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Abstract. Let B be a two-dimensional ball with radius R. We continue to
study the shape of the stable steady states to

ut = Du∆u + f(u, ξ) in B× R+, τξt =
1

|B|
ZZ

B
g(u, ξ)dxdy in R+,

∂νu = 0 on ∂B × R+,

where f and g satisfy the following: fξ(u, ξ) < 0, gξ(u, ξ) < 0, and there
is a function k(ξ) such that gu(u, ξ) = k(ξ)fξ(u, ξ). This system includes a
special case of the Gierer-Meinhardt system and the shadow system with the
FitzHugh-Nagumo type nonlinearity. We show that, if the steady state (u, ξ)
is stable for some τ > 0, then the maximum (minimum) of u is attained at
exactly one point on ∂B and u has no critical point in B\∂B. In proving this
results, we prove a nonlinear version of the “hot spots” conjecture of J. Rauch
in the case of B.

1. Introduction and the main results

This is a continuation of [Mi06a]. We study the shape of the stable steady states
of shadow reaction-diffusion systems of an activator-inhibitor type
(SSΩ)

ut = Du∆u + f(u, ξ) in Ω× R+ and τξτ =
1
|Ω|

∫∫

Ω

g(u, ξ)dxdy in R+,

∂νu = 0 on ∂Ω× R+,

where Ω ⊂ R2 is a bounded domain. Here Du and τ are positive constants. |Ω|
denotes the area of Ω, and ∂ν denotes the outer normal derivative on the bound-
ary. In theoretical biology, the unknowns u = u(x, t) and ξ = ξ(t) stand for the
concentrations of biochemicals called the short range activator and the long range
inhibitor, respectively. Two concrete examples of (SSΩ) are given at the end of this
section. We consider the case when Ω is a two-dimensional ball B, centered at the
origin, with radius R.

Throughout the present paper, we assume that

(N)
f( · , · ), g( · , · ) are of class C2, fξ < 0, gξ < 0, and

there is a function k(ξ) ∈ C0 such that gu(u, ξ) = k(ξ)fξ(u, ξ).

This class of reaction-diffusion systems includes a special case of the shadow system
of the Gierer-Meinhardt system (Example 1.5 below) and the shadow system with
the FitzHugh-Nagumo type nonlinearity (Example 1.6 below).
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In order to state our main results, we introduce some notation. Let Ω ⊂ R2 be a
bounded domain with smooth boundary, and let int(Ω) denote the set consisting of
all the interior points of Ω. Let ξ(ζ) and η(ζ) be functions satisfying (ξ(ζ), η(ζ)) ∈
∂Ω parameterized by the arc length parameter ζ of ∂Ω. Let (u, ξ) ∈ (C2(int(Ω)) ∩
C1(Ω ∪ ∂Ω))× R be a steady state to (SSΩ). We define

U(ζ) := u(ξ(ζ), η(ζ)), ζ ∈ R/LZ,

where L is the arc length of ∂Ω. For example, U(ζ) = u(R cos(ζ/R), R sin(ζ/R))
in the case that Ω = B. Let Z [ · ] denote the cardinal number of the zero level set
of L-periodic functions. Specifically,

Z [w( · )] := ] {ζ; w(ζ) = 0, ζ ∈ R/LZ} ,

where w(ζ) ∈ C0(R/LZ). For example, Z [sin(2πζ/L)] = 2.
Let us explain the activator-inhibitor system. The activator-inhibitor system

is a mathematical model describing the interaction between the activator and the
inhibitor. The activator activates the production rate of the inhibitor (gu > 0),
and the inhibitor suppresses the production rate of the activator (fξ < 0). The
production rate of the inhibitor is decreased as the inhibitor increases (gξ < 0).
However, we do not impose a monotonicity assumption on f with respect to u,
because the activator may react autocatalytically and f may not be monotone in
u. We call (SSΩ) the shadow system of the activator-inhibitor type if f and g satisfy

(AI) fξ < 0, gu > 0, and gξ < 0.

The time constant of the inhibitor τ which appears in (SSΩ) means the ratio of
the reaction speeds between the activator and the inhibitor. If τ is large, then
the inhibitor reacts slowly, and the system behaves like a scalar reaction-diffusion
equation. In this case, we can expect and show that, if the domain is convex,
then every inhomogeneous steady state is unstable for large τ > 0 [Y06, E06]. On
the contrary, if τ is small, then the inhibitor reacts quickly, and the system tends
to be stable. Hence, an inhomogeneous stable steady state can exist. There is a
possibility that a steady state that is unstable for large τ > 0 is stable when τ > 0
is small. (A Hopf bifurcation occurs as τ increases. See [NTY01, WW03] for the
case of the shadow Gierer-Meinhardt system.) Therefore, it is important to obtain
a sufficient condition, which can be determined by the shape, for steady states to
be unstable not only in the case for large τ > 0 but also in the case for all τ > 0,
because the contrapositive of the sufficient condition becomes a necessary condition
for steady states to be stable for some τ > 0. In other words, we know the shape
of all the stable steady states. A partial result in this research direction is the
following:

Proposition 1.1 ([Mi06a, Corollary B]). Suppose that (N) holds. Let (u, ξ) be
an inhomogeneous steady state to (SSB). If (u, ξ) is stable for some τ > 0, then
Z [Uζ( · )] = 2.

We know by Proposition 1.1 the shape of u on the boundary. However, we cannot
obtain information about u in the interior of the domain. One of the main results of
author’s previous paper [Mi06b, Theorem 4.7] is a partial answer of this question.
In [Mi06b], we show that, if sup(ρ1,ρ2)∈R2 fu(ρ1, ρ2) < Duκ4, then the conclusion of
Theorem A below holds. Here, κ4 is the forth eigenvalue of the Neumann Laplacian
in B. In the present paper, we remove this assumption which seems to be technical.
The main result of this paper is
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Theorem A. Suppose that (N) holds. Let (u, ξ) be an inhomogeneous steady state
to (SSB). If (u, ξ) is stable for some τ > 0, then the maximum (minimum) of u is
attained at exactly one point on ∂B, and there is no critical point of u in int(B).
Here, we call p ∈ B a critical point of u if ux(p) = uy(p) = 0.

Note that we do not assume smallness or largeness of Du.
From Theorem A we see that every stable steady state of (SSB) does not have

interior spikes or spots. Combining Theorem A and Proposition 1.1, we see that
only the steady states whose shape are like a boundary one-spike layer can be stable.

Combining the results of [LT01, NT91, NTY01], we see that the shadow Gierer-
Meinhardt system in B, which is (GM) below, has a stable boundary one-spike
layer and that this inhomogeneous stable steady state satisfies that Z [Uζ( · )] = 2
and that the maximum of u is attained at exactly one point on ∂B. Thus their
results are consistent with Proposition 1.1 and Theorem A.

Theorem A can be obtained by Proposition 1.1 and the contrapositive of the
following instability criterion:

Theorem B. Suppose that (N) holds. Let (u, ξ) be an inhomogeneous steady state
to (SSB). If there is a point p ∈ int(B) such that ux(p) = uy(p) = 0, then (u, ξ) is
unstable for all τ > 0.

Remark 1.2 (An instability criterion for 1D shadow systems). In the case of one-
dimensional intervals, every inhomogeneous steady state (u, ξ) of certain classes of
shadow systems is unstable for all τ > 0 if u has a critical point in the interior of
the interval [N94, NPY01, FR01]. We see by the contrapositive that u should be
monotone if the steady state is stable for some τ > 0. Theorem B can be seen as a
two-dimensional version of their result.

In order to state the main technical lemma, we consider a scalar elliptic equation
on a bounded and convex domain

(NPΩ) ∆u + N(u) = 0 in Ω, ∂νu = 0 on ∂Ω,

where N( · ) is a function of class C2. Let u be a solution of (NPΩ). Let {(µn(Ω), φn)}n≥1

denote the set of the eigenpairs of the problem

(EPΩ) ∆φ + N ′(u)φ = µφ in Ω, ∂νφ = 0 on ∂Ω.

The main technical lemma of this paper is

Lemma C. Let u be a non-constant solution to (NPB). If there is a point p ∈
int(B) such that ux(p) = uy(p) = 0, then µ2(B) > 0, where µ2(B) is the second
eigenvalue of (EPB).

Note that no assumption of the nonlinear term N( · ) is imposed except the
regularity.

Lemma C is the positive answer of the following conjecture in the case of B:

Conjecture 1.3 ([Y06]). Let Ω ⊂ R2 be a bounded and convex domain with smooth
boundary, and let u be a non-constant solution to (NPΩ). If there is a point p ∈
int(Ω) such that ux(p) = uy(p) = 0, then µ2(Ω) > 0.

This is a nonlinear version of the “hot spots” conjecture of J. Rauch [R74]. The
“hot spots” conjecture immediately follows from Conjecture 1.3. If Conjecture 1.3
holds, then Theorem B holds for all the two-dimensional bounded convex domains
with smooth boundary. See also Proposition 2.6.
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Remark 1.4 (An instability criterion for scalar equations). The following sufficient
condition for the first eigenvalue to be positive is well-known: In the case when Ω
is a bounded and convex domain in RN with smooth boundary, and if a solution
to (NPΩ) is not constant, then µ1(Ω) > 0. Therefore, the contrapositive is the
following: Every stable steady state is constant in the case of convex domains. See
[Ch75] for the one-dimensional case and [CH78, Ma79] for the multi-dimensional
case.

As announced previously, we give two examples.

Example 1.5 ([GM72]). The shadow system of the Gierer-Meinhardt model [GM72]
is the following:

(GM) ut = Du∆u− u +
up

ξq
and τξt =

1
|Ω|

∫∫

Ω

(
−ξ +

ur

ξs

)
dxdy,

where (p, q, r, s) satisfy p > 1, q > 0, r > 0, s ≥ 0 and 0 < (p − 1)/q < r/(s + 1).
The assumption on (p, q, r, s) comes from a biological reason. (AI) always holds. If
p = r− 1, then (N) holds. This system is a model describing the head formation of
hydra, which is a small creature. Specifically, [GM72] show experimentally that the
head appears at the point where the activator u attains the local maximum. It is
known that this system has steady states having various shapes (see [NT91, NT93,
GW00, MM02] for example). Theorem A says that, if a steady state is stable, then
exactly one local (hence global) maximum of u is attained on the boundary when
Ω = B. This result can be interpreted as follows: The head appears at exactly one
point on the edge of the body.

Example 1.6 ([F61, NAY62]). The shadow system with the FitzHugh-Nagumo type
nonlinearity [F61, NAY62] is the following:

ut = Du∆u + f0(u)− αξ and τξt =
1
|Ω|

∫∫

Ω

(βu− γξ) dxdy,

where α, β and γ are positive constants and f0(u) is the so-called cubic-like function.
A typical example of f0 is u(1− u)(u− δ) (0 < δ < 1). (AI) and (N) hold.

This paper consists of three sections. Section 2 has two subsections. In Sub-
section 2.1, we recall known results about the zero level set of the eigenfucntions,
which we call the nodal curves. In Subsection 2.2, we recall known results about
eigenvalues related to shadow systems satisfying (N). In Section 3, we prove the
main results (Theorems A and B and Lemma C).

2. Preliminaries

2.1. Known results on the nodal curves. In this subsection, we recall known
results about the nodal curves which are our main tools in Section 3.

Proposition 2.1 ([Ca33, HW53]). Let Ω ⊂ R2 be a domain, and let V (x, y) ∈
C0(Ω). If φ satisfies ∆φ + V φ = 0, then the nodal curves {φ = 0} consist of either
the whole domain Ω or C1-curves and intersections among those curves. If several
curves intersect at one point, then they meet at equal angles.

Let φ(x, y) ∈ C1(Ω). We say that p ∈ int(Ω) is a degenerate point of φ if
φ(x0, y0) = φx(x0, y0) = φy(x0, y0) = 0.

A slight modification of the Carleman-Hartman-Wintner theorem [HW53] is
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Proposition 2.2. Let V (x, y) ∈ C0(Ω), and let φ(x, y) be a function such that
∆φ + V φ = 0 in Ω. If there exists a degenerate point (x0, y0) ∈ int(Ω), then either
(i) or (ii) holds:
( i ) φ ≡ 0 in Ω,
(ii) the nodal curves {φ = 0} have at least four branches at (x0, y0). In this case,
the measure of any connected component of {φ 6= 0} is not zero.

Proposition 2.3 ([Mi06a, Lemma 4.3]). Let Ω ⊂ R2 be a bounded domain with
smooth boundary of class C2, and let V ∈ C0(Ω). Let φ be a non-trivial solution to

∆φ + V φ = 0 in Ω, ∂νu = 0 on ∂Ω.

Suppose that there is a point (x1, y1) ∈ ∂Ω such that φ(x1, y1) = 0 and that {φ = 0}
is isolated in ∂Ω near (x1, y1). Then there is a nodal curve of φ connecting to
(x1, y1).

Proposition 2.4 ([Mi06a, Lemma C]). Let u be a solution to (NPB). If there is
an open interval γ ⊂ ∂B such that Uζ ≡ 0 on γ, then u is radially symmetric. In
particular, u is constant on ∂B.

Remark 2.5. From Proposition 2.4 we see

Z [Uζ( · )] =

{
n ∈ N\{1} if u is not radially symmetric;
ℵ1 if u is radially symmetric.

2.2. Known results on eigenvalues related to shadow systems. In this sub-
section, we recall an abstract instability criterion.

Proposition 2.6 ([Mi06a, Lemma 3.2 (i)]). Let Ω ⊂ RN be a bounded domain with
smooth boundary. Suppose that (N) holds. Let (u, ξ) be a steady state to (SSΩ). If
the second eigenvalue of the eigenvalue problem

(2.1) Du∆φ + fu(u, ξ)φ = λφ in Ω, ∂νφ = 0 on ∂Ω

is positive, then (u, ξ) is unstable for all τ > 0. Specifically, the linearized operator
of (SSΩ) at (u, ξ) has an eigenvalue with positive real part.

Roughly speaking, shadow systems of the activator-inhibitor type have an effect
removing the first eigenvalue of (2.1) [Ma05]. Hence, to determine the sign of the
second eigenvalue is important for studying the stability.

This type of the results are obtained by several authors. In [Y02], the gradient
case (k(ξ) = 1) and the skew-gradient case (k(ξ) = −1) are proven. The case of
inhomogeneous media is also considered. In [E01], an argument similar to the proof
of Proposition 2.6 appears in the case of some specific systems.

Suppose that ξ is fixed. Then the first equation of (SSΩ) is a reaction-diffusion
equation in homogeneous media. Specifically, f does not depend on x explicitly.
(2.1) can be treated as an eigenvalue problem of scalar equations in homogeneous
media. For simplicity, we do not write ξ in the nonlinear term in Section 3.

Thanks to Proposition 2.6, what we have to do is obtain a sufficient condition
for the second eigenvalue of (2.1) to be positive.

Without loss of generality, we can assume that Du = 1, because the sign of each
eigenvalue of (2.1) does not change when Ω is rescaled to Ω/

√
Du.
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3. Proofs of the main results

In this section, we mainly prove Lemma C. Specifically, we will show that
µ2(B) > 0 if the solution of (NPB) is not constant.

In proving the positiveness of the second eigenvalue µ2(Ω), we use a variational
characterization of µ2(Ω). It is convenient to define a functional H [ · ] by

H [ψ] :=
∫∫

Ω

(
− |∇ψ|2 + N ′(u)ψ2

)
dxdy.

Lemma 3.1. Let u be a non-constant solution of (NPB). Then one of the following
holds:
( i ) H [ux] > 0 or H [uy] > 0,
(ii) u is radially symmetric.

Proof. This lemma is well-known. We sketch the proof. The key ingredient is the
following:

(3.1) −∂ν |∇u|2 =
2

R3
u2

θ on ∂B,

where uθ := −yux + xuy. We have

H [ux] +H [uy]

=
∫∫

B

(
− |∇ux|2 + N ′(u)u2

x

)
dxdy +

∫∫

B

(
− |∇uy|2 + N ′(u)u2

y

)
dxdy

=
∫∫

B

(∆ux + N ′(u)ux) uxdxdy +
∫∫

B

(∆uy + N ′(u)uy)uydxdy

−
∫

∂B

(ux∂νux + uy∂νuy) dσ.

Since ∆ux + N ′(u)ux = 0 and ∆uy + N ′(u)uy = 0, we see by (3.1) that H [ux] +
H [uy] ≥ 0. We show that H [ux] + H [uy] 6= 0 if u is not radially symmetric.
Suppose the contrary, namely, H [ux] +H [uy] = 0. Then uθ ≡ 0 on ∂B. We see by
Proposition 2.4 that u is radially symmetric. This is a contradiction. We see that
H [ux] +H [uy] > 0 and that (i) holds if u is not radially symmetric. ¤

See [CH78, Ma79] for a result similar to Lemma 3.1 in the case of bounded
convex domains in RN .

Lemma 3.2 ([Mi06a, Lemma 3.5]). Let u be a non-constant solution to (NPB). If
u is radially symmetric, then µ2(B) > 0.

Proof. See the proof of Lemma 3.5 in [Mi06a]. We omit the proof. ¤
Because of Lemma 3.2, we do not need to consider the case that u is radially

symmetric. Hence, we can assume that (i) of Lemma 3.1 always occurs.
We define a rotational derivative of u with center (x0, y0) by

(∂(x0,y0)
θ u)(x, y) := −(y − y0)ux(x, y) + (x− x0)uy(x, y).

Hereafter in this section, we consider the case when the nodal curves {∂(x0,y0)
θ u = 0}

have a loop in the closure of the domain. We define ω by the area enclosed by the
loop. Therefore, ∂ω is the loop. We define a function z(x, y) by

z(x, y) :=

{
(∂(x0,y0)

θ u)(x, y) if (x, y) ∈ ω;
0 if (x, y) ∈ Ω\ω.
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Note that ∂
(x0,y0)
θ ∆(x,y) = ∆(x,y)∂

(x0,y0)
θ .

We consider the case that ∂
(x0,y0)
θ u ≡ 0. Then u is radially symmetric.

Suppose that Ω is not ball. There is a point (x1, y1) on ∂Ω such that the
vector (x1 − x0, y1 − y0) is not parallel to ν, where ν is an outer normal vector
on the boundary. Therefore, there is a neighborhood Γ of (x1, y1) in ∂Ω such that
ux = uy = 0 on Γ. Since u is radially symmetric and the vector (x1 − x0, y1 − y0)
is not perpendicular to the tangent line of ∂Ω at (x1, y1), u is constant on Γ and
there is an open set in Ω such that u is constant. Thus the value of u at a point in
the open set, say c, is a root of f , specifically f(c) = 0. Thus ψ = u − c satisfies
∆ψ + V ψ = 0, where V := (f(u) − f(c))/(u − c), and ψ vanishes in the open set.
We see by the strong unique continuation at an interior point that u ≡ c in Ω. This
case does not occur if u is not constant.

Suppose that Ω is ball. If (x0, y0) is not the center of B, then we see by the
same argument that u is constant. If (x0, y0) is the center of B, then u is radially
symmetric. Thus, u is constant or µ2(B) > 0 (Lemma 3.2). We do not need to
consider the case that ∂

(x0,y0)
θ u ≡ 0 in B.

When ∂
(x0,y0)
θ u 6≡ 0, we see that the measure of ω is not zero, that z = 0 on ∂ω

and that
z > 0 in int(ω) or z < 0 in int(ω).

Lemma 3.3. ( i ) H [z] = 0.

(ii) Let uα := cos αux + sin αuy. Then
∫∫

Ω

(−∇uα ·∇z + N ′(u)uαz) dxdy = 0.

Proof. We prove (i). We have

H [z] =
∫∫

Ω

(
− |∇z|2 + N ′(u)z2

)
dxdy =

∫∫

ω

(
− |∇z|2 + N ′(u)z2

)
dxdy

=
∫∫

ω

(∆z + N ′(u)z) zdxdy −
∫

∂ω

z∂νzdσ = 0,

because ∆z + N ′(u)z = 0 in int(ω) and z = 0 on ∂ω.
We prove (ii). We have∫∫

Ω

(−∇uα ·∇z + N ′(u)uαz) dxdy =
∫∫

ω

(−∇uα ·∇z + N ′(u)uαz) dxdy

=
∫∫

ω

(∆uα + N ′(u)uα) zdxdy −
∫

∂ω

z∂νuαdσ = 0,

because ∆uα + N ′(u)uα = 0 and z = 0 on ∂ω. ¤

Let ∂τ denote a tangential derivative along ∂Ω.

Lemma 3.4 ([Mi06b, Lemma 4.4]). Let Ω(⊂ R2) be a bounded convex domain with
boundary of class C2, and let u be a solution to (NPΩ). Suppose that (x1, y1) ∈ ∂Ω.
Then

(∂τu)(x1, y1) = 0 if and only if (∂(x0,y0)
θ u)(x1, y1) = 0 for all (x0, y0) ∈ int(Ω).

In particular,

(∂(x0,y0)
θ u)(x1, y1) = 0 for some (x0, y0) ∈ int(Ω) if and only if

(∂(x0,y0)
θ u)(x1, y1) = 0 for all (x0, y0) ∈ int(Ω).
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Moreover, if the nodal curves {∂(x0,y0)
θ u = 0} connect to (x1, y1) on the boundary,

then (∂τu)(x1, y1) = 0, hence, (x1, y1) ∈ {Uζ = 0}.
Proof. The tangent line of ∂Ω at (x1, y1) is not parallel to the vector (x1−x0, y1−
y0), because Ω is convex. Hence if (∂(x0,y0)

θ u)(x1, y1) = (∂νu)(x1, y1) = 0, then
ux(x1, y1) = uy(x1, y1) = 0. Therefore (∂τu)(x1, y1) = 0. Conversely, if (∂τu)(x1, y1) =
(∂νu)(x1, y1) = 0, then ux(x1, y1) = uy(x1, y1) = 0. Thus (∂(x0,y0)

θ u)(x1, y1) =
−(y1 − y0)ux(x1, y1) + (x1 − x0)uy(x1, y1) = 0 for all (x0, y0) ∈ int(Ω). The latter
half part of the statements is clear. ¤
Lemma 3.5. Let u be a non-constant solution of (NPB). If the nodal curves
{∂(x0,y0)

θ u = 0} have a loop in the closure of B, then µ2(B) > 0, where µ2(B) is
the second eigenvalue of (EPB).

Proof. Because of Lemma 3.1, there is α ∈ R/2πZ such that H [uα] > 0. Let φ1

denote the first eigenfunction of (EPB). We define ψ0 by

ψ0 := uα + az,

where a is chosen so that 〈ψ0, φ1〉 = 0, where 〈 · , · 〉 denotes the usual L2-inner
product. Specifically, a = −〈uα, φ1〉 / 〈z, φ1〉. We see that 〈z, φ1〉 6= 0, since φ1 and
z are continuous and do not change signs on the interior of the support set of z and
the measure of the area enclosed by the loop is not zero.

We have

H [ψ0] =
∫∫

B

{
− |∇(uα + az)|2 + N ′(u)(uα + az)2

}
dxdy

= H [uα] + 2a

∫∫

B

(−∇uα ·∇z + N ′(u)uαz) dxdy + a2H [z] = H [uα] > 0,

where we use (i) and (ii) of Lemma 3.3. Therefore,

µ2(B) := sup
ψ∈(span〈φ1〉⊥∩H1)

H [ψ]
‖ψ‖22

≥ H [ψ0]
‖ψ0‖22

> 0,

where H1 denotes the Sobolev space of order 1, ‖ · ‖2 denotes the usual L2-norm
and span 〈φ1〉⊥ := {v ∈ L2; 〈v, φ1〉 = 0}. ¤
Lemma 3.6 ([Mi06a, Lemmas 3.4 and 3.5]). Let u be a non-constant solution of
(NPB). If Z [Uζ( · )] ≥ 3, then µ2(B) > 0, where µ2(B) is the second eigenvalue of
(EPB).

Proof. Let w(x, y) := (∂(0,0)
θ u)(x, y). Since

∆w + N ′(u)w = 0 in B, ∂νw = 0 on ∂B,

0 is an eigenvalue of (EPB). There are two cases. One case is that Z [Uθ( · )] ∈
N\{1, 2}. There is a nodal curve {w = 0} connecting to each of {Uζ = 0}, because
of Proposition 2.3. Thus w has at least three points on the boundary which nodal
curves connect to. It follows from an elementary topological argument of two-
dimensional domains that w has at least three nodal domains. Courant’s nodal
theorem says that 0 is not the first or second eigenvalue. This means that µ2(B)
cannot be 0 or negative. Thus µ2(B) > 0. The other case is that Z [Uζ( · )] = ℵ1.
Because of Remark 2.5, u should be radially symmetric. In this case, we see by
Lemma 3.2 that µ2(B) > 0. ¤
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Proof of Lemma C. There are two cases. One case is that Z [Uζ( · )] ≥ 3. We see
that µ2(B) > 0, using Lemma 3.6.

The other case is that Z [Uζ( · )] = 2. Let p = (x0, y0) be an interior point of B

such that ux(p) = uy(p) = 0. Let w(x, y) := (∂(x0,y0)
θ u)(x, y). Since

w(x, y) = −(y − y0)ux + (x− x0)uy,

wx(x, y) = −(y − y0)uxx + uy + (x− x0)uyx and

wy(x, y) = −ux − (y − y0)uxy + (x− x0)uyy,

we see that w(x0, y0) = wx(x0, y0) = wy(x0, y0) = 0. Therefore, p = (x0, y0) is a
degenerate point of w. Because of Proposition 2.2, there are at least four branches
of the nodal curves {w = 0} at p, otherwise, w ≡ 0 in B and we already showed that
µ2(B) > 0 or u is constant. Each branch should connect to one of the branches or
the boundary of the domain. If there is a branch connecting to one of the branches,
then there exists a loop, and Lemma 3.5 says that µ2(B) > 0. We consider the
case that all the branches connect to the boundary of the domain. Because of
Lemma 3.4, all the branches connect to one of the zero set {Uζ = 0}. However, it
is impossible that this occurs without loop, because Z [Uζ( · )] = 2 and there are at
least four branches at p. Thus there is a loop of {w = 0}, and we see by Lemma 3.5
that µ2(B) > 0. ¤

Proof of Theorem B. Because of the assumption, u has a critical point in int(B).
From Lemma C we see that the second eigenvalue of (2.1) is positive. We see by
Proposition 2.6 that (u, ξ) is unstable. ¤

Proof of Theorem A. Because of the contrapositive of Theorem B, u has no critical
point in int(B), hence, the maximum (minimum) of u is attained on ∂B. We see
by Proposition 1.1 that the maximum (minimum) point of u should be unique. ¤
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[Y06] E. Yanagida, private communication, (2006).

Research Institute for Mathematical Sciences, Kyoto Univ., Kyoto, 606-8502, JAPAN
E-mail address: miyayan@sepia.ocn.ne.jp


