
The Minimum-Norm-Point Algorithm Applied to
Submodular Function Minimization and

Linear Programming

Satoru FUJISHIGE∗, Takumi HAYASHI†, and Shigueo ISOTANI‡

September, 2006

Abstract

In the present paper we consider applications of the minimum-norm-point algo-
rithm to submodular function minimization and linear programming. Although com-
binatorial polynomial algorithms for submodular function minimization (SFM) have
recently been obtained and linear programming problems can be solved in polyno-
mial time by interior-point algorithms, there still remain (open) problems of reducing
the complexity of the SFM algorithms and of devising a strongly polynomial algo-
rithm for linear programming. The present paper has been motivated by an attempt
to solve these problems. We show some possible approaches to them by means of
the minimum-norm-point algorithm. Computational results on submodular function
minimization reveals that our algorithm outperforms the existing polynomial algo-
rithms for SFM. We also carry out preliminary experiments on our algorithm for LP
by using MATLAB, which shows some interesting behavior of our algorithm.

Keywords: The minimum-norm-point algorithm, submodular function minimization,
linear programming, zonotopes

1. Introduction

Philip Wolfe [15] presented an algorithm for finding the minimum-norm point in the con-
vex hull of a given finite set of points in then-dimensional Euclidean spaceRn (von

∗Corresponding author. Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-
8502, Japan. E-mail:fujishig@kurims.kyoto-u.ac.jp

†Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.
E-mail: thayashi@kurims.kyoto-u.ac.jp

‡Faculdade de Ciências Econ̂omicas e Administrativas de Osasco – FAC-FITO, Osasco, SP, Brazil.
E-mail: shigueo isotani@yahoo.com

1

Hohenbalken [7] also gave essentially the same algorithm for more general objective
functions). In the present paper we consider applications of the minimum-norm-point
algorithm to submodular function minimization and linear programming. Combinatorial
polynomial algorithms for submodular function minimization (SFM) have been obtained
by [10, 9, 13], and linear programming problems can be solved in polynomial time by
interior-point algorithms (see, e.g., [1]). However, there still remain (open) problems of
reducing the complexity of the SFM algorithms and of devising a strongly polynomial
algorithm for linear programming. The present paper has been motivated by an attempt to
solve these problems. We will show some possible approaches to them by means of the
minimum-norm-point algorithm.

The minimum-norm-point algorithm keeps a simplex (a set of affinely independent set
of points) chosen from the given point setP . Updating such a simplex requires a solution
of a linear optimization problem over the convex hullP̂ of P , and the algorithm works
if the linear optimization can (efficiently) be done over the polytopeP̂ . In the original
problem setting by Wolfe [15] the polytopêP is expressed as the convex hull of the set
P of given points. Hence, the linear optimization overP̂ can be done trivially by the
evaluation of a linear function on given points inP . For a general polytopeQ, however,
the number of extreme points ofQ can be exponentially large with respect to dimension
n, so that the minimum-norm-point algorithm cannot be used in the original, trivial way.
However, there are interesting classes of polytopes on which linear optimization can ef-
ficiently be done, even if the number of extreme points ofQ is exponentially large with
respect to dimensionn.

The following is one of such classes of polytopes. It is well known that the greedy
algorithm [2] works for base polyhedra associated with submodular functions (see [6] for
details about submodular functions and related polyhedra). Hence we can easily make
linear optimization over base polyhedra (although the number of extreme points can be
n!). This fact leads us to an algorithm for submodular function minimization by means of
the minimum-norm-point algorithm, which will be discussed in Section 3.

Moreover, we can formulate linear programming problems in terms of zonotope (the
Minkowski sum of line segments; see, e.g., [16]), which will be discussed in Section 4.
Zonotopes are also typical polytopes on which linear optimization can be done in a greedy
way. We will show how to adapt the minimum-norm-point algorithm, based on this fact,
to solve linear programming problems. The algorithm consists of solving a sequence of
minimum-norm-point problems with a multi-dimensional Newton-like algorithm to be
given in this paper.

We examine the proposed algorithms for submodular function minimization and lin-
ear programming by computational experiments in Sections 3.3 and 4.3. Computational
results for submodular function minimization will show that the minimum-norm-point
algorithm outperforms the existing polynomial-time algorithms in [9, 10, 13]. Compu-
tational experiments for linear programming, though very preliminary, are also made by

2

using MATLAB, which will show some interesting behavior of the algorithm.

2. The Minimum-Norm-Point Algorithm

In this section we describe Wolfe’s algorithm [15] for finding the minimum-norm point
in a polytope for completeness.

2.1. Description of the minimum-norm-point algorithm

Consider then-dimensional Euclidean spaceRn. Suppose that we are given a finite set
P of pointspi (i ∈ I) in Rn. The problem is to find the minimum-norm pointx∗ in the
convex hullP̂ of pointspi (i ∈ I).

Wolfe’s algorithm [15] is given as follows.

The Minimum-Norm-Point Algorithm

Input : A finite setP of pointspi (i ∈ I) in Rn.
Output : The minimum-norm pointx∗ in the convex hullP̂ of the pointspi (i ∈ I).

Step 1: Choose any pointp in P and putS := {p} andx̂ := p.

Step 2: Find a pointp̂ in P that minimizes the linear function〈x̂, p〉 =
n∑

k=1

x̂(k)p(k) in

p ∈ P . PutS := S ∪ {p̂}.
If 〈x̂, p̂〉 = 〈x̂, x̂〉, then returnx∗ = x̂ and halt;
else go to Step 3.

Step 3: Find the minimum-norm pointy in the affine hull of points inS.
If y lies in the relative interior of the convex hull ofS, then put̂x := y and go to Step 2.

Step 4: Let z be the point that is the nearest toy among the intersection of the convex hull
of S and the line segment[y, x̂] betweeny andx̂. Also letS ′ ⊂ S be the unique subset of
S such thatz lies in the relative interior of the convex hull ofS ′. PutS := S ′ andx̂ := z.
Go to Step 3.
(End)

The cycle formed by Step 2 and Step 3 is called amajor cycle, and the one by Step 3
and Step 4 aminor cycle. Every major cycle increases the size of the simplexS by one,
while every minor cycle decreases the size of the simplexS by at least one. A simplex
S is called acorral if the minimum-norm point in the affine hull ofS lies in the relative
interior of the convex hull ofS. When we go from Step 3 to Step 2 in a major cycle, the
current simplexS is a corral. Note that every corralS uniquely determines the minimum-
norm pointx̂ and that every time we get a new corral, the norm of the newx̂ strictly
decreases. Also note that at mostn − 1 repetitions of Step 3 and Step 4 in a minor cycle

3

give a corral, so that the Wolfe algorithm described above terminates in a finite number
of steps. (It is open to determine whether the Wolfe algorithm runs in polynomial time.)

In Step 3, forS = {pi | i ∈ I} we havey =
∑

i∈I µipi with
∑

i∈I µi = 1. Note
that y lies in the relative interior of the convex hull ofS if and only if µi > 0 for all
i ∈ I, where recall thatS is affinely independent. In Step 4, bothx̂ andy are expressed
asx̂ =

∑
i∈I λipi andy =

∑
i∈I µipi. Then, the pointz is determined in such a way that

z = (1− β)x̂ + βy, (1− β)λi + βµi ≥ 0 for all i ∈ I, andβ is as large as possible.

Remark: When implementing the Wolfe algorithm, we should take care of numerical
errors by introducing small tolerance intervals for decisions such as ‘α = β?’. Besides
these, the algorithm is self-correcting, so that it is stable against numerical errors.2

2.2. Applicability of the algorithm

The Wolfe algorithm requires linear optimization in Step 2, which can be done by com-
puting 〈x̂, p〉 for all pointsp in P . If the number of points inP is exponential in the
dimension of the spaceRn, then it becomes hard to perform the linear optimization in
Step 2.

Now, suppose that the setP is implicitly given as the set of extreme points of a
polytopeQ in Rn. Then the Wolfe algorithm works if linear optimization overQ can
efficiently be made. There are classes of polytopes on which linear optimization can
efficiently be done. For example, we have

(1) base polyhedra, associated with submodular functions, on which the so-called greedy
algorithm finds optimal (extreme) points, and

(2) zonotopes on which every linear optimization can be done in a greedy way,

where a zonotope is the Minkowski sum of line segments (or an affine transformation of
a unit hypercube).

Remark: A pointed polyhedron is callededge-polynomial[5] if the number of edge vec-
tors of the polyhedron is polynomial in the dimension of the input data space, where edge
vectors are identified up to nonzero multiples. Base polyhedra and zonotopes are typical
edge-polynomial polyhedra. The number of edge vectors of base polyhedra is O(n2) with
n being the dimension of the space, and that of zonotopes is at most the number of the
generators. It should be noted that linear optimization over any edge-polynomial polyhe-
dron is easy (solvable in strongly polynomial time) under certain conditions, so that the
minimum-norm-point algorithm works for edge-polynomial polyhedra. 2

We shall show how the Wolfe algorithm works for base polyhedra (in Section 3), and
how linear programming problems can be formulated in terms of zonotope and can be
solved by the Wolfe algorithm (in Section 4).

4

3. Base Polyhedra and Submodular Function Minimiza-
tion

In this section we show how the Wolfe algorithm can be used to minimize submodular
functions.

3.1. Submodular functions and base polyhedra

Let E be a finite nonempty set andf be a submodular function on2E, i.e.,f : 2E → R
satisfies

f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y) (3.1)

for anyX, Y ⊆ E. We suppose thatf(∅) = 0 without loss of generality. We then define
polyhedra

P(f) = {x | x ∈ RE, ∀X ∈ 2E : x(X) ≤ f(X)}, (3.2)

B(f) = {x | x ∈ P(f), x(E) = f(E)}. (3.3)

Here,P(f) is called thesubmodular polyhedronandB(f) thebase polyhedron, associated
with submodular functionf on2E.

Remark: SinceB(f) defined as above is bounded, it is also called a base polytope. Note
thatP(f) is always unbounded. In the general theory of submodular functions (see [6])
we consider a distributive latticeD ⊆ 2E (a set of subsets ofE that is closed with respect
to set union∪ and intersection∩) and a submodular functionf onD. We assume that
∅, E ∈ D andf(∅) = 0. ThenB(f) is defined similarly as in (3.2), and is bounded only
if D = 2V . 2

The linear optimization over base polyhedronB(f) can easily be made by the greedy
algorithm of Edmonds [2]. Here we assume that we are given an oracle for evaluation of
the function valuef(X) for anyX ⊆ E.

The Greedy Algorithm

Input A weight vectorw ∈ RE.
Output : An optimalx∗ ∈ B(f) that minimizes the linear objective function

∑

e∈E

w(e)x(e)

in x ∈ B(f).

Step 1: Find a linear orderinge1, e2, · · · , en of elements ofE such that

w(e1) ≤ w(e2) ≤ · · · ≤ w(en). (3.4)

Step 2: Compute

x∗(ei) = f({e1, e2, · · · , ei})− f({e1, e2, · · · , ei−1}) (i = 1, 2, · · · , n). (3.5)

5

Returnx∗.
(End)

We also have the following theorem that characterizes the minimizers of a submodular
functionf : 2E → R with f(∅) = 0.

Theorem 3.1([2]): We have

min{f(X) | X ⊆ E} = max{x−(E) | x ∈ B(f)}, (3.6)

wherex−(e) = min{x(e), 0} for e ∈ E.
Moreover, iff is integer-valued, then the maximum in the right-hand side is attained

by an integral basex ∈ B(f). 2

Note that for anyX ⊆ E andx ∈ B(f) we havef(X) ≥ x−(E). The gapf(X) −
x−(E) evaluates an upper bound for to what extentX is close to a minimizer off . In
particular, iff is integer-valued, the gapf(X) − x−(E) being less than one implies that
X is a minimizer off .

3.2. The minimum-norm point in a base polyhedron and submodular
function minimization

We have the following theorem.

Theorem 3.2([4], [6, Sec. 7.1.(a)]):Letx∗ be the minimum-norm point in the base poly-
hedronB(f) given by(3.3). Define

A− = {e | e ∈ E, x∗(e) < 0}, (3.7)

A+ = {e | e ∈ E, x∗(e) ≤ 0}. (3.8)

Then,A− is the unique minimal minimizer off , andA+ the unique maximal minimizer of
f . 2

Because of this theorem we can solve the submodular function minimization problem
by finding the minimum-norm point in the base polyhedronB(f). The minimum-norm-
point algorithm described in Section 2 can directly be employed to solve the submodular
function minimization problem by means of the greedy algorithm of Edmonds. Compu-
tational results are given in Section 3.3.

6

3.3. Computational results

Combinatorial polynomial algorithms for submodular function minimization (SFM) were
devised independently by Iwata, Fleischer, and Fujishige [10], and Schrijver [13]. Also
Fleischer and Iwata [3] proposed a polynomial preflow-push algorithm, which has the
same complexity as Schrijver’s ([14]). Currently the fastest SFM algorithm has been
obtained by Iwata [9]. See a nice survey [11] for more details about the developments in
SFM algorithms (also see [6, Chapter VI]).

The following computational results on SFM algorithms are based on a report of [8].

3.3.1. Computational Setup

We used a Dynabook G6/X18PDE with an Intel Pentium 4, CPU 1.80GHz, 768MB of
memory and running Linux RedHat version 2.4.18. All programs are written in C lan-
guage and compiled withgcc using the-O4 optimization option.

We denote byFW the proposed SFM algorithm by means of the minimum-norm-point
algorithm [4]. The Iwata-Fleischer-Fujishige algorithm [10] is denoted bySFM3 and
Schrijver’s algorithm [13] byLEX2. We also have Fleischer and Iwata’s algorithm [3],
denoted byPR. Moreover,HYBRID is an algorithm, proposed by Iwata [9], that com-
bines techniques involved inSFM3 andPR.

TheFW program was, first, written inFORTRANlanguage by Masahiro Nakayama
(in his graduation thesis at the University of Tsukuba in February, 1985). We rewrote the
program in C language and improved some part of it. The other programs were written by
Satoru Iwata. We employed Quick Sort for the sorting algorithm required in the greedy
algorithm.

We tested the algorithms using two kinds of submodular functions. One is proposed
by Satoru Iwata and the other is a class of cut functions.

3.3.2. Iwata’s Test Function

The submodular function suggested by Satoru Iwata is

f(X) = |X||V \X| − ∑

j∈X

(5j − 2n) (X ⊆ V)

whereV = {1, 2, · · · , n}.
The results on this function are shown in Table 1 and Table 2.
This class of test problems is very special forFW. Except forFW, HYBRID outper-

formed the others.

7

Table 1: Running times for Iwata’s function
Running time (sec)

n FW HYBRID SFM3 LEX2 PR
100 0.00 0.41 1.00 2644.52 277.36
200 0.00 4.92 18.69
300 0.00 21.77 115.44
400 0.00 67.12 369.13
500 0.00 166.73 894.33
600 0.01 325.26 2820.83
700 0.01 568.54

Table 2: Number of generated extreme bases for Iwata’s function
Number of bases

n FW HYBRID SFM3 LEX2 PR
100 2 1163 766 337348 373324
200 2 3732 4618
300 2 6710 7309
400 2 10803 9914
500 2 16701 18835
600 2 22011 33849
700 2 28699

3.3.3. Cut Functions

In the case of cut functions, we need to generate networks. We used the generatorGEN-
RMF available from DIMACS Challenge [17]. Each generated network hasb grid-like
frames of size(a×a). The number of vertices isa2b and that of arcs5a2b− 4ab−a2. All
vertices in each frame are connected to its grid neighbors and each vertex is connected by
an arc to a vertex randomly chosen from the next frame.

All the running times reported here are in seconds, and we only report the user CPU
time. We generated five instances for each problem family of specified size, using dif-
ferent random seeds. Each number shown in the tables is the averaged time over five
runs.

We usedGENRMF to produce two kinds of networks as follows:

• Genrmf-long. The number of vertices of a generated graph isn = 2x. The parame-
ters area = 2x/4 andb = 2x/2.

• Genrmf-wide. The number of vertices of a generated network isn = 2x. The
parameters area = 22x/5 andb = 2x/5.

8

We used the submodular function minimization algorithms to compute minimum cuts.
The running times for the computation are shown in Table 3 and Table 4, and numbers
of generated extreme bases in Table 5 and Table 6. Figure 1 and Figure 2, respectively,
represent Table 3 and Table 4.

For the genrmf-long networksLEX2 andPR were faster thanHYBRID. However, for
the genrmf-wide networksLEX2 was slower thanHYBRID. In both casesFW outper-
formed the others.

Figures 3, 4, 5, and 6 show sample behaviors of iteration vs. duality gap for Genrmf-
Long withn = 63 andm = 222. Here, one iteration means a generation of a new extreme
base.

Table 3: Results on Genrmf-Long
Running time (sec)

n m FW HYBRID SFM3 LEX2 PR
63 222 0.040 4.024 10.952 1.428 1.242

126 453 0.368 70.826 280.527 53.360 23.286
256 1008 3.792 7376.475 3209.700 3507.494
525 2180 46.052

1008 4332 366.21

Table 4: Results on Genrmf-Wide
Running time (sec)

n m FW HYBRID SFM3 LEX2 PR
75 290 0.056 3.340 20.588 4.195 3.486

147 602 0.410 55.996 749.135 141.497 572.336
324 1395 4.596 4265.148 9607.360 2433.578
576 2544 27.170

1024 4608 172.52

9

Table 5: Results on Genrmf-Long
Number of bases

n m FW HYBRID SFM3 LEX2 PR
63 222 98 23029 28288 526 1918

126 453 221 112328 140678 2280 5732
256 1008 515 690950 8757 14605
525 2180 1353

1008 4332 2980

Table 6: Results on Genrmf-Wide
Number of bases

n m FW HYBRID SFM3 LEX2 PR
75 290 100 13564 18507 756 3519

147 602 196 80240 66346 3878 7694
324 1395 429 661802 14066 20553
576 2544 766

1024 4608 1486

0.01

0.1

1

10

100

1000

10

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of vertices (power of 2)

FW
HYBRID

SFM3
LEX2

PR

Figure 1: Number of vertices vs. time on Genrmf-Long

10

0.01

0.1

1

10

100

1000

10

R
un

ni
ng

 ti
m

e
(s

ec
)

Number of vertices (power of 2)

FW
HYBRID

SFM3
LEX2

PR

Figure 2: Number of vertices vs. time on Genrmf-Wide

0

500000

1e+06

1.5e+06

2e+06

10 20 30 40 50 60 70 80 90
Iteration

FW

Figure 3: Iteration vs. duality gap byFW

11

0

500000

1e+06

1.5e+06

2e+06

0 2000 4000 6000 8000 10000 12000
Iteration

HYBRID

Figure 4: Iteration vs. duality gap byHYBRID

0

500000

1e+06

1.5e+06

2e+06

0 5000 10000 15000 20000
Iteration

SFM3

Figure 5: Iteration vs. duality gap bySFM3

12

0

500000

1e+06

1.5e+06

2e+06

50 100 150 200 250 300 350
Iteration

LEX2

Figure 6: Iteration vs. duality gap byLEX2

4. Zonotopes and Linear Programming

In this section, we consider the linear programming (LP) problem and show how to adapt
the Wolfe algorithm to solve LP.

4.1. Reformulation of linear programming problems

We consider the linear programming problem given in the following form:

(LP) Maximize cx =
n∑

j=1

c(j)x(j)

subject to Ax = b, (4.1)

l ≤ x ≤ u,

whereA is anm×n matrix,b anm-dimensional column vector,l andu n-dimensional col-
umn vectors,x ann-dimensional column variable vector (inRn), andc ann-dimensional
row vector (in(Rn)∗, the dual space ofRn).

Remark: The ordinary standard form of LP is given by (4.1) withl = 0 and u =
(+∞, +∞, · · · , +∞)T, whereT denotes the matrix transpose. It should be noted that
in our LP form (4.1) vectorsl andu are finite-valued, so that our model is slightly restric-
tive. However, it suffices to consider such a bounded feasible region practically as well as
theoretically (see [12, Theorem 2.2]). 2

13

Define an(m + 1)× n matrix

Ā =

(
A
c

)
. (4.2)

Also define the polytope

Z = {z | z = Āx, l ≤ x ≤ u}. (4.3)

Note that polytopeZ is, what is called, a zonotope (with possible translation).
The LP problem (4.1) can be reformulated as follows.

(LP)′ Maximize γ

subject to

(
b
γ

)
∈ Z, (4.4)

whereγ is a scalar variable inR.

Remark: Define

L =

{(
b
γ

) ∣∣∣∣∣ γ ∈ R

}
. (4.5)

Note thatL is a line parallel to the last coordinate space and that Problem(LP)′ is to find
the point of maximum last coordinate in the intersection of lineL and zonotopeZ. 2

For anyc̄ ∈ (Rn+1)∗ an optimal solution̂z of the problem of minimizing

c̄z =
n+1∑

i=1

c̄(i)z(i) (4.6)

over zonotopeZ in (4.3) can easily be computed asẑ = Āx with d = c̄Ā and

x(j) =

{
u(j) if d(j) < 0
l(j) otherwise

(j = 1, 2, · · · , n). (4.7)

Therefore, the minimum-norm-point algorithm works forZ.

4.2. The LP-Newton algorithm

In order to solve Problem(LP)′ (or Problem (LP)) we introduce a new optimization
method which we call theLP-Newton algorithm. It consists of repeated minimum-norm-
point algorithms as follows.

The LP-Newton Algorithm LPN

Input : DataA, b, c, l, u for Problem (LP).

14

Output : An optimal solutionx∗ of Problem (LP) or decision that Problem (LP) is infea-
sible.

Step 1: Compute

x(j) =

{
u(j) if c(j) > 0
l(j) otherwise

(4.8)

for eachj = 1, 2, · · · , n. Putγ := cx.

Step 2: Putb̄ := (bT, γ)T (whereT denotes the matrix transpose). By using the minimum-
norm-point algorithm find the pointz in Z that is the nearest tōb, wherez is expressed
as a convex combination of affinely independent extreme pointsyk (k ∈ K) of Z, i.e.,
z =

∑
k∈K λkyk (with

∑
k∈K λk = 1 andλk > 0 (k ∈ K)) and eachyk is given by

yk = Āxk with l ≤ xk ≤ u (k ∈ K). Let z = (z̃T, ζ)T.
If z = b̄, then putx∗ =

∑
k∈K λkxk, returnx∗, and halt;

else ifζ ≥ γ, then return ‘Problem (LP) is infeasible’ and halt.

Step 3: Computeγ := {(z̃ − b)Tb− (z − b̄)Tz)}/(γ − ζ).
Go to Step 2.
(End)

Note that the initialx computed in Step 1 corresponds toc̄ = (0, · · · , 0, 1) in (4.6).
If the algorithm does not halt at the end of an execution of Step 2, we have a hyper-

planeHz expressed by
(z − b̄)T(y − z) = 0 (4.9)

in a variable vectory in Rn+1. The newγ computed in Step 3 gives the pointb̄ = (bT, γ)T

that is the intersection point ofL andHz (see Figure 7).
In Figure 7,z0, z1, z2, z3 represent the sequence ofzs computed in Step 2, and̄b0, b̄1,

b̄2=z3 that of b̄s.
Computational results about the behavior of the LP-Newton algorithm for linear pro-

gramming are given in Section 4.3.

Remark: Linear programming problems can be reduced to finding feasible solutions in
systems of linear inequalities, and the latter problems can further be reduced to minimum-
norm-point problems for zonotopes. Here we are, however, interested in solving optimiza-
tion problems directly. 2

Remark: We can consider a metric other than the Euclidean one, such as(ĀĀT)−1 when
Ā is of row-full rank. It is left for future work to choose an appropriate metric in the space
of the zonotope. 2

15

���

� �

���
� �
� �

	
 �

	
 �

�

�

�� �������

��� ��

	
 �

Figure 7: An illustration of the LP-Newton algorithm (z3 = b̄2).

4.3. Computational results

Consider Problem

(LP) Maximize cx =
n∑

j=1

c(j)x(j)

subject to Ax = b,

l ≤ x ≤ u,

in (4.1). We generate at random each componenta(i, j) of A uniformly from [0, 1], b(i) of
b from [10, 11], andc(j) of c from [−1

2
, 1

2
]. We setl = 0 andu(j) = 10 (j = 1, 2, · · · , n).

We programmed our LP-Newton algorithm (LPN) by MATLAB. We carried out com-
putational experiments ofLPN for LP on Sun Fire V440 with SPARC/Solaris 10(3/05),
CPU 1.6GHz×4, 8GB of memory, using MATLAB version 7.1.0.183 (R14) Service Pack-
age 3.

Table 7 shows 10-run averages of the running time ofLPN, the number of the Newton
steps (Step 2) ofLPN, and the number of generated extreme points of zonotopeZ. Note
that the major part of Step 2 ofLPN is to carry out the minimum-norm-point procedure of
Wolfe and that the number of generated extreme points ofZ is equal to the total number

16

of executed major cycles of the minimum-norm-point procedure. (The last row of Table 7
gives the 10-run averages of the running time of the LP solverlinprog available within
the MATLAB package, for reference.) We observe that the running time ofLPN depends
on m but seems indifferent to values ofn. The number of the Newton steps (Step 2) of
LPN is relatively small and increases very slowly with respect tom.

Table 8 shows sample behaviors of objective function values computed byLPN. The
objective function values converge to optimal values very quickly, as expected.

Table 7: Results for AlgorithmLPN
Averaged running time, number of steps, and number of generated extreme points

m 10 10 10 50 50 50 100 100 100
n 200 350 500 200 350 500 200 350 500

time (sec) 0.047 0.047 0.051 1.52 1.36 2.23 26.10 17.82 18.97
Newton steps 3.80 3.90 3.90 5.70 5.20 5.00 9.00 6.90 6.10
extreme points 8.1 8.8 8.7 65.2 52.4 48.6 418.7 274.4 305.7

linprog (sec) 0.225 0.137 0.186 0.30 0.48 0.74 0.79 1.38 2.03

Table 8: Sample behaviors ofLPN
Iteration vs. (objective function value− optimal value)

iteration 1 2 3 4 5 6 7
(m,n) = (10, 500) 618.89 6.458 0.0024 0.0 — — —
(m,n) = (50, 500) 585.67 1.948 0.0206 0.00004 0.0 — —
(m,n) = (100, 500) 595.95 3.454 0.1706 0.00055 0.00002 0.0 —

5. Concluding Remarks

The computational results on submodular function minimization (SFM) have shown that
the minimum-norm-point SFM algorithmFW runs very fast, and suggest thatFW is
strongly polynomial. It is, however, open to determine the complexity ofFW for SFM.

We have also proposed a new algorithmLPN for LP by means of the minimum-
norm-point algorithm and the LP-Newton algorithm. The present results indicate that the
number of the Newton steps is small and that the computation time is seemingly indiffer-
ent to the dimensionn of the original variable vector space. The running time ofLPN
implemented by MATLAB is, however, far from competitive with existing commercial
codes such as CPLEX. Our computational experiments are only preliminary and require
much more further to examine its behavior when implemented, say, by C or C++, which
will be left for future work.

17

Acknowledgements

We are grateful to Satoru Iwata for providing us with his programs of the SFM algorithms,
and to Hiroshi Hirai for his help in carrying out computational experiments for LP. The
present research was supported partly by a Grant-in-Aid from the Ministry of Education,
Culture, Sports, Science and Technology of Japan and by Japan International Cooperation
Agency.

References

[1] A. Ben-Tal and A. Nemirovski: Lectures on Modern Convex Optimization—
Analysis, Algorithms, and Engineering Applications(MPS/SIAM Series on Opti-
mization) (SIAM, 2001).

[2] J. Edmonds: Submodular functions, matroids, and certain polyhedra.Proceedings of
the Calgary International Conference on Combinatorial Structures and Their Appli-
cations(R. Guy, H. Hanani, N. Sauer and J. Schönheim, eds., Gordon and Breach,
New York, 1970), pp. 69–87; also in:Combinatorial Optimization—Eureka, You
Shrink! (M. Jünger, G. Reinelt, and G. Rinaldi, eds., Lecture Notes in Computer
Science2570, Springer, Berlin, 2003), pp. 11–26.

[3] L. Fleischer and S. Iwata: A push-relabel framework for submodular function mini-
mization and applications to parametric optimization.Discrete Applied Mathematics
131(2003) 311–322.

[4] S. Fujishige: Submodular systems and related topics.Mathematical Programming
Study22 (1984) 113–131.

[5] S. Fujishige: Submodularity and polyhedra. 4th Japanese-Hungarian Symposium on
Discrete Mathematics and Its Applications (Budapest, June 3–6, 2005).

[6] S. Fujishige:Submodular Functions and Optimization, (Second Edition) (Annals of
Discrete Mathematics58) (Elsevier, Amsterdam, 2005).

[7] B. von Hohenbalken: A finite algorithm to maximize certain pseudoconcave func-
tions on polytopes.Mathematical Programming8 (1975) 189–206.

[8] S. Isotani and S. Fujishige: Submodular function minimization: Computational ex-
periments. Unpublished manuscript, 2003.

[9] S. Iwata: A faster scaling algorithm for minimizing submodular functions.SIAM
Journal on Computing32 (2003) 833–840.

18

[10] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions.Journal of ACM48 (2001) 761–777.

[11] S. T. McCormick: Submodular function minimization. In:Discrete Optimization
(Handbooks in Operations Research and Management Science12) (K. Aardal,
G. L. Nemhauser, and R. Weismantel, eds., Elsevier, Amsterdam, 2005), Chapter 7,
pp. 321–391.

[12] C. H. Papadimitriou and K. Steiglitz:Combinatorial Optimization—Algorithms and
Complexity(Prentice-Hall, New Jersey, 1982).

[13] A. Schrijver: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time.Journal of Combinatorial Theory, Ser. B80 (2000) 346–
355.

[14] J. Vygen: A note on Schrijver’s submodular function minimization algorithm.Jour-
nal of Combinatorial TheoryB88 (2003) 399–402.

[15] P. Wolfe: Finding the nearest point in a polytope.Mathematical Programming11
(1976) 128–149.

[16] G. M. Ziegler: Lectures on Polytopes(Graduate Texts in Mathematics152)
(Springer, Berlin, 1995).

[17] The First DIMACS international algorithm implementation challenge: The core
experiments, 1990. Available atftp://dimacs.rutgers.edu/pub/netflow/general-
info/core.tex .

19

