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Abstract. We use the unitarization of the Burau representation, found by Squier, and some Lie group arguments, to
extend the previous construction of infinite sequences of pairwise non-conjugate braids with the same closure link
of a non-minimal number of (and at least 4) strands. In particular we show that such a sequence always exists for
non-torus alternating links. It also exists for minimal strand braid representations of any composite knot of braid
index at least 6.

1. Introduction

The theory of braid groups took its origins in the 1930s from the work of Artin [2] and Alexander [1]. By a classical
theorem of Alexander, knots and links embedded in real 3-dimensional space are all realized as closures of braids.
Contrarily, Markov’s theorem relates braids realizing the same link by two moves. These moves are conjugacy in
the braid group, and (de)stabilization. Stabilization adds a new strand and Artin generator at the edge of a braid, and
the inverse operation, called destabilization, removes them. Alexander’s and Markov’s theorems are the basis of the
expectation to apply braids (in particular their group structure) in knot theory. However, we gradually understood
that the effect of (de)stabilization on general conjugacy classes of braids is extremely difficult. Only in very special
situations these conjugacy classes can be well described.

Birman-Menasco proved that up to 3 strands at most 3 conjugacy classes of braids with the same strand number have
the same closure link [6]. For minimal braid representations (i.e. representations realizing the braid index) in general
braid groups sometimes only finitely many conjugacy classes seem to occur. Birman in fact conjectured that there
would always be a single class, but Murasugi and Thomas [30] found some counterexamples1.

The situation changes even more when (as will be the main focus in this paper) we abandon minimality. Morton
[24] discovered an infinite sequence of conjugacy classes of 4-braids with unknotted closure, and also constructed an
irreducible one [25]. (An irreducible conjugacy class is one containing no braid which admits a destabilization as in
Markov’s theorem.) Then Fiedler [11] combined both properties and showed the existence of an infinite sequence of
irreducible conjugacy classes. Unfortunately, the argument in the irreducibility proofs remains restricted to 4-braids
only, and we do not know of generalizations to higher braid groups.
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1Unlike what they state, their examples apply only to 4-braids. Their argument for 4 strands uses the homomorphism B4 → B3; it has no
generalization for arbitrary braid groups.
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2 1 Introduction

For reducible braids, later, Fukunaga [12, 13], using Garside’s normal form [14], and alternatively Fiedler’s invariant,
obtained two different proofs of an extension of Morton’s original result, showing infinitely many conjugacy classes
of 4-braids associated to (2,k)-torus links. Recently, Shinjo [32] obtained the following even more general theorem
for knots.

Theorem 1 (Shinjo) If there is an n−1-strand braid having a knot K as closure (n ≥ 4), then there exists an infinite
sequence of pairwise non-conjugate braids of n strands realizing K (as closure).

Shinjo’s argument does not apply immediately to general links of several components, and in a previous paper [35],
we made some effort to extend theorem 1, obtaining the following result. A braid is called central if it commutes
with any other braid. The property ‘pure’ is defined by the triviality of the associated strand permutation. A subbraid
of β is a braid obtained by choosing a proper subset of the strands of β.

Theorem 2 ([35]) Assume there exists an n− 1-strand braid β having a link L as closure, n ≥ 4, and β is either a
non-pure braid, or a pure braid that contains a non-central 3-strand braid as a sub-braid. Then there exists an infinite
sequence of pairwise non-conjugate braids of n strands realizing L.

The case of pure braids in theorem 2 was handled by some argument based on the Burau representation ψn for n = 3.
This representation associates to a braid β in the n-strand braid group Bn an (n−1)× (n−1) matrix with entries in
Z[t±1]. It remains of fundamental importance to braid and link theory (see §3 or, for example, [3, 15]).

In this paper we use a more detailed, but different, study of the Burau representation, and some more sophisticated
machinery of Lie group theory, to obtain the following result, which assumes in general even weaker restrictions on
the (sub)braids.

Theorem 3 Assume L = β̂′, and β′ ∈ Bn−1 for n > 4, such that β′ or a subbraid of β′ of 4 or more strands has a
non-scalar Burau matrix. (That is, the Burau matrix is not a multiple, that may depend on t, of the identity.) Then
there exists an infinite sequence of pairwise non-conjugate braids of n strands realizing L.

Again the construction of non-conjugate braids is simply the stablization of conjugates by braids α of a given braid
representation β′ of L. Herein the effort will be to show that letting α vary over the whole n−1-strand braid group
Bn−1, we obtain enough non-conjugate n-braids after stabilization. The proof of this combines several ingredients.
First we show a result of independent interest that concerns the image of the Burau representation of Bn in GL(n−
1,C) for some particular values of t.

Theorem 4 When t ∈ C with |t| = 1 and t is close to 1, but not a root of unity, and n > 3, then ψn(Bn) 'U(n−1)
as a subgroup of GL(n−1,C).

Here bar means closure in the usual topology of M(n−1,C) and isomorphy is meant up to conjugation with a matrix
depending on t. The question on the Burau image has some importance. Cooper and Long [8] studied it as an abstract
group, but in this form it appears too hard to describe. (It is likely not finitely presented, even with matrix coefficients
in Z[t±1] taken modulo 2.) Theorem 4 says something about its embedding in GL(n−1,C) for the t in question. The
unitarity condition is known by a result of Squier [33]. To show density, we apply some arguments on Lie groups, in
particular a part of Dynkin’s seminal work [10] on the classification of maximal subgroups of the complex groups.
The property “close to 1” can be concretified with a bit more effort, if needed.

To complete the proof of theorem 3, finally we show that a non-central conjugacy class in SU(n− 2) satisfies no
linear conditions except the invariance of the trace (proposition 3), and the Burau trace of the stabilized braid (in Bn)
gives such a condition.

Certainly, by incorporating theorem 2, we can replace both occurrences of ‘4’ by ‘3’ in theorem 3. (Note that a
central braid has scalar Burau matrix, and the converse is true for 3-braids; see the proof of lemma 5 and remark 2.)
The point is that the proof of theorem 3 differs completely from this of theorem 2, and the case n = 4 creates a slight
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(Lie group theoretic) problem in the new proof. While it seems remediable, we felt that it would be better to leave
the case entirely to the merit of the previous results. For n 6= 4, theorem 3 clearly extends theorem 1.

As an application, we use the relation between the Burau representation and the Alexander polynomial in §4 to restrict
the possible values of the Alexander polynomial of links on which our construction could fail. This restriction is very
weak, and allows us to settle the case of non-trivial alternating links (theorem 6).

Of course, if β′ is contained in the center of Bn−1 (in other words, the subgroup of elements commuting with all of
Bn−1), conjugacy is trivial, and our construction must certainly fail. (This requires to exclude the unlink in theorem
6, for example.) However, the center is very small, being generated by the (pure) full twist braid, and our theorem
exhausts many of the non-central cases. On the other hand, a result of Long [21] implies that still there exist non-
central braids neither contained in the class specified in theorem 3 (see remark 1). At the end of the paper, in §6, we
discuss some related problems.

Although we focus in theorem 3 on reducible representations, we will explain in §5 how to adapt the arguments in
the proof to some minimal representations. See theorem 7. It gives a general condition for finding non-conjugate
minimal braids. Such constructions relate to Birman-Menasco’s exchange move [7], so the theorem gives a tool to
decide that this move creates non-conjugate braids.

The paper [35] was written originally in Japanese; for completeness and clarity we reproduce an English proof of
theorem 2 in the appendix. This is the more useful, that some work here (theorem 6) depends on it non-trivially.

2. Lie groups (joint with T. Yoshino)

In this section we make some Lie group theoretic preparations. We prove propositions 1, 2 and 3, which are needed
for the proof of theorem 3.

2.1. Correspondence between compact and complex Lie groups

Let G be a connected compact Lie group with Lie algebra g. Compactness implies in particular that G is real, finite-
dimensional and linear reductive (see example 5.38 of [20]). Linear reductive means for a closed subgroup G ⊂
GL(n,C) that the number of connected components is finite and G is closed under conjugated matrix transposition
M 7→ MT (see definition 5.36 of [20]).

A linear representation of G is understood as a pair ρ = (V,π) made of a vector space V and a homomorphism
π : G → Aut(V ). We will often omit π and identify ρ with V for simplicity, if unambiguous. A representation is
irreducible if it has no non-trivial (i.e. proper and non-zero) invariant subspaces. Linear reductiveness of G implies
that each invariant subspace of a linear representation of G has a complementary invariant subspace, so that each
representation of G is completely reducible as direct sum of irreducible representations.

To G there exists a uniquely determined complex connected linear reductive Lie group GC, with

(i) gC = g⊗C is the Lie algebra of GC, and
(ii) G ⊂ GC as a closed subgroup.

Then GC is called a complexification of G. If G is simply connected, so is GC, and then any other connected complex
Lie group with Lie algebra gC is a covering of GC. The real group G is always a maximal compact subgroup of GC;
we call it the compact real form of GC (see [20, theorem 12.27]).

Thus we have a one-to-one correspondence between a compact connected real (simply-connected) Lie group and
a (simply-connected) connected linear reductive complex Lie group. Under this correspondence to G = SU(n) we
have GC = SL(n,C). The groups are connected and simply-connected.

The correspondence behaves well w.r.t. many properties. The real form G is simple, if and only if GC is too. (In
particular, if G is semisimple, so is GC.) For every complex representation ρ = (V,π) of G (‘complex’ means that V
is a complex vector space) we have an ‘extension’ to a representation ρ̃ = (V,πC) of GC, such that πC is an extension
of π from G to GC. If GC is simply-connected, it is proved by Weyl’s unitary trick (Theorem 12.19 and Remark 12.20
in [20]), that ρ is irreducible if and only if ρ̃ is so.
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2.2. Symmetric pairs

Let G be a Lie group and σ an involution. Define

Gσ := {g ∈ G : σ(g) = g}

to be the σ-invariant subgroup of G and Gσ
0 the connected component of the identity. Then a pair (G,H) for a closed

subgroup H with Gσ
0 ⊂ H ⊂ Gσ is called a symmetric pair.

In the case G = SU(n) the symmetric pairs have been classified by Cartan. See [18, Chapter IX.4.A, table p. 354].
In this case H is some of S(U(m)×U(n−m)), Sp(n/2) if n is even, or SO(n).

Let us give the corresponding involutions σ that define the symmetric pairs (see p. 348 of [18]).

Define Mi, j to be the matrix with all entries 0 except that at the (i, j)-position, which is 1. Let diag(x1, . . . ,xn) =

∑n
i=1 xiMi,i be the diagonal matrix with entries x1, . . . ,xn, so that Idn = diag(1, . . . ,1) (with n entries ‘1’) is the identity

matrix.

For S(U(m)×U(l)), with m+ l = n, the involution σ is of the form σm,l : M 7→ Im,lMIm,l , where

Im,l = diag(1, . . . ,1
m
,−1
m+1

, . . . ,−1) .

For n = 2n′ even, Sp(n′) respects the involution σJ : M 7→ J−1M̄J, where

J =











0 − Idn′

Idn′ 0











, (1)

and M̄ is the complex conjugation (of all entries) of M. For SO(n), the involution σ is given by σ(M) = M̄.

These subgroups can be also defined in the standard representation by the linear transformations that respect a certain
(complex) non-degenerate bilinear form, which is Hermitian, skew-symmetric or symmetric resp. (see table 7.2 on
p. 315 of [20]). All transformations that respect such a form determine, up to conjugacy, a subgroup of one of the
three types.

Analogous three types of subgroups R(m,n,C), Sp(n/2,C) and SO(n,C) can be defined for SL(n,C). Here R(m,n,C)
is the group of all (complex-)linear unit determinant transformations of C

n that leave invariant a subspace of dimen-
sion m. (In contrast to the unitary case, there is not necessarily a complementary invariant subspace!)

We call the three types of groups reducible, symplectic and orthogonal resp. We call a representation V of G af-
ter one of the types, if it is contained in a conjugate of a group of the same name. Orthogonal and symplectic
subgroups/representations will be called also symmetric, the others asymmetric.

In the real-complex correspondence we explained, we have that if the representation ρ of G is symmetric, then so is
the representation ρ̃ of GC. This is easily seen by restricting the respected bilinear form to the reals.

2.3. Maximal subgroups of the complex groups

In the 1950s, Dynkin published a series of ground-breaking papers, in which he gave tremendous impetus to the
theory of Lie groups. We will use a part of his classification of maximal subgroups of classical Lie groups [10]. (See
theorems 1.3, 1.5 and 2.1 in [10].)

Theorem 5 (Dynkin [10]) A maximal proper (compact) subgroup of SL(n,C) is conjugate in SL(n,C) to
(i) some symmetric representation, i.e., SO(n,C) or Sp(n/2,C) when n is even, or
(ii) to SL(m,C)⊗SL(m′,C) with mm′ = n and m,m′ ≥ 2 (one which is non-simple irreducible), or
(iii) to R(m,n,C) (one which is reducible), or
(iv) it is an irreducible representation of a simple Lie group.



2.4 Unique conjugacy invariance of the trace 5

For a non-simple group H = H1 ×H2, one considers Cn = Cmm′ ' Cm ⊗Cm′
as a tensor (Kronecker) product, and

H1 resp. H2 acts on Cm resp. Cm′
.

We call the first 3 types of subgroups orthogonal, symplectic, product and reducible resp.

We will need in theorem 5 mainly case (iii). Also, case (i) is in fact included in case (iv), but singled out due to the
somewhat special treatment it will receive below. It can be handled by elementary means, instead of (although we
could do as well by) appealing to a larger extent to the Lie theory described, mainly in the appendix, in [10].

The irreducible representations will be handled with the following lemma.

Lemma 1 An irreducible representation of dimension k of a simple complex Lie group of rank at least k−1 is the
standard representation of SL(k,C).

Note that the rank of G is the dimension of a maximal commutative subgroup, and equal to the number of simple
roots resp. the number of nodes in the Dynkin diagram.

Proof. The irreducible representations of a simple complex Lie group in SL(k,C) can be specified by a labelling of
the nodes of the Dynkin diagram, as explained on p. 329 of [10]. Now, the number n of the nodes of the Dynkin
diagram is equal to the dimension of the maximal torus (see p. 320–322 of [10]), that is, the rank of G. So by
assumption we have k ≤ n+1.

Now it follows from Weyl’s formula for the dimension (theorem 0.24 in §31 of the ”Supplement” in [10]) and Cartan’s
description of maximal weights (theorem 0.9 in §10 ibid.) that increasing the label of a node strictly increases the
dimension of the representation, and the dimensions of the basic representations (only one node labelled, with a ‘1’)
are given in Figure 30 of [10]. This dimension must be less than or equal to n+1. Only the standard representation
of An has such a dimension, and k−1 = n. 2

Proposition 1 Let V be an n-dimensional irred. faithful representation (for n > 1) of a complex group G of rank at
least n−1. Then it is the standard representation of SL(n,C) (and the rank is n−1).

Proof. Any irreducible group G of linear transformations is semisimple by work of Cartan (see Remark B after
theorem 1.5 on p. 253 of [10]). If G is not the full SL(n,C), go over to the maximal proper subgroup of SL(n,C)
containing G. By abuse of notation we call it again G. If G is simple, we are done by the previous lemma. If G is
not simple, then by theorem 1.3 of [10], the inclusion of G in Aut(V ) is contained in a tensor product representation
V1 ⊗V2, and V1,2 are themselves the standard representations of SL(n1,2,C) (of dimension ni at least two). The
rank rkG is monotonous under inclusion, and additive under cross product, so rkG ≤ rkSL(n1,C)+ rkSL(n2,C) =
n1 +n2−2. Contrarily the dimension of V is multiplicative under Kronecker product, and dimV = n1n2 > n1 +n2−1,
so we see that V cannot be the representation we assumed. 2

Proposition 2 Let V be an n-dimensional faithful representation of a semisimple linear reductive complex Lie group
G of rank at least n−1 in SL(n,C). Then V is irreducible, and so G = SL(n,C).

Proof. Assume V is reducible. By linear reductiveness, V decomposes as a direct sum of irreducible representations
Vi of dimensions ni, with ∑ni = n. Since G is semisimple, all ni ≥ 2. But now the rank and dimension are additive
under direct sum, and we get a contradiction from proposition 1. 2

2.4. Unique conjugacy invariance of the trace

It is well-known that central matrices in SU(n) are scalar and that the trace is a conjugacy invariant. We show that,
apart from these trivial cases, there are no linear functions of matrices invariant on a conjugacy class.

Proposition 3 Assume that f : M(n,C) ' Cn2 → C is a linear function, which is not a multiple of the trace. Let X
be a non-central element in SU(n). Then f is not constant on the conjugacy class of X in SU(n) (considered as a
subset of M(n,C)).
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We found two proofs of this fact. The first proof uses simple matrix algebra. The second one is more contextual. It
applies in more generality and is shorter, but appeals again to some Lie group theory.

Proof. We fix a presentation of f by

f (X) :=
l

∑
s=1

αis, js xis, js , (2)

where xi, j is the (i, j)-entry of X and αa,b ∈ C are coefficients. Now we find one by one matrices A such that the
identity

f (AXA−1) = f (X) (3)

restricts gradually the possible values of αa,b. Hereby, it is admissible to conjugate with matrices A ∈U(n) instead
of SU(n), because U(n) is just a central extension.

Let Mi, j and diag(x1, . . . ,xn) be the notation of §2.2. First we use (3) with A = diag(1, . . . ,1,−1
l

,1, . . . ,1) for l =

1, . . . ,n. Then we find
∑

either is = l or js = l
αis, js xis, js = 0 . (4)

Using A = diag(1, . . . ,1,−1
i

,1, . . . ,1,−1
k

,1, . . . ,1), we obtain similarly

∑
|{i,k}∩{is, js}|=1

αis, js xis, js = 0 . (5)

Let us complete the αis, js to αi, j for 1 ≤ i, j ≤ n, by setting αi, j = 0 when (i, j) does not occur as (is, js). Now for
i 6= k, subtracting (5) from the sum of the two instances of (4) for l = i and l = k, we find

xi,kαi,k + xk,iαk,i = 0 . (6)

Still we can use in (6) instead of xi,k also the entries of any other matrix conjugate to X . This gives a family of new
conditions on the xi,k. Conjugating with

Ai, j = Id−Mi,i −M j, j +M j,i −Mi, j (7)

shows
xi,kαk,i + xk,iαi,k = 0 . (8)

We would like to conclude now that
αi,k = 0 for all i 6= k . (9)

The conditions (6) and (8) together imply that if xi,k 6=±xk,i, then αi,k = αk,i = 0. Since one can obtain all pairs (i,k)
with i 6= k up to conjugacy, we see that if X is not symmetric or antisymmetric, then (9) is true.

Now assume that X is symmetric or antisymmetric, and not diagonal, i.e. xi,k 6= 0 for some i 6= k. Then a non-trivial
solution (αi,k,αk,i) to (6) and (8) has αi,k = −αk,i (for X symmetric) or αi,k = αk,i (for X antisymmetric). When
conjugating X with A = diag(1, . . . ,1,λ

i
,1, . . . ,1), with λ ∈ C of norm 1, then xi,k gets multiplied with λ, and xk,i by

1/λ, so again by choosing λ properly, we conclude αi,k = αk,i = 0.

So for (9) it remains to consider the case that X is diagonal. Now, by assumption X is not a multiple of the identity.
So there is a vector not mapped to a multiple of itself by X . Using Gram-Schmidt, one easily can (unitarily) conjugate
X to a non-diagonal matrix, and so (9) follows.

Now with (9), the form (2) reduces to

f (X) :=
n

∑
i=1

αixi,i .
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Letting A = Ai, j be again as in (7), the condition (3) reduces to

αixi,i +α jx j, j = αix j, j +α jxi,i ,

which can be rewritten as (αi −α j)(xi,i − x j, j) = 0. Now by assumption, the second factor does not vanish for at
least one pair i < j. Then the first factor must vanish for that i, j, and then for all other i, j by conjugacy. So f is a
multiple of the trace, as desired. 2

Here is the more general approach.

Proposition 4 Let G be a connected and simply connected simple complex Lie group with Lie algebra g and U the
compact real form of G. Then the adjoint representation of U on g is irreducible as a representation over C.

Proof. We have that the representation ad : g → End(g) is irreducible because g is a simple Lie algebra. Thus
Weyl’s unitary trick implies that the adjoint representation of the compact real form U on g is also irreducible. 2

Corollary 1 Ad(SU(n)) y sl(n,C) is irreducible. 2

(Note that sl(n,C), the Lie algebra of SL(n,C), are the traceless complex n×n matrices.)

Proof of proposition 3 (alternative version). We use indirect proof. We assume f is constant on the conjugacy
class of some non-central (i.e. non-scalar) matrix X ∈ SU(n), and want to prove that f is a constant times the trace.
By adding a multiple of the identity to X (still X is not scalar), we can assume w.l.o.g. that tr(X) 6= 0. Since f is
linear, it is still constant on the conjugacy class of the modified X . Define for Y ∈ M(n,C) a function

F(Y ) := f (Y )− f (X)

tr(X)
· tr(Y ) .

Then again F is a linear function and F(gXg−1) = F(X) = 0 for all g ∈ SU(n).

Let K = SU(n), V = gl(n,C) = M(n,C) and V0 = sl(n,C). Consider

T := C-span{gXg−1 : g ∈ SU(n)} ⊂V.

This is an Ad(K) invariant C-subspace of V . It is clearly not contained in V0 (because tr(X) 6= 0) or in C ·Idn (because
X is not scalar). However, it follows from corollary 1 and the linear reductiveness of K that the only Ad(K) invariant
C-subspaces of V are {0},C · Idn,V0 and V . So T = V and F ≡ 0 on V . Then

f (Y ) =
f (X)

tr(X)
· tr(Y )

for all Y ∈V , and so f is a multiple of the trace. 2

3. Unitarization of the Burau representation

The n-strand braid group Bn is considered generated by the Artin standard generators σi for i = 1, . . . ,n−1. These
are subject to relations of the type [σi,σ j] = 1 for |i− j| > 1, which we call commutativity relations (the bracket
denotes the commutator) and σi+1σiσi+1 = σiσi+1σi, which we call Yang-Baxter (or shortly YB) relations.

The Burau representation ψ̃n of Bn, for a parameter t ∈ C, originally acts on Cn by

ψ̃n(σi) =





























1
. . .

1
1− t t

1 0
1

. . .
1





























, (10)
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with i = 1, . . . ,n− 1 and the entry 1− t at position (i, i). This form leaves the subspace generated by (1, . . . ,1)
invariant. So one takes a complementary basis (0,1

i
,−1,0, . . . ,0) = ei, and on that basis, ψn gets the shape known as

(reduced) Burau representation

ψn(σi) =

































1
. . . 0

1
1 −t

−t
−1 1

1

0
. . .

1

































for 1 < i < n−1,

ψn(σ1) =















−t 0
−1 1 0

1

0
. . .

1















, and ψn(σn−1) =















1 0
. . .

1
0 1 −t

0 −t















,

where at position (i, i) there is always the entry −t.

Albeit ψ̃ contains an extraneous dimension, it displays some features easier than ψ. We will switch back and forth
between both forms when convenient.

The permutation representation of the symmetric group Sn of n elements is given by Cn, with the permutation of
coordinates. Since Bn surjects onto Sn, we can view the permutation representation also as a representation of Bn. It
is obtained from ψ̃ for t = 1.

Lemma 2 The permutation representation of Sn for n ≥ 3 has no proper invariant subspaces except the one C of
vectors with all entries being equal, and the one D of vectors with all entries adding up to 0.

Proof. Clearly the two spaces C and D are invariant. Now a permutation is unitary (w.r.t. the standard Hermi-
tian scalar product), so it is diagonalizable, and all invariant subspaces are sums of eigenspaces. Moreover, such
eigenspaces are mutually orthogonal. So a non-trivial invariant subspace E, different from C and D, must be con-
tained in D. The space D has the obvious basis ei = (0, . . . ,0,1

i
,−1,0, . . . ,0), for i = 1, . . . ,n− 1. Each ei is an

eigenvector (to eigenvalue −1) for the action of a transposition of elements i and i + 1. So E must be either (i) the
1-dimensional space Ei of some ei, and contained in the orthogonal complement E⊥

j of E j for all j 6= i, or (ii) it must
lie in the intersection of all E⊥

i . Former alternative is excluded because ei and ei±1 are not orthogonal, for whatever
of ei±1 makes sense. (In order at least one of both to do so, here the condition n ≥ 3 becomes necessary.) Latter
alternative is excluded because the ei are a basis, so

�
i E⊥

i = {0}. 2

Note that, since for t = 1 the Burau representation degenerates into a permutation representation, theorem 3 (and
likewise theorem 2) would apply on a non-pure braid directly, without need to consider subbraids. So it is enough to
consider subbraids only of pure braids in the proof of theorem 3. This bypasses the unpleasant problem to understand
conjugacy and closures of subbraids of non-pure braids. We also see that theorem 3 contains theorem 1 for n 6= 4,
and also most of theorem 2. The exceptions would be pure braids β′ (it is not clear if such exist) of n−1 ≥ 4 strands,
such that all the subbraids of β′ of 4 or more strands have scalar Burau matrix, but some 3-strand subbraid has not.

We consider the unitarization of the Burau representation, found by Squier [33]. Squier proved that ψ is unitarized
by a certain Hermitian form for |t| = 1. For t = 1 this form is the standard Hermitian form. One can verify that
Squier’s form for ψn degenerates exactly in the n-th roots of unity. Therefore, when t = eiλ, λ ∈ R and |λ| < 2π/n,
then ψn is unitary, so it is conjugate to a scalar times a SU(n−1) representation ψu = ψu,n. (Here ‘u’ is a literal and
stands for ‘unitary’, and the integer n will be omitted when fixed.) This extends the above observation for t = 1.
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Proof of theorem 3. Write, with the ei as above,

(x1, . . . ,xn−1)∗ =
n−1

∑
i=1

xiei .

We use angle brackets to denote the group generated by some elements. Now let β ∈ B2,n = 〈σ2, . . . ,σn−1〉, which is
the subgroup Bn−1 of braids in Bn with isolated leftmost strand. We consider all braids σ1αβα−1 with α ∈ B2,n, and
want to show that infinitely many are non-conjugate. We assume the contrary and derive a contradiction. In fact, it
is enough to assume that the σ1αβα−1 admit only a finite number of Burau traces.

Now complete ẽ = ẽ1 :=−(1−n,1 . . . ,1) = (n−1,n−2, . . . ,1)∗ to a basis of C
n−1 by ẽi = (0, . . . ,0,1

i
,0, . . . ,0)∗ for

i = 2, . . . ,n−1. Set

(x1, . . . ,xn−1)∗∗ =
n−1

∑
i=1

xiẽi .

Then in the basis {ẽi} we have for β ∈ B2,n the shape

ψ(β) =















1 0 · · · 0

0
... ψ′(β′)

0















, (11)

where ψ′ is the reduced Burau representation of Bn−1 and β′ ∈Bn−1 is obtained from β by removing the left (isolated)
strand. We can assume (up to replacing β′ with some of its subbraids) that ψ′(β′) is not scalar. Similarly let α′ be the
image of α under the isomorphism B2,n → Bn−1.

Now by [33], for |t| = 1 and t close to 1, ψ′ is conjugate to a U(n−2) representation. So ψ′
u = (−t)−[ . ]/(n−2) ·ψ′ is

a SU(n−2) representation.

First note that B2,n is generated by two elements γ = σ2 and δ = σ2 . . .σn−1, i.e., B2,n = 〈γ,δ〉.

Lemma 3 B′ := 〈ψ′
u(γ′),ψ′

u(δ′)〉 is dense in SU(n−2) for |t| = 1 and t close to 1 but not a root of unity, and n ≥ 5.

Proof. For t = 1 one can determine the invariant subspaces of ψ(γ) and ψ(δ) by going back from the ordinary
(reduced) to the full Burau representation. Then ψ̃ is just the permutation homomorphism. One sees immediately
from (10) that the subspace Ẽ1 generated by −(1− n,1 . . . ,1) = (n− 1,n− 2, . . . ,1)∗ = ẽ1 is a common invariant
subspace of γ,δ for any t. By lemma 2, it is the only such subspace for t = 1 (up to orthogonal complement).
Invariant subspaces depend continuously on t, and their coincidence is a closed condition. So when t is close
to 1, then Ẽ1 remains the only common invariant subspace. This means that B′ is not contained in a subgroup
S(U(m)×U(n−2−m)), i.e. its (unitary) representation is irreducible. By Cartan’s work (see the proof of proposition
1) the closure B′ of this group B′ is therefore semisimple.

Let B′
C

be the complex group that corresponds, in the terms of §2.1, to the identity connected component B′
0 of

the closure B′ of B′. This complex group B′
C

is linear reductive, because B′, and so B′
0, is compact. Also, B′

C
is

semisimple, because B′, and hence B′
0, is.

Note that the representation of B′ is faithful per sé, because we consider B′ to be the subgroup included in Aut(Cn−2).
The complexification procedure is compatible with this inclusion, i.e. the representation of the complex group is
still faithful, since the real group is compact. If B′

C
contains a commutative Lie subgroup of dimension n− 3, by

propositions 1 and 2, we could then conclude that B′
C

= SL(n− 2,C), and so (by dimension reasons) that B′ =
〈ψ′

u(γ′),ψ′
u(δ′)〉 must be dense in SU(n−2). We show equivalently that B′ contains an (n−3)-dimensional torus.

Observe that the full twist braids (σ1 . . .σk−1)
k on the leftmost k = 2, . . . ,n− 2 strands commute. It is not hard to

see that the eigenvalues of their (reduced, but unnormalized w.r.t. determinant 1 or unitarity) Burau matrices are
k−1 copies of a certain (rational) power of t, that correspond to eigenspaces which are in the span of the first k−1
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coordinate vectors, and n− k − 1 copies of 1. When choosing t not to be a root of unity, we can thus conclude
that these n−3 elements generate (together) a free commutative group, with the infinite cyclic subgroups generated
by the elements (alone) being dense in a circle. Thus the (n− 2-dimensional) representation contains (also after
normalizing) an (n−3)-dimensional torus, and we are done with lemma 3. 2

So {ψ′
u(αβα−1)′ : α ∈ B2,n } is dense in a conjugacy class in SU(n−2). Now for t = 1,

ψ(σ1)(ẽ1) = −(1,1−n,1, . . . ,1) = (−1,n−2,n−3, . . . ,1)∗ =

(

− 1
n−1

,
n

n−1
· (n−2), . . . ,

n
n−1

·1
)

∗∗
,

ψ(σ1)(ẽ2) = (1,0,−1,0, . . . ,0) = (1,1,0, . . . ,0)∗ =

(

1
n−1

,
1

n−1
,−n−3

n−1
,−n−4

n−1
, . . . ,− 1

n−1

)

∗∗
,

ψ(σ1)(ẽi) = ẽi for i = 3, . . . ,n−1 .

Since for t = 1 Squier’s form is just the standard one, to get ψ conjugated within SU(n−1), we should normalize ẽi.
Let ēi := ẽi/||ẽi||. We have ||ẽi|| =

√
2 for i > 1 and ||ẽ1|| =

√

n(n−1). So with η =
√

2
n(n−1) , we have in the basis

{ēi}

ψ(σ1) =















− 1
n−1

η
n−1 0 · · · 0

nη
n−1 · (n−2) 1

n−1 0 · · · 0
nη

n−1 · (n−3) − n−3
n−1 1 0

...
...

. . .
nη

n−1 − 1
n−1 0 1















. (12)

(Note that (11) remains unchanged when switching between the bases {ẽi} and {ēi}.)

Now SU(n−2) is connected and {ψ′
u(α′) : α ∈ B2,n } is dense therein. Since tr(ψ(σ1αβα−1)) is continuous in α

and must take only a finite number of values, it is constant. This would mean that the coefficients of the matrices
{ψ′(α′)ψ′(β′)ψ′(α′−1)} satisfy some linear relation.

Since the minor of the matrix in (12) obtained by deleting the first row and column is not a scalar matrix (multiple of
Idn−2) one sees that for t = 1 this linear relation is (non-trivial and) not a trace condition. (A trace condition is meant
to be here a linear condition that involves only diagonal entries, and all of them with the same coefficient.) In other
words,

tr

















1 0 · · ·0

0...
0

M









· ψ(σ1)









is not determined by trM. Note that we did not make an effort to find a basis such that (11) becomes a unitary matrix.
But a linear condition on M that comes from tr(AMA−1) for any A ∈ SL(n,C) is again just the trace.

So the linear condition resulting from tr(ψ(σ1αβα−1)) on ψ′(α′β′α′−1) will not be a trace condition either, for t = 1.
Then the same holds for t close to 1 by continuity. However, by proposition 3, such a condition cannot be satisfied
on the conjugacy class of ψ′(β′). This is a contradiction, and completes the proof of theorem 3. 2

Proof of theorem 4. This is essentially contained in lemma 3. It shows that the projection U(n−1) → SU(n−1)
is surjective on ψn(Bn) for n > 3. This projection is of codimension one, and by incorporating the full twist braid
of all strands into the commuting family in the proof of lemma 3, we see that ψn(Bn) contains a torus of a higher
dimension than (and so cannot have connected component of the identity isomorphic to) SU(n−1). 2

4. Alternating links

In many situations, it is more useful to move from (conditions on) braid representations to intrinsic properties of
links. In that sense, we will handle the case of alternating links from the point of view of theorems 2 and 3.

Let b(L) be the braid index of L, i.e. the smallest n with some β∈Bn, such that L = β̂. With the increasing importance
braids gained in link theory, mainly through the work of Jones [15], the study of this invariant gradually expanded.
See for example [27]. The main aim of this section is to prove
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Theorem 6 Let L be an alternating link, which is not a (2,k)-torus link, or a trivial split link (that is, unlink, of any
number of components). Then L admits for each n > b(L) infinitely many conjugacy classes of braid representations
of n strands.

The exclusion of the (2,k)-torus links is obviously necessary. Similarly, it follows from the work of Birman and
Menasco [5] (see the proof of Theorem 1, p. 604, therein) that a trivial split link of n components has no non-trivial
minimal (i.e. n-strand) braid representation. So at least our construction in theorem 3 can certainly not apply.

In this section, we will use the symbol ∆ to denote the (1-variable) Alexander polynomial. It is an invariant of links
with values in Z[t±1/2]. We make use of the properties of the Alexander polynomial of alternating links proved by
Murasugi [28, 29], and its relation to the Burau matrix (see sections 2 and 7 of [15]; here ‘ .

=’ denotes equality up to
units in Z[t±1/2]):

1− tn

1− t
∆ (β̂)

.
= det(Idn−1 −ψn−1(β)) . (13)

We normalize ∆ so that ∆ (t) =±∆ (1/t). By maxdeg ∆ we mean the largest number (half-integer) p such that ∆ has a
non-zero coefficient in t p. This coefficient is called the leading coefficient. A monic polynomial is one with leading
coefficient ±1.

Let us first record a lemma that has also some independent meaning.

Lemma 4 Let L be a link of n components and braid index b(L) > 2. Then L has infinitely many conjugacy classes
of braid representations of (a fixed number of) more than b(L) strands, unless L satisfies the following 3 properties:

(a) b(L) = n, which in particular implies that all components of L are unknotted,

(b) all pairs of components have the same linking number, say k, and

(c) L has the same Alexander polynomial as the (n,kn) torus link T (n,kn),

∆ (T (n,kn))
.
=

(tnk −1)n−1(1− t)
1− tn . (14)

Proof. The first two conditions follow directly from theorem 2. So we show the third condition.

Let β be a minimal strand braid representation for L. Excluding cases theorems 2 and 3 apply on, we assume that
all components of L are unknotted and all linking numbers are equal to k. Also β is a pure braid, so b(L) = n is the
number of components of L, and ψ(β) is scalar, as well as ψ(β′) is for all subbraids β′ of β.

Now k determines the exponent sum [β] = n(n−1)k of β, and since ψ(β) is scalar, also ψ(β) up to a root ω of unity.
By a continuity argument, ω must be constant in t, and setting t = 1 we find that ω = 1. (See also proof of lemma
9.3 in [15].) So k determines ψ(β), and hence the Alexander polynomial ∆ (L) by (13).

Since the (n,kn) torus link T (n,kn) has an obvious braid representation

β0 = (σ1 . . .σn−1)
nk , (15)

with the same n and k, it follows that L must have the same Alexander polynomial as T (n,kn). With the preceding
argument about ω one easily verifies that ψ(β0) = tnkIdn−1, so (14) follows from (13). 2

Proof of theorem 6. We consider k and β as in the previous proof.

If k = 0, then by lemma 4, ∆ = 0, and so by [29], L is split. We can recur this case to the non-split one, by arguing
with some split component L′ of L with b(L′) > 2 instead. By Menasco [23], L′ is alternating. It must still have all
linking numbers vanishing, and (since β is pure) is the closure of a subbraid β′ of β, which has also scalar Burau
matrix by assumption. So by the proof of lemma 4 we would obtain a contradiction. Arguing with L′ fails if all
L′ are (2, li)-torus links. However, then linking number equality in L implies that all even li are 0, and triviality of
components that all odd li are ±1, so L is a trivial split link, which we excluded.
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So we can assume k 6= 0, and so w.l.o.g. up to mirroring that k > 0. Then, using the fact that T (n,kn) has a positive
braid representation (15) of exponent sum n(n−1)k and n strands, we obtain easily that

2maxdeg ∆ (L) = 2maxdeg ∆ (T (n,kn)) = n(n−1)k−n+1 .

Moreover, looking at (14) (or using that a non-split link with a positive braid representation is fibered), we see that
∆ (T (n,kn)) = ∆ (L) is monic, and so by [28], L is also fibered. Now by [27], any reduced alternating diagram D of L
has s(D) = b(L) = n Seifert circles, and so by [29], it has crossing number

c(D) = 2maxdeg ∆ (L)+ s(D)−1 = n(n−1)k .

Now we know that all components of L have linking number k, so if c(D) = n(n−1)k, all the crossings in D must be
positive. So D is a special alternating diagram, and L a fibered special alternating link. Such a link is a connected sum
of (2, li)-torus links (see [36]). Since all components are unknotted, we can assume that all li are even (and positive).
But then again equality of linking numbers implies that there can be only one (2, l)-torus link in this connected sum.
So we are done. 2

5. Non-conjugate minimal braids

Of course, one could try to apply the proof of theorem 3 to more general situations. It makes, in particular, some sense
to look at minimal (strand number) braid representations. Note that the only point where stabilization entered into the
proof of theorem 3 was in the matrix (12), and we had to verify that for β∈B2,n the map ψn−1(β′) 7→ tr[ψn(β)ψn(σ1)]
is not a trace on ψn−1(β′). Then one can obtain more general statements. To formulate the following one, chosen still
more with regard to simplicity rather than maximality, let Bk,l ⊂ Bn for 1 ≤ k < l ≤ n be the subgroup (isomorphic
to Bl−k+1) 〈σk, . . . ,σl−1〉 of braids that act only on strands k, . . . , l.

Theorem 7 Let β ∈ Bk,n ' Bn−k+1 for n− k ≥ 3, and γ ∈ Bn. Assume that γ permutes the last n− k + 1 strands
non-trivially (that is, the permutation in Sn associated to γ does not fix all of k, . . . ,n) and ψn−k+1(β) is not a scalar.
Then infinitely many braids in {αβα−1γ : α ∈ Bk,n } are pairwise non-conjugate.

Proof. Define a basis B ′ = {ei}n−1
i=0 on Cn by

e0 = (1, . . . ,1),

ei = (0, . . . , 0
i−1

, i−n
i

,1, . . . ,1) for i = 1, . . . ,k−1

e j = (0, . . . ,0,1
j
,−1

j +1
,0, . . . ,0) for j = k, . . . ,n−1

Let B = B ′ \{e0}, X = {ek, . . . ,en−1} and X = LX , where L is the (complex-)linear hull.

It is easy to see that if a coordinate permutation on Cn acts as a scalar on X , then (for n− k ≥ 2) the permutation
fixes the last n− k+ 1 elements/strands. So by assumption, ψ̃(γ) does not act as a scalar on X for t = 1. So, when
(ignoring the invariant space Le0 and) writing ψn(γ) in the basis B , the minor of the last n−k+1 rows and columns
is not a scalar matrix. The same is then true when orthonormalizing X (which is already orthogonal to B ′ \X ). Then
the condition on M ∈ SU(n− k) coming from

tr









Idk−1 0

0 M



 · ψn(γ)





is not a trace condition, for t = 1. The rest of the proof is as for theorem 3. 2

Corollary 2 Let L be a composite link of braid index n ≥ 6, which factors as L1#L2 in such a way, that both com-
ponents of L1,2 the connected sum is perfomed at are knotted (e.g. any composite knot L will do). Then L admits
infinitely many non-conjugate minimal representations.
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Proof. If β1,2 ∈ Bn1,2 are braids, then we can form a composite braid β1#β2 ∈ Bn for n = n1 +n2 −1 by identifying
Bn1 with B1,n1 ⊂Bn and Bn2 with Bn1,n, and taking the product β1β2 (in Bn). By [7], if β1,2 are minimal representations
of L1,2, then β = β1#β2 is a minimal representation of L. Now by assumption neither of β1,2 is pure, and neither fixes
the position of the strand n1 in β. Moreover, n ≥ 6 implies that one of n1,2, say n1, is at least 4. So we can consider
αβ1α−1#β2 for all α ∈ Bn1 . 2

Links of b = 4,5 are again a tribute to leaving out stabilized 3-braids in theorem 3, and can be presumably handled
by a bit of extra arguments. On the other hand, the statement of the corollary could apply also to further composite
links (though it is slightly more technical to formulate).

The construction in theorem 7 also applies to the more general instance of Birman-Menasco’s [7] exchange move.
It is a move that underlies the switch between conjugacy classes with the same closure. Such move can indeed be
described as βγ 7→ αβα−1γ for suitably chosen α,β,γ. So one could apply theorem 7 for many particular exchange
moves.

For example let β ∈ Bk,n and γ = δγ′δ−1 with γ′ ∈ B1,l for some l > k, and

δ ∈
〈

σl′ . . .σk′+1σ2
k′σk′+1 . . .σl′ : l′ ≥ l ≥ k′ ≥ k

〉

,

and consider for α ∈ Bl+1,n the braids βα−1γα. Then an exchange move cancels δ±1 in γ, and α±1 cancel then by
braid isotopy.

It is not hard to choose β and γ so that βγ is a minimal representation; for example make βγ alternating and use
Murasugi’s result [27], or positive, with all syllables having exponent sum ≥ 2 [31], or make β and γ to be products
of conjugates of σ±p

1 for a fixed odd p ≥ 3 (see [15, corollary 15.5]). We do not know, however, how to prove
irreducibility of non-minimal representations, except the special argument of [25] for 4 strands.

Fiedler [11] uses a quantity, called defect (see proposition 5 in op.cit.), related to the conjugacy invariant he defines, to
detect when exchange moves alter the conjugacy class. Since Morton shows [26] that Fiedler’s invariant is determined
by the Burau matrix, one should expect our criterion to be more general. For example, Fiedler’s defect vanishes when
β is conjugate to its mirror image, but in general such β will still have non-scalar Burau matrix.

6. Related questions and problems

The last section describes some quest for generalizations of the preceding constructions, and points to some occurring
problems.

Remark 1 As noted in [16] (see the appendix), a result of Long [21] implies that, if (because) ψ is not faithful for
n = 4 (resp. n ≥ 5), its kernel contains Brunnian pure braids, i.e., pure braids all of whose proper subbraids are trivial
(see e.g. [34]). So even studying the Burau representation on all subbraids is not powerful enough to allow us to deal
with all non-central braids β in the sense of theorems 2 and 3.

On the other hand, we do not know if there are braids which are not covered by theorem 3 but by theorem 2.

Question 1 Are the braids (of 4 or more strands) such that all their subbraids of 4 or more strands have scalar Burau
matrix, but some 3-strand subbraid has not?

The 6- and 7-braids of Long-Paton [22] and the 5- and 6-braids of Bigelow (see [3]) with trivial Burau matrix have
all a 4-strand subbraid with non-scalar Burau matrix.

Now, using the (faithful) Krammer representation Vn of Bn [17, 4], one could hope to deal with the missing few
pure braids in theorem 2 and 3. Let p = dimVn. So it is interesting also what is known on the above arguments for
SL(p) := SL(p,C). For a non-compact Lie group, however, many new problems seem to enter. One of them relates
to density in a Lie group, as in lemma 3.

Question 2 When do two matrices A,B in SL(p,C) generate a dense (or Zariski dense) subgroup? To have no
common invariant Cp subspace is obviously a required condition. When combined with what other conditions is it
sufficient?
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There is a criterion of Chevalley, see proposition 3.1 (b), p. 40, of [9], which can be used to establish denseness.
Unfortunately, it requires to check that a set of generators do not leave invariant any elements in arbitrary tensor
products of the defining representation of SL(p), which are not left invariant by the whole SL(p). However, since
SL(p) is not compact, even this is not enough.

A Borel subgroup of SL(p) fixes the same tensors as the whole SL(p). (See remark 3.2 (a), p. 41, in [9].) So even if
these generators fix no more tensors than SL(p), then the best one could prove is that (the Vn image of) their generated
group is dense in a Borel subgroup. (The Borel subgroup coincides with the full Lie group for compact Lie groups,
but not for SL(p).)

The braids of theorems 2 and 3 can be described alternatively in the following way. Here and below, ∆ 2 = (σ1 . . .σn−1)
n

is the full twist braid, the generator of the center of Bn. (It has a square root ∆ , the half-twist, which however will not
occur itself here. This notation is a deviation from section 4, where ∆ was used for the Alexander polynomial.)

Lemma 5 Let β ∈ Bn be a pure braid. Then ψ(β′) = xβ′ · Id is a scalar for all subbraids β′ of β (incl. β′ = β) ⇐⇒
β = ∆ 2l · β̃, where β̃ and all its subbraids have trivial Burau matrix.

Proof. Since ψ is irreducible, the center of Bn must be mapped to scalars by Schur’s lemma (see [15, sections 3 and
9, and note 5.7]). So ⇐ follows.

Now to prove is ⇒. First look at n = 3. Using the argument in the proof of lemma 4 that ω = 1, we find that
ψ(β) = t [β]/2Id. Thus there exist l,m ∈ Z such that ψ(β)l = ψ(∆ 2)m. Since ψ3 is faithful, βl = ∆ 2m. This means in
particular that all strand linking numbers in β are equal, say k. Then β̇ = ∆ −2kβ is a braid with scalar ψ(β̇) = xβ̇Id, all

strand linking numbers 0, so [β̇] = 0. Now det(ψ(β)) = 1 = xn−1
β̇

. So xβ̇(t) is a continuous function in t, taking values
in (a discrete set of) (n−1)-st roots of unity. Then we can evaluate it by setting t = 1. In that case ψ is essentially a
permutation representation, and since β̇ is pure, ψβ̇(1) = Id. So xβ̇ = 1, and ψ(β̇) = Id independently on t. Since ψ3

is faithful, β̇ = Id, so β = ∆ 2k.

Now let n > 3. A look at 3 strand subbraids and the previous argument show, that all linking numbers between
strands of β are equal, say m. Then β̇ = ∆ −2mβ and all its subbraids have scalar ψ, and all strand linking numbers are
0, so [β̇] = 0. Then as above we see ψ(β̇) = Id, and the same holds for all subbraids of β̇. 2

Remark 2 I do not know if ψ(β) being scalar (but without assuming this condition on its subbraids) implies that

β = ∆ 2l · β̃, where ψ(β̃) = Id. (16)

It is certainly true for n = 3.

Since if ψ(β) is scalar, we always have ψ(β)l = ψ(∆ 2)m for proper l and m, the argument in the proof of lemma 5 will
allow us to conclude (16) if ∆ −2mβl ∈ Kerψ has all its strand linking numbers equal (and then equal to 0), because
then the same property is enjoyed by β. This leads to the following question:

Question 3 Has every element in Kerψ all strand linking numbers equal to 0?

The 6- and 7-braids of Long-Paton and the 5- and 6-braids of Bigelow with trivial Burau matrix have all their strand
linking numbers equal to 0 (i.e. all 2-strand subbraids are trivial), though all they have non-trivial 3-strand subbraids.

Note that for every β in the proof of lemma 5, the braid β̃ = βn(n−1)/2 ∆ −[β] would have scalar ψ and exponent sum
0. So by the previous argument we have β̃ ∈ Kerψ, and so property (16) always holds for βn(n−1)/2. The following
related question becomes of some interest:

Question 4 Are there elements β in Kerψ which have no (non-trivial) roots, i.e. β 6= αl for any l > 1 and α ∈ Bn?
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Appendix A. Proof of theorem 2

The aim of this appendix is to prove theorem 2, which we restate:

Theorem 2 Assume there exists an n-strand braid β having a link L as closure, n ≥ 3, and β is contained in the below
classes:

1. a non-pure braid, or

2. a pure braid that contains a non-central 3-strand braid as a sub-braid.

Then there exists an infinite sequence of pairwise non-conjugate braids of n+1 strands realizing L.

The proof partly uses Shinjo’s [32] method.

Definition 1 For a braid β, we define the axis (addition) link L(β) of β as the link consisting of the closure of β and
its axis.

As conjugate braids have the same axis link, for a proof of non-conjugacy we will study invariants of the axis link. As
such an invariant we will employ the Conway polynomial ∇, which takes values in Z[z] and is given by the relation

∇(L+)−∇(L−) = z∇(L0) (17)

for a skein triple L±,0 and the value 1 on the unknot.

To obtain non-conjugate braids, we conjugate again β by certain braids αn, and obtain the desired family {βn} by
stabilization. Herein the difficulty is the proper choice of αn and the non-conjugacy proof of βn. We already remarked
that if β is a central braid, such a construction cannot apply, but that further problematic braids β occur. In [34, 37]
Stanford and the author constructed Brunnian braids. Brunnian means that the braid is itself non-trivial, but removing
any single strand gives a trivial braid. With σk being the k-th Artin standard generator, the iterated commutator

[σ±2
1 , [σ±2

2 , [. . . , [σ±2
n−1,σ

±2
n ] . . .]]]

has this property. Multiplying such a braid with a central braid, we see that there exist non-central braids neither
contained in the classes specified in theorem 2. Therefore, by just studying subbraids, we will likely not be able to
arrive at the maximal possible validity scope of the theorem.

Proof of theorem 2. If the closure link L has a component K ′, which is the closure of a subbraid β′ of β of at least
3 strands, we consider its axis link L(β′). We can move properly the strands of K ′ within β to the right (see lemma
2.3 of [32]) and perform the construction of [32], and obtain a family of links that contain infinitely many sublinks.
Then the family is infinite itself.

From now on, we assume the components of L are obtained all as closures of 1 or 2 strand subbraids of β. As β is
not pure, we can choose a component K of L of a 2 strand subbraid γ, and as β has at least 3 strands, we can find also
another component K ′ of a subbraid γ′. Now we ignore components except K, K ′ and the axis of β. Performing with
K the previous construction of [32], we create a sequence of braids {βi}. That is, we set

βi = σ−i
n−1σnσi

n−1β , (18)

choosing the crossings corresponding to the σ±1
n−1 surrounding the σn to contain two strands of K (see lemma 2.3 of

[32]). Then βi contain the subbraids γi corresponding to K, and βi = γi ∪ γ′.

Next we recall the formula, written down by Hoste, expressing the lowest coefficient of the Conway polynomial in
terms of component linking numbers.
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Theorem 8 (Hoste [19]) Let L be a p-component link and number the components by 1, . . . , p. Let the linking
number between components k and m be denoted by lk,m. Then the coefficient [∇]p−1 of the Conway polynomial in
degree p−1 is

[∇]p−1(L) = ∑
T

∏
(k,m)∈T

lk,m . (19)

Herein the sum ranges over spanning trees T of the complete graph G on the vertex set {1, . . . , p}, and (k,m) denotes
the edge in G connecting the k-th and m-th vertex.

Next, we fix i. Let L0 be the axis link of the braid obtained from βi+1 by deleting the σ−1
n−1 occurring in (18) directly

before σn, resp. L′
0 the axis link of the braid obtained from βi by deleting the σn−1 directly after σn. The number

of components of L(βi) and L(βi+1) is 3, that of L0, L′
0 becomes 4. Using the skein relation (17), we express the

difference of the degree-4-coefficient of the Conway polynomials of L(βi) and L(βi+1) by the degree-3-coefficients
of L0, L′

0 (see lemma 2.2 of [32]):

[∇]4L(βi)− [∇]4L(βi) = [∇]3(L0)− [∇]3(L′
0) ,

and calculate the right hand-side by Hoste’s formula. In L0,L′
0, the component K breaks apart into two components

K1,2, K ′
1,2, and the linking numbers with the axes K3,K′

3 satisfy

lk(K1,K2) = lk(K ′
1,K

′
2) , lk(K1,K3) = lk(K ′

1,K
′
3)+1 , and lk(K2,K3) = lk(K ′

2,K
′
3)−1 . (20)

Thus, if n is the number of strands of K, and we write L∗ = K1 ∪K2 ∪K3, L′
∗ = K ′

1 ∪K′
2 ∪K′

3, then

[∇]2(L∗) − [∇]2(L′
∗) = lk(K2,K3)− lk(K1,K3)+1 = n−2 . (21)

In the previous case of [32], assuming n > 2, the degree-3-coefficients of the Conway polynomials of the axis links
of γi form a non-trivial linear progression, and we conclude that the axis links are mutually distinct.

Presently, n = 2, so to arrive at the same situation, we take into account the other component K ′, and consider βi
instead of γi. K ′ becomes in L0,L′

0 a 4-th component K0,K′
0. The equalities (20) still hold, in addition for i = 1,2,3

we have lk(K0,Ki) = lk(K ′
0,K

′
i ).

The 4-th component adds 13 terms to the sum in (19), but the calculation of [∇]3(L0) − [∇]3(L′
0) is not too difficult.

We break the sum into 4 parts. Into the first partial sum Σ 0 enter the terms corresponding to trees T containing neither
(1,3) nor (2,3), into the 4-th sum Σ 3 the trees containing both (1,3) and (2,3), resp. the second and third sums Σ 1
and Σ 2 range over trees containing only (1,3) resp. (2,3).

Σ 0(L0) = Σ 0(L′
0)

is trivial, and because Σ 3(L0)− Σ 3(L′
0) is a multiple of the term in (21) and the number of strands of γ is n = 2,

that difference becomes also 0. Using (20), we can calculate Σ 1,2(L0)− Σ 1,2(L′
0) directly. The pairs of edges that

complete (1,3) and (2,3) to a spanning tree are largely the same, and their contributions to Σ 1,2 cancel, and we obtain

Σ 1(L0)+ Σ 2(L0)− Σ 1(L′
0)− Σ 2(L′

0) = lk(K3,K0)lk(K0,K2)− lk(K3,K0)lk(K0,K1) .

As lk(K3,K0) ∈ {1,2} is not 0, the remaining troublesome case is lk(K0,K2) = lk(K0,K1). However, in that case,
we make the right strand of β turn m times around the other strands, that is, we can conjugate by the m-th power of
σ−1

n−1 . . .σ−1
1 σ−1

1 . . . σ−1
n−1. When creating L0 and L′

0, the rotations added before the point of stabilization enter into
lk(K0,K2), those added after it (of opposite sign) enter into lk(K0,K1), so we can choose m large enough the way
that lk(K0,K2) = lk(K0,K1) does not hold. The proof of the claim corresponding to the first class in the theorem is
completed.

The second claim is a direct consequence of the following lemma.

Lemma 6 If β ∈ B3 is not central, we can choose a braid α ∈ B3 so that the stabilizations of αnβα−n contain an
infinite family of non-conjugate 4-braids.
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Proof. The lemma’s proof uses the Burau representation. The Burau representation ψ of B3 is a homomorphism into
the algebra of 2×2 matrices with entries in Z[t, t−1], and can be defined as follows:

ψ(σ1) =

[

−t 0
−1 1

]

, ψ(σ2) =

[

1 −t
0 −t

]

.

It is known that the Burau representation is faithful in the case of B3.

As β is not central, we find an element α not commuting with β. Assume αnβα−nσ±1
3 ∈ B4 decompose only into a

finite number of conjugacy classes. We use the homomorphism B4 → B3 sending σ1,2,3 to σ1,2,1. Then the images
αnβα−nσ±1

1 ∈ B3 are also contained in finitely many conjugacy classes. Let βn = αnβα−n. Then, after a possible
index shift, we can assume w.l.o.g. that

trψ(βn) = trψ(β) , trψ(βnσ1) = trψ(βσ1) , trψ(βnσ−1
1 ) = trψ(βσ−1

1 ) (22)

hold simultaneously for infinitely many values of the natural number n. (tr denotes the matrix trace.) Let ∆ denote
σ1σ2σ1 (the square root of the center generator). If we replace β by ∆ β∆ −1, in (22) we can exchange σ1 and σ2,
add two more conditions, and together with (22) obtain 5 equations. These equations pose 3 linearly independent
conditions on ψ(βn). Thus the difference matrix ψ(βn)−ψ(β) is determined by its upper left entry z. Besides,

det(ψ(βn)) = det(ψ(β)) ,

so we obtain a separate condition on z. This is a quadratic equation. One can directly verify that this equation
does not degenerate for general ψ(β) if t 6= e±2πi/3, and so it has only two roots. Then we conclude that the set
{ψ(βn)} must be finite. To obtain a contradiction, and with this to complete the proof, we use the faithfulness of the
representation, and show that, for proper choice of α, the set {βn} becomes infinite. This fact is well-known, but we
include two independent simple arguments.

We use Garside’s normal form for braid words (see [14, §2.2,2.3]). Express (uniquely) β in the form ∆ kβ′. Here k ∈Z

and ∆ is the previously occurred square root of the center generator. The word β′ is characterized by two conditions.
First, it is a positive braid word, that is, it contains only positive powers of σ1 and σ2. Moreover, β′ contains no
∆ = σ1σ2σ1 = σ2σ1σ2 as a subword. (Garside’s condition to be prime to ∆ reduces to this for a 3-braid.) We call
k = p(β) the power and β′ the base of β. As β is pure and not central, β′ is not trivial. If β′ contains both σ1 and
σ2, we choose α to be the last letter in β′. Now βi = βi′ is equivalent to αi′−iβ = βαi′−i. As σi commute with ∆ 2k,
we can easily compare the normal forms of αiβ and βαi and see that they do not coincide at least for large i. (It is
possible that p(αiβ) > p(β), while always p(βαi) = p(β).) So we conclude the desired property. If β′ contains only
one letter of σ1 and σ2, we choose α to be the other letter, and can argue similarly.

An alternative argument uses Artin’s “combed” normal form [2] for pure braids. For 1 ≤ i < j ≤ 3, let [i j] be
the “tooth” of the comb, turning strand i clockwise once around strands i + 1, . . . , j. So [12] = σ2

1, [23] = σ2
2 and

[13] = σ1σ2
2σ1. Then there is a unique expression β = β′β′′, where β′ = [23]k and β′′ ∈< [13], [12] > , latter being

the group freely generated by [13] and [12]. If β′′ contains [12] (i.e. is not a power of [13]), then choose α = [13].
Since [13] and [23] commute, we can compare the normal forms of αiβ and βαi and immediately see that they do
not coincide. As βi = βi′ is equivalent to αi′−iβ = βαi′−i, we conclude the desired property. So let β′′ = [13]l . Then
β′ = [23]k with l 6= k (because for l = k we have β = ∆ 2k). Then let α = [12]. We have [12][23] = [23][13][12][13]−1.
So

αβ = [12][23]k[13]l = [23]k[13]k[12][13]l−k ,

and inductively
αiβ = [12]i[23]k[13]l = [23]k[13]k[12]i[13]l−k .

By comparing the subwords of αiβ and βαi in [13] and [12], we see that they differ (because k 6= l). 2
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