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��������� In this paper, we study the pro-Σ fundamental groups of configuration

spaces, where Σ is either the set of all prime numbers or a set consisting of a single

prime number. In particular, we show, via two somewhat distinct approaches, that, in
many cases, the “fiber subgroups” of such fundamental groups arising from the various

natural projections of a configuration space to lower-dimensional configuration spaces

may be characterized group-theoretically.
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Introduction

Let n ≥ 1 be an integer; X a hyperbolic curve of type (g, r) [where 2g−2+r > 0]
over an algebraically closed field k of characteristic 0. Denote by

Xn ⊆ Pn

the n-th configuration space associated to X , i.e., the open subscheme of the direct
product Pn of n copies of X obtained by removing the various diagonals from Pn
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[cf. Definition 2.1, (i)]. By omitting the factors corresponding to various subsets of
the set of n copies of X , we obtain various natural projection morphisms

Xn → Xm

for nonnegative integers m ≤ n [cf. Definition 2.1, (ii)]. Next, let ΣC be either
the set of all prime numbers or a set consisting of a single prime number. Write
C for the class of all finite groups of order a product of primes ∈ ΣC . Then by
considering the maximal pro-C quotient of the étale fundamental group, which we
denote by “πC

1 (−)”, we obtain various natural surjections

πC
1 (Xn) � πC

1 (Xm)

arising from the natural projection morphisms considered above. We shall refer to
the kernel of such a surjection πC

1 (Xn) � πC
1 (Xm) as a fiber subgroup of πC

1 (Xn)
of length n −m and co-length m [cf. Definition 2.3, (iii)]. Also, we shall refer to
a closed subgroup of πC

1 (Xn) that arises as the inverse image of a closed subgroup
of πC

1 (Pn) via the natural surjection πC
1 (Xn) � πC

1 (Pn) [induced by the inclusion
Xn ↪→ Pn] as product-theoretic [cf. Definition 2.3, (ii)].

The present paper is concerned with the issue of the group-theoretic character-
ization of these fiber subgroups. Our main results [cf. Corollaries 4.8, 6.3] may be
summarized as follows:

(i) Suppose that g ≥ 2. Let H ⊆ πC
1 (Xn) be a product-theoretic open sub-

group. Then the subgroupsH
⋂
F ofH — where F ranges over the various

fiber subgroups of πC
1 (Xn) — may be characterized group-theoretically [cf.

Corollary 4.8].

(ii) Suppose that (g, r) is not equal to (0, 3) or (1, 1). Then the fiber subgroups
of πC

1 (Xn) may be characterized group-theoretically [cf. Corollary 6.3].

The proof of (i) relies on a certain group-theoretic description of abelian torsion-free
quotients of H by product-theoretic normal closed subgroups of H [cf. Theorem 4.7];
this description is based on a slightly complicated computation involving Chern
classes [cf. §4], together with the well-known fact that the action of the Galois
group of a finite Galois covering of a curve of genus ≥ 2 on the Tate module of the
Jacobian of the covering curve contains the regular representation [cf. Proposition
1.3]. This geometric approach, due to the first author, does not [as was pointed
out to the first author by the second author! — cf. Remark 3.3.2] require any
“deep group theory”. On the other hand, the proof of (ii), due to the second
author, requires the use of a group-theoretic result due to Lubotzky-Melnikov-van
den Dries [cf. Theorem 1.5] and makes essential use to the notion of a “nearly
abelian group”, i.e., a profinite group G which admits a normal closed subgroup
N ⊆ G which is topologically normally generated by a single element ∈ G such that
G/N contains an open abelian subgroup [cf. Definition 6.1]. It is worth noting that
at the time of writing, we are unable to prove either an analogue of (i) for g < 2 or
an analogue of (ii) when (g, r) is equal to (0, 3) or (1, 1).
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The original proof of (i) [due to the first author] given in §4 may be regarded as
a consequence of various explicit group-theoretic manifestations of certain algebro-
geometric properties. This proof of (i) motivated the second author to develop a
more direct approach to understanding these essentially purely algebro-geometric
properties. This approach, which is exposed in §5, allows one to prove a stronger
version [cf. Theorem 5.6] of Theorem 4.7 and, moreover, implies certain interest-
ing consequences concerning the non-existence of units on a sufficiently generic
hyperbolic curve [cf. Corollary 5.7].

The contents of the present paper may be summarized as follows: Basic well-
known facts concerning the profinite fundamental groups of hyperbolic curves and
configuration spaces are reviewed in §1, §2, respectively. In §3, we discuss the
group-theoreticity of direct product decompositions of profinite groups. In §4, §6,
we present the proofs, via somewhat different techniques, of the main results (i),
(ii) discussed above. In §5, we discuss the algebraic geometry of divisors and units
on configuration spaces, a theory which yields an alternate approach to the theory
of §4. Finally, in §7, we observe that these results (i), (ii) imply a certain discrete
analogue [cf. Corollary 7.4] of (i), (ii).

Section 0: Notations and Conventions

Numbers:

The notation Q will be used to denote the field of rational numbers. The nota-
tion Z ⊆ Q will be used to denote the set, group, or ring of rational integers. The
notation N ⊆ Z will be used to denote the set or [additive] monoid of nonnegative
integers. If l is a prime number, then the notation Ql (respectively, Zl) will be used
to denote the l-adic completion of Q (respectively, Z). The [topological] field of
complex numbers will be denoted C.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}

for the centralizer of H in G. Also, we shall write Z(G) def= ZG(G) for the center of
G.

We shall say that a profinite group G is slim if for every open subgroup H ⊆ G,
the centralizer ZG(H) is trivial. Note that every finite normal closed subgroup
N ⊆ G of a slim profinite group G is trivial. [Indeed, this follows by observing that
for any normal open subgroup H ⊆ G such that N

⋂
H = {1}, consideration of the

inclusion N ↪→ G/H reveals that the conjugation action of H on N is trivial, i.e.,
that N ⊆ ZG(H) = {1}.]
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We shall write Gab for the abelianization of G, i.e., the quotient of G by the
closure of the commutator subgroup of G. We shall denote the group of automor-
phisms of G by Aut(G). Conjugation by elements of G determines a homomorphism
G→ Aut(G) whose image consists of the inner automorphisms of G. We shall de-
note by Out(G) the quotient of Aut(G) by the [normal] subgroup consisting of
the inner automorphisms. In particular, if G is center-free, then we have an exact
sequence 1→ G→ Aut(G)→ Out(G)→ 1.

Curves:

Suppose that g ≥ 0 is an integer. Then if S is a scheme, a family of curves of
genus g

X → S

is defined to be a smooth, proper, geometrically connected morphism of schemes
X → S whose geometric fibers are curves of genus g.

Suppose that g, r ≥ 0 are integers such that 2g − 2 + r > 0. We shall denote
the moduli stack of r-pointed stable curves of genus g over Z (where we assume
the points to be ordered) by Mg,r [cf. [DM], [Knud] for an exposition of the
theory of such curves]. The open substack Mg,r ⊆ Mg,r of smooth curves will
be referred to as the moduli stack of smooth r-pointed stable curves of genus g or,
alternatively, as the moduli stack of hyperbolic curves of type (g, r). The divisor
at infinityMg,r\Mg,r ofMg,r is a divisor with normal crossings on the Z-smooth
algebraic stackMg,r, hence determines a log structure onMg,r; denote the resulting
log stack by Mlog

g,r. For any integer r′ > r, the operation of “forgetting the last
r′ − r points” determines a [1-]morphism of log algebraic stacks

Mlog

g,r′ →Mlog

g,r

which factors as a composite of structure morphisms of various tautological log
stable curves [cf. [Knud]], hence is log smooth.

A family of hyperbolic curves of type (g, r)

X → S

is defined to be a morphism which factors X ↪→ Y → S as the composite of an
open immersion X ↪→ Y onto the complement Y \D of a relative divisor D ⊆ Y
which is finite étale over S of relative degree r, and a family Y → S of curves of
genus g. One checks easily that, if S is normal, then the pair (Y,D) is unique up to
canonical isomorphism. We shall refer to Y (respectively, D) as the compactification
(respectively, divisor of cusps) of X . A family of hyperbolic curves X → S is
defined to be a morphism X → S such that the restriction of this morphism to
each connected component of S is a family of hyperbolic curves of type (g, r) for
some integers (g, r) as above. A family of hyperbolic curve of type (0, 3) will be
referred to as a tripod.
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Section 1: Surface Groups

In the present §1, we discuss various well-known preliminary facts concerning
the sorts of profinite groups that arise from étale fundamental groups of hyperbolic
curves.

Definition 1.1. Let C be a family of finite groups containing the trivial group;
Σ a set of prime numbers.

(i) We shall refer to a finite group as a Σ-group if every prime dividing its order
belongs to Σ. We shall refer to a finite group belonging to C as a C-group and to
a profinite group every finite quotient of which is a C-group as a pro-C group. We
shall refer to C as a full formation [cf. [FJ], p. 343] if it is closed under taking
quotients, subgroups, and extensions.

(ii) Suppose that C is a full formation; write ΣC for the set of primes p such
that Z/pZ is a C-group and Ẑ � ẐC for the maximal pro-C quotient of Ẑ. Then
we shall say that the formation C is nontrivial if there exists a nontrivial C-group
[or, equivalently, if ΣC is nonempty]. We shall say that the formation C is primary
if ΣC is of cardinality one. We shall say that the formation C is solvable if every
C-group is solvable. We shall say that the formation C is total if every finite group
is a C-group. We shall say that C is a PT-formation if it is either primary or total.
We shall say that C is invertible on a scheme S if every prime of ΣC is invertible
on S.

(iii) Suppose that C is a full formation; let G be a profinite group. If G admits
an open subgroup which is abelian, then we shall say that G is almost abelian. If G
admits an open subgroup which is pro-C, then we shall say that G is almost pro-C.
We shall refer to a quotient G � Q as almost pro-C-maximal if for some normal
open subgroup N ⊆ G with maximal pro-C quotient [cf. [FJ], p. 344] N � P ,
we have Ker(G � Q) = Ker(N � P ). [Thus, any almost pro-C-maximal quotient
of G is almost pro-C.] If G is topologically finitely generated, and, moreover, the
abelianization Hab of every open subgroup H ⊆ G is torsion-free, then we shall say
that G is strongly torsion-free.

Remark 1.1.1. The notion of a full formation is a special case of the notion of a
Melnikov formation [cf. [FJ], p. 343]. In the present paper, [partly for the sake of
simplicity] we restrict ourselves to full formations.

Remark 1.1.2. Let C be a full formation. Then [it follows immediately from
the definitions that] a solvable finite group is a ΣC-group [cf. Definition 1.1, (ii)]
if and only if it is a C-group. In particular, if C is solvable, then it is completely
determined by the set of primes ΣC .

Remark 1.1.3. Recall that every finite group whose order is a prime power is
nilpotent, hence, in particular, solvable. Thus, [cf. Remark 1.1.2] a primary full
formation C is completely determined by the unique prime number ∈ ΣC .
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Definition 1.2. Let C be a full formation. We shall say that a profinite
group is a [pro-C] surface group (respectively, an almost pro-C-surface group) if
it is isomorphic to the maximal pro-C quotient (respectively, to some almost pro-
C-maximal quotient) of the étale fundamental group of a hyperbolic curve [cf. §0]
over an algebraically closed field of characteristic zero [or, equivalently, the profinite
completion of the topological fundamental group of a hyperbolic Riemann surface
of finite type]. We shall refer to an almost pro-C-surface group as open (respectively,
closed) if it admits (respectively, does not admit) a pro-C free [cf. [FJ], p. 345] open
subgroup.

Remark 1.2.1. Thus, in the notation of Definition 1.2, every pro-C surface group
is an almost pro-C-surface group. On the other hand, if C is not total, there one
verifies immediately that there exist almost pro-C-surface groups which are not pro-
C surface groups. Nevertheless, every almost pro-C-surface group admits a normal
open subgroup which is a pro-C surface group.

Remark 1.2.2. We recall that if Π is a pro-C surface group arising from a
hyperbolic curve [cf. Definition 1.2] of type (g, r), then Π is topologically generated
by 2g+ r generators subject to a single [well-known!] relation, and Πab [cf. §0] is a
free abelian pro-C group of rank 2g − 1 + r (if r > 0), 2g (if r = 0). In particular,
[since every open subgroup of Π is again a pro-C surface group, it follows that] Π is
strongly torsion-free. Moreover, for any l ∈ ΣC , the l-cohomological dimension of Π
is equal to 1 (if r > 0), 2 (if r = 0); dimQl

(H2(Π,Ql)) = dimFl
(H2(Π,Fl)) is equal

to 0 (if r > 0), 1 (if r = 0). In particular, the quantity

χ(Π) =
2∑

i=0

(−1)i · dimQl
(H i(Π,Ql)) =

2∑
i=0

(−1)i · dimFl
(H i(Π,Fl)) = 2− 2g − r

is a group-theoretic invariant of Π which [as is well-known] satisfies the property
that

χ(Π1) = [Π : Π1] · χ(Π)

for any open subgroup Π1 ⊆ Π. Finally, we recall that this formula admits a
representation-theoretic generalization, which will play a crucial role in §4 below,
in the form of the following elementary consequence:

Proposition 1.3. (Inclusion of the Regular Representation) Let Y →
X be a finite Galois covering of smooth proper hyperbolic curves over an
algebraically closed field k of characteristic prime to the order of G def= Gal(Y/X);
l a prime number that is invertible in k. Write V for the G-module determined by
the first étale cohomology module H1

ét(Y,Ql). Then the G-module V contains the
regular representation of G as a direct summand.

Proof. Indeed, this follows immediately from the computation of the Galois module
V in [Milne], p. 187, Corollary 2.8 [cf. also [Milne], p. 187, Remark 2.9], in light
of our assumption that X is proper hyperbolic, hence of genus ≥ 2. ©
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Proposition 1.4. (Slimness) Let C be a nontrivial full formation. Then every
almost pro-C-surface group Π is slim.

Proof. Indeed, this follows immediately by considering the conjugation action of
Π/N on Nab ⊗ Zl, where l ∈ ΣC , for sufficiently small normal open subgroups
N ⊆ Π [cf. Remark 1.2.1]. That is to say, in light of the interpretation of a certain
quotient of Nab ⊗ Zl as the Tate module arising from the l-power torsion points
of the Jacobian of the compactification of the covering determined by N of any
hyperbolic curve that gives rise to Π [cf. the proof of [Mzk3], Lemma 1.3.1], it
follows that this conjugation action is faithful. Another [earlier] approach to the
slimness of surface groups may be found in [Naka], Corollary 1.3.4. ©

Remark 1.4.1. The property involving the regular representation discussed in
Proposition 1.3 may be regarded as a stronger version [in the case of coverings of
curves of genus ≥ 2] of the faithfulness of the action of Π/N on [a certain quotient
of] Nab ⊗ Zl that was applied in the proof of Proposition 1.4, hence, in particular,
as a stronger version of the slimness of surface groups.

The following result is a mild generalization to arbitrary surface groups of a
well-known result for free pro-C groups due to Lubotzky-Melnikov-van den Dries:

Theorem 1.5. (Normal Closed Subgroups of Surface Groups) Let C be
a full formation; Π an almost pro-C-surface group; N ⊆ Π a topologically
finitely generated normal closed subgroup. Then N is either trivial or of finite
index.

Proof. Since Π is slim, hence does not contain any nontrivial finite normal closed
subgroups [cf. §0], it follows that we may always replace Π by an open subgroup
of Π. In particular, [cf. Remark 1.2.1] we may assume, without loss of generality,
that Π is a pro-C surface group. When Π is an open surface group, Theorem 1.5
follows formally from the theorem of Lubotzky-Melnikov-van den Dries [cf., e.g.,
[FJ], Proposition 24.10.3; [FJ], Proposition 24.10.4, (a)]. Thus, we may assume,
without loss of generality, that Π is a closed surface group.

Suppose that N is nontrivial and of infinite index. Then there exists an l ∈ ΣC
such that N contains a nontrivial subgroup A ⊆ N which is a quotient of Zl. In
particular, there exists a normal open subgroup Π1 ⊆ Π such that the image of A
in Π/Π1 is nontrivial. Now set ΠA

def= Π1 · A ⊆ Π, NA
def= N

⋂
ΠA [so ΠA, NA are

open subgroups of Π, N , respectively]. Then NA is a topologically finitely generated
normal closed subgroup of infinite index of ΠA such that A ⊆ NA surjects onto the
[nontrivial, abelian!] image of ΠA in Π/Π1. In particular, by replacing N ⊆ Π by
NA ⊆ ΠA, we may assume without loss of generality that the image of N in Πab is
nontrivial.

Since Π is topologically finitely generated, there exists a descending sequence
of normal open subgroups

. . . ⊆ Hn ⊆ . . . ⊆ Π
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[where n ranges over the positive integers] of Π which is, moreover, exhaustive,
i.e.,

⋂
n Hn = {1}. Thus, if we set Nn

def= Hn · N [for n ≥ 1], then [one verifies
immediately that] we obtain a descending sequence of normal open subgroups

. . . ⊆ Nn ⊆ . . . ⊆ Π

[where n ranges over the positive integers] of Π such that
⋂

n Nn = N [cf. the fact
that N is closed!]. Since N is of infinite index in Π, it follows that [Π : Nn] → ∞
as n → ∞, hence [cf. Remark 1.2.2] that |χ(Nn)| → ∞ as n → ∞. In particular,
there exists an n such that the rank of Nab

n is ≥ s + 2, where we write s for any
positive integer such that there exist s elements of N that topologically generate
N . Since, moreover, the image of N in Πab, hence a fortiori in Nab

n is nontrivial,
it follows that there exists, for some l ∈ ΣC , a nontrivial homomorphism Zl → Nab

n

that factors through N . Now write

Nn � Π∗

for the maximal pro-l quotient of Nn [so Π∗ is a pro-l closed surface group], N∗ ⊆ Π∗

for the image of N in Π∗. Thus, N∗ ⊆ Π∗ is a topologically finitely generated
normal closed subgroup whose image in [the free Zl-module of finite rank] (Π∗)ab

is a nontrivial Zl-submodule M ⊆ (Π∗)ab whose rank is ≤ s, hence ≤ the rank
of (Π∗)ab minus 2. In particular, there exists an element x ∈ Π∗ such that if we
denote by F ∗ ⊆ Π∗ the [necessarily topologically finitely generated!] closed subgroup
topologically generated by N∗ and x, then we obtain inclusions of closed subgroups

N∗ ⊆ F ∗ ⊆ Π∗

such that N∗ is of infinite index in F ∗, and F ∗ is of infinite index in Π∗ [as may
be seen by considering the ranks of the images of these subgroups in Πab].

Now observe that for any two open subgroups J2 ⊆ J1 ⊆ Π∗, the induced
morphism H2(J1,Zl)→ H2(J2,Zl) maps a generator of H2(J1,Zl) ∼= Zl to [J1 : J2]
times a generator H2(J2,Zl) ∼= Zl. [Indeed, this follows immediately by thinking
about degrees of coverings of proper hyperbolic curves! We refer to Remark 4.1.1;
Lemma 4.2, (i) [and its proof], below, for more details on this well-known circle
of ideas.] In particular, since F ∗ is a subgroup of infinite index in Π∗, it follows
immediately [by considering open subgroups J ⊆ Π∗ containing F ∗] that F ∗ is a
pro-l group whose [l-]cohomological dimension is ≤ 1. Thus, by [RZ], Theorem
7.7.4, F ∗ is a [topologically finitely generated] free pro-l group, and N∗ ⊆ F ∗ is a
nontrivial topologically finitely generated closed normal subgroup of infinite index
— in contradiction to the theorem of Lubotzky-Melnikov-van den Dries [cf., e.g.,
[FJ], Proposition 24.10.3]. ©
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Section 2: Configuration Space Groups

In the present §2, we discuss various well-known preliminary facts concerning
the sorts of profinite groups that arise from étale fundamental groups of configura-
tion spaces associated to hyperbolic curves.

First, let us suppose that we have been given a log scheme

Z log

which is log regular [cf., [Kato2], Definition 2.1]; write UZ ⊆ Z for the interior of
Z log [i.e., the open subscheme on which the log structure of Z log is trivial]. By
abuse of notation, we shall often use the notation for a scheme to denote the log
scheme with trivial log structure determined by the scheme. If C is a full formation
that is invertible on Z, then we shall write

πC
1 (Z log)

for the maximal pro-C quotient of the étale fundamental group [obtained by con-
sidering Kummer log étale coverings, for some choice of basepoint — cf. [Ill] for
more details] of Z log. Thus, by the log purity theorem of Fujiwara-Kato [cf. [Ill];
[Mzk1], Theorem B], the natural morphism UZ → Z log induces a [continuous outer]
isomorphism πC

1 (UZ)→ πC
1 (Z log).

Next, suppose that S is a regular scheme, and that

X → S

is a family of hyperbolic curves of type (g, r) over S, with compactification X ↪→
Y → S and divisor of cusps D ⊆ Y [cf. §0]. For simplicity, we assume that the
finite étale covering D → S is split. Let n ∈ N.

Definition 2.1.

(i) For positive integers i, j ≤ n such that i < j, write

πi,j : Pn
def= X ×S . . .×S X → X ×S X

for the projection of the product Pn of n copies of X → S to the i-th and j-th
factors. Write E for the set [of cardinality n] of factors of Pn. Then we shall refer
to as the n-th configuration space associated to X → S the S-scheme

Xn → S

which is the open subscheme determined by the complement in Pn of the union
of the various inverse images via the πi,j [as (i, j) ranges over the pairs of positive
integers ≤ n such that i < j] of the image of the diagonal embedding X ↪→ X×SX .
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We shall refer to as the n-th log configuration space associated to X → S the [log
smooth] log scheme over S

Z log
n → S

obtained by pulling back the [log smooth] [1-]morphismMlog

g,r+n →M
log

g,r given by

“forgetting the last n points” [cf. §0] via the classifying [1-]morphism S → Mlog

g,r

determined [up to a permutation of the r remaining points] by X → S. We shall
refer to E as the index set of the configuration space Xn, or, alternatively, of the
log configuration space Z log

n .

(ii) In the notation of (i), let E′ ⊆ E be a subset of cardinality n′; E′′ def= E\E′;
n′′ def= n− n′. Then by “forgetting” the factors of E that belong to E′, we obtain a
natural projection morphism

pE′ = pE′′
: Xn → Xn′′

[and similarly in the logarithmic case], which we shall refer to as the projection
morphism of profile E′, or, alternatively, the projection morphism of co-profile E′′.
Also, in this situation, we shall refer to n′ (respectively, n′′) as the length (respec-
tively, co-length) of this projection morphism.

Remark 2.1.1. One verifies immediately that in the notation of Definition 2.1,
(i), Xn may be naturally identified with the interior of Z log

n .

Remark 2.1.2. One verifies immediately that in the notation of Definition
2.1, (ii), each projection morphism pE′ = pE′′

: Xn → Xn′′ is itself the n′-th
configuration space associated to a family of hyperbolic curves of type (g, r + n′′)
over Xn′′ that embeds as a dense open subscheme of the pull-back via Xn′′ → S of
the original family of hyperbolic curves X → S.

Proposition 2.2. (Fundamental Groups of Configuration Spaces) In the
notation of the above discussion, suppose further that the following conditions hold:

(a) S is connected;

(b) C is a PT-formation which is invertible on S;

(c) for each l ∈ ΣC, the images of the cyclotomic character π1(S)→ F×
l

and the natural Galois action

π1(S)→ Aut(π1(Ys)ab ⊗ Fl)

arising from the family of curves Y → S are C-groups [a condition which
is vacuous if C is total].
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Let n ≥ 1 be an integer, s a geometric point of S, and x a geometric point
of Xn−1; we shall denote the fibers over geometric points by means of subscripts.
Then:

(i) Any projection morphism Xn → Xn−1 of length one determines a natural
exact sequence

1→ πC
1 ((Xn)x)→ πC

1 (Xn)→ πC
1 (Xn−1)→ 1

[where we write X0
def= S].

(ii) The profinite group πC
1 ((Xn)s) is slim and topologically finitely gen-

erated.

(iii) The natural sequence

1→ πC
1 ((Xn)s)→ πC

1 (Xn)→ πC
1 (S)→ 1

is exact.

(iv) Suppose that S = Spec(R) is a trait; that s arises from an algebraic
closure of the residue field of R; and that η is a geometric point of S that arises
from an algebraic closure of the quotient field K of R. Then the operation of
specialization of the normalization of X in a covering of XK

def= X×RK determines
an isomorphism πC

1 ((Xn)η) ∼→ πC
1 ((Xn)s).

Proof. First, let us observe that since the kernel of the natural surjection πC
1 (Xs) �

πC
1 (Ys) is topologically normally generated by the inertia groups of the cusps [which

are isomorphic to ẐC(1), where the “(1)” denotes a “Tate twist”, and “ẐC” is as
in Definition 1.1, (ii)], condition (c) [together with our assumption that the divisor
of cusps of X → S is split] implies that for each l ∈ ΣC , the image of the natural
Galois action

π1(S)→ Aut(π1(Xs)ab ⊗ Fl)

arising from the family of hyperbolic curves X → S is a C-group.

Now we claim that to complete the proof of Proposition 2.2, it suffices to
verify assertion (iv). Indeed, let us assume that assertion (iv) holds and reason
by induction on n ≥ 1. [That is to say, if n ≥ 2, then we assume that assertions
(i), (ii), and (iii) have already been verified for “n − 1”.] Now observe that [in
light of Remark 2.1.2; the easily verified fact that the family Xn → Xn−1 also
satisfies conditions (a), (b), (c)] assertion (i) is a special case of assertion (iii) for
“n = 1”; thus, [by applying the induction hypothesis] we may assume that assertion
(i) holds if n ≥ 2. Since, moreover, the property of being a slim topologically
finitely generated profinite group holds for a profinite group which is an extension
of a profinite group G1 by a profinite group G2 whenever it holds for G1 and G2,
assertion (ii) [for “n”] follows immediately, by applying the induction hypothesis,
from assertion (i) (when n ≥ 2) and Proposition 1.4. As for assertion (iii), let us
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first observe that by assertion (iv) [and various standard arguments in elementary
algebraic geometry], we may assume without loss of generality that s arises from
an algebraic closure of the quotient field K of S. Thus, by considering the natural
action of GK

def= Gal(s/Spec(K)) on s, we obtain a natural outer action

GK → Out(πC
1 ((Xn)s))

which is compatible with the natural outer action of GK on πC
1 ((Pn)s) [which may be

identified with the product of n copies of πC
1 (Xs)], relative to the natural inclusion

Xn ↪→ Pn [cf. Definition 2.1, (i)]. In particular, since the kernel of the natural
surjection πC

1 ((Xn)s) � πC
1 ((Pn)s) is topologically normally generated by the inertia

groups of the cusps [which are isomorphic to ẐC(1)], condition (c) [together with
the observation at the beginning of the present proof] implies that for each l ∈ ΣC ,
the image of the natural Galois action

GK → Aut(π1((Xn)s)ab ⊗ Fl)

is a C-group, hence [cf. Remark 1.1.3 when C is primary] that the homomorphism
GK → Out(πC

1 ((Xn)s)) factors through the maximal pro-C quotient GC
K of GK .

Note, moreover, that by Zariski-Nagata purity [i.e., the classical non-logarithmic
version of the “log purity theorem” quoted above], the kernel of the natural surjec-
tion GC

K � πC
1 (S) is topologically normally generated by the various inertia groups

determined by the prime divisors of S. On the other hand, by assertion (iv), the
images of these inertia groups in Out(πC

1 ((Xn)s)) are trivial. Thus, we obtain a
homomorphism πC

1 (S) → Out(πC
1 ((Xn)s)), hence — by pulling back the natural

exact sequence

1→ πC
1 ((Xn)s)→ Aut(πC

1 ((Xn)s))→ Out(πC
1 ((Xn)s))→ 1

[cf. assertion (ii); §0] via this homomorphism — an exact sequence as in assertion
(iii). This completes the proof of the claim.

Finally, we consider assertion (iv). First, we remark that assertion (iv) is a
special case of the more general result of [Vid], Théorème 2.2; since, however, [Vid]
has yet to be published at the time of writing, we give a self-contained [modulo
published results] proof of assertion (iv), as follows. We begin by observing that by
the log purity theorem, we have natural isomorphisms

πC
1 ((Xn)s)

∼→ πC
1 ((Z log

n )s); πC
1 ((Xn)η) ∼→ πC

1 ((Z log
n )η)

[cf. Definition 2.1, (i); Remark 2.1.1]. Now suppose that W log
0 → (Z log

n )s is a
connected Kummer log étale covering. Since (Z log

n )s is log regular, it thus follows
that W log

0 is also log regular, hence, in particular, normal. By the definition of
“log étale”, one may deform this covering to a formal Kummer log étale covering
over the mR-completion [where mR is the maximal ideal of R] of Z log

n . Moreover,
the underlying scheme of this formal covering may be algebrized [cf. [EGA III],
Théorème 5.4.5; the easily verified fact that Zn is projective], hence determines a
finite morphism W → Zn. Now it follows from the well-known local structure of
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Kummer log étale coverings that the formal covering that gave rise to W is S-flat,
hence that W itself is S-flat, with normal special fiber Ws

∼= W0. Since S is, of
course, normal, we thus conclude [cf. [EGA IV], Corollaire 6.5.4, (ii)] that W is
normal and connected, hence irreducible. By considering the formal covering that
gave rise to W at completions of closed points of Zn lying in the interior Xn ⊆ Zn,
it follows, moreover, that W → Zn is generically étale. Thus, it makes sense to
speak of the ramification divisor in Zn of W → Zn. On the other hand, again by
considering the formal covering that gave rise to W , it follows immediately that
this ramification divisor is contained in the complement of Xn in Zn, hence [by
the log purity theorem!] that W → Zn determines a Kummer log étale covering
W log → Z log

n whose special fiber W log
s → (Z log

n )s may be naturally identified with
the given covering W log

0 → (Z log
n )s. Thus, by algebrizing morphisms between formal

Kummer log étale coverings [cf. [EGA III], Théorème 5.4.1], we conclude that the
deformation and algebrization procedure just described determines an equivalence
of categories between the categories of Kummer log étale coverings of (Z log

n )s, Z log
n .

In particular, we obtain a natural isomorphism πC
1 ((Z log

n )s)
∼→ πC

1 ((Z log
n )).

On the other hand, again by the log purity theorem, it follows immediately that
we obtain an isomorphism

πC
1 ((Z log

n )η) ∼→ lim←−
S′

πC
1 (Z log

n ×S S
′)

[where S′ ranges over the normalizations of S in the various finite extensions of K
in the function field of η], hence, by applying the isomorphisms

πC
1 (Z log

n ×S S
′) ∼→ πC

1 ((Z log
n )s)

[where we regard s as a geometric point of the various S′] obtained above, we obtain
an isomorphism πC

1 ((Z log
n )η) ∼→ πC

1 ((Z log
n )s), as desired. ©

Remark 2.2.1. Another proof of Proposition 2.2, (iii), in the case n = 1 may be
found in [Stix], Proposition 2.3.

Definition 2.3. Let C be a PT-formation.

(i) We shall say that a profinite group is a [pro-C] configuration space group if
it is isomorphic to the maximal pro-C quotient of the étale fundamental group

πC
1 (Xn)

of the n-th configuration space Xn for some n ≥ 1 [cf. Definition 2.1, (i)] of a
hyperbolic curve X over an algebraically closed field of characteristic ∈ ΣC [where
we note that in this situation, the conditions (a), (b), (c) of Proposition 2.2 are
satisfied].

(ii) Let X be a hyperbolic curve over an algebraically closed field of character-
istic ∈ C; Xn the n-th configuration space [for some n ≥ 1] associated to X . Then
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we shall refer to a closed subgroup H ⊆ πC
1 (Xn) as being product-theoretic if H

arises as the inverse image via the natural surjection

πC
1 (Xn) � πC

1 (Pn)

[cf. Definition 2.1, (i)] of a closed subgroup of πC
1 (Pn).

(iii) Let X , Xn be as in (ii); write E for the index set of Xn. Let E′ ⊆ E be
a subset of cardinality n′; E′′ def= E\E′; n′′ def= n − n′; pE′ = pE′′

: Xn → Xn′′ the
projection morphism of profile E′. Then we shall refer to the kernel

F ⊆ πC
1 (Xn)

of the induced surjection πC
1 (Xn) � πC

1 (Xn′′) [cf. Remark 2.1.2; Proposition 2.2,
(iii)] as the fiber subgroup of πC

1 (Xn) of profile E′, or, alternatively, as the fiber
subgroup of πC

1 (Xn) of co-profile E′′. Also, we shall refer to n′ (respectively, n′′) as
the length (respectively, co-length) of F .

Proposition 2.4. (Fiber Subgroups of Configuration Spaces) Let C be
a PT-formation; X a hyperbolic curve over an algebraically closed field of
characteristic ∈ ΣC; Xn the n-th configuration space [for some n ≥ 1] associated
to X; E the index set of Xn; Π def= πC

1 (Xn); E′
1, E

′
2 ⊆ E subsets whose respective

complements we denote by E′′
1 , E

′′
2 ⊆ E; F1, F2 ⊆ Π the fiber subgroups with

respective profiles E′
1, E

′
2 ⊆ E. Then:

(i) The description of Remark 2.1.2 determines on F2 (respectively, Π/F2) a
structure of configuration space group with index set E′

2 (respectively, E′′
2 ).

(ii) F1 ⊆ F2 if and only if E′
1 ⊆ E′

2. Moreover, in this situation, F1 ⊆ F2 is
the fiber subgroup of F2 with profile E′

1 ⊆ E′
2 [i.e., relative to the structure of

F2 as the “πC
1 (−)” of a configuration space that arises from the description given

in Remark 2.1.2].

(iii) The image of F1 in Π/F2 is the fiber subgroup of Π/F2 with profile
E′

1

⋂
E′′

2 ⊆ E′′
2 [i.e., relative to the structure of Π/F2 as the “πC

1 (−)” of a configu-
ration space that arises from the description given in Remark 2.1.2].

(iv) The subgroup of Π topologically generated by F1, F2 is the fiber sub-

group F3 with profile E′
3

def= E′
1

⋃
E′

2. In particular, if E′′
1 , E′′

2 are disjoint and of
cardinality one, then F1, F2 topologically generate Π.

(v) In the situation of (iv), suppose that the length of F1, F2 is equal to
1. Then there exists a normal closed subgroup K ⊆ Π satisfying the following
properties: (a) K ⊆ F3; (b) K is topologically normally generated in F3 by a
single element; (c) the images of F1, F2 in F3/K commute.

(vi) F2 is topologically generated by the fiber subgroups [of Π] of length 1
whose profiles are contained in E′

2. In particular, Π is topologically generated
by its fiber subgroups of length 1.
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Proof. Assertions (i), (ii) are immediate from the definitions [and Remark 2.1.2].
Next, let us consider assertion (vi). In light of assertions (i), (ii), it suffices to
verify assertion (vi) in the case where F2 = Π; also, we may assume without loss
of generality that F1 is of length 1. Then, by induction on n [cf. also assertion (i)],
Π/F1 is topologically generated by its fiber subgroups of length 1. Since the inverse
image in Π of any fiber subgroup of length 1 of Π/F1 is clearly a fiber subgroup
of length 2, it follows [cf. assertions (i), (ii)] that we may assume without loss
of generality that n = 2. But then it suffices to observe that if Fα, Fβ ⊆ Π are
fiber subgroups whose profiles E′

α, E
′
β ⊆ E are disjoint subsets of length 1, then

the natural morphism Fα ⊆ Π � Π/Fβ [which is simply the morphism induced
on “πC

1 (−)’s” by an open immersion of hyperbolic curves] is a surjection. This
completes the proof of assertion (vi). Now assertion (iv) follows formally from
assertion (vi); also, in light of assertion (vi), assertion (iii) follows immediately
from the definitions.

Finally, we consider assertion (v). First, let us observe that when n = 2, as-
sertion (v) follows by observing that the kernel of the natural surjection πC

1 (X2) �
πC

1 (P2) [cf. Definition 2.3, (ii)] is topologically normally generated by the inertia
group of the diagonal divisor of X2, which is isomorphic to ẐC(1) [hence topolog-
ically generated by a single element]. Now assertion (v) follows immediately for
arbitrary n, by applying assertions (i), (ii), (iv). ©

Remark 2.4.1. Note that it follows immediately from Proposition 2.2, (ii);
Proposition 2.4, (i) [or, alternatively, (vi)], that the fiber subgroups of πC

1 (Xn) are
topologically finitely generated normal closed subgroups.

Section 3: Direct Products of Profinite Groups

In the present §3, we study quotients of products of profinite groups. In partic-
ular, we show that, in certain cases, the product decomposition of a direct product
of profinite groups is “group-theoretic”.

Definition 3.1. We shall say that a profinite group G is indecomposable if, for
any isomorphism of profinite groups G ∼→ H × J , where H, J are profinite groups,
it follows that either H or J is the trivial group.

Proposition 3.2. (The Indecomposability of Surface Groups) Let C
be a nontrivial full formation. Then every almost pro-C-surface group Π is
indecomposable.

Proof. Suppose that we have an isomorphism of profinite groups Π ∼= H×J , where
H, J are nonabelian [since Π is slim — cf. Proposition 1.4!] infinite [again since Π
is slim, hence does not contain any nontrivial finite normal closed subgroups — cf.
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§0] profinite groups. Note that since H, J , are infinite, it follows that for any open
subgroup Π1, we may always replace Π by an open subgroup of Π1. In particular,
[cf. Remark 1.2.1] we may assume, without loss of generality, that Π is a pro-C
surface group arising from a curve of genus ≥ 2. Now we claim that for every prime
number l ∈ ΣC, there exist finite quotients H � QH , J � QJ such that l divides
the order of QH , QJ . Indeed, suppose that l does not divide the order of any finite
quotient of H. Then there exists a proper normal open subgroup NH ⊆ H such
that if we set N def= NH × J ⊆ Π, then the conjugation action of Π/N ∼= H/NH on
Nab ⊗Zl

∼= (Nab
H ⊗Zl)× (Jab ⊗Zl) ∼= Jab ⊗Zl is trivial, which, as was seen in the

proof of Proposition 1.4, leads to a contradiction. This completes the proof of the
claim.

Thus, by replacing Π by the maximal pro-l quotient of Π for some l ∈ ΣC [and
replacing C by the primary formation determined by l], we may assume without loss
of generality that Π, H, J are pro-l groups. Note, moreover, that since H, J are
nonabelian pro-l groups, it follows that dimFl

(Hab ⊗ Fl) ≥ 2, dimFl
(Jab ⊗ Fl) ≥ 2

[cf., e.g., [RZ], Proposition 7.7.2]. On the other hand, observe that the cup product
morphism

H1(H,Fl)⊗H1(J,Fl)→ H2(Π,Fl)

is an injection. [Indeed, this follows immediately by considering the spectral se-
quences associated to the surjections Π ∼= H × J � J , H � {1}, where we note
that the latter surjection may be regarded as a quotient of the former surjection.]
But this implies that dimFl

(H2(Π,Fl)) ≥ 2, which [cf. Remark 1.2.2] is absurd.
This completes the proof of Proposition 3.2. ©

Proposition 3.3. (Quotients of Direct Products) Let G1, . . . , Gn be profi-
nite groups, where n ≥ 1 is an integer;

φ : Π def=
n∏

i=1

Gi � Q

a surjection of profinite groups. Then there exist normal closed subgroups Hi ⊆
Gi [for i = 1, . . . , n], N ⊆ Q such that N ⊆ Z(Q) [cf. §0], and the composite
Π � Q/N of φ with the surjection Q � Q/N induces an isomorphism

Π def=
n∏

i=1

Gi
∼→ Q/N

— where we write Gi
def= Gi/Hi. In particular, if Q is center-free, then we obtain

an isomorphism Π ∼→ Q; if Q is center-free and indecomposable, then we obtain
an isomorphism Gi

∼→ Q for some i ∈ {1, . . . , n}.

Proof. Indeed, write I def= Ker(φ) ⊆ Π; Ii ⊆ Gi for the inverse image of I via the
natural injection ιi : Gi ↪→ Π into the i-th factor; Hi ⊆ Gi for the image of I under
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the natural projection πi : Π � Gi to the i-th factor [where i ∈ {1, . . . , n}]. Thus,
we have inclusions

ΠI
def=

n∏
i=1

Ii ⊆ I ⊆ ΠH
def=

n∏
i=1

Hi ⊆ Π

inside Π. Now observe that the commutator of any element

(1, . . . , 1, gi, 1, . . . , 1) ∈ Π

[i.e., all of whose components, except possibly the i-th element gi ∈ Gi, are equal
to 1] with an element h ∈ I yields an element of I [since I is normal in Π] which lies
in the image of ιi, hence determines an element of Ii ⊆ Gi, which is in fact equal
to the commutator [gi, πi(h)] ∈ Gi [where we observe that πi(h) ∈ Hi] computed
in Gi. In particular, since gi ∈ Gi is arbitrary, and any element of Hi arises as
such a “πi(h)”, it follows that the commutator subgroup [Gi, Hi] is contained in
Ii. But this implies that the commutator subgroup [Π,ΠH ] is normally generated
in Π by elements of ΠI ⊆ I, hence [since I is normal in Π] is contained in I. Put
another way, if we set N ⊆ Q equal to the image in Π/I ∼→ Q of ΠH , then it follows
that N ⊆ Z(Q). On the other hand, it is immediate from the definitions that φ
determines an isomorphism

∏n
i=1 (Gi/Hi)

∼→ Q/N , as desired. ©

Remark 3.3.1. Proposition 3.3 may be regarded as being motivated by the
following elementary fact concerning products of rings: If R1, . . . , Rn [where n ≥ 1
is an integer] are [not necessarily commutative] rings with unity and

φ : R def=
n∏

i=1

Ri � Q

is a surjection of rings with unity, then there exist two-sided ideals Ii ⊆ Ri [for
i = 1, . . . , n] such that φ induces an isomorphism

R
def=

n∏
i=1

Ri
∼→ Q

— where we write Ri
def= Ri/Ii. [Indeed, this follows immediately by observing that

if, for i = 1, . . . , n, we write ei ∈ R for the element whose i-th component is 1 and
whose other components are 0, then any element f ∈ Ker(φ) may be written in the
form f = f · e1 + . . .+ f · en, where each f · ei ∈ Ker(φ) [since Ker(φ) is a two-sided
ideal!].]

Remark 3.3.2. Proposition 3.3 is due to the second author. We observe in
passing that when, in the notation of Proposition 3.3, Q is an almost pro-C-surface
group for some nontrivial full formation C [hence slim and indecomposable — cf.
Propositions 1.4, 3.2], and the Gi are topologically finitely generated, one may give
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a different proof of Proposition 3.3 by applying Theorem 1.5 to the images Ji of
the various composites of φ with the natural inclusions ιi : Gi ↪→ Π — which al-
lows one to conclude [in light of the slimness of Q!] that only one of the Ji [as
i ranges over the integers 1, . . . , n] can be nontrivial. In fact, this argument was
the approach originally taken by the first author to proving Proposition 3.3 and,
moreover, underlies the proof of the main result of this paper via the approach of
the second author given in §6 below. On the other hand, this argument [unlike the
very elementary proof of Proposition 3.3 given above!] has the drawback that it
depends on the result of Lubotzky-Melnikov-van den Dries that was applied in the
proof of Theorem 1.5. This drawback was pointed out by the second author to the
first author when the first author first informed the second author of this restricted
version of Proposition 3.3 and, indeed, served to motivate the second author to ob-
tain the more elementary proof of Proposition 3.3 given above. Perhaps somewhat
ironically, this simplification due to the second author rendered the proofs of the
main results of this paper via the approach of the first author [cf. Theorem 4.7,
Corollary 4.8 below] free of any dependence on the theorem of Lubotzky-Melnikov-
van den Dries [cf. Remark 4.8.1] — in sharp contrast to the essential dependence
on the theorem of Lubotzky-Melnikov-van den Dries in the approach of the second
author exposed in Corollary 6.3 below!

Corollary 3.4. (Group-theoreticity of Product Decompositions) Let C
be a nontrivial full formation; n,m ≥ 1 integers;

G1, . . . , Gn; Hm, . . . , Hm

almost pro-C-surface groups;

G ⊆ ΠG
def=

n∏
i=1

Gi; H ⊆ ΠH
def=

m∏
j=1

Hj

open subgroups;
α : G ∼→ H

an isomorphism of profinite groups. For i = 1, . . . , n; j = 1, . . . , m, write G�
i ⊆

Gi, H�
j ⊆ Hj for the respective images of G, H via the natural projections ΠG �

Gi, ΠH � Hj;
G=

i ⊆ ΠG; H=
j ⊆ ΠH

for the respective intersections of G, H with the images of the natural injections
Gi ↪→ ΠG, Hj ↪→ ΠH ;

G�=
i ⊆ ΠG; H �=

j ⊆ ΠH

for the respective intersections of G, H with the kernels of the natural projections
ΠG � Gi, ΠH � Hj. Then n = m; there exist a unique permutation σ of the
set {1, . . . , n} and unique isomorphisms of profinite groups αi : G�

i
∼→ H�

σ(i)

[for i = 1, . . . , n] such that the restriction of [the composite with the inclusion into
ΠH of] the isomorphism

(α1, . . . , αn) :
(
ΠG ⊇

) n∏
i=1

(G�
i ) ∼→

n∏
i=1

(H�
σ(i))

(
⊆ ΠH

)
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to G coincides with [the composite with the inclusion into ΠH of] α.

Proof. First, we observe that the uniqueness assertions follow immediately from
the nontriviality of C. Thus, it suffices to verify the existence of σ and the αi. Now
we claim that for each j = 1, . . . , m, the kernel of the composite

ψj : G→ Hj

of α with the natural projection (H ⊆) ΠH � Hj contains G�=
i , for a unique i ∈

{1, . . . , n}. Indeed, since the image of ψj is open, hence slim [cf. Proposition 1.4],
it follows [cf. §0] that this image has no nontrivial finite normal closed subgroups;
since the G�=

i are normal closed subgroups of G, it thus suffices to prove that the
kernel of the restriction of ψj to the open subgroup of G ⊆ ΠG determined by the
direct product of the G=

i′ [for i′ = 1, . . . , n] contains the intersection of this open
subgroup with G�=

i , for a unique i. But [since open subgroups of Hj are slim and
indecomposable — cf. Propositions 1.4, 3.2] this follows formally from Proposition
3.3. This completes the proof of the claim.

Note, moreover, that [in the notation of the claim] the assignment j �→ i
determines a map {1, . . . , m} → {1, . . . , n}, which, in light of the injectivity of
α, is easily verified to be surjective. But this implies that m ≥ n; thus, by ap-
plying this argument to α−1, we obtain that m = n. In particular, the map
{1, . . . , m} → {1, . . . , n} considered above is a bijection, whose inverse we denote
by σ. By rearranging the indices, we may assume without loss of generality that σ
is the identity.

Now it follows from the definition of [the map that gave rise to] σ that we
obtain a surjection

αi : G�
i � H�

i

for each i = 1, . . . , n, such that the restriction of [the composite with the inclusion
into ΠH of] the surjection

(α1, . . . , αn) :
(
ΠG ⊇

) n∏
i=1

(G�
i ) �

n∏
i=1

(H�
i )

(
⊆ ΠH

)

to G coincides with [the composite with the inclusion into ΠH of] α. In particular,
since α is injective, it follows that the kernel of each αi is a finite closed normal
subgroup of an open subgroup of Gi. Thus, by the slimness of Gi [cf. Proposition
1.4], we conclude [cf. §0] that the αi are injective, as desired. ©

Section 4: Product-theoretic Quotients

In the present §4, we show that in the case of genus ≥ 2, the [closure of the]
commutator subgroup of a product-theoretic open subgroup of a configuration space
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group is, up to torsion, again product-theoretic [cf. Theorem 4.7]. This result,
combined with the theory of §3, implies a rather strong result, in the case of genus
≥ 2, concerning the group-theoreticity of the various fiber subgroups associated to a
configuration space group [cf. Corollary 4.8].

Let Y be a connected smooth variety over an algebraically closed field k which
[for simplicity] we assume to be of characteristic zero.

Definition 4.1. Let j ≥ 1 be an integer. Then we shall refer to Y as j-good if
for every positive integer j′ ≤ j and every class

η ∈ Hj′
ét(Y,Z/NZ)

[where “Hj′
ét(−)” denotes étale cohomology, and N ≥ 1 is an integer], there exists

a finite étale covering Y ′ → Y such that η|Y ′ = 0.

Remark 4.1.1. As is well-known, it follows immediately from the Hochschild-
Serre spectral sequence in étale cohomology [cf., e.g., [Milne], p. 105, Theorem
2.20] that one has a natural isomorphism

Hj′
(π1(Y ), Ẑ) ∼→ Hj′

ét(Y, Ẑ)

for all nonnegative integers j′ ≤ j whenever Y is j-good. Also, we observe that it
is immediate from the definitions that the condition “1-good” is vacuous.

Let
f : Z → Y

be a family of hyperbolic curves over Y ; y ∈ Y (k). We shall denote fibers over y by
means of a subscript “y”. Suppose that we have also been given a section

s : Y → Z

of f , whose image we denote by Ds ⊆ Z. Write UZ ⊆ Z for the open subscheme
given by the complement of Ds; L def= OZ(Ds); L× → Z for the complement of the
zero section of the geometric line bundle determined by L;

UZ → L×

for the morphism determined by the natural inclusion OZ ↪→ OZ(Ds) = L. Thus,
UZ → Y is also a family of hyperbolic curves. Now if we denote by “π1(−)” the
étale fundamental group [for an appropriate choice of basepoint], then we have a
natural commutative diagram

1 −→ π1((UZ)y) −→ π1(UZ) −→ π1(Y ) −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ π1(L×

y ) −→ π1(L×) −→ π1(Y ) −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ π1(Zy) −→ π1(Z) −→ π1(Y ) −→ 1



THE PROFINITE FUNDAMENTAL GROUPS OF CONFIGURATION SPACES 21

in which the first and third horizontal sequences are exact [cf. Proposition 2.2,
(iii)]. Write Is ⊆ π1(UZ) for the inertia group [well-defined up to conjugation in
π1(UZ)] associated to the divisor Ds. Thus, Is ∼= Ẑ(1) [where the “(1)” denotes a
“Tate twist”].

Lemma 4.2. (The Line Bundle Associated to a Cusp) In the notation
of the above discussion, suppose further that Y is j-good, for some integer j ≥ 2.
Then:

(i) Z is j-good.

(ii) π1(L×) fits into an short exact sequence:

1→ Ẑ(1)→ π1(L×)→ π1(Z)→ 1

Moreover, the resulting extension class ∈ H2(π1(Z), Ẑ(1)) ∼= H2
ét(Z, Ẑ(1)) [cf. (i);

Remark 4.1.1] is the first Chern class of the line bundle L.
(iii) The sequence 1 → π1(L×

y ) → π1(L×) → π1(Y ) → 1 of the above commu-
tative diagram is exact.

(iv) The morphism of fundmental groups π1(UZ) → π1(L×) induces an iso-
morphism Is

∼→ Ker(π1(L×) → π1(Z)). In particular, the vertical arrows of the
commutative diagram of the above discussion are surjections.

(v) Write π1(UZ/Z) def= Ker(π1(UZ) � π1(Z)) ⊆ π1((UZ)y). Then the quotient
of π1(UZ/Z) by

π1(UZ/L
×) def= Ker(π1(UZ)→ π1(L×)) ⊆ π1(UZ/Z) (⊆ π1(UZ))

is the maximal quotient of π1(UZ/Z) on which the conjugation action by π1((UZ)y)
is trivial.

Proof. First, we consider assertion (i). In light of the exact sequence 1→ π1(Zy)→
π1(Z) → π1(Y ) → 1 [together with the Leray-Serre spectral sequence for Z → Y ],
it follows immediately that to show that Z is j-good, it suffices to show that Zy is
j-good. But this follows immediately from the fact that the cohomological dimen-
sion of Zy is equal to 1 when Zy is affine [cf., e.g., [Milne], p. 253, Theorem 7.2]
and from the well-known isomorphism H2

ét(Zy,Z/NZ) ∼= (Z/NZ)(−1) determined
by considering fundamental classes of points [together with the fact that the coho-
mological dimension of Zy is equal to 2 — cf., e.g., [Milne], p. 276, Theorem 11.1],
when Zy is proper. This completes the proof of assertion (i).

In light of assertion (i), assertion (ii) follows from [Mzk2], Lemmas 4.4, 4.5.
Assertion (iii) follows immediately by considering the natural commutative diagram

1 −→ Ẑ(1) −→ π1(L×
y ) −→ π1(Zy) −→ 1⏐⏐� ⏐⏐� ⏐⏐�

1 −→ Ẑ(1) −→ π1(L×) −→ π1(Z) −→ 1
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[in which the rows are exact, by assertion (ii); the vertical arrow on the left is an
isomorphism], together with the exact sequence 1 → π1(Zy) → π1(Z) → π1(Y ) →
1. Assertion (iv) (respectively, (v)) follows immediately from the argument of the
proof of [Mzk4], Lemma 4.2, (ii) (respectively, [Mzk4], Lemma 4.2, (iii)). ©

Now let l be a prime number; suppose that Y is 2-good. Also, let us suppose
that, for i = 1, . . . , m [where m ≥ 1 is an integer], we have been given a section

si : Y → Z

of f , whose image we denote by Dsi
⊆ Z. Write Ui ⊆ Z for the open subscheme

given by the complement of Dsi
; WZ

def=
⋂m

i=1 Ui ⊆ Z; Li
def= OZ(Dsi

); L×
i → Z for

the complement of the zero section of the geometric line bundle determined by Li;

WZ → L×
i

for the morphism determined by the natural inclusion OZ ↪→ OZ(Dsi
) = Li. Also,

let us suppose that WZ → Y is a family of hyperbolic curves [i.e., that the images
of the si do not intersect]. By forming the quotient of the exact sequence of Lemma
4.2, (ii), by the pro-prime-to-l portion of Ẑ(1), we obtain extensions

1 −→ Zl(1) −→ Ei,y −→ π1(Zy) −→ 1⏐⏐� ⏐⏐� ⏐⏐�
1 −→ Zl(1) −→ Ei −→ π1(Z) −→ 1

for i = 1, . . . , m. Also, let us write

κi ∈ H2
ét(Z,Zl(1))

for the fundamental class associated to Dsi
[i.e., the first Chern class of the line

bundle Li — cf. Lemma 4.2, (ii)].

Lemma 4.3. (Multi-section Splittings) In the notation of the above discus-
sion:

(i) The natural homomorphism

π1(WZ)→
m∏

i=1

Ei

[where the product is a fiber product over π1(Z)] is surjective.

(ii) The natural quotient π1(WZ) � π1(WZ)ab ⊗ Zl factors through the quo-
tient determined by the surjection of (i).
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(iii) For i = 1, . . . , m, let λi ∈ Zl. Then there exists a surjection π1(WZ) �
Zl(1) — which, by (ii), necessarily factors through the surjection of (i), hence
determines a surjection

m∏
i=1

Ei � Zl(1)

— that restricts to multiplication by λi on the copy of Zl(1) in Ei if and only if the
class

m∑
i=1

λi · κi ∈ H2
ét(Z,Zl(1))

vanishes.

Proof. First, we consider assertion (i). In light of the exact sequences of Proposi-
tion 2.2, (iii), and Lemma 4.2, (iii), it suffices to show the surjectivity of π1((WZ)y)→∏m

i=1 Ei,y. But this follows immediately, in light of Lemma 4.2, (iv), by considering
the various inertia groups ⊆ π1((WZ)y) of the cusps of (WZ)y. This completes the
proof of assertion (i). Assertion (ii) follows immediately, in light of Lemma 4.2,
(iv), from the fact that the kernel of the natural surjection π1(WZ) � π1(Z) is
topologically normally generated by the inertia groups of cusps. Finally, we observe
that assertion (iii) follows immediately from the definitions. ©

Lemma 4.4. (The Section Arising from the Graph of a Morphism) In
the notation of the above discussion, suppose further that Z → Y is given by the
projection to the second factor C ×k C → C, where we write C def= Zy, that C is
proper, and that s : Y → Z is given by the graph of a k-morphism σ : C → C.
Then the component of the first Chern class of L in the middle direct summand of

H2
ét(Z,Zl(1)) ∼= H2

ét(C,Zl(1))⊕ (H1
ét(C,Zl)⊗H1

ét(C,Zl(1)))⊕H2
ét(C,Zl(1))

[cf. the Künneth isomorphism in étale cohomology, discussed, e.g., in [Milne], p.
258, Theorem 8.5] is given by applying the endomorphism σ∗ ⊗ id of the module
H1

ét(C,Zl)⊗H1
ét(C,Zl(1)) to the inverse of the bilinear form arising from the cup

product H1
ét(C,Zl)⊗H1

ét(C,Zl(1))→ H2
ét(C,Zl(1)) ∼= Zl in étale cohomology.

Proof. Indeed, this follows immediately from [Milne], p. 287, Lemma 12.2. ©

Lemma 4.5. (Linear Independence for Vector Spaces) Let G be a finite
group, whose order we denote by |G|; K a field; V a finite-dimensional K-vector
equipped with a linear action by G such that the G-module V contains the regular
representation of G as a direct summand; N ≥ 1 an integer. Write

W
def= V ⊕ . . .⊕ V

for the direct sum of N copies of V ; ιi ∈ HomK(V,W ) [where i = 1, . . . , N ] for the
inclusion V ↪→W into the i-th factor. Then the N · |G| elements

ιi ◦ g
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[where i = 1, . . . , N ; g ∈ G] of HomK(V,W ) are linearly independent.

Proof. Indeed, any nontrivial linear relation between these elements implies — by
applying the various linear morphisms HomK(V,W ) → HomK(V, V ) obtained by
projecting onto the various factors of V in W — a nontrivial linear relation between
the endomorphisms ∈ HomK(V, V ) determined by the elements of G, in contradic-
tion to the assumption that the G-module V contains the regular representation of
G as a direct summand. ©

Lemma 4.6. (Linear Independence for Configuration Spaces) In the
notation of the above discussion, suppose further that:

(a) there exists a commutative diagram

Z −→ Y⏐⏐� ⏐⏐�
X ×k Xn −→ Xn

where the upper horizontal arrow is the given morphism Z → Y ; the lower
horizontal arrow is the projection to the second factor; n ≥ 1 is an integer;
Xn is the n-th configuration space associated to some hyperbolic
curve X over k; the vertical arrows are finite étale Galois coverings
arising from the coverings of X×kXn, Xn determined by taking the direct
product of copies of a finite étale Galois covering Z0 → X [so Zy may be
identified with Z0];

(b) the genus of the compactification B of X is ≥ 2;

(c) if we write C → B for the normalization of B in Z0, then we have
m = n · deg(C/B), and the si : Y → Z are the various liftings of the n
tautological sections Xn → X ×k Xn arising from the definition of the
configuration space Xn.

[Thus, the fact that WZ → Y is a family of hyperbolic curves follows imme-
diately from Remark 2.1.2; the fact that Xn, hence also Y , is 2-good follows, by
induction on n, from Lemma 4.2, (i). Moreover, WZ forms a finite étale covering
of Xn+1 that arises from a product-theoretic open subgroup of π1(Xn+1).] Then
the images of the κi in H2

ét(Z,Ql(1)) are linearly independent [over Ql].

Proof. Note that the projection to the first factor X ×k Xn → X determines a
morphism Z → Z0 (⊆ C). Suppose that the section s : Y → Z arises from a point
∈ Z0(k). Write κ ∈ H2

ét(Z,Zl(1)) for the fundamental class associated to Ds. For

i = 1, . . . , m, set κ′i
def= κi − κ. Note that since κ and the κi all map [cf. the

Leray-Serre spectral sequence for Z → Y ] to the same element of H2
ét(Zy,Ql(1))

— a Ql-vector space of dimension 0 [cf., e.g., [Milne], p. 253, Theorem 7.2] if Zy is
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affine and dimension 1 [cf., e.g., [Milne], p. 276, Theorem 11.1, (a)] if Zy is proper
— it follows that κ′i maps to 0 in H2

ét(Zy,Ql(1)). Thus, we conclude that the κ′i
determine classes

ηi ∈ H1
ét(Y,H

1
ét(Zy,Ql(1))) ∼= H1

ét(Y,Ql)⊗H1
ét(Z0,Ql(1))

[cf. the Leray-Serre spectral sequence for Z → Y ], and that to show the linear
independence of the images of the κi in H2

ét(Z,Ql(1)), it suffices to verify that the
ηi are linearly independent.

On the other hand, it follows immediately from the definitions that the κi arise
as pull-backs via the various projections Y → Z0 ↪→ C, Z → Z0 ↪→ C of the classes
[cf. Lemma 4.4] determined by the graphs ⊆ C ×k C of the various σ : C → C, for
σ ∈ Gal(C/B). In particular, the ηi arise as pull-backs via these various projections
of the classes in

H1
ét(C,Ql)⊗H1

ét(C,Ql(1)) (↪→ H1
ét(Y,Ql)⊗H1

ét(Z0,Ql(1)))

determined [cf. Lemma 4.4] by the graphs of the various σ ∈ G def= Gal(C/B). On
the other hand, by Proposition 1.3 [cf. our assumption that the genus of B is ≥ 2!],
it follows that the G-module V def= H1

ét(C,Ql) contains the regular representation of
G as a direct summand. Note, moreover, that the n inclusions V = H1

ét(C,Ql) ↪→
H1

ét(Y,Ql) [determined up to composition with the action of G on V ] arising from
the n projections Xn → X determine a map of Ql-vector spaces

(⊕
H1

ét(C,Ql)
)
→ H1

ét(Y,Ql)

[where the direct sum is over n copies of H1
ét(C,Ql)] which is injective. Thus, we

are, in effect, in the situation of Lemma 4.5, so the linear independence of the ηi

follows from the linear independence asserted in Lemma 4.5. ©

Theorem 4.7. (Strongly Torsion-free Pro-solvable Product-theoreticity)
Let X be a hyperbolic curve of genus ≥ 2 over an algebraically closed field k
of characteristic zero; n ≥ 1 an integer; Xn the n-th configuration space as-
sociated to X; H ⊆ π1(Xn) a product-theoretic open subgroup; G a strongly
torsion-free pro-solvable profinite group. Then the kernel of any continuous
homomorphism

H → G

is product-theoretic.

Proof. First, we claim that it suffices to verify Theorem 4.7 in the case where
G = Zl [for some prime number l]. Indeed, since G is topologically finitely gen-
erated [cf. Definition 1.1, (iii)], and arbitrary intersections of product-theoretic
closed subgroups of π1(Xn) are clearly product-theoretic, Theorem 4.7 for arbi-
trary [torsion-free] abelian G follows immediately from the case “G = Zl”. Thus,
by replacing H, G successively by appropriate open subgroups of H, G, Theorem
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4.7 for arbitrary [strongly torsion-free] pro-solvable G follows immediately from the
[torsion-free] abelian case. This completes the proof of the claim. Thus, in the
following, we assume that G = Zl.

Now observe that Theorem 4.7 is vacuous for n = 1. Thus, by induction on n, it
suffices to verify Theorem 4.7 for “n+1” under the assumption that it holds for “n”.
Next, let us observe that it follows immediately from the definition of “product-
theoretic” that any covering of Xn+1 that arises from a product-theoretic open
subgroup J ⊆ π1(Xn+1) is dominated by a covering of the form “WZ → Xn+1” for
WZ as in Lemma 4.6. Thus, [since G = Zl is torsion-free] we may assume, without
loss of generality, that J corresponds to a covering “WZ → Xn+1” for WZ as in
Lemma 4.6. In particular, by applying Lemma 4.3, (iii), to arbitrary quotients
J � Jab⊗Zl � Zl, in light of the linear independence asserted in Lemma 4.6, and
the induction hypothesis, we conclude that the kernel of such a quotient J � Zl is
product-theoretic, as desired. ©

Remark 4.7.1. Note that Theorem 4.7 is false if the genus of X is < 2 and n ≥ 2.
Indeed, to construct a counter-example for arbitrary n ≥ 2, it suffices to construct
a counter-example for n = 2. If, moreover, U is the hyperbolic curve determined
by an open subscheme of X , then consideration of the natural morphism U2 ↪→ X2

shows that the existence of a counter-example for X2 implies the existence of a
counter-example for U2. Thus, we may assume, without loss of generality, that
n = 2, and X is either of type (0, 3) or (1, 1). But in either of these cases, it
is well-known that there exists a dominant map X2 → X that extends to a map
X×kX → C [where C is a compactification of X ] that maps the diagonal of X×kX
to a single point of C. Thus, by pulling back appropriate infinite cyclic coverings
of finite étale coverings of X , one obtains infinite cyclic coverings of finite étale
coverings of X ×k X that are [infinitely] ramified over the diagonal of X ×k X .

Corollary 4.8. (Group-theoreticity of Projections of Configuration
Spaces I) Let C be a PT-formation. For � = α, β, let X� be a hyperbolic
curve of genus ≥ 2 over an algebraically closed field k� of characteristic
zero; n� ≥ 1 an integer; X�

n� the n�-th configuration space associated to X�;

E� the index set of X�
n�; H� ⊆ Π� def= πC

1 (X�
n�) a product-theoretic open

subgroup. Let
γ : Hα

∼→ Hβ

be an isomorphism of profinite groups. Then γ induces a bijection σ :
Eα

∼→ Eβ [so nα = nβ] such that

γ(Fα

⋂
Hα) = Fβ

⋂
Hβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ, whose respective profiles E′
α ⊆ Eα,

E′
β ⊆ Eβ correspond via σ.

Proof. First, let us observe that to complete the proof of Corollary 4.8, it suffices
construction a bijection σ : Eα

∼→ Eβ [so nα = nβ ] such that

γ(Fα

⋂
Hα) = Fβ

⋂
Hβ
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for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ of co-length one whose respective profiles

correspond via σ. Indeed, this follows immediately by applying induction on n
def=

nα = nβ [cf. also Proposition 2.4, (i), (ii)].

Next, for j = 1, . . . , n�, let us write

K�
j ⊆ H�

for the intersection with H� of the fiber subgroup ⊆ Π� of co-length one with
co-profile given by the element of E� labeled by j. Thus, [cf. Proposition 2.4,
(iv); the fact that fiber subgroups of co-length one are normal closed subgroups of
infinite index] for distinct j, j′ ∈ {1, . . . , n�}, K�

j , K�
j′ topologically generate an

open subgroup of Π�; in particular, K�
j is not contained in K�

j′ .

Now we claim that to complete the proof of Corollary 4.8, it suffices to prove
that the following statement holds [in general]:

For each i ∈ Eα, there exists a j ∈ Eβ such that Kβ
j ⊆ γ(Kα

i ).

Indeed, by applying this statement to γ, γ−1, we conclude that for each i ∈ Eα,
there exist j ∈ Eβ , i′ ∈ Eα such that γ(Kα

i′ ) ⊆ Kβ
j ⊆ γ(Kα

i ), hence that Kα
i′ ⊆ Kα

i .
But, as observed above, this implies that i′ = i, hence that Kβ

j = γ(Kα
i ). Moreover,

this relation “Kβ
j = γ(Kα

i )” determines an assignment i �→ j, hence a mapping
σ : Eα → Eβ, which is a bijection, relative to which intersections with Hα, Hβ of
fiber subgroups of co-length one with corresponding profiles correspond via γ. This
completes the proof of the claim.

To verify the “statement” of the above claim, we reason as follows: Let l ∈ ΣC .
Write Hα/K

α
i � G for the maximal pro-l quotient of Hα/K

α
i ;

φ : Hβ
∼→ Hα � Hα/K

α
i � G

for the surjection determined by γ−1. Then observe that since Hα/K
α
i is a pro-C

surface group, it follows that G is a pro-l surface group, hence strongly torsion-free
[cf. Remark 1.2.2] and pro-solvable [cf. Remark 1.1.3]. Thus, it follows from Theo-
rem 4.7 that φ factors through the quotient Hβ � Qβ determined by the quotient
“πC

1 (Xβ
nβ

) � πC
1 (P β

nβ
)” [i.e., the image of Hβ ⊆ πC

1 (Xβ
nβ

) in πC
1 (P β

nβ
)] corresponding

to the quotient that was denoted “πC
1 (Xn) � πC

1 (Pn)” in Definition 2.3, (ii). In
particular, since Qβ admits an open subgroup with a direct product decomposition
induced by the natural direct product decomposition of πC

1 (P β
nβ

), it thus follows
[since open subgroups of G are slim and indecomposable — cf. Propositions 1.4,
3.2] from Proposition 3.3 that there exists a j ∈ Eβ such that the image of Kβ

j in G
is a finite normal closed subgroup, hence trivial [since G is slim — cf. Proposition
1.4, §0].

Next, let us observe that by applying the above argument to arbitrary open
subgroups of Hα, Hβ that correspond via γ, we conclude that the image of Kβ

j in
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an arbitrary almost pro-l-maximal quotient Hα/K
α
i � J [so J is an almost pro-l-

surface group!] is a finite normal closed subgroup, hence trivial [since J is slim —
cf. Proposition 1.4, §0]. On the other hand, since the natural homomorphism

Hα/K
α
i → lim←−

J

J

[where J ranges over the almost pro-l-maximal quotients Hα/K
α
i � J of Hα/K

α
i ]

is clearly an isomorphism, we thus conclude that the image of Kβ
j in Hα/K

α
i is

trivial, as desired. This completes the proof of Corollary 4.8. ©

Remark 4.8.1. Observe that the proof of Corollary 4.8 given above is entirely
free of any dependence on Theorem 1.5, hence, in particular, on the theorem of
Lubotzky-Melnikov-van den Dries [cf. Remark 3.3.2]. Put another way, the some-
what complicated geometric computations performed in the present §4 may be
regarded as a sort of “substitute for a certain portion” of the “group-theoretic con-
tent” of the theorem of Lubotzky-Melnikov-van den Dries.

Remark 4.8.2. The original motivation, for the first author, for developing the
theory applied to prove Corollary 4.8 was the idea that by combining Corollary
4.8 with the techniques of [Mzk5], [Mzk6], one could apply Corollary 4.8 to obtain
results in the absolute anabelian geometry of configuration spaces over p-adic local
fields. It is the intention of the first author to carry out this application of Corollary
4.8 in a subsequent paper.

Section 5: Divisors and Units on Coverings of Configuration Spaces

In the present §5, we discuss a certain generalization [cf. Theorem 5.6; Remark
5.6.1] of Theorem 4.7 [due to the second author]. Unlike the proof of Theorem
4.7 given in §4, the proof of this generalization does not rely on the notion of
“goodness” or properties involving the “regular representation”. In this sense, the
approach given in the present §5 is more efficient and relies on direct algebro-
geometric properties — such as the disjointness of divisors — of which the properties
involving the “regular representation” applied in §4 may be thought of as a sort of
“étale-topological translation”. On the other hand, the approach of §4 [which was
discovered first, by the first author], though less efficient, has the virtue of relying on
explicit group-theoretic manifestations of these algebro-geometric properties; it was
this explicitness that served to render the approach of §4 more readily accessible
to the intuition of the first author. Finally, we discuss certain consequences [cf.
Corollary 5.7] of the theory of the present §5 concerning the “non-existence of
units” on a sufficiently generic hyperbolic curve.

We begin by reviewing some essentially well-known generalities concerning log
schemes.
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Definition 5.1. Let X log be a fine log scheme [cf. [Kato1]].

(i) Denote byMX the étale sheaf of monoids onX that defines the log structure
on X log. Thus, we have a natural injection O×

X ↪→MX , which we shall use to regard
O×

X as a subsheaf of MX . We shall refer to the quotient sheaf of monoids

M char
X

def= MX/O×
X

as the characteristic of X log and to the associated sheaf of groupifications

M char-gp
X

as the group-characteristic of X log. Thus, [since X log is fine] the fibers of M char
X

(respectively, M char-gp
X ) are finitely generated torsion-free abelian monoids (respec-

tively, abelian groups). For n ∈ N, we shall denote by

U
[n]
X ⊆ X

and refer to as the n-interior of X log the subset [cf. Proposition 5.2, (i), (ii) below]
of points [of the scheme X lying under geometric points of the scheme X ] at which
the fiber of M char-gp

X is of rank ≤ n. Thus, U [0]
X is the interior UX ⊆ X of X log [i.e.,

the open subscheme of points at which the log structure of X log is trivial].

(ii) Let M be a finitely generated [abstract] abelian monoid; N ≥ 1 an integer.
We shall say that M is Q-regular [with exponent N ] if for some n ∈ N, the map

Nn → Nn

[where Nn is the monoid determined by the product of n copies of N] given by
multiplication byN factors as a composite of injections of monoids Nn ↪→M ↪→ Nn.
We shall say that X log is weakly Q-regular (respectively, strongly Q-regular) if,
for every geometric point x of X , the fiber of M char

x at x is a Q-regular monoid
(respectively, Q-regular monoid with exponent invertible in the residue field of x).

Proposition 5.2. (Generalities on Log Schemes) Let X log be a fine log
scheme; n ∈ N; l a prime number invertible on X. Then:

(i) The n-interior U [n]
X ⊆ X is open.

(ii) Suppose that X log is log regular. Then the complement of the n-interior
U

[n]
X is a closed subset of X of codimension > n.

(iii) Suppose that X log is log regular and weakly Q-regular. Then X is
locally Q-factorial [i.e., every Weil divisor on X admits a positive multiple which
is Cartier].
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(iv) Suppose that X log is log smooth over a field k [equipped with the trivial log
structure] and strongly Q-regular; let F ⊆ X be a closed subset of codimension
≥ n. Then the natural map on étale cohomology

Hj
ét(X,Ql)→ Hj

ét(X\F,Ql)

is an isomorphism for j ≤ 2n− 2 and an injection for j = 2n− 1.

(v) Under the assumptions of (iv), suppose further that X is connected; write

DX =
⋃
i∈I

DX,i

— where I is a finite set; the DX,i ⊆ X are irreducible divisors — for the comple-
ment X\UX [equipped with the reduced induced scheme structure]. [Thus, we have
a natural surjection of étale fundamental groups

π1(UX) � π1(X)

whose kernel contains the inertia groups of the DX,i; the maximal pro-l quotient
of each of these inertia groups is naturally isomorphic to Zl(1).] Then we have a
natural exact sequence

0→ Hom(π1(X),Ql(1))→ Hom(π1(UX),Ql(1))

→
⊕
i∈I

Ql → H2
ét(X,Ql(1))→ H2

ét(UX ,Ql(1))

— where the “Hom’s” denote the modules of continuous homomorphisms of topo-
logical groups; the second arrow is the arrow determined by the natural surjection
π1(UX) � π1(X); the third arrow is the arrow determined by the inertia groups
of the DX,i [and the natural identification of Ql with Hom(Zl(1),Ql(1))]; the fourth
arrow is the arrow that sends the 1 ∈ Ql in the direct summand labeled “i” to the
fundamental class c(DXi

) of the Weil divisor DX,i [which is well-defined, by
(iii)].

Proof. Indeed, assertion (i) follows immediately from the definition of a fine log
scheme [cf. [Kato1], §2.1-3]. In light of assertion (i), assertion (ii) follows immedi-
ately from the inequality dim(OX,x) ≥ rankZ((M char-gp

X )x) [where x is a geometric
point of X ; OX,x is the corresponding strict henselization of a local ring of X ] —
cf. the definition of “log regular” in [Kato2], Definition 2.1.

To verify assertion (iii) (respectively, (iv)), let us first observe that it follows
immediately from our assumptions that X log is log regular (respectively, log smooth
over k) and weakly Q-regular (respectively, strongly Q-regular) that every point of
X admits an étale neighborhood V → X such that there exists a finite (respectively,
Kummer log étale) dominant morphism W log → V log [where we equip V with the
log structure pulled back from X ] such that the scheme W is regular (respectively,
smooth over k) and connected, and the log structure of W log arises from a divisor
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with normal crossings on W . Now assertion (iii) follows immediately by pulling
back a given Weil divisor on X to the regular scheme W [which yields a Cartier
divisor on W ] and then pushing forward via W → V [which multiplies the original
divisor on V by the degree of the morphism W → V ].

To verify assertion (iv), let us first observe that assertion (iv) holds when X
is smooth over k. Indeed, in this case, by applying noetherian induction to F
and possibly base-changing to a finite inseparable extension of k, we may assume
without loss of generality that F is smooth over k; but then the content of assertion
(iv) is well-known [cf., e.g., [Milne], p. 244, Remark 5.4, (b)]. In the case of
arbitrary X log, we argue as follows: Since we have already verified assertion (iv)
for k-smooth X , we may assume that F

⋂
UX = ∅. Write ι : XF

def= X\F ↪→ X
for the natural inclusion. Then [by applying a well-known exact sequence in étale
cohomology] it suffices to verify that Rjιét,∗(Ql) = 0 for 0 < j ≤ 2n − 1. In
particular, it suffices [cf. [Milne], p. 88, Theorem 1.15] to verify, for an arbitrary
strictly henselization V of V at a closed point of V , that Hj(V F ,Ql) = 0 for
0 < j ≤ 2n − 1 [where we write V F

def= XF ×X V ]. On the other hand, let us
observe that since ζ log : W log

F
def= V F ×V W log → V log

F
def= V F ×V V log is Kummer

log étale, it follows that one may define a “trace morphism”

ζét,∗((Ql)W F
)→ (Ql)V F

[where we use the subscripts “WF ”, “V F ” to denote the constant sheaf on WF ,
V F ] that restricts, relative to ζ∗ét, to multiplication by the degree deg(ζ) of ζ on
(Ql)V F

. [Indeed, this is immediate for the restriction ζU : UW F
→ UV F

to the
respective interiors, since this restriction is finite étale. On the other hand, since V F

is normal, we have a natural isomorphism (Ql)V F

∼→ θ∗θ∗((Ql)V F
), where we write

θ : UV F
↪→ V F for the natural inclusion of the interior. Thus, we obtain a trace

morphism as desired by restricting to the interiors, applying the trace morphism on
the interiors, and then applying this natural isomorphism.] Thus, by taking étale
cohomology, one obtains a trace morphism τ : Hj(WF ,Ql)→ Hj(V F ,Ql) such that
the composite τ ◦ ρ with the restriction morphism ρ : Hj(V F ,Ql) → Hj(WF ,Ql)
is equal to multiplication by deg(ζ) on Hj(V F ,Ql). Since, moreover, we have
already verified assertion (iv) for k-smooth X , it follows that Hj(WF ,Ql) = 0 for
0 < j ≤ 2n− 1, hence that Hj(V F ,Ql) = 0 for 0 < j ≤ 2n− 1, as desired.

Finally, we consider assertion (v). When X = U
[1]
X [so X , DX are smooth over

k], assertion (v) follows immediately by applying the well-known Gysin sequence in
étale cohomology [cf., e.g., [Milne], p. 244, Remark 5.4, (b)]

0→ H1
ét(X,Ql(1))→ H1

ét(UX ,Ql(1))→
⊕
i∈I

Ql → H2
ét(X,Ql(1))→ H2

ét(UX ,Ql(1))

and the natural isomorphisms H1
ét((−),Ql(1)) ∼= Hom(π1((−)),Ql(1)), for “(−)”

equal to X , UX . For arbitrary X log, we reduce immediately to the case where
X = U

[1]
X by applying assertions (ii), (iv). ©
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Remark 5.2.1. We recall in passing that Proposition 5.2, (iii), is false for arbi-
trary [not necessarily weakly Q-regular] log regular X log. Indeed, such an example
appears in the Remark following [Mzk1], Corollary 1.8.

Now we return to our discussion of configuration spaces. Let X be a proper
hyperbolic curve of genus gX over an algebraically closed field k of characteristic
zero, n ≥ 1 an integer, l a prime number; write Xn ⊆ Pn for the associated n-th
configuration space, Z log

n for the associated n-th log configuration space, and E for
the index set of Xn, Z log

n [cf. Definition 2.1, (i)]. Thus, Xn may be identified with
the interior UZn

of Z log
n . Also, let us suppose that we have been given a nonempty

open subscheme
X ⊆ X

which is the complement X\S of a finite set of closed points S ⊆ X . Thus, X
determines an associated n-th configuration space Xn ⊆ Pn and an associated n-th
log configuration space Z log

n [with index set E]. Moreover, by “forgetting certain of
the marked points of the stable curve” parametrized by Z log

n , we obtain a natural
morphism

Z log
n → Z log

n

that extends the natural inclusion Xn ↪→ Xn.

Proposition 5.3. (The Logarithmic Geometry of the Log Configuration
Space) In the notation of the above discussion: Write

V
def= U

[1]
Zn

for the 1-interior of Z log
n . For j ≥ 1 an integer, let us denote by

∧jE

the set of subsets of E of cardinality j [so E may be identified with ∧1E] and by

∧∗E def=
n⋃

j=1

∧jE

the [disjoint] union of the subsets of cardinality j ≥ 1. Then:

(i) We shall refer to a divisor on Zn obtained as the pull-back via a projection
morphism Zn → X of co-length 1 [and co-profile e ∈ ∧1E = E] of a point in S ⊆ X
as a fiber divisor [of co-profile e] [on Zn]. Then all fiber divisors of co-profile
e ∈ ∧1E = E determine the same fundamental class

ηe ∈ H2
ét(Zn,Ql(1))

— which we shall refer to as the fiber class of co-profile e [on Zn].
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(ii) The irreducible divisors on Zn contained in the divisor DZn
defining the

log structure of Z log
n are in natural bijective correspondence with the elements

of (∧∗E)\E. That is to say, a point of V belongs to the irreducible divisor Dε ⊆ V
corresponding to an element ε ∈ (∧∗E)\E if and only if it corresponds to a stable
curve with precisely two irreducible components, one isomorphic to X, the other
of genus zero, such that the marked points that lie on X are precisely the marked
points determined by the factors e ∈ ε′ def= E\ε. In particular, we obtain a natural
isomorphism of schemes

Dε
∼= X|ε′|+1 ×Q|ε|−2

— where |ε|, |ε′| are the cardinalities of of ε, ε′, respectively; the projection Dε →
X|ε′|+1 is induced by any projectionXn → X|ε′|+1 of co-profile ε+, for ε+ ∈ ∧|ε′|+1E
an element such that ε′ ⊆ ε+; Q|ε|−2 is the (|ε| − 2)-th configuration space [i.e.,
Spec(k), when |ε| = 2] of “the” tripod [cf. §0] over k. In particular, the index set
of the configuration space X|ε′|+1 appearing in this isomorphism may be naturally
identified with the set “E/ε” obtained from E by identifying the elements of ε to a
single element [ε] ∈ E/ε. We shall refer to the irreducible divisor on Zn contained
in DZn

that corresponds to ε ∈ (∧∗E)\E as the log-prime divisor of co-profile
ε [on Zn]; we shall refer to the fundamental class

ηε ∈ H2
ét(Zn,Ql(1))

of the log-prime divisor of co-profile ε as the log-prime class of co-profile ε [on
Zn].

(iii) The union of the fiber and log-prime divisors of Zn determine a
divisor with normal crossings on V . Denote the resulting log scheme by V log;
let

W log → V log

be a connected Kummer log étale covering. Then W log is log smooth over k
and strongly Q-regular, and the 2-interior U [2]

W of W log is equal to W . We shall
also refer to irreducible divisors on W that lie over fiber divisors on Zn as fiber
divisors on W , and to fundamental classes of fiber divisors on W as fiber classes
on W ; in a similar vein, we shall refer to irreducible divisors on W that lie over
log-prime divisors on Zn as log-prime divisors on W , and to fundamental classes
of log-prime divisors on W as log-prime classes on W . Then a fiber class on W
is completely determined by its coprofile [cf. (i)]. Also, we shall refer to a divisor
(respectively, class) on W or Zn as a log-characteristic divisor (respectively,
log-characteristic class) if it is either a fiber divisor (respectively, class) or a
log-prime divisor (respectively, class).

(iv) Write

(X×
n )log def= Pn ×Pn

Z log
n ; (X×

n )log def= Pn ×Pn
Z log

n

[where, by abuse of notation, we use notation for schemes to denote the correspond-
ing log schemes with trivial log structure]. Then the morphism Z log

n → Z log
n induces

an isomorphism (X×
n )log ∼→ (X×

n )log.
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Proof. Assertion (i) follows, for instance, from [Milne], p. 276, Theorem 11.1, (a).
Assertion (ii) follows immediately from the definition of Z log

n involving the [log]
moduli stack of stable curves. Assertion (iii) follows immediately from the isomor-
phism “Dε

∼= X|ε′|+1 ×Q|ε|−2” of assertion (ii). Assertion (iv) follows immediately
from the fact that points of Z log

n that project to Pn ⊆ Pn correspond precisely to
the stable curves [which necessarily consist of precisely one irreducible component
which may be naturally identified with X and whose remaining irreducible com-
ponents are of genus zero] such that the points of S ⊆ X are marked points [not
nodes!] — i.e., stable curves which may be reconstructed [without any indetermi-
nacy!] even if one forgets these marked points determined by the points of S ⊆ X .
©

Lemma 5.4. (Line Bundles on Log-prime Divisors) In the notation of
Proposition 5.3, (ii):

(i) The isomorphism Dε
∼= X|ε′|+1×Q|ε|−2 of Proposition 5.3, (ii), determines

an isomorphism of Picard groups Pic(Dε)
∼→ Pic(X|ε′|+1).

(ii) The co-normal bundle of Dε is isomorphic [cf. (i)] to the line bundle
obtained by pulling back the canonical bundle ωX of X via the [unique!] projection
X|ε′|+1 → X that arises from a projection morphism Xn → X of co-length 1 whose
co-profile is not contained in ε′.

Proof. First, we consider assertion (i). Since Q|ε|−2 is an open subscheme of the
affine space [of dimension |ε| − 2] over k, it follows that Dε

∼= X|ε′|+1 × Q|ε|−2 is
isomorphic to an open subscheme of the affine space [of dimension |ε| − 2] over
X|ε′|+1. Thus, the assertion concerning Picard groups follows immediately from
elementary algebraic geometry [cf., e.g., [Fulton], Theorem 3.3, (a)].

As for assertion (ii), we observe that by the description of the stable curves
parametrized by Dε given in Proposition 5.3, (ii), implies [in light of the well-
known local structure of a node] that the co-normal bundle in question is naturally
isomorphic to the tensor product of the pull-back of the canonical bundle described
in the statement of assertion (ii) with some [necessarily trivial — by assertion (i)]
line bundle on Dε pulled back from the natural projection to Q|ε|−2. This completes
the proof of assertion (ii). ©

Lemma 5.5. (Linear Independence of Log-characteristic Classes) In
the notation of Proposition 5.3, (iii): Set

IW
def= Ifiber

W

⋃
I log-prime
W

— where we write Ifiber
W

def= E and I log-prime
W for the set of log-prime divisors on

W . Thus, if we think of the elements of Ifiber
W as the co-profiles of fiber classes of

H2
ét(W,Ql(1)), then we obtain a [fiber or log-prime] class

ηi ∈ H2
ét(W,Ql(1))
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for each element i ∈ IW . For i ∈ Ifiber
W , write

η+
i

def= ηi|U+
W
∈ H2

ét(U
+
W ,Ql(1))

for the restriction of ηi to U+
W

def= Xn×Pn
W ⊆W [so UW ⊆ U+

W ]; for i ∈ I log-prime
W ,

write
η×i

def= ηi|U×
W
∈ H2

ét(U
×
W ,Ql(1))

for the restriction of ηi to U×
W

def= Pn ×Pn
W ⊆W [so UW ⊆ U×

W ]. Then:

(i) The log-characteristic classes {ηi}i∈IW
are linearly independent over

Ql.

(ii) The restricted fiber classes {η+
i }i∈Ifiber

W
are linearly independent over

Ql.

(iii) The restricted log-prime classes {η×i }i∈Ilog-prime
W

are linearly indepen-
dent over Ql.

Proof. First, we observe that the description of the kernel of the restriction map
H2

ét(W,Ql(1)) → H2
ét(U

+
W ,Ql(1)) (respectively, H2

ét(W,Ql(1)) → H2
ét(U

×
W ,Ql(1)))

given in the exact sequence of Proposition 5.2, (v), implies that assertion (ii) (re-
spectively, (iii)) follows immediately from assertion (i). For i ∈ I log-prime

W , write

Di

for the divisor [tautologically!] determined by i. Thus,

Di

⋂
Dj = ∅

for all i, j ∈ I log-prime
W such that i = j. Also, we observe that it follows immediately

from the definitions that, for i ∈ I log-prime
W , the normalization

D̃i

of Di may be naturally identified with the normalization of some log-prime divisor
Dε
∼= X|ε′|+1 ×Q|ε|−2 [cf. Proposition 5.3, (ii)] of V log in a finite étale covering of

X |ε′|+1×Q|ε|−2 ⊆ X|ε′|+1×Q|ε|−2. Finally, we observe that we may assume without
loss of generality that the Kummer log étale covering W log → V log is Galois, with
Galois group Γ def= Gal(W log/V log).

Now let us verify assertion (i) by induction on n. Let

∑
i∈IW

ci · ηi = 0
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[where the ci ∈ Ql] be a linear relation among the ηi. The case n = 1 is immediate
from the definitions [cf. also [Milne], p. 276, Theorem 11.1, (a)]. Next, we consider
the case n = 2. Let j ∈ I log-prime

W . Since n = 2, it follows immediately from the
definitions that D̃j is a proper hyperbolic curve such that the covering W log → V log

induces a finite dominant morphism of D̃j onto the diagonal of V = X × X . In
particular, it follows that we may restrict the above linear relation to D̃j to obtain
a linear relation

−cj · ηj | �Dj
=

∑
i∈Ifiber

W

ci · ηi| �Dj

among classes of H2
ét(D̃j ,Ql(1)) ∼= Ql [cf. [Milne], p. 276, Theorem 11.1, (a)].

Moreover, since the class ηj | �Dj
is the pull-back to D̃j of some Q×

l -multiple of the
fundamental class of the diagonal of X ×X [cf. Lemma 5.4, (ii)], we thus conclude
that ηj | �Dj

= 0. Next, let us observe that, for i ∈ Ifiber
W , the classes ηi are fixed

by the natural action of Γ on H2
ét(W,Ql(1)). Thus, if we identify H2

ét(D̃j ,Ql(1))
with Ql via the natural isomorphism H2

ét(D̃j ,Ql(1)) ∼= Ql, then we conclude that
the elements ηi| �Dj

, ηj | �Dj
∈ Ql [where i ∈ Ifiber

W ] are independent of the choice of j
among all Γ-conjugates of j, hence that the element cj ∈ Ql is independent of the
choice of j among all Γ-conjugates of j. But this implies that the linear relation∑

i∈IW
ci · ηi = 0 arises as the pull-back to W of a similar linear relation on V .

That is to say, we may assume without loss of generality that W log = V log. But
then the Ql-linear independence of the unique log-prime class ηΔ and the two fiber
classes η1, η2 follows, for instance, from the [easily verified] non-singularity of the
matrix of intersection numbers among the classes ηΔ, η1, η2 [where we recall that
ηΔ · η1 = ηΔ · η2 = η1 · η2 = 1, η1 · η1 = η2 · η2 = 0, ηΔ · ηΔ = 2 − 2gX ]. This
completes the proof of the case n = 2.

Now we assume that n ≥ 3. Let Dj [where j ∈ I log-prime
W ] be a log-prime divisor

of co-length 2 — i.e., which projects to a log-prime divisor of V whose co-profile
ε is of cardinality 2. Then D̃j may be identified with the normalization of Xn−1

in a finite étale covering of Xn−1 ⊆ Xn−1, i.e., as a certain “U+
W ” that arises in

the case “n − 1”. Moreover, it follows immediately from Lemma 5.4, (ii), that
ηj | �Dj

is a Ql-multiple of the restriction to D̃j of the fiber class of Z log
n−1 of co-profile

[ε] ∈ E/ε [cf. Proposition 5.3, (ii)]. On the other hand, for i ∈ I log-prime
W such that

i = j, ηi| �Dj
= 0; for i ∈ Ifiber

W of co-profile e ∈ E, ηi| �Dj
is a Q×

l -multiple of the

restriction to D̃j of the fiber class of Z log
n−1 whose co-profile is the image of e in E/ε.

In particular, by restricting the linear relation
∑

i∈IW
ci · ηi = 0 to D̃j , it follows

by applying assertion (ii) for “n − 1” [i.e., here we apply the induction hypothesis
on n] that ci = 0 for all i ∈ ε′ ⊆ E = Ifiber

W . Since n ≥ 3, it follows that ε′ = ∅.
Thus, by varying j [i.e., varying ε], we conclude that ci = 0 for all i ∈ Ifiber

W .

Now to complete the proof of Lemma 5.5, it suffices to show that the coeffi-
cients of any linear relation

∑
i∈Ilog-prime

W
ci · ηi = 0 vanish. On the other hand,

by restricting to D̃j , for j ∈ I log-prime
W , we obtain relations cj · ηj | �Dj

= 0 for each
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j ∈ I log-prime
W . Thus, to complete the proof of Lemma 5.5, it suffices to show that

ηj | �Dj
= 0

for j ∈ I log-prime
W . On the other hand, by Lemma 5.4, (ii), it follows that ηj | �Dj

is a Q×
l -multiple of the pull-back to D̃j of a class on X|ε′|+1 × Q|ε|−2 [for some

ε ∈ (∧∗E)\E, ε′ def= E\ε] that arises as the pull-back to X|ε′|+1 × Q|ε|−2 via the
projection morphism X|ε′|+1 × Q|ε|−2 → X|ε′|+1 of the restriction to X|ε′|+1 of a
fiber class of Z|ε′|+1. Since |ε′| + 1 ≤ n − 1, it thus follows from assertion (ii) for
“|ε′|+1” [i.e., here we apply the induction hypothesis on n] that the class ηj | �Dj

= 0,
as desired. This completes the proof of Lemma 5.5. ©

Remark 5.5.1. The “+” (respectively, “×”) in the notation U+
W (respectively,

U×
W ) is intended to be a sort of “rough pictorial representation” of the fiber divi-

sors (respectively, log-prime divisors [e.g., “diagonals”!]) that are appended to the
interior UW to form U+

W (respectively, U×
W ).

Theorem 5.6. (Extendability of Coverings) Let X be a proper hyperbolic
curve over an algebraically closed field k of characteristic zero; S ⊆ X a
finite set of closed points; X def= X\S ⊆ X; n ≥ 1 an integer; Xn ⊆ Pn, Xn ⊆ Pn

the n-th configuration spaces associated to X, X, respectively; Z log
n the n-th

log configuration space associated to X; (X×
n )log def= Pn ×Pn

Z log
n [so we have a

natural inclusion (X×
n )log ↪→ Z log

n ];

Y → Xn

a finite étale morphism, where Y is connected; Y × → X×
n the normalization

of X×
n in Y ; G a strongly torsion-free pro-solvable profinite group. Then

any continuous homomorphism

π1(Y )→ G

factors through the natural surjection π1(Y ) � π1(Y ×) induced by the open im-
mersion Y ↪→ Y ×.

Proof. In the notation of the discussion preceding Theorem 5.6: By the log purity
theorem [cf. the discussion of §2], we have a natural isomorphism π1(UV ) ∼→ π1(V log),
where we observe that [it follows immediately from the definitions that] the interior
UV of V log may be identified with Xn. Thus, the finite étale covering Y → Xn may
be identified with the interior UW of a Kummer log étale covering W log → V log.
Moreover, by applying the isomorphism (X×

n )log ∼→ (X×
n )log of Proposition 5.3,

(iv), we obtain a finite morphism Y × → X×
n that exhibits Y × as the normalization

of X×
n in Y = UW . Thus, by the log purity theorem, we conclude that this finite
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morphism determines a Kummer log étale covering (Y ×)log → (X×
n )log. Thus, in

summary, we obtain a commutative diagram

W log ←↩ UW = Y ↪→ (U×
W )log ↪→ (Y ×)log⏐⏐� ⏐⏐� ⏐⏐� ⏐⏐�

V log ←↩ UV = Xn ↪→ (U×
V )log ↪→ (X×

n )log

in which the “hooked horizontal arrows” are open immersions; the vertical arrows
are Kummer log étale coverings; the log structures on U×

W , U×
V are those induced by

restricting the log structures of (Y ×)log, (X×
n )log, respectively; by abuse of notation,

we use notation for schemes to denote the corresponding log schemes with trivial
log structure. Also, we observe that it follows immediately from Proposition 5.2,
(ii), that the complements of the open immersions U×

W ↪→ Y ×, U×
V ↪→ X×

n are of
codimension ≥ 2.

Next, we observe that, just as in the proof of Theorem 4.7, it suffices to verify
Theorem 5.6 in the case where G = Zl, for some prime number l. In particular, by
Proposition 5.2, (iv), we have an isomorphism H1

ét(Y
×,Ql)

∼→ H1
ét(U

×
W ,Ql), which

[since G = Zl is torsion-free] implies that to show that the given homomorphism
π1(UW ) = π1(Y ) → G factors through π1(Y ) � π1(Y ×), it suffices to show that
it factors through π1(Y ) � π1(U×

W ). On the other hand, the fact that the given
homomorphism π1(UW ) → G factors through π1(UW ) � π1(U×

W ) follows imme-
diately from the exact sequence of Proposition 5.2, (v), in light of the Ql-linear
independence asserted in Lemma 5.5, (iii). This completes the proof of Theorem
5.6. ©

Remark 5.6.1. Note that:

The “extendability of coverings” asserted in Theorem 5.6 may be regarded
as a strengthening of the “product-theoreticity” asserted in Theorem 4.7.

Indeed, suppose that the covering Y → Xn of Theorem 5.6 arises from a product-
theoretic open subgroup of π1(Xn). Write

Y ∗ → Pn

for the normalization of Pn (⊇ Xn) in Y . Since Y × is normal and maps to X×
n ,

hence to Pn, we thus obtain a birational morphism Y × → Y ∗. Since the morphism
Zn → Pn is proper, it follows that X×

n → Pn is proper, hence that the morphism
Y × → Y ∗ is proper. On the other hand, since Y → Xn arises from a product-
theoretic open subgroup of π1(Xn), one verifies immediately that Y ∗ is smooth
over k, and that the kernel of the natural surjection π1(Y ) → π1(Y ∗) is product-
theoretic. In particular, by Zariski-Nagata purity [i.e., the classical non-logarithmic
version of the “log purity theorem” quoted above], we conclude that the natural
surjection π1(Y ×) � π1(Y ∗) is an isomorphism. But this implies that the given
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homomorphism π1(Y )→ G factors through the natural surjection π1(Y )→ π1(Y ∗),
hence, in particular, is product-theoretic [cf. Theorem 4.7].

Corollary 5.7. (Non-existence of Generic Units) In the notation of Theo-
rem 5.6, suppose that S = ∅; write Xn

def= Xn, Pn
def= Pn, Z log

n
def= Z log

n . Also, let us
fix a projection morphism

φX : Xn → B
def= Xn−1

of length 1, which allows us to regard Xn as a family of hyperbolic curves over
B. Denote the [scheme determined by the] generic point of B by η; write k(η) for
the residue field of η, X def= Xn ×B η. Let k(η′) be an arbitrary field extension of
k(η), η′ → η the resulting morphism of schemes, Y a hyperbolic curve over η′,
and

Y → Xη′
def= X ×η η

′ = Xn ×B η′

a finite étale covering over η′. Then every unit u ∈ Γ(Y ,O×
Y ) on Y is constant,

i.e., is contained in the image of k(η′) in OY .

Proof. One reduces immediately by well-known elementary algebraic geometry
arguments [i.e., replacing k(η′) by a finitely generated field extension of k(η), ex-
tending Y → Xη′ over some variety that admits k(η′) as its function field, and
restricting to a closed point of this variety] to the case where the morphism η′ → η
is finite étale. Now let us observe that by the exact sequence of Proposition 2.2,
(i), it follows that, after possibly replacing Y by an appropriate connected finite
étale covering of Y , we may assume without loss of generality that there exists a
commutative diagram

Y −→ Xn⏐⏐� ⏐⏐�
C −→ B

in which the horizontal arrows are connected finite étale coverings; the vertical
arrows are families of hyperbolic curves; the divisor of cusps DY ⊆ Y in the com-
pactification Y → C of Y → C forms a split finite étale covering of C; the covering
Y → X factors through YηC

def= Y ×C ηC [where ηC
def= C ×B η] in such a way that

the induced covering
Y → YηC

is obtained by base-changing the curve YηC
over ηC via a morphism η′ → ηC . In

particular, since the divisor of zeroes and poles of u on the compactification of the
hyperbolic curve Y descends [by our “splitness” assumption on DY ] to a divisor
on the compactification of the hyperbolic curve YηC

, it follows immediately that u
is constant if and only if its norm relative to this covering Y → YηC

[which forms
a unit on YηC

] is constant. Thus, in summary, we may assume without loss of
generality that Y = YηC

, and that u is a unit on YηC
.
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Now since u may be regarded as a rational function on Y , the divisor of zeroes
and poles of this rational function on Y may be written in the form

Dcusp +Dbase

— where Dcusp is a divisor supported on DY ; Dbase is a divisor on Y that arises as
the pull-back to Y of a divisor Dbase

C on C. In particular, we obtain a relation

0 = c(Dcusp) + c(Dbase) ∈ H2
ét(Y ,Ql(1))

— where l is a prime number; we write c(−) for the Chern class of the line bundle
determined by a divisor on a k-smooth scheme [such as Y , Y , C]. Next, let us
pull-back this relation via a section s : C → Y whose image Ds is contained in DY .
This yields a relation

λ · s∗(c(Ds)) = s∗(c(Dbase)) = c(Dbase
C ) ∈ H2

ét(C,Ql(1))

for some λ ∈ Ql. On the other hand, let us observe that, relative to the notation
of the discussion preceding Theorem 5.6, if we take UW → UV to be the covering
Y → Xn, then Y may be regarded as an open subscheme of W , and Ds ⊆ Y as a
log-prime divisor of W . From this point of view, it follows from Lemma 5.4, (ii),
that s∗(c(Ds)) is a Ql-multiple of the pull-back to C via C → B = Xn−1 of a fiber
class on B = Xn−1. In particular, we conclude that c(Dbase

C ) is a Ql-multiple of the
pull-back to C of a fiber class on B = Xn−1, hence that c(Dbase) ∈ H2

ét(Y ,Ql(1))
is a Ql-multiple of the pull-back to Y ⊆W of a fiber class on W .

Thus, in summary, the relation 0 = c(Dcusp) + c(Dbase) in H2
ét(Y ,Ql(1)) con-

stitutes a Ql-linear relation between certain log-prime classes [i.e., c(Dcusp)] and
certain fiber classes [i.e., c(Dbase)] on Y . Since [it follows immediately from the
definitions that] the complement of Y in W is a [disjoint] union of certain log-prime
divisors on W , the description of the kernel of the restriction map H2

ét(W,Ql(1))→
H2

ét(Y ,Ql(1)) given in the exact sequence of Proposition 5.2, (v), implies that this
Ql-linear relation 0 = c(Dcusp) + c(Dbase) in H2

ét(Y ,Ql(1)) arises from some Ql-
linear relation in H2

ét(W,Ql(1)) obtained by appending some Ql-linear combination
of the log-prime classes arising from the log-prime divisors in the complementW\Y .
By the Ql-linear independence asserted in Lemma 5.5, (i), the coefficients of such a
Ql-linear relation necessarily vanish. In particular, since Dcusp is a Z-linear combi-
nation of log-prime divisors ofW that lie in Y , we thus conclude that the coefficients
∈ Z of this Z-linear combination vanish, i.e., that Dcusp = 0. But this amounts
precisely to the assertion that the unit u is constant. This completes the proof of
Corollary 5.7. ©

Section 6: Nearly Abelian Groups

In the present §6, we discuss another approach, based on the notion of a “nearly
abelian” profinite group, to verifying the group-theoreticity of the various fiber sub-
groups associated to a configuration space group.
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Definition 6.1. We shall say that a profinite group G is nearly abelian if it
admits a normal closed subgroup N ⊆ G which is topologically normally generated
by a single element ∈ G such that G/N is almost abelian.

Proposition 6.2. (Nearly Abelian Surface Groups) Let C be a full forma-
tion. Then a pro-C surface group Π is nearly abelian if and only if it is a free
pro-C group on two generators — i.e., it arises from a hyperbolic curve which is
either of type (0, 3) or type (1, 1) [cf. Remark 1.2.2].

Proof. Since the sufficiency of the condition given in the statement of Proposi-
tion 6.2 is immediate from the definitions, it suffices to verify the necessity of this
condition. Thus, we suppose that Π is nearly abelian. Now observe that for any
l ∈ ΣC , the maximal pro-l quotient of Π is again a nearly abelian [pro-l] surface
group. Thus, we may assume without loss of generality that C is primary. Write
ΣC = {l}; Π def= Π/[Π, [Π,Π]]; Π1

def= Π
ab ∼= Πab; Π2

def= [Π,Π] ⊆ Π. Thus, we have
an exact sequence

1→ Π2 → Π→ Π1 → 1

and a surjection ∧2 Π1 � Π2. Here, we regard Π1, Π2 as finitely generated free
Zl-modules. Note [cf. Remark 1.2.2] that if Π1 is of rank d, then Π2 is of rank
1
2
d(d− 1) − ε, where ε = 0 if Π is open, and ε = 1 if Π is closed. Also, we observe

that d ≥ 2 if ε = 0, and d ≥ 4 if ε = 1 [cf. Remark 1.2.2]. Thus, to complete the
proof of Proposition 6.2, it suffices to show that d = 2.

Next, let us observe that Π is also nearly abelian. Thus, there exists an element
γ ∈ Π such that if we write N ⊆ Π for the subgroup topologically normally gener-
ated by γ, then Π/N is almost abelian. In particular, it follows that N

⋂
Π2 ⊆ Π

forms an open subgroup of Π2 — i.e., a Zl-module of the same rank as Π2. If
γ ∈ Π2, then N

⋂
Π2 = N is of rank ≤ 1, so we obtain that 1

2d(d− 1)− ε ≤ 1, i.e.,
d(d−1) ≤ 2(1+ε) ≤ 4, so d ≤ 2, i.e., d = 2, as desired. Thus, it remains to consider
the case where γ ∈ Π2. In this case, one verifies immediately that N

⋂
Π2 ⊆ Π2 is

given by the image of the morphism

[γ,−] : Π1 → Π2

given by forming the commutator with γ. Since this morphism clearly vanishes on
γ, its image is of rank ≤ d− 1. Thus, we conclude that

d− 1 ≥ 1
2
d(d− 1)− ε

— i.e., that 2 · ε ≥ (d − 1)(d − 2), which implies that d ≤ 2 if ε = 0, and d ≤ 3 if
ε = 1. But this is enough to conclude that d = 2 [and ε = 0]. This completes the
proof of Proposition 6.2. ©

Corollary 6.3. (Group-theoreticity of Projections of Configuration
Spaces II) Let C be a PT-formation. For � = α, β, let X� be a hyperbolic
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curve whose type is neither (0, 3) nor (1, 1) over an algebraically closed field
k� of characteristic zero; n� ≥ 1 an integer; X�

n� the n�-th configuration

space associated to X�; Π� def= πC
1 (X�

n�); E� the index set of X�
n� . Let

γ : Πα ∼→ Πβ

be an isomorphism of profinite groups. Then γ induces a bijection σ :
Eα

∼→ Eβ [so nα = nβ] such that

γ(Fα) = Fβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ, whose respective profiles E′
α ⊆ Eα,

E′
β ⊆ Eβ correspond via σ.

Proof. Just as in the proof of Corollary 4.8, to complete the proof of Corollary 6.3,
it suffices to verify that the image via γ of any fiber subgroup of Πα of co-length
one is contained in a fiber subgroup of Πβ of co-length one. For j = 1, . . . , n�, let
us write

K�
j ⊆ Π�

for the fiber subgroup ⊆ Π� of co-length one with co-profile given by the element
of E� labeled by j, and

J�
j ⊆ Π�

for the fiber subgroup ⊆ Π� of length one with profile given by the element of E�
labeled by j. Thus, [cf. Proposition 2.4, (vi)] to complete the proof of Corollary
6.3, it suffices to verify the following statement [in general]:

For each i ∈ Eα, there exists a j ∈ Eβ such that Jβ
j′ ⊆ γ(Kα

i ) for all
j′ ∈ Eβ such that j′ = j.

To verify this statement, we reason as follows: Write

φ : Πβ ∼→ Πα � G
def= Πα/Kα

i

for the surjection determined by γ−1. Then it suffices to show that there do not exist
two distinct elements j1, j2 ∈ Eβ such that Jβ

j1
, Jβ

j2
have nontrivial image under

φ. Thus, let us suppose that the images J1, J2 of Jβ
j1

, Jβ
j2

under φ are nontrivial.
Since Jβ

j1
, Jβ

j2
are topologically finitely generated normal closed subgroups of Πβ, it

follows from Theorem 1.5 that J1, J2 are open in G [cf. Remark 3.3.2]. Moreover,
by Proposition 2.4, (v), it follows that there exists a normal closed subgroup N ⊆ G
that is topologically normally generated by a single element such that the images
of J1, J2 in G/N commute. Thus, G/N contains an abelian open subgroup, i.e., is
almost abelian. On the other hand, since Kα

i ⊆ Πα is a fiber subgroup of co-length
one, it follows that G = Πα/Kα

i is a surface group. Thus, in summary, we conclude
that G is a nearly abelian surface group, which, by Proposition 6.2, contradicts
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our hypothesis concerning the type of the hyperbolic curve Xα. This completes the
proof of Corollary 6.3. ©

Remark 6.3.1. Unlike the case with Corollary 4.8, it seems unrealistic at the
time of writing to extend the technique of the proof of Corollary 6.3 to the case
of arbitrary product-theoretic open subgroups ⊆ πC

1 (X�
n�) [cf. Corollary 4.8], since

this would require an analogue of Proposition 6.2 for surface groups that become
almost abelian after forming the quotient by a subgroup topologically normally
generated by a very large number of elements [roughly, on the order of the index of
the product-theoretic open subgroups under consideration].

Section 7: A Discrete Analogue

In the present §7, we discuss various consequences of Theorems 4.7, 5.6 and
Corollaries 4.8, 6.3 [cf. Corollaries 7.3, 7.4 below] for the topological fundamental
groups of configuration spaces over the complex number field C.

In the following discussion, if Z is a connected scheme of finite type over C,
then we shall use the notation

πtop
1 (Z)

to denote the “topological fundamental group” [i.e., the fundamental group in the
usual sense of algebraic topology], for some choice of basepoint, of the topological
space of C-rational points Z(C) [equipped with the topology determined by the
topology of C].

Let X be a hyperbolic curve over C, n ≥ 1 an integer. Write Xn ⊆ Pn for
the n-th configuration space associated to X [cf. the notation of Definition 2.1,
(i)]. Since the complement in a connected complex manifold of any submanifold
of [complex] codimension 1 is clearly connected, it thus follows that the inclusion
Xn ↪→ Pn induces a natural surjection πtop

1 (Xn) � πtop
1 (Pn).

The following “discrete analogue” of [a certain portion of] Proposition 2.2 is
well-known:

Proposition 7.1. (Topological Fundamental Groups of Configuration
Spaces) In the notation of the above discussion:

(i) Any projection morphism Xn → Xn−1 of length one determines a natural
exact sequence

1→ πtop
1 ((Xn)x)→ πtop

1 (Xn)→ πtop
1 (Xn−1)→ 1

[where we write X0
def= Spec(C); x is a C-valued geometric point of Xn−1].
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(ii) The natural morphism

πtop
1 (Xn)→ π1(Xn)

to the étale fundamental group π1(Xn) is injective, i.e., πtop
1 (Xn) is residually

finite.

Proof. Assertion (i) is discussed, for instance, in [Birm], Theorem 1.4. To verify
assertion (ii), observe that [by induction on n] it follows from the exact sequences
of assertion (i) and the analogue of assertion (i) for π1(Xn) [cf. Proposition 2.2,
(i)], that we may assume without loss of generality that n = 1. Now let us recall
that πtop

1 (X) may be embedded [by considering the well-known uniformization of
X(C) by the upper half-plane] into SL2(R). That is to say, πtop

1 (X) is a “finitely
generated linear group”, so the desired residual-finiteness follows from a well-known
theorem of Mal’cev [cf., e.g., [Wehr], Theorem 4.2]. ©

Definition 7.2.

(i) We shall refer to a subgroup H ⊆ πtop
1 (Xn) as being product-theoretic if

H arises as the inverse image via the natural surjection πtop
1 (Xn) � πtop

1 (Pn) of a
subgroup of πtop

1 (Pn).

(iii) Write E for the index set of Xn. Let E′ ⊆ E be a subset of cardinality
n′; E′′ def= E\E′; n′′ def= n− n′; pE′ = pE′′

: Xn → Xn′′ the projection morphism of
profile E′. Then we shall refer to the kernel

F ⊆ πtop
1 (Xn)

of the induced surjection πtop
1 (Xn) � πtop

1 (Xn′′) [cf. Proposition 7.1, (i)] as the
fiber subgroup of πtop

1 (Xn) of profile E′.

Remark 7.2.1. Note that by the injectivity of Proposition 7.1, (ii), it fol-
lows immediately that the fiber subgroup of profile E′ of πtop

1 (Xn) [cf. the no-
tation of Definition 7.2, (ii)] is equal to the inverse image via the natural injection
πtop

1 (Xn) ↪→ π1(Xn) of Proposition 7.1, (ii), of the fiber subgroup of π1(Xn) of
profile E′.

Corollary 7.3. (Discrete Strongly Torsion-free Pro-solvable Product-
theoreticity and Extendability of Coverings) Let n ≥ 1 be an integer; G a
strongly torsion-free pro-solvable profinite group; X a hyperbolic curve
of genus ≥ 2 over C; Xn ⊆ Pn the n-th configuration space associated to X.

(i) Let H ⊆ πtop
1 (Xn) be a product-theoretic subgroup of finite index.

Then the kernel of any homomorphism [of abstract groups!]

H → G
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is product-theoretic.

(ii) Suppose that X is proper. Let S ⊆ X a finite set of closed points; X def=
X\S ⊆ X; Xn ⊆ Pn the n-th configuration space associated to X; Z log

n the
n-th log configuration space associated to X; (X×

n )log def= Pn ×Pn
Z log

n [so we
have a natural inclusion (X×

n )log ↪→ Z log
n ];

Y → Xn

a finite étale morphism, where Y is connected; Y × → X×
n the normalization

of X×
n in Y . Then any homomorphism [of abstract groups!]

πtop
1 (Y )→ G

factors through the natural surjection πtop
1 (Y ) � πtop

1 (Y ×) induced by the open
immersion Y ↪→ Y ×.

Proof. Indeed, since the homomorphisms in question H → G, πtop
1 (Y ) → G

necessarily factor, respectively, through the profinite completions of H, πtop
1 (Y ),

the conclusions of assertions (i), (ii) follow immediately from Theorems 4.7, 5.6. ©

Corollary 7.4. (Group-theoreticity of Projections of Configuration
Spaces III) For � = α, β, let X� be a hyperbolic curve over C whose type
is neither (0, 3) nor (1, 1); n� ≥ 1 an integer; X�

n� the n�-th configuration

space associated to X�; E� the index set of X�
n� ; H� ⊆ Π� def= πtop

1 (X�
n�) a

product-theoretic subgroup of finite index. Let

γ : Hα
∼→ Hβ

be an isomorphism of groups. Moreover, if either Hα = Πα or Hβ = Πβ, then
we assume that X� is of genus ≥ 2, for � = α, β. Then γ induces a bijection
σ : Eα

∼→ Eβ [so nα = nβ] such that

γ(Fα

⋂
Hα) = Fβ

⋂
Hβ

for all fiber subgroups Fα ⊆ Πα, Fβ ⊆ Πβ, whose respective profiles E′
α ⊆ Eα,

E′
β ⊆ Eβ correspond via σ.

Proof. Indeed, in light of Remark 7.2.1, Corollary 7.4 follows immediately by
applying Corollaries 4.8, 6.3 to the isomorphism induced by γ between the profinite
completions of Hα, Hβ. ©

Remark 7.4.1. There is a partial overlap between the content of Corollary 7.4
above and Theorems 1, 2 of [IIM].
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