The Minimum-Norm-Point Algorithm Applied to
Submodular Function Minimization and
Linear Programming

Satoru FUJISHIGE Takumi HAYASHIi and Shigueo ISOTANI
September, 2006

Abstract

In the present paper we consider applications of the minimum-norm-point algo-
rithm to submodular function minimization and linear programming. Although com-
binatorial polynomial algorithms for submodular function minimization (SFM) have
recently been obtained and linear programming problems can be solved in polyno-
mial time by interior-point algorithms, there still remain (open) problems of reducing
the complexity of the SFM algorithms and of devising a strongly polynomial algo-
rithm for linear programming. The present paper has been motivated by an attempt
to solve these problems. We show some possible approaches to them by means of
the minimum-norm-point algorithm. Computational results on submodular function
minimization reveals that our algorithm outperforms the existing polynomial algo-
rithms for SFM. We also carry out preliminary experiments on our algorithm for LP
by using MATLAB, which shows some interesting behavior of our algorithm.

Keywords: The minimum-norm-point algorithm, submodular function minimization,
linear programming, zonotopes

1. Introduction

Philip Wolfe [15] presented an algorithm for finding the minimum-norm point in the con-
vex hull of a given finite set of points in the-dimensional Euclidean spad&™ (von

*Corresponding author. Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-
8502, Japan. E-maifujishig@kurims.kyoto-u.ac.jp

fResearch Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan.
E-mail: thayashi@kurims.kyoto-u.ac.jp

tFaculdade de @ncias Ecodmicas e Administrativas de Osasco — FAC-FITO, Osasco, SP, Brazil.
E-mail: shigueo _isotani@yahoo.com

Hohenbalken [7] also gave essentially the same algorithm for more general objective
functions). In the present paper we consider applications of the minimum-norm-point
algorithm to submodular function minimization and linear programming. Combinatorial
polynomial algorithms for submodular function minimization (SFM) have been obtained
by [10, 9, 13], and linear programming problems can be solved in polynomial time by
interior-point algorithms (see, e.g., [1]). However, there still remain (open) problems of
reducing the complexity of the SFM algorithms and of devising a strongly polynomial
algorithm for linear programming. The present paper has been motivated by an attempt to
solve these problems. We will show some possible approaches to them by means of the
minimum-norm-point algorithm.

The minimum-norm-point algorithm keeps a simplex (a set of affinely independent set
of points) chosen from the given point gt Updating such a simplex requires a solution
of a linear optimization problem over the convex hifllof P, and the algorithm works
if the linear optimization can (efficiently) be done over the polytdpeln the original
problem setting by Wolfe [15] the polytop@ is expressed as the convex hull of the set
P of given points. Hence, the linear optimization ovércan be done trivially by the
evaluation of a linear function on given pointsih For a general polytop€, however,
the number of extreme points Gf can be exponentially large with respect to dimension
n, so that the minimum-norm-point algorithm cannot be used in the original, trivial way.
However, there are interesting classes of polytopes on which linear optimization can ef-
ficiently be done, even if the number of extreme point§)as exponentially large with
respect to dimension.

The following is one of such classes of polytopes. It is well known that the greedy
algorithm [2] works for base polyhedra associated with submodular functions (see [6] for
details about submodular functions and related polyhedra). Hence we can easily make
linear optimization over base polyhedra (although the number of extreme points can be
n!). This fact leads us to an algorithm for submodular function minimization by means of
the minimum-norm-point algorithm, which will be discussed in Section 3.

Moreover, we can formulate linear programming problems in terms of zonotope (the
Minkowski sum of line segments; see, e.g., [16]), which will be discussed in Section 4.
Zonotopes are also typical polytopes on which linear optimization can be done in a greedy
way. We will show how to adapt the minimum-norm-point algorithm, based on this fact,
to solve linear programming problems. The algorithm consists of solving a sequence of
minimum-norm-point problems with a multi-dimensional Newton-like algorithm to be
given in this paper.

We examine the proposed algorithms for submodular function minimization and lin-
ear programming by computational experiments in Sections 3.3 and 4.3. Computational
results for submodular function minimization will show that the minimum-norm-point
algorithm outperforms the existing polynomial-time algorithms in [9, 10, 13]. Compu-
tational experiments for linear programming, though very preliminary, are also made by

using MATLAB, which will show some interesting behavior of the algorithm.

2. The Minimum-Norm-Point Algorithm

In this section we describe Wolfe’s algorithm [15] for finding the minimum-norm point
in a polytope for completeness.

2.1. Description of the minimum-norm-point algorithm

Consider ther-dimensional Euclidean spa®®’. Suppose that we are given a finite set
P of pointsp; (i € I) in R". The problem is to find the minimum-norm point in the
convex hullP of pointsp; (i € I).

Wolfe’s algorithm [15] is given as follows.

The Minimum-Norm-Point Algorithm

Input: A finite setP of pointsp; (i € I) in R™.)

Output: The minimum-norm point* in the convex hullP of the pointsp; (i € I).
Step 1 Choose any point in P and putS := {p} andz := p.

Step 2 Find a pointp in P that minimizes the linear functioti, p) = > _ z(k)p(k) in

k=1
p € P.Puts := SU {p}.

If (z,p) = (2,), then returnc* = z and halt;

else go to Step 3.

Step 3 Find the minimum-norm poing in the affine hull of points irb.

If y lies in the relative interior of the convex hull 6f then putz := y and go to Step 2.

Step 4 Let z be the point that is the nearestt@among the intersection of the convex hull
of S and the line segmeny,] betweery andz. Also letS” C S be the unique subset of
S such that lies in the relative interior of the convex hull 6f. PutS := 5" andz := z.
Go to Step 3.

(End)

The cycle formed by Step 2 and Step 3 is calledaor cycle and the one by Step 3
and Step 4 aninor cycle Every major cycle increases the size of the sim@ldsy one,
while every minor cycle decreases the size of the simpldoy at least one. A simplex
S'is called acorral if the minimum-norm point in the affine hull &f lies in the relative
interior of the convex hull of. When we go from Step 3 to Step 2 in a major cycle, the
current simplexS is a corral. Note that every corréluniquely determines the minimum-
norm pointz and that every time we get a new corral, the norm of the festrictly
decreases. Also note that at mast 1 repetitions of Step 3 and Step 4 in a minor cycle

give a corral, so that the Wolfe algorithm described above terminates in a finite number

of steps. (Itis open to determine whether the Wolfe algorithm runs in polynomial time.)
In Step 3, forS = {p; | i € I} we havey = > ,c; u;p; With > ,c; u; = 1. Note

thaty lies in the relative interior of the convex hull ¢f if and only if 4; > 0 for all

1 € I, where recall thabt' is affinely independent. In Step 4, botrandy are expressed

ast = Y ;e Mipi andy = >, uipi. Then, the point is determined in such a way that

z=1-=p)x+ Py, (1 — L)\ + Bu; > 0foralli € I, andj is as large as possible.

Remark: When implementing the Wolfe algorithm, we should take care of numerical

errors by introducing small tolerance intervals for decisions suclvas 3?’. Besides

these, the algorithm is self-correcting, so that it is stable against numerical errorsl

2.2. Applicability of the algorithm

The Wolfe algorithm requires linear optimization in Step 2, which can be done by com-
puting (z, p) for all pointsp in P. If the number of points inP is exponential in the
dimension of the spacR", then it becomes hard to perform the linear optimization in
Step 2.

Now, suppose that the sét is implicitly given as the set of extreme points of a
polytope@ in R". Then the Wolfe algorithm works if linear optimization ov@rcan
efficiently be made. There are classes of polytopes on which linear optimization can
efficiently be done. For example, we have

(1) base polyhedra, associated with submodular functions, on which the so-called greedy
algorithm finds optimal (extreme) points, and

(2) zonotopes on which every linear optimization can be done in a greedy way,

where a zonotope is the Minkowski sum of line segments (or an affine transformation of
a unit hypercube).

Remark: A pointed polyhedron is calleedge-polynomidl5] if the number of edge vec-

tors of the polyhedron is polynomial in the dimension of the input data space, where edge
vectors are identified up to nonzero multiples. Base polyhedra and zonotopes are typical
edge-polynomial polyhedra. The number of edge vectors of base polyhedpatisvith

n being the dimension of the space, and that of zonotopes is at most the number of the
generators. It should be noted that linear optimization over any edge-polynomial polyhe-
dron is easy (solvable in strongly polynomial time) under certain conditions, so that the
minimum-norm-point algorithm works for edge-polynomial polyhedra. O

We shall show how the Wolfe algorithm works for base polyhedra (in Section 3), and
how linear programming problems can be formulated in terms of zonotope and can be
solved by the Wolfe algorithm (in Section 4).

3. Base Polyhedra and Submodular Function Minimiza-
tion

In this section we show how the Wolfe algorithm can be used to minimize submodular
functions.

3.1. Submodular functions and base polyhedra

Let F be a finite nonempty set anfdbe a submodular function a’, i.e., f : 2 — R
satisfies
fX)+ V) 2 [(XUY)+ f(XNY) (3.1)

forany X, Y C E. We suppose that(()) = 0 without loss of generality. We then define
polyhedra

P(f)={z |z € R¥, VX €27 : z(X) < f(X)}, (3.2)
B(f) ={z |z € P(f), z(E) = f(E)}. (3.3)

Here,P(f) is called thesubmodular polyhedroandB(f) thebase polyhedrorassociated
with submodular functiorf on 2%,

Remark: SinceB(f) defined as above is bounded, it is also called a base polytope. Note
thatP(f) is always unbounded. In the general theory of submodular functions (see [6])
we consider a distributive lattic® C 2 (a set of subsets df that is closed with respect

to set unionJ and intersectiom) and a submodular functiofi on D. We assume that

0, E € Dandf() = 0. ThenB(f) is defined similarly as in (3.2), and is bounded only

if D=2V, 0

The linear optimization over base polyhediff) can easily be made by the greedy
algorithm of Edmonds [2]. Here we assume that we are given an oracle for evaluation of
the function valuef (X) forany X C E.

The Greedy Algorithm

Input A weight vectorw € R”.
Output: An optimalz* € B(f) that minimizes the linear objective function’ w(e)z(e)

eckE
inz € B(f).
Step I Find a linear ordering, es, - - -, e, Of elements of’ such that

w(er) <wl(eg) < -+ <wley). (3.4)
Step 2 Compute
x*(e;) = f({er,e2,- -, ei}) — f({er,ea, - ei1}) (1=1,2,--- . n). (3.5)

Returnz®.
(End)

We also have the following theorem that characterizes the minimizers of a submodular
function f : 28 — R with () = 0.

Theorem 3.1([2]): We have
min{ f(X) | X € E} = max{z"(E) | z € B(f)}, (3.6)

wherez~ (e) = min{z(e),0} fore € E.
Moreover, if f is integer-valued, then the maximum in the right-hand side is attained
by an integral base: € B(f). O

Note that for anyX C F andz € B(f) we havef(X) > 2~ (F). The gapf(X) —
x~(F) evaluates an upper bound for to what ext&nts close to a minimizer of. In
particular, if f is integer-valued, the gaf X)) — =~ (F) being less than one implies that
X is a minimizer off.

3.2. The minimum-norm pointin a base polyhedron and submodular
function minimization

We have the following theorem.

Theorem 3.2([4], [6, Sec. 7.1.(a)]):.Letz* be the minimum-norm point in the base poly-
hedronB(f) given by(3.3). Define

A_={e|e€E, z*(e) <0}, (3.7)
A, ={e|lecE, z"(e) <0}. (3.8)

Then,A_ is the unique minimal minimizer ¢gf and A, the unique maximal minimizer of

1. O

Because of this theorem we can solve the submodular function minimization problem
by finding the minimum-norm point in the base polyhedi®y). The minimum-norm-
point algorithm described in Section 2 can directly be employed to solve the submodular
function minimization problem by means of the greedy algorithm of Edmonds. Compu-
tational results are given in Section 3.3.

3.3. Computational results

Combinatorial polynomial algorithms for submodular function minimization (SFM) were
devised independently by Iwata, Fleischer, and Fujishige [10], and Schrijver [13]. Also
Fleischer and Iwata [3] proposed a polynomial preflow-push algorithm, which has the
same complexity as Schrijver’'s ([14]). Currently the fastest SFM algorithm has been
obtained by Iwata [9]. See a nice survey [11] for more details about the developments in
SFM algorithms (also see [6, Chapter VI]).

The following computational results on SFM algorithms are based on a report of [8].

3.3.1. Computational Setup

We used a Dynabook G6/X18PDE with an Intel Pentium 4, CPU 1.80GHz, 768MB of
memory and running Linux RedHat version 2.4.18. All programs are written in C lan-
guage and compiled withcc using the-O4 optimization option.

We denote bW the proposed SFM algorithm by means of the minimum-norm-point
algorithm [4]. The Iwata-Fleischer-Fujishige algorithm [10] is denotedSByvI3 and
Schrijver’s algorithm [13] byLEX2. We also have Fleischer and Iwata’s algorithm [3],
denoted byPR. Moreover,HYBRID is an algorithm, proposed by Iwata [9], that com-
bines techniques involved BFM3 andPR.

The FW program was, first, written ifFORTRAN language by Masahiro Nakayama
(in his graduation thesis at the University of Tsukuba in February, 1985). We rewrote the
program in C language and improved some part of it. The other programs were written by
Satoru Iwata. We employed Quick Sort for the sorting algorithm required in the greedy
algorithm.

We tested the algorithms using two kinds of submodular functions. One is proposed
by Satoru Iwata and the other is a class of cut functions.

3.3.2. lwata’s Test Function

The submodular function suggested by Satoru Iwata is

JX)=|X[[V\X|=> (55 —2n) (XCV)
jeX
whereV = {1,2,---,n}.
The results on this function are shown in Table 1 and Table 2.

This class of test problems is very special FW. Except forFW, HYBRID outper-
formed the others.

Table 1: Running times for lwata’s function
Running time (sec)
n | FW|HYBRID | SFM3| LEX2 PR
100 | 0.00 0.41 1.00| 2644.52| 277.36
200| 0.00 4.92 18.69
300| 0.00 21.77| 115.44
400/ 0.00 67.12| 369.13
500 0.00 166.73| 894.33
600 | 0.01 325.26| 2820.83
700| 0.01 568.54

Table 2: Number of generated extreme bases for Iwata’s function

Number of bases

n | FW | HYBRID | SFM3| LEX2 PR
100 2 1163 766 | 337348| 373324
200 2 3732| 4618

300 2 6710| 7309

400 2 10803| 9914

500 2 16701 | 18835

600 2 22011| 33849

700 2 28699

3.3.3. Cut Functions

In the case of cut functions, we need to generate networks. We used the gegerator

RMF available from DIMACS Challenge [17]. Each generated networkihgsd-like

frames of sizéa x a). The number of vertices ig’b and that of arcsa?b — 4ab — a*. All

vertices in each frame are connected to its grid neighbors and each vertex is connected by
an arc to a vertex randomly chosen from the next frame.

All the running times reported here are in seconds, and we only report the user CPU
time. We generated five instances for each problem family of specified size, using dif-
ferent random seeds. Each number shown in the tables is the averaged time over five
runs.

We usedcGENRMFto produce two kinds of networks as follows:

e Genrmf-long The number of vertices of a generated graph is 2. The parame-
ters aren = 2°/4 andb = 2%/2,

e Genrmf-wide The number of vertices of a generated network is= 2*. The
parameters are = 22*/°> andb = 2%/°,

We used the submodular function minimization algorithms to compute minimum cuts.
The running times for the computation are shown in Table 3 and Table 4, and numbers
of generated extreme bases in Table 5 and Table 6. Figure 1 and Figure 2, respectively,
represent Table 3 and Table 4.

For the genrmf-long networksEX2 andPR were faster thaklYBRID. However, for
the genrmf-wide networkEEX2 was slower thaHYBRID. In both case$W outper-
formed the others.

Figures 3, 4, 5, and 6 show sample behaviors of iteration vs. duality gap for Genrmf-
Long withn = 63 andm = 222. Here, one iteration means a generation of a new extreme

base.

Table 3: Results on Genrmf-Long

Running time (sec)
n m FW | HYBRID SFM3 LEX2 PR
63| 222| 0.040 4.024| 10.952 1.428 1.242
126| 453 | 0.368 70.826| 280.527| 53.360| 23.286
256 | 1008| 3.792| 7376.475 3209.700| 3507.494
525| 2180 46.052
1008 | 4332 366.21
Table 4: Results on Genrmf-Wide
Running time (sec)
n m FW | HYBRID SFM3 LEX2 PR
75| 290| 0.056 3.340| 20.588 4.195 3.486
147| 602 | 0.410 55.996| 749.135| 141.497| 572.336
324 | 1395| 4.596| 4265.148 9607.360| 2433.578
576 | 2544 27.170
1024 | 4608 | 172.52

Table 5: Results on Genrmf-Long

Number of bases

n m FW | HYBRID SFM3 | LEX2 PR
63| 222 98 23029 | 28288 | 526 1918
126 | 453 221 | 112328| 140678 | 2280 5732
256 | 1008| 515| 690950 8757 | 14605
525| 2180 1353
1008 | 4332 2980
Table 6: Results on Genrmf-Wide
Number of bases

n m FW | HYBRID SFM3 | LEX2 PR
75| 290 100 13564 | 18507 756 3519
147 | 602 196 80240 | 66346 | 3878 7694
324 | 1395| 429 661802 14066| 20553
576 | 2544| 766
1024 | 4608 | 1486

1000

Running time (sec)

0.01

100

0.1

Number of vertices (power of 2)

Figure 1. Number of vertices vs. time on Genrmf-Long

10

Running time (sec)

FW —+—

HYBRID > P

SFM3 % - o
1000 | “EX2 o " E

-
100 .
10 b 1
1 L -
01 F .
0.01 ‘

Number of vertices (power of 2)

Figure 2. Number of vertices vs. time on Genrmf-Wide

FW ——

2e+06 - B

1.5e+06 |- b

1e+06 i

500000 H b

. L ; et I "
10 20 30 40 50 60 70 80 90
Iteration

Figure 3: Iteration vs. duality gap ByW

11

T T T T T T

HYBRID —=—
2e+06 ¥ b
1.5e+06 B
1e+06 B
500000 B

0
0 2000 4000 6000 8000 10000 12000

Iteration

Figure 4. Iteration vs. duality gap byYBRID

SFM3 —x—
2e+06 b
1.56+06 4
1e+06 4
500000 1
0
0 5000 10000 15000 20000

Iteration

Figure 5: Iteration vs. duality gap §FM3

12

LEX2 —=—
2e+06 -

1.5e+06

1e+06 [

500000

L L L L L L i
50 100 150 200 250 300 350
Iteration

Figure 6: Iteration vs. duality gap yEX2

4. Zonotopes and Linear Programming

In this section, we consider the linear programming (LP) problem and show how to adapt
the Wolfe algorithm to solve LP.

4.1. Reformulation of linear programming problems

We consider the linear programming problem given in the following form:
(LP) Maximize cx=>_ c(j)z(j)
=1

J
subject to Ax =b, 4.1)
[<x<u,

whereA is anm xn matrix,b anm-dimensional column vectarandu n-dimensional col-
umn vectorsg ann-dimensional column variable vector (R"), andc ann-dimensional
row vector (in(R™)*, the dual space d&").

Remark: The ordinary standard form of LP is given by (4.1) with= 0 andu =

(+00, 400, -+, 4+00)T, whereT denotes the matrix transpose. It should be noted that
in our LP form (4.1) vectorgandu are finite-valued, so that our model is slightly restric-
tive. However, it suffices to consider such a bounded feasible region practically as well as
theoretically (see [12, Theorem 2.2]). O

13

Define an(m + 1) x n matrix

A (f) 4.2)

Also define the polytope
Z={z]z=Ax, 1<z <u}. (4.3)

Note that polytope” is, what is called, a zonotope (with possible translation).
The LP problem (4.1) can be reformulated as follows.

(LP)" Maximize -~

subject to <3> e Z, (4.4)

where~ is a scalar variable iR.

(e}

Note thatL is a line parallel to the last coordinate space and that Profléhf is to find
the point of maximum last coordinate in the intersection of linend zonotopeZ. O

Remark: Define

For anyc € (R™"!)* an optimal solutiort of the problem of minimizing

cz =Y c(i)z(1) (4.6)
over zonotopeZ in (4.3) can easily be computed as= Az with d = ¢A and

2(5) :{ ;‘(g.j)) gtﬁg&vzg (j=1,2--,n). 4.7)

Therefore, the minimum-norm-point algorithm works f6r

4.2. The LP-Newton algorithm

In order to solve ProblentLP)" (or Problem (LP)) we introduce a new optimization
method which we call theP-Newton algorithmlt consists of repeated minimum-norm-
point algorithms as follows.

The LP-Newton Algorithm LPN
Input: DataA, b, ¢, [, u for Problem (LP).

14

Output: An optimal solutionz* of Problem (LP) or decision that Problem (LP) is infea-
sible.

Step I Compute

: u(g) ife(j) >0
() = { I(j) otherwise (4.8)

foreachj =1,2,---,n. Puty := cx.

Step 2 Putb := (b™,~)T (whereT denotes the matrix transpose). By using the minimum-

norm-point algorithm find the point in Z that is the nearest thh wherez is expressed

as a convex combination of affinely independent extreme pginté € K) of Z, i.e.,

2 = Yper My (With X, A\ = 1 and), > 0 (kE € K)) and eachy, is given by

yr = Azpwith | <z, <u (k€ K). Letz = (zT,()7T.

If 2 = b, then putr* = 3" ¢ A, returnz*, and halt;

else if(> ~, then return ‘Problem (LP) is infeasible’ and halt.

Step 3 Computey := {(2 — b)Tb — (z — b)T2)} /(v — ¢).

Go to Step 2.

(End)

Note that the initiak- computed in Step 1 correspondste- (0, ---,0,1) in (4.6).
If the algorithm does not halt at the end of an execution of Step 2, we have a hyper-
planeH, expressed by
(z=b)'(y—2)=0 (4.9)

in a variable vectoy in R"*!. The newy computed in Step 3 gives the point (",)"
that is the intersection point df and H, (see Figure 7).

In Figure 7,2, 21, 22, 23 represent the sequencezsf computed in Step 2, arbg, by,
by=25 that ofbs.

Computational results about the behavior of the LP-Newton algorithm for linear pro-
gramming are given in Section 4.3.

Remark: Linear programming problems can be reduced to finding feasible solutions in
systems of linear inequalities, and the latter problems can further be reduced to minimum-
norm-point problems for zonotopes. Here we are, however, interested in solving optimiza-
tion problems directly. O

Remark: We can consider a metric other than the Euclidean one, such4S)~* when
Ais of row-full rank. It is left for future work to choose an appropriate metric in the space
of the zonotope. O

15

Rn

Figure 7: An illustration of the LP-Newton algorithms(= b,).

4.3. Computational results

Consider Problem

(LP) Maximize cx=>_ c(j)z(j)
j=1
subject to Az = b,
[<x<u,

in (4.1). We generate at random each componény) of A uniformly from |0, 1], b(i) of
b from [10, 11], andc(j) of ¢ from [—1, 1]. We setl = 0 andu(j) =10 (j = 1,2,---,n).

We programmed our LP-Newton algorithicRN) by MATLAB. We carried out com-
putational experiments afPN for LP on Sun Fire V440 with SPARC/Solaris 10(3/05),
CPU 1.6GHz4, 8GB of memory, using MATLAB version 7.1.0.183 (R14) Service Pack-
age 3.

Table 7 shows 10-run averages of the running timieRil, the number of the Newton
steps (Step 2) dfPN, and the number of generated extreme points of zonathpdote
that the major part of Step 2 PN is to carry out the minimum-norm-point procedure of

Wolfe and that the number of generated extreme poinig & equal to the total number

16

of executed major cycles of the minimum-norm-point procedure. (The last row of Table 7
gives the 10-run averages of the running time of the LP sdimprog available within
the MATLAB package, for reference.) We observe that the running tinhé>0f depends
onm but seems indifferent to values of The number of the Newton steps (Step 2) of
LPN is relatively small and increases very slowly with respechto

Table 8 shows sample behaviors of objective function values computeBidyThe
objective function values converge to optimal values very quickly, as expected.

Table 7: Results for Algorithrh PN

Averaged running time, number of steps, and number of generated extreme points
m 10 10 10| 50| 50| 50| 100| 100| 100

n 200| 350| 500| 200| 350| 500| 200| 350| 500

time (sec) 0.047| 0.047| 0.051| 1.52| 1.36| 2.23| 26.10| 17.82| 18.97
Newton steps| 3.80| 3.90| 3.90| 5.70| 5.20| 5.00| 9.00| 6.90| 6.10
extreme points 8.1 8.8 8.7 65.2| 52.4| 48.6| 418.7| 274.4| 305.7

| linprog (sec) | 0.225] 0.137] 0.186| 0.30] 0.48| 0.74] 0.79| 1.38] 2.03|

Table 8: Sample behaviors bPN
Iteration vs. (objective function value optimal value)
iteration 1 2 3 4 5/ 6| 7
(m,n) = (10,500) | 618.89| 6.458| 0.0024 0.0 — | — | —
(m,n) = (50,500) | 585.67| 1.948| 0.0206| 0.00004 00| — | —
(m,n) = (100, 500) | 595.95| 3.454| 0.1706| 0.00055| 0.00002| 0.0 | —

5. Concluding Remarks

The computational results on submodular function minimization (SFM) have shown that
the minimum-norm-point SFM algorithrRW runs very fast, and suggest thHetV is
strongly polynomial. It is, however, open to determine the complexig\Miffor SFM.

We have also proposed a new algorittuAN for LP by means of the minimum-
norm-point algorithm and the LP-Newton algorithm. The present results indicate that the
number of the Newton steps is small and that the computation time is seemingly indiffer-
ent to the dimension of the original variable vector space. The running time.BN
implemented by MATLAB is, however, far from competitive with existing commercial
codes such as CPLEX. Our computational experiments are only preliminary and require
much more further to examine its behavior when implemented, say, by C or C++, which
will be left for future work.

17

Acknowledgements

We are grateful to Satoru lwata for providing us with his programs of the SFM algorithms,
and to Hiroshi Hirai for his help in carrying out computational experiments for LP. The
present research was supported partly by a Grant-in-Aid from the Ministry of Education,
Culture, Sports, Science and Technology of Japan and by Japan International Cooperation
Agency.

References

[1] A. Ben-Tal and A. Nemirovski: Lectures on Modern Convex Optimization—
Analysis, Algorithms, and Engineering Applicatio®dPS/SIAM Series on Opti-
mization) (SIAM, 2001).

[2] J. Edmonds: Submodular functions, matroids, and certain polyhedreeedings of
the Calgary International Conference on Combinatorial Structures and Their Appli-
cations(R. Guy, H. Hanani, N. Sauer and J. $aheim, eds., Gordon and Breach,
New York, 1970), pp. 69-87; also inCombinatorial Optimization—Eureka, You
Shrink! (M. Junger, G. Reinelt, and G. Rinaldi, eds., Lecture Notes in Computer
Science257Q Springer, Berlin, 2003), pp. 11-26.

[3] L. Fleischer and S. lwata: A push-relabel framework for submodular function mini-
mization and applications to parametric optimizatibrscrete Applied Mathematics
131(2003) 311-322.

[4] S. Fujishige: Submodular systems and related toptz#hematical Programming
Study22(1984) 113-131.

[5] S. Fujishige: Submodularity and polyhedra. 4th Japanese-Hungarian Symposium on
Discrete Mathematics and Its Applications (Budapest, June 3—6, 2005).

[6] S. Fujishige:Submodular Functions and Optimizatj@8econd Edition) (Annals of
Discrete Mathematics8) (Elsevier, Amsterdam, 2005).

[7] B. von Hohenbalken: A finite algorithm to maximize certain pseudoconcave func-
tions on polytopesMathematical Programming (1975) 189-206.

[8] S. Isotani and S. Fujishige: Submodular function minimization: Computational ex-
periments. Unpublished manuscript, 2003.

[9] S. lwata: A faster scaling algorithm for minimizing submodular functicBM
Journal on Computing2 (2003) 833-840.

18

[10] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functiongournal of ACMA8 (2001) 761-777.

[11] S. T. McCormick: Submodular function minimization. I@iscrete Optimization
(Handbooks in Operations Research and Management Sci)céK. Aardal,
G. L. Nemhauser, and R. Weismantel, eds., Elsevier, Amsterdam, 2005), Chapter 7,
pp. 321-391.

[12] C. H. Papadimitriou and K. SteiglitZZombinatorial Optimization—Algorithms and
Complexity(Prentice-Hall, New Jersey, 1982).

[13] A. Schrijver: A combinatorial algorithm minimizing submodular functions in
strongly polynomial timeJournal of Combinatorial Theorger. B80 (2000) 346—
355.

[14] J. Vygen: A note on Schrijver’s submodular function minimization algoritGour-
nal of Combinatorial TheorB88 (2003) 399—-402.

[15] P. Wolfe: Finding the nearest point in a polytopdathematical Programmingl
(1976) 128-149.

[16] G. M. Ziegler: Lectures on Polytope¢Graduate Texts in Mathematick52)
(Springer, Berlin, 1995).

[17] The First DIMACS international algorithm implementation challenge: The core
experiments, 1990. Available dtip://dimacs.rutgers.edu/pub/netflow/general-
info/core.tex .

19

