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Abstract. We discuss a topological approach to words introduced by

the author in [Tu2]–[Tu4]. Words on an arbitrary alphabet are approx-

imated by Gauss words and then studied up to natural modifications

inspired by the Reidemeister moves on knot diagrams. This leads us

to a notion of homotopy for words. We introduce several homotopy in-

variants of words and give a homotopy classification of words of length

five.

1. Introduction

Words are finite sequences of symbols, called letters, belonging to a given

set α, called an alphabet. In these lectures we discuss an approach to com-

binatorics of words based on their analogy with curves on the plane. To

begin with, consider Figure 1 depicting a plane curve with distinguished

origin and orientation. The three crossing points of the curve are labeled

by letters a, b, c ∈ α. Now, starting at the origin we move along the curve.

The first crossing met is labeled a, the second one b, and so on. Finally we

return to the origin and stop. Writing down the labels of the crossings as

we encounter them, we obtain the word abcabc. This procedure, deriving a

word from a closed plane curve with labeled double transversal intersections

was introduced by Gauss [Ga] in his attempt to classify such curves. Clearly,

every letter appears in the resulting word twice. Words in which every letter

appears twice are called Gauss words.

It is easy to see that not all Gauss words can be realized by closed plane

curves. The word abab for instance is not realizable by such a curve— see

Figure 2. Various conditions on Gauss words necessary and sufficient for

their realizability by closed plane curves were obtained by several authors,

see [Ma], [LM], [Ro], [DT], [CW], [CE], [CR].

The aim of these lectures is to study arbitrary words using ideas taken

from the topology of curves. To do this, we generalize the above picture
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Figure 1: A plane curve associated with the word abcabc

a b

Figure 2: The word abab is not realizable by a closed curve on R
2

in the following three directions. First of all, we allow curves with self-

crossings of arbitrary multiplicity ≥ 2. For example, the word associated

with the curve in Figure 3 is ababa. In general, the number of occurrences

of the label of a crossing in the associated word is equal to the multiplicity

of this crossing. To handle letters appearing only once, we may distinguish

a finite set of generic points on the curve and label them as well; we shall

not do that here.

a
b

Figure 3: A curve with a triple point yielding the word ababa

The second direction in which we may generalize is to allow unlabeled

or virtual crossings. Such crossings do not contribute at all to the associ-

ated word. For example, the curve in Figure 4 gives rise to the word abab.

The idea of unlabeled crossings is inspired by the theory of virtual knots

introduced by L. Kauffman [Ka].
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a b

virtual crossing

Figure 4: A curve with an unlabeled crossing

Thirdly, we may allow the same label to be used on different crossings. In

Figure 5 there are three crossings A1, A2, A3, all labeled by the same letter

a ∈ α. This leads us to so-called étale words that are words in an alphabet

projecting to the given (fixed) alphabet α. The curve on Figure 5 gives rise

to the étale word A1A2A3A1A2A3 where the letters A1, A2, A3 project to

a ∈ α. This étale word is a Gauss word in the alphabet {A1, A2, A3}; we

call such étale words nanowords.

A1 A2

A3

a

aa

Figure 5: A curve with label a on different crossings

The general scheme of the topology of words is as follows: arbitrary words

on the given alphabet α are approximated by nanowords and the latter are

studied by methods inspired by the topology of curves. It is certainly in-

teresting for topologists to apply topological methods to study such new

objects. Our approach also leads to new questions concerning combina-

torics of words. The accent in this theory shifts from words themselves to

transformations of words, inspired by topology. The situation is similar to

the one in knot theory where one focuses on isotopy classes of knots rather

than on specific knot diagrams.

The present exposition follows my lectures given in the Research Institute

for Mathematical Sciences (RIMS, Kyoto) in February 2006 and is based on
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my papers [Tu1]–[Tu4]. The lectures were organized by Prof. Tomotada

Ohtsuki. The lecture notes taken by Eri Hatakenaka, Daniel Moskovich and

Tadayuki Watanabe served as the basis for this paper. I would like to express

my gratitude to Prof. Ohtsuki for inviting me to RIMS and for organizing the

lectures and to Eri Hatakenaka, Daniel Moskovich and Tadayuki Watanabe

for the preparation of the notes.

2. Words and nanowords

In this section we give formal definitions of words, étale words, and

nanowords. Fix a set α called the alphabet.

2.1. Words. A word of length n ≥ 1 on α is a mapping

w : n̂→ α,

where n̂ is the set {1, 2, . . . , n}. That is, a word of length n on α is a sequence

of n elements of α. For example, the word w = aba, with a, b ∈ α, is nothing

but the map

w : {1, 2, 3} → α,

defined by w(1) = a, w(2) = b, and w(3) = a. By convention, there is one

empty word φ of length 0.

The opposite word to a word w : n̂ → α, is denoted by w− and defined

by w−(i) = w(n + 1 − i) for all i ∈ n̂. For instance, if w = abca, then

w− = acba.

Concatenation of two words is defined by writing down the first word and

then the second one. For example, the concatenation of the words w = abc

and v = dbba on α is the word wv = abcdbba.

One more operation on words is a change of the alphabet. For a map

f : α→ α′ from an alphabet α to an alphabet α′ and a word w : n̂→ α, set

f♯(w) = f ◦ w. This is a word on α′ of the same length n. For example, if

w = abca, then f♯(w) = f(a)f(b)f(c)f(a).

2.2. Étale words. An α–alphabet is a set A endowed with a mapping to α,

called the projection. The image in α of any A ∈ A will be denoted |A|.
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A morphism of α–alphabets A1 and A2 is a mapping f : A1 → A2 such

that |A| = |f(A)| for any A ∈ A1. This means that the diagram

A1

f
//

proj
  

BB
BB

BB
BB

A2

proj
~~||

||
||

||

α

commutes. An isomorphism of α–alphabets is a bijective morphism.

An étale word over α is a pair (an α–alphabet A, a word in the α–

alphabet A). In particular, every word on α becomes an étale word over

α by regarding α as an α–alphabet A = α with projection to α being the

identity map. Another example: let a ∈ α and A = {A1, A2, A3} with

|A1| = |A2| = |A3| = a. The pair (A, A1A2A3A1A2A3) is an étale word over

α. It corresponds to the picture on Figure 5.

Two étale words (A1, w1) and (A2, w2) over α are isomorphic if there

is an isomorphism f : A1 → A2 such that w2 = f♯(w1). The relation of

isomorphism will be denoted ≈ . For example, if B = {B1, B2, B3} is an

α-alphabet with |B1| = |B2| = |B3| = a ∈ α, then

(B, B1B2B3B1B2B3) ≈ (A, A1A2A3A1A2A3)

where the étale word on the right is as in the previous paragraph.

For an étale word (A, w), the opposite étale word is defined by (A, w)− =

(A, w−). The product of étale words (A1, w1) and (A2, w2) over α is defined

as follows. If A1 ∩ A2 = φ, then the pair (A1 ∪ A2, w1w2) is an étale word

over α, and we call it the product of (A1, w1) and (A2, w2). If A1 ∩A2 6= φ,

then we pick an étale word (A′
1, w

′
1) over α isomorphic to (A1, w1) and such

that A′
1∩A2 = φ. We call then the étale word (A′

1∪A2, w
′
1w2), the product

of (A1, w1) and (A2, w2). The product of étale words is well defined up to

isomorphism.

Beware that concatenation of words on α usually differs from multi-

plication of the corresponding étale words. For example, for the words

w1 = abb and w2 = aa on the alphabet α = {a, b}, the correspond-

ing étale words are (A1 = {A,B}, ABB) with |A| = a, |B| = b, and

(A2 = {A′, B′}, A′A′) with |A′| = a, |B′| = b. Their product is the étale

word ({A,B,A′, B′}, ABBA′A′), with |A| = |A′| = a, |B| = |B′| = b, while

the étale word corresponding to w1w2 = abbaa is ({A,B}, ABBAA) with

|A| = a, |B| = b. These two étale words are not isomorphic.
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2.3. Nanowords. A word w on a finite alphabet is a Gauss word if every

letter of this alphabet appears in w exactly two times. For instance, the

words AABB,ABAB,ABBA,BAAB,BABA,BBAA, are all Gauss words

on the alphabet {A,B}. The words AA, ABA are not Gauss words on this

alphabet.

An étale word (A, w) is a nanoword over α if w is a Gauss word on A.

Then the alphabet A is finite and the number of its elements is equal to the

half of the length of w. For example, let A = {A,B} with |A| = a ∈ α and

|B| = b ∈ α. The étale word (A, ABAB) is a nanoword. Another example:

A = {A,B,C} with |A| = a ∈ α, |B| = b ∈ α, and |C| = c ∈ α. Then the

étale word (A, ABCBCA) is a nanoword.

Two nanowords (A1, w1) and (A2, w2) are isomorphic if they are isomor-

phic as étale words.

We now make a few simple remarks about nanowords. If (A, w) is a

nanoword then its opposite (A, w)− is also a nanoword. The concatenation

of two nanowords is a nanoword. An empty étale word (A = φ,w = φ) is a

nanoword. The set of nanowords over α is infinite provided α 6= φ.

Note finally that a plane curve with fixed origin and labeled crossings

gives rise to a nanoword if and only if this curve is generic— that is all its

self-intersections are double transverse crossings. Thus, the nanowords can

be thought of as combinatorial analogues of generic curves.

2.4. Desingularization. Consider again the curve on Figure 3. By a small

deformation near the triple point, we obtain a generic curve whose singu-

larities are double points A1,2, A2,3, A1,3, B shown on Figure 6. We label

the points A1,2, A2,3, A1,3 by a and the point B by b. Thus, each crossing

of the deformed curve has the same label as the corresponding crossing of

the original curve. The left curve on Figure 6 gives the word w = ababa.

The right curve gives the Gauss word wd = A1,2A1,3BA1,2A2,3BA1,3A2,3

in the α–alphabet {A1,2, A2,3, A3, B} with |A1,2| = |A1,3| = |A2,3| = a and

|B| = b. We view the nanoword wd over α as the desingularization of the

word w = ababa.

The desingularization procedure considered in this example can be gen-

eralized and leads thus to desingularization of arbitrary étale words. More

precisely, for every étale word (A, w) over α, we define a nanoword (Ad, wd)

over α called its desingularization. For any A ∈ A, the multiplicity mw(A)

is the number of times that A occurs in w. For instance, mABB(A) = 1 and
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A1,2

A2,3

A1,3
B

Figure 6: Desingularization of a curve

mABB(B) = 2. We define the set Ad by

Ad = {(A, i, j) | A ∈ A, 1 ≤ i < j ≤ mw(A)}.

Denoting (A, i, j) by Ai,j, we define the projection Ad → α by |Ai,j| = |A| ∈

α. This makes Ad into an α–alphabet. Here every letter of multiplicity

m ≥ 1 in w gives rise to m(m−1)
2 letters in Ad. The word wd on the alphabet

Ad is defined in two steps.

Step 1. Delete from w all letters of multiplicity 1.

Step 2. For each A ∈ A with mw(A) ≥ 2 and for each i = 1, 2, . . . , mw(A),

we replace the i-th entry of A in w by

A1,i A2,i · · · Ai−1,i Ai,i+1 Ai,i+2 · · · Ai,mw(A).

The resulting word wd on Ad is a Gauss word and the pair (Ad, wd) is

a nanoword over α. For example, for the étale word (A = {A,B}, w =

ABABA) with |A| = a, |B| = b, this procedure gives the nanoword

(Ad, wd) = ({A1,2, A2,3, A1,3, B1,2}, A1,2A1,3B1,2A1,2A2,3B1,2A1,3A2,3)

with |A1,2| = |A2,3| = |A1,3| = a and |B1,2| = b.

We can say that the desingularization of curves is based on viewing the

crossings under a strong microscope which allows us to see the “internal

structure” of each crossing. This analogy suggested the term nanoword.

3. Knot theory and homotopy of nanowords

3.1. Knot theory. We shall study nanowords using the analogy with curves

and knots. Recall the classical Reidemeister moves on knot diagrams in R
2,

shown in Figure 7. (The inverse moves are also called the Reidemeister

moves.) These moves and the isotopy of knot diagrams in R
2 generate an

equivalence relation on knot diagrams which we call the R–equivalence. We
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have

{knots in R
3}/ isotopy = {knot diagrams}/ R–equivalence.

This fundamental equality, due to K. Reidemeister, reduces the study of

isotopy classes of knots to a study of R–equivalence classes of knot diagrams.

1

2

3

Figure 7: Reidemeister moves on knot diagrams

Similar moves can be considered on pointed curves. For the sake of the

following discussion, we switch to curves— that is we make no distinction

between under-crossings and over-crossings. We always assume that the

moves act away from the origins of the curves.

Let us look at the effect of the Reidemeister moves on words associ-

ated with curves. The first Reidemeister move, shown in Figure 8, acts

as xAAy 7→ xy, where x and y are words not including the letter A.

Consider the second Reidemeister move with labels, orientations, and the

position of the origin as in Figure 9. The move acts on the associated word

as xAByBAz 7→ xyz where x, y, z are words not including the letters A,B.

For another choice of orientations, the move may act as xAByABz 7→ xyz.
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A

Figure 8: First Reidemeister move on a labeled curve

The first version xAByBAz 7→ xyz is sufficient for our aims as will be clear

from the results below.

A

B

Figure 9: Second Reidemeister move on a labeled curve

Consider the third Reidemeister move with labels, orientations, the posi-

tion of the origin, and the order of branches as in Figure 10. This move acts

on the associated word as xAByACzBCt 7→ xBAyCAzCBt where x, y, z, t

are words not including the letters A,B,C. For other choices of orientations,

order of branches etc., the move may act differently but the version shown

on Figure 10 is sufficient for our aims.

AA

B

B C

C

Figure 10: Third Reidemeister move on a labeled curve
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3.2. Homotopy of nanowords. Let α be an alphabet (a fixed set). We

fix homotopy data consisting of an involution τ : α → α and an arbitrary

set S ⊂ α3 = α × α × α. The geometric meaning of τ and S will be dis-

cussed in the next section. In the context of knot diagrams, τ switches

between positive and negative crossings. The role of S is to determine the

transformations of labels accompanying the third Reidemeister move.

Three homotopy moves on nanowords over α are defined as follows.

(1) (A, xAAy) 7→ (A− {A}, xy) where x, y are words on the alphabet A−

{A}. Note that if (A, xAAy) is a nanoword, then so is (A − {A}, xy).

The inverse move adds a new letter A to the α–alphabet and inserts AA

into the word.

(2) (A, xAByBAz) 7→ (A− {A,B}, xyz) provided |A| = τ(|B|) and x, y, z

are words on the alphabet A− {A,B}.

(3) (A, xAByACzBCz) 7→ (A, xBAyCAzCBt), provided (|A|, |B|, |C|) ∈

S and x, y, z, t are words on the alphabet A− {A,B,C}.

Two nanowords over α are S–homotopic if they can be related by a finite

sequence of homotopy moves, inverse moves, and isomorphisms. We denote

this equivalence relation by ≃S and call it S–homotopy. This definition

readily extends to étale words: étale words w1 and w2 are S–homotopic if

wd
1 ≃S w

d
2 . In particular, the notion of S–homotopy applies to words on α.

We will use the following notation:

N (α,S) = {set of nanowords over α}
/
S–homotopy.

Clearly, N (α,S) is a monoid, with the empty nanoword as its unit element

and concatenation as its product. This monoid depends on τ which is how-

ever omitted in the notation N (α,S) to make it shorter.

The following two lemmas show that our three moves generate a wider

set of similar moves. In the context of Figures 9 and 10, the new moves

correspond to other choices of orientations, branch connections, etc.

Lemma 3.1. Let A,B,C be three distinct letters in an α–alphabet A and

let x, y, z, t be words in the alphabet A−{A,B,C} such that xyzt is a Gauss

word in this alphabet. Then we have the following S–equivalences:

(1) (A, xAByCAzBCt) ≃S (A, xBAyACzCBt)

if (|A|, τ(|B|), |C|) ∈ S,

(2) (A, xAByCAzCBt) ≃S (A, xBAyACzBCt)
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if (τ(|A|), τ(|B|), |C|) ∈ S, and

(3) (A, xAByACzCBt) ≃S (A, xBAyCAzBCt)

if (|A|, τ(|B|), τ(|C|)) ∈ S.

Lemma 3.2. Suppose that S∩(α×b×b) 6= φ for all b ∈ α. Let (A, xAByABz)

be a nanoword over α where A,B ∈ A with |A| = τ(|B|) and x, y, z are words

on the alphabet A− {A,B}. Then

(A, xAByABz) ≃S (A− {A,B}, xyz).

Proof. Set b = |B| ∈ α. By assumption, there is e ∈ α such that (e, b, b) ∈ S.

Pick a letter E not belonging to A and set |E| = τ(e) ∈ α. Then

(A, xAByABz)
(Move 1)−1

≃S (A ∪ {E}, xAEEByABz)

≃S (A ∪ {E}, xEABEyBAz)

(Move 2)
≃S (A ∪ {E} − {A,B}, xEEyz)

(Move 1)
≃S (A− {A,B}, xyz)

In the second line we use the S–homotopy of Lemma 3.1.(2), where A

is replaced by E, B by A, and C by B. This homotopy applies since

(τ(|E|), τ(|A|), |B|) = (e, b, b) ∈ S. �

3.3. Typical questions. In analogy with knot theory, the main objective

of the homotopy theory of words is to classify étale words and nanowords up

to S–homotopy. Putting it differently, the goal is to compute the monoid

N (α,S) at least for some choices of α, τ , and S. We are very far from

reaching this goal. Available results are outlined in the rest of the paper.

Taking knot theory as a model, we list here several typical questions

concerning the homotopy of words.

(Q1) Is a given nanoword S–contractible, i.e., S–homotopic to the empty

nanoword ? This question corresponds to the question of whether or

not a given knot diagram presents an unknot.

(Q2) Is a given nanoword w homotopically symmetric, that is S–homotopic

to w− ? Note that opposite words corresponds to knots with opposite

orientations.
11



(Q3) Define the length norm of an étale word w by

||w||S =
1

2
(minimal length of a nanoword S-homotopic to w).

Note that ||w||S = 0 if and only if w is contractible. For any étale

words w1, w2,

||w1w2||S ≤ ||w1||S + ||w2||S .

Compute the length norm.

4. Curves and knots as nanowords

In this section we clarify the relations between curves, knots, and nanowords.

4.1. Curves as nanowords. In the sequel, the word “curve” means the

image of a generic immersion of an oriented circle into an oriented surface.

Here “generic” means that the curve has only a finite set of self-intersections,

which are all double and transversal. The curve may be immersed into any

oriented surface, of any genus, compact or not, with boundary or not. Note

that all self-intersections of a curve look locally like . Triple points and

self-tangencies are not allowed. Every curve has a regular neighborhood.

This is a narrow band around the curve inside the surface, see Figure 11.

Note that the orientation of the ambient surface induces an orientation of

the regular neighborhood.

A curve is pointed if it is provided with a base-point which is not a self-

intersection. An example of a pointed curve is drawn on Figure 11:

basepoint

regular
neighborhood

Figure 11: A curve on a surface of genus two

Two pointed curves are stably homeomorphic if their regular neighbor-

hoods look exactly the same including the position of the curves in these

neighborhoods. Here is a more precise definition.
12



Definition 4.1. Two pointed curves are stably homeomorphic if there is an

orientation-preserving homeomorphism of their regular neighborhoods map-

ping the first curve onto the second one and preserving the origin and the

orientations of the curves.

The stable homeomorphism class of a curve is determined solely by the

germ of the ambient surface near the curve; what happens outside a regular

neighborhood does not matter. In particular, adding handles and punctures

to the surface away from a neighborhood of the curve does not change its

stable homeomorphism class.

Recall the definition of the stable equivalence of curves from [KK], [CKS].

Definition 4.2. Two pointed curves are stably equivalent if they can be

related by a finite sequence of the following transformations:

(1) Stable homeomorphism.

(2) Homotopy of the curve in its ambient surface away from the origin.

The homotopy in (2) may push a branch of the curve across another

branch or across a double point but not across the origin of the curve.

Pointed curves related by any sequence of moves (1), (2) are stably equiv-

alent. Thus, we may start with a curve, transform it by a stable homeomor-

phism, deform the resulting curve, add handles, deform again, puncture the

surface, etc. All these transformations preserve the stable equivalence class

of the curve. As an exercise, the reader may show that any two pointed

curves on the 2–sphere are stably equivalent. The same is true for curves on

the 2–torus. Pointed curves on surfaces of higher genus are not necessarily

stably equivalent. The classification of stable equivalence classes of pointed

curves is an interesting topological problem.

We note here three geometric invariants of pointed curves preserved under

the stable equivalence: the minimal crossing number, the genus, and the

virtual number. The minimal crossing number ‖c‖ of a pointed curve c is

the minimal number of crossings of a pointed curve stably equivalent to c.

The genus g(c) is the minimal integer g ≥ 0 such that c is stably equivalent

to a pointed curve on a closed surface of genus g. To define the virtual

number of c, note that any pointed curve on R
2 with a distinguished set

of “virtual” crossings represent a stable equivalence class of pointed curves.

One simply does not look at the virtual crossings or, equivalently, trades

a branch of c near each virtual crossing for a branch going along a small

1-handle attached to R
2 and avoiding the rest of the curve. The virtual
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number v(c) is the minimal integer v ≥ 0 such that there is a pointed curve

on R
2 with v virtual crossings representing the stable equivalence class of c.

It is clear that v(c) ≥ g(c).

Denote by C the set of stable equivalence classes of pointed curves. The

elements of C are called long flat knots [Ka] or open virtual strings [Tu1].

We now relate the theory of curves with the theory of nanowords. Con-

sider the following homotopy data:

α0 = {a, b}, τ0(a) = b, τ0(b) = a, S0 = {(a, a, a), (b, b, b)} ⊂ α3
0.

Theorem 4.3. There is a canonical bijection

C
≈

−→ N (α0,S0).

This theorem shows that the theory of nanowords includes the theory of

pointed curves as a special case. We outline a construction of the bijection

C → N (α0,S0). Consider a pointed curve on a surface. Label its crossings

in an arbitrary way by different letters A1, A2, . . . , An where n is the number

of crossings. The Gauss word of the curve is obtained by moving along the

curve starting at the origin and writing down the letters as we encounter

them, finishing when we get back to the origin. The resulting word, w, on

the alphabet

A = {A1, A2, . . . , An}

contains every letter A1, A2, . . . , An twice. We provide A with the projection

to α0 as follows. Consider the crossing of the curve labeled Ai. If when

moving as above along the curve, we first traverse this crossing from the

bottom-left to the top-right, then |Ai| = a, otherwise |Ai| = b; see Figure

12, where the orientation of the ambient surface is counterclockwise. The dot

on the left (resp. right) picture is the bottom-left (resp. bottom-right) entry

of the crossing. In this way the set A becomes an α0–alphabet. We assign

to our curve the class of this nanoword in N (α0,S0). We must prove that

stably equivalent curves give rise to S0–homotopic nanowords. A different

choice of the labeling of the crossings gives an isomorphic nanoword. If the

curve is changed by a stable homeomorphism, then the associated nanoword

does not change, since it is defined entirely by the behavior of the curve in

its regular neighborhood. A homotopy of the curve may be split into a

composition of local Reidemeister moves and the inverse moves. Then one

verifies that under these moves the associated nanoword changes via the

S0–homotopy moves and the transformations in Lemmas 3.1 and 3.2. The

resulting mapping C → N (α0,S0) is bijective, see [Tu3].
14



Ai

1st

Ai

1st

Figure 12: On the left |Ai| = a and on the right |Ai| = b

Under the identification C = N (α0,S0) the minimal crossing number of

curves corresponds to the length norm on N (α0,S0). The genus and the

virtual number yield interesting geometric invariants of nanowords over α0.

One can suppress all references to the origin in the definitions above.

This gives a relation of stable homotopy for non-pointed curves. To obtain

a corresponding notion for the nanowords, one has to introduce an additional

move on nanowords, the so-called circular shift. Briefly speaking, the shift

moves the last letter of the word to the first position. For details, see [Tu3].

4.2. Knots as nanowords. The constructions of the previous section can

be upgraded to the setting of knot diagrams. By a (pointed) knot diagram

we mean a (pointed) curve on an oriented surface with additional data at

each crossing: one of the branches lies “over” and the other one lies “under”.

A pointed knot diagram on R
2 is shown on Figure 13.

Figure 13: A pointed knot diagram

Two pointed knot diagrams are said to be stably homeomorphic if there

is an orientation-preserving homeomorphism of the regular neighborhoods

of the underlying curves, sending the first diagram onto the second one and

preserving the origin, the orientation, and the over-/under-crossing data.

Recall the stable equivalence of knot diagrams from [KK], [CKS].

Definition 4.4. Two pointed knot diagrams are stably equivalent if they can

be related by a finite sequence of the following transformations:

(1) Stable homeomorphism.
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(2) The Reidemeister moves on a knot diagram in its ambient surface

away from the origin.

The moves in (2) may push a branch of the diagram above or below a

double point or another branch but not across the origin. Thus, the origin

may not lie inside the neighborhoods where the Reidemeister moves are

performed.

Let K denote the set of stable equivalence classes of pointed knot dia-

grams. Elements of K are called long virtual knots, see [Ka], [GPV].

The set K includes the set of isotopy classes of classical knots. Classical

knots are oriented knots in S3. There is a map

{Classical knots} /isotopy →֒ K

obtained by picking an arbitrary diagram of the given classical knot, picking

an arbitrary origin on the diagram (not a crossing), and taking the stable

equivalence class of the resulting pointed knot diagram. This gives a well-

defined mapping from the set of isotopy classes of classical knots into K.

This mapping is known to be injective, see [Ka], [GPV].

The set K can be interpreted in terms of nanowords as follows, Set

• α∗ = (a+, a−, b+, b−),

• τ∗ : α∗ → α∗ the involution defined by τ∗(a+) = b− and τ∗(a−) = b+,

• S⋆ = {(a±, a±, a±), (a±, a±, a∓), (a∓, a±, a±),

(b±, b±, b±), (b±, b±, b∓), (b∓, b±, b±)} ⊂ α3
∗.

Theorem 4.5. There is a canonical bijection

K
≈

−→ N (α∗,S∗)

such that the following diagram commutes:

K
≈

−−−−→ N (α∗,S∗)y
y

C
≈

−−−−→ N (α0,S0).

Here the map K → C is given by forgetting the over-/under-crossing data,

and the map N (α∗,S∗) → N (α0,S0) is given by a± 7→ a, b± 7→ b.

This theorem shows that the theory of nanowords includes the theory of

long virtual knots as a special case. The definition of the bijection K →

N (α∗,S∗) goes similarly to the one for curves. The difference is that now

we project to α∗ rather than to α0. The rule is shown on Figure 14.
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Figure 14: From left to right:

|Ai| = a+, |Ai| = b+, |Ai| = a−, and |Ai| = b−

To extend these ideas to links, one has to involve phrases, i.e., sequences

of words, see [Tu3], [Tu4].

4.3. An extension to general α. Let α be an arbitrary alphabet with

homotopy data τ,S. Nanowords over α can be geometrically interpreted

as follows. Pick a mapping f : α → α0 such that fτ = τ0f and f(a) =

f(b) = f(c) for any triple (a, b, c) ∈ S. Every nanoword (A, w : n̂→ α) over

α determines a nanoword f♯(w) = (A, fw : n̂ → α0) over α0. The latter

can be represented by a pointed curve on a surface. Thus, w gives rise to

a family of pointed curves {f♯(w)}f underlying w and numerated by f as

above. Geometric invariants of these curves provide geometric information

about w. Stable equivalence classes of these curves depend only on the

S–homotopy class of w.

This geometric representation of w seems to be especially efficient in the

case where S is the diagonal of α3 so that the conditions on f reduce to

the equivariance relation fτ = τ0f . One interesting question: when does

a given family of stable equivalence classes of pointed curves numerated by

equivariant maps α→ α0 arise from a nanoword over α ?

A similar geometric interpretation of nanowords in terms of knot diagrams

can be obtained by replacing α0 with α∗.

5. Invariant γ and self-linking of nanowords

In this section and in the sequel, the symbol α denotes a (fixed) alphabet

with involution τ : α→ α.

5.1. The set S. For the rest of this paper, we set

S = diagonal = {(a, a, a)}a∈α

The third homotopy move is xAByACzBCt 7→ xyz provided |A| = |B| =

|C|. In the sequel, we leave S out of notation. By homotopy of nanowords,

we mean S–homotopy when S is the diagonal as above. The homotopy
17



relation is denoted ≃. The case of knots is excluded by this choice of S, but

the case of curves is covered.

We give now an example of homotopic words. Pick a ∈ α such that

τ(a) 6= a. Set b = τ(a). Consider the words:

w1 = aabab, w2 = babaa, w3 = baaab

and the nanoword

w4 = ({A,A′}, AA′AA′) where |A| =
∣∣A′

∣∣ = a.

Claim. w1 ≃ w2 ≃ w3 ≃ w4

Proof. We prove only that w1 ≃ w4. The proofs that w2 ≃ w4 and w3 ≃ w4

are similar.

The desingularization of w1 gives

wd
1 = A1,2A1,3A1,2A2,3BA1,3A2,3B

where |A1,2| = |A1,3| = |A2,3| = a and |B| = b. By Lemma 3.2, we can strike

out the two occurrences of A2,3B. This gives the nanoword A1,2A1,3A1,2A1,3

isomorphic to w4. �

This example shows that the relation of homotopy is quite non-trivial.

5.2. A group–theoretic homotopy invariant. We construct here a ho-

motopy invariant of nanowords, γ. First, define a group Π by generators

and relations:

Π = 〈{za}a∈α | zazτ(a) = 1 for all a ∈ α〉.

Note that if a 6= τ(a), then we have a free generator za = (zτ(a))
−1 of Π,

and if a = τ(a), then we have a generator za of order 2.

For a nanoword (A, w : n̂→ A) of length n, we define n elements γ1, γ2,

. . ., γn of Π by:

γi =

{
z|w(i)|, if w(i) 6= w(j) for all j < i;

z−1
|w(i)|, otherwise.

Here w(i) ∈ A is the i-th letter of w and |w(i)| ∈ α is its projection to α.

The sequence γ1, γ2, . . . , γn may be also described as follows. Since w is a

nanoword, each letter of A appears twice in the sequence w(1), w(2), . . . , w(n).

The first time it appears we write at this place the corresponding generator
18



of Π. At its second appearance, we write down the inverse of that generator.

This procedure gives the sequence γ1, γ2, . . . , γn. Set

γ(w) = γ1γ2 · · · γn ∈ Π.

Since each generator appears in this product twice with opposite powers,

the abelianization of γ(w) is zero. Thus, γ(w) lies is in the commutator

subgroup [Π,Π] ⊂ Π.

For example, consider the nanoword w = ABAB with |A| = a ∈ α and

|B| = b ∈ α. Then γ(w) = zazbz
−1
a z−1

b ∈ [Π,Π].

Theorem 5.1. γ(w) is a homotopy invariant of w.

Proof (outline). Under the first homotopy move, γ(xAAy) = γ(xy) because

the first appearance of A contributes za and the second appearance of A

contributes z−1
a where a = |A|. So we have the invariance under the first

homotopy move. The other two moves are treated similarly. �

The mapping

γ : N (α) = N (α,S) −→ [Π,Π]

is a monoid homomorphism (S is the diagonal). It is easy to check that it

is surjective.

The group [Π,Π] can be shown to be free for any τ . If τ has at least two

orbits, then this group is non-trivial and by the results above, N (α) is an

infinite monoid. If τ has at least three orbits, then [Π,Π] has rank ≥ 2, and

by the results above, N (α) is a non-abelian monoid.

Let us consider two examples where γ does not work. The interesting

case in topology is the case of curves, where α = {a, b} with τ(a) = b. In

this case:

Π = 〈za, zb | zazb = 1〉 = Z

and [Π,Π] = 0. So, for topology the invariant γ is of no interest. Another

example: α = {a} with τ(a) = a. In this case Π = Z/2Z and [Π,Π] = 0.

5.3. Self-linking of nanowords. We introduce here another homotopy in-

variant of nanowords, the so-called self-linking. We begin with the following

observation. Consider the words ABAB and AABB. The letters A,B are

obviously linked or interlaced in the first word and unlinked in the second

one. Consider now an arbitrary nanoword (A, w) over α. We say that two

letters A,B ∈ A are w–interlaced if

w = · · ·A · · ·B · · ·A · · ·B · · · or w = · · ·B · · ·A · · ·B · · ·A · · · .
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In the first case set nw(A,B) = 1 and in the second case set nw(A,B) = −1.

In all other cases set nw(A,B) = 0. The function nw is skew-symmetric in

the sense that for all A,B ∈ A,

nw(A,B) = −nw(B,A) and nw(A,A) = nw(B,B) = 0.

Now consider the abelian group π = Π
/
[Π,Π]. The group operation in π

will be written multiplicatively. Each generator za ∈ Π with a ∈ α projects

to an element of π denoted a. Thus,

π = 〈{a}a∈α | ab = ba and aτ(a) = 1 for all a, b ∈ α〉.

For a nanoword (A, w) over α and every A ∈ A, set

[A]w =
∏

B∈A

|B|nw(A,B) ∈ π.

For a ∈ α, set

[a]w =
∑

A∈A, |A|=a
[A]w 6=1

[A]w ∈ Zπ.

The function α 7→ Zπ, a 7→ [a]w is called the self-linking of w. The following

theorem derives from this function a homotopy invariant of w.

Theorem 5.2.

(1) For any a ∈ α, the difference [a]w − [τ(a)]w ∈ Zπ is a homotopy

invariant of w.

(2) If τ(a) = a, then [a]w mod 2 ∈ (Z
/
2Z)π is a homotopy invariant

of w.

For a proof, we refer to [Tu2]. By this theorem, the letters of α give rise

to homotopy invariants of nanowords over α. These invariants reflect the

linking of letters in nanowords. Here is a simple application of this invariant.

Pick a, b ∈ α and consider the nanoword w = wa,b = ABAB with |A| = a

and |B| = b. By Lemma 3.2, if a = τ(b), then w is contractible. We

can use the invariant γ and the self-linking invariant to show the converse:

if w is contractible, then a = τ(b). Indeed, suppose that a 6= τ(b). We

have γ(w) = zazbz
−1
a z−1

b . If a 6= b, then a, b lie in different orbits of τ and

therefore za does not commute with zb in Π. Then γ(w) 6= 1 and w is

non-contractible. If a = b 6= τ(a), then γ(w) = 1. However, in this case

|A| = |B| = a = b and

[A]w = |A|nw(A,A) |B|nw(A,B) = a,
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[B]w = |A|nw(B,A) |B|nw(B,B) = a−1.

Then [a]w = a + a−1 6= 0 ∈ Zπ. Since there are no letters in {A,B}

projecting to τa, we have [τ(a)]w = 0. These computations and the previous

theorem imply that w is non-contractible.

5.4. Applications of the self-linking. Recall the norm on the nanowords

‖w‖ =
1

2
(minimal length of a nanoword homotopic to w).

We can use the self-linking to estimate this norm from below. The idea is

that elements of a group ring may be treated like polynomials and for a

polynomial we can consider its degree. When w is not too long, there are

not so many factors in the self-linking invariant, and the degree can not be

too big. Instead of stating here general theorems, we give an example of the

resulting estimate for a specific nanoword. Consider the monoliteral word

am = aa · · · · a

formed by m copies of a letter a ∈ α. If τ(a) = a or m = 1, 2, then this

word is contractible. If a 6= τ(a) and m ≥ 3, then the self-linking invariant

gives us the following estimate:

‖am‖ =
∥∥∥(am)d

∥∥∥ ≥
[m

2

]
×

[
m− 1

2

]
+ 1

where [x] denotes the greatest integer which is smaller than or equal to x.

In particular, am has a positive norm and is non-contractible. The estimate

of ‖am‖ given above is very rough. I suppose that it gives approximately

twice the actual value of the norm. My conjecture is that

‖am‖ =
m(m− 1)

2
.

Theorem 5.3. Let a, b ∈ α such that a 6= τ(a) and b 6= τ(b). The words am

and bn with m,n ≥ 3 are homotopic if and only if a = b and m = n.

So such monoliteral words are not homotopic unless they coincide. The

proof goes by comparing the self-linking invariants.

5.5. Geometric interpretation of the self-linking. We give a geometric

interpretation of the self-linking in the case of curves, that is in the case

where α consists of two letters a, b permuted by τ . The group π is then the

infinite cyclic group with generators a, b satisfying ab = 1.

Consider a curve c on an oriented surface with crossings A1, A2, ..., An.

Each crossing Ai gives rise to two sub-curves of c as follows. Start from Ai
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and go along c in the positive direction until coming back to Ai for the first

time. The resulting closed curve is a sub-curve of c. The two branches of c

passing through Ai give rise in this way to two sub-curves of c. One of them

passes through the origin of c, we call this sub-curve the thin curve. The

other, complementary sub-curve is called the thick curve, cf. Figure 15.

Ai

Figure 15: Thin and thick curves associated with a crossing Ai

Consider the homological intersection number:

ki = thin curve · thick curve ∈ Z.

Recall that the homological intersection number of two curves on an oriented

surface is obtained by deforming the curves into a transversal position and

then counting their intersections with appropriate signs.

Consider the nanoword ({A1, ..., An}, w) corresponding to the curve c.

Then for all i = 1, ..., n,

[Ai]w = |Ai|
ki ∈ π.

This formula gives a geometric interpretation of the symbol [Ai]w. The self-

linking is obtained by taking the sum of these symbols over the crossings

Ai with fixed projection to the alphabet {a, b}. To ensure the invariance

under the first Reidemeister move, we restrict the summation to Ai such

that ki 6= 0 or, equivalently, [Ai]w 6= 1.

6. Linking pairings of nanowords

The invariants defined so far, γ and the self-linking, are insufficient to

classify even short words. We need more invariants. One idea is to consider

again the geometric situation of nanowords associated with curves. With

each crossing Ai we associated a ‘thick curve’ on the ambient surface. We

can consider the intersection numbers of these curves with each other. This

gives an n × n integral matrix where n is the number of crossings and the
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(i, j) entry is the intersection number of the thick curves determined by Ai

and Aj . This matrix can be computed directly from the nanoword. This

leads us to so-called linking pairings of nanowords.

In this section, the symbol π denotes the multiplicative abelian group

associated with α, τ in Section 5.3.

6.1. α–pairings. We begin with purely algebraic definitions, whose connec-

tion to nanowords will be explained later.

Definition 6.1. An α–pairing is a tuple consisting of a set S, a distin-

guished element s ∈ S, a mapping S − {s} → α, and a skew-symmetric

pairing b : S × S → π.

By skew-symmetric, we mean that b(A,B) = b(B,A)−1 for all A,B ∈ S

and b(A,A) = 1 for all A ∈ S.

An α–pairing can be shortly written as

(S, s, b : S × S → π).

The mapping S − {s} → α will be encoded by saying that the set S − {s}

is an α–alphabet. The image of any A ∈ S − {s} under this mapping will

be denoted |A|.

The notion of isomorphism for α–pairings is defined in the obvious way.

Given an α–pairing (S, s, b : S × S → π), we define annihilating elements

of S and twins as follows.

Definition 6.2. An element A ∈ S − {s} is annihilating if b(A,C) = 1 for

all C ∈ S.

Definition 6.3. Elements A,B ∈ S − {s} are twins if b(A,C) = b(B,C)

for all C ∈ S and |A| = τ(|B|).

An α–pairing is primitive if it has no annihilating elements and no twins.

For example, the trivial α–pairing (S = {s}, b(s, s) = 1) is primitive.

We introduce two moves M1,M2 on α–pairings.

M1: Delete an annihilating element.

M2: Delete a pair of twins.

The moves M1, M2, the inverse moves M−1
1 , M−1

2 , and isomorphisms of α–

pairings generate an equivalence relation on the class of α–pairings, called

homology. The following theorem classifies α–pairings up to homology.

Theorem 6.4. Every α–pairing is homologous to a primitive α–pairing.

Two homologous primitive α–pairings are isomorphic.
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Thus, in each homology class of α–pairings there is a primitive one unique

up to isomorphism. Starting with an arbitrary α–pairing, we can delete

annihilating elements and twins and get a primitive α–pairing. The latter

is uniquely determined by the homology class of the original α–pairing at

least up to isomorphism.

6.2. From nanowords to α–pairings. The connection between α–pairings

and nanowords is this: to each nanoword w over α we shall assign an α–

pairing bw. Its homology class will be a homotopy invariant of w.

Let (A, w : n̂ → A) be a nanoword over α. Set S = {s} ∪ A. We have a

projection S − {s} = A → α. The skew-symmetric pairing bw : S × S → π

is defined in four steps.

Step 1. For every A ∈ A, we can write uniquely w−1(A) = {iA, jA} ⊂ n̂

where iA < jA. Thus iA is the position in which the letter A appears

in w for the first time, and jA is the position in which the letter A

appears in w for the second time. Thus w is of the form:

w = · · ·A
iA
· · · A

jA

· · · .

Step 2. Given two letters D,E ∈ A, set

D ◦ E =
∏

F∈A
iD<iF <jD and iE<jF <jE

|F | ∈ π.

Step 3. The w–linking of D,E ∈ A is defined by

lkw(D,E) = (D ◦ E)(E ◦D)−1 ∈ π.

Step 4. Finally, the form bw : S × S → π is defined as follows: bw(s, s) = 1,

bw(A, s) = [A]w =
∏

B∈A

|B|nw(A,B) ∈ π,

bw(s,A) = ([A]w)−1 ∈ π,

bw(A,B) = (lkw(A,B))2 |A|nw(A,B) |B|nw(A,B) ∈ π,

for any A,B ∈ A = S − {s}.

The following theorem justifies this definition and relates the homotopy

of nanowords to the homology of α–pairings.

Theorem 6.5. Homotopic nanowords have homologous α–pairings.
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This theorem together with Theorem 6.4, give an efficient method to

distinguish nanowords. Given a nanoword w, we first compute the associated

α–pairing bw and then apply the moves M1 and M2 to get a primitive α–

pairing. The isomorphism class of the latter is a homotopy invariant of w.

6.3. Applications. One application of the α–pairings is the following es-

timate of the length norm of nanowords: if (S+, s, b+ : S+ × S+ → π) is a

primitive α–pairing homologous to the α–pairing (S, s, bw) of a nanoword w,

then

‖w‖ ≥ card(S+) − 1.

Indeed, if w is homotopic to a nanoword w′ of length 2m, then the α–pairing

(S′, s, b′) of w′ is homologous to (S, s, bw) and therefore reduces by the moves

M1,M2 to the same primitive α–pairing (S+, s, b+). Hence

m = card(S′) − 1 ≥ card(S+) − 1.

In particular, if the α–pairing (S, s, bw) is primitive, then w has minimal

length in its homotopy class.

The α–pairing (S, s, bw) can be used to estimate the geometric genera

of surfaces carrying the underlying curves of w. Pick an equivariant map

f : α → α0 where α0 = {a, b} is the 2–letter alphabet with involution per-

muting a, b. The nanoword f♯(w) over α0 (defined in Section 4.3) corre-

sponds to a pointed curve on a compact surface. We can estimate the genus

g of this surface by g ≥ (1/2) rank(M) where M is the skew-symmetric

integral matrix obtained from the matrix {bw(s1, s2)}s1,s2∈S by the group

homomorphism π → Z sending the generators of π belonging to f−1(a) to

1 ∈ Z and the generators of π belonging to f−1(b) to −1 ∈ Z. This estimate

follows from the geometric interpretation of the α0-pairing of f♯(w) in terms

of the intersection numbers of curves.

Another area of applications of α–pairings is the homotopy classification

of nanowords. With the help of α–pairings we can establish the following

theorem. Recall the nanoword wa,b = ABAB, |A| = a, |B| = b defined for

any a, b ∈ α. As we know, wa,b is non-contractible if and only if a 6= τ(b).

Theorem 6.6. Two non-contractible nanowords wa,b and wa′,b′ with a, b, a′,

b′ ∈ α are homotopic if and only if a = a′ and b = b′.

Using the α–pairings and the invariants introduced in further sections, we

establish the following theorem. It gives a complete homotopy classification
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of words of length 5 in which one letter, a, occurs 3 times, and another

letter, b, occurs 2 times.

Theorem 6.7. Let a, b be two distinct letters of the alphabet α. Then:

(1) The words aaabb, aabba, abbaa, bbaaa are homotopic to each other;

they are contractible if and only if τ(a) = a.

(2) The word baaab is contractible if and only if τ(a) = a.

(3) The word ababa is contractible if and only if τ(a) = b.

(4) The words abaab, baaba, aabab, babaa are never contractible.

(5) A non-contractible word from (2) – (4) is never homotopic to a word

from (1).

(6) Two non-contractible words from (2) – (4) are homotopic to each

other if and only if they coincide letterwise (i.e., if and only if they

are the same word written twice) with the following exceptions:

aabab ≃ babaa ≃ baaab for τ(a) = b.

A more general homotopy classification of all words of length ≤ 5 is given

in [Tu2]. We can think of such classification theorems as analogues of knot

tables. First we draw all possible knot diagrams and then decide which

diagrams represent isotopic knots. The same kind of problem arises for the

homotopy of words.

6.4. Examples. 1. We show how to compute the α–pairing associated with

the word w = abaab where a 6= b. We have

wd = A3A2BA3A1A2A1B, |A1| = |A2| = |A3| = a, |B| = b

where to simplify notation we write A1, A2, A3 for A2,3, A1,3, A1,2 respec-

tively. The matrix for nw is computed by




0 −1 0 0

1 0 −1 1

0 1 0 1

0 −1 −1 0





where the rows and columns correspond to A1, A2, A3, B respectively. The

matrix for lkw is computed by




1 1 a−1 1

1 1 1 a

a 1 1 a

1 a−1 a−1 1
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where the rows and columns correspond to A1, A2, A3, B, respectively. Fi-

nally, we compute the α–pairing bw:

bw =





1 a b−1 a−1b−1 a2

a−1 1 a−2 a−2 1

b a2 1 a−2 a3b

ab a2 a2 1 a3b

a−2 1 a−3b−1 a−3b−1 1





where the rows and columns correspond to s,A1, A2, A3, B, respectively.

Recall that π = 〈{c}c∈α | cτ(c) = 1〉. In particular a and b are non-

trivial elements of π. This implies that the elements A1 and A2 of S =

{s,A1, A2, A3, B} are non-annihilating. If A3 is annihilating, then a2 =

ab = 1. Then a = b, which contradicts the assumption a 6= b. A similar

argument shows that B is non-annihilating. It is also easy to check that bw

does not have twins. Thus, the α–pairing bw is primitive. Therefore w is

non-contractible, and ‖w‖ = 4.

2. The α–pairings are strong enough to distinguish short words and

nanowords in many cases. The following example shows however that in

some cases the α–pairings are powerless.

Consider the word w = ababa where τ(a) = a 6= b = τ(b). A direct

computation shows that the α–pairing of wd is given by the following matrix

over π: 



1 ab 1 a−1b−1 1

a−1b−1 1 a−2b−2 a−2b−2 a−1b−1

1 a2b2 1 a−2b−2 1

ab a2b2 a2b2 1 ab

1 ab 1 a−1b−1 1




.

As above, the rows and columns correspond to s,A1, A2, A3, B respectively.

The equality a = τ(a) implies that a2 = 1 and similarly b2 = 1. Therefore

the matrix above simplifies to the following matrix:




1 ab 1 ab 1

ab 1 1 1 ab

1 1 1 1 1

ab 1 1 1 ab

1 ab 1 ab 1




.

Since the third row and the third column consist only of 1′s, the element A2

is annihilating. Eliminating it, we observe next that A1 and A3 are twins.
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What remains after their elimination are two elements s and B. The matrix

becomes as follows: [
1 1

1 1

]

where the rows and columns correspond to s and B. Now B is an anni-

hilating element. Its elimination gives the trivial α–pairing. Therefore the

α–pairing associated with wd gives no information at all and does not allow

to decide whether w = ababa is contractible or not. In fact all invariants of

nanowords considered so far are trivial for this word (under the assumptions

that τ(a) = a 6= b = τ(b)).

This example shows that we need more invariants to prove Theorem 6.7.

We shall introduce further invariants in the next sections.

7. Further invariants of nanowords

We outline here several ideas inspired by knot theory and leading to ho-

motopy invariants of nanowords over α.

7.1. Tricolorings. In knot theory one may treat any knot diagram as con-

sisting of disjoint arcs. A coloring of the diagram assigns a residue mod 3 to

each arc, such that for every crossing, the sum of the three residues assigned

to the adjacent arcs is equal to 0. The number of such colorings of a knot

diagram is a knot invariant. This definition is due to R. Fox.

We can introduce similar definitions for words. Fix a set β ⊂ α such that

τ(β) = β (the resulting invariants may depend on β). Consider a nanoword

w = (A, w : n̂ → A) over α. For any letter A ∈ A, let iA < jA be the first

and the second indices enumerating the positions of A in w as in Section

6.2. A tricoloring of w is a function f : {0, 1, 2, . . . , n} → Z/3Z such that

for any A ∈ A, if |A| ∈ β, then

f(iA) = f(iA − 1) and f(jA − 1) + f(jA) + f(iA) = 0

and if |A| ∈ α− β, then

f(jA) = f(jA − 1) and f(iA − 1) + f(iA) + f(jA) = 0.

The residues f(0) and f(n) are called respectively the input and the output

of f .

Tricolorings of w may be alternatively described as follows. We first write

w with dashes between consecutive letters:

−w(1) − w(2) − · · · − w(n)−
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Enumerate the dashes from left to right by the numbers 0, 1, . . . , n. Then

the function f as above can be seen as an assignment of a residue mod 3 to

every dash. The conditions above mean that for any A ∈ A, the coloring

has the following form near the two entries of A in w: if |A| ∈ β, then it

looks like

· · ·
c
— A

c
— · · ·

c′

— A
c′′

— · · ·

with c+ c′ + c′′ = 0 and if |A| ∈ β − α, then it looks like

· · ·
c′

— A
c′′

— · · ·
c
— A

c
— · · ·

with c+ c′ + c′′ = 0. The input of the coloring is the residue assigned to the

leftmost dash and the output is the residue assigned to the rightmost dash.

For example, the function assigning one and the same residue to all dashes

is a coloring. It is called the trivial coloring.

Theorem 7.1. For any k, l ∈ Z/3Z, the number of tricolorings of a nanoword

w with input k and output l is a homotopy invariant of w.

Note that this number may depend on k, l, and on the choice of β. We

can easily compute this number for the empty nanoword (it has only one

dash). If k = l, then this nanoword admits one coloring with input k and

output l. If k 6= l, then there are no such colorings. By Theorem 7.1, the

same is true for any contractible nanoword.

Now we give an example of a nanoword which admits a coloring with

distinct input and output. Consider the nanoword

w = A1A2BA3A1BA2A3,

where |A1| = |A2| = |A3| = a ∈ α, |B| = b ∈ α such that a and b lie

in different orbits of τ . Set β = {a, τ(a)} ⊂ α. The nanoword w has the

following non-trivial coloring with input 0 and output 1:

0
— A1

0
— A2

0
— B

1
— A3

1
— A1

2
— B

2
— A2

1
— A3

1
— .

By the remarks above, this nanoword is non-contractible.

7.2. Module of a nanoword. A related but stronger invariant of knots

is the Alexander module. It can be computed from a knot diagram via an

explicit presentation by generators and relations. We apply a similar idea

to nanowords. First, we introduce the group

Ψ = 〈{a, a•}a∈α | aa• = a•a, aτ(a) = 1, a•τ(a)• = 1〉.
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We already considered groups Π and π given by similar presentations. In

Ψ, each letter a ∈ α gives rise to two commuting generators a and a•. In

the case of knot diagrams on surfaces, this phenomenon of doubling of the

number of generators was already observed by Sawollek [Sa] who studied

generalizations of the Alexander polynomial, see also [SW1].

Let Λ = ZΨ be the integral group ring of Ψ. This ring will play the role

of the ground ring for our modules.

Fix a set β ⊂ α such that τ(β) = β. Consider a nanoword w =

(A, w : n̂ → A) over α. We derive from w a (n + 1) × n matrix over Λ

whose rows are numerated by the dashes of w. Each letter A ∈ A gives

rise to two rows. To write them down, set a = |A| ∈ α and assume that A

appears in w for the first time at the i-th position and for the second time

at the j-th position. If a ∈ β, then the two rows determined by A are

i j

· · · − A − · · · − A − · · ·

· · · 0

· · · 0

a −1

1 − aa• 0

0 · · · 0

0 · · · 0

0 0

a• −1

0 · · ·

0 · · ·

If a ∈ α− β, then the two rows determined by A are

i j

· · · − A − · · · − A − · · ·

· · · 0

· · · 0

0 0

a• −1

0 · · · 0

0 · · · 0

a −1

1 − aa• 0

0 · · ·

0 · · ·

All unspecified entries of the rows are 0. The resulting n × (n + 1) matrix

over Λ determines a Λ-homomorphism ψ : Λn → Λn+1 whose cokernel

Kβ(w) = Λn+1/ψ(Λn).

is a Λ–module. This module has distinguished elements: the “input” v− and

the “output” v+ represented by the leftmost dash and the rightmost dash,

respectively.

Theorem 7.2. The triple (Kβ(w), v−, v+) considered up to isomorphism is

a homotopy invariant of w.

One can derive further homotopy invariants from the triple (Kβ(w), v−, v+)

or directly from the presentation matrix of Kβ(w) introduced above. For

example, one may remove the first (or the last) column and consider the

resulting n × n matrix over Λ. Then we can take its determinant over the

ring Λab obtained by abelianization of Λ. Following this line of thought and
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with a little more work, one obtains two “polynomial” homotopy invariants

of w belonging to Λab (see [Tu2] for details). They are denoted ∇−
β (w) and

∇+
β (w) and satisfy the following duality:

∇+
β (w) = ∇−

α−β(w−).

The bar on the right-hand side is the ring involution on Λab given by a = τ(a)

and a• = τ(a)• for all a ∈ α.

7.3. The invariant λ. We now focus on the case where β = α. This will

lead us to a homotopy invariant λ of nanowords taking values in the ring Λ.

This invariant is a generalization of an invariant introduced by Silver and

Williams [SW2] for curves.

Consider the Λ–moduleKβ(w) = Kα(w) associated above with a nanoword

w : n̂ → A. Let x0, x1, . . . , xn be the generators of Kα(w) given by the

dashes. Each letter A ∈ A gives rise to two relations

xi+1 = axi, xj = a•xj−1 + (1 − aa•)xi,

where a = |A| ∈ α and i = iA < j = jA are the elements of w−1(A). Each of

these relations expresses a generator via the previous generators. Therefore

Kα(w) is a rank one free Λ-module generated by the input v− = x0. The out-

put v+ = xn ∈ Kα(w) has the form v+ = λ′v− for a unique λ′ ∈ Λ. Theorem

7.2 implies that λ′ = λ′(w) is a homotopy invariant of w. This invariant is a

non-commutative polynomial. It admits an equivalent but more convenient

version λ(w) defined as follows. Consider the involutive anti-automorphism ι

of Λ keeping fixed all the generators {a, a•} of Λ. Thus, ι acts on monomials

by reading them from right to left. For instance ι(aab•) = b•aa. Set

λ(w) = ι(λ′(w)) ∈ Λ.

We describe a method allowing to compute λ(w) and generalizing a method

due to Silver and Williams [SW2] in the context of curves. We do it here

for a few examples, the general method [Tu2] should be clear.

Example 7.3. Consider the nanoword w = ABAB, |A| = a ∈ α, |B| = b ∈

α. First draw the following graph:

b

0 1 2 3 4

a a• b•

— — — — —A B A B
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Each vertex of this graph corresponds to a dash in w and each edge corre-

sponds to a letter in w. Recall that every letter appears twice. The edge

corresponding to the first (leftmost) appearance of A is labeled with a; the

edge corresponding to the second (rightmost) appearance of A is labeled

with a•. Connect the left vertex of the first edge with the right vertex of

the second edge by an arc in the upper half-plane and label this arc with

1 − aa• ∈ Λ. Do the same for the letter B replacing everywhere a = |A| by

b = |B|. The resulting picture is drawn on the next figure.

b

0 1 2 3 4

a a• b•

1 − aa• 1 − bb•

input output

Consider all paths starting at the input and going to the output along

the edges and arcs, always from left to right. We record the elements of

Λ labeling the arcs and edges on the path and multiply them following the

order determined by the path. The polynomial λ(w) is obtained as the sum

of the resulting elements of Λ over all paths. In this case there are three

such paths:

(1) The path 0 − 1 − 2 − 3 − 4 contributes aba•b•.

(2) The path 0 − 1 ⌢ 4 contributes a(1 − bb•).

(3) The path 0 ⌢ 3 − 4 contributes (1 − aa•)b.

Then

λ(w) = aba•b• + a(1 − bb•) + (1 − aa•)b•.

The ring Λ has a natural grading as follows. Recall that

Λ = Z[a, a•]a∈α/aa• = a•a, aτ(a) = 1, a•τ(a)• = 1.

The defining relations are homogeneous with respect to degrees mod 2.

Therefore

Λ = Λ0,0 ⊕ Λ0,1 ⊕ Λ1,0 ⊕ Λ1,1,

where Λi,j is generated by monomials in which generators without bullets

appear i times mod 2 and generators with bullets appear j times mod 2.

Every λ ∈ Λ expands uniquely as the sum

λ = λ0,0 + λ0,1 + λ1,0 + λ1,1,
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where λi,j ∈ Λi,j for all i, j. For w = ABAB, this expansion of λ(w) gives:

λ0,0(w) = aba•b•,

λ0,1(w) = −abb• + b•,

λ1,0(w) = a− aa•b•,

λ1,1(w) = 0.

These computations allow us to give another proof of the fact that w is

contractible if and only if a = τ(b). Indeed, if w is contractible, then λ(w) =

1 and hence λ0,1(w) = 0. This implies that abb• = b•. Hence ab = 1 and

a = τ(b).

Example 7.4. We apply λ to the word ababa with a = τ(a) 6= b = τ(b). As

we saw above, the corresponding α–pairing gives no information about the

homotopy properties of w. By definition, λ(w) = λ(wd). The desingulariza-

tion of w is the nanoword

wd = A3A2BA3A1BA2A1, |A1| = |A2| = |A3| = a, |B| = b.

To compute λ(w), we draw the following graph:

ba a•b•

1 − aa•
1 − bb•

a a• a a•

1 − aa•

1 − aa•

BA3 A2BA2 A3 A1 A1

Then

λ(w) = (1 − aa•)
2 ⌢⌢

+(1 − aa•)ab•a
2
• ⌢ −−−−

+a(1 − aa•)a• −⌢ −

+a2(1 − bb•)a
2
• −−⌢ −−

+a2ba•(1 − aa•) −−−−⌢

+a2baa•b•a
2
•. −−−−−−−−

The assumptions a = τ(a) and b = τ(b) imply that a2 = b2 = a2
• = b2• = 1.

After simplification, we obtain that

λ0,0(w) = 2 − ba− a•b• + baa•b•.
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If λ0,0(w) = 1, then one of the two elements ba and a•b• of the group Ψ

must be equal to 1. This is possible only if a = τ(b) = b, which contradicts

the assumptions. So, λ0,0(w) 6= 1 and w is non-contractible.

Example 7.5. Consider the nanowords

w1 = ABACBC, |A| = |C| = a, |B| = τ(a),

w2 = ACAC, |A| = |C| = a,

where a ∈ α satisfies τ(a) 6= a. These two nanowords are not distinguished

by λ. In fact, all the techniques described so far fail to distinguish these

nanowords up to homotopy. This can be done using the methods introduced

in the next section.

8. α–keis and words

8.1. α–keis. Keis were introduced in 1942 by a Japanese mathematician,

M. Takasaki, see S. Kamada [Kam] for a comprehensive survey of keis, their

generalizations, and connections with knot theory. A kei is a set X with

multiplication ∗ which satisfies a few axioms, the main axiom being

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)

for all x, y, z ∈ X. One may think of x ∗ y as of a kind of conjugation of x

by y.

To produce homotopy invariants of words, we introduce a notion of an

α–kei, where α is a set with involution τ . An α–kei is a non-empty set X

with maps

X → X, x 7→ ax and X ×X → X, (x, y) 7→ x ∗a y ∈ X

numerated by a ∈ α such that the following axioms are satisfied:

(1) ax ∗a x = x,

(2) a(x ∗a y) = ax ∗a ay,

(3) (x ∗a y) ∗a z = (x ∗a az) ∗a (y ∗a z),

(4) aτ(a)x = x,

(5) (x ∗a y) ∗τ(a) ay = x,

for all a ∈ α and x, y, z ∈ X. Arbitrary α–keis can be presented by genera-

tors and relations as groups in group theory.

Example 8.1. Recall the non-commutative ring

Λ = Z[a, a•]a∈α/aa• = a•a, aτ(a) = 1, a•τ(a)• = 1.
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Any left Λ–module X becomes an α–kei with kei operations x 7→ ax and

x ∗a y = a•x+ (1 − a•a)y.

The α–keis obtained by this construction are said to be abelian.

8.2. α–keis of nanowords. The theory of keis can be applied to produce

homotopy invariants of nanowords. Fix a set β ⊂ α such that τ(β) = β.

For any nanoword (A, w : n̂ → A) over α, we define an α–kei Kβ(w). It

is generated by n + 1 symbols X0,X1, . . . ,Xn satisfying the following n

defining relations. Each letter A ∈ A gives two relations. To write them

down, assume that A appears in w for the first time at the i-th position and

for the second time at the j-th position, where i < j. If a = |A| ∈ β, then

the relations are

Xi = aXi−1, Xj = Xj−1 ∗a Xi−1.

If a = |A| ∈ α− β, then the relations are

Xi = Xi−1 ∗a Xj−1, Xj = aXj−1.

The elements V− = X0 ∈ Kβ(w) and V+ = Xn ∈ Kβ(w) are called the input

and the output, respectively.

The idea behind these formulas comes from knot theory. In knot theory,

every knot diagram gives rise to a so-called quandle. Quandles are gener-

alizations of keis and also have only one operation, the binary operation ∗.

The quandle associated with a knot diagram is determined by generators,

associated with the arcs of the diagrams, and relations, associated with the

crossings, cf. the picture on the left hand side of the following figure.

x y

y x ∗ y

x ay

y x ∗a y

a

In the setting of nanowords the situation is somewhat different. First, each

crossing is labeled by a letter, a ∈ α, which allows us to involve the operation

y 7→ ay absent for knots. The binary operation ∗a also depends on a.

Also, the two incoming branches are ordered. This leads us to the defining

relations as above, whose geometric interpretation is shown on the right

hand side of the figure.
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Theorem 8.2. The triple (Kβ(w), V−, V+), considered up to isomorphism,

is a homotopy invariant of w.

The Λ–module Kβ(w), viewed as an α–kei, can be computed from Kβ(w).

Namely, there is a homomorphism of α–keis Kβ(w) → Kβ(w) such that

for any homomorphism from Kβ(w) to an abelian α–kei X, the following

diagram is commutative:

Kβ(w) Kβ(w)

X.

8.3. Characteristic sequences. Consider in more detail the case β = α.

Looking at the defining relations, we easily observe that Kβ(w) = Kα(w)

is a free α–kei generated by the input V−. The output V+ ∈ Kα(w) is a

homotopy invariant of w. The structure of free α–keis is poorly understood,

which prevents us from deriving further invariants of w from V+. We focus

on a special case where more information is available.

Suppose that the involution τ : α→ α is fixed-point-free, that is τ(a) 6= a

for all a ∈ α. Fix a set α+ ⊂ α meeting every orbit of τ in exactly one

element. Thus,

α = α+ ∪ τ(α+), α+ ∩ τ(α+) = ∅.

Recall the group Ψ introduced in Section 7.2. We show how to derive from

any nanoword w over α a finite sequence (ε1ψ1, ε2ψ2, . . . , εmψm) with m ≥ 0,

ψ1, . . . , ψm ∈ Ψ, and ε1, . . . , εm ∈ {±1}. This sequence is a homotopy

invariant of w (possibly depending on α+). It determines λ(w) by

λ(w) =

m∑

i=1

εiψi ∈ Λ = ZΨ.

In the setting of curves, this sequence was introduced by Silver and Williams

[SW2].

We first define an α–kei F as follows. Let F be the free group generated by

the group Ψ, viewed as a set. Each element ψ ∈ Ψ gives rise to a generator

of F , denoted ψ. In particular, the unit 1 ∈ Ψ gives rise to a generator

1 ∈ F which is by no means the unit of F . A typical element of F has the

form

(ψ1)
ε1(ψ2)

ε2 · · · (ψm)εm
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where m ≥ 0, ψ1, ψ2, . . . , ψm ∈ Ψ, and ε1, . . . , εm ∈ {±1}. Such an element

is the unit of F if either m = 0 or it can be reduced to the case m = 0

by applying the relations ψ(ψ)−1 = (ψ)−1ψ = 1. The left action of Ψ on

itself extends to a group action of Ψ on F by group automorphisms. The

generators a, a• ∈ Ψ act on F by

a((ψ1)
ε1(ψ2)

ε2 · · · (ψm)εm) = (aψ1)
ε1(aψ2)

ε2 · · · (aψm)εm ,

a•((ψ1)
ε1(ψ2)

ε2 · · · (ψm)εm) = (a•ψ1)
ε1(a•ψ2)

ε2 · · · (a•ψm)εm .

This defines in particular the mapping F → F , x 7→ ax for all a ∈ α. The

binary operation x ∗a y for x, y ∈ F is defined by

x ∗a y = y(a•x)(a•ay)
−1 ∈ F,

if a ∈ α+ and

x ∗a y = (τ(a)−1
• τ(a)−1y)−1(a−1

• x)y ∈ F,

if a ∈ α− α+. These operations make F into an α–kei.

Recall that starting with a nanoword w, we obtained a homotopy invariant

element V+ of the free α–kei Kα(w) on one generator V−. Since Kα(w) is

free, there is a unique α–kei homomorphism f : Kα(w) → F such that

f(V−) = 1 ∈ F . Then f(V+) ∈ F is a homotopy invariant of w. We can

expand

f(y) = (ψ1)
ε1 · · · (ψm)εm ∈ F,

where ψ1, . . . , ψm ∈ Ψ and ε1, . . . , εm ∈ {±1}. The resulting sequence

(ε1ψ1, . . . , εmψm) is well-defined up to insertion or deletion of consecutive

pairs (+ψ,−ψ) and (−ψ,+ψ). Deleting all such pairs, we obtain a uniquely

defined sequence (ε1ψ1, . . . , εm′ψm′) with m′ ≤ m which is a homotopy in-

variant of w. This is the characteristic sequence of w.

8.4. Examples. 1. Pick a, b ∈ α+ and consider the nanoword w = ABAB

with |A| = a and |B| = b. It is easy to compute from the relations that

V+ = (baV− ∗a V−) ∗a aV−. The characteristic sequence of w is computed to

be

(a, b•, b•a•ba,−b•a•a,−b•ba).

In particular, if a = b, then this sequence is (a, a•, a
2
•a

2,−a2
•a,−a•aa).

2. Consider the nanoword w1 = ABACBC, |A| = |C| = a, |B| = τ(a) 6=

a. Its characteristic sequence (determined by any α+ ⊂ α as above such

that a ∈ α+) is:

(1, a•,−aa•,−1, a, aa•,−a
2a•, aa•, a

2a2
•,−aa

2
•,−aa•).
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Comparing with the previous example (for a = b), we obtain that w1 is not

homotopic to the nanoword w2 = ACAC with |A| = |C| = a. This result

was claimed at the end of Section 7.

3. One might think that such a powerful invariant as the characteristic

sequence should distinguish arbitrary non-homotopic nanowords. However

this is not true, as shows the following example. Pick four letters a, b, c, d ∈ α

(possibly coinciding) and consider the nanoword

w = ABCDCDAB, |A| = a, |B| = b, |C| = c, |D| = d.

An inspection shows that if a 6= τ(b) and c 6= τ(d), then the α-pairing

of w is primitive. Then ‖w‖ = 4 and w is non-contractible. However, a

direct computation shows that for a, b ∈ α+ and c = τ(b), d = τ(a), the

characteristic sequence of w is the same as the one of the empty nanoword.

Both consist of a single term 1 ∈ Ψ.

9. Open questions and further directions

Question 9.1. Classify nanowords of length ≤ 10 up to homotopy.

In [Tu2] we give a homotopy classification of nanowords up to length 6.

The next step is to handle the nanowords of length 8. Does one need new

homotopy invariants already for length 8 ?

Question 9.2. Classify words of length ≤ 7 up to homotopy.

In [Tu2] we give a homotopy classification of words up to length 5. One

may try to classify words by first classifying nanowords. However, short

words may desingularize into quite long nanowords. For example, the word

aababb, desingularizes into a nanoword of length 12. Still, a classification

of words of length ≤ 7 does not look unrealistic because they desingularize

into a quite particular set of nanowords.

Question 9.3. What (primitive) α–pairings can be realized as α–pairings

of nanowords?

Question 9.4. What polynomials λ ∈ Λ arise from nanowords?

There are some simple known conditions, see [Tu2]. All new conditions

are welcome.

Question 9.5. Is it true that all nanowords over the alphabet consisting of

a single element are contractible ?
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At the moment, nothing contradicts the conjecture that the answer is yes.

Question 9.6. Give a normal form for elements of a free α–kei on one

generator.

Such a normal form (or at least an algorithm to distinguish elements of

this α–kei) would help to distinguish words up to homotopy.

One further direction is the study of cobordisms of words. Cobordism

is an equivalence relation generated by surgery on words which consists in

deleting or inserting symmetric subwords or subphrases. There are difficult

problems concerning the classification of words up to cobordism. This is

studied in [Tu4].

Another interesting direction is a study of higher dimensional words over

an alphabet α. Knot theory and other topological ideas used above gener-

alize to higher dimensions. What can be said about similar generalizations

of words? From the topological perspective, an n–dimensional nanoword

is an immersion of a connected n-dimensional manifold into an (n + 1)–

dimensional manifold. The double points of the immersion split as a union

of connected (n − 2)-dimensional manifolds labeled with letters of α. The

case n = 1 is treated in the present paper. The next case n = 2 is quite

mysterious. What are the appropriate analogues of the homotopy moves for

n = 2 ? Although a study of high-dimensional words is tempting, it is hard

to imagine intelligent beings communicating with such words.
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