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1 Introduction

1.1

By a global field, we mean either an algebraic number field of finite degree, or an algebraic
function field of one variable over a finite field. For each global field K, we shall construct
two basic functions Mσ(z) = M

(K)
σ (z) and M̃σ(z) = M̃

(K)
σ (z) of z ∈ C, each parametrized

by σ > 1/2, and in some special cases establish explicit relations with the density measure
for the distribution of values of L′(χ, s)/L(χ, s) on C. Here, s is fixed, σ = Re(s), and χ
runs over a suitable infinite family of Dirichlet characters on K. (Unless the L-functions
L(χ, s) contain a local ℘-factor for which {χ(℘)}χ is not uniformly distributed on the unit
circle C1, the distribution measure basically depends only on σ).

Symbolical relations among them, under optimal circumstances are,

(1.1.1) Mσ(z) = Avgχδz

(
L′(χ, s)

L(χ, s)

)
, M̃σ(z) = Avgχψz

(
L′(χ, s)

L(χ, s)

)
.

Here, Avgχ means a certain weighted average, ψz(w) = exp(i.Re(z̄w)) is the additive
character C 7→ C1 parametrized by z, and δz(w)|dw| is the Dirac delta measure on C with
support at z, where |dw| denotes the self-dual Haar measure on C with respect to the self-
dual pairing of C defined by ψz(w) = ψw(z); namely, |dw| = (2π)−1dxdy for w = x + iy.
In other words, the first formula of (1.1.1) means that

(1.1.2)

∫

C
Mσ(w)Φ(w)|dw| = AvgχΦ

(
L′(χ, s)

L(χ, s)

)

holds for any test function Φ on C, and the second formula is its special case where Φ = ψz.
The case of polynomial functions Φ(w) = w̄a.wb will also appear as the coefficient of zaz̄b

in the (z, z̄)-expansion of M̃σ(z) at z = 0.

1.2

The function Mσ(z) to be constructed is real valued, ≥ 0, and belongs to C∞, while M̃σ(z)
is complex-valued, |M̃σ(z)| ≤ 1, and real-analytic. They are the Fourier transforms of
each other in the sense that

(1.2.1) M̃σ(z) =

∫

C
Mσ(w)ψz(w)|dw|, Mσ(z) =

∫

C
M̃σ(w)ψ−z(w)|dw|.

Both are continuous also in σ, and M̃σ(z) is even real-analytic in σ. They have quite
interesting arithmetic and analytic properties. M̃σ(z) has a convergent Euler product
expansion each of whose ℘-factor can be expressed in terms of Bessel functions, and
correspondingly, Mσ(z) has a convolution Euler product expansion, each of whose ℘-
factor being a certain hyperfunction. Also, M̃σ(z) has an everywhere convergent power
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series expansion (in z, z̄) whose coefficients are some arithmetic Dirichlet series in σ.
Both decay rapidly as |z| 7→ ∞. Thus, even when 1/2 < σ < 1 in the number field
case, where we do not know much about the zeros of L(χ, s) and hence about the poles of
L′(χ, s)/L(χ, s), and hence about the distribution of L′(χ, s)/L(χ, s) near z = ∞, still, the
corresponding function Mσ(z) can be constructed independently and can be proved to be
rapidly decreasing with |z|. It seems that these functions Mσ(z), M̃σ(z) are interesting in
themselves, and also that one can hope for applications to the distribution of L′/L-values
after further studies of their analytic properties.

The construction and study of Mσ(z) are in §2, and those of M̃σ(z), in §3 (Theorems
1 ∼ 5).

1.3

The main idea is as follows. Fix s ∈ C, with σ = Re(s).

[Local constructions] Let σ > 0, and P be a finite set of non-archimedean primes
of K. Put

(1.3.1) TP =
∏
℘∈P

C1

(a torus), and let gσ,P : TP 7−→ C be defined by

(1.3.2) gσ,P (t) =
∑
℘∈P

gσ,℘(t℘) =
∑
℘∈P

t℘ log N(℘)

t℘ −N(℘)σ

(t = (t℘) ∈ TP ). For a Dirichlet character χ on K, let

(1.3.3) LP (χ, s) =
∏
℘∈P

(1− χ(℘)N(℘)−s)−1

be the partial L-function. If the conductor fχ is coprime with P , then

(1.3.4)
L′P (χ, s)

LP (χ, s)
= gσ,P (χP .N(P )−i.τ ),

where τ = Im(s) and

(1.3.5) χP = (χ(℘))℘, N(P )−i.τ = (N(℘)−i.τ )℘

are points of TP . (Through (1.3.4), we are viewing L′P (χ, s)/LP (χ, s) as a function of χ.)
Now, for each family of χ that we shall consider, all but finitely many χ have conductors
coprime with P and, moreover, {χP}χ for such χ can be shown to be uniformly distributed
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on TP . Therefore, (1.1.1), with LP in place of L, must be given by the corresponding
integrals

(1.3.6) Mσ,P (z) =

∫

TP

δz(gσ,P (t))d?t, M̃σ,P (z) =

∫

TP

ψz(gσ,P (t))d?t.

(d?t: the normalized Haar measure on TP . Note that the contribution of Im(s) is ”averaged
away”.) These already serve as definitions of the local functions Mσ,P (z), M̃σ,P (z). We
thus have

(1.3.7)

∫

C
Mσ,P (w)Φ(w)|dw| = AvgχΦ

(
L′P (χ, s)

LP (χ, s)

)

for any continuous function Φ on C. (Each Mσ,P (z) is compactly supported.) The sum-
mation over ℘ ∈ P in (1.3.2) is translated into ”the basic product expansions”

(1.3.8) Mσ,P (z) = ∗℘∈P Mσ,℘(z), M̃σ,P (z) =
∏
℘∈P

M̃σ,℘(z),

where ∗ denotes the convolution product. Using the simple fact that each gσ,℘ maps C1

to another small circle on C with center cσ,℘ and radius rσ,℘ given by

(1.3.9) cσ,℘ = − log N(℘)

N(℘)2σ − 1
, rσ,℘ =

N(℘)σ log N(℘)

N(℘)2σ − 1
,

we are able to compute each of Mσ,℘(z) and M̃σ,℘(z) explicitly.
Each Mσ,℘(z) is a hyperfunction (Schwartz distribution), but when |P | > 1, Mσ,P (z)

is a function (with values ≥ 0) with compact support, which gets smoother (and the
support larger) as |P | increases. On the other hand, each M̃σ,℘(z) is already a (C-valued)
real-analytic function expressible by Bessel functions, which satisfies |M̃σ,℘(z)| ≤ 1, and
= O((1 + |z|)−1/2).

[Global constructions] Let σ > 1/2, and P = Py = {℘; N(℘) ≤ y}. Then the
key point is that each Mσ,P (z) (resp. M̃σ,P (z)) converges uniformly to a (not-everywhere
vanishing) function Mσ(z) (resp. M̃σ(z)), when y 7→ ∞.

Thus, these are the functions obtained from δz(L
′
P (χ, s)/LP (χ, s)) (resp. ψz(L

′
P (χ, s)/LP (χ, s)))

first by fixing P and averaging over an infinite family of characters χ, and then by letting
y 7→ ∞. This way we can enter the region 1/2 < σ < 1 unconditionally! Since we do not
know, in the number field case with σ < 1, whether the convergence

(1.3.10) L′P (χ, s)/LP (χ, s) 7−→ L′(χ, s)/L(χ, s)

holds (this convergence for all σ > 1/2 would of course imply the Generalized Riemann
Hypothesis), the other approach is blocked by the ”GRH-barrier”.
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Then one asks. How can one connect the averages of the global δz(L
′(χ, s)/L(χ, s))

(resp. ψz(L
′(χ, s)/L(χ, s))) with Mσ(z) (resp. M̃σ(z)) ? When σ > 1, the local relation

(1.3.7) directly passes over to the global relation (1.1.2), because then (1.3.10) not only
converges but moreover the convergence is uniform with respect to the characters χ. Thus,
in this case, the only key point is the local uniformity of distribution of {χP}χ for each
P . The main results for this case will be given in §4, Theorem 6, after having made clear
what family of χ and what weighted average over χ we shall take.

When 1/2 < σ ≤ 1, the same argument does not work, because even in the function
field case where (1.3.10) converges, its speed apparently depends on the size of the norm
of the conductor N(fχ). The main purpose of §5-6 is to overcome this difficulty, at least
partly. We shall prove (§6, Theorem 7) that if σ > 3/4, similar global relations are indeed
valid in the function field case. This will be done by Fourier analysis of the function
ψz(gσ,P (t)) on TP (§5), and a quantitative version of the uniform distribution of {χP}χ

on TP .

1.4

Our main results may be summarized as follows.

Theorem M̃ Let K be any global field, and ζK(s) be its Dedekind zeta function.
(i) For each non-archimedean prime ℘ of K, consider the function of σ > 0 and z ∈ C
defined by the convergent series

(1.4.1) M̃σ,℘(z) = 1 +
∞∑

n=1

Gn(− i
2
z log N(℘))Gn(− i

2
z̄ log N(℘))

N(℘)2σn
,

where i =
√−1 and

(1.4.2) Gn(w) =
n∑

k=1

1

k!

(
n− 1
k − 1

)
wk.

Then

(1.4.3) M̃σ,℘(z) = exp(icσ,℘Re(z))Hσ,℘(z),

with

(1.4.4) Hσ,℘(z) = J0(rσ,℘|z|) + 2
∞∑

n=1

(
i

N(℘)σ

)n

cos(nArg(z))Jn(rσ,℘|z|),

Jn(x) being the Bessel function of order n.
(ii) When σ > 1/2, the Euler product

(1.4.5) M̃σ(z) =
∏
℘

M̃σ,℘(z) = exp

(
i.

ζ ′K(2σ)

ζK(2σ)
Re(z)

) ∏
℘

Hσ,℘(z),
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converges in the following sense. For any compact subset Σ of C, there exists a finite set
SΣ of ℘ such that Hσ,℘(z) and (hence also) M̃σ,℘(z) have no zeros on Σ for ℘ 6∈ SΣ and
that their product over all ℘ 6∈ SΣ converge absolutely to nowhere vanishing functions of
z ∈ Σ. This function M̃σ(z) is real analytic in σ, z, and as a function of z, belongs to Lp

for all 1 ≤ p ≤ ∞. It has an everywhere convergent power series expansion

(1.4.6) M̃σ(z) = 1 +
∞∑

a,b=1

(−i/2)a+bµ(a,b)
σ

zaz̄b

a!b!
,

and a convergent Dirichlet series expansion on σ > 1/2

(1.4.7) M̃σ(z) =
∑

D:integral

λD(z)λD(z̄)

N(D)2σ
,

with positive real constants µ
(a,b)
σ and polynomials λD(z) defined in §3.7. Here,D runs over

all “integral” divisors of K, i.e., the products of non-negative powers of non-archimedean
primes.

Theorem M There exists a unique continuous function Mσ(z) of σ > 1/2 and z such
that

(1.4.8) M̃σ(z) =

∫

C
Mσ(w)ψz(w)|dw|, Mσ(z) =

∫

C
M̃σ(w)ψ−z(w)|dw|.

It is non-negative real valued, C∞ in z, and satisfies

(1.4.9)

∫

C
Mσ(z)|dz| = 1.

As for the connections with L′/L-values, presently, we shall restrict our attention to
the case where K is either the rational number field Q, an imaginary quadratic field, or
a function field of one variable over a finite field (see §4.1 for related discussions). In the
function field case, we assume that K is given together with an “infinite” prime divisor
℘∞ of degree 1 which will be considered “archimedean” and excluded from the ζK , L and
M̃, M Euler factors. Let χ run over all Dirichlet characters on K with prime conductors
fχ satisfying

(1.4.10) χ(℘∞) = 1.

We define the weighted average over such χ by

(1.4.11) AvgχΦ

(
L′(χ, s)

L(χ, s)

)
= lim

m7→∞
MeanN(f)≤m

(
Meanfχ=fΦ

(
L′(χ, s)

L(χ, s)

))
,
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(Φ: any function on C) whenever the limit exists, where Mean means the usual arithmetic
mean.

Theorem L ∼ M Let s ∈ C with σ = Re(s) > 1/2. At least if σ > 1 (K = Q or
imaginary quadratic), or σ > 3/4 (K a function field), then
(i)

(1.4.12) AvgχΦ

(
L′(χ, s)

L(χ, s)

)
=

∫

C
Mσ(z)Φ(z)|dz|

holds for any “mild” test function Φ on C (see Theorems 6,7 for details).
(ii)

(1.4.13) Avgχψz

(
L′(χ, s)

L(χ, s)

)
= M̃σ(z),

(iii)

(1.4.14) AvgχP (a,b)

(
L′(χ, s)

L(χ, s)

)
= (−1)a+bµ(a,b)

σ ,

for the polynomials P (a,b)(w) = w̄awb (a, b ≥ 0).

We expect that Theorem L ∼ M should hold for any σ > 1/2. But even in the function
field case where the Weil’s Riemann Hypothesis is valid, the above restriction σ > 3/4
seems to be the limit of our method (see §6).

We have also left untouched various basic questions related to the functions Mσ(z), M̃σ(z);
for example, their zeros, their values at some special points (such as Mσ(0), Mσ(ζ ′K(2σ)/ζK(2σ))),
determination of the value of

(1.4.15)

∫

C
Mσ(z)2|dz| =

∫

C
|M̃σ(z)|2|dz|,

etc. We hope to be able to discuss these in the near future, together with more applica-
tions.
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2 Constructions of Mσ,P (z) and Mσ(z)

2.1

We fix a global field K. By ℘ we shall denote any non-archimedean prime divisor of K,
and by P any non-empty finite set of such ℘. For y > 1, put

(2.1.1) Py = {℘; N(℘) ≤ y}.
We shall construct, for each P , a function Mσ,P (z) on C parametrized by σ > 0, and then
show that Mσ,Py(z) converges uniformly, as y 7→ ∞, to a function Mσ(z) when σ > 1/2.

As in §1, TP =
∏

℘∈P C1, and gσ,P : TP 7−→ C is defined by

(2.1.2) gσ,P (tP ) =
∑
℘∈P

gσ,℘(t℘), gσ,℘(t℘) =
t℘ log N(℘)

t℘ −N(℘)σ
,

where tP = (t℘)℘∈P .

Theorem 1 Let σ > 0. There exists a unique function Mσ,P (z) of z ∈ C, which is a
hyperfunction (Schwartz distribution) when |P | = 1, that satisfies

(2.1.3)

∫

C
Mσ,P (w)Φ(w)|dw| =

∫

TP

Φ(gσ,P (tP ))d∗tP

for any continuous function Φ(w) on C, where |dw| = (2π)−1dxdy (w = x+yi), and d∗tP
is the normalized Haar measure on TP . It is compactly supported, and satisfies

(2.1.4) Mσ,P (z) ≥ 0,

∫

C
Mσ,P (w)|dw| = 1.

Before the proof, we note that each linear fractional function gσ,℘ maps the unit circle
C1 to another circle, with center cσ,℘ and radius rσ,℘ given respectively by

(2.1.5) cσ,℘ =
− log N(℘)

N(℘)2σ − 1
, rσ,℘ =

N(℘)σ log N(℘)

N(℘)2σ − 1
.

If we write gσ,℘(t℘) = cσ,℘ + rσ,℘.t′℘, then

(2.1.6) t′℘ =
N(℘)σt℘ − 1

t℘ −N(℘)σ
, t℘ =

N(℘)σt′℘ − 1

t′℘ −N(℘)σ

(involutive), and t℘ ∈ C1 if and only if t′℘ ∈ C1. The image of the normalized Haar
measure d∗t℘ = (2πit℘)−1dt℘ of C1 on the t′℘-unit circle is given by

(2.1.7) d∗t℘ =
N(℘)2σ − 1

|N(℘)σ − t′℘|2
.d∗t′℘,

8



where d∗t′℘ = (2πit′℘)−1dt′℘.

Proof of Theorem 1 The uniqueness is obvious. The solution is given explicitly
as

(2.1.8) Mσ,℘(cσ,℘ + r.eiθ) =
N(℘)2σ − 1

|N(℘)σ − eiθ|2 .
δ(r − rσ,℘)

r

(r ≥ 0, θ ∈ R, δ(r): the usual 1-dimensional Dirac delta function), and

(2.1.9) Mσ,P (z) = ∗℘∈P Mσ,℘(z),

where ∗ denotes the convolution product with respect to |dz|. 2

Note that

(2.1.10) Mσ,P (z̄) = Mσ,P (z) = Mσ,P (z).

It is clear from (2.1.3) that

(2.1.11)

∫

U

Mσ,P (w)|dw| = Vol(g−1
σ,P (U))

for any open set U on C, where Vol denotes the volume with respect to d∗tP . Therefore,
the support of Mσ,P (z) is exactly the image of gσ,P :

(2.1.12) Supp(Mσ,P (z)) = {
∑
℘∈P

(cσ,℘ + rσ,℘eiθ℘), 0 ≤ θ℘ < 2π};

hence it is contained in the disk with center cσ,P and radius rσ,P given by

(2.1.13) cσ,P =
∑
℘∈P

cσ,℘, rσ,P =
∑
℘∈P

rσ,℘.

When |P | = 1, this support is a circle, and when |P | > 1, this can either be an annulus
or a disk, depending on P and σ.

2.2

For any P and ℘ 6∈ P , one can express the convolution product Mσ,P∪℘ = Mσ,P ∗ Mσ,℘

explicitly as

(2.2.1) Mσ,P∪℘(z) =
N(℘)2σ − 1

2π

∫ 2π

0

Mσ,P (z − cσ,℘ − rσ,℘eiθ)

|N(℘)σ − eiθ|2 dθ.
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So, Mσ,P∪℘(z) is obtained by averaging Mσ,P (z) over the circle with center z − cσ,℘ and
radius rσ,℘, with respect to the image of d∗t℘ on this circle.

When P = {℘, ℘′} with rσ,℘ ≥ rσ,℘′ , we see easily that Mσ,P (z) is a (non-negative real
valued) function whose support is

(2.2.2) rσ,℘ − rσ,℘′ ≤ |z − cP | ≤ rσ,℘ + rσ,℘′ .

But Mσ,℘∪℘′(z) is unbounded near the border of support. When |P | = 3, Mσ,P (z) is
bounded, but still discontinuous at the border. We shall see that Mσ,P (z) gets smoother
and smoother as |P | increases.

In fact, as a reflection of the rapid decaying property of its Fourier dual (Cor 3.3.3),
we obtain

Proposition 2.2.3 Mσ,P (z) belongs to class Ck if |P | > 2(k + 2).

Remark 2.2.4 The actual bound for |P | seems to be a little better. For example, al-
though the author has not checked it in full detail, it seems that Mσ,P (z) is continuous
already for |P | = 4.

2.3

Now let (a, b) be any pair of non-negative integers, and consider the derivation

(2.3.1) D(a,b) =
∂a+b

∂za∂z̄b
.

If |P | > 2(a + b + 2), then Mσ,P (z) belongs to Ca+b; hence D(a+b) acts on (2.2.1) and
commutes with the integration with respect to the parameter θ. Thus,

(2.3.2) D(a,b)Mσ,P∪℘(z) =
N(℘)2σ − 1

2π

∫ 2π

0

(D(a,b)Mσ,P )(z − cσ,℘ − rσ,℘eiθ)

|N(℘)σ − eiθ|2 dθ

holds whenever |P | > 2(a + b + 2). In particular,

(2.3.3) Maxz|D(a,b)Mσ,P∪℘(z)| ≤ Maxz|D(a,b)Mσ,P (z)|.

Therefore, for each (a, b), there exists a positive constant m
(a,b)
σ such that

(2.3.4) |D(a,b)Mσ,P (z)| ≤ m(a,b)
σ

holds for any P = Py with |P | > 2(a + b + 2). (We restrict ourselves here to those P of
the form Py only to ensure that for any two P, P ′ in consideration, there is an inclusion
relation between them in one way or the other.)
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2.4

We shall need the following

Lemma 2.4.1 Fix σ > 0 and a, b ≥ 0. Then for any P = Py with |P | > 2(a + b + 4)
and ℘ 6∈ P ,

(2.4.2) |D(a,b)Mσ,P∪℘(z)−D(a,b)Mσ,P (z)| ¿
(

log N(℘)

N(℘)σ

)2

,

where ¿ is independent of P, ℘, z.

The proof is based on (2.3.2) for (a, b), (a + 1, b), (a, b + 1), (a + 1, b + 1) , and on the
following well-known formula in harmonic analysis.

Sublemma 2.4.3 Let 4 = 4D(1,1) = ∂2

∂x2 + ∂2

∂y2 be the Laplacian on C = R2 and take any

R > 0. Then for any complex valued function u(z) belonging to class C2 on a domain
⊂ C containing the disk |z − z0| ≤ R,

(2.4.4)
1

2π

∫ 2π

0

u(z0 + Reiθ)dθ − u(z0) =
1

2π

∫

|z−z0|≤R

log

(
R

|z − z0|
)

(4u)(z)dxdy.

Corollary 2.4.5 If |4u(z)| ≤ U on |z − z0| ≤ R, then

(2.4.6) | 1

2π

∫ 2π

0

u(z0 + Reiθ)dθ − u(z0)| ≤ 1

4
UR2.

Proof of Lemma 2.4.1 Let us suppress σ from the notation, and write

(2.4.7) q = N(℘)σ, c = cσ,℘, r = rσ,℘, z′ = z − c.

Decompose

D(a,b)Mσ,P∪℘(z)−D(a,b)Mσ,P (z) = A + B + C,(2.4.8) 



A = q2−1
2π

∫ 2π

0

(
1

|q−eiθ|2 − 1
q2−1

)
D(a,b)MP (z′ − reiθ)dθ,

B = 1
2π

∫ 2π

0
D(a,b)MP (z′ − reiθ)dθ −D(a,b)MP (z′),

C = D(a,b)MP (z′)−D(a,b)MP (z).

We shall estimate each of A,B,C.
First, it is clear that

(2.4.9) C ¿ |c|(m(a+1,b) + m(a,b+1)) ¿ |c| ¿ log N(℘)

N(℘)2σ
.
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Secondly, it follows directly from Cor 2.4.5 that

(2.4.10) B ¿ r2m(a+1,b+1) ¿ r2 ¿ (log N(℘))2

N(℘)2σ
.

As for A, decompose it as

(2.4.11) A =
1

π

∫ 2π

0

q cos θ

|q − eiθ|2D(a,b)MP (z′ − reiθ)dθ − 1

π

∫ 2π

0

D(a,b)MP (z′ − reiθ)

|q − eiθ|2 dθ.

Observe now that the absolute value of the second term on the right hand side is bounded
by (q − 1)−2m(a,b) ¿ N(℘)−2σ. As for the first term, this decomposes as

(2.4.12)
q

π

∫ 2π

0

cos θ

|q − eiθ|2 (D(a,b)MP (z′−reiθ)−D(a,b)MP (z′))dθ+2(q2−1)−1D(a,b)MP (z′),

because

(2.4.13)
q

π

∫ 2π

0

cos θdθ

|q − eiθ|2 = 2(q2 − 1)−1 (q > 1).

Since the absolute value of the first (resp. the second) term of (2.4.12) is¿ q−1r(m(a+1,b)+
m(a,b+1)) (resp. q−2m(a,b)), we conclude that

(2.4.14) A ¿ q−2 + q−1r ¿ log N(℘)

N(℘)2σ
.

Therefore,

(2.4.15) A + B + C ¿ (log N(℘))2

N(℘)2σ
.

2

2.5

Since the sum of the right-hand side of (2.4.2) over all ℘ converges when σ > 1/2, we
immediately obtain the first two items (i)(ii) of the following theorem.
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Theorem 2 Let σ > 1/2, P = Py and let y 7→ ∞. Then
(i) Mσ,P (z) converges uniformly to a non-negative real valued C∞-function Mσ(z).
(ii) Each D(a,b)Mσ,P (z) converges uniformly to D(a,b)Mσ(z) (starting with |P | sufficiently
large).
(iii) For any n ≥ 1, |z|nMσ(z) belongs to L2.
(iv) The function Mσ(z) is not identically zero; in fact,

(2.5.1)

∫

C
Mσ(z)|dz| = 1.

It satisfies

(2.5.2) Mσ(z̄) = Mσ(z) = Mσ(z).

Remark 2.5.3 (i) Mσ(z) is continuous also in (σ, z) (see Cor 3.11.11).
(ii) When σ > 1,

∑
℘ rσ,℘ < ∞; hence Mσ(z) is compactly supported.

For the proofs of (iii) and (iv), we need some results on the limit of the Fourier
transform M̃σ,P (z) of Mσ,P (z). This will be given in the next §3 ((3.11.9), (3.11.10)).

13



3 Constructions of M̃σ,P (z) and M̃σ(z)

3.1

For each non-archimedean prime ℘ of K and σ > 0, M̃σ,℘(z) is, by definition, the Fourier
transform of Mσ,℘(z);

(3.1.1) M̃σ,℘(z) =

∫

C
Mσ,℘(w)ψz(w)|dw|,

where ψz(w) = exp(i.Re(z̄w)) and |dw| is the self-dual measure w.r.t. ψz, i.e., |dw| =
(2π)−1dxdy for w = x + yi. Thus, either from (2.1.3) or (2.1.8), it follows directly that

M̃σ,℘(z) =

∫

C1

ψz(gσ,℘(t℘))d∗t℘(3.1.2)

= exp(i.cσ,℘.Re(z)).Hσ,℘(z),

where

(3.1.3) Hσ,℘(z) =
N(℘)2σ − 1

2π
.

∫ 2π

0

exp(irσ,℘|z| cos(θ − ϑ))

|N(℘)σ − exp(iθ)|2 dθ,

with ϑ = Arg(z). Let

(3.1.4) Jn(x) =
i−n

2π

∫ 2π

0

exp(ix cos(θ)) cos(nθ)dθ

be the Bessel function of order n. Then

(3.1.5) Hσ,℘(z) =
∞∑

n=0

εn(
i

N(℘)σ
)n cos(nϑ)Jn(rσ,℘|z|),

where εn is the Neumann factor εn = 1(n = 0), = 2(n ≥ 1). Indeed,

(3.1.6) (N(℘)2σ − 1)|N(℘)σ − exp(iθ)|−2 =
∞∑

n=0

εn cos(nθ)N(℘)−nσ,

and (sin(nθ) being an odd function)

(3.1.7)

∫ 2π

0

exp(ix cos(θ − ϑ)) cos(nθ)dθ = cos(nϑ)

∫ 2π

0

exp(ix cos(θ)) cos(nθ)dθ,

from which (3.1.5) follows directly.
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Since

(3.1.8) Jn(x) = (
x

2
)njn

(
(
x

2
)2

)
, jn(x) =

∞∑

k=0

(−x)k

k!(n + k)!
,

with an entire function jn(z) on C, (3.1.5) may be rewritten as an everywhere convergent
power series in z, z̄;

(3.1.9) Hσ,℘(z) = j0

(
(
rσ,℘

2
)2zz̄

)
+

∞∑
n=1

(
irσ,℘

2N(℘)σ

)n

(zn + z̄n)jn

(
(
rσ,℘

2
)2zz̄

)
.

Clearly, Hσ,℘(z), and hence also M̃σ,℘(z), are real-analytic functions of z. And by their
definitions,

(3.1.10) |M̃σ,℘(z)| = |Hσ,℘(z)| ≤ 1.

We also note that Hσ,℘(z) is an eigenfunction of the Laplacian ∆ = 4 ∂2

∂z∂z̄
;

(3.1.11) 4Hσ,℘(z) = −r2
σ,℘Hσ,℘(z).

This is because ∂2

∂z∂z̄
ψz(w) = ( iw

2
)( iw̄

2
)ψz(w), and |gσ,℘(t℘)− cσ,℘| = rσ,℘.

3.2

For any finite set P of non-archimedean primes of K, define

(3.2.1) M̃σ,P (z) =
∏
℘∈P

M̃σ,℘(z), Hσ,P (z) =
∏
℘∈P

Hσ,℘(z),

so that M̃σ,P (z) = eicσ,P Re(z)Hσ,P (z). Note that

(3.2.2) M̃σ,P (z) =

∫

C
Mσ,P (w)ψz(w)|dw| =

∫

TP

ψz(gσ,P (tP ))d∗tP .

The Fourier inversion formula gives

(3.2.3) Mσ,P (z) =

∫

C
M̃σ,P (w)ψ−z(w)|dw|.

These functions Hσ,P (z), M̃σ,P (z) are also obviously real analytic, and satisfy |Hσ,P (z)| =
|M̃σ,P (z)| ≤ 1 and

M̃σ,P (0) = Hσ,P (0) = 1 (all P ),(3.2.4)

|M̃σ,P ′(z)| ≤ |M̃σ,P (z)| ≤ 1 (P ⊆ P ′).

Also, note that

(3.2.5) M̃σ,P (z̄) = M̃σ,P (z), M̃σ,P (−z) = M̃σ,P (z).
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3.3

We shall show now that

Proposition 3.3.1 Let σ > 0 and P be fixed. Then

(3.3.2) |M̃σ,P (z)| = O
(
(1 + |z|)− |P |2

)
.

In particular, |z|kM̃σ,P (z) belongs to L1 if |P | > 2(k + 2).

Thus the Fourier dual satisfies:

Corollary 3.3.3 Mσ,P (z) belongs to class Ck when |P | > 2(k + 2).

To prove Prop 3.3.1, we need the following

Lemma 3.3.4 There exists an absolute positive constant A such that

(3.3.5) x
1
2 |Jn(x)| < A(n + 1)

1
2

holds for any non-negative integer n and x ≥ 0.

It is well-known that x1/2|Jn(x)| is bounded for each n, and also that this bound must
depend on n. (In fact, by Cauchy, n1/2|Jn(n)| ∼ n1/6.) Since the author could not find a
suitable reference for a simple explicit bound like (3.3.5), we shall give this a full proof.

We first need:

Sublemma 3.3.6 x
1
4 |Jn(x)| for x ≥ 0, n = 0, 1, 2, . . . has a universal upper bound.

Proof The Schläfli-Neumann formula for Jn(x)2 ([Wa §2.6]) gives

(3.3.7) Jn(x)2 =
1

π

∫ π

0

J0(2x sin θ) cos(2nθ)dθ.

But since x1/2|J0(x)| ¿ 1,

(3.3.8) Jn(x)2 ¿
∫ π

0

dθ√
x sin θ

¿ 1√
x
.

2

Proof of lemma 3.3.4 As for the constant A, it suffices that (3.3.5) holds for n = 0, 1
and that 2−1/4A exceeds the universal upper bound for x1/4|Jn(x)|. We shall fix such A
and x ≥ 0, and prove (3.3.5) by induction on n ≥ 2.

[Case n2 ≤ x/2] By the recurrence formula

(3.3.9) Jn(x) =
2(n− 1)

x
Jn−1(x)− Jn−2(x)
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and the assumptions, we obtain

x
1
2 |Jn(x)| ≤

(
n− 1

n2
n

1
2 + (n− 1)

1
2

)
A(3.3.10)

< n
1
2

(
n−1 + (1− n−1)

1
2

)
A < (n + 1)

1
2 A,

as desired. The last inequality follows from (1 + x)1/2 − (1− x)1/2 > x for 0 < x < 1, in
particular for x = n−1 (n ≥ 2).

[Case n2 > x/2] In this case, by the sublemma and the assumptions, we obtain

(3.3.11) x
1
2 |Jn(x)| ≤ x

1
4 2−

1
4 A < (2n2)

1
4 2−

1
4 A < A(n + 1)

1
2 ,

as desired. This proves lemma 3.3.4.
2

Proof of Prop 3.3.1 We shall only use a weak version x1/2|Jn(x)| ¿ n + 1 of lemma

3.3.4. By this and (3.1.5), we obtain

|Hσ,℘(z)| ¿ (rσ,℘|z|)−1/2

∞∑
n=0

εn(n + 1)N(℘)−σn(3.3.12)

= (rσ,℘|z|)−1/2
(
2(1−N(℘)−σ)−2 − 1

)
.

But since N(℘)σrσ,℘ ≥ log N(℘) ≥ log 2, and (1−N(℘)−σ)−2 < (1− 2−1/2)−2, this gives

(3.3.13) |Hσ,℘(z)| ¿ N(℘)σ/2|z|−1/2,

where ¿ is absolute. Since Hσ,P (z) =
∏

℘∈P Hσ,℘(z), the proof is completed. 2

Remark 3.3.14 The exponent |P |/2 in Prop 3.3.1 is the best possible, because (3.1.5)
gives, for each R > 0,

(3.3.15)
1

2π

∫ 2π

0

Hσ,℘(Reiϑ)dϑ = J0(rσ,℘R),

and J0(x) ∼ (2/πx)1/2 cos(x− π/4).

3.4

By Prop 3.3.1, M̃σ,P (z) ∈ L∞ (continuous, and for any ε > 0 there exists R > 0 such that
|M̃σ,P (z)| < ε for |z| > R), and if |P | > 4, M̃σ,P (z) ∈ L1 ∩ L∞; hence ∈ Lt (1 ≤ t ≤ ∞).
The main goal of §3 is to prove the following
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Theorem 3 Let σ > 1/2. Then
(i) When P = Py and y 7→ ∞, M̃σ,P (z) converges uniformly on σ ≥ 1/2 + ε and z ∈ C,
to a continuous function M̃σ(z) of σ and z.
(ii) For each σ > 1/2, the function M̃σ(z) of z belongs to Lt for any 1 ≤ t ≤ ∞, and the
convergence M̃σ,P (z) 7→ M̃σ(z) is also Lt-convergence.
(iii) M̃σ(z) is real analytic in σ and z.
(iv) M̃σ(z) = O((1 + |z|)−n) for any n ≥ 1.
(v) Mσ(z) and M̃σ(z) are Fourier transforms of each other;

(3.4.1) M̃σ(z) =

∫

C
Mσ(w)ψz(w)|dw|, Mσ(z) =

∫

C
M̃σ(w)ψ−z(w)|dw|.

(vi) M̃σ(z) has a power series expansion

(3.4.2) M̃σ(z) =
∞∑

a,b=0

(−i/2)a+bµ(a,b)
σ

zaz̄b

a!b!
(z ∈ C),

with the Dirichlet series coefficients

(3.4.3) µ(a,b)
σ =

∑

D integral

Λa(D)Λb(D)

N(D)2σ
(σ > 1/2).

Here, D runs over all integral ideals (effective divisors) of K, and Λk(D) is as defined
later in §3.7. The expansion (3.4.2) can also be regarded as a Dirichlet series expansion

(3.4.4) M̃σ(z) =
∑

D integral

λD(z)λD(z̄)

N(D)2σ
(σ > 1/2),

with the polynomial coefficients λD(z)λD(z̄), where

(3.4.5) λD(z) =
∞∑

k=0

(−i/2)k Λk(D)

k!
zk

(which is actually a polynomial in z).

Remark 3.4.6 Clearly, |M̃σ(z)| ≤ 1, and

(3.4.7) M̃σ(0) = 1.

In particular, M̃σ(z) does not vanish identically. Finally, note also that

(3.4.8) M̃σ(z̄) = M̃σ(z) = M̃σ(−z).

The proof of Theorem 3 requires, among other things, a complex analytic treatment
(in 3 complex variables s, z1, z2). We shall go on to this, and leave the final stage of the
proof of Theorem 3 until the end of §3.
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3.5

First, for any s, u1, u2 ∈ C with Re(s) > 0, and a real parameter q > 1, define the complex
analytic function

(3.5.1) hq(s; u1, u2) =
∞∑

a,b=0

ia+bq−s|b−a|u
a
1u

b
2

a!b!
,

of 3 variables s, u1, u2, where i =
√−1. (Note the absolute value |b− a| instead of b− a

itself, which makes this function not as simple as a product of two exponential series.)
Obviously, this series converges absolutely. Rearrange this with respect to n = |b− a| to
get

(3.5.2) hq(s; u1, u2) =
1

2

∞∑
n=0

εn

(
i

qs

)n

(un
1 + un

2 )jn(u1u2),

εn, jn(x) being as in §3.1. It has the following integral expression

(3.5.3) hq(s; u1, u2) =

∫

C1

exp

(
i(

qs − t

1− qst
u1 +

1− qst

qs − t
u2)

)
d∗t,

where d∗t = dt/(2πit). (Note that the integrand is invariant under (t, u1, u2) 7→ (t−1, u2, u1).)
Indeed, the right hand side is holomorphic in u1, u2, and the Taylor coefficient of each
ua

1u
b
2, computed by operating ∂a+b/∂ua

1∂ub
2 under the integral sign is given by

(3.5.4)
ia+b

a!b!

∫

C1

(
1− qst

qs − t

)b−a

d∗t =
ia+b

a!b!

∫

C1

(
1− qst

qs − t

)a−b

d∗t (by t 7→ t−1).

Depending on whether b ≥ a or a ≥ b, use the left (resp. right) expression and compute
the residue at t = 0. This shows that the value of (3.5.4) is ia+bq−|b−a|s/a!b!, as desired.

Now let K and P be as before. Set

Hs,℘(z1, z2) = hN(℘)(s;
rs,℘

2
z1,

rs,℘

2
z2),(3.5.5)

Hs,P (z1, z2) =
∏
℘∈P

Hs,℘(z1, z2),

where

(3.5.6) rs,℘ =
N(℘)s log N(℘)

N(℘)2s − 1
.

Note that these are complex analytic functions of s, z1, z2 on Re(s) > 0, and

(3.5.7) Hσ,P (z) = Hσ,P (z, z̄) (σ > 0).
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3.6

Theorem 4 Fix any ε > 0 and R > 0. Then the sum

(3.6.1)
∑

℘

|Hs,℘(z1, z2)− 1|,

where ℘ runs over all non-archimedean primes of K, converges uniformly on the region
Re(s) ≥ 1

2
+ ε, |z1|, |z2| ≤ R. In particular, there exists y = yε,R such that the sum

(3.6.2)
∑

N(℘)>y

log Hs,℘(z1, z2)

converges absolutely and uniformly on this region, and hence the product

(3.6.3)
∏

N(℘)>y

Hs,℘(z1, z2)

converges absolutely and uniformly to a nowhere vanishing analytic function on this region.

Proof The key point is to reduce to the fact that the series

(3.6.4)
∑

℘

(log N(℘))2N(℘)−2σ

converges uniformly on σ ≥ 1/2+ ε. To avoid inessential complication of the notation (to
worry about ε), we shall fix σ > 1/2. The uniformity statement for σ ≥ 1/2 + ε should
be clear from the argument.

We first claim that if |z1|, |z2| ≤ R, σ > 1/2 and if N(℘) is so large as to satisfy

(3.6.5) Rrσ,℘ ≤ 2,

then

(3.6.6) |Hs,℘(z1, z2)− 1| < 5

2
(Rrσ,℘)2 + 2Rrσ,℘N(℘)−σ.

In fact, by (3.5.1)(3.5.3), (writing r = rσ,℘ and q = N(℘)σ here),

|Hs,℘(z1, z2)− 1| ≤
∑

(a,b) 6=(0,0)

q−|b−a| 1

a!b!
(Rr/2)a+b(3.6.7)

=
∞∑

k=1

1

(k!)2
(Rr/2)2k + 2

∞∑
n=1

∞∑

k=0

q−n 1

k!(k + n)!
(Rr/2)2k+n

≤
∞∑

k=1

1

k!
(Rr/2)2k + 2

( ∞∑
n=1

1

n!
(Rr/2q)n

)( ∞∑

k=0

1

k!
(Rr/2)2k

)

=
(
exp((Rr/2)2)− 1

)
+ 2 exp((Rr/2)2) (exp(Rr/2q)− 1) .
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But since ex/2 − 1 < x for 0 ≤ x ≤ 2, and Rr ≤ 2, we obtain

(3.6.8) |Hs,℘(z1, z2)− 1| ≤ 1

2
(Rr)2 + 2(1 +

1

2
(Rr)2)(Rr/q) <

5

2
(Rr)2 + 2Rr/q,

as desired. Since

(3.6.9) r2
σ,℘ ¿

(log N(℘))2

N(℘)2σ
, rσ,℘N(℘)−σ ¿ log N(℘)

N(℘)2σ
,

the series (3.6.1) converges uniformly on this region.
Now let N(℘) be even so large that Rrσ,℘ < 1/5. Then (3.6.6) gives

(3.6.10) |Hs,℘(z1, z2)− 1| < 1

2
.

For such s, z1, z2, and over such ℘ that satisfy Rrσ,℘ < 1/5, consider the infinite sum

(3.6.11)
∑

℘ as above

log Hs,℘(z1, z2),

where log takes the principal values. Then, since |w| ≤ 1/2 implies | log(1+w)| ≤ (3/2)|w|,
and hence

(3.6.12) | log Hs,℘(z1, z2)| ≤ 3

2
|Hs,℘(z1, z2)− 1|,

(3.6.11) converges uniformly and absolutely. 2

3.7

For each ℘, we define the analytic function M̃s,℘(z1, z2) of s, z1, z2 (Re(s)> 0) by

M̃s,℘(z1, z2) = exp

(
i

2
cs,℘(z1 + z2)

)
Hs,℘(z1, z2)(3.7.1)

=

∫

C1

exp

(
i

2
(z1gs,℘(t̄℘) + z2gs,℘(t℘)

)
d∗t℘,

where

(3.7.2) cs,℘ =
− log N(℘)

N(℘)2s − 1
, gs,℘(t℘) =

t℘ log N(℘)

t℘ −N(℘)s
.

The second equality in (3.7.1) follows directly from (3.5.3).
For Re(s)> 1/2, we also define the global functions

(3.7.3) Hs(z1, z2) =
∏
℘

Hs,℘(z1, z2),
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(3.7.4) M̃s(z1, z2) =
∏
℘

M̃s,℘(z1, z2) = exp

(
i

2
.
ζ ′K(2s)

ζK(2s)
(z1 + z2)

)
Hs(z1, z2),

ζK(s) being the Dedekind zeta function of K. Note here that

(3.7.5)
∑

℘

cs,℘ =
ζ ′K(2s)

ζK(2s)
.

In particular,

(3.7.6) M̃σ(z) = M̃σ(z, z̄) = exp

(
i
ζ ′K(2σ)

ζK(2σ)
Re(z)

)
Hσ(z),

where

(3.7.7) Hσ(z) = Hσ(z, z̄) =
∏
℘

Hσ,℘(z).

Theorem 5 The analytic function M̃s(z1, z2) has the following power series and Dirich-
let series expansions. (The notation for their coefficients will be defined in §3.8.)

(3.7.8) M̃s(z1, z2) =
∞∑

a,b=0

(−i/2)a+bµ(a,b)
s

za
1z

b
2

a!b!
,

M̃s(z1, z2) =
∑

D integral

λD(z1)λD(z2)

N(D)2s
(3.7.9)

=
∏
℘

( ∞∑
n=0

λ℘n(z1)λ℘n(z2)

N(℘)2ns

)
.

In fact, each ℘-facor in (3.7.9) is equal to M̃s,℘(z1, z2). Here, D runs over all integral
ideals, and ℘, all non-archimedean prime divisors of K. The series (3.7.8) converges for
all z1, z2 ∈ C, and (3.7.9) for all s with Re(s) > 1/2.

3.8

To define the coefficients in Theorem 5, first, for any integral ideal D of K, set

Λ(D) = log N(℘) · · · if D = ℘r, r ≥ 1,(3.8.1)

= 0 · · · otherwise,
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for a prime divisor ℘. Then define Λk(D) (k ≥ 0, k ∈ Z) by

Λ0(D) = 1 · · · if D = (1)(3.8.2)

= 0 · · · otherwise,

(3.8.3) Λk(D) =
∑

D=D1···Dk

Λ(D1) · · ·Λ(Dk) (k ≥ 1).

Here, the summation is over all ordered k-ples of integral ideals (D1, · · ·Dk) whose product
is equal to D. (One may assume that each Di is a prime power, for Λ(Di) = 0 otherwise.)
Thus, if D =

∏
℘ ℘n℘ is the prime factorization of D, then Λk(D) is the coefficient of∏

℘ x
n℘
℘ in the polynomial

(3.8.4)

(∑
℘

(log N(℘))(x℘ + · · ·xn℘
℘ )

)k

,

where x℘ are independent variables. In particular, (put x℘ = 1 for all ℘),

(3.8.5) Λk(D) ≤ (log N(D))k.

Also note that

(3.8.6) Λk(D) = 0 if k >
∑

℘

n℘.

For each D, by (3.8.6), the following λD(z) is a polynomial of z.

(3.8.7) λD(z) =
∞∑

k=0

(−i/2)k Λk(D)

k!
zk.

And for each pair (a, b) of non-negative integers and Re(s)> 1/2, define the Dirichlet
series

(3.8.8) µ(a,b)
s =

∑
D

Λa(D)Λb(D)

N(D)2s
.

By (3.8.5), this Dirichlet series converges absolutely on Re(s)> 1/2.

Remark 3.8.9 Since

−ζ ′K(s)

ζK(s)
=

∑
D

Λ(D)

N(D)s
,
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we have

(3.8.10)

(
−ζ ′K(s)

ζK(s)

)k

=
∑
D

Λk(D)

N(D)s
(k ≥ 1).

Only when K = Q in which case N(D) determines D uniquely, this can be used as an
alternative definition of Λk(D).

These arithmetic functions Λk(D) and λD(z) enjoy the following properties which are
direct consequences of their definitions.

Proposition 3.8.11 (i) When D,D′ are integral ideals with (D,D′) = 1,

(3.8.12)
Λk(DD′)

k!
=

∑

a+b=k
a,b≥0

Λa(D)Λb(D
′)

a!b!
,

(3.8.13) λDD′(z) = λD(z)λD′(z).

(ii) When ℘ is a prime, we have Λk(℘
n) = 0 (n < k), and

(3.8.14) Λk(℘
n) =

(
n− 1
k − 1

)
(log N(℘))k (n ≥ k),

(3.8.15) λ℘n(z) = Gn

(
− i

2
(log N(℘))z

)
,

where Gn(w) is the polynomial of w defined by

(3.8.16) exp

(
wt

1− t

)
=

∞∑
n=0

Gn(w)tn (|t| < 1);

namely, G0(w) = 1 and

(3.8.17) Gn(w) =
n∑

k=1

1

k!

(
n− 1
k − 1

)
wk (n ≥ 1).

24



3.9

In this §3.9, we shall reduce the proof of Theorem 5 to some estimations of |λD(z)|. First,
by (3.8.16), applied to w 7→ (−iz/2) log N(℘), t 7→ tN(℘)−s, and by (3.8.15), we obtain

(3.9.1) exp

(
iz

2
.
t log N(℘)

t−N(℘)s

)
=

∞∑
n=0

λ℘n(z)N(℘)−ns.tn (|t| < N(℘)σ).

By (3.7.1), M̃s,℘(z1, z2) is equal to the constant term of the Fourier expansion of

(3.9.2) exp{ i

2
(z1gs,℘(t̄℘) + z2gs,℘(t℘))}

in t℘ on C1. But by (3.9.1), this constant term is equal to

(3.9.3)
∞∑

n=0

λ℘n(z1)λ℘n(z2)N(℘)−2ns.

Therefore,

(3.9.4) M̃s,℘(z1, z2) =
∞∑

n=0

λ℘n(z1)λ℘n(z2)N(℘)−2ns.

Among the two statements in Theorem 5, we first pay attention to the second equality
(3.7.9). Note that (3.9.4) and Prop 3.8.11 give the formal Euler product decomposition.
But we must also show that the global Dirichlet series converges on Re(s)> 1/2. We have
already established the absolute convergence of the Euler product as analytic function on
this domain, but the absolute convergence of the Dirichlet series on this domain is (at
least a priori) a separate matter. We shall use the following estimations of |λD(z)|.

Proposition 3.9.5 (i) For any n ≥ 1,

|λ℘n(z)| < exp
√

2n|z| log N(℘) (n ≥ 1).

(ii) For any non-trivial integral divisor D 6= (1),

|λD(z)| < exp{(log N(D))
√

2CK |z|/(log log N(D) + 2)},
where CK is a positive constant depending only on K.

The proof of Prop 3.9.5 will be postponed until §3.10.

Remark 3.9.6 The inequality (3.8.5) leads only to |λk(D)| ≤ N(D)|z|/2, from which
follows only that (3.7.9) converges on Re(s)> (1 + |z|)/2.
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Proof of Theorem 5 assuming Prop 3.9.5
First, by Prop 3.9.5 (ii), it is clear that for any given ε > 0 and R > 0, |λD(z)| ¿ N(D)ε

holds for all |z| ≤ R if N(D) is sufficiently large. Therefore, (3.7.9) converges absolutely
and uniformly in the wider sense on Re(s)> 1/2.

Secondly, to prove (3.7.8), fix s with Re(s)> 1/2. Since (3.7.9) converges uniformly
on |z1|, |z2| ≤ 1, we can compute the derivative (∂a+b/∂za

1∂zb
2)M̃s(z1, z2) at z1 = z2 = 0

by termwise differentiation. And since

(3.9.7)
∂k

∂zk
λD(z) |(0)= (−i/2)kΛk(D),

the Taylor expansion of M̃s(z1, z2) at 0 is as given by (3.7.8). But M̃s(z1, z2) being analytic
everywhere, this power series must converge everywhere.

Thus, Theorem 5 is reduced to Prop 3.9.5.

3.10

For the proof of Prop 3.9.5, we need two sublemmas.

Sublemma 3.10.1 Let

(3.10.2) Ln(x) =
n∑

k=0

1

k!

(
n
k

)
xk (n ≥ 0).

(Ln(−x) is Laguerre’s polynomial.) Then

(3.10.3) Ln(x) ≤ exp(2
√

nx) (x > 0).

Proof Take any t > 0. Then

Ln(x) =
n∑

k=0

(
n
k

)
t−k 1

k!
(tx)k(3.10.4)

≤ (1 + t−1)n exp(tx) < exp(nt−1 + tx).

Take t = (n/x)1/2. This gives Ln(x) ≤ exp(2
√

nx), as desired. 2

Sublemma 3.10.5 For each global field, there exists a positive constant CK such that

(3.10.6) |Supp(D)| ≤ CK
log N(D)

log log N(D) + 2

holds for any integral divisor D 6= (1) of K. Here, Supp(D) denotes the support of the
effective divisor D, i.e., the set of prime factors of D.
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This is well-known, together with that one can take CK = 1 + ε, for N(D) sufficiently
large.

Proof of Prop 3.9.5 (i) Recall that λ℘n(z) = Gn(− i
2
(log N(℘))z). Since

(
n− 1
k − 1

)
≤

(
n
k

)
, we have Gn(x) ≤ Ln(x) for x ≥ 0. Hence

(3.10.7) |λ℘n(z)| ≤ Ln(
1

2
log N(℘)|z|) ≤ exp

√
2n|z| log N(℘),

by Sublemma 3.10.1.

(ii) Let D =
∏

℘∈P ℘n℘ , with n℘ ≥ 1, P = Supp(D). Then

(3.10.8)
∑
℘∈P

(n℘ log N(℘))1/2 ≤
(
|P |

∑
℘∈P

n℘ log N(℘)

)1/2

= (|P | log N(D))1/2.

This, combined with (i) and Sublemma 3.10.5 gives

(3.10.9) |λD(z)| =
∏
℘∈P

|λ℘n℘ (z)| < exp{(log N(D)) (2CK |z|/(log log N(D) + 2))1/2},

as desired.

This settles the proof of Prop 3.9.5 and hence also that of Theorem 5.

3.11 Proof of Theorem 3

Proofs of (i)-(iii) As for (i), since we have proved Theorem 4, it remains to show the
uniformity of convergence without restriction on the range of |z| (namely, (ii) for t = ∞).
This and (ii) follow directly by combining the following three properties of M̃σ,P (z). Here,
t is fixed, with 1 ≤ t ≤ ∞.

(a) If |P0| > 4, then M̃σ,P0 ∈ Lt; in particular, for any ε > 0, there exists R > 0 such
that

(3.11.1)

{∫
|z|≥R

|M̃σ,P0(z)|t|dz| < ε · · · if t 6= ∞,

Sup|z|≥R|M̃σ,P0(z)| < ε · · · if t = ∞.

(b) |M̃σ,℘(z)| ≤ 1 for each ℘; hence

(3.11.2) |M̃σ,P (z)| ≤ |M̃σ,P0(z)| · · · for any P ⊇ P0,
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and

(3.11.3) |M̃σ(z)− M̃σ,P (z)|t = |
∏

℘ 6∈P

M̃σ,℘(z)− 1|t|M̃σ,P (z)|t ≤ 2t|M̃σ,P0(z)|t.

(c) M̃σ,P (z) converges to M̃σ(z) uniformly on |z| ≤ R for any given R > 0.
(For a given ε > 0, first choose R to validate (a); then apply (3.11.3), then choose P ⊇ P0

large enough to make the integral over |z| ≤ R also small.)

(iii) is obvious by Theorem 4.
Proof of (iv) Also obvious by Prop 3.3.1, because |M̃σ(z)| ≤ |M̃σ,P (z)|.

Proof of (v) In general, use the symbols ∧,∨ for

(3.11.4) f∧(z) =

∫

C
f(w)ψz(w)|dw|,

(3.11.5) g∨(z) =

∫

C
g(w)ψ−z(w)|dw|.

Recall that M̃σ,P = M∧
σ,P , Mσ,P = M̃∨

σ,P for each P . Recall also that for each t (1 ≤
t ≤ ∞), M̃σ,P (for |P | > 4) “Lt-converges” to M̃σ. The case t = 2 reflects to that M̃∨

σ,P

L2-converges to M̃∨
σ . But M̃σ belongs to L1; hence M̃∨

σ is continuous. Therefore, M̃∨
σ

must coincide with the L∞-limit Mσ of M̃∨
σ,P = Mσ,P .

(3.11.6) M̃∨
σ (z) = Mσ(z).

Now, since Mσ,P (z) converges uniformly to Mσ(z) (Theorem 2), and each Mσ,P (z) has
total volume 1, we have

(3.11.7)

∫

C
Mσ(z)|dz| ≤ 1;

hence (Mσ(z) being non-negative real valued) Mσ ∈ L1. Therefore, M∧
σ is continuous.

But M∧
σ = (M̃∨

σ )∧ is equal to M̃σ in L2, i.e., M∧
σ = M̃σ almost everywhere. Both being

continuous, we conclude

(3.11.8) M∧
σ (z) = M̃σ(z),

as desired.

(vi) This is a special case of Theorem 5. 2

Since Mσ = M̃∨
σ and M̃σ belongs to C∞ (being real analytic), we also obtain
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Corollary 3.11.9 |z|nMσ(z) belongs to L2 for any n ≥ 1.

Also, since M̃σ = M∧
σ , we obtain the expected equality

(3.11.10)

∫

C
Mσ(z)|dz| = M̃σ(0) = 1.

.

Corollary 3.11.11 Mσ(z) is continuous in (σ, z).

Proof Since M̃σ(w)ψ−z(w) is continuous in (σ, z, w), the integral

(3.11.12)

∫

|w|≤R

M̃σ(w)ψ−z(w)|dw|

is continuous in (σ, z) for each R > 0, and as R 7→ ∞, this converges uniformly in the
wider sense to Mσ(z), because if we choose any P with |P | = 5, then

(3.11.13) |M̃σ(w)| ≤ |M̃σ,P (w)| ¿
(∏

℘∈P

N(℘)

)σ/2

|w|−5/2.

by (3.3.13). 2

Remark 3.11.14 By (3.7.6), Hσ(z) is the Fourier transform of

(3.11.15) Mσ(z +
ζ ′K(2σ)

ζK(2σ)
).
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4 Connections with L′(χ, s)/L(χ, s); (I) Case σ > 1

4.1

In general, it is not clear to the author what family of characters χ one should treat, and
how one should define the ”average” of Φ(L′(χ, s)/L(χ, s)) over χ. Eventually, we wish
to be able to treat Grössencharacters and archimedean L-factors, too, under as general a
setting as possible. But at this stage, we restrict our attention to Dirichlet characters and
non-archimedean L-factors. In the function field case, we shall fix an ”infinite prime” ℘∞
with deg(℘∞) = 1 and impose χ(℘∞) = 1, to kill the effect of infinitely many trivial twists.
We shall consider ℘∞ as archimedean and exclude it from the L-factors and M -factors.

In order not to worry about repeated occurrence of χ(℘) being 0, we shall consider
only those χ (the non-archimedean part of) whose conductor is a prime divisor. Also,
in order not to worry about the question as to whether there does exist χ with a given
conductor, we restrict ourselves to the case where the unit group of K is finite, i.e., either
K is Q, or imaginary quadratic, or K is a function field over a finite field Fq. (Note that
then, the ℘∞-unit group will also be finite.) Thus, in §4 (and §6), we impose that

(i) The field K is either Q, or an imaginary quadratic number field, or a function
field over Fq, with an assigned prime divisor ℘∞ with degree 1.

(ii) The set of primes P , the L-functions and the M, M̃ -functions shall not contain
any archimedean factors (including ℘∞).

(iii) The characters χ runs over all Dirichlet characters on K (the non-archimedean
part of) whose conductor is a prime divisor, such that χ(℘∞) = 1. (We may or may not
impose χ even when K = Q.)

(iv) The average of any complex valued function φ(χ) of χ will be defined as follows.
First, for each prime divisor f , we take the usual average of φ(χ) over all those χ with
the (non-archimedean part of the ) conductor f . Then we take the average of this average
over all f with N(f) ≤ m;

(4.1.1) AvgN(f)≤mφ(χ) =

∑
N(f)≤m(

∑
fχ=f φ(χ))/(

∑
fχ=f 1)∑

N(f)≤m 1
,

where the summation
∑

N(f)≤m is over all non-archimedean prime divisors f of K with

N(f) ≤ m. Finally, we define

(4.1.2) Avgχφ(χ) = lim
m7→∞

(AvgN(f)≤mφ(χ)),

whenever the limit exists. When we state a formula for Avgχφ(χ), it will first mean that
it exists.
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4.2

The main purpose of §4 is to prove the following

Theorem 6 Let s ∈ C be fixed, with σ = Re(s) > 1. Then
(i)

AvgχΦ

(
L′(χ, s)

L(χ, s)

)
=

∫

C
Mσ(w)Φ(w)|dw|

holds for any continuous function Φ(w) on C.
(ii)

Avgχψz

(
L′(χ, s)

L(χ, s)

)
= M̃σ(z),

(iii)

AvgχP (a,b)

(
L′(χ, s)

L(χ, s)

)
= (−1)(a+b)µ(a,b)

σ ,

where ψz(w) = exp(iRe(z̄w)), P (a,b)(w) = w̄awb (a, b ∈ Z, a, b ≥ 0), and µ
(a,b)
σ is as in

§3.8.

Corollary 4.2.1 When Re(s) > 1, and k is an odd positive integer,

(4.2.2) Avgχ

(
Re(

L′(χ, s)

L(χ, s)
)

)k

≤ 0,

with the equality if and only if k = 1.

Proof This average is equal to

(4.2.3) (−2)−k
∑

a+b=k

(
k
a

)
µ(a,b)

σ ,

but µ
(a,b)
σ ≥ 0 with the equality if and only if ab = 0. 2

4.3

The first key to the proof is the uniformity of distribution of {χP}χ on TP for each P .

Lemma 4.3.1 Let P be any finite set of non-archimedean primes of K, and set TP =∏
℘∈P C1. Let χ run over the family of characters on K described in §4.1, but exclude those

(finitely many) χ such that fχ ∈ P . For each such χ, put χP = (χ(℘))℘∈P ∈ TP . Then
(χP )χ is uniformly distributed on TP ; namely, for any continuous function Ψ : TP 7→ C,
we have

(4.3.2) Avgχ(Ψ(χP )) =

∫

TP

Ψ(tP )d∗tP .
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Proof Let ZP =
∏

℘∈P Z, and for n = (n℘) ∈ ZP and t = (t℘) ∈ TP , write tn =∏
℘∈P t

n℘
℘ ∈ C1 (a dual pairing between TP and ZP ). By Weyl’s criterion for uniform

distribution, it suffices to prove (4.3.2) when Ψ(t) is any character Ψ(t) = tn, or what
amounts to the same, it suffices to prove

(4.3.3) Avgχ(χn
P ) = 0 (n ∈ ZP \ (0)).

To prove (4.3.3), pick any n = (n℘) ∈ ZP \ (0), and call P n the divisor defined by∏
℘∈P ℘n℘ . Note that P n 6= (1) and that χ(P n) = χn

P . Now if f is any non-archimedean
prime not contained in P , the orthogonality of characters gives

∑

fχ|f
χ(P n)/

∑

fχ|f
1 =

{
1 · · · “Pn ≡ 1 (mod f)”,

0 · · · otherwise,
(4.3.4)

where for any divisor D of K, “D ≡ 1(mod f)” means that D belongs to the common
kernel of all χ with fχ|f . But since P n 6= (1), and the unit group of our field K is finite,
there exist at most finitely many f such that P n ≡ 1(mod f). Just from this follows
(4.3.3) by easy estimations. This is omitted here, because a more detailed quantitative
estimation will be carried out in §6. 2

4.4 Proof of Theorem 6

Write s = σ + τi. First, take any finite set P of non-archimedean primes of K. Recall
that

(4.4.1)
L′P (χ, s)

LP (χ, s)
= gσ,P (N(P )−τ.iχP )

if (fχ, P ) = 1. First, let χ run over all characters described in §4.1 such that (fχ, P )
= 1. Then since {χP}χ is uniformly distributed on TP , so is its translate {N(P )−τ.iχP}χ.
Therefore, by Lemma 4.3.1 applied to Ψ = Φ ◦ gσ,P , we obtain

Avg′χ

(
Φ(

L′P (χ, s)

LP (χ, s)
)

)
=

∫

TP

Φ(gσ,P (tP ))d∗tP(4.4.2)

=

∫

C
Mσ,P (w)Φ(w)|dw|

(cf. Theorem 1). Here, Avg′χ means that we excluded finitely many χ such that fχ ∈ P .
But since this difference does not affect the value of Avgχ, we obtain

(4.4.3) Avgχ

(
Φ(

L′P (χ, s)

LP (χ, s)
)

)
=

∫

C
Mσ,P (w)Φ(w)|dw|.
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Now since Re(s) > 1 (and s is fixed), L′P (χ, s)/LP (χ, s) tends uniformly to L′(χ, s)/L(χ, s).
Indeed,

(4.4.4) |L
′(χ, s)

L(χ, s)
− L′P (χ, s)

LP (χ, s)
| ≤

∑

℘ 6∈P

log N(℘)

N(℘)σ − 1
,

and the right hand side tends to 0 when P = Py and y 7→ ∞. Moreover, since |L′(χ, s)/L(χ, s)|
and |L′P (χ, s)/LP (χ, s)| are uniformly bounded (by |ζ ′K(σ)/ζK(σ)|), and Mσ(w) is com-
pactly supported (because σ > 1), the effect of Φ is only within these bounds; hence we
may assume Φ to be equicontinuous. Therefore, Φ(L′P (χ, s)/LP (χ, s)) tends uniformly
to Φ(L′(χ, s)/L(χ, s)). And since Mσ,P (w) tends uniformly to Mσ(w) (Theorem 2), we
obtain from (4.4.3) by letting P = Py, y 7→ ∞, the statement (i) of Theorem 6. The
second statement (ii) is a special case of (i). The last formula (iii) is also a special case
where Φ(w) = P (a,b)(w). In fact, since the Fourier transform of Mσ(z) is M̃σ(z) (Theorem

3 (v)), that of P (a,b)(z)Mσ(z) is (2/i)a+b ∂a+b

∂za∂z̄b M̃σ(z); hence

AvgχP (a,b)

(
L′(χ, s)

L(χ, s)

)
=

∫

C
Mσ(w)P (a,b)(w)|dw|(4.4.5)

=

(
2

i

)a+b
∂a+b

∂za∂z̄b
M̃σ(z) |z=0= (−1)a+bµa+b

σ

(the last equality by Theorem 3 (vi)). This completes the proof of Theorem 6. 2
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5 Some Fourier analysis of ψz(gσ,P (t))

5.1

We come back to the general situation where K is any global field, P is any finite set of
non-archimedean primes of K, and TP =

∏
℘∈P C1, ZP =

∏
℘∈P Z, with the dual pairing

(5.1.1) tn =
∏
℘∈P

tn℘
℘ ∈ C1 (t = (t℘) ∈ TP , n = (n℘) ∈ ZP ).

For σ > 0, put, as before,

(5.1.2) gσ,P (t) =
∑
℘∈P

gσ,℘(t℘), gσ,℘(t℘) =
t℘ log N(℘)

t℘ −N(℘)σ
.

For z1, z2, w ∈ C, put

(5.1.3) ψz1,z2(w) = exp(
i

2
(z1w̄ + z2w)).

Thus, ψz1,z2 : C 7→ C× is a quasi-character of the additive group C, which is a character
into C1 when z2 = z̄1. In our previous notation,

(5.1.4) ψz,z̄(w) = ψz(w).

We shall study the Fourier expansion of ψz1,z2(gσ,P (t)), as a preparation for §6. First, we
shall prove the following

Proposition 5.1.5 For each σ > 0, z1, z2 ∈ C and P , the function ψz1,z2(gσ,P (t)) of
t ∈ TP has an absolutely convergent Fourier expansion

(5.1.6) ψz1,z2(gσ,P (t)) =
∑

n∈ZP

Aσ,P (n; z1, z2)t
n,

with

Aσ,P (n; z1, z2) =

∫

TP

ψz1,z2(gσ,P (t))t−nd∗t(5.1.7)

=
∑

D2D−1
1 =P n

λD1(z1)λD2(z2)N(D1D2)
−σ.

Here, the last summation is over all integral ideals D1, D2 with supports in P such that
D2D

−1
1 = P n( =

∏
℘∈P ℘n℘).
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Proof Each side of these formulas being multiplicative, it suffices to prove them when
P consists of a single prime ℘. So, write t = t℘. Since exp( i

2
z.gσ,℘(t)) is a holomorphic

function of t outside the point t = N(℘)σ, its Taylor expansion (cf. (3.9.1)).

(5.1.8) exp(
i

2
z.gσ,℘(t)) =

∞∑
n=0

λ℘n(z)N(℘)−nσtn

at t = 0 is absolutely convergent on |t| < N(℘)σ. Therefore, ψz1,z2(gσ,℘(t)) is the product
of two absolutely convergent series, for exp( i

2
z2.gσ,℘(t)) and for exp( i

2
z1.gσ,℘(t̄)), on the

domain |t| < N(℘)σ. By restricting this to |t| = 1, replacing t̄ by t−1 and rearranging the
absolutely convergent double series, we obtain the absolutely convergent series (5.1.6) for
P = {℘}, with

(5.1.9) Aσ,℘(n; z1, z2) =
∑

n1,n2≥0
n2−n1=n

λ℘n1 (z1)λ℘n2 (z2)N(℘)−(n1+n2)σ.

2

It is clear that

(5.1.10) Aσ,P (n; z1, z2) =
∏
℘∈P

Aσ,℘(n℘; z1, z2) (n = (n℘)),

(5.1.11) Aσ,P (−n; z1, z2) = Aσ,P (n; z2, z1),

(5.1.12) Aσ,P (0; z1, z2) = M̃σ,P (z1, z2).

(cf. (3.7.1)(5.1.7)).

Put

(5.1.13) Aσ,P (n, z) = Aσ,P (n; z, z̄) (n ∈ ZP , z ∈ C),

so that

(5.1.14) Aσ,P (0, z) = M̃σ,P (z).

Then, clearly,

(5.1.15) |
∑

n∈ZP

Aσ,P (n, z)tn| = |ψz(gσ,P (t))| = 1 (t ∈ TP ),

and the Plancherel formula gives also that

(5.1.16)
∑

n∈ZP

|Aσ,P (n, z)|2 =

∫

TP

|ψz(gσ,P (t))|2d∗t = 1.
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On the other hand, the value of the (finite) sum

(5.1.17)
∑

n∈ZP

|Aσ,P (n, z)|

grows (unboundedly when σ ≤ 1) with P (see Remark 5.2.23). What we shall actually
need is Cor 5.2.18 giving an estimation of a sum similar to (5.1.17), for P = {℘}; Remark
5.2.23 says that this is essentially the best possible.

5.2

In this subsection, we shall first generalize the formulas given in §3.5 for the function
(5.1.12), to the case n 6= 0. By (5.1.10)(5.1.11), it suffices to give the formula for
Aσ,℘(n℘; z1, z2) when n℘ > 0. Then we apply this formula to the estimations mentioned
above.

Proposition 5.2.1 Let n > 0, and write q = N(℘)σ, λ = log N(℘). Then

(5.2.2) exp(− i

2
cσ,℘(z1 + z2))Aσ,℘(n; z1, z2) =

1

qn

n∑
ν=1

(
n− 1
ν − 1

)(−iλz2

2

)ν

B(ν)
σ,℘(z1, z2),

where

(5.2.3) B(ν)
σ,℘(z1, z2) =

∞∑

`=0

(
irσ,℘z2

2q

)` (
ν + `

ν

)
jν+`

(
r2
σ,℘z1z2

4

)
.

In particular,

(5.2.4) exp(−icσ,℘Re(z))Aσ,℘(n, z) =
1

qn

n∑
ν=1

(
n− 1
ν − 1

)
(1− q2)ν

(
i

q

)ν (
z̄

|z|
)ν

C(ν)
σ,℘(z),

with

(5.2.5) C(ν)
σ,℘(z) =

∞∑

`=0

(
i

q

)` (
z̄

|z|
)` (

ν + `
ν

)
Jν+`(rσ,℘|z|).

Proof As in §2.1, we change variables,

(5.2.6) gσ,℘(t) = cσ,℘ + rσ,℘t′,

(5.2.7) t′ =
1− qt

q − t
.
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Recall that |t| = 1 if and only if |t′| = 1. As a function of t, t′ is holomorphic outside
t = q; hence (t′)a(t̄′)b (a, b ≥ 0) has an absolutely convergent Fourier expansion

(5.2.8) (t′)a(t̄′)b =
∑

n∈Z
γ(a,b)(n)tn (|t| = 1),

with

(5.2.9) γ(a,b)(n) =

∫

C1

(
q − t

1− qt

)b−a

t−nd∗t =

∫

C1

(
q − t

1− qt

)a−b

tnd∗t.

By direct residue calculus at t = q−1, we obtain γ(a,b)(n) = 0 if a ≤ b, and

(5.2.10) γ(a,b)(n) =
1

qn+a−b

min(n,a−b)∑
ν=1

(
n− 1
ν − 1

)(
a− b

ν

)
(1− q2)ν (a > b).

(In fact, when a > b, γ(a,b)(n) is the coefficient of ya−b−1 in

(y + 1− q2)a−b(y + 1)n−1

(y corresponds to qt− 1).)
Now, each Aσ,℘(n; z1, z2) is an analytic function of z1, z2, and the coefficients of its Tay-

lor expansion at (z)=(0) can be obtained by operating ∂a+b/∂za
1∂zb

2 under the integration
symbol in (5.1.7) and by putting (z)=(0). But since

(5.2.11) ψz1,z2(gσ,℘(t)) = exp(
i

2
cσ,℘(z1 + z2)) exp(

i

2
rσ,℘(z2t

′ + z1t̄
′)),

we obtain

(5.2.12) Aσ,℘(n; z1, z2) = exp(
i

2
cσ,℘(z1 + z2))

∞∑

a,b=0

(
irσ,℘

2

)a+b

γ(a,b)(n)
za
2z

b
1

a!b!
.

By inserting (5.2.10) into (5.2.12), and by rearranging the series (use ` = a− b− ν, and
note that r(1− q2) = −λq), we obtain the desired formula. 2

Corollary 5.2.13 When n 6= 0,

(5.2.14) |Aσ,℘(n, z)| ≤ 1

N(℘)σ|n| e
1
2
|cσ,℘z|

|n|∑
ν=1

1

ν!

( |n| − 1
ν − 1

)( |z| log N(℘)

2

)ν

.
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Proof Since

(5.2.15) |Jn(w)| ≤ 1

n!

( |w|
2

)n

e|Im(w)|

(cf. e.g. [Wa] §3.31), with the notation of Prop 5.2.1, we obtain

|C(ν)
σ,℘(z)| ≤

∞∑

`=0

1

q`

(
ν + `

ν

)
1

(ν + `)!

(
rσ,℘|z|

2

)ν+`

(5.2.16)

=
1

ν!

(
rσ,℘|z|

2

)ν

exp

(
rσ,℘|z|

2q

)
;

(5.2.17) |Aσ,℘(n, z)| ≤ 1

q|n|

|n|∑
ν=1

( |n| − 1
ν − 1

)
(q − q−1)ν |C(ν)

σ,℘(z)|.

But since (q − q−1)rσ,℘ = log N(℘) and q−1rσ,℘ = |cσ,℘|, (5.2.14) follows. 2

Corollary 5.2.18 Put q = N(℘)σ, λ = log N(℘). Then

(5.2.19)
∑

n∈Z
|Aσ,℘(n, z)|(|n|+ 1) < exp{2λ|z|

(
1

q − 1
+

4

q2 − 1

)
}.

Proof By (5.2.14) (and by |Aσ,℘(0, z)| ≤ 1), the left hand side of (5.2.19) is bounded by

(5.2.20) 1 + 2e
1
2
|cσ,℘z|{

∞∑
n=1

n + 1

qn

n∑
ν=1

1

ν!

(
n− 1
ν − 1

)(
λ|z|
2

)ν

}.

Now since
∞∑

k=0

(
ν + k − 1

k

)
(ν + k + 1)tk = t−ν d

dt

(
tν+1(1− t)−ν

)
= (ν + 1− t)(1− t)−ν−1,

for ν ≥ 1, the sum in the braces in (5.2.20) may be rewritten (using k = n− ν ≥ 0) as

∞∑
ν=1

1

ν!

(
λ|z|
2q

)ν

{
∞∑

k=0

(
ν + k − 1

k

)
(ν + k + 1)

qk
}(5.2.21)

=
∞∑

ν=1

1

ν!

(
λ|z|
2q

)ν

(ν + 1− q−1)(1− q−1)−ν−1

=

(
1 +

λ|z|
2q(1− q−1)2

)
exp

(
λ|z|

2(q − 1)

)
− 1

< exp{λ|z|
2

(
q

(q − 1)2
+

1

q − 1

)
} − 1.

38



Since |cσ,℘| = λ(q2 − 1)−1, we obtain

∑

n∈Z
|Aσ,℘(n, z)|(|n|+ 1) < 2 exp{λ|z| q2 + q − 1

(q − 1)(q2 − 1)
} − 1(5.2.22)

≤ exp{2λ|z| q2 + q − 1

(q − 1)(q2 − 1)
} < exp{2λ|z|

(
1

q − 1
+

4

q2 − 1

)
}

(because q ≥ √
2 > 4/3). 2

Remark 5.2.23 We can show that if N(℘) is sufficienly large compared with |z|, then

(5.2.24)
∑

n∈Z
|Aσ,℘(n, z)| ≥ |M̃σ,℘(z)| exp

(
λB

q − 1

)
,

where B > 0 depends on σ, K and z. Thus, the “core” of Cor 5.2.18 that will be used
later cannot be expected to be improved.

Remark 5.2.25 This is just to draw a full circle and not for applications in the present
paper. Theorem 5 in §3.7 gives a Dirichlet series expansion for M̃s(z1, z2). By (5.1.7), we
meet a more general Dirichlet series

(5.2.26)
∑

D2D−1
1 =D0

λD1(z1)λD2(z2)N(D1D2)
−s,

where D0 is a given fractional divisor of K, and D1, D2 run over all integral divisors of K
such that D2D

−1
1 = D0. (D0 corresponds to P n). This series is also absolutely convergent

on Re(s) > 1/2.
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6 Connections with L′(χ, s)/L(χ, s); (II) Case σ > 3/4

6.1

The main goal of §6 is to prove the following

Theorem 7 Consider the function field case of §4. Then, among the equalities (i) ∼
(iii) in Theorem 6, namely
(i)

AvgχΦ

(
L′(χ, s)

L(χ, s)

)
=

∫

C
Mσ(w)Φ(w)|dw|,

(ii)

Avgχψz

(
L′(χ, s)

L(χ, s)

)
= M̃σ(z),

(iii)

AvgχP (a,b)

(
L′(χ, s)

L(χ, s)

)
= (−1)(a+b)µ(a,b)

σ ,

(ii) and (iii) hold also when σ > 3/4. The equality (i) holds if either
(a) σ > 3/4, Φ ∈ L1∩L∞ and moreover the Fourier transform of Φ has compact support,
or
(b) σ > 5/6 and Φ is a standard function in the sense of [We].

Conjecture The theorem holds for any σ > 1/2 and any continuous function Φ(w)
with compact support.

Remarks 6.1.1 1. Remarks alluded to the number field case will be in §6.9.

2. Cor 4.2.1 holds also in the function field case if σ > 3/4.

6.2

First, we fix some notation. We denote by ClK the group of divisor classes of K in
degree 0, and hK = |ClK | the class number. For a prime divisor f 6= ℘∞, denote by If

(resp. I
(0)
f ) the group of divisors of K (resp. those of degree 0) that are coprime with

f , and by Gf the quotient of If by the subgroup generated by ℘∞ and all the principal
divisors of the form (α) with α ≡ 1 (mod f). Since deg(℘∞) = 1, Gf is canonically

isormorphic to the quotient of I
(0)
f by the subgroup generated by those (α). Call

(6.2.1) if : If 7−→ Gf ,
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(6.2.2) jf : Gf 7−→ ClK ,

the projections, so that Ker(jf ) ∼= κ×f /F×q , where κf denotes the residue field of f . Thus,

(6.2.3) |Gf | = hK(N(f)− 1)/(q − 1).

For any finite abelian group G, Ĝ will denote its character group. Thus, ĵf embeds ˆClK
into Ĝf . The Dirichlet characters χ of K with conductor f satisfying χ(℘∞) = 1 are the
elements of Ĝf \ ĵf (ĈlK); hence

(6.2.4) #{χ; fχ = f} = |Gf | − |ClK | = hK(N(f)− q)/(q − 1).

6.3

Now let P be any finite set of primes 6= ℘∞ of K. For a prime f 6= ℘∞, consider two
averages

(6.3.1) S ′f =

∑
fχ=f ψz

(
L′P (χ,s)

LP (χ,s)

)
∑

fχ=f 1
=

∑
χ∈Ĝf\ĵf (ĈlK) ψz

(
L′P (χ,s)

LP (χ,s)

)

|Gf | − |ClK | ,

(6.3.2) Sf =

∑
fχ|f ψz

(
L′P (χ,s)

LP (χ,s)

)
∑

fχ|f 1
=

∑
χ∈Ĝf

ψz

(
L′P (χ,s)

LP (χ,s)

)

|Gf | .

Clearly, |Sf |, |S ′f | ≤ 1. It is also easy to see that

(6.3.3) |S ′f − Sf | ≤ 2(q − 1)

N(f)− 1
¿ 1

N(f)
.

When f 6∈ P , Sf can be expressed in terms of the Fourier series

(6.3.4) ψz(gσ,P (tP )) =
∑

n∈ZP

Aσ,P (n; z)tnP ,

(cf. §5; Aσ,P (n; z) = Aσ,P (n; z, z̄)) as follows. Since

(6.3.5)
L′P (χ, s)

LP (χ, s)
= gσ,P

(
χP N(P )−τi

)

(τ = Im(s)), we have

(6.3.6) ψz

(
L′P (χ, s)

LP (χ, s)

)
=

∑

n∈ZP

Aσ,P (n; z)(χP N(P )−τi)n.
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For each n ∈ ZP , define the divisor P n of K by

(6.3.7) P n =
∏
℘∈P

℘n℘ ,

where n = (n℘)℘∈P . Then χn
P = χ(P n), (N(P )−τi)n = N(P n)−τi; hence the orthogonality

relation for characters gives

(6.3.8)
1

|Gf |
∑

χ∈Ĝf

χn
P =

{
1 · · · if (P n) = 1,

0 . . . otherwise.

Therefore,

(6.3.9) Sf =
∑

n∈ZP
if (P

n)=1

Aσ,P (n; z)N(P n)−τi,

whenever f 6∈ P . Now let us estimate the quantity

(6.3.10) |AvgN(fχ)≤mψz

(
L′P (χ, s)

LP (χ, s)

)
− M̃σ,P (z)|

when m is large compared with |P |. Let π(x) = πK(x) denote the number of prime
divisors f 6= ℘∞ with N(f) ≤ x. Then π(x) ∼ x/ log x; hence by our definition of Avg
(§4.1),

(6.3.11)

AvgN(fχ)≤mψz

(
L′P (χ, s)

LP (χ, s)

)
=

∑
N(f)≤m S ′f∑
N(f)≤m 1

=

∑
N(f)≤m Sf

π(m)
+ O

(∑
N(f)≤m N(f)−1

π(m)

)

=

∑
N(f)≤m, f 6∈P∪{℘∞} Sf

π(m)
+ O

(
log m

m
|P |+ log m log log m

m

)
,

and by (6.3.9) the main term on the last line of (6.3.11) is given by

(6.3.12)
∑

n∈ZP

ε(m)(n)Aσ,P (n; z)N(P n)−τi,

where

(6.3.13) ε(m)(n) =
1

π(m)
#{f 6∈ P ∪ (℘∞); N(f) ≤ m, if (P

n) = 1}.
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Note that 0 ≤ ε(m)(n) ≤ 1, and that if P = Py with y < m, then

(6.3.14) ε(m)(0) = 1− π(y)

π(m)
.

Recall (5.1.12):

(6.3.15) Aσ,P (0; z) = M̃σ,P (z).

Now we are going to let both m and y grow, but with m much faster than y. We shall
take

(6.3.16) y ≤ (log m)b

(and y 7→ ∞), where b is a positive constant to be specified later which will depend only
on σ. For such a case,

(6.3.17) ε(m)(0) = 1 + O

(
logb+1 m

m

)
;

hence

(6.3.18) ε(m)(0)Aσ,P (0; z) = M̃σ,P (z) + O

(
logb+1 m

m

)

(since |M̃σ,P (z)| ≤ 1); hence we obtain the first basic formula:

(6.3.19)

AvgN(fχ)≤mψz

(
L′P (χ, s)

LP (χ, s)

)
− M̃σ,P (z) =

∑

n∈ZP \(0)
ε(m)(n)Aσ,P (n; z)N(P n)−τi

+O

(
logb+1 m

m

)
,

when P = Py with y ≤ (log m)b.
This basic formula is, at the same time, a branch point for the choice of the next

way to proceed. The road we choose here is less challenging, as the goal is “σ > 3/4
results”. This method takes the absolute value of each term of the Fourier expansion in
(6.3.19), and estimate the sum of these absolute values. This can be done, as we shall
see below, but by this method, it is unlikely that we can get anything better than our
“σ > 3/4 results” (see Remark 6.6.4 (ii)). The other, seemingly more difficult way towards
“σ > 1/2 results” is to hope that one can make use of the fact that

(6.3.20) |
∑

n∈ZP

Aσ,P (n; z)N(P n)−τi| = |ψz(gσ,P (N(P )−τi))| ≤ 1,
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and that the “expected average” of ε(m)(n) is so small as

(6.3.21) ∼ 1

π(m)

∑

N(f)≤m

|Gf |−1 ¿ 1

m
(log m)(log log m).

Presently, the author is not able to show (even when τ = 0) that the size of ε(m)(n) and
,say, the sign of Re(Aσ,P (n; z)) are independently distributed, and so we must rely on the
evaluation of the sum of absolute values.

6.4

In order to estimate the sum

(6.4.1)
∑

n∈ZP \(0)
ε(m)(n)|Aσ,P (n; z)|,

we need the following two sublemmas.

Sublemma 6.4.2 Let D be any divisor of K such that D 6= (1), Supp(D) 63 ℘∞. Then

(6.4.3) #{f ; if (D) = 1} ¿ log ‖ D ‖
log log ‖ D ‖ +2

.

Here, the condition on f preassumes that it is a prime not contained in SuppD ∪ {℘∞},
and we put ‖ D ‖= ∏

℘∈P N(℘)|n℘| for D =
∏

℘∈P ℘n℘.

Proof In fact, if (D) = 1 holds only if D℘−deg D
∞ = (α) and α ≡ c (mod f) with some

c ∈ F×q . So, the left hand side of (6.4.3) is bounded by the sum of |Supp(α − c)| over all
c ∈ F×q . But since (α− c) has the same denominator as (α), we have ‖ α− c ‖=‖ α ‖≤
‖ D ‖2; hence (6.3.4) follows directly from Sublemma 3.10.5. 2

Corollary 6.4.4 For P = Py, y < (log m)b, and n = (n℘) ∈ ZP \ (0),

(6.4.5) ε(m)(n) ¿ (log m)(log log m)

m

∏
℘∈P

(|n℘|+ 1).

Proof Since

(6.4.6) log ‖ P n ‖=
∑
℘∈P

|n℘| log N(℘) <

(∏
℘∈P

(|n℘|+ 1)

)
log y,

we obtain by Sublemma 6.4.2 that

(6.4.7) #{f ; if (P
n) = 1} ¿ (log log m)

∏
℘∈P

(|n℘|+ 1);

hence (6.4.5). 2
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Sublemma 6.4.8 Let σ > 1/2. Then

(6.4.9)
∑

N(℘)≤y

log N(℘)

N(℘)σ − 1
< q1−σ y1−σ − 1

q1−σ − 1
log q + C ′

K,σ.

When σ = 1, the first term on the right hand side means the limit value at σ = 1; namely,
log y.

Proof This is standard and is an easy exercise. But we shall sketch the proof, in order
to show how Weil’s Riemann hypothesis for curves is used and to make it explicit where
C ′

K,σ comes from.
The left hand side of (6.4.9) is equal to

(6.4.10)
∑

N(℘)≤y
k≥1

log N(℘)

N(℘)kσ
=

∑

N(℘k)≤y

+
∑

N(℘)≤y

N(℘k)>y

,

and the first sum can be rewritten as

(6.4.11)
∑

dk≤logq y

dBd

qdkσ
log q =

∑

n≤logq y

Nn

qnσ
log q,

where Bd is the number of prime divisors of K with degree d, and Nn =
∑

d|n dBd is the
number of Fqn-rational points of the corresponding curve. Use the consequence of the
Weil Riemann Hypothesis

(6.4.12) Nn ≤ qn + 1 + 2gqn/2

to bound (6.4.11), and use

(6.4.13)
∑

N(℘)≤y

N(℘k)>y

≤
∑

k≥2, ℘

log N(℘)

N(℘)σk
=

∑
℘

log N(℘)

N(℘)2σ(1−N(℘)−σ)
< ∞

to bound the second sum on the right hand side of (6.4.10). The main term on the right
hand side of (6.4.11) of course comes from qn on the right hand side of (6.4.12). 2
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Now, by Corollary 6.4.4 and by Cor 5.2.18, we obtain

(6.4.14)

∑

n∈ZP \(0)

ε(m)(n)|Aσ,P (n; z)| ¿ (log m)(log log m)

m

∏
℘∈P


 ∑

n℘∈Z
|Aσ,℘(n℘; z)|(|n℘|+ 1)




¿ (log m)(log log m)

m
exp{2|z|

∑
℘∈P

(
log N(℘)

N(℘)σ − 1
+

4 log N(℘)

N(℘)2σ − 1

)
}

¿ (log m)(log log m)

m
exp{2|z|

(∑
℘∈P

log N(℘)

N(℘)σ − 1
+ C”K,σ

)
},

with some positive constant C”K,σ depending only on K and σ. Therefore, by (6.3.19)
and Sublemma 6.4.8, we obtain

(6.4.15)

|AvgN(fχ)≤mψz

(
L′P (χ, s)

LP (χ, s)

)
− M̃σ(z)| ¿ (log m)(log log m)

m
exp{2|z|CK,σ(y1−σ + 1)}

+|M̃σ,P (z)− M̃σ(z)|+ logb+1 m

m
· · ·σ 6= 1,

and when σ = 1, y1−σ is to be replaced by log y. Here, ¿ and CK,σ depend only on K
and σ.

6.5

In order to estimate the difference

(6.5.1) |AvgN(fχ)≤mψz

(
L′(χ, s)

L(χ, s)

)
− M̃σ(z)|,

we need, in addition to (6.4.15), the following lemma for which our assumption that
K be a function field is more essential. (Indeed, the validity of the lemma implies the
Generalized Riemann Hypothesis for L(s, χ).)

Lemma 6.5.2 Let K be any function field over Fq, and P = Py (y > 1) denote the set
of prime divisors of K with N(℘) ≤ y. Let χ be any non-principal Dirichlet character on
K and L(χ, s) (resp. LP (χ, s)) be the associated L-function (resp. the partial L-function
)

(6.5.3) LP (χ, s) =
∏
℘∈P

(1− χ(℘)N(℘)−s)−1 (Re(s) > 0).
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Let now σ = Re(s) > 1/2. Then

(6.5.4) |L
′(χ, s)

L(χ, s)
− L′P (χ, s)

LP (χ, s)
| ¿ (log N(fχ))y

1
2
−σ.

Here, if ε > 0 is fixed and σ ≥ 1
2

+ ε, the implied constant depends only on K and ε.

This is an easy exercise, but being also a basic point in our argument, we shall sketch the
proof.
Proof First note that (for Re(s) > 0)

−L′P (χ, s)

LP (χ, s)
= −

∑

N(℘)≤y

χ(℘) log N(℘)

χ(℘)−N(℘)s
(6.5.5)

=
∑

N(℘)≤y
k≥1

χ(℘)k log N(℘)

N(℘)ks
.

Divide the last double sum over ℘ and k into two parts

(6.5.6) A =
∑

N(℘k)≤y

, B =
∑

N(℘)≤y

N(℘k)>y

,

so that

(6.5.7) |L
′(χ, s)

L(χ, s)
− L′P (χ, s)

LP (χ, s)
| ≤ |L

′(χ, s)

L(χ, s)
+ A|+ |B|.

Estimation of |L′(χ,s)
L(χ,s)

+ A|
By Weil, since χ is non-principal, L(χ, s) is a polynomial of u = q−s of the form

(6.5.8) L(χ, s) =

Dχ∏
ν=1

(1− πνu),

where

(6.5.9) Dχ = 2g − 2 + deg fχ

(g: the genus), and |πν | = q1/2 for all ν. And since du = −u(log q)ds,

(6.5.10)
L′(χ, s)

L(χ, s)
=

Dχ∑
ν=1

πνu

1− πνu
log q.
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On the other hand, as a power series of u,

(6.5.11)
L′(χ, s)

L(χ, s)
= −

( ∑

℘, k≥1

χ(℘)k(deg ℘)uk.deg ℘

)
log q.

Therefore, if n denotes the integral part of logq y, then L′(χ, s)/L(χ, s)+A is nothing but
the “degree > n -part” of (6.5.11); hence that of (6.5.10); hence is given by

(6.5.12)

Dχ∑
ν=1

(πνu)n+1

1− πνu
log q.

But since |πνu| = q1/2−σ, we obtain

(6.5.13) |L
′(χ, s)

L(χ, s)
+ A| ≤ Dχ

y
1
2
−σ

1− q
1
2
−σ

(log q).

Estimation of |B|
With the notation as in (6.4.11), we have

|B| ≤
∑

N(℘)≤y

N(℘)k>y

log N(℘)

N(℘)kσ
=

∑

d≤n
dk>n

dBd

qdkσ
log q(6.5.14)

≤




∑

d≤n
dk>n

qd + 2gqd/2 + 1

qdkσ


 log q

¿
∑

d≤n

qd(log q)


 ∑

k>n/d

q−dkσ


 .

And the inner sum over k is bounded by the geometric series with the ratio q−dσ starting
from q−nσ. But when d ≥ n/2, we must use a better bound

(6.5.15)
∑

k>n/d

q−dkσ ≤
∑

k≥2

q−dkσ

to make it effecitve for our purpose. We thus obtain

(6.5.16) |B| ¿ y
1
2
−σ

1− q1−2σ
log q <

y
1
2
−σ

1− q
1
2
−σ

log q.

2

48



Corollary 6.5.17

(6.5.18) |AvgN(fχ)≤mψz

(
L′(χ, s)

L(χ, s)

)
− AvgN(fχ)≤mψz

(
L′P (χ, s)

LP (χ, s)

)
| ¿ (log m)|z|y 1

2
−σ.

Proof Since the segment of a circle is shorter than the arc,

|ψz(w
′)− ψz(w)| = | exp(iRe(z̄(w′ − w)))− 1| ≤ |Re(z̄(w′ − w))|(6.5.19)

≤ |z||w′ − w|.

Therefore, the Corollary follows immediately from Lemma 6.5.2. 2

Remark 6.5.20 Note that (log m) in (6.5.18) comes from log N(fχ) in (6.5.4). Since,
here, we average over χ, it would be possible that the former can be replaced by something
smaller. For the effect of such a possible replacement, see Remark 6.6.4 (i).

6.6 Proof of Theorem 7 (ii)

We first prove (ii). By (6.4.15) and Cor 6.5.17, we have, for y = (log m)b, b > 0, σ > 1/2,

(6.6.1)

|AvgN(fχ)≤mψz

(
L′(χ, s)

L(χ, s)

)
− M̃σ(z)| ¿ (log m)(log log m)

m
exp{2|z|CK,σ(y1−σ + 1)}

+|M̃σ,Py(z)− M̃σ(z)|+ logb+1 m

m

+(log m)|z|y 1
2
−σ,

where y1−σ inside the exponential braces should be replaced by log y when σ = 1.

Note that if

(6.6.2) 1 < (σ − 1

2
)b,

the last term on the right hand side of (6.6.1) tends to 0 as m 7→ ∞, while if

(6.6.3) (1− σ)b < 1,

then the first term has this property (including the case σ = 1). Note finally that the
middle terms tend to 0 for any b (cf. Theorem 3(i)). The necessary and sufficient condition
for σ to have a solution b satisfying both (6.6.2) and (6.6.3) is that either (i) σ ≥ 1, or
(ii) σ < 1 and (σ − 1/2)/(1 − σ) > 1 holds, i.e., simply that σ > 3/4 holds. Therefore,
when σ > 3/4, (6.6.1) tends to 0 as (y = (log m)b (b being as above) and) m 7→ ∞. This
proves (ii).
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Remarks 6.6.4 (i) If (log m) in (6.5.18) can be replaced by, say, (log m)1/2+ε (resp.
(log m)ε) for any ε > 0, then (6.6.2) will be replaced by (σ − 1/2)b > 1/2 (resp. > 0);
hence it would imply that Theorem 7(ii) holds for σ > 2/3 (resp. σ > 1/2).
(ii) As regards the estimation of the sum (6.4.1), the partial sum over ‖ P n ‖≤ log m,
as well as that over ‖ P n ‖≥ (log m)b+ε, tend to 0 as m 7→ ∞. The crucial part is the
“middle” sum

(6.6.5)
∑

log m<‖P n‖<(log m)b+ε

ε(m)(n)|Aσ,P (n, z)|.

For this, even if we replace ε(m)(n) by 1/m, it does not tend to 0 unless b(1− σ) < 1.

6.7 Proof of Theorem 7 (iii)

The point is to show that the analytic function

(6.7.1) AvgN(fχ)≤mψz1,z2

(
L′(χ, s)

L(χ, s)

)

of z1, z2 ∈ C tends to M̃σ(z1, z2) uniformly on some neighborhood U of (0, 0); say, U =
{(z1, z2); |z1|, |z2| < 1}. This can be done by a slight modification of Cor 5.2.18 and the
above arguments. Thus, for each a, b ≥ 0, if we write D(a,b) = ∂a+b/∂za

1∂zb
2, then

(6.7.2) AvgN(fχ)≤mD(a,b)ψz1,z2

(
L′(χ, s)

L(χ, s)

)

tends (uniformly) to D(a,b)M̃σ(z1, z2) on U . But since

(6.7.3) D(a,b)ψz1,z2(w)|(z)=(0) = (i/2)a+bw̄awb,

(6.7.4) D(a,b)M̃σ(z1, z2)|(z)=(0) = (−i/2)a+bµ(a,b)
σ ,

(by Theorem 5 of §3), (iii) follows.

6.8 Proof of Theorem 7 (i)

First, since Mσ and M̃σ = M∧
σ belong to L1 ∩ L∞, and since Mσ(w) = Mσ(w), M̃σ(w) =

M̃σ(−w), we have

(6.8.1)

∫

C
Mσ(w)Φ(w)|dw| =

∫

C
M̃σ(−z)Φ∧(z)|dz|.
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And since

(6.8.2) Φ(w) =

∫

C
Φ∧(z)ψ−z(w)|dz|,

we have

(6.8.3) AvgN(fχ)≤mΦ

(
L′(χ, s)

L(χ, s)

)
=

∫

C
Φ∧(z)AvgN(fχ)≤mψ−z

(
L′(χ, s)

L(χ, s)

)
|dz|.

Therefore,

AvgN(fχ)≤mΦ

(
L′(χ, s)

L(χ, s)

)
−

∫

C
Mσ(w)Φ(w)|dw|(6.8.4)

=

∫

C
Φ∧(z)

(
AvgN(fχ)≤mψ−z

(
L′(χ, s)

L(χ, s)

)
− M̃σ(−z)

)
|dz|.

Since (6.6.1) tends uniformly to 0 on any domain where |z| is bounded, the case (a) is
settled.

When σ > 5/6, so that 2(1 − σ) < σ − 1
2
, we can choose b > 0 such that 2(1 − σ) <

b−1 < σ − 1
2
. (We may assume σ ≤ 1; hence this also implies 1 − σ < b−1.) Then

a := b(1− σ) < 1
2
.

Now, Φ(z) is assumed to be a standard function, i.e., the product of a polynomial of
x, y and exp(−Q(x, y)), where z = x + yi and Q(x, y) is some positive definite quadratic
form (with real coefficients). This implies that Φ∧(z) is also a standard function; hence

(6.8.5) |Φ∧(z)| ¿ exp(−A|z|2),

with some A > 0. But it is easy to see that for any constant C > 0,

(6.8.6)

∫ ∞

0

exp(−Ar2 + 2Cr(log m)a)rdr ¿ (log m)a exp(
C2

A
(log m)2a).

By (6.6.1), this shows that the absolute value of the right hand side of (6.8.4) is bounded
by

(6.8.7)
(log m)a+2

m
exp(

C2
K,σ

A
(log m)2a) + o (1) .

But since 2a < 1, the main term must also tend to 0 as m 7→ ∞.

This completes the proof of Theorem 7. 2
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6.9 Remarks alluded to the number field case

In §6, we have restricted our attention solely to the function field case. We note here that
this restriction was necessary only for the validity of Sublemma 6.4.8 and Lemma 6.5.2.

As for Sublemma 6.4.8, if we assume GRH (the Generalized Riemann Hypothesis) for
ζK(s) for a number field K, then the following substitute holds.

Sublemma 6.9.1 (Under GRH) If σ > 1/2 and y > 1,

(6.9.2)
∑

N(℘)≤y

log N(℘)

N(℘)σ − 1
¿ y1−σ − 1

1− σ
,

where the implied constant depends only on K and σ, and the right hand side is to be
replaced by log y when σ = 1.

As for Lemma 6.5.2, its validity would of course imply the holomorphy of L′(χ, s)/L(χ, s)
on Re(s) > 1/2 and hence the GRH for L(χ, s) (χ 6= χ0). It is not clear to the author
whether conversely the GRH implies Lemma 6.5.2 (except when s = 1 [IMS]).

At any rate, the validity of Theorem 7 in the number field case (§4.1) depends “only”
on that of (6.9.2) and of Lemma 6.5.2 for this case.
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