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CHAPTER 0

Introduction

§0.1. Goal of this series of papers.

This is the first of the series of papers under the title

“Toward resolution of singularities over a field of positive characteristic”
Part I. Foundation; the language of the idealistic filtration
Part II. Basic invariants associated to the idealistic filtration

and their properties
Part III. Transformations and modifications of the idealistic filtration
Part IV. Algorithm in the framework of the idealistic filtration.

Our goal is to present a program toward constructing an algorithm for resolution of singu-
larities of an algebraic variety over a perfect field k of positive characteristic p = char(k) >
0. We would like to emphasize, however, that the program is created in the spirit of de-
veloping a uniform point of view toward the problem of resolution of singularities in all
characteristics, and hence that it is also valid in characteristic zero. 1

In Part I, we establish the notion and some fundamental properties of an idealistic
filtration, which is the main language to describe the program. This part, therefore, forms
the foundation of the program.

In Part II, we study the basic invariants σ and µ̃ associated to an idealistic filtration,
which will become the building blocks toward constructing the strand of invariants used in
our algorithm, and discuss their properties.

In Part III, we analyze the behavior of an idealistic filtration under the two main oper-
ations in the process of our algorithm for resolution of singularities:

• transformations of an idealistic filtration under the operation of blowup, and
• modifications of an idealistic filtration under the operation of constructing the

strand of invariants.

Part II and Part III should play the role of a bridge between the foundation in Part I
and the presentation of our algorithm in Part IV.

In Part IV, we present our algorithm for resolution of singularities according to the
program as a summary of the series. In characteristic zero, the program leads to a com-
plete algorithm (slightly different from the existing ones), which then serves as a prototype
toward the case in positive characteristic. In positive characteristic, all the ingredients of
the program work nicely forming a perfect parallel to the case in characteristic zero, ex-
cept for the problem of termination: we do not know at this point whether our algorithm
terminates after finitely many steps or not. Although we do know that the strand of invari-
ants we construct strictly drops after each blowup, we can not exclude the possibility that
the denominators of some invariants in the strand may indefinitely increase and hence that

1During the preparation of the manuscript for Part I, we were informed that Professor Hironaka announced
a program of resolution of singularities in all characteristics p > 0 and in all dimensions at the summer school in
Trieste 2006 (cf. [Hir06]).
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6 0. INTRODUCTION

the descending chain condition may not be satisfied. The problem of termination remains
as the only missing piece toward completing our algorithm in positive characteristic. We
hope, however, that we may be able to come up with a solution to the problem during the
process of writing down all the details of the program in this series of papers.

§0.2. Overview of the program.

Below we present an overview of the program, by first giving a crash course on the ex-
isting algorithm(s) in characteristic zero, then pinpointing the main source of troubles if we
try to apply the same methods to the case in positive characteristic, and finally describing
how our program attempts to overcome these troubles.

0.2.1. Crash course on the existing algorithm(s) in characteristic zero.
0.2.1.1 Standard reduction. By a standard argument free of characteristic, the problem
of resolution of singularities of an abstract algebraic variety is reduced to, and reformu-
lated as, the problem of transforming a given ideal I ⊂ OW on a nonsingular variety W
over k into the one whose multiplicity (order) becomes lower than the aimed (or expected)
multiplicity a everywhere, through a sequence of blowups and through a certain transfor-
mation rule for the ideal. We require that each center of blowup to be nonsingular and
transversal to the boundary, which consists of the exceptional divisor and the strict trans-
form of a simple normal crossing divisor E on W given at the beginning. We call this
reformulation the problem of resolution of singularities of the triplet (W, (I, a), E), and call
Sing(I, a) = {P ∈ W ; ordP(I) ≥ a} its singular locus or support.
0.2.1.2 Inductive scheme in characteristic zero. At the very core of all the existing al-
gorithmic approaches in characteristic zero lies the common inductive scheme on dimen-
sion, that is, reduce the problem of resolution of singularities of (W, (I, a), E) to that of
(H, (J , b),D), where H is a smooth hypersurface in W. The hypersurface H is called a
hypersurface of maximal contact, since it contains (contacts) the singular locus Sing(I, a)
and since so do its strict transforms throughout any sequence of transformations. The ideal
J on H is usually realized as J = C(I)|H, where C(I) is the so-called coefficient ideal
of the original ideal I, which is larger than I. (It is worthwhile noting that the mere re-
striction I|H of the original ideal would fail to provide the inductive scheme in general,
and it is necessary to take a larger ideal.) In short, we decrease the dimension by con-
verting the problem on W into the one on the hypersurface of maximal contact H with
dim H = dim W − 1.
0.2.1.3 Algorithm: modifications and construction of the strand of invariants. The
above description of the inductive scheme is, however, oversimplified. For an arbitrary
triplet (W, (I, a), E), a hypersurface of maximal contact may not exist at all. In order to
gurantee that a hypersurface of maximal contact H exists, we have to take the “companion
modification” associated to the weak-order “w”. Furthermore, in order to guarantee that
H is transversal to E and hence that we can take D = E|H, we have to take the “boundary
modification” associated to the invariant “s”. In other words, only after considering the pair
of invariants (w, s) and taking the corresponding companion modification and its boundary
modification, we can find the triplet (H, (J , b),D) of dimension one less as in 0.2.1.2,
whose resolution of singularities corresponds to the decrease of the pair of invariants (w, s).

Therefore, the actual algorithm realizing the inductive scheme is carried out in such a
way that we construct the strand of invariants

invclassical = (w, s)(w, s)(w, s) · · ·
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by repeating the operations of taking the companion modification, boundary modification,
and taking the restriction to a hypersurface of maximal contact, and that at the end the
maximum locus of the strand invclassical of invariants coincides with the last hypersurface
of maximal contact, which is hence nonsingular and which we choose as the center of
blowup. After the blowup, we repeat the same process. We can repeat the process only
finitely many times, since after each blowup the value of the strand of invariants strictly
drops and since the set of its values satisfies the descending chain condition, leading to the
termination of the algorithm. (See, e.g.,[BM97][EV00][EH02][Wło05][Mk06] for details
of the construction of the strand of invariants and the corresponding modifications in the
classical setting.)

0.2.2. Trouble in positive characteristic. In positive characteristic, however, the ex-
amples by R. Narasimhan [Nar83a][Nar83b] and others demonstrate that there is no hope
of finding a hypersurface of maximal contact in general (even after companion or boundary
modification), as long as we require it to contain the singular locus and to be nonsingular.
This lack of a hypersurface of maximal contact and hence of an apparent inductive scheme
is the main source of troubles, which allowed the problem in positive characteristic to elude
any systematic attempt to find an algorithm for its solution so far.

0.2.3. Our program: a new approach in the framework of the idealistic filtration.
Our program offers a new approach to overcome the main source of troubles in the language
of the idealistic filtration, which is a refined extension of such classical notions as the
idealistic exponent by Hironaka, the presentation by Bierstone-Milman, the basic object by
Villamayor, and the marked ideal by Włodarczyk. We devote Part I of the series of papers
to introducing the notion of an idealistic filtration, and to establishing its fundamental
properties.
0.2.3.1 What is an idealistic filtration? In the classical setting, we consider the pair
(I, a) consisting of an ideal I ⊂ OW on a nonsingular variety W and the aimed multiplicity
a ∈ Z>0. Stalkwise at a point P ∈ W, this is equivalent to considering the collection of
pairs {( f , a) ; f ∈ IP}.

Suppose we interpret the pair ( f , a) as a statement saying that “the multiplicity of f is
at least a”. In this interpretation, the problem of resolution of singularities (cf. 0.2.1.1) is,
after a sequence of blowups and through transformations and at every point of the ambient
space, to negate at least one statement in the collection.

Observe in this interpretation that the following conditions naturally hold:



(o) ( f , 0) ∀ f ∈ OW,P, (0, a) ∀a ∈ Z
(i) ( f , a), (g, a) =⇒ ( f + g, a)

r ∈ OW,P, ( f , a) =⇒ (r f , a)
(ii) ( f , a), (h, b) =⇒ ( f h, a + b)
(iii) ( f , a), b ≤ a =⇒ ( f , b).

Observe also that the problem of resolution of singularities stays unchanged, even if
we add the statements derived from the given collection using the above conditions (im-
plications). For example, starting from the given collection {( f , a) ; f ∈ IP}, the problem
stays unchanged even if we consider the new collection {( f , n) ; f ∈ Idn/aeP , n ∈ Z≥0}. Our
philosophy is that it should be theoretically more desirable to consider the larger or largest
collection of statements toward the problem of resolution of singularities.
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Accordingly we define an idealistic filtration, at a point P ∈ W, to be a subset I ⊂
OW,P × R satisfying the following conditions:



(o) ( f , 0) ∈ I ∀ f ∈ OW,P, (0,a) ∈ I ∀a ∈ R
(i) ( f , a), (g, a) ∈ I =⇒ ( f + g, a) ∈ I

r ∈ OW,P, ( f , a) ∈ I =⇒ (r f , a) ∈ I
(ii) ( f , a), (h, b) ∈ I =⇒ ( f h, a + b) ∈ I
(iii) ( f , a) ∈ I, b ≤ a =⇒ ( f , b) ∈ I.

Note that, as a consequence of conditions (o) and (iii), we have

( f , a) ∈ I for any f ∈ OW,P, a ∈ R≤0.

We say an element ( f , a) ∈ I is at level a. Note that we let the level vary in R. Starting
from the level varying in Z, we are naturally led to the situation where we let the level
varying in the fractions Q when we start considering the condition (cf. R-saturation)

(radical) ( f n, na) ∈ I, n ∈ Z>0 =⇒ ( f , a) ∈ I,

and then to the situation where we let the level varying in R when we start considering the
condition of continuity

(continuity) ( f , al) ∈ I for a sequence {al} with lim
l→∞

al = a =⇒ ( f , a) ∈ I.

Note that there is one more natural condition to consider related to the differential
operators

(differential) ( f , a) ∈ I, d a differential operator of degree t =⇒ (d( f ), a − t) ∈ I.

We remark that we do not include condition (radical), (continuity) or (differential)
in the definition of an idealistic filtration, even though these conditions play crucial roles
when we consider the radical and differential saturations of an idealistic filtration (cf. 0.2.3.2.3).
We also introduce the notion of an idealistic filtration of r.f.g. type (cf. §0.8).
0.2.3.2 Distinguished features. Being framed in an extension of the classical notions, our
program in the language of the idealistic filtration shares some common spirit with the
existing approaches. However, the following four features distinguish our program from
them in a decisive way:
0.2.3.2.1 Leading generator system as a collective substitute for a hypersurface of
maximal contact. Given an idealistic filtration I ⊂ OW,P×R at a point P ∈ W, we look at the
graded ring of its leading terms L(I) :=

⊕
n∈Z≥0

L(I)n where L(I)n = { f mod mn+1
W,P ; ( f , n) ∈

I, f ∈ mn
W,P}. If we fix a regular system of parameters (x1, . . . , xd) at P and if we fix a

natural isomorphism of G =
⊕

n∈Z≥0
mn

W,P/m
n+1
W,P with the polynomial ring k[x1, . . . , xd], the

graded ring L(I) can be considered as a graded k-subalgebra of G = k[x1, . . . , xd].
Now the fundamental observation is that (if the idealistic filtration is differentially

saturated (cf.D-saturation in 0.2.3.2.3)) for a suitably chosen regular system of parameters,
we can choose the generators of L(I), as a graded k-subalgebra of k[x1, . . . , xd], to be of the
form

{xpei

i ; ei ∈ Z≥0}i∈I for some I ⊂ {1, . . . , d}

when we are in positive characteristic char(k) = p > 0. We define a leading generator
system of the idealistic filtration to be a set of elements {(hi, pei)}i∈I ⊂ I whose leading
terms give rise to the set of generators as above, i.e., hi mod mpei+1

W,P = xpei

i for i ∈ I.
We emphasize that the leading terms of the elements in the leading generator system lie in
degrees p0, p1, p2, p3, . . . , and hence that the leading generator system may not form (a part
of) a regular system of parameters when we are in positive characteristic char(k) = p > 0.
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In the example by R. Narasimhan, where there is no nonsingular hypersurface of maximal
contact, there is no leading term of degree one in any leading generator system. When we
are in characteristic zero char(k) = 0, in contrast, we can choose the generators of L(I) to
be concentrated all in degree one, i.e., of the form

{xi}i∈I for some I ⊂ {1, . . . , d}.

Accordingly, we can take a leading generator system to be a set of elements
{(hi, 1)}i∈I ⊂ I with hi mod m2

W,P = xi for i ∈ I. If we look at the classical algorithm(s),
then a hypersurface of maximal contact (locally at P) is given by {hi = 0} (for some i ∈ I).
Since the leading term of hi is linear, it is guaranteed to define a nonsingular hypersurface.

However, the case in positive characteristic and the case in characteristic zero should
not be considered as two separate entities. Rather, the case in characteristic zero should
be considered as a special case of the uniform phenomenon: Traditionally we define the
characteristic char(k) to be the (non-negative) generator of the set of the annihilators of the
unit “1” in the field k. However, for the purpose of considering the problem of resolution of
singularities, it is more natural to adopt the convention that the “characteristic” p attached
to the field k is defined by

p = inf{n ∈ Z>0 ; n · 1 = 0 ∈ k}.

In other words, we expect the behavior in characteristic zero to be similar to the one in
positive characteristic with large p, and ultimately to lie at the limit when p → ∞. In this
regard with the above convention, in characteristic zero, the (virtual) leading terms of the
leading generator system in degrees p1

= p2
= · · · = ∞ are invisible (non-existent), while

the actual leading terms are concentrated all in degree limp→∞ p0
= 1.

That is to say, we consider the notion of a hypersurface of maximal contact in charac-
teristic zero to be a special case of the notion of a leading generator system, which is valid
in all characteristics. Accordingly, we use the notion of a leading generator system as a
collective substitute in positive characteristic for the notion of a hypersurface of maximal
contact in characteristic zero in the process of constructing an algorithm according to our
program.
0.2.3.2.2 Enlargement vs. restriction. (Construction of the strand of invariants only
through enlargements (modifications) of an idealistic filtration, and without using restric-
tion to a hypersurface of maximal contact.) At first sight, the introduction of the notion of a
leading generator system does not seem to contribute toward overcoming the main source
of troubles at all. Recall (cf. 0.2.1.3) that in the classical setting in characteristic zero the
strand of invariants is constructed in such a way that a unit (w, s) is added to the strand
constructed so far every time we decrease the dimension by one, and then continue the
construction by restricting ourselves to a hypersurface of maximal contact. Nonsingularity
of a hypersurface of maximal contact is absolutely crucial in order to continue the con-
struction by restriction. Therefore, in the new setting in positive characteristic where we
use a leading generator system, we seem to fail to construct the strand of invariants if any
of the elements in the leading generator system defines a singular hypersurface. However,
in the construction of the strand of invariants in the new setting, we do not use any restric-
tion but only use enlargements (modifications) of the idealistic filtration. In fact, starting
from a given idealistic filtration on a nonsingular variety W, we construct the triplet of
invariants (σ, µ̃, s), where σ reflects the degrees of the leading terms of a leading generator
system, and µ̃ and s are the weak-order (with respect to a leading generator system) and the
invariant determined by the boundary, respectively, corresponding to the invariants w and
s as before. In the classical setting, after taking the corresponding companion modification
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and boundary modification, we take a hypersurface of maximal contact at this point and
continue the process by taking the restriction to it. In the new setting, however, after taking
the companion modification and boundary modification, we consider a leading generator
system of the newly modified idealistic filtration and continue the process. In other words,
in the new setting, we construct the strand of invariants in the following form

invnew = (σ, µ̃, s)(σ, µ̃, s)(σ, µ̃, s) · · · ,

and the construction is done only through enlargement keeing the ambient space W intact,
and hence the crucial nonsingularity intact.

It is worthwhile noting that µ̃ is independent of the choice of a leading generator
system, which is a priori needed for its definition, and hence is an invariant canonically
attached to the idealistic filtration (if it is appropriately saturated (See 0.2.3.2.3 below.)).
This implies that the strand of invariants invnew is also canonically determined globally.
Therefore, we see that the center of each blowup in our algorithm, which is the maximum
locus of the strand of invariants, is also canonically and globally defined, without the so-
called Hironaka’s trick needed in the classical setting (cf. 0.2.3.2.3 and [Wło05]).

In Part II, we will define the two basic invariants denoted by σ and µ̃ in the cotext of
an idealistic filtration as above. They form the building blocks for constructing the strand
of invariants (together with invariant s related to the boundary). Some of their properties
which are straightforward in characterisic zero, e.g., the upper semi-continuity, become
highly non-trivial in positive characteristic and are also discussed in Part II.

Discussion of the modifications is one of the main themes of Part III, where the classi-
cal notion of the companion modification and that of the boundary modification find their
perfect analogs in the context of the enlargements of an idealistic filtration with respect to
a leading generator system.
0.2.3.2.3 Saturations. It is important in our program to make a given idealistic filtration
“larger” without changing the associated problem of resolution of singularities. Ultimately,
we would like to find the largest of all such (with respect to a certain fixed kind of opera-
tions “X”), leading to the notion of the (X-)saturation. Dealing with the saturated idealistic
filtration, we expect to extract more intrinsic information toward a solution of the prob-
lem of resolution of singularities (e.g. invariants which are independent of the choice of a
leading generator system in the new setting, or the choice of a hypersurface of maximal
contact in the classical setting). The two key saturations in our program are the differen-
tial saturation (called the D-saturation for short, with respect to the operation of taking
differentiations) and the radical saturation (called the R-saturation for short, with respect
to the operation of taking the n-th roots (radicals)), the latter being equivalent to taking
the integral closure (for an idealistic filtration of r.f.g. type). (The operation of taking the
coefficient ideal and the operation of taking the “homogenization” in the sense of [Wło05]
share the same spirit with D-saturation. In fact, we can obtain new formulas for the coef-
ficient ideal and the homogenization as byproducts of the notion of the D-saturation of an
idealistic filtration. See [Mk06] for details. We also invite the reader to look at [Kol05],
which discusses several extensions of the idea of homogenization.) At the center of our
program sits the analysis of the interaction of these two saturations, leading to the notion of
the bi-saturation (called the B-saturation) and its explicit description as the RD-saturation.
Note that the notion of a leading generator system in 0.2.3.2.1 is defined only through
D-saturation, and the new nonsingularity principle in 0.2.3.2.4 only throughB-saturation.
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0.2.3.2.4 New nonsingularity principle. There is another problem which comes along
with using a leading generator system as a collective substitute for a hypersurface of max-
imal contact. In the classical setting in characteristic zero, what guarantees the nonsingu-
larity of the center is the nonsingularity of a hypersurface of maximal contact (cf. 0.2.1.3).
In our new setting in positive characteristic, we no longer have this guarantee. In fact, at
the intermediate stage of the construction of the strand of invariants, the leading generator
system may not be (a part of) a regular system of parameters and hence may define a sin-
gular subscheme. We observe, however, that at the end of the construction of the strand of
invariants the enlarged idealistic filtration takes such a special form that guaratees the cor-
responding leading generator system to be (a part of) a regular system of parameters. The
maximum locus of the strand of the invariants, which we choose as the center, is defined
by this leading generator system, and hence is nonsingular. We call this observation the
new nonsingularity principle of the center.
0.2.3.3 Uniformity of our program in all characteristics. It should be emphasized that
our program is not designed to come up with an esoteric strategy peculiar to the situation
in positive characteristic, but rather intended to develop a uniform point of view toward
the problem of resolution of singularities valid in all characteristics. Part IV is devoted to
letting this point of view manifest itself in the form of an algorithm, summarizing all the
ingredients of the program.

§0.3. Algorithm constructed according to the program.

0.3.1. Algorithm in characteristic zero. Aiming at uniformity, our program makes
perfect sense and works just as well in characteristic zero, leading to a new algorithm
slightly different from the existing ones. We will demonstrate how the distinguished fea-
tures of our program described in 0.2.3.2 work in the new algorithm.

0.3.2. Algorithm in positive characteristic; the remaining problem of termina-
tion. The algorithm in characteristic zero, now through uniformity, serves as a prototype
toward establishing an algorithm in positive characteristic. In fact, we can carry out al-
most all the procedures in positive characteristic, forming a perfect parallel to the case in
characteristic zero, except for the problem of termination.
0.3.2.1 Termination. It is easy to see that in characteristic zero the invariants constituting
the strand, constructed according to the program, have bounded denominators, and hence
that the strand takes its value in the set satisfying the descending chain condition. Since
the value of the strand strictly drops after each blowup, we conclude that the algorithm
terminates after finitely many steps. However, in positive characteristic, we can not exclude
the possibility that the denominators may increase indefinitely as we carry out the processes
(blowups) of the algorithm. (In the unit (σ, µ̃, s) for the strand, the values of invariant σ and
s are integral by definition. Therefore, more specifically, the only issue is the boundedness
of the denominators for the values of µ̃, which are fractional.) Therefore, we do not know
at the moment if the algorithm terminates after finitely many steps.

The problem of termination remains as the only missing piece in our quest to com-
plete an algorithm for resolution of singularities in positive characteristic according to the
program.

§0.4. Assumption on the base field.

We carry out our entire program assuming that the base field k is algebraically closed
field of characteristic char(k) = p ≥ 0.
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Our definition of a leading generator system, the key notion of the program, at a closed
point P ∈ W where W is a variety of dimension d smooth over k, needs the assumption
of the base field being algebraically closed, since we use the fact OW,P/mW,P � k and the
natural isomorphism G =

⊕
n≥0 mn+1

W,P/m
n
W,P � k[x1, . . . , xd] with respect to a fixed regular

system of parameters (x1, . . . , xd), as well as the fact that we can take the p-th root of any
element within k (when char(k) = p > 0). We briefly mention below what happens if we
loosen the assumption on the base field.

0.4.1. Perfect case. Suppose that the base field k is perfect, but not necessarily al-
gebraically closed. Upon completion, the algorithm constructed according to the program
should be equivariant under any group action (cf. Part IV). Therefore, as long as the base
field k is perfect, we see that the algorithm established over its algebraic closure k descends
to the one over the original base field k, utilizing the equivariance under the action of the
Galois group Gal(k/k).

0.4.2. Non-perfect case. Over a non-perfect field k, we even have to start distinguish-
ing the notion of being regular and that of being smooth over k. The discussions, including
the one on how we may try to reduce the non-perfect case to the perfect case using the
Lefschetz Principle type argument, will be given in Part IV.

§0.5. Other methods and approaches.

We only mention a few of the other methods and approaches than the algorithmic
approach we follow toward the problem of resolution of singularities in positive character-
istic. We refer the reader to [Lip75][Moh96][HLOQ00] for a more detailed account.

Resolution of singularities for curves is a classical result, with many of its ideas and
methods leading to the higher dimensional cases even to this day.

Among several results for surfaces, the most general one seems to be given by [Lip69][Lip78],
which establish resolution of singularities of an arbitrary excellent scheme in dimension 2.

It is [Zar40] that initiated the strategy to establish local uniformizations first, with the
theory of valuations as its central tool, and then by patching them to establish resolution
of singularities globally. The theory of local uniformization has been further developed by
many people [Abh66][Cos00][Kuh97][Kuh00]. We should mention the approaches by
[Tei03][Spi04] toward local uniformization in higher dimensions.

Jung’s idea of taking the (generic) projection provides many useful approaches toward
the problem of resolution of singularities. [Abh66] uses the method of Albanese projecting
from a singular point, combined with the theory of local uniformization, to resolve singu-
larities of a threefold X when char(k) is not greater than (dim X)! = 6. A simplified proof
has been recently given by [Cut06], which also discusses the potential and problems if
one tries to extend the method to higher dimensions. There are attempts to study the prob-
lem in the remaining characteristic char(k) = 2, 3,5 by [Cos87][Moh96][Cos04][Pil04] in
dimension 3.

Without any restriction on the dimension of a variety or on the base field k, the most
remarkable development in the vicinity of the problem of resolution of singularities is ar-
guably the method of alteration initiated by de Jong [dJ96]. Given a variety X, it constructs
a proper and generically finite morphism f : Y → X from a regular variety Y. (In charac-
teristic zero, one can refine the method of alteration to realize f as a birational map. See
[AdJ97][BP96][Par99] for details.) The structure of f is rather obscure, though its exis-
tence follows nicely and simply by regarding X as a family of curves fibered over a variety
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of dimension one less and hence by paving a way to apply induction. The method of al-
teration even works in mixed characteristics or with integral schemes over Z, and hence it
allows a wide range of applications for arithmetic purposes.

§0.6. Origin of our program.

This series of papers is a joint work of H. Kawanoue and K. Matsuki as a whole.
However, the program forming the backbone of the series was conceived in its entirety by
the first author toward his Ph.D. thesis, and revealed to the second author in the summer of
2003 at a private seminar held at Purdue University as a blueprint toward constructing an
algorithm for resolution of singularities in positive characteristic. As such all the essential
ideas are due to the first author. Accordingly it should be called the Kawanoue program,
which we use as the subtitle starting from Part II. Only the name of the first author appears
on the cover of Part I, which represents the main portion of his Ph.D. thesis.

The only contribution of the second author was to help the first author and jointly bring
these ideas together converging into a coherent algorithm.
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where the tutoring was given in the form of publications and personal correspondences.
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of the ideas of our project, therefore, find their origins in [Hir64] as well as in the pa-
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influence was decisive for us to enter the subject, is immeasurable.

It is a pleasure to acknowledge the helpful comments and suggestions we received
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§0.8. Outline of Part I.

Following the itemized table of contents at the beginning, we describe the outline of
the structure of Part I below.

At the end of the introduction in Chapter 0, we give a brief description of the prelim-
inaries to read Part I and the subsequent series of papers. In Chapter 1, we recall some
basic facts on the differential operators, especially those in positive characteristic. Both in
the description of the preliminaries and in Chapter 1, our purpose is not to exhaustively
cover all the material, but only to minimally summarize what is needed to present our pro-
gram and to fix our notation. For example, an elementary characterization, in terms of the
differential operators, of an ideal generated by the p-th power elements in characteristic
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p = char(k) > 0 is included only due to the lack of an appropriate reference. We should
emphasize here that the use of the logarithmic differential operators is indispensable in our
setting in the language of the idealistic filtration (See Remark 1.2.2.3).

Chapter 2 is devoted to establishing the notion of an idealistic filtration, and its fun-
damental properties. The most important ingredient of Chapter 2 is the analysis of the
D-saturation and R-saturation and that of their interaction. In our algorithm, given an ide-
alistic filtration, we always look for its bi-saturation, called the B-saturation, which is both
D-saturated andR-saturated and which is minimal among such containing the original ide-
alistic filtration. The existence of the B-saturation is theoretically clear. However, we do
not know a priori whether we can reach the B-saturation by a repetition of D-saturations
and R-saturations starting from the given idealistic filtration, even after infinitely many
times. The main result here is that the B-saturation is actually realized if we take the
D-saturation and then R-saturation of the given one, each just once in this order. In our
algorithm, we do not deal with an arbitrary idealistic filtration, but only with those which
are generated by finitely many elements with rational levels. We say they are of r.f.g. type
(short for “rationally and finitely generated”). It is then a natural and crucial question if
the property of being of r.f.g. type is stable under D-saturation and R-saturation. We find
somewhat unexpectedly that the argument of M. Nagata (cf. [Nag57]), which was origi-
nally developed to answer some questions posed by P. Samuel regarding the asymptotic
behavior of ideals, is tailor-made to establish the stability under R-saturation (while the
stability under D-saturation is elementary).

In Chapter 3, through the analysis of the leading terms of an idealistic filtration (which
is D-saturated), we define the notion of a leading generator system, which, as discussed
in 0.2.3.2.1, plays the role of a collective substitute for the notion of a hypersurface of
maximal contact.

Chapter 4 is the culmination of Part I, establishing the new nonsingularity principle of
the center for an idealistic filtration which is B-saturated. Its proof is given via the three
somewhat technical but important lemmas, which we will use again later in the series of
papers.

Our theory in Part I is mainly local, dealing almost exclusively with an idealistic fil-
tration over the local ring of a closed point on a nonsingular ambient variety. The global
theory toward constructing an algorithm will be discussed in the subsequent papers.

Of course the main purpose of Part I is to establish the foundation of our program
toward constructing an algorithm for resolution of singularities. However, we believe that
the results on the idealistic filtration we discuss here in Part I, notably the analysis leading
to the explicit description of theB-saturation, stability of r.f.g. type, and the nonsingularity
principle, are of interest on their own in the subject of the ideal theory in commutative
algebra.

This finishes the discussion of the outline of Part I.

§0.9. Preliminaries.

We summarize a few of the preliminaries in order to read Part I and the subsequent
series of papers.

0.9.1. The language of schemes. Our entire argument is carried out in the language
of schemes. For example, a variety is an integral separated scheme of finite type over
k. Accordingly, when we say “points”, we refer to the scheme-theoretic points and do
not confine ourselves to the closed points, which correspond to the geometric ones in the
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classical setting. Thus the invariants that we construct will be defined over all the scheme-
theoretic points, and not confined to the closed points. However, some of the key notions
of our program, notably that of a leading generator system, are only defined at the level of
the closed points, and the values of the invariants over the non-closed points are given only
indirectly through their upper or lower semi-continuity.

Our program is not conceived in the language of schemes originally. Rather, it has its
origin in the concrete analysis and computation in terms of the coordinates at the closed
points. As such, it can be applied to many other “spaces” than algebraic varieties over k,
where the same analysis and computation can be applied to the coordinates at its closed
points. The task of presenting a set of axiomatic conditions for the Kawanoue program to
function, and that of listing explicitly the spaces within its applicability will be dealt with
elsewhere.

0.9.2. Basic facts from commutative algebra. For the basic facts in commutative
algebra, we try to use [Mat86] as the main source of reference.

0.9.3. Multi-index notation. When we have the multivariables, either as the inde-
terminates in the polynomial ring or as a regular system of parameters, we often use the
following multi-index notations:



X = (x1, . . . , xd), I = (i1, . . . , id) ∈ Zd
≥0,

|I| =

d∑

α=1

iα, XI
=

d∏

α=1

xiα
α ,

(
I
J

)
=

d∏

α=1

(
iα
jα

)
for J = ( j1, . . . , jd) ∈ Zd

≥0

where

(
i
j

)
=

i!
(i − j)! j!

∈ Z≥0 denotes the binomial coefficient,

(We also use the convention that whenever iα < jα we set

(
iα
jα

)
= 0).

∂XJ =
∂|J|

∂i1
x1
· · · ∂id

xd

(expressed by ∂J for short).

eα = (0, . . . ,
α
∨

1, . . . , 0).



CHAPTER 1

Basics on differential operators

The purpose of this chapter is to give a brief account of the differential operators,
which play a key role in the Kawanoue program.

We would like to mention that it is through reading the papers [Hir70][Oda73] that
our attention was first brought to the importance of the higher order differential operators
in the context of the problem of resolution of singularities in positive characteristic.

Our main reference is EGA IV §16 [Gro67], where all that we need, especially the
properties of the higher order differential operators of Hasse-Schmidt type in positive char-
acteristic, and much more, is beautifully presented. We only try to extract some basic facts
and discuss them in the form that suits our limited purposes.

§1.1. Definitions and first properties

1.1.1. Definitions. Recall that the base field k is assumed to be an algebraically closed
field of char(k) ≥ 0.

D 1.1.1.1. Let R be a k-algebra. We use the following notation:

µ : R ⊗k R→ R the multiplication map, I := ker(µ) the kernel of µ,

Pn
R = R ⊗k R/In+1, qn : R→ R ⊗k R→ Pn

R for n ∈ Z≥0

where qn is the composition of the map to the second factor with the projection, i.e.,

qn(r) = (1 ⊗ r mod In+1) for r ∈ R.

A differential operator d of degree ≤ n on R (over k) for n ∈ Z≥0 is a map d : R→ R of the
form

d = u ◦ qn with u ∈ HomR(Pn
R,R).

(We note that the R-module structure on Pn
R is inherited from the R-module structure on

R ⊗k R given by the multiplication on the first factor.)
We denote the set of differential operators of degree ≤ n on R by Diffn

R, i.e.,

Diffn
R :=

{
d = u ◦ qn ; u ∈ HomR(Pn

R,R)
}
.

(Note that Diffn
R inherits the R-module structure from the one on HomR(Pn

R,R).)
We call DiffR =

⋃∞
n=0 Diffn

R (cf. Lemma 1.1.2.1) the set of the differential operators on
R (over k).

For a subset T ⊂ R, we also use the following notation

Diffn
R(T ) = (

{
d(r) ; d ∈ Diffn

R, r ∈ T
}
).

16



§1.1. DEFINITIONS AND FIRST PROPERTIES 17

1.1.2. First properties.

L 1.1.2.1. Let the situation and notation be the same as in Definition 1.1.1.1.
(1) Let d be a k-linear map d : R → R. Then d is a differential operator of degree ≤ n, i.e.,

d ∈ Diffn
R if and only if d satisfies the Leibnitz rule of degree n:

∑

T⊂S n+1

(−1)|T |


∏

s∈S n+1\T

rs

 d


∏

s∈T

rs

 = 0

where S n+1 = {1, 2, . . . , n,n + 1} and rs ∈ R for s ∈ S n+1.
(2) The natural map

φR : HomR(Pn
R,R)→ Diffn

R,

given by d = φR(u) = u◦qn for u ∈ HomR(Pn
R,R), is bijective (and actually an isomorphism

between R-modules).
(3) If R is finitely generated as an algebra over k, then Pn

R is finitely generated as an R-

module, and so is HomR(Pn
R,R)

∼
→ Diffn

R.
(4) Let R′ be the localization RS of R with respect to a multiplicative set S ⊂ R or the

completion R̂ of R with respect to a maximal ideal m ⊂ R. We define the map Diffn
R →

Diffn
R′ so that the following diagram commutes

HomR(Pn
R,R)

φR
−−−−−−→ Diffn

R

↓ ↓

HomR(Pn
R,R) ⊗R R′

φR⊗RR′

−−−−−−→ Diffn
R ⊗RR′

↓

HomR′(Pn
R ⊗R R′,R ⊗R R′)

y

‖

HomR′(Pn
R′ ,R

′)
φR′

−−−−−−→ Diffn
R′ ,

where the vertical arrows are the natural maps.
Consequently, the bijections are compatible with localization and completion.
Moreover, if R is essentially of finite type over k, then the second vertical arrow on the

left is an isomorphism, and hence so is the second vertical arrow on the right.
(5) Let d ∈ Diffn

R be a differential operator of degree ≤ n on R. Then d is a differential
operator of degree ≤ m for any n ≤ m. That is to say,

Diffn
R ⊂ Diffm

R for n ≤ m.

With respect to these inclusions, {Diffn
R}n∈Z≥0 forms a projective system.

(6) Let d ∈ Diffn
R be a differential operator of degree ≤ n on R, and d′ ∈ Diffn′

R be a
differential operator of degree ≤ n′ on R. Then the composition d ◦ d′ is a differential
operator of degree ≤ n + n′ on R, i.e., d ◦ d′ ∈ Diffn+n′

R .
(7) Let R be an algebra essentially of finite type over k, I ⊂ R an ideal, and let R′ be as in

(4). Then we have
Diffn

R(I)R′ = Diffn
R′(IR′).

P.
(1) We refer the reader to Proposition (16.8.8) in EGA IV §16 [Gro67] for a proof.
(2) The isomorphism φR is the one mentioned in (16.8.3.1) in EGA IV §16 [Gro67].
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(3) Suppose R is finitely generated as an algebra over k. Let X = {x1, . . . , xt} be a set of
generators for R over k. We see that Pn

R is generated by {qn(XI) ; I ∈ Zt
≥0} as an R-module

(cf. the first note in Definition 1.1.1.1). We also see, by the relation
∏

s∈S n+1
(1⊗rs−rs⊗1) =

0 in Pn
R, that qn(XI) for any I ∈ Zt

≥0 belongs to the R-span of {qn(XI) ; I ∈ Zt
≥0, |I| ≤ n}.

Therefore, we conclude that Pn
R is finitely generated as an R-module and hence that so is

HomR(Pn
R,R)

∼
→ Diffn

R.
(4) Compatibility of the bijections with localization and completion follows immedi-

ately from the definitions and from the fact that Pn
R ⊗R R′ = Pn

R′ .
In order to verify the “Moreover” part, it suffices to show the assertion assuming that

R is finitely generated as an algebra over k. Then since the extension R → R′ is flat and
since Pn

R is finitely generated as an R-module by (3), the second vertical arrow on the left
is an isomorphism, and hence so is the second vertical arrow on the right.

(5) The natural surjection Pm
R = (R⊗k R)/Im+1

� Pn
R = (R⊗k R)/In+1 for n ≤ m induces

the injection HomR(Pn
R,R) ↪→ HomR(Pn+1

R ,R) and hence the inclusion Diffn
R ⊂ Diffm

R . It is
clear that {Diffn

R}n∈Z≥0 forms a projective system with respect to these inclusions.
(6) We refer the reader to Proposition (16.8.9) in EGA IV §16 [Gro67].
(7) When R′ = R̂, the equality Diffn

R(I)R′ = Diffn
R′(IR′) follows from the “Moreover”

part of (4) and from the fact that the differential operators are continuous with respect the
m-adic topology (the latter being a consequence of the Leibnitz rule).

Thus we give a proof of the equality only when R′ = RS in the following.
Since the inclusion Diffn

R(I)RS ⊂ Diffn
RS

(IRS ) follows easily from the “Moreover” part
of (4), we have only to show the opposite inclusion

Diffn
R(I)RS ⊃ Diffn

RS
(IRS ).

Take f = s−1r ∈ IRS with r ∈ R, s ∈ S , and take d ∈ Diffn
RS

. We want to show d( f ) ∈
Diffn

R(I)RS . Set r1 = · · · = rn = s, rn+1 = f . Applying the Leibnitz rule of degree n for
d ∈ Diffn

RS
, we have

−snd( f ) +
∑

{n+1}$T

(−1)|T | sn+1−|T |d
(
s|T |−2r

)
+

∑

n+1<T

(−1)|T | f sn−|T |d
(
s|T |

)
= 0

where the first term in the left hand side corresponds to the range T = {n + 1}. Since
d ∈ Diffn

RS
= Diffn

R RS by the “Moreover” part of (4), the second term and the third term of
the left hand side belong to Diffn

R(I)RS . This implies d( f ) ∈ Diffn
R(I)RS .

This completes the proof for Lemma 1.1.2.1.

C 1.1.2.2. Let X be a variety over k. Then there exists a coherent sheaf
HomOX (Pn

X,OX)
∼
→ Diff n

X of the differential operators of degree ≤ n for n ∈ Z≥0 such that
for any affine open subset U = Spec R ⊂ X we have

HomOX (Pn
X,OX)(U) = HomR(Pn

R,R)
∼
→ Diffn

R = Diff n
X(U)

and that for any point x ∈ X we have a description of the stalk as
{
HomOX (Pn

X,OX)
}

x = HomOX,x (P
n
OX,x
,OX,x)

∼
→ Diffn

OX,x
=

{
Diff n

X
}

x .

Moreover, for any closed point x ∈ X we have a description of the completion of the stalk
as {

HomOX (Pn
X,OX)

}
x
⊗OX,x ÔX,x

{
Diff n

X

}
x ⊗OX,x ÔX,x

‖ ‖

Hom
ÔX,x

(Pn
ÔX,x
, ÔX,x)

∼
→ Diffn

ÔX,x
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P. This follows immediately from Lemma 1.1.2.1.

§1.2. Basic properties of differential operators on a variety smooth over k.

The purpose of this section is to discuss some basic properties of differential operators
on a variety W smooth over k.

Accordingly, we denote by R the coordinate ring of an affine open subset Spec R ⊂ W,
or its localization by some multiplicative set.

1.2.1. Explicit description of differential operators with respect to a regular sys-
tem of parameters.

D 1.2.1.1. We say (x1, . . . , xd) with d = dim W is a regular system of param-
eters for R if {dxα = (1 ⊗ xα − xα ⊗ 1 mod I) ; α = 1, . . . , d} forms a basis for the module
of differentials Ω1

R/k as an R-module, i.e.,

Ω
1
R/k = (R ⊗k R)/I =

d⊕

α=1

Rdxα � Rd,

where I ⊂ R ⊗k R is the kernel of the multiplication map µ : R ⊗k R → R (cf. Definition
1.1.1.1).

(Note that in the case where R is the local ring associated to a closed point P ∈ W such
a regular system of parameters always exists, and that in the case where R represents the
coordinate ring of an affine open subset Spec R ⊂ W such a regular system of parameters
exists by “shrinking” Spec R if necessary.)

L 1.2.1.2. Suppose we have a regular system of parameters (x1, . . . , xd) for R
with d = dim W. Then we have the following:

(1) We have a family of maps {∂XJ : R→ R ; J ∈ Zd
≥0} such that

(i) ∂XJ (XI) =
(

I
J

)
XI−J for any I ∈ Zd

≥0, and that
(ii) {∂XJ ; |J| ≤ n} forms a basis of Diffn

R for any n ∈ Z≥0, i.e.,

Diffn
R =

⊕

|J|≤n

R∂XJ � R(n+d
n ).

(2) Let R̂ be the completion of R with respect to a maximal ideal m (corresponding to a
closed point P ∈ W). Then the R̂-module Diffn

R̂

∼
→ Diffn

R ⊗RR̂ is free of rank
(

n+d
n

)
, having a

basis {∂XJ ; |J| ≤ n} of the differential operators of degree ≤ n. The differential operators
are continuous with respect to the m-adic topology.

Set yi = xi − αi for 1 ≤ i ≤ d, where αi ∈ k, so that Y = (y1, . . . , yd) is a regular system
of parameters for Rm. Then for any f =

∑
cIY I ∈ k[[y1, . . . , yd]] = R̂, we have

∂J( f ) = ∂J

(∑
cIY

I
)
=

∑
cI∂J(Y I) =

∑
cI

(
I
J

)
Y I−J ,

where ∂J is the abbreviated notation for ∂XJ .
(3) We have the generalized product rule

∂J( f g) =
∑

K+L=J

∂K( f )∂L(g) for f , g ∈ R (or R̂).

P.
(1) We refer the reader to Theorem (16.11.2) in EGA IV [Gro67].



20 1. BASICS ON DIFFERENTIAL OPERATORS

(2) Observe that a differential operator (of degree ≤ n) is continuous with respect to
the m-adic topology, a fact which easily follows, e.g., from the Leibnitz rule (of degree n).
Note that ∂Y J ( f ) = ∂XJ ( f ) for any J ∈ Zd

≥0 and f ∈ R̂ by definition of Y = (y1, . . . , yd). The
rest is a direct consequence of (1).

(3) In order to check the generalized product rule, it suffices to check it for the localiza-
tion Rm for any maximal ideals of R. In order to check it for the localization Rm, it suffices
to check it for its completion R̂ with respect to m.

By choosing a regular system of parameters Y = (y1, . . . , yd) for Rm as in (2), we can
identify R̂ with the power series ring k[[y1, . . . , yd]]. Thus we have only to check (3) for
the power series ring k[[y1, . . . , yd]]. By (2), it is also clear that we have only to check it
for the case of one variable, i.e., d = 1 with y1 = y and that we may even assume f and g
are powers of y, i.e., f = ya and g = yb. Then we have

∂XJ ( f g) = ∂Y J ( f g) = ∂yn(yayb) = ∂yn(ya+b)

=

(
a + b

n

)
ya+b−n

=


∑

l+m=n

(
a
l

)(
b
m

) ya+b−n

=

∑

l+m=n

(
a
l

)
xa−l

(
b
m

)
xb−m

=

∑

K+L=J

∂K( f )∂L(g),

which verifies the generalized product rule.
This completes the proof of Lemma 1.2.1.2.

R 1.2.1.3.
(1) It is easy to see that we have a relation

(∂x1)
j1 ◦ (∂x2)

j2 ◦ · · · ◦ (∂xd ) jd = J! · ∂XJ

where J! =
∏d
α=1 jα! in the multi-index notation.

In characteristic zero, since J! , 0, the above relation implies that all the differen-
tial operators are expressed as (the linear combinations over R of) the composites of the
differential operators of degree ≤ 1, e.g., R-homomorphisms and ∂x1 , . . . , ∂xd .

In positive characteristic char(k) = p > 0, however, J! could well be equal to 0 and
hence we start seeing the differential operators of higher order which cannot be expressed
as (the linear combinations over R of) the composites of differential operators of lower
degrees, e.g.,

∂
xp1
α

, ∂
xp2
α

, . . . , ∂xpe
α
, . . . for α = 1, . . . , d and e ∈ Z>0.

It is these operators which play a crucial role in positive characteristic.
(2) The following observation comes in handy when we compute the binomial coefficients

in positive characteristic char(k) = p > 0:
Let i =

∑
e ae pe and j =

∑
e be pe be the expressions of the integers i, j ∈ Z≥0 as p-adic

numbers with 0 ≤ ae, be < p. Then we have
(
i
j

)
=

∏

e

(
ae

be

)
mod p.

The identity follows immediately from the observation that, in (Z/pZ)[x], the number
(

i
j

)
is

the coefficient of x j
=

∏
e xbe pe

in the polynomial (1+ x)i
=

∏
e(1+ x)ae pe

=
∏

e(1+ xpe
)ae ,

which can be computed as the product of the coefficients
(
ae
be

)
of xbe pe

in (1 + xpe
)ae .
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1.2.2. Logarithmic differential operators.

D 1.2.2.1. Let E be a simple normal crossing divisor on Spec R, and IE ⊂ R
its defining ideal. We define the set Diffn

R,E of the logarithmic differential opearators of
degree ≤ n on R with respect to E by

Diffn
R,E = {d ∈ Diffn

R ; d(It
E) ⊂ It

E ∀t ∈ Z≥0}.

L 1.2.2.2. Suppose we have a regular system of parameters (x1, . . . , xd) for R
with d = dim W, and a simple normal crossing divisor E defined by IE = (

∏m
i=1 xi) for

some 1 ≤ m ≤ d. Then we have the following:
(1) The R-module Diffn

R,E is free of rank
(

n+d
n

)
. It has a basis {XJE∂XJ ; |J| ≤ n} (cf. Lemma

1.2.1.2 (1)), where JE = ( j1, . . . , jm, 0, . . . , 0) for J = ( j1, . . . , jm, jm+1, . . . , jd). Thus we
have

Diffn
R,E =

⊕

|J|≤n

RXJE∂XJ � R(n+d
n ).

(2) We have the logarithmic version of the generalized product formula

XJE∂J( f g) =
∑

K+L=J

XKE∂K( f )XLE∂L(g) for f , g ∈ R (or R̂).

P. This follows immediately from Lemma 1.2.1.2 and Definition 1.2.2.1.

R 1.2.2.3. We first learned the explicit use of the logarithmic differential opera-
tors in the context of resolution of singularities from [Cos87] and [BM97]. It is worthwhile
noting that even when we look at the existing algorithms which only use the usual differ-
ential operators on the surface (e.g. [EV00][EH02][Wło05]), one could implicitly observe
the use of logarithmic ones in the proof of Giraud’s lemma (cf. [Gir74]) they depend upon.
We invite the reader to look at [Bie04] [Bie05] and [BM03] for the discussions on how
the use of the logarithmic differential operators, in contrast to the use of the usual ones,
affects the functorial properties of the algorithm, and even the formulation of the problem
of resolution of singularities.

The use of the logarithmic differential operators is a “must” for our algorithm to func-
tion, as we will see in Parts III and IV, and is recognized as one of the key ingredients of
the Kawanoue program from the very beginning of its conception.

1.2.3. Relation with multiplicity. We end this section by pointing out a basic rela-
tion between the multiplicity (order) and the differential operators in the form of a lemma.
It is because of this basic relation that the differential operators play a key role in con-
structing an algorithm for resolution of singularities, where the order function constitutes
a fundamental invariant.

L 1.2.3.1. Let I ⊂ R be an ideal. Let P ∈ Spec R be a point. Then

ordP(I) ≥ n⇐⇒ P ∈ V(Diffn−1
R (I)).

In particular, the order function ord∗(I) : Spec R→ Z≥0 is upper semi-continuous.

P. First we show the equivalence in the case when P is a closed point. Let m ⊂ R
be the maximal ideal corresponding to the closed point P. Let R̂ be the completion of
R with respect to m. Note that ordP(I) = ordP(Î), where Î = IR̂. On the other hand,
since Diffn−1

R̂
(Î) = Diffn

R(I)R̂ by Lemma 1.1.2.1 (7) and since R̂ is faithfully flat over R,

we have Diffn−1
R̂

(Î) ∩ R = Diffn
R(I). Thus we have only to show the equivalence at the

level of completion. Choose a regular system of parameters (x1, . . . , xd) for Rm. Identify R̂
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with the power series ring k[[x1, . . . , xd]]. By definition, ordP(Î) ≥ n if and only if, given
f =

∑
J cJ XJ ∈ Î ⊂ k[[x1, . . . , xd]] with cJ ∈ k, we have cJ = 0 for any J with |J| < n. By

Lemma 1.2.1.2 (2), the last condition is equivalent to saying ∂XK ( f ) ⊂ m̂ for any f ∈ Î and
K with |K| < n. Since {∂XK ; |K| < n} generates Diffn−1

R̂
as an R̂-module (cf. Lemma 1.2.1.2

(2)), this condition is equivalent to Diffn−1
R̂

(Î) ⊂ m̂, i.e., P ∈ V(Diffn−1
R̂

(Î)). Therefore, we
conclude

ordP(Î) ≥ n⇐⇒ P ∈ V(Diffn−1
R̂

(Î)).

From the above argument it follows that the equivalence asserted in the lemma holds
for a closed point and that the order function is upper semi-continuous if we restrict our-
selves to the space of the maximal ideals m-Spec R.

It is then straightforward to see that the same equivalence holds for an arbitrary point
in Spec R and that the order function is upper semi-continuous over Spec R.

This completes the proof of Lemma 1.2.3.1.

§1.3. Ideals generated by the pe-th power elements.

In this section, we denote by k an algebraically closed field of char(k) = p > 0.
The purpose of this section is to give a characterization of the ideals generated by

pe-th power elements, fixing e ∈ Z≥0, as the ideals invariant under the action of the set of
differential operators of degree ≤ pe − 1.

We denote by R the coordinate ring of an affine open subset Spec R of a variety W
smooth over k, or its localization at a maximal ideal. We denote by R̂ the completion of R
with respect to a maximal ideal of R.

1.3.1. Characterization in terms of the differential operators.

D 1.3.1.1. Fix a nonnegative integer e ∈ Z≥0. We denote the e-th power of
the Frobenius map by

Fe : R→ R

i.e., Fe(r) = rpe
for r ∈ R. We use the same symbol Fe for the e-th power of the Frobenius

map of the localization RS or the completion R̂ by abuse of notation if there is no chance
of confusion.

P 1.3.1.2. Let I ⊂ R be an ideal. Fix a nonnegetive integer e ∈ Z≥0. Then
the following conditions are equivalent:

(1) The ideal I is generated by the pe-th power elements, i.e., I = (I ∩ Fe(R)).
(2) The ideal I is invariant under the action of the set of the differential operators of

degree ≤ pe − 1, i.e., I = Diffpe−1
R (I).

Moreover, the equivalence of conditions (1) and (2) also holds over the completion R̂.

Before beginning the proof of Proposition 1.3.1.2, we remark a couple of facts in the
form of a lemma.

L 1.3.1.3. Let R′ denote the localization RS with respect to a multiplicative set
S ⊂ R or the completion R̂ with respect to a maximal ideal m ⊂ R. Then we have

(1) R ⊗Fe(R) Fe(R′) = R′,
(2) {I ∩ Fe(R)}R′ = {IR′ ∩ Fe(R′)}R′.

P.
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(1) When R′ = RS , the assertion is clear since R⊗Fe (R) Fe(RS ) = RFe(RS ) = RS . When
R′ = R̂, we see that R ⊗Fe(R) Fe(R̂) and R̂ are the completions of R with respect to the
topologies defined by {Fe(mn)R}n∈Z>0 and {mn}n∈Z>0 respectively. It is easy to see that these
two topologies coincide.

(2) Since I ∩ Fe(R) ⊂ IR′ ∩ Fe(R′), we have the inclusion {I ∩ Fe(R)}R′ ⊂ {IR′ ∩
Fe(R′)}R′. In order to see the opposite inclusion, using the fact that Fe(R′) is flat over
Fe(R), we observe

{I ∩ Fe(R)}R′ ⊃ {I ∩ Fe(R)}Fe(R′) = {I ∩ Fe(R)} ⊗Fe (R) Fe(R′)

= {I ⊗Fe (R) Fe(R′)} ∩ {Fe(R) ⊗Fe(R) Fe(R′)}

= {I ⊗R R ⊗Fe (R) Fe(R′)} ∩ Fe(R′)

= {I ⊗R R′} ∩ Fe(R′) = IR′ ∩ Fe(R′),

which implies the desired inclusion.
This completes the proof of Lemma 1.3.1.3.

P  P 1.3.1.2. Step 1. Reduction to the case over the completion R̂.
Firstly note that two ideals of R coincide if their localizations or even completions coincide
at any maximal ideal m of R. Thus it suffices to show the conditions

IR̂m = (I ∩ Fe(R))R̂m and IR̂m = Diffpe−1
R (I)R̂m

are equivalent for any maximal ideal m ⊂ R. Secondly note that

(I ∩ Fe(R))R̂m = {IR̂m ∩ Fe(R̂m)}R̂m (by Lemma 1.3.1.3 (2)),
Diffpe−1

R (I)R̂m = Diffpe−1

R̂m
(IR̂m) (by Lemma 1.1.2.1 (7)).

Therefore, it suffices to show the equivalence of the conditions in the case over R̂ = R̂m.
In the following consideration, we identify R̂ with the power series ring k[[x1, . . . , xd]] (by
choosing a regular system of parameters (x1, . . . , xd) for Rm).

Step 2. Verification of the implication (i) =⇒ (ii).
We obviously have Î ⊂ Diffpe−1

R̂
(Î). Thus we have only to show Î ⊃ Diffpe−1

R̂
(Î) assuming

condition (i). By Lemma 1.2.1.2 (2), the set {∂XJ ; |J| ≤ pe − 1} generates Diffpe−1

R̂
as an R̂-

module. Therefore, it suffices to check ∂XJ ( f ) ∈ Î for any f ∈ Î and ∂XJ with |J| ≤ pe − 1.
By assuming condition (i), we may assume Î = ({rpe

λ ; rλ ∈ R̂}λ∈Λ) so that we can write

f =
∑
λ∈Λ aλr

pe

λ with aλ ∈ R̂. We compute via the generalized product rule

∂XJ ( f ) = ∂XJ


∑

λ∈Λ

aλr
pe

λ

 =
∑

λ∈Λ

∂XJ

(
aλr

pe

λ

)

=

∑

λ∈Λ


∑

K+L=J

∂XK (aλ) ∂XL

(
rpe

λ

) =
∑

λ∈Λ

∂XJ (aλ) rpe

λ ∈ I.

Note that, in order to obtain the last equality, we use the fact that ∂XL (rpe

λ ) = 0 unless L = 0.
In fact, if rλ =

∑
J cJXJ ∈ k[[x1, . . . , xd]], then, by Lemma 1.2.1.2 (2), we have

∂XL(rpe

λ ) = ∂XL(
∑

J

cpe

J Xpe J) =
∑

J

cpe

J ∂XL (Xpe J) =
∑

J

cpe

J

(
peJ
L

)
Xpe J−L.
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Since

(
peJ
L

)
=

d∏

i=1

(
pe ji
li

)
, and since

(
pe ji
li

)
= 0 mod p unless li = 0 because li ≤ |L| ≤ |J| ≤

pe − 1, we conclude ∂XL (rpe

λ ) = 0 unless L = 0.
This completes the verification of the implication (i) =⇒ (ii).
Step 3. Verification of the implication (ii) =⇒ (i).

We obviously have Î ⊃ (Î ∩ Fe(R̂)). Thus we have only to show Î ⊂ (Î ∩ Fe(R̂)) assuming
condition (ii). First note that, setting Γ = {0, 1, . . . , pe − 1}d, we can express any f ∈ R̂ =
k[[x1, . . . , xd]] in the form

f =
∑

M∈Γ

ape

M XM,

where the set of coefficients {ape

M ; aM ∈ R̂}M∈Γ is uniquely determined.

It suffices to show that, given f ∈ Î and its expression as above, we have {ape

M ; aM ∈

R̂}M∈Γ ⊂ Î, which implies f ∈ (Î ∩ Fe(R̂)).
We derive a contradiction assuming {ape

M ; aM ∈ R̂}M∈Γ 1 Î. Set

N = max
{
M ∈ Γ ; ape

M < Î
}
,

where the maximum is taken with respect to the lexicographical order on Γ. We compute
via the generalized product rule

Î = Diffpe−1

R̂
(Î) 3 ∂XN ( f −

∑

M>N

ape

M XM) =
∑

M≤N

∂XN (ape

M XM)

=

∑

M≤N

∑

K+L=N

∂XK (ape

M)∂XL(XM) =
∑

M≤N

aPe

M∂XN (XM) = ape

N .

Note that, by the same argument as in Step 2 of this proof, we see ∂XK (ape

M) = 0 unless

K = 0. This is used to obtain the second last equality. Note also that
(

M
N

)
= 0 if M < N.

Indeed, if M < N, there exists 1 ≤ io ≤ d such that mio < nio , which implies
(
mio
nio

)
= 0

(cf. 0.9.3) and hence
(

M
N

)
=

∏d
i=1

(
mi
ni

)
= 0. Thus ∂XN (XM) = 0 if M < N. This is used to

obtain the last equality. Therefore, we have ape

N ∈ Î, contradicting the choice of N. This
completes the verification of the implication (ii) =⇒ (i).

This completes the proof of Proposition 1.3.1.2.

We end this section by stating a lemma, which is proved in the same spirit as the proof
of Proposition 1.3.1.2 and is of interest on its own.

L 1.3.1.4. Let R̂ be the completion of R with respect to a maximal ideal m of R,
and e ∈ Z≥0 a nonnegative integer. Then

R ∩ Fe(R̂) = Fe(R).

In other words, if r ∈ R has its pe-th root f within R̂, then f actually belongs to R.

P. Since R̂ is faithfully flat over R, so is Fe(R̂) over Fe(R). Applying Theorem
7.5 in [Mat86] to an Fe(R)-module R/Fe(R), we see that the natural map

R/Fe(R)→ (R/Fe(R)) ⊗Fe (R) Fe(R̂)

is injective. On the other hand, using Lemma 1.3.1.3, we analyze the target of the above
map to be

(R/Fe(R)) ⊗Fe (R) Fe(R̂) = {R ⊗Fe(R) Fe(R̂)}/{Fe(R) ⊗Fe (R) Fe(R̂)} = R̂/Fe(R̂).
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That is to say, we conclude that the map R/Fe(R) → R̂/Fe(R̂) is injective, and hence that
R ∩ Fe(R̂) = Fe(R).

This completes the proof of Lemma 1.3.1.4.



CHAPTER 2

Idealistic Filtration

The purpose of this chapter is to introduce the notion of an idealistic filtration, which is
the main language to describe our program toward constructing an algorithm for resolution
of singularities, and establish its fundamental properties.

We develop our argument over a ring R, which is assumed to be the coordinate ring of
an affine open subset of a nonsingular variety W over k, or its localization, or its completion
with respect to a maximal ideal. That is to say, more geometrically speaking, we carry out
our analysis over an affine open subset of a nonsingular variety W, or over a stalk, or over
the analytic structure at a closed point. Since the main operations on an idealistic filtration,
such as the operations of taking the D-saturation and R-saturation, are compatible with
localization and completion (for an idealistic filtration of r.f.g. type), it is immediate to
extend the (analytically) local analysis of this chapter to the global argument, which we
will develop in the subsequent papers.

§2.1. Idealistic filtration over a ring.

Let R be the coordinate ring of an affine open subset of a nonsingular variety W over
k, or its localization, or its completion with respect to a maximal ideal.

2.1.1. Definitions.

D 2.1.1.1.
(1) Let T ⊂ R × R be a subset. For a ∈ R, we set Ta = { f ∈ R ; ( f , a) ∈ T }.
(2) We call a subset I ⊂ R × R an idealistic filtration if it satisfies the following conditions:



(o) I0 = R,
(i) Ia is an ideal of R for any a ∈ R

(Ia is called the ideal of I at level a)
(ii) IaIb ⊂ Ia+b for any a, b ∈ R,
(iii) Ib ⊃ Ia if b ≤ a.

(3) Let T ⊂ R × R be a subset. We call the minimal idealistic filtration containing T the
idealistic filtration generated by T and denote it by G(T ). If I = G(T ), we call T a set of
generators for I (cf. Lemma 2.2.1.1 (2)).

When we want to emphasize the base ring R over which T generates the idealistic
filtration, we write GR(T ) inserting R as a subscript.

(4) We say an idealistic filtration I is of r.f.g. type (short for rationally and finitely generated)
if there exists a finite set T ⊂ R × Q ⊂ R × R such that I = G(T ).

(5) Let T ⊂ R × R≥0 be a subset. Let P ∈ Spec R be a point. We define the multiplicity
µP(T ) of T at P to be

µP(T ) := inf

{
µP( f , a) :=

ordP( f )
a

; ( f , a) ∈ T, a > 0

}
.

Note that we set µP( f , 0) = ∞ for any f ∈ R by definition, while ordP(0) = ∞.

26
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(6) Let T ⊂ R × R be a subset. We define the support Supp(T ) of T to be

Supp(T ) = {P ∈ Spec R ; µP(T ) ≥ 1}.

R 2.1.1.2.
(1) It is straightforward to see that a subset I ⊂ R × R is an idealistic filtration

if and only if it satisfies the following conditions:


(o) ( f , 0) ∈ I ∀ f ∈ R, (0, a) ∈ I ∀a ∈ R,
(i) ( f , a), (g, a) ∈ I =⇒ ( f + g, a) ∈ I,

r ∈ R, ( f , a) ∈ I =⇒ (r f , a) ∈ I,
(ii) ( f , a), (h, b) ∈ I =⇒ ( f h, a + b) ∈ I,
(iii) ( f , a) ∈ I, b ≤ a =⇒ ( f , b) ∈ I.

We invite the reader to look at 0.2.3.1 in Chapter 0 for the motivation behind introducing
the notion of an idealistic filtration.

(2) When T = I ⊂ R × R is an idealistic filtration, we define its multiplicity µP(I) at a point
P ∈ Spec R, and its support Supp(I) acccording to Definition 2.1.1.1 (5) and (6).

2.1.2. D-saturation. We define the notion of the differential saturation
(which we call the D-saturation for short) of an idealistic filtration. Budding of an idea
leading to the notion of D-saturation can be observed in the work of Giraud and Villa-
mayor, where they discuss the enlargement, called the extension, of an ideal obtained by
adding the partial derivatives of the elements in the ideal.

D 2.1.2.1. Let I ⊂ R × R be an idealistic filtration. We say I is D-saturated if
it satisfies the following condition (differential):

(differential) ( f , a) ∈ I, d ∈ Diff t
R =⇒ (d( f ), a − t) ∈ I.

(We refer the reader to Chapter 1 for the meaning of the notation Diff t
R.)

Let I be an idealistic filtration. We call the minimal D-saturated idealistic filtration
containing I the differential saturation (orD-saturation for short) of I, and denote it byD(I)
(cf. Lemma 2.2.1.1).

Let E be a simple normal crossing divisor on W. Then using the logarithmic differ-
ential operators with respect to E instead of the usual differential operators (cf. Definition
1.2.2.1), we consider the following condition (differential)E:

(differential)E ( f , a) ∈ I, d ∈ Difft
R,E =⇒ (d( f ), a − t) ∈ I.

Replacing condition (differential) with condition (differential)E , we obtain the notion of an
idealistic filtration being DE-saturated and that of the DE-saturation.

2.1.3. R-saturation. We define the notion of the radical saturation (which we call
the R-saturation for short) of an idealistic filtration. Note that, for an R-saturated idealistic
filtration, we not only require that we can take the n-th root (radical) of an element within
the idealistic filtration (if it exists within R × R) for any n ∈ Z>0, but also require the
continuity by definition.

D 2.1.3.1. Let I ⊂ R × R be an idealistic filtration. We say I is R-saturated if
it satisfies the following conditions (radical) and (continuity):

(radical) ( f n, na) ∈ I, f ∈ R, n ∈ Z>0 =⇒ ( f , a) ∈ I
(continuity) {( f , al)} ⊂ I with liml→∞ al = a =⇒ ( f , a) ∈ I.

Let I be an idealistic filtration. We call the minimal R-saturated idealistic filtration
containing I the radical saturation (or R-saturation for short) of I, and denote it by R(I)
(cf. Lemma 2.2.1.1).
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R 2.1.3.2.
(1) We remark that, in positive characteristic p = char(k) > 0, if an idealistic filtration I

satisfies the following condition (Frobenius), which is a priori slightly weaker than condi-
tion (radical), and condition (continuity), then it actually satisfies conditions (radical) and
(continuity). Therefore, instead of checking conditions (radical) and (continuity) in order
to show that a given idealistic filtration is R-saturated in positive characteristic, we could
check conditions (Frobenius) and (continuity):

(Frobenius) ( f p, pa) ∈ I, f ∈ R =⇒ ( f , a) ∈ I.

In fact, suppose we have ( f n, na) ∈ I, f ∈ R and n ∈ Z>0. Take e ∈ Z>0 so that pe > n,
and take r ∈ Z≥0 with 0 ≤ r < n so that r ≡ pe mod n. Then

( f n, na) ∈ I =⇒ ( f pe−r, a · (pe − r)) ∈ I by condition (ii) in Remark 2.1.1.2 (1)
=⇒ ( f pe

, a · (pe − r)) ∈ I by condition (i) in Remark 2.1.1.2 (1)
=⇒ ( f , a · (1 − p−er)) ∈ I by condition (Frobenius)
=⇒ ( f , a) ∈ I by condition (continuity) with e→ ∞.

(2) In view of condition (iii) in Remark 2.1.1.2(1), requiring condition (continuity) is equiv-
alent to requiring the following (left continuity):

(left continuity) {( f , al)} ⊂ I with {al} increasing and lim
l→∞

al = a =⇒ ( f , a) ∈ I.

In terms of the ideals of an idealistic filtration associated to the levels, condition (left
continuity) translates into the condition

Ia =
⋂

b<a

Ib ∀a ∈ R.

When an idealistic filtration is of r.f.g. type, this condition can be checked rather easily.
Therefore, we see that condition (continuity) is always satisfied for an idealistic filtration
of r.f.g. type. See Corollary 2.3.2.3 for detail.

2.1.4. Integral closure. We define the notion of the integral closure of an idealistic
filtration, which is closely related to the notion of the R-saturation. In general, if an ide-
alistic filtration is R-saturated, then it is integrally closed. In particular, for an idealistic
filtration of r.f.g. type, where condition (continuity) is automatic, it is R-saturated if and
only if it is integrally closed.

We also conclude in Corollary 2.3.2.7, through the argument showing the stability of
r.f.g. type under R-saturation, that, for an idealistic filtration of r.f.g. type, the R-saturation
and the integral closure coincide.

D 2.1.4.1. Let I ⊂ R × R be an idealistic filtration.
(1) We say an element ( f , a) ∈ R × R is integral over I if f satisfies a monic equation of the

form
f n
+ c1 f n−1

+ · · · + cn = 0 with (ci, ia) ∈ I for i = 1, . . . , n.

(2) We say I is integrally closed if it satisfies the following condition (ic):

(ic) ( f , a) ∈ R × R is integral over I =⇒ ( f , a) ∈ I.

Let I be an idealistic filtration. We call the minimal integrally closed idealistic filtration
containing I the integral closure of I, and denote it by IC(I) (cf. Lemma 2.2.1.1).

R 2.1.4.2. The notion of the integral closure is important in our program. How-
ever, since the R-saturation and the integral closure coincide for an idealistic filtration of
r.f.g. type, and since almost all the idealistic filtrations we consider are of r.f.g. type, we
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seldom use the symbol IC(I) or the notion of the integral closure explicitly, and almost
always use the notion of the R-saturation, which is denoted by R(I).

2.1.5. B-saturation. We define the notion of the bi-saturation (which we call the B-
saturation). For the purpose of extracting the intrinsic information toward a solution of
the problem of resolution of singularities, we take various saturations of a given idealistic
filtration (cf. 0.2.3.2.3). It would be best if we could take an “optimal” one among such. In
our algorithm, the B-saturation (or BE-saturation) plays the role of the optimal saturation.

D 2.1.5.1. Let I ⊂ R × R be an idealistic filtration. We say I is B-saturated
(resp. BE-saturated) if it is both D-saturated (resp. DE-saturated) and R-saturated. Given
an idealistic filtration I, we call the minimal B-saturated (BE-saturated) idealistic filtration
containing I theB-saturation (resp. BE-saturation) of I, and denote it byB(I) (resp. BE(I))
(cf. Lemma 2.2.1.1).

R 2.1.5.2. While the existence of the B-saturation is as straightforward as the
existence of the other saturations and integral closure, its explicit construction is quite
remarkable, which we will see in Corollary 2.4.2.3. We describe the explicit construction
of the other saturations and integral closure in Lemma 2.2.1.2.

§2.2. Basic properties of an idealistic filtration.

In this section, we discuss some basic properties of an idealistic filtration over a ring.
We use the same notation as in §2.1.

2.2.1. On generation,D-saturation,R-saturation, integral closure, andB-saturation.
The next two lemmas discuss the existence and explicit construction of the idealistic filtra-
tion generated by a subset T ⊂ R × R, the D-saturation, R-saturation, integral closure, and
B-saturation.

L 2.2.1.1.
(1) The intersection

⋂
λ∈Λ Iλ ⊂ R × R of a non-empty collection {Iλ}λ∈Λ of idealistic fil-

trations is again an idealistic filtration. Moreover, if each Iλ is D-saturated (resp. DE-
saturated, R-saturated, integrally closed, B-saturated, BE-saturated), then so is the inter-
section

⋂
λ∈Λ Iλ.

(2) Let T ⊂ R × R be a subset. Then G(T ) exists (cf. Definition 2.1.1.1 (3)).
(3) Let I be an idealistic filtration. Then D(I) (resp. DE(I), R(I), IC(I), B(I), BE(I)) exists

(cf. 2.1.2, 2.1.3, 2.1.4, 2.1.5).

P.
(1) It is clear from the definitions.
(2) Let S = {Iλ ; Iλ ⊃ T } be the collection of all the idealistic filtrations containing T .

Note that S is non-empty, since R × R ∈ S. Now it is clear that the intersection
⋂
Iλ∈S
Iλ is

the minimal idealistic filtration containing T .
(3) Let S = {Iλ ; Iλ ⊃ I} be the collection of all the D-saturated (resp. DE-saturated,

R-saturated, integrally closed, B-saturated, BE-saturated) idealistic filtrations containing
I. Note that S is non-empty, since R×R ∈ S. Now it is clear that the intersection

⋂
Iλ∈S
Iλ is

the minimal D-saturated (resp. DE-saturated, R-saturated, integrally closed, B-saturated,
BE-saturated) idealistic filtration containing I.

This completes the proof of Lemma 2.2.1.1.

L 2.2.1.2. Let I be an idealistic filtration generated by T = {( fλ, aλ)} ⊂ R × R,
i.e., I = G(T ).
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(1) Define a subset I′ ⊂ R × R by setting

I′a =
(∏

f nλ
λ ; nλ ∈ Z≥0,

∑
nλaλ ≥ a

)
a ∈ R.

Then I′ is an idealistic filtration, and I′ = I. Note that, when T = ∅, we use the convention

G(∅) = ({0} × R) ∪ (R × R≤0).

(2) Let (x1, . . . , xd) be a regular system of parameters for R. Set

T ′ =
{
(∂XJ fλ, aλ − |J|) ; J ∈ Zd

≥0, ( fλ, aλ) ∈ T
}
.

Then we have D(I) = G(T ′).
Let E be a simple normal crossing divisor, and say, {x1 · · · xm = 0} defines E for some

1 ≤ m ≤ d. Set

T ′E =
{
(XJE∂XJ fλ, aλ − |J|) ; J ∈ Zd

≥0, ( fλ, aλ) ∈ T
}
.

Then we have DE(I) = G(T ′E). (We refer the reader to 1.2.2 for the notation.)
(3) Define subsets K,K ⊂ R × R by

Ka = { f ∈ R ; f n ∈ Ina for some n ∈ Z>0}, Ka =

⋂

b<a

Kb (a ∈ R).

Then K is an idealistic filtration, and R(I) = K.
(4) Let J ⊂ R × R be the subset consisting of all the elements integral over I. Then J is an

idealistic filtration, and IC(I) = J.

P.
(1) It is straightforward to see that I′ is an idealistic filtration, and that any idealistic

filtration containing T necessarily contains I′. Therefore, I = I by the definition of I =
G(T ).

(2) Let I′ be a D-saturated idealistic filtration containing T , or equivalently containing
I. Then it is clear that I′ ⊃ G(T ′). Therefore, in order to see D(I) = G(T ′), we have
only to show G(T ′) is D-saturated, which follows from the fact that Diff t

R is generated by
{∂XJ ; |J| ≤ t} as an R-module, and the generalized product rule (cf. Lemma 1.2.1.2). The
proof for the case of DE-saturation is identical to the case of D-saturation, replacing the
usual differentials with the logarithmic ones.

(3) Let I′ be an R-saturated idealistic filtration containing I. As I′ satisfies condition
(radical), we have K ⊂ I′. Therefore, we conclude

Ka =

⋂

b<a

Ka ⊂
⋂

b<a

I′b = I
′
a,

where the last equality follows since I′ satisfies condition (continuity) (cf. Remark 2.1.3.2
(2)). That is to say, K ⊂ I′.

Thus, in order to see R(I) = K, we have only to show that K itself is an idealistic
filtration containing I, satisfying conditions (radical) and (continuity).

First we show that K is an idealistic filtration. We have only to check that Ka (a > 0)
is closed under addition (cf. Definition 2.1.1.1 (1) and Remark 2.1.1.2 (1)), while the other
conditions follow easily. Take f , g ∈ Ka. Then for any b < a, there exists n ∈ Z>0 such that
f n, gn ∈ Inb. Then for any k ∈ Z>0, we have

( f + g)k
=

k∑

i=0

(
k
i

)
f igk−i ∈ I

b i
n c+b

k−i
n c

nb ⊂ Ib(k−2n)
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since b i
n c+ b

k−i
n c ≥

k
n −2. Therefore, we have f +g ∈ Kb(1−2nk−1). Since b < a and k > 0 are

arbitrary (while n depends only on b), we conclude f + g ∈ Kc for any c < a. Therefore,
we have f + g ∈

⋂
c<a Kc = Ka.

Secondly we check condition (continuity) for K. In fact, we have

Ka =

⋂

b<a

Kb =

⋂

b<a

⋂

c<b

Kc =

⋂

b<a

Kb.

Therefore, K satisfies condition (continuity) (cf. Remark 2.1.3.2 (2)).
Finally we check condition (radical) for K. Suppose f n ∈ Ka. Fix b < a. Then

f n ∈ Kb by definition of K, and there exists m ∈ Z>0 such that ( f n)m ∈ Imb by definition of
K. Therefore, we have f ∈ Kn−1b. Since b < a is arbitrary, we have f ∈

⋂
b<a Kn−1b = Kn−1a.

Therefore, K satisfies condition (radical).
(4) It is clear that, if I′ is an idealistic filtration containing I and satisfying (ic), then

J ⊂ I′. Thus, in order to see IC(I) = J, we have only to show that J itself is an idealistic
filtration containing I, satisfying condition (ic).

It is clear that J contains I. Consider the graded subring Gr(I) :=
⊕

a∈R IaXa ⊂⊕
a∈R RXa, where X is a variable transcendental over R, and where the structure of the

graded R-algebra is given through multiplication rule XaXb
= Xa+b.

Observe (cf. [Mat86]) that

( f , a) is integral over I⇐⇒ Gr(I)[ f Xa] is a finite Gr(I)-module.

Observe also that
Gr(G(I, ( f , a))) = Gr(I)[ f Xa].

Now from these observations it follows easily that J is an idealistic filtration, and that J
satisfies condition (ic).

This completes the proof for Lemma 2.2.1.2.

2.2.2. R-saturated implies integrally closed.

P 2.2.2.1. Let I ⊂ R × R be an idealistic filtration. If I is R-saturated, then
I is integrally closed.

P. Let I be an R-saturated idealistic filtration. Suppose ( f , a) ∈ R × R is integral
over I, i.e., f satisfies a monic equation of the form

(?) f n
+ c1 f n−1

+ · · · + cn = 0 with (ci, ia) ∈ I for i = 1, . . . , n.

We want to show ( f , a) ∈ I.
If a ≤ 0, then obviously ( f , a) ∈ I (cf. conditions (o), (iii) in Remark 2.1.1.2 (1)).

Thus, we may further assume a > 0. Let

βl = 1 −

(
n − 1

n

)l

(l ∈ Z≥0).

We show by induction that
(♥)l ( f , aβl) ∈ I.

(♥)0 is clear. Suppose we have shown (♥)l. Using the monic equation (?), we have

f n
= −(c1 f n−1

+ · · · + cn)

with
(ci f n−i, a{i + (n − i)βl}) ∈ I (1 ≤ i ≤ n).
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Since 0 ≤ βl < 1, we have

min
i
{i + (n − i)βl} = 1 + (n − 1)βl = nβl+1.

Therefore, we conclude
( f n, anβl+1) ∈ I.

Since I is R-saturated, it follows from condition (radical)

(♥)l+1 ( f , aβl+1) ∈ I.

Thus (♥)l is valid for all l ∈ Z≥0.
Note that liml→∞ aβl = a. Therefore, by condition (continuity) satisfied by I, we

conclude
( f , a) ∈ I.

Therefore, I is integrally closed.
This completes the proof of Proposition 2.2.2.1.

2.2.3. Analysis of interaction between D-saturation and R-saturation. So far, we
have studied the D-saturation and R-saturation separately. In this subsection, we analyze
the interaction of the operations of taking D-saturation and R-saturation. Under the as-
sumption that R has a regular system of parameters, our result is stated in the following
proposition, which leads to the explicit construction of the B-saturation. Furthermore, the
assumption is later removed for an idealistic filtration of r.f.g. type (cf. Corollary 2.4.2.3).

P 2.2.3.1. Let I be an idealistic filtration over R which has a regular system
of parameters (x1, . . . , xd). Then DR(I) ⊂ RD(I).

If E is a simple normal crossing divisor defined by {x1 · · · xm = 0} for some 1 ≤ m ≤ d,
then DER(I) ⊂ RDE(I).

P. We present a proof of the latter assertion in the logarithmic case, as the former
is a special case of the latter (E = ∅).

Step 1. Reduction of the assertion to the statement (♣).
By replacing I with DE(I) and via the obvious inclusion DER(I) ⊂ DER(DE(I)), we see

that it suffices to prove the inclusion

DER(I) ⊂ R(I),

assuming I is DE-saturated. In order to show the first inclusion above, by Lemma 2.2.1.2
(2), we have only to show

⋃

J

{(DJ( f ), a − |J|) ; ( f , a) ∈ R(I)} ⊂ R(I),

where DJ = XJE∂XJ . Now since DJ = D j1e1 · · ·D jded , this second inclusion then follows if
we can show, for 1 ≤ i ≤ d, the inclusion below

⋃

j≥0

{(D jei( f ), a − j) ; ( f , a) ∈ R(I)} ⊂ R(I).

Let K,K ⊂ R×R be as in Lemma 2.2.1.2 (3). We claim that we may even replace the range
R(I) of ( f , a) in the left hand side of the third inclusion with K. That is to say, we claim it
suffices to show

(♦)
⋃

j≥0

{(D jei( f ), a − j) ; ( f , a) ∈ K} ⊂ R(I).
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In fact, (♦) implies

{(D jei( f ), a − j) ; ( f , a) ∈ K} ⊂ {(D jei( f ), a − j) ; ( f , a) ∈ K} ⊂ R(I),

where, given a subset T ⊂ R × R, the subset T is defined by T a =
⋂

b<a Tb. Since K =
R(I) = R(I), this inclusion then would imply the third one.

Finally, we reduce (♦) to the following general statement:

(♣) D jei( f ) ∈ RDE(G{( f n, na)})a− j ( f ∈ R, a ∈ R, 1 ≤ i ≤ d, n > 0, j ≥ 0).

Indeed, given f ∈ Ka, there exists n ∈ Z>0 such that f n ∈ Ina. Thus, (♣) implies D jei( f ) ∈
RDE(G{( f n, na)})a− j ⊂ RDE(I)a− j = R(I)a− j since I is assumed to be DE-saturated. Thus
(♣) implies (♦).

Therefore, we conclude that the assertion of the lemma is reduced to the statement
(♣).

Step 2. Setup for the inductional proof of (♣).
We fix 1 ≤ i ≤ d, and omit i from the notation in the following argument. For example,

we denote D jei by D j. We also denote RDE(G({( f n, na)})) by J to ease the notation.
Set c = bac. We prove the statement (♣) by induction on c. We may assume 0 ≤ j ≤ c,

since otherwise we have a − j < 0 and Ja− j = R, in which case (♣) clearly holds.
Case 1. c = 0.

In this case, j must be 0, and we obviously have

(D j( f ), a − j) = ( f , a) ∈ R(G({( f n, na)})) ⊂ J.

Thus (♣) holds.
Case 2. c ≥ 1.

In this case, we show (♣) in Steps 3, 4, and 5 using the inductional hypothesis.
Observe that

(D j( f ), a − j − 1) ∈ RDE(G({( f n, na − n)})) ⊂ J

for 0 ≤ j ≤ c − 1 = ba − 1c, from the inductional hypothesis.
Step 3. Construction of a sequence {bu, j}.

Our strategy for showing (♣) is, starting from the following initial state

b0, j = 1 (1 ≤ j ≤ c − 1), b0,c = a − c, bu,0 = 0 (u ≥ 0),

to construct the (double) sequence of numbers bu, j indexed by 0 ≤ j ≤ c and u ∈ Z≥0

satisfying the following conditions (♠) and (♥):

(♠) (D j( f ), a − j − bu, j) ∈ J, (♥) lim
u→∞

bu, j = 0.

We construct the numbers bu, j inductively according to the lexicographical order on the
double index (u, j). Suppose we have already constructed all bα,β with (α, β) < (u, j).
Then, we define the number bu, j by the following formula

nbu, j = max

{0} ∪


∑

tl< j

bu,tl +

∑

j≤tl≤c

bu−1,tl +

∑

c<tl

(a − tl) ; T ∈ S ∗n, j



 .

where S n, j =
{
T ∈ Zn

≥0 ; |T | = n j
}

and S ∗n, j = S n, j \ {( j, . . . , j)}.
Step 4. Verification of (♠).

By the argument in Step 2, condition (♠) holds at the initial state, i.e., if u = 0 or j = 0. We
proceed to check condition (♣) by induction on the pair (u, j) in the lexicographical order.
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Using the logarithmic version of the generalized product rule (cf. Lemma 1.2.2.2 (2)) for
f n, we compute

(]) D j( f )n
= Dn j( f n) −

∑

T∈S ∗n, j

n∏

l=1

Dtl ( f ).

Take T ∈ S ∗n, j. Then, by inductional hypothesis, we have

(
n∏

l=1

Dtl ( f ),
∑

tl< j

(a − tl − btl,u) +
∑

j≤tl≤c

(a − tl − btl,u−1)) ∈ J.

By definition of bu, j and the fact
∑

l(a − tl) = na −
∑

l tl = na − n j, we have
∑

tl< j

(a − tl − btl,u) +
∑

j≤tl≤c

(a − tl − btl,u−1)

=

∑

tl≤c

(a − tl) −
∑

tl< j

btl,u −
∑

j≤tl≤c

btl,u−1

= n(a − j) −


∑

tl< j

btl,u +

∑

j≤tl≤c

btl,u−1 +

∑

tl>c

(a − tl)

 ≥ n(a − j) − nbu, j.

On the other hand, by definition of J, we have Dn j( f n) ∈ Jna−n j. Since bu, j ≥ 0 by definition,
we have (Dn j( f n), n(a − j) − nbu, j) ∈ J. Therfore, by virtue of the formula (]). we have
(D j( f )n, n(a − j) − nbu, j) ∈ J. As J is R-saturated, we have (D j( f ), a − j − bu, j) ∈ J. Thus
(♠) holds for (u, j), as desired.

Step 5. Verification of (♥).
We have only to show the following inequality:

([) bu, j ≤
(
1 − n− j

) (
1 − n−c)u−1 (u ≥ 1, j ≥ 0).

In fact, since bu, j ≥ 0 by definition and 0 < 1 − n−m < 1, condition (♥) obviously follows
from inequality ([).

We prove ([) by induction on the pair (u, j) in the lexicographical order.
Since bu,0 = 0, inequality ([) is valid for j = 0.
By definition of bu, j and from the fact

∑
c<tl (a − tl) < 0, we have an estimate

nbu, j ≤ max


∑

tl< j

bu,tl +

∑

j≤tl≤c

bu−1,tl ; T ∈ S ∗n, j


.

By inductional hypothesis, we observe the following (i) and (ii):

(i) For tl < j, we have

bu,tl ≤
(
1 − n−tl

) (
1 − n−c)u−1

≤
(
1 − n1− j

) (
1 − n−c)u−1

(ii) For j ≤ tl ≤ c, we have

bu−1,tl ≤
(
1 − n−tl

) (
1 − n−c)u−2

≤
(
1 − n−c)u−1

.

We also mention that, for any T = (t1, . . . , tn) ∈ S ∗n, j, there exists at least one 1 ≤ l ≤ n
such that tl < j.

By these observations, we obtain the following estimate:

nbu, j ≤
(
1 − n1− j

) (
1 − n−c)u−1

+ (n − 1)
(
1 − n−c)u−1

=

(
n − n1− j

) (
1 − n−c)u−1

= n
(
1 − n− j

) (
1 − n−c)u−1

,
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which implies inequality([) for (u, j). This completes the proof for inequality ([), and
hence the verification of (♥).

Step 6. Finishing argument.
In the previous Steps, we confirmed conditions (♠) and (♥). Consequently, since J is R-

saturated, we have D j( f ) ∈ Ja− j for 0 ≤ j ≤ c. Namely (♣) holds for c = bac. This
completes the inductional proof of (♣) stated in Step 2. This completes the proof of
Proposition 2.2.3.1.

C 2.2.3.2. Let I be an idealistic filtration over R which has a regular system
of parameters (x1, . . . , xd). Then B(I) = RD(I).

If E is a simple normal crossing divisor defined by {x1 · · · xm = 0} for some 1 ≤ m ≤ d,
then BE(I) = RDE(I).

P. We present a proof of the latter assertion in the logarithmic case, as the former
is a special case of the latter (E = ∅).

SinceBE(I) is DE-saturated, we haveBE(I) ⊃ DE(I). Then sinceBE(I) is R-saturated,
we haveBE(I) ⊃ RDE(I). In order to see the opposite inclusion, we have only to show that
RDE(I) is DE-saturated. By Proposition 2.2.3.1, we see

RDE(I) ⊂ DERDE(I) ⊂ RDEDE(I) = RDE(I).

Therefore, we conclude that RDE(I) = DERDE(I) is DE-saturated.
This completes the proof of Corollary 2.2.3.2.

§2.3. Idealistic filtration of r.f.g. type.

In §2.1 and §2.2, we gave the definition of, and carried discussion on the properties
of, an idealistic filtration in general. However, the idealistic filtrations we deal with in our
algorithm are all of r.f.g. type (cf. Definition 2.1.1.1 (4)). In fact, certain mechanisms in
our algorithm work only for the idealistic filtrations of r.f.g. type.

Since the operations of taking the D-saturation and R-saturation of a given idealistic
filtration are essential in our algorithm, it is then a natural and important question whether
the property of being of r.f.g. type is stable under these operations. The most important re-
sult of this section is to give an affirmative answer to this question: if an idealistic filtration
I is of r.f.g. type, then so are D(I) and R(I). We remark that some related results can be
found in [Hir03], discussing properties of an idealistic exponent.

For D-saturation, the verification of stability is elementary, using compatibility of D-
saturation with localization (cf. Proposition 2.4.2.1 (2)) and using the explicit construction
in Lemma 2.2.1.2.

For R-saturation, however, the verification of stability is rather subtle. Our argument
presented here is due to Professor Shigefumi Mori, who showed us how the contents of
[Nag57] can be adapted to verify the required stability under R-saturation. The essential
point, starting from a given idealistic filtration of r.f.g. type I, is to show the rationality
and boundedness of the denominators of the numbers a where R(I)a changes. Once the
crucial rationality and boundedness are shown, stability can be reinterpreted as the finite
generation of the integral closure as an R-algebra (in some finite extension of the field of
fractions) of a certain graded ring, which is naturally associated to the idealistic filtration I
of r.f.g. type.

In this section, R denotes the coordinate ring of an affine open subset of a variety W
smooth over k of char(k) = p ≥ 0, or its localization by some multiplicative set.
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2.3.1. Stability of r.f.g. type under D-saturation. We show that the property of an
idealistic filtration being of r.f.g. type is stable under D-saturation.

P 2.3.1.1. Let I ⊂ R × R be an idealistic filtration. If I is of r.f.g. type, then
so is its D-saturation D(I) (or DE-saturation DE(I)).

P. Step 1. Reduction to the case where there exists a regular system of param-
eters (x1, . . . , xd) for R, where d = dim W.
We take a finite affine cover {Spec Rgl ; gl ∈ R}l∈L of Spec R with #L < ∞ so that for each

Rgl there exists a regular system of parameters for Rgl .
Since I is of r.f.g. type, so is Igl , its localization by gl.
Suppose we have shown that D(Igl ) is of r.f.g. type, i.e., there exists a finite set

TΛl = {( fλl , aλl)}λl∈Λl ⊂ Rgl × Q

such that D(Igl) = GRgl
(TΛl ).

Observe that, since D(Igl) = D(I)gl by compatibility of localization with D-saturation
(cf. Proposition 2.4.2.1 (2)), for each ( fλl , aλl), there exist (hλ, aλ) ∈ D(I) and nλ ∈ Z>0 such
that ( fλl , aλl) = (g

−nλl
l hλl , aλl ).

Then it is easy to see that the finite set

TΛ = {(hλl , aλl) ; λl ∈ Λl, l ∈ L} ⊂ D(I)

generates D(I), i.e., D(I) = GR(TΛ). In fact, by construction, we have

D(I)gl ⊃ GR(TΛ)gl ⊃ GRgl
(TΛl ) = D(Igl ) = D(I)gl ,

i.e., D(I)gl = GR(TΛ)gl for any l ∈ L, and hence D(I) = GR(TΛ).
Step 2. Proof of the statement in the case where there exists a regular system of

parameters (x1, . . . , xd) for R, where d = dim W.
Take a finite set of generators TΛ of the form

TΛ = {( fλ, aλ)}λ∈Λ ⊂ R × Q

such that I = G(TΛ). We may assume aλ > 0 ∀λ ∈ Λ by discarding those with aλ ≤ 0.
Let

TM = {(∂XJ fλ, aλ − |J|) ; ( fλ, aλ) ∈ TΛ, 0 ≤ |J| < aλ}.

Then clearly we have #TM < ∞ and aλ − |J| ∈ Q ∀λ and ∀J with 0 ≤ |J| < aλ.
Now it follows from Lemma 2.2.1.2 (2) that D(I) = G(TM). Therefore, we conclude

that D(I) is of r.f.g. type.
The proof for stability under DE-saturation is identical. This completes the proof for

Proposition 2.3.1.1.

2.3.2. Stability underR-saturation. We show that the property of an idealistic filtra-
tion being of r.f.g. type is stable under R-saturation. We deal with the problem of stability
in terms of a certain graded ring which is naturally associated to an idealistic filtration I of
r.f.g. type and which “describes” I in the sense stated below.

D 2.3.2.1. Let A =
⊕

n∈Z≥0
AqnXqn ⊂

⊕
n∈Z≥0

RXqn
= R[Xq] be a graded

R-subalgebra of the polynomial ring with one variable Xq over R for some q ∈ Q>0. Let
I ⊂ R × R be an idealistic filtration. We say A describes I if it satisfies the following
condition:

Iqa = Aqdae for any a ∈ R≥0.
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L 2.3.2.2. Let I ⊂ R × R be an idealistic filtration. Then I is of r.f.g. type if and
only if there exists A which describes I (as stated in Definition 2.3.2.1) and which is finitely
generated as an R-algebra.

P. Suppose that there exists such A which describes I and which is generated by
a finite set of homogeneous elements { fλXqnλ}λ∈Λ as a graded R-subalgebra in R[Xq]. Then
I is generated by the finite set {( fλ, qnλ)}λ∈Λ, and hence is of r.f.g. type.

Conversely, suppose that I is an idealistic filtration of r.f.g. type, generated by a finite
set T = {( fλ,

nλ
δ

)}λ∈Λ ⊂ R × Q for some δ ∈ Z>0. It is immediate that, if we take the
graded R-subalgebra A of R[Xq], with q = δ−1 and A0 = R, generated by the finite set
{ fλX

i
δ ; λ ∈ Λ, 0 ≤ i ≤ nλ} over R, then A describes I.
This completes the proof of Lemma 2.3.2.2.

We remark that if I is an idealistic filtration of r.f.g. type, and if A ⊂ R[Xq] is a graded
R-subalgebra which describes I for some q ∈ Q>0, then A is automatically finitely generated
over R.

C 2.3.2.3. Let I be an idealistic filtration of r.f.g. type. Then I satisfies con-
dition (continuity).

P. We want to show Ia =
⋂

b<a Ib for any a ∈ R (cf. Remark 2.1.3.2 (2)).
It is clear when a ≤ 0 (cf. condition (o) in Definition 2.1.1.1 (2)).
Suppose a > 0. By Lemma 2.3.2.2, there exists a graded R-subalgebra A ⊂ R[Xq], for

some q ∈ Q>0, which describes I and which is finitely generated as an R-algebra. Then by
definition we have Iqa = Aqdae. Since Is ⊃ It for any s < t, we conclude

⋂

b<a

Iqb =

⋂

dae−1<b<a

Iqb =

⋂

dae−1<b<a

Aqdbe =

⋂

dae−1<b<a

Aqdae = Aqdae = Iqa,

i.e., Iqa =

⋂

b<a

Iqb.

This completes the proof of Corollary 2.3.2.3.

P 2.3.2.4. Let I ⊂ R × R be an idealistic filtration. If I is of r.f.g. type, then
so is its R-saturation.

Before beginning the proof of Proposition 2.3.2.4, we extract the essence that we need
from Nagata’s paper [Nag57] with some modifications.

Let R be a noetherian domain, K = Q(R) its field of fractions and a = (u1, . . . , us) ⊂ R

a proper ideal of R with a finite set of its generators u j. Set R j = R
[

u1
u j
, . . . , us

u j

]
, and let R j be

its normalization in Q(R j) = K for each j. Let {P jk}k ⊂ Spec R j be the set of all the minimal
primes of u jR j. Note that it is a finite set and that, by Krull’s Hauptidealsatz, the primes
P jk are of height 1. Let R jk = (R j)P jk be the localization of R j at P jk for each j, k. Since
R jk is a 1-dimensional noetherian normal ring, it is a discrete valuation ring. We denote
the valuation of R jk by v jk for each j, k. We consider the functions θa, θa : R → R≥0 ∪ {∞}

defined by

θa(r) = sup
{m

n
; rn ∈ am, n,m ∈ Z≥0, n > 0

}
,

θa(r) = sup
{m

n
; rn ∈ am, n,m ∈ Z≥0, n > 0

}
.

Using the notation as above, we have the following lemmas.
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L 2.3.2.5. For n ∈ Z>0, we have

an = R ∩
⋂

j,k

un
jR jk.

P. Firstly we show an ⊂ R ∩
⋂

j,k un
jR jk. It suffices to show an ⊂ un

jR jk for each

j, k. Fix j, k and take f ∈ an. Then, there exists a monic equation

f m
+ a1 f m−1

+ · · · + am = 0 (ai ∈ a
in).

Considering the valuation v jk of this equation, there exists some 1 ≤ i ≤ m such that
v jk( f m) = v jk(ai f m−i) and hence v jk( f i) = v jk(ai). Since aR jk = un

jR jk, we have v jk(ai) ≥
in · v jk(u j). Consequently v jk( f ) ≥ nv jk(u j), and hence f ∈ un

jR jk. Thus the inclusion

an ⊂ un
jR jk holds.

Secondly we show the opposite inclusion an ⊃ R ∩
⋂

j,k un
jR jk.

Take g ∈ R ∩
⋂

j,k un
jR jk. Set R′ = R

[ un
1

g , . . . ,
un

s

g

]
and b =

( un
1

g , . . . ,
un

s

g

)
⊂ R′. We show

g ∈ an in the following Steps.
Step 1. We show b = R′.

Assume b is a proper ideal of R′. Then there exists a valuation ring (V,mV) of Q(R′) = K
such that V ⊃ R′ and mV ∩ R′ ⊃ b. We denote its valuation as v. Take j0 such that
v(u j0 ) = min1≤i≤s v(ui). Then, as ui

u j0
∈ V for each i, we have

R j0 ⊂ V and hence R j0 ⊂ V

Since
un

j0
g ∈ b ⊂ mv, we have g < un

j0
V, and hence g < un

j0
R j0 . Now, since R j0 is noetherian

normal domain, principal ideal un
j0

R j0 is represented as

un
j0

R j0 = R j0 ∩
⋂

ht p=1

p
vp(un

j0
)(R j0 )p = R j0 ∩

⋂

k

P
v j0k(un

j0
)

j0k R j0k.

Therefore there exists some k such that

g < P
v j0k(un

j0
)

j0k R j0k = un
j0 R j0k,

which contradicts to the choice of g. Thus we have b = R′.
Step 2. We show g ∈ an.

Since 1 ∈ b by Step 1, there exists F(X1, . . . , Xs) ∈ R[X1, . . . , Xs] such that F(0, . . . , 0) = 0
and F

( un
1

g , . . . ,
un

s

g

)
= 1. Setting deg F = n, we obatin

0 = gn

{
1 − F

(
un

1

g
, . . . ,

un
s

g

)}
= gn

+ c1gn−1
+ · · · + cn with ci ∈ a

i,

a monic equation which shows g ∈ an. This completes the proof of Lemma 2.3.2.5.

L 2.3.2.6. Let r ∈ R. Then,

θa(r) = θa(r) = min
j,k

{
v jk(r)

v jk(u j)

}
∈ Q.

Moreover, for n,m ∈ Z≥0 with n > 0, rn ∈ am if and only if m
n ≤ θa(r).

P. Step 1. We show the first equation θa(r) = θa(r).
Since am ⊂ am, it is immediate that θa(r) ≤ θa(r). We show θa(r) ≥ θa(r). Take n,m ∈ Z≥0

with n > 0 such that rn ∈ am. By definition, there exists a monic equation

(rn)c+1
+ a1(rn)c

+ · · · + ac+1 = 0 with ai ∈ a
im.
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We show

♥t : rn(c+t) ∈ amt (rnR + am)c (t ∈ Z>0)

by induction on t. Looking at the monic equation above, we have

rn(c+1) ∈ am(rn)c
+ · · · + a(c+1)mrn(c+t)

= am (rnR + am)c ,

thus ♥1 holds. For the case t > 1, we have

rn(c+t)
= rn · rn(c+t−1) ∈ rnam(t−1)(rnR + am)c (By ♥t−1)

⊂ am(t−1)
(
rn(c+1)R + am(rnR + am)c

)

⊂ am(t−1) (am(rnR + am)c) (By ♥1)

= amt(rnR + am)c.

Thus ♥t, and hence rn(c+t) ∈ amt holds for any t ∈ Z>0. It follows that

θa(r) ≥ sup

{
mt

n(c + t)
; t ∈ Z>0

}
≥

m
n
.

Since the numbers n,m ∈ Z≥0 with n > 0 such that rn ∈ am are taken arbitrarily, we have
θa(r) ≥ θa(r).

Step 2. We show the second equality.
By Lemma 2.3.2.5, we have

rn ∈ am ⇐⇒ rn ∈ um
j R jk (∀ j, k) ⇐⇒ v jk(rn) ≥ v jk(um

j ) (∀ j, k)

⇐⇒ nv jk(r) ≥ mv jk(u j) (∀ j, k)

⇐⇒
m
n
≤ min

{
v jk(r)

v jk(u j)
; j, k

}

Therefore θa(r) = min
{

v jk(r)
v jk(u j)

; j, k
}
∈ Q. The “Moreover” part is now obvious.

This completes the proof of Lemma 2.3.2.6.

We now go back to the proof of Proposition 2.3.2.4.

P  P 2.3.2.4. Take a finite set T = {( fλ, aλ)}λ∈Λ ⊂ R × Q such that
I = G(T ).

Step 1. We may assume T ⊂ R × {L} for some L ∈ Z>0.
Replacing T with T ∩ R × R>0, we may assume T ⊂ R × Q>0. Set

L = min

{
n ∈ Z>0 ;

n
aλ
∈ Z>0 ∀λ ∈ Λ

}
and T ′ =

{
( f

L
aλ

λ , L)

}

λ∈Λ

.

Then it is clear that R(G(T )) = R(G(T ′)). Therefore, by replacing T with T ′, we may
assume T ⊂ R × {L}.

Step 2. Description of R(I) in terms of the function θI .
Let I = IL be the ideal of the idealistic filtration I at level L. Define J ⊂ R × R by setting
JLa = { f ∈ R ; θI ( f ) ≥ a} for a ∈ R. We show R(I) = J. Since I = G(T ) = G(I × {L}), we
have ILa = Idae for any a ∈ R by Lemma 2.2.1.2 (1). (We use the convention that I−n

= R
for n ∈ Z>0). Thus, by Lemma 2.2.1.2 (3), R(I) = K where K ⊂ R × R is defined by

KLa =
{
f ∈ R ; ∀b < a, ∃n ∈ Z>0 s.t. f n ∈ InLb = Idnbe

}
(a ∈ R).
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The condition above can be rephrased as follows:
(
∀b < a, ∃n ∈ Z>0 s.t. f n ∈ Idnbe

)

⇔
(
sup

{
b ∈ R≥0 ; ∃n ∈ Z>0 s.t. f n ∈ Idnbe

}
≥ a

)

⇔

(
sup

{
dnbe

n
; ∃n ∈ Z>0, ∃b ∈ R≥0 s.t. f n ∈ Idnbe

}
≥ a

)

⇔

(
sup

{m
n

; ∃n,m ∈ Z>0 with n > 0 s.t. f n ∈ Im
}
≥ a

)

⇔ θI( f ) ≥ a

Thus R(I)La = KLa = JLa for a ∈ R, hence R(I) = J.
Step 3. There exists ρ ∈ Z>0 such that Ja = Jdρae/ρ for any a ∈ R.

We apply Lemma 2.3.2.6 with a = I to our setting. Let ρ be a common multiple of
{v jk(u j) ; j, k}. Take f ∈ JLa. Then, we have θI( f ) ≥ a. Since ρθI( f ) ∈ Z by Lemma 2.3.2.6,
we have ρLθI ( f ) ≥ dρLae. Therefore, we have f ∈ JdρLae/ρ, and hence JLa ⊂ Jdρ(La)e/ρ. The
opposite inclusion is clear by condition (iii) in Definition 2.1.1.1 for the idealistic filtration
J.

Step 4. We show S 1 describes R(I) and S 1 = S 0
R1

in the following notation:
Consider the graded R-algebras

R0 = R[XL] ⊃ S 0 =

⊕

n∈Z≥0

InXLn

R1 = R[X
1
ρ ] ⊃ S 1 =

⊕

n∈Z≥0

J n
ρ
X

n
ρ

where X is an indeterminate. We denote by S 0
R1 the integral closure of S 0 in R1.

It is clear from Step 3 that S 1 describes J = R(I). We have only to prove S 1 = S 0
R1 .

Firstly we show S 1 ⊂ S 0
R1 . Let gX

n
ρ ∈ S 1 be a homogeneous element of S 1. Since

g ∈ J n
ρ
, we have θI(g) = θI(g) ≥ n

ρL . Thus, by Lemma 2.3.2.6, we have gρL ∈ In. Therefore
there exists a monic equation

(
gρL

)m
+ c1

(
gρL

)m−1
+ · · · + cm = 0 with ci ∈ (In)i.

This in turn provides a monic equation of gX
n
ρ over S 0, i.e.,

(
gX

n
ρ

)ρLm
+ (c1XLn)

(
gX

n
ρ

)ρL(m−1)
+ · · · + cmXLnm

= 0.

Therefore, we have S 1 ⊂ S 0
R1 .

Secondly we show S 1 ⊃ S 0
R1 . Take g =

∑
n∈Z≥0

g n
ρ
X

n
ρ ∈ S 0

R1 . Then we have a monic
equation of g over S 0, i.e.,

(♠) gm
+ c1(XL)gm−1

+ · · · + cm(XL) = 0 with ci(X
L) ∈ S 0.

Set G =
∑

n∈Z≥0
g n
ρ
X

n
ρ Yn ∈ R1[Y] where Y is another indeterminate. By replacing X by XYρ

in (♠), we have a monic equation of G over S 0[Y], i.e.,

Gm
+ c1(XLYρL)Gm−1

+ · · · + cm(XLYρL) = 0 with ci(XLYρL) ∈ S 0[Y].

Since S 0[Y]
R1[Y]

= S 0
R1 [Y] (cf. Alg. Comm., chap. V, §1, no3, prop.12 in [Bou64]), each

coefficient of Yn in G are integral over S 0, i.e.,

g n
ρ
X

n
ρ ∈ S 0

R1 (n ∈ Z≥0).
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Thus we may assume g is a homogeneous element in R1, say, g = g l
ρ
X

l
ρ . Looking at the

coefficient of X
ml
ρ in (♠), we have

gm
l
ρ

+ α1gm−1
l
ρ

+ · · · + αm = 0

where αn is the coefficient of X
nl
ρ in cn ∈ S 0 ⊂ R1. Note that αn = 0 if nl < ρLZ, and

αn ∈ I
nl
ρL if nl ∈ ρLZ. Thus, for any 1 ≤ n ≤ m, we have

αn ∈ I
nl
ρL = I nl

ρ
⊂ R(I) nl

ρ
.

Since R(I) is integrally closed by Proposition 2.2.2.1, we have

g l
ρ
∈ R(I) l

ρ
= J l

ρ
and hence g = g l

ρ
X

l
ρ ∈ J l

ρ
X

l
ρ ⊂ S 1.

Therefore, we have S 1 ⊃ S 0
R1 .

Step 5. We see that S 1 is finitely generated over R.
It is clear when I = (0), since S 1 = R. We assume I , (0).

Since R is normal, so is R1 = R[X
1
ρ ]. Thus

S 1 = S 0
R1
= S 0

Q(R1)
.

Note that Q(R1) is a finite extension of Q(S 0) = Q(R[XL]). By §33 of [Mat86], it follows

that S 1 = S 0
Q(R1)

is a finite S 0-module. On the other hand, S 0 is finitely generated over R.
Indeed, taking generators of I as I = (r1, . . . , rt), we have S 0 = R[r1XL, . . . , rtXL]. Thus S 1

is also finitely generated over R.
Step 6. Finishing argument.

By Steps 2 and 3, we see that S 1 describes the idealistic filtration R(I). Since S 1 is finitely
generated over R, we conclude that R(I) is r.f.g. type (cf. Lemma 2.3.2.2). This completes
the proof of Proposition 2.3.2.4.

C 2.3.2.7. Let I ⊂ R × R be an idealistic filtration. Assume I is of r.f.g. type.
Then its R-saturation coincides with its integral closure, i.e.,

R(I) = IC(I).

P. By Proposition 2.2.2.1, R(I) is integrally closed.
Therefore, we have R(I) ⊃ IC(I). Thus we have only to show R(I) ⊂ IC(I).
By the same argument as in Step 1 of the proof of Proposition 2.3.2.4, we may assume

that I is generated by a finite number of elements at level L. In fact, using the same notation,
we see that R(G(T )) = R(G(T ′)) and IC(G(T )) = IC(G(T ′)). Then as shown in Step 4 of
the proof of Proposition 2.3.2.4, the integral closure S 1 ⊂ R[X

1
ρ ] of S 0 in R[X

1
ρ ] describes

R(I), while S 0 describes I.
Take an element ( f , a) ∈ R(I). Then we have ( f , dρae

ρ
) ∈ R(I) (cf. Lemma 2.3.1.1),

which implies f X
dρae
ρ ∈ S 1. Now since f X

dρae
ρ is integral over S 0, by the same argument

as in Step 4 of the proof of Proposition 2.3.2.4, we see that ( f , dρae
ρ

) is integral over I, i.e.,

( f , dρae
ρ

) ∈ IC(I). Finally, since a ≤ dρae
ρ

, we conclude ( f , a) ∈ IC(I). This shows the desired
inclusion.

This completes the proof of Corollary 2.3.2.7.
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§2.4. Localization and completion of an idealistic filtration.

In this section, we discuss the notion of localization and completion of an idealistic
filtration over R, associated to the localization and completion of R, respectively. Our
main observation here is the compatibility of the operations of taking the generation, D-
saturation, and R-saturation with localization and completion. The compatibility allows
us to reduce the analysis of the global properties of these operations to the local or to the
analytic ones, to which we may apply some explicit computations.

In this section R denotes the coordinate ring of an affine open subset of a nonsingular
variety W over k.

2.4.1. Definition.

D 2.4.1.1. Let I ⊂ R × R be an idealistic filtration over R.
(1) (Localization) Let S be a multiplicative set of R. Consider the subset IS ⊂ RS × R

defined by
(IS )a = (Ia)S = Ia ⊗R RS (a ∈ R).

Then IS is an idealistic filtration, called the localization of I by S .
In case P ∈ Spec R is a point corresponding to a prime ideal P ⊂ R (we use the same

symbol for the point and prime ideal by abuse of notation) with S = R \P, we often denote
IS by IP.

(2) (Completion) Let R̂ be the completion of R with respect to a maximal ideal m ⊂ R.
Consider the subset Î ⊂ R̂ × R defined by

(̂I)a = Îa = Ia ⊗R R̂ (a ∈ R).

Then Î is an idealistic filtration, called the completion of I (with respect to m-adic topol-
ogy).

R 2.4.1.2. We remark that, for idealistic filtrations I, I′ ⊂ R × R, the following
conditions are equivalent:

(1) I ⊂ I′,
(2) Im ⊂ I′m for any maximal ideal m ⊂ R,
(3) Î ⊂ Î′, where the completion “̂” is taken with respect the m-adic topology, for

any maximal ideal m ⊂ R.

In fact, fixing the level a ∈ R, we see that the equivalence of the conditions on the ideal-
istic filtrations follows from the equivalence of the corresponding conditions on the ideals,
which is a standard result in commutative ring theory.

2.4.2. Compatibility.

P 2.4.2.1.
(1) (Compatibility with generation) Let T ⊂ R × R be a subset. Then we have

GR(T )S = GRS (T ), ĜR(T ) = GR̂(T ).

In particular, if I = G(T ) is of r.f.g. type, then so are IS and Î.
(2) (Compatibility withD-saturation) Let I ⊂ R×R be an idealistic filtration. Then we have

D(I)S = D(IS ), D̂(I) = D(̂I).

Let E be a simple normal crossing divisor. Then we have

DE(I)S = DE(IS ), D̂E(I) = DE (̂I).
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(3) (Compatibility with R-saturation) Let I ⊂ R × R be an idealistic filtration of r.f.g. type.
Then we have

R(I)S = R(IS ), R̂(I) = R(̂I).

P.
(1) This follows easily from the explicit construction of the generation in Lemma

2.2.1.2 (1).
(2) We verify D(I)S = D(IS ). Firstly we show the inclusion D(I)S ⊂ D(IS ). Note that

D(IS ) ∩ {R × R} is an idealistic filtration over R containing I, and being D-saturated by
Lemma 1.1.2.1 (4). Therefore, we have

D(I) ⊂ D(IS ) ∩ {R × R} ⊂ D(IS ).

At level a ∈ R, this implies D(I)a ⊂ D(IS )a and hence (D(I)a)S ⊂ D(IS )a. That is to say,
we have D(I)S ⊂ D(IS ).

Secondly we show the opposite inclusion D(I)S ⊃ D(IS ). Note that D(I)S is an ide-
alistic filtration over RS containing I, and hence containing IS . We claim that D(I)S is
D-saturated. In fact, suppose ( f , a) ∈ D(I)S , i.e., f ∈ {D(I)a}S . Then, for d ∈ Difft

RS
, we

see by Lemma 1.1.2.1 (7)

d( f ) ∈ Difft
RS

(
{D(I)a}S

)
=

{
Difft

R (D(I)a)
}
S
⊂ {D(I)a−t}S .

That is to say, we have (d( f ), a − t) ∈ D(I)S , checking condition (differential) for D(I)S .
Thus we have D(I)S ⊃ D(IS ).

This completes the verification for D(I)S = D(IS ).

The verification for D̂(I) = D(̂I) is identical to the one above using again Lemma
1.1.2.1 (7), and left to the reader as an exercise.

The verification for the compatibility of localization and completion withDE-saturation
goes almost verbatim to the one above, replacing D and Diff t

R with DE and Difft
R,E. We

leave the verification of the statement of Lemma 1.1.2.1 (7) obtained by replacing Diff t
R

with Difft
R,E as an exercise to the reader, since it is identical to the one we gave in Chapter

1.
(3) We use the same notation and argument as in Step 1 through Step 4 of the proof of

Proposition 2.3.2.4 (See also Remark 2.4.2.2 (1) below). First, since I, IS , and Î share the
same set of generators T , we may take in Step 1 the common replacement T ′ at level L,
which keeps the left hand side and right hand side of the equation for compatibility intact.
Therefore, we may assume from the beginning that I is generated by T ⊂ R × {L}. Let
I = IL and A =

⊕
n∈Z≥0

InXLn ⊂ R[XL]. Note that A describes the idealistic filtration I
(cf. Definition 2.3.2.1, Lemma 2.3.2.2). Moreover,

AS =

⊕

n∈Z≥0

In
S XLn ⊂ RS [XL] and Â =

⊕

n∈Z≥0

ÎnXLn ⊂ R̂[XL]

describe the localization IS and completion Î, respectively.
Step 2 goes without any change for all I, IS , and Î.

We take ρ in Step 3 so that ρ works for all I, IS and Î simultaneously. Set A, AS , Â

as the integral closures of A in R[X
1
ρ ], of AS in RS [X

1
ρ ], and of Â in R̂[X

1
ρ ], respectively.

Then, in Step 4, we see that A, AS , Â describe the idealistic filtrations R(I), R(IS ), R(̂I),
respectively.
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On the other hand, since A describes R(I), it follows by definition that (A)S and Â
describe the localization R(I)S and completion R̂(I), respectively.

Now since the operation of taking the integral closure commutes with localization, we
have (A)S = AS . Thus we conclude R(I)S = R(IS ).

As to the question of commutativity of the operation of taking the integral closure with
completion, recall that R is a finitely generated k-algebra or its localization, hence that it
is a Grothendieck ring. Since A is a finitely generated R-algebra by Step 5 of Proposition

2.3.2.4, A is also a Grothendieck ring. This allows us to conclude that Â is normal, since

A is also normal (See Remark 1 to Theorem 32. 6 in [Mat86]). Now Â is integral over Â,

since A is integral over A. Therefore we conclude Â = Â, and hence R̂(I) = R(̂I).
This completes the proof of Proposition 2.4.2.1.

R 2.4.2.2.
(1) In §2.3, the base ring R was assumed to be the coordinate ring of an affine open subset

of a variety W smooth over k, or its localization. We did not deal with the case where the
base ring is the completion R̂. Note that the proof of Proposition 2.3.2.4 works just as well
over the base ring being the completion R̂ from Step 1 through Step 4, but fails in Step 5,
where Q(R̂[X]) is not finitely generated over k. Therefore, we do not claim the stability of
the idealistic filtrations of r.f.g. type over R̂ under R-saturation.

Nevertheless, we should emphasize that the following assertion is valid:

If an idealistic filtration I over R is of r.f.g. type, then so is R(̂I).

Indeed, since R(I) is of r.f.g. type by Proposition 2.3.2.4, the assertion is a direct conse-
quence of compatibility R(̂I) = R̂(I).

(2) The assumption of I being of r.f.g. type is indispensable in Proposition 2.4.2.1 (3). The
following gives a counterexample to the assertion of compatibility with R-saturation when
I is not of r.f.g. type: Let I = G(T ) be an idealistic filtration over R = k[x, y] where the set
of generators T is an infinite set given as below

T = {(φiy, 1 − i−1) ; i ∈ Z>0}, φi =

i∏

j=1

(x − j).

We claim that, m = (x, y) being the maximal ideal corresponding to the origin, we have

R(Im) = GRm({(y, 1)}), (y, 1) < R(I)m.

This implies that R(Im) , R(I)m and also that R(̂I) = GR̂({(y, 1)}) , R̂(I) = (y, 1) where the
completion is taken with respect to m.

Since R(Im) = G({(y, 1)}) is clear, we only show the second part of the claim (y, 1) <
R(I)m. Assume (y, 1) ∈ R(I)m. Then there exists f (x, y) ∈ k[x, y] such that f (0, 0) , 0
and that f y ∈ R(I)1. Let K be as in Lemma 2.2.1.2 (3). Then, for any l ∈ Z>0, we have
f y ∈ K1−l−1 and hence f mlyml ∈ Iml−m for some m ∈ Z>0. Since the generators in T are
homogeneous with respect to y, we see that Iml−m is a homogeneous ideal with respect to y
(cf. Lemma 2.2.1.2 (1)). This implies f (x, 0)mlyml ∈ Iml−m. By Lemma 2.2.1.2 (1), we then
conclude

f (x, 0)ml ∈

φi1 · · ·φir ; r ≤ ml, r −
r∑

t=1

i−1
t ≥ ml − m

 .
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Looking at the range {i1, . . . , ir}, we have

1 − r−1
r∑

t=1

i−1
t = r−1

r −
r∑

t=1

i−1
t

 ≥ (ml)−1(ml − m) = 1 − l−1,

and hence

l−1 ≥ r−1
r∑

t=1

i−1
t ≥

(
max

t
it
)−1
.

This implies that each range {i1, . . . , ir} contains at least one it with it ≥ l. Therefore, we
have φl| f (x, 0)ml and hence φl| f (x, 0). Since l ∈ Z>0 is arbitrary, we conclude f (x, 0) = 0,
contradicting the assumption f (0, 0) , 0. This contradiction shows (y, 1) < R(I)m.

We end this section by stating a corollary which says that the results of 2.2.3 hold for
an idealistic filtration I over R which is essentially of finite type over k, without assuming
it has a regular system of parameters, if I is of r.f.g. type.

C 2.4.2.3. Let I be an idealistic filtration of r.f.g. type over R which is essen-
tially of finite type over k. Then, we have

DR(I) ⊂ RD(I), B(I) = RD(I).

Let E be a simple normal crossing divisor. Then we have

DER(I) ⊂ RDE(I), BE(I) = RDE(I).

In particular, the operation of taking the B-saturation orBE-saturation is compatible with
localization or completion for an idealistic filtration of r.f.g. type, and the property of being
r.f.g. type is stable under the operation.

P. Firstly we show the inclusion DR(I) ⊂ RD(I). By Proposition 2.4.2.1, it suf-
fices to check the inclusion over the localization of R at an arbitrary maximal ideal. Then,
since the localization admits a regular system of parameters, we can apply Proposition
2.2.3.1 to verify the inclusion. Secondly, in order to prove B(I) = DR(I), we can repeat
the argument in Corollary 2.2.3.2, which is valid regardless whether R has a regular sytem
of parameters or not, once we have the inclusion.

The proof of the logarithmic case is almost identical to the one above.



CHAPTER 3

Leading generator system

The purpose of this chapter is to analyze the leading terms of the elements of an
idealistic filtration, i.e., the lowest terms of their power series expansions. Even though
our analysis is elementary, it leads to the most important notion in the Kawanoue program,
i.e., that of a leading generator system. In this chapter, we only give the definition of a
leading generator system. However, it could be said that a large portion of our entire series
of papers, though written with resolution of singularities in mind as the principal goal, is a
treatise on the properties of a leading generator system in its own light.

Our analysis in this chapter is local, or even analytically local. Accordingly, we con-
sider an idealistic filtration I over R where R is taken to be the localization at a maximal
ideal corresponding to a closed point P ∈ W of the coordinate ring of an affine open sub-
set of a variety W smooth over an algebraically closed field k of char(k) = p ≥ 0, or its
completion. We denote by m the maximal ideal of R.

It is worth emphasizing that the main results of this chapter are obtained assuming that
the idealistic filtration is D-saturated.

The main object of our study is the graded k-subalgebra L(I) =
⊕

n∈Z≥0
L(I)n, formed

by the leading terms of the idealistic filtration (cf. §3.1), of the graded ring G =
⊕
≥0m

n/mn+1
=⊕

n∈Z≥0
Gn, which is isomorphic to a polynomial ring with d(= dim W)-variables over k.

In characteristic zero, if I is D-saturated, L(I) is generated as a graded algebra over k
by its degree one component L(I)1, i.e., L(I) = k[L(I)1]. Moreover, the hypersurfaces of
maximal contact correspond exactly to the elements of the form (h, 1) ∈ I whose leading
terms belong to L(I)1 \ {0}, i.e., h = (h mod m) ∈ L(I)1 \ {0}. A fundamental observation of
the Kawanoue program is then that the invariants we need to build a sequence of blowups
for resolution of singularities can be all constructed from a collection {(hi, 1)} ⊂ I with {hi}

forming a basis of L(I)1 and hence generating the graded algebra L(I), instead of taking a
hypersurface of maximal contact one by one.

In characteristic char(k) = p > 0, in contrast, L(I) may not be generated as a graded
algebra over k by its degree one component L(I)1 even if I is D-saturated. Or worse, L(I)1

may be 0, i.e., there is no hypersurface of maximal contact. However, if I is D-saturated,
L(I) is generated as a graded algebra over k by

⋃
e∈Z≥0

L(I)pure
pe , i.e.,

L(I) = k[
⋃

e∈Z≥0

L(I)pure
pe ],

where L(I)pure
pe ⊂ L(I)pe is the subspace consisting of “pure” elements. (We call an element

w ∈ L(I)pe “pure” if w = vpe
for some v ∈ G1.) Observing that there is a sequence of

inclusions

L(I)1 = L(I)pure
p0 , {L(I)pure

p0 }
p ⊂ L(I)pure

p1 , {L(I)pure
p1 }

p ⊂ L(I)pure
p2 · · · ,

46
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which stabilizes to a sequence of equalities after some point, i.e., there exists
eN ∈ Z≥0 such that for e > eN the above inclusions become equalities

{L(I)pure
pe−1 }

p
= L(I)pure

pe ,

we are led to the following notion of a leading generator system.

We call a subset H = {(hi j, pei)} ⊂ I a leading generator system if it satisfies the
following conditions:

(i) hi j ∈ m
pei and hi j = (hi j mod mpei+1) ∈ L(I)pure

pei ,

(ii) {hi j
pe−ei

; ei ≤ e} consists of #{(i, j) ; ei ≤ e}-distinct elements, and forms a basis of
L(I)pure

pe for any e ∈ Z≥0.
Therefore, if I isD-saturated, the leading terms of the elements in the leading generator

system generates L(I) as a graded algebra over k, i.e.,

L(I) = k[{hi j}].

(Note that we have dimk L(I)pure
pe ≤ dim W for any e ∈ Z≥0 and hence that condition (ii)

implies #H ≤ dim W.)

The Kawanoue program in its simplest terms is a program to construct an algorithm
for resolution of singularities using a leading generator system as a collective substitute for
a hypersurface of maximal contact, which in the existing algorithms in characteristic zero
is the key for the inductive structure.

§3.1. Analysis of the leading terms of an idealistic filtration.

3.1.1. Definitions.

D 3.1.1.1.
(1) Let I be an idealistic filtration over R with its maximal ideal m. Recall that the maximal

ideal m corresponds to a closed point P ∈ W. Set

G =
⊕

n∈Z≥0

mn/mn+1
=

⊕

n∈Z≥0

Gn.

We define the graded k-subalgebra

L(I) =
⊕

n∈Z≥0

L(I)n ⊂ G,

which we call the leading algebra of the idealistic filtration I at P, by setting

L(I)n = { f = ( f mod mn+1) ; ( f , n) ∈ I, f ∈ mn}.

Note that L(I)0 = k by condition (o) in Definition 2.1.1.1 (2).
(2) Set p = char(k) when k is of positive characteristic, or p = ∞ when k is of characteristic

zero. For e ∈ Z≥0 with pe ∈ Z>0, we define the pure part L(I)pure
pe of L(I)pe by the formula

L(I)pure
pe = L(I)pe ∩ Fe(G1) ⊂ L(I)pe ,

where Fe is the e-th power of the Frobenius map of G (cf. Definition 1.3.1.1).
An element w ∈ L(I)pe is called pure if w ∈ L(I)pure

pe .

R 3.1.1.2.
If we choose a regular system of parameters (x1, . . . , xd) for R, there is a natural isomor-
phism G � k[x1, . . . , xd]. Through this isomorphism, we may identify G with the polyno-
mial ring over k.
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We use the convention that∞n
= ∞ for n ∈ Z>0 and∞0

= 1 (cf. 0.2.3.2.1). Therefore, the
only pure part we consider in characteristic zero is in degree one, where we have

L(I)pure
∞0 = L(I)pure

1 = L(I)1.

In other words, in charactersitic zero, all the pure elements are in degree one.
We see that L(I)n is a k-vector subspace of Gn, which follows from the definition of an
idealistic filtration I. Using the assumption that k is algebraically closed, we also see that
L(I)pure

pe is a k-vector subspace of L(I)pe .

3.1.2. Heart of our analysis. The following lemma sits at the heart of our analysis,
though its statement and proof are quite elementary.

L 3.1.2.1. Let G = k[x1, . . . , xd] be the polynomial ring over k with d variables
X = (x1, . . . , xd). We regard G as a graded k-algebra with natural grading defined by
the degree. We define “p” as in Definition 3.1.1.1 and we use the same convention as in
Remark 3.1.1.2.

Let L =
⊕

n∈Z≥0
Ln ⊂ G be a graded k-subalgebra of G with L0 = G0 = k. Suppose

that L is D-saturated in the sense that it satisfies the following condition:

f ∈ L, ∂ ∈ DiffG =⇒ ∂( f ) ∈ L.

Then L is generated as a graded algebra over k by its pure part Lpure :=
⊔

e∈Z≥0
Lpure

pe where
Lpure

pe = Lpe ∩ Fe(G1) ⊂ Lpe , i.e., L = k[Lpure].
Moreover, we can choose {e1 < · · · < eN} ⊂ Z≥0 and V1t · · · tVN ⊂ G with Vi = {vi j} j

satisfying the following conditions:

(i) Fei(Vi) ⊂ Lpure
pei for 1 ≤ i ≤ N,

(ii)
⊔

ei≤e Fe(Vi) is a k-basis of Lpure
pe for any e ∈ Z≥0.

In particular, we have L = k[
⊔N

i=1 Fei (Vi)] with
∑N

i=1 #Vi ≤ d.

P. We prove the following assertion

(♥)d L = k[Lpure]

by induction on the number of variables d. When d = 0, we have G = L = k and Lpure
= ∅.

Thus we obviously have (♥)0.
Now we prove (♥)d assuming (♥)d−1. Take f ∈ L. It suffices to show f ∈ k[Lpure]. We

may assume that f is homogeneous of degree r ∈ Z≥0, i.e., f ∈ Lr. Set

s = max{t ∈ Z≥0 ; f ∈ F t(G)}, r = r′ps,

and take g ∈ Gr′ such that f = gps
. We write g =

∑
|J|=r′ cJ XJ ∈ Gr′ with cJ ∈ k.

By the maximality of s (and since k is algebraically closed), we observe that there
exists Jo with |Jo| = r′ such that cJo , 0 and that p 6 |Jo = ( jo1, . . . , jod), i.e., p 6 | joα for
some α. By renumbering the variables, we may assume p 6 | jod.

We compute

z = ∂Jo−ed g = jodcJo · xd +

d−1∑

α=1

( joα + 1)cJo−ed+eα · xα.

Since jodcJo ∈ k \ {0}, we may take (x1, . . . , xd−1, z) as a new system of variables for the
polynomial ring G. We set G′ = k[x1, . . . , xd−1] to be the polynomial ring with (d − 1)-
variables and L′ = L∩G′. Note that L′ isD-saturated. Rewrite g =

∑r′
i=0 aizi with ai ∈ G′r′−i

in terms of the new system of variables.



§3.1. ANALYSIS OF THE LEADING TERMS OF AN IDEALISTIC FILTRATION. 49

Note that, for any h ∈ G and K ∈ Zd
≥0, we have

∂XpsK (hps
) = ∂XK (h)ps

,

which follows from the equations (cf. Remark 1.2.1.3 (2))

∂psK(Xps J) =

(
psJ
psK

)
Xps(J−K) and

(
psJ
psK

)
=

(
J
K

)
=

(
J
K

)ps

Thus we have

∂Xps K ( f ) = ∂XpsK (gps
) = ∂XK (g)ps

= zps
, K = Jo − ed,

∂zpsi ( f ) = ∂zpsi (gps
) = ∂zi(g)ps

= aps

i +

r′∑

t=i+1

(
t
i

)
aps

t z(t−i)ps
(0 ≤ i ≤ r′).

Recall that L is D-saturated. Thus the first formula implies zps
∈ L, and the second formula

implies aps

i ∈ L for 0 ≤ i ≤ r′ by descending induction on i.
On one hand, we have zps

∈ Lpure by definition. On the other hand, since L′ = k[L′ pure]
by inductional hypothesis on the number of variables, we have

{aps

i ; 0 ≤ i ≤ r′} ⊂ L ∩G′ = L′ = k[L′ pure] ⊂ k[Lpure].

Therefore, we conclude

f = gps
=

r′∑

i=0

aps

i zps i ∈ k[Lpure].

This completes the inductional step and hence the proof for L = k[Lpure].
In order to see the “Moreover” part of the statement, observe that there is a sequence

of inclusions among the pure parts

Lpure
p0 = L1, {L

pure
p0 }

p ⊂ Lpure
p1 , {L

pure
p1 }

p ⊂ Lpure
p2 , · · · .

Let e1 < · · · < ei < · · · < eN be the integers indicating the stages where the above inclusions
are not equalities, i.e.,


{Lpure

pei−1}
p $ Lpure

pei (1 ≤ i ≤ N)

{Lpure
pe−1 }

p
= Lpure

pe e < {ei ; 1 ≤ i ≤ N}.

Note that the set of such integers is a finite set, since the dimension of the pure part is
uniformly bounded, i.e., dimk Lpure

pe ≤ dim G1 = d for any e ∈ Z≥0.
Now we have only to take Vi ⊂ G1 (i = 1, . . . ,N) inductively so that

Fei(Vi) ∪
⋃

j<i

Fei(V j) ⊂ Lpure
pei

forms a basis of Lpure
pei for 1 ≤ i ≤ N.

This completes the proof of Lemma 3.1.2.1.

3.1.3. Leading generator system. The statement of Lemma 3.1.2.1 leads us to the
following notion of a leading generator system of a D-saturated idealistic filtration.

D 3.1.3.1. Let I be a D-saturated idealistic filtration. We call a subset H =
{(hi j, pei)} ⊂ I a leading generator system if it satisfies the following conditions:

(i) hi j ∈ m
pei and hi j = (hi j mod mpei+1) ∈ L(I)pure

pei ,

(ii) {hi j
pe−ei

; ei ≤ e} consists of #{i j ; ei ≤ e}-distinct elements, and forms a basis of
L(I)pure

pe for any e ∈ Z≥0.
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P 3.1.3.2. A leading generator system exists for a D-saturated idealistic
filtration I.

P. Since I is D-saturated, it follows that L(I) is D-saturated and hence that we can
apply Lemma 3.1.2.1 to L = L(I) ⊂ G. Take a collection H = {(hi j, pei)} so that hi j = vpei

i j ,
where {e1 < · · · < eN} and V1t· · ·tVN ⊂ G1 with Vi = {vi j} j are taken as stated in Lemma
3.1.2.1, satisfying conditions (i) and (ii). Then H is a leading generator system for I.

R 3.1.3.3.
(1) Condition (i) in Definition 3.1.3.1 can be rephrased in terms of the differential operators

as follows:

(i) D(hi j) ∈ m for any D ∈ Diff(pei )
R ,

where Diff(pei )
R is defined by the following formula

Diff(pei )
R :=

∑

a+b=pei ,0<a,b<pei

Diffa
R ◦Diffb

R .

(2) We often study a subset H = {(hi j, pei)} ⊂ I which satisfies some slightly weaker con-
ditions than those for a leading generator system. Namely, we require condition (i), and

instead of full condition (ii) where {hi j
pe−ei

; ei ≤ e} should form a basis of L(I)pure
pe , we only

require {hi j
pe−ei

; ei ≤ e} to be k-linearly independent.
The class of the subsets described above, which is slightly bigger than the class of

the leading generator systems, is often better suited for the purpose of setting up some
inductional proofs. We refer the reader to Chapter 4 for the examples of such proofs.

§3.2. Invariants σ and µ̃.

In this section, we present the definitions of the two of the most basic invariants (at
the closed point P ∈ W) that we use in our algorithm, σ and µ̃, in relation to the notion of
a leading generator system.

We warn the reader, however, that in the actual process of our algorithm, the definitions
of σ and µ̃ will be slightly modified. For example, in order to determine the invariant µ̃ in
our setting, we also have to take the boundary divisor of reference into consideration, just
as we do to determine the weak order in the classical setting.

The purpose of this presentation is to bring a flavor of how these invariants may func-
tion in our algorithm, while the details, including their fundamental properties, will be
discussed in Parts II, III, and IV.

3.2.1. Invariant σ.

D 3.2.1.1. Let I be a D-saturated idealistic filtration. Then the invariant σ is
defined to be the infinite sequence indexed by e ∈ Z≥0, i.e.,

σ = (d − lpure
p0 , d − lpure

p1 , . . . , d − lpure
pe , . . . )

where
d = dim W, lpure

pe = dimk L(I)pure
pe .

More precisely, σ should be considered as a function σ : Z≥0 → Z≥0 defined by

σ(e) = d − lpure
pe .

R 3.2.1.2.
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(1) The reason why we take the (infinite) sequence of d − lpure
pe instead of the (infinite)

sequence of lpure
pe is two-fold:

(i) When we consider the invariant lpure
pe , fixing e but varying P ∈ W, we see (cf. Part

II) that it is lower semi-continuous. Taking its negative, we have our invariant
upper semi-continuous as desired.

(In other words, the bigger lpure
pe is, the better the singularities are. Therefore,

as the measure of how bad the singularities are, it is natural to take our invariant
to be its negative.)

(ii) We reduce the problem of resolution of singularities of a variety X to that of
embedded resolution. Therefore, it would be desirable or even necessary to come
up with an algorithm which would induce the “same” process of resolution of
singularities, no matter what ambient variety W we choose for an embedding
X ↪→ W (locally).

While lpure
pe is dependent of the choice of W, dim W − lpure

pe is not. There-
fore, the latter is more appropriate as an invariant toward constructing such an
algorithm.

(2) As observed before, the dimension of the pure part is non-decreasing (with respect to
the power e ∈ Z≥0 of pe), and is uniformly bounded from above by d = dim W, i.e.,

0 ≤ lpure
p0 ≤ lpure

p1 ≤ · · · l
pure
pe−1 ≤ lpure

pe ≤ · · · ≤ d = dim W

and hence stabilizes after some point, i.e., there exists eN ∈ Z≥0 such that for e > eN the
above inequalities become equalities

lpure
pe−1 = lpure

pe .

Therefore, though σ is an infinite sequence by definition, essentially we are only looking
at some finite part of it.

(3) In characteristic zero, the invariant σ consists of only one term (d − dim L(I)1), where
dim L(I)1 can be regarded as indicating “how many linearly independent hypersurfaces of
maximal contact we can take” for I.

3.2.2. Invariant µ̃.

D 3.2.2.1. Let I be aD-saturated idealistic filtration. Take a leading generator
system H = {(hi j, pei)} of I. SetH = {hi j} and (H) ⊂ R to be the ideal generated byH .

For f ∈ R, define its multiplicity (or order) modulo (H) to be

ordH ( f ) = sup {n ∈ Z≥0 ; f ∈ mn
+ (H)}

and

µH (I) := inf

{
µH ( f , a) :=

ordH ( f )
a

; ( f , a) ∈ I, a > 0

}
.

(Note that we set ordH (0) = ∞ by definition.) We define the invariant µ̃ by

µ̃ = µH (I).

R 3.2.2.2.
(1) We will see in Part II that µH (I) is independent of the choice of a leading generator

system, and hence that the invariant µ̃ is actually an intrinsic one associated to the idealistic
filtration I.
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(2) In characteristic zero, where H forms (a part of) a regular system of parameters, the
upper semi-continuity of the invariant µ̃ (along the locus where the invariant σ is constant)
follows immediately from the upper semi-continuity of the usual multiplicity defined on
the nonsingular subvariety defined by the ideal (H). In positive characteristic, however, it
is highly non-trivial, and its verification is one of the main subjects of Part II.

(3) In our algorithm, the invariant µ̃ is actually computed as µH ,E(I), using not only the
information about a leading generator system but also the one about the boundary divisor
E in reference. For all the details, we refer the reader to Parts II, III, and IV.

(4) In Part II, we study the power series expansion of f ∈ R with respect to (the elements in
H associated to) a leading generator system. There the invariant ordH ( f ) can be computed
as the multiplicity of the “constant” term. Again we refer the reader to Part II for its detail.

(5) In characteristic zero, the invariant µ̃ corresponds to the multiplicity of what is called the
coefficient ideal (restricted to a hypersurface of maximal contact) in the classical setting.



CHAPTER 4

Nonsingularity principle.

The purpose of this chapter is to establish the nonsingularity principle, which guaran-
tees the nonsingularity of the center of each blowup in our algorithm
(cf. 0.2.3.2.4 in the introduction).

In §4.1, we prepare some technical lemmas that we use in the proof of the nonsin-
gularity principle. They describe the behavior of a leading generator system, which we
expect to be parallel to the behavior of a collection of hypersurfaces of maximal contact
forming (a part of) a regular system of parameters. We will use these lemmas again later
in our series of papers.
§4.2, where we present the statement and proof of the nonsingularity principle, is

literally the culminating point of Part I.
In this chapter, R represents the localization at a maximal ideal, or its completion, of

the coordinate ring of an affine open subset of a variety W smooth over an algebraically
closed field k of char(k) = p > 0, or characteristic zero where we formally set p = ∞ in the
arguments below. We denote by m the maximal ideal of R, which corresponds to a closed
point P ∈ W.

§4.1. Preparation toward the nonsingularity principle.

4.1.1. Setting for the supporting lemmas. We fix the following setting for the three
supporting lemmas we present in 4.1.2:

LetH = {h1, . . . , hN} ⊂ R be a subset of R consisting of N elements, and let 0 ≤ e1 ≤

· · · ≤ eN be nonnegative integers associated to these elements, satisfying the following
conditions:

(i) hl ∈ m
pel and hl = (hl mod mpel+1) ∈ Fel(G1) for l = 1, . . . ,N. (See Definition

3.1.1.1.)

(ii) {hl
pes−el

; el ≤ es} consists of #{l ; el ≤ es}-distinct and k-linearly independent
elements in the k-vector space Fes (G1) for s = 1, . . . ,N.

We set 

e := e1 = min{el ; l = 1, . . . ,N},
L := max{l ; l = 1, . . . ,N, el = e} = #{l ; l = 1, . . . ,N, el = e}.
e′ := eL+1 (if L = N, then we set e′ = ∞).

Let (x1, . . . , xd) be a regular system of parameters for R such that

Md,L =

[
∂xpe

i
(hl)

]i=1,...,d

l=1,...,L
∈ M(d × L,R)

has the invertible L × L first minor, i.e.,

M =
[
∂xpe

i
(hl)

]i=1,...,L

l=1,...,L
∈ GL(L,R).

Let C =
[
ci j

]i=1,...,L

j=1,...,L
∈ GL(L,R) be the inverse matrix of M so that CM = IL.

53
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We introduce the following multi-index notations:

T := (t1, . . . , tL) ∈ ZL
≥0, cT :=

L∏

j=1

(
cL, j

)t j
.

R 4.1.1.1.
(1) Condition (i) in Setting 4.1.1 can be rephrased in terms of the differential operators as

follows (cf. Remark 3.1.3.3 (1)):

(i) D(hl) ∈ m ∀D ∈ Diff(pel )
R .

(2) We are not assuming in our situation that the subsetH is associated to a leading gener-
ator system of an idealistic filtration. See Remark 3.1.3.3 (2).

(3) Conditions (i) and (ii) imply that, for any regular system of parameters

(y1, . . . , yd), the matrix My =

[
∂ype

i
(hl)

]i=1,...,d

l=1,...,L
is of size d × L and has the full rank, i.e.,

rank My = L. Therefore, by a linear change of variables, we may always come up with a
regular system of parameters (x1, . . . , xd) satisfying the condition in our situation.

4.1.2. Statements and proofs of the supporting lemmas. Given a regular system of
parameters (x1, . . . , xd), we have the corresponding partial differential operators ∂xu

i
(u ∈

Z>0) for 1 ≤ i ≤ d. Given a set of elements (h1, . . . , hN) as described in the setting (e.g. the
set associated to a leading generator system), we would like to have their corresponding
partial differential operators. The next lemma constructs a differential operator Du, which
behaves like “∂hu

L
” in spirit when we look at the initial terms of our concern.

L 4.1.2.1 (Supporting Lemma 1). Let u, r be integers such that

0 ≤ u < pe′−e and 0 ≤ r.

Define

Du :=
∑

|T |=u

cT∂peT ∈ Diffupe

R and D−1 = 0,

where we use the abbreviated notation ∂J = ∂XJ .
Then for any β ∈ mr and 1 ≤ l ≤ N, we have

Du (βhl) ≡ (Duβ)hl + δL,lDu−1β mod mr+pel−upe
+1.

P. By the generalized product rule, we have

Du (βhl) =

∑

|T |=u

cT∂peT (βhl) =
∑

|T |=u

cT
∑

J≤peT

(
∂peT−Jβ

)
(∂Jhl) .

We remark here that

{pel 6 |J} or {pel < |J|} =⇒ ordP(∂Jhl) > pel − |J|.

Thus, in the process of continuing the above computation modmr+pel−upe
+1, the term ∂Jhl

is relevant only when J = pele j (1 ≤ j ≤ L) or when J = O. Therefore, we have

Du (βhl) ≡


∑

|T |=u

cT∂peTβ

 hl +

L∑

j=1

∑

|T |=u

cT
(
∂peT−pel e jβ

) (
∂pel e j hl

)

where the first and the second term in the right hand side correspond to the case J = O and
J = pel e j for 1 ≤ j ≤ L respectively.
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We remark here that in the generalized product rule we only consider the case where
O ≤ peT − pel e j. Looking at the j-th components, we conclude

0 ≤ pet j − pel ≤ pe|T | − pel < pe · pe′−e − pel = pe′ − pel .

This implies that we only consider the case where

el = e and t j ≥ 1.

Therefore, setting T ′ = T − e j, we have

Du (βhl) ≡ (Duβ) hl + δe,el

L∑

j=1

∑

|T ′ |=u−1

cT ′+e j
(
∂peT ′β

) (
∂pee j hl

)

= (Duβ) hl + δe,el


L∑

j=1

cL, j∂pee j hl




∑

|T ′ |=u−1

cT ′∂peT ′β



= (Duβ) hl + δe,el (CM)L,l Du−1β

= (Duβ) hl + δL,lDu−1β.

Therefore, we conclude

Du (βhl) ≡ (Duβ) hl + δL,lDu−1β mod mr+pel−upe
+1.

This completes the proof of Lemma 4.1.2.1.

The next lemma computes the coefficient of hL, using the differential operator con-
structed in the previous lemma, in terms of the coefficients of the other elements hl (l , L)
and terms of higher multiplicity.

L 4.1.2.2 (Supporting Lemma 2). Let v, s be integers such that

1 ≤ v < pe′−e and 0 ≤ s.

Define

Fv =

v∑

u=1

(−1)uhu−1
L Du.

Suppose that the elements α, β1, . . . , βN ∈ R satisfy the following conditions:


α +

N∑

l=1

βlhl ∈ m
s+1

ordP(βl) ≥ s − pel (1 ≤ l ≤ N).

Then we have

βL ≡ Fvα + (−1)vhv
LDvβL +

∑

1≤l≤N,
l,L

(Fvβl) hl mod ms−pe
+1.

(We use the convention that mn
= R when n ≤ 0.)

P. From Supporting Lemma 1 it follows that for 1 ≤ l ≤ N

Du (βlhl) ≡ (Duβl) hl + δL,lDu−1βl mod ms−upe
+1.



56 4. NONSINGULARITY PRINCIPLE.

Multiplying by (−1)uhu−1
L and adding them up with u ranging from 1 to v, we obtain

Fv (βlhl) ≡ (Fvβl) hl + δL,l

v∑

u=1

(−1)uhu−1
L Du−1βl mod ms−pe

+1

= (Fvβl) hl − δL,l

v−1∑

u=0

(−1)uhu
LDuβl.

Since α +
∑N

l=1 βlhl ∈ m
s+1, we have Fv

(
α +

∑N
l=1 βlhl

)
∈ ms+1−pe

.
Therefore, we obtain

Fvα ≡ −Fv


N∑

l=1

βlhl

 mod ms+1−pe

≡ −

N∑

l=1

(Fvβl) hl − δL,l

v−1∑

u=0

(−1)uhu
LDuβl

 mod ms+1−pe

= −

N∑

l=1

(Fvβl) hl +

v−1∑

u=0

(−1)uhu
LDuβL.

Therefore, we conclude

Fvα +
∑

1≤l≤N,
l,L

(Fvβl) hl ≡ − (FvβL) hL +

v−1∑

u=0

(−1)uhu
LDuβL mod ms+1−pe

= −

v∑

u=1

(−1)uhu
LDuβL +

v−1∑

u=0

(−1)uhu
LDuβL = D0βL − (−1)vhv

LDvβL.

Since D0 = idR, we conclude

βL ≡ Fvα + (−1)vhv
LDvβL +

∑

1≤l≤N,
l,L

(Fvβl) hl mod ms−pe
+1.

This completes the proof of Lemma 4.1.2.2.

The next lemma shows that, given a linear combination of (h1, . . . , hL), we can re-
take the coefficients so that they have the expected multiplicities. This paves the way to
the coefficient lemma in the next subsection, where we extract more information on the
coefficients when (hl, pel) (l = 1, . . . ,N) are in a (D-saturated) idealistic filtration.

L 4.1.2.3 (Supporting Lemma 3). We have


N∑

l=1

Rhl

 ∩mr
=

N∑

l=1

mr−pel hl for any r ∈ Z≥0.

(We use the convention that mn
= R when n ≤ 0.)

P. We have only to show the inclusion

(�) (
N∑

l=1

Rhl) ∩mr ⊂

N∑

l=1

mr−pel hl,

while the opposite one is clear.
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We prove the inclusion by induction on the triplet (χ, L, r) where

χ = {el ; l = 1, . . . ,N},

and where the set of the triplets is endowed with the lexicographical order.
Case 1. (χ, L) = (1, 1), i.e., N = 1.

In this case, take βh1 ∈ (Rh1) ∩ mr with β ∈ (mr : h1). Then since h1 < m
pe
+1, we have

β ∈ mr−pe
. Thus we have

(Rh1) ∩ mr
= (mr : h1)h1 ⊂ m

r−pe
h1,

which shows the inclusion (�). (Note that the inclusion (�) holds even when r < pe.)
Case 2. (χ, L) > (1, 1), r ≤ peN .

In this case, set M = min{l ; el = eN}. Since r ≤ peN , we observe

(?)
N∑

l=M

Rhl =

N∑

l=M

mr−pel hl ⊂ m
r.

Assume χ = 1. Then we have M = 1, and (?) implies the inclusion (�) immediately.
Assume χ > 1. Then we we have


N∑

l=1

Rhl

 ∩ mr
=


M−1∑

l=1

Rhl +

N∑

l=M

Rhl

 ∩ m
r

=


M−1∑

l=1

Rhl

 ∩ m
r
+

N∑

l=M

mr−pel hl (by (?))

⊂

M−1∑

l=1

mr−pel hl +

N∑

l=M

mr−pel hl =

N∑

l=1

mr−pel hl,

which implies the inclusion (�). Note that the inclusion on the third line is obtaind by
induction on χ, since

# {el ; 1 ≤ l ≤ M − 1} = χ − 1.

Case 3. (χ, L) > (1, 1), r > peN .
Note that this case happens only when we are in positive characteristic 0 < p = char(k) <
∞. In this case, we take an element

g =
N∑

l=1

βlhl ∈


N∑

l=1

Rhl

 ∩mr ⊂


N∑

l=1

Rhl

 ∩ mr−1.

By induction on r, we may assume

βl ∈ m
r−1−pel (1 ≤ l ≤ N).

By applying Supporting Lemma 2 with

0 < pe′−e − 1 = v, 0 ≤ r − 1 = s, α = 0,

as we check the conditions

α +

N∑

l=1

βlhl ∈ m
s+1, ordP(βl) ≥ s − pel (1 ≤ l ≤ N),

we conclude

βL ≡ Fvα + (−1)vhv
LDvβL +

∑

1≤l≤N,
l,L

(Fvβl) hl mod ms−pe
+1.
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Since Fvα = 0, we conclude

βL ∈ Rhpe′−e−1
L +

∑

1≤l≤N,
l,L

Rhl +m
r−pe
.

Therefore, we have

g =

N∑

l=1

βlhl =

∑

1≤l≤N,
l,L

βlhl + βLhL

∈



∑

1≤l≤N,
l,L

Rhl + Rhpe′−e

L +mr−pe
hL


∩ mr

=



∑

1≤l≤N,
l,L

Rhl + Rhpe′−e

L


∩ mr

+mr−pe
hL.

Now instead of looking at the original

H = {h1, . . . , hL−1, hL, hL+1, . . . , hN} with (χ, L),

we look at

H ′ = {h1, . . . , hL−1, h
′
L = hpe′−e

L , hL+1, . . . , hN} with (χ′, L′).

If L = 1, then we have χ′ = χ − 1. If L > 1, then we have (χ′, L′) = (χ, L − 1). Hence we
always have (χ′, L′) < (χ, L). Therefore, by induction, we conclude



∑

1≤l≤N,
l,L

Rhl + Rhpe′−e

L


∩ mr ⊂

∑

1≤l≤N,
l,L

mr−pel hl + m
r−pe′

hpe′−e

L .

Plugging in this inclusion for the third line of the analysis for g, we conclude

g ∈



∑

1≤l≤N,
l,L

Rhl + Rhpe′−e

L


∩mr

+ mr−pe
hL.

=

∑

1≤l≤N,
l,L

mr−pel hl +m
r−pe′

hpe′−e

L +mr−pe
hL

=

∑

1≤l≤N,
l,L

mr−pel hl +m
r−pe

hL =

N∑

l=1

mr−pel hl.

Since g ∈
(∑N

l=1 Rhl

)
∩ mr is arbitrary, we have the inclusion

(�)


N∑

l=1

Rhl

 ∩ mr ⊂

N∑

l=1

mr−pel hl.

This completes the proof of Lemma 4.1.2.3.
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4.1.3. Setting for the coefficient lemma. We describe the setting for the coefficient
lemma:

Let I be a D-saturated idealistic filtration over R.
Let H = {h1, . . . , hN} ⊂ R be a subset of R, and let 0 ≤ e1 ≤ · · · ≤ eN be nonnega-

tive integers associated to these elements, satisfying conditions (i) and (ii) as described in
Setting 4.1.1, and satisfying one more condition

(iii) (hl, pel) ∈ I for l = 1, . . . ,N.

We denote by (H) ⊂ R the ideal generated by the setH .
For f ∈ R, set

ordH ( f ) = sup {n ∈ Z≥0 ; f ∈ mn
+ (H)}

and

µH (I) := inf

{
µH ( f , a) :=

ordH ( f )
a

; ( f , a) ∈ I, a > 0

}
.

Note that we set ordH (0) = ∞ by definition.
We also bring the attention of the reader to the following notation:

For B = (b1, . . . , bN) ∈ ZN
≥0, we set [B] = (b1 pe1 , . . . , bN peN ) and hence

|[B]| =
N∑

l=1

bl p
el .

4.1.4. Statement and proof of the coefficient lemma.

L 4.1.4.1 (Coefficient Lemma). Let µ ∈ R≥0 be a nonnegative number such that
µ < µH (I). Set

I′t = It ∩ m
dµte,

where we use the convention that mn
= R for n ≤ 0. Then for any a ∈ R, we have

Ia =
∑

B

I′a−|[B]|H
B.

P. We set

qa =
∑

B

I′a−|[B]|H
B ⊂ Ia.

Our goal is to show Ia = qa.
When a ≤ 0, since R = I′a ⊂ qa, we have Ia = R = qa, the desired equality.
Therefore, in the following, we assume a > 0.
Step 1. Proof for the inclusion (?)c,r defined below.

For c ∈ Z>0 and r ∈ Z≥0, we set

Jc,r = m
r+1
+ qa +

∑

|[B]|≥c

mr−|[B]|HB.

We prove the inclusion

(?)c,r Ia ∩m
r ⊂ Jc,r (1 ≤ c ≤ dae, r ∈ Z≥0)

by induction on c.
Case 1. c = 1.

In this case, if dµae ≤ r, then the inclusion (?)1,r holds since

Ia ∩m
r ⊂ Ia ∩ m

dµae
= I′a ⊂ qa ⊂ J1,r.
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If dµae ≥ r + 1, then we have

Ia ∩ m
r ⊂

(
mdµae + (H)

)
∩ mr (by definition of µH (I) and µ)

⊂ mr+1
+


N∑

l=1

Rlhl

 ∩ mr (since mdµae ⊂ mr+1 ⊂ mr)

= mr+1
+

N∑

l=1

mr−pel hl (by Supporting Lemma 3)

= mr+1
+

∑

|B|=1

mr−|[B]|HB ⊂ mr+1
+

∑

|[B]|≥1

mr−|[B]|HB ⊂ J1,r,

and hence the inclusion (?)1,r.
Case 2. c ≥ 2 assuming the inclusion (?)c−1,r.

Using the inclusion (?)c−1,r, we have

Ia ∩ m
r ⊂

m
r+1
+ qa +

∑

|[B]|≥c−1

mr−|[B]|HB

 ∩ Ia

= qa +

m
r+1
+

∑

|[B]|≥c−1

mr−|[B]|HB

 ∩ Ia.

Since qa ⊂ Jc,r, in order to show the inclusion (?)c,r, we have only to prove
m

r+1
+

∑

|[B]|≥c−1

mr−|[B]|HB

 ∩ Ia ⊂ Jc,r.

Let f be an element in the left-hand side of the desired inclusion above, so that there exists
a finite set {

αB ∈ m
r−|[B]| ; |[B]| ≥ c − 1

}
⊂ R

such that
f −

∑

|[B]|≥c−1

αBHB ∈ mr+1.

Fix a multi-index Bo with |[Bo]| = c − 1.
Choose a regular system of parameters (x1, . . . , xd) such that

hl − xpel

l ∈ m
pel+1 (1 ≤ l ≤ N).

The partial derivatives in the following computation are taken with respect to this regular
system of parameters X = (x1, . . . , xd). We use the abbreviation ∂J = ∂XJ . The symbol “≡”
denotes an equality modulo mr−(c−1)+1

= mr−c+2. We compute

∂[Bo] f ≡
∑

|[B]|≥c−1

∂[Bo](αBHB)

=

∑

|[B]|≥c−1

∑

J≤[Bo]

(∂[Bo]−JαB)(∂JHB) (by the generalized product rule)

≡
∑

|[B]|≥c−1

∑

J≤[Bo]

(∂[Bo]−JαB)(∂JX[B])

=

∑

|[B]|≥c−1

∑

J≤[Bo]

(∂[Bo]−JαB)

(
[B]
J

)
X[B]−J
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In the last formula, the binomial coefficient
(
[B]
J

)
is zero unless J = [K] for some K ≤ Bo.

Therefore, we have

∂[Bo] f ≡
∑

|[B]|≥c−1

∑

K≤Bo

(∂[Bo−K]αB)

(
[B]
[K]

)
X[B−K]

=

∑

|[B]|≥c−1

∑

K≤Bo

(∂[Bo−K]αB)

(
B
K

)
X[B−K]

≡
∑

|[B]|≥c−1

∑

K≤Bo

(∂[Bo−K]αB)

(
B
K

)
HB−K.

In the last formula, the binomial coefficient
(

B
K

)
= 0 unless K ≤ B.

If K < B, we have |[B − K]| ≥ 1 and

∂[Bo−K]αB ∈ m
r−|[B]|−|[Bo−K]|

= mr−(c−1)−|[B−K]|.

If K = B, we have B = Bo, since B = K ≤ Bo and |[Bo]| = c − 1 ≤ |[B]|.
Therefore, we have

(∗) ∂[Bo] f − αBo ∈
∑

K<B

mr−c+1−|[B−K]|HB−K
+mr−c+2

=

∑

|[B]|≥1

mr−c+1−|[B]|HB
+mr−c+2.

On the other hand, since f ∈ Ia ∩ mr and since the idealistic filtration I is D-saturated, we
have

∂[Bo] f ∈ Ia−(c−1) ∩ m
r−(c−1)

= Ia−c+1 ∩m
r−c+1.

Using the inclusion (?)1,r−c+1, we obtain

(∗∗) ∂[Bo] f ∈ Ia−c+1 ∩ m
r−c+1 ⊂ mr−c+2

+ qa−c+1 +

∑

|[B]|≥1

mr−c+1−|[B]|HB.

From (∗) and (∗∗) it follows that

αBo HBo ∈ mr−c+2HBo + qa−c+1HBo +

∑

|[B]|≥1

mr−c+1−|[B]|HB+Bo

⊂ mr+1
+ qa +

∑

|[B+Bo]|≥c

mr−c+1−|[B]|HB+Bo ⊂ Jc,r.

Since Bo is arbitrary with |[Bo]| = c − 1, we conclude that αBHB ∈ Jc,r for all B with
|[B]| = c − 1. Therefore, we have

f ∈
∑

|[B]|≥c−1

αBHB
+mr+1

=

∑

|[B]|=c−1

αBHB
+

m
r+1
+

∑

|[B]|≥c

αBHB

 ⊂ Jc,r,

which implies the desired inclusion (?)c,r.
This completes the proof for the inclusion (?)c,r.
Step 2. Finishing argument.

We finish the proof of Coefficient Lemma using the result of Step 1.
Applying the inclusion (?)dae,r for r ∈ Z≥0, we have

Ia ∩ m
r ⊂ mr+1

+ qa +
∑

|[B]|≥dae

mr−|[B]|HB
= mr+1

+ qa,

since I′a−|[B]| = R for B with |[B]| ≥ dae.
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Therefore, we have

Ia ∩m
r ⊂ Ia ∩

(
mr+1

+ qa

)
= Ia ∩ m

r+1
+ qa,

which implies
Ia ∩ m

r
+ qa = Ia ∩ m

r+1
+ qa,

for any r ∈ Z≥0. In particular, we have

Ia = Ia ∩ m
0
+ qa = Ia ∩ m

dµae
+ qa = I

′
a + qa = qa.

This completes the proof of Lemma 4.1.4.1.

R 4.1.4.2.
(1) The purpose of having a nonnegative number µ ∈ R≥0 with µ < µH (I) involved in our

statement of Lemma 4.1.4.1 is to make it valid even when µH (I) = ∞, the case to which
we often apply Coefficient Lemma. When µH (I) < ∞, we may of course apply Coefficient
Lemma, setting µ = µH (I).

(2) We can restrict the range of B in the expression Ia =
∑

B I
′
a−|[B]|H

B to a specific finite
range, e.g., B with |[B]| < a + peN . In fact, if |[B]| ≥ a + peN , there exists B′ < B such that
a ≤ |[B′]| < a + peN . Then we have I′a−|[B]|H

B ⊂ RHB′
= I′a−|[B′]|H

B′ . Therefore, if B is out
of this range, the term I′a−|[B]|H

B is redundant, i.e.,
∑

B

I′a−|[B]|H
B
=

∑

|[B]|<a+peN

I′a−|[B]|H
B.

(3) In Part II, given an element ( f , a) ∈ I of a D-saturated idealistic filtration, we analyze
“the power series expansion of f with respect to a setH satisfying conditions (i), (ii), (iii)
(e.g. a leading generator system of I)”. This provides a different approach to Coefficient
Lemma and an alternative proof.

§4.2. Nonsingularity principle.

4.2.1. Statement of the nonsingularity principle.

T 4.2.1.1. Let I be an idealistic filtration which is B-saturated. Let H =

{h1, . . . , hN} ⊂ R be a subset of R, and let 0 ≤ e1 ≤ · · · ≤ eN be nonnegative integers
associated to these elements, satisfying conditions (i), (ii), (iii) as described in Setting
4.1.3. Suppose µH (I) = ∞. Then

(1) H = {(hl, pel) ; l = 1, . . . ,N} generates the idealistic filtration I, i.e.,

I = G(H).

(2) The elements in H are all concentrated at level p0
= 1, i.e.,

H ⊂ R × {1}.

(Note that in characteristic zero, where we take p = ∞ according to our convention, we set
p0
= ∞0

= 1. cf. 0.2.3.2.1.)
Consequently, we conclude that the support of the idealistic filtration is defined byH ,

i.e., Supp(I) = V(H), and hence that it is nonsingular.

R 4.2.1.2.
(1) In Theorem 4.2.1.1, we see from assertion (1) that

{hl = (hl mod mpel ) ; l = 1, . . . ,N}

generates L(I) (cf. Definition 3.1.1.1), and hence conclude that H is a leading generator
system, even though we do not a priori assume so.
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(2) In Part II, we will look at the invariant µ̃, which is a priori defined to be µ̃ = µH (I)
with respect to the set H associated to a leading generator system. We will see, however,
that µH (I) is independent of the choice of a leading generator system, and hence that µ̃
is actually an invariant intrinsic to the idealistic filtration I. Therefore, the nonsingularity
principle above can be regarded as the description of an idealistic filtration with µ̃ = ∞,
with the conclusions holding for any leading generator system H.

(3) Recall that, as we construct the strand of invariants in our algorithm, we enlarge the
idealistic filtration and construct its modifications (cf. 0.2.3.2.2 and 0.2.3.2.4). At the end
of the construction of the strand of invariants, we reach the last modification, which is an
idealistic filtration (which is both R-saturated and D-saturated) whose leading generator
system satisfies the conditions described in the above. The maximum locus of the strand
of invariants, which we take as the center of blowup, coincides with the support of this
last modification (in a neighborhood of each point of the maximum locus), and hence
is nonsingular according to Theorem 4.2.1.1. This is why it is called the nonsingularity
principle of the center.

(4) In order to show I = G(H), we only need I to be D-saturated, while in order to show
H ⊂ R × {1}, we need I to be B-saturated.

4.2.2. Proof of the nonsingularity principle.

Proof for assertion (1).
We show that H generates the idealistic filtration I, i.e., I = G(H).
Since µH (I) = ∞, we can apply Coefficient Lemma with an arbitrary non-negative

number Z≥0 3 µ < µH (I) = ∞ and obtain

Ia =

∑

B

I′a−|[B]|H
B
=

∑

|[B]|≥a

I′a−|[B]|H
B
+

∑

|[B]|<a

I′a−|[B]|H
B

⊂
∑

|[B]|≥a

RHB
+ I′a−(dae−1) ⊂

∑

|[B]|≥a

RHB
+mdµ(a−dae+1)e.

Since a − dae + 1 > 0, this implies by Krull’s intersection theorem that

Ia ⊂

∞⋂

r=0


∑

|[B]|≥a

RHB
+mr

 =
∑

|[B]|≥a

RHB.

This shows that H generates I, i.e., I = G(H).

Proof for assertion (2).

We show that the elements in H are concentrated at level p0
= 1, i.e., H ⊂ R× {1}. Set

H0 = {(hl, p
el) ∈ H ; el = 0} = H ∩ (R × {1}).

We will derive a contradiction assuming H0 , H. Set e = min{el ; el > 0}.
Step 1. We show that Ia = (H) for 0 < a ≤ 1 and that (H) =

√
(H).

In fact, since I = G(H) and since H ⊂ R × R≥1, Lemma 2.2.1.2 (1) implies that

Ia =

N∑

l=1

Rhl = (H) for 0 < a ≤ 1.

Suppose g ∈
√

(H), i.e., gn ∈ (H) = I1 for some n ∈ Z>0. Since I is R-saturated, this
implies g ∈ I1/n = (H). Therefore, we have (H) =

√
(H).

Step 2. We show that (H) = ((H) ∩ Rpe
) + (H0).
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Set
D = {d ∈ Diffpe−1

R ; d((H0)) ⊂ (H0)}.

Observe
(∗) D((H)) ⊂ (H).

In fact, for d ∈ D, sinceH \H0 ⊂
⋃

el>0 Ipel = Ipe and since I is D-saturated, we have

d ((H \H0)) ⊂ d
(
Ipe

)
⊂ Ipe−(pe−1) = I1 = (H).

Therefore, we conclude

d((H)) = d((H0)) + d ((H \H0)) ⊂ (H0) + (H) = (H).

Now (∗) implies

(∗∗) Diffpe−1

R

(
(H)

)
⊂ (H) and hence Diffpe−1

R

(
(H)

)
= (H)

where
R = R/(H0) and (H) = (H)/(H0).

Then, by Proposition 1.3.1.2, (∗∗) implies

(H) =
(
(H) ∩ R

pe)
.

Therefore, we have
(H) =

(
(H) ∩ Rpe )

+ (H0).

Step 3. Finishing argument.
By Step 2, we conclude

(H) = (H0) +
(
(H) ∩ Rpe )

= (H0) +
({

gpe
∈ (H) ; g ∈ R

})

= (H0) +
({

gpe
; g ∈ (H)

})
(by (H) =

√
(H))

= (H0) +
({

gpe
; g ∈ (H \H0)

})
⊂ (H0) +mpe

+1,

i.e., (H) ⊂ (H0) +mpe
+1.

Choose a regular system of parameters (x1, . . . , xd) so that
{

xl = hl for 1 ≤ l ≤ L where L = #{l ; el = 0}
xpel

l ≡ hl mod mpel+1 for L + 1 ≤ l ≤ N.

Then the above inclusion would imply
{
(H) +mpe

+1
}
/mpe

+1 ⊂
{
(H0) +mpe

+1
}
/mpe

+1 ⊂ R/mpe
+1

and we identify R/mpe
+1
� k[x1, . . . , xd]/(x1, . . . , xd)pe

+1.
On the other hand, however, we have the following element in the first quotient

(
the leading term of hL+1

)
= xpeL+1

L+1 = xpe

L+1 ∈
{
(H) +mpe

+1
}
/mpe

+1,

which obviously is not in the middle quotient

(x1, . . . , xL) =
{
(H0) + mpe

+1
}
/mpe

+1,

a contradiction !
This contradiction is derived from the assumption that H0 , H.
Therefore, we conclude H0 = H, i.e.,

H ⊂ R × {1}.

This completes the proof of Theorem 4.2.1.1, the nonsingularity principle.
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