonical divisor KT is Q-linearly

equivalent to q∗B for a Q-divisor B on T . On the other hand, KT ∼Q β∗KT + R for the

ramification divisor R of β. Then R = 0 since β∗q∗B = q∗B. Therefore, β is étale in

codimension one.

Step 3: T is the quotient surface of a smooth elliptic surface by a finite group along any

singular fiber.

For the fiber F = q−1(o) over a point o ∈ C, let m be the multiplicity, i.e., F = mFred.

Let U ⊂ C be an analytic open neighborhood biholomorphic to a unit disc ∆ = {z ∈

C; |z| < 1}. Let U ′ ≃ ∆ → U be the cyclic covering given by z′ 7→ z = z′m and let V ′ be

the normalization of q−1(U) ×U U ′. Then V ′ → q−1(U) is étale in codimension one and

the fiber F ′ of V ′ → U ′ over the origin is reduced. In particular, V ′ has only quotient
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singularities. A nontrivial surjective endomorphism β′ of V ′ over U ′ is induced from β.

By the same argument as in Step 2, we infer that F ′ is irreducible and reduced.

Suppose that F ′ is singular. Then F ′ is a rational curve of arithmetic genus one. Since

V ′ is nonsingular outside SingF ′, β′−1(F ′ \SingF ′) → F ′ \SingF ′ is étale. Hence, F ′ has

no cusp but a node P = SingF ′. Here, β′−1(P ) = P , since π1(F
′ \ {P}) ≃ Z. Let {Vα}

be a fundamental system of open neighborhoods of P in V ′. Then {β′−1(Vα)} is also a

fundamental system of open neighborhoods of β′−1(P ) = P . The natural injection

β′
∗ : π1(β

′−1(Vα) \ {P}) →֒ π1(Vα \ {P})

is not an isomorphism since deg β′ = deg β > 1. However, the both sides of the injection

β′
∗ is isomorphic to the local fundamental group at P for some α. Since (V , P ) is a quotient

singularity, the local fundamental group is finite, and hence, β′
∗ is isomorphic. This is a

contradiction.

Therefore, F ′ is nonsingular. Thus V ′ is also nonsingular and V ′ → U ′ is a smooth

elliptic surface; thus T is the quotient of a smooth elliptic surface along F .

Step 4: There is a finite covering C̃ → C satisfying the property (1).

For a point o ∈ C \C⋆, the local monodromy of R1q∗ZT |C⋆ around o is finite by Step 3.

In particular, the J-function associated with the elliptic surface q is constant and the

image of the monodromy representation ρ : π1(C
⋆) → SL(2,Z) is finite. Let τ ⋆1 : C⋆

1 → C⋆

be the finite étale Galois covering associated with the kernel of ρ, and let the finite Galois

covering τ : C1 → C of smooth projective curves be the natural extension of τ ⋆. For the

normalization T1 of T ×C C1, the projection q1 : T1 → C1 is an elliptic surface with trivial

local monodromies and with constant period. Thus the relative minimal model of q1 has

only singular fibers of type mI0. By the local description of singular fibers of q in Step 3,

we infer that T1 is nonsingular and q1 is the relative minimal model. By Corollary 2.6, q1

is a Seifert elliptic surface. Thus we have an expected finite covering C̃ → C.

Step 5. The rest of the proof.

The property (2) for C̃ → C in Step 4 is derived from Theorem 5.6, (2), and Corol-

lary 2.6. If we do not consider the Galois property, then, by Lemma 2.25, we can find such

a finite covering C̃ → C satisfying also the property (3) by taking a further finite étale

covering. Even in case C̃ → C is not Galois, the Galois closure satisfies all the required

properties (1)–(3). �

Corollary 5.8. X ≃ Y .

Proof. The elliptic fibration π̃ : Ỹ → T̃ is a unique relative minimal model by [18, §5.3],

since the discriminant locus of π̃ is nonsingular. In particular, there is no irreducible
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curve in Ỹ giving a flop. Let X̃ → X be the étale covering corresponding to the subgroup

π1(Ỹ ) ⊂ π1(Y ) ≃ π1(X). Then X̃ and Ỹ are nonsingular relative minimal model over C̃,

which are connected by a sequence of flops. Thus X̃ ≃ Ỹ and X ≃ Y . �

Lemma 5.9. In the situation of Proposition 5.7, let G be the Galois group of the

covering C̃ → C. Then the induced action of G on T̃ ≃ E × C̃ is expressed as a diagonal

action, i.e., σ ∈ G acts on E × C̃ as

(x, y) 7→ (σ · x, σ · y)

for a suitable action of G on E.

Proof. We fix an abelian group structure of E. Then σ ∈ G acts as

(x, y) 7→
(
aσ(x+ fσ(y)), σ · y

)

for a root aσ of unity and a holomorphic map fσ : C̃ → E, since the action of G on E× C̃

is compatible with the second projection. Here, σ 7→ aσ gives rise to a homomorphism

G → C⋆. By Proposition 5.7, (3), the action of any σ ∈ G commutes with φ × id eC . It

implies that

φ(fσ(y)) = fσ(y).

Hence, fσ is a constant map for any σ. Thus G acts diagonally on E × C̃. �

Theorem 5.10. Let π̃ : X̃ ≃ Ỹ → T̃ be the elliptic fibration in Proposition 5.7. Then

the composite of π̃ and the first projection T̃ ≃ E× C̃ → E is a holomorphic fiber bundle.

Moreover, there exist a non-Seifert minimal elliptic fibration S → C̃ and a finite étale

covering ν : E ′ → E satisfying the following conditions :

(1) The fiber product X̃ ′ = E ′ ×E X̃ is isomorphic to E ′ × S over E ′.

(2) The endomorphism φ of E lifts to an endomorphism φ′ of E ′ with ν ◦ φ′ = φ ◦ ν.

(3) The composite X̃ ′ → X̃ → X is a Galois covering.

(4) The endomorphism of f̃ of X̃ lifts to an endomorphism of X̃ ′ ≃ E ′ × S which is

written as φ′ × v for an automorphism v of S.

(5) The Galois group Gal(X̃ ′/X) acts on S and the projection X̃ ′ → S is equivariant.

In particular, X satisfies the condition (B) of Main Theorem.

Proof. In Step 2 below, we shall prove (1)–(4), while in Step 1, we consider a special case

where C̃ → C is isomorphic. The remaining (5) is proved in Step 3.

Step 1. The case where the identity mapping C̃ = C → C satisfies all the properties

of Proposition 5.7: The variation of Hodge structure H(π) = R1π∗ZY |T ⋆ defined over

T ⋆ = q−1(C⋆) ≃ E × C⋆ is isomorphic to the pullback q∗H. Here, the local system H is
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not trivial on C⋆ by Proposition 5.7, (2). Thus, H0(C⋆, H) = 0 by [19, Corollary 4.2.5].

The subgroups µm := m−1Z/Z ⊂ Q/Z form an inductive system, and we have

lim−→m→∞
H0(C⋆, H ⊗ µm) ≃ H1(C⋆, H)tor,

where the right hand side is a finite abelian group. We have an isomorphism

H1(T ⋆, H(π) ⊗ µm) ≃
(
H1(C⋆, H ⊗ µm) ⊗ H0(E,Z)

)
⊕

(
H0(C⋆, H ⊗ µm) ⊗ H1(E,Z)

)
.

Let E ′ be a copy of E and let ν : E ′ → E be the multiplication map by an integer N

which is divisible by the order of H1(C⋆, H)tor. Then the natural homomorphism

id⊗ν∗ : H1(C⋆, H)tor ⊗ H1(E,Z) → H1(C⋆, H)tor ⊗ H1(E ′,Z)

is zero. Therefore, by [19, Theorem 6.2.9] and by [19, Theorem 6.3.8], there is a minimal

elliptic surface S over C such that E ′ ×E X is birational to E ′ × S over E ′ × C. Here,

S → C is not Seifert since H is not trivial. There is an isomorphism E ′ ×E X ≃ E ′ × S

since both are relatively minimal over E ′ × C. Thus the condition (1) is satisfied. The

condition (2) is satisfied for the copy φ′ of φ. In fact, φ is an endomorphism preserving

the group scheme structure of E, hence φ commutes with the multiplication maps. The

condition (3) is trivial now, and Gal(X̃ ′/X) ≃ Gal(E ′/E) ≃ (Z/NZ)⊕2. A nontrivial

surjective endomorphism of E ′ ×E X is induced from φ′ × f . Thus, the condition (4)

follows from Corollary 5.5.

Step 2. General case: Applying Step 1 to the situation X̃ → T̃ → C̃, we can prove

all the properties except for (3) and (5). We note the following exact sequence for the

multiplication map ν : E ′ = E → E by N :

1 → Gal(E ′/E) → Aut(E ′) → Aut(E) → 1.

Here, Aut(E) ≃ Aut(E, 0) ⋉E for the finite group Aut(E, 0) preserving the zero element

0 ∈ E, and Aut(E ′) → Aut(E) is expressed as

Aut(E, 0) ⋉ E ∋ (a, x) 7→ (a,Nx).

The Galois group G of C̃ → C acts on E by Lemma 5.9, and hence, the fiber bundle

X̃ → E is G-equivariant. For the induced homomorphism G→ Aut(E), let G′ → Aut(E ′)

be the pullback by Aut(E ′) → Aut(E). Hence, we have a commutative diagram

1 −−−→ Gal(E ′/E) −−−→ G′ −−−→ G −−−→ 1∥∥∥
y

y
1 −−−→ Gal(E ′/E) −−−→ Aut(E ′) −−−→ Aut(E) −−−→ 1

of exact sequences. Then G′ acts on E ′ × X̃ and also on X̃ ′ = E ′ ×E X̃. Moreover, the

quotient space of X̃ ′ by G′ is just X; hence, X̃ ′ → X is Galois.
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Step 3. Proof of (5): The first projection E ′ × S → E ′ is equivariant with respect to

the action of G′ = Gal(X̃ ′/X) on E ′ × S and on E ′. Thus G′ acts diagonally on E ′ × S

by Corollary 5.5. Thus we are done. �

5.3. The proof of Main Theorem.

Lemma 5.11. Let E be an elliptic curve and S a smooth projective surface. Let φ be

a nontrivial surjective endomorphism of E and v an automorphism of S. If C ⊂ E × S

is an irreducible curve with f−1C = C for the endomorphism f = φ × v, then C is an

elliptic curve written as C = E × {s} for a point s ∈ S with v(s) = s.

Proof. For the projection p : E × S → S, we have p(C) = p(f(C)) = v(p(C)). Thus it

suffices to show that p(C) is a point. Assume the contrary. Then, p(C) is a curve and

deg(C/p(C)) = deg(C/f(C)) deg(f(C)/p(C)) = deg(C/f(C)) deg(C/p(C)).

Since deg(C/f(C)) = deg f > 1, we have a contradiction. �

The proof of Main Theorem is completed by showing:

Theorem 5.12. Let X be a smooth projective 3-fold of κ(X) = 1 admitting a nontrivial

surjective endomorphism f : X → X. Suppose that the Iitaka fibration X → C is an

imprimitive abelian fiber space over a curve. Then a suitable finite étale Galois covering

X̃ of X is isomorphic to the product E×S of an elliptic curve E and a smooth projective

surface S such that

(1) a power fk lifts to the endomorphism φ × v of E × S for a nontrivial surjective

endomorphism φ of E and an automorphism v of S,

(2) the second projection X̃ → S is equivariant with respect to the action of the Galois

group Gal(X̃/X) on X̃.

In particular, X satisfies the condition (B) of Main Theorem.

Proof. By replacing f with a power fk, we may assume that f is an endomorphism over

C. Let fn : Xn → Xn be the minimal reduction of f : X → X (cf. Section 3.2). By

Theorem 5.10, there exist a finite étale Galois covering X̃n → Xn, a lift f̃n of fn as an

endomorphism of X̃n, an elliptic curve E, and a minimal projective surface Sn such that

• X̃n ≃ E × Sn,

• f̃n ≃ φ×vn for a nontrivial surjective endomorphism φ of E and an automorphism

vn of Sn,

• the second projection X̃n → Sn is G-equivariant for the Galois group G =

Gal(X̃n/Xn).
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For the sequence X = X0 → X1 → · · · → Xn of blowups in Section 3.2, we set X̃i :=

Xi×Xn
X̃n for 0 ≤ i ≤ n. Then X̃0 → X is étale. By Lemma 5.11, the center of the blowing

up X̃n−1 → X̃n is E × Zn for a finite set Zn ⊂ Sn fixed by vn. Thus X̃n−1 ≃ E × Sn−1

for the blowing up Sn−1 → Sn along Zn, and the endomorphism fn−1 of Xn−1 lifts to an

endomorphism of X̃n−1 which is written as φ × vn−1 for an automorphism vn−1 of Sn−1.

By continuing the same argument above, we have a smooth projective surface S birational

to Sn and an automorphism v of S such that X̃ = X̃0 is isomorphic to E × S, and f lifts

to an endomorphism of X̃ written as φ × v. The G-equivariance of X̃ → S follows from

Corollary 5.5. �
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