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Abstract. Étale endomorphisms of complex projective manifolds are constructed from

two building blocks up to isomorphism if the good minimal model conjecture is true.

They are the endomorphisms of abelian varieties and the nearly étale rational endomor-

phisms of weak Calabi–Yau varieties.

1. Introduction

We work over the field C of complex numbers. In this paper, we shall give a systematic

study of étale endomorphisms of nonsingular projective varieties. The étaleness assump-

tion is quite natural because every surjective endomorphism of X is étale provided that

X is a nonsingular projective variety and is non-uniruled. In the study of birational

classification of algebraic varieties, we usually have the following three reductions, where

κ denotes the Kodaira dimension and q denotes the irregularity:

(A) Varieties of κ > 0 ⇒ varieties of κ = 0, by the Iitaka fibration.

(B) Varieties of κ = 0 ⇒ abelian varieties and varieties with κ = q = 0, by the

Albanese map.

(C) Uniruled varieties ⇒ non-uniruled varieties, by the maximal rationally connected

fibration (cf. [8] and [34]).

We want to show that there are similar reductions in the study of étale endomorphisms

of nonsingular projective varieties. Theorems A, B, and C below correspond to the reduc-

tions (A), (B), and (C), accordingly. See [50] for automorphisms of algebraic manifolds

of dimension ≥ 3.

1.1. The reduction (A). This reduction is based on the Iitaka fibration. Let X be a

nonsingular projective variety of κ(X) > 0. Then any surjective endomorphism f of X

is étale. From a standard argument of pluricanonical systems, we infer that f induces

an automorphism g of the base space Y of the Iitaka fibration X ···→Y . In Theorem
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A, we shall show that the order of g is finite. This is conjectured in several papers

(cf. [1, Proposition 6.4], [18, Proposition 3.7]). Theorem A treats not only holomorphic

surjective endomorphisms of projective varieties of κ > 0 but also dominant meromorphic

endomorphisms of compact complex manifolds of κ > 0 in the class C in the sense of

Fujiki [15]. Note that a compact complex manifold is in the class C if and only if it is

bimeromorphic to a compact Kähler manifold (cf. [46]).

Theorem A. Let X be a compact complex manifold in the class C of κ(X) ≥ 1 and

let f : X ···→X be a dominant meromorphic map. Let Wm be the image of the m-th

pluricanonical map

Φm : X ···→ |mKX |∨ = P(H0(X,mKX))

giving rise to the Iitaka fibration of X. Then there is an automorphism g of Wm of finite

order such that Φm ◦ f = g ◦ Φm.

Remark.

(1) If f is holomorphic, then, resolving the indeterminacy points of Φm, we may

assume that both f : X → X and Φm : X → Wm are holomorphic so that Φm◦f =

g ◦ Φm. This is because f is étale and we can take an equivariant resolution of

the graph of Iitaka fibration (cf. Section 1.4 and the proof of Lemma 5.2).

(2) Theorem A is known to be true by Deligne and Nakamura–Ueno when X is

Moishezon and f is a bimeromorphic automorphism (cf. [45, Theorem 14.10],

[40]).

1.2. The reduction (B). For a compact Kähler manifold M with c1(M)R = 0, we have

a finite étale cover M̃ → M such that M̃ ≃ T × F for a complex torus T and a simply

connected manifold F with c1(F ) = 0, by Bogomolov’s decomposition theorem (cf. [6],

[2]). For a normal projective variety V with only canonical singularities and with torsion

KV , we have the following weak decomposition by Kawamata [27, Corollary 8.4]:

There exists a finite étale covering F × A → V for a weak Calabi–Yau variety F and

for an abelian variety A.

Here, a normal projective variety F is called weak Calabi–Yau if F has only canonical

singularities, KF ∼Q 0, and

qmax(F ) := max{q(F ′) | F ′ → F is finite étale} = 0

(cf. Section 4.1). If F is a nonsingular weak Calabi–Yau variety, then F is simply con-

nected by Bogomolov’s decomposition theorem, so F is expressed as a product of holo-

morphic symplectic manifolds and of Calabi–Yau manifolds.



ÉTALE ENDOMORPHISMS OF PROJECTIVE MANIFOLDS 3

In order to study the surjective endomorphisms of a nonsingular projective variety X

of κ(X) = 0, we assume the existence of a good minimal model V of X; but we allow the

variety V to have canonical singularities as in [27]. Then it has a meaning to consider the

reduction of the endomorphisms to those of weak Calabi–Yau varieties F and of abelian

varieties A by an étale covering F × A → V . Unfortunately, a holomorphic surjective

endomorphism of X induces only a rational map V ···→V , but it satisfies the condition

of nearly étale map, which is introduced in Section 3. Therefore, Theorem B below is

meaningful for the reduction of type (B):

Theorem B. Let V be a normal projective variety with only canonical singularities such

that KV ∼Q 0. Let h : V ···→V be a dominant rational map which is nearly étale. Then

there exist an abelian variety A, a weak Calabi–Yau variety F , a finite étale morphism

τ : F × A → V , a nearly étale dominant rational map ϕF : F ···→F , and a finite étale

morphism ϕA : A → A such that τ ◦ (ϕF × ϕA) = h ◦ τ , i.e., the diagram below is

commutative:
F × A ϕF×ϕA···→ F × A
τ ↓ ↓ τ

V
h···→ V.

Remark.

(1) We have deg h = degϕF degϕA. In particular, the commutative diagram above is

birationally cartesian.

(2) If F has only terminal singularities, then ϕF is étale in codimension one, i.e., there

are closed subsets B1, B2 ⊂ F with codimB1 ≥ 2, codimB2 ≥ 2 such that ϕF

induces a finite étale morphism F \B1 → F \B2 (cf. Lemma 3.3, Remark 3.8).

(3) If the algebraic fundamental group πalg
1 (F ) is finite, then ϕF is a birational auto-

morphism (cf. Section 4.4). In particular, if V has only terminal singularities and

qmax(V ) = dimV − 2, then ϕF is an automorphism.

1.3. The reduction (C). Let X be a uniruled nonsingular projective variety. A maxi-

mal rationally connected fibration of X in the sense of [8] and [34] is obtained by a certain

rational map X ···→ Chow(X) into the Chow variety Chow(X), which assigns a general

point x ∈ X a maximal rationally connected subvariety containing x. Let Y be the nor-

malization of the image of X ···→ Chow(X) and let π : X ···→Y be the induced rational

fibration. Assume that X admits an étale endomorphism f : X → X. Then we have

a functorial morphism f∗ : Chow(X) → Chow(X). Thus, it induces an endomorphism

h : Y → Y such that π ◦ f = h ◦ π. Since rationally connected manifolds are simply

connected, the endomorphism f is induced from h. In Theorem C below, we shall show

that h is nearly étale (cf. Section 3).
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Theorem C. Let X be a projective complex manifold with an étale endomorphism f .

Assume that X is uniruled. Then there exist a projective manifold M with an étale

endomorphism fM : M → M , a non-uniruled normal projective variety Y with a nearly

étale endomorphism h : Y → Y , a birational morphism µ : M → X, and a surjective

morphism π : M → Y such that

(1) µ ◦ fM = f ◦ µ, π ◦ fM = h ◦ π,
(2) deg f = deg fM = deg h,

(3) π◦µ−1 : X ···→M → Y is birational to the maximal rationally connected fibration

of X.

Remark.

(1) To distinguish well, we denote fM : M1 = M → M2 = M and h : Y1 = Y → Y2 =

Y . ThenM1 is isomorphic to the normalization ofM2×Y2Y1 so that fM : M1 →M2

can be regarded as the natural projection (cf. Remark 5.5).

(2) Let us denote by Yrat ⊂ Y the open subset consisting of the smooth points and the

points of rational singularity. Then h−1(Yrat) = Yrat and the restriction Yrat → Yrat

of h is étale, by Proposition 3.12.

(3) If Y has the relative canonical model Ycan for resolutions of singularities of Y , then

h lifts to an étale endomorphism of Ycan and also lifts to an étale endomorphism of

a certain resolution Y ′ of singularities of Y , by Lemma 3.9. The recent paper [3]

has announced a proof of the existence of minimal models of varieties of general

type even in a relative setting. The existence of our relative canonical model Ycan

follows from the result.

1.4. Equivariant resolutions. Let V be a normal projective complex variety and let

f : V → V be an étale endomorphism. Then there exists a resolution of singularities

µ : X → V such that the induced rational map

X
µ−→ V

f−→ V
µ−1

···→X

is a holomorphic étale endomorphism of X. This is known as the existence theorem of an

equivariant resolution when f is an automorphism. However, the proof is also effective

for non-isomorphic étale endomorphisms:

A method of resolution of singularities is called to have a functoriality if, for any smooth

morphism X → Y , and for the resolutions of singularities X ′ → X and Y ′ → Y given

by the method, X ′ is isomorphic to the fiber product X ×Y Y ′. The recent methods by

Bierstone–Milman and by Villamayor using invariants have the functoriality (cf. [4], [11],

[12], [48], [33]).
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Therefore, we call the resolution X → V above also an equivariant resolution even if

f is a non-isomorphic endomorphism of V .

1.5. The meaning of our reduction. Let X be a nonsingular projective variety with

an étale endomorphism f .

First, assume thatX is uniruled. In view of Theorem C, f is considered to be built from

a nearly étale endomorphism h of a non-uniruled normal variety Y up to isomorphism.

Moreover, we can replace Y to be a nonsingular variety and h to be an étale endomor-

phism, provided that the minimal model conjecture is true for varieties birational to

Y .

It is conjectured that a variety X is not uniruled if and only if κ(X) ≥ 0. This is

regarded as a weak version of the abundance conjecture, and the three-dimensional case

is proved by Miyaoka [37], which is a key to the proof of the three-dimensional abundance

conjecture by [38] and [28].

The good minimal model conjecture is the combination of the minimal model conjecture

and the abundance conjecture. Thus, under the assumption of good minimal model

conjecture, the study of étale endomorphisms is reduced to that of étale endomorphisms

of varieties of κ ≥ 0.

Second, assume that κ(X) > 0. Then we have the Iitaka fibration Φ: X ···→Y , and f

induces an automorphism g of Y of finite order by Theorem A. By replacing X with a

birational model, we may assume that Φ is holomorphic as in the remark mentioned just

after Theorem A. By iterating f , we may assume f to be a morphism over Y . Then f

induces an étale endomorphism of a general fiber F of Φ. This is a kind of reduction of f to

an endomorphism of varieties of κ = 0. In fact, from the viewpoint of complex dynamics,

several results are known on the topological entropies and the dynamical degrees of f and

f |F . In Appendix A, we shall show that d1(f) = d1(f |F ) for the first dynamical degree

d1 (cf. Theorem A.10), and that htop(f) = htop(f |F ) for the topological entropies htop (cf.

Theorem D).

However, even if we know the endomorphisms of fibers very well, it is rather difficult

to determine the structure of f , as in the papers [17] and [18], which have determined

the structure of endomorphisms of 3-dimensional projective manifolds of κ ≥ 0.

Third, assume that κ(X) = 0. As in Section 1.2, an étale endomorphism f of X

induces a nearly étale rational endomorphism of a weak Calabi–Yau variety F and an

endomorphism of an abelian variety A, provided that the good minimal model conjecture

is true. However, it is not clear that the nearly étale endomorphism induces an étale

endomorphism of a certain resolution of singularities of F . Further, for the converse
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direction, it seems to remain the problem on recovering the original endomorphism f

from the two endomorphisms of F and A (cf. [17] for the 3-dimensional case).

Therefore, we can conclude, under the assumption of good minimal model conjecture,

that the nearly étale endomorphisms of weak Calabi–Yau varieties and the endomor-

phisms of abelian varieties are the building blocks of all the étale endomorphisms of

projective manifolds.

For non-étale surjective endomorphisms (necessarily on uniruled manifolds), on the one

hand, we know many examples of rationally connected varieties admitting non-isomorphic

surjective endomorphisms, such as the projective space, toric varieties, etc. (cf. [42]). On

the other hand, at the moment, we have no good idea to consider the building blocks of

all the endomorphisms on them.

Construction of the paper. Section 2 is devoted to proving Theorem A and to the ap-

plication to the pluricanonical representation of the bimeromorphic automorphism group

(cf. Corollary 2.4). In Section 3, we introduce a key notion of nearly étale maps and study

some elementary properties. Sections 4 and 5 are devoted to Theorem B and to Theo-

rem C, respectively. In Appendix A, we shall prove the equalities on the first dynamical

degrees and on the topological entropies mentioned above.

Notation and terminology. We refer to [29] for the definitions of minimal models,

and singularities including terminal, canonical, log terminal, and rational singularities.

Also, we refer to [32], [35], [39] for additional information of the birational geometry and

the minimal model theory.

Acknowledgement. The first named author expresses his gratitude to the Department

of Mathematics of the National University of Singapore for the hospitality during his stay

in October 2006. The work of this paper is based on the discussion with the second named

author during the stay. The authors are grateful to Dr. Hiraku Kawanoue for answering

questions on equivariant resolutions. The authors would like to thank Professor Yoshio

Fujimoto for his encouragement.

2. The case of positive Kodaira dimension

2.1. Iitaka fibration. In the situation of Theorem A, we may assume that X is a

compact Kähler manifold without loss of generality. We have a natural isomorphism

f ∗ : H0(X,mKX)
≃−→ H0(X,mKX). In fact, there is a bimeromorphic morphism µ : Z →

X from another compact Kähler manifold Z such that ϕ := f ◦µ : Z → X is holomorphic;

then f ∗ is defined to be

H0(X,mKX)
ϕ∗

−→ H0(Z,mKZ)
µ∗←−
≃

H0(X,mKX),
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and it does not depend on the choice of µ : Z → X. The homomorphism f ∗ induces an

automorphism g of |mKX |∨ preserving Wm. The problem is to show the finiteness of the

order of g ∈ Aut(Wm).

We begin with the following simple result.

Lemma 2.1. If Theorem A does not hold, then there is a positive-dimensional connected

commutative algebraic subgroup G ⊂ Aut(Wm) such that gk ∈ G for some k > 0. In

particular, Wm is ruled in this case.

Proof. Let G̃ ⊂ PGL = Aut(|mKX |∨) be the Zariski closure of the cyclic group I =

{gj | j ∈ Z}. Then G̃ is abelian, since it is contained in the abelian algebraic subgroup

Z(I) ∩ Z(Z(I)), where Z(S) denotes the algebraic subgroup

{γ ∈ PGL | γs = sγ for any s ∈ S}

for a subset S ⊂ PGL. Let G be the identity connected component of G̃. Then dimG > 0

and gk ∈ G for some k > 0. Since the action of G preserves Wm, G acts non-trivially on

Wm, which implies that Wm is ruled by a result of Matsumura. �

Remark 2.2. There is another proof of Lemma 2.1 by an argument similar to [45, Propo-

sition 14.7]: In fact, we can show that f ∗ is expressed as a diagonal matrix. Thus, G

is contained in an algebraic torus. We can prove more on f ∗ by the argument of [45,

Proposition 14.1]: If λ be an eigenvalue of f ∗ : H0(X,mKX) → H0(X,mKX), then λ is

an algebraic integer with |λ|2/m = deg f .

The following is a key to the proof of Theorem A.

Proposition 2.3. Let π : X → Y be a fiber space from a compact Kähler manifold X

into a nonsingular rational curve Y ≃ P1. Let f : X ···→X be a dominant meromorphic

map and g : Y
≃−→ Y an automorphism such that π ◦ f = g ◦ π. If κ(X) ≥ 0, then g is of

finite order.

Proof. Step 1. We first prove in the case where pg(X) = dim H0(X,KX) > 0: Since

π is smooth over a dense open subset U of Y , we have a variation of Hodge structure

HU = Rd π∗ZX |U for d = dimX/Y = dimX − 1.

Let µ : Z → X be a bimeromorphic morphism from another compact Kähler manifold

Z such that ϕ := f ◦ µ : Z → X is holomorphic. Then

f ∗
ω : g∗(π∗ωX/Y )

ϕ∗

−→ g∗(π∗ϕ∗ωZ/Y )
µ∗←−
≃
π∗ωX/Y

is injective. Note that π∗ωX/Y is just the d-th filter Fd(uH) of the upper canonical

extension uH of HU ⊗OU in the sense of Kollár [30].
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We have also the pullback homomorphism

f ∗
coh : g−1(Rd π∗ZX)

ϕ∗

−→ g−1 Rd(π ◦ ϕ)∗ZZ
µ∗−→ Rd π∗ZX ,

where µ∗ is induced from the trace map Rµ∗ZZ [2n]→ ZX [2n] for n = dimX. Note that

f ∗
coh is compatible with f ∗

ω, i.e., the diagram

(g−1 Rd π∗ZX)|U ′ ⊗OU ′

f∗coh−−−→ (Rd π∗ZX)|U ′ ⊗OU ′

x
x

(g∗π∗ωX/Y )|U ′

f∗ω−−−→ π∗ωX/Y |U ′

is commutative over the open subset U ′ = U ∩ g−1U . Let Jk ⊂ Rd π∗ZX be the image of

(f ∗
coh)

k : (gk)−1(Rd π∗ZX)
(gk−1)−1f∗coh−−−−−−−→ (gk−1)−1(Rd π∗ZX)→ · · ·

· · · → g−1(Rd π∗ZX)
f∗coh−−→ Rd π∗ZX

for k > 0. Then Jk ⊃ Jk+1 and f ∗
coh(g

−1Jk) = Jk+1. Thus Jk = Jk+1 = · · · for some

k > 0, since any stalk of Rd π∗ZX is a finitely generated abelian group. We set J := Jk

for k ≫ 0. Then, for a non-empty Zariski open subset U ′′ ⊂ U , J |U ′′ defines a variation of

Hodge substructure of Rd π∗ZX |U ′′ , and J |U ′′⊗OU ′′ contains π∗ωX/Y |U ′′ as the d-th Hodge

filter. Furthermore, there is an isomorphism g−1J ≃ J compatible with f ∗
ω. Let Umax be

the maximum open subset of Y such that there is a variation of Hodge structure Jmax on

Umax with Jmax|U ′′ ≃ J |U ′′ . Then g−1Umax = Umax. Thus, we may assume that Y \ Umax

consists of at most two points; otherwise, g is of finite order. Note that a Kähler form of

X defines a real polarization of the variation of Hodge structure Jmax. If Umax = Y ≃ P1

or if Umax ≃ C, then Jmax is a trivial variation of Hodge structure, and hence π∗ωX/Y is a

free OY -module. Thus, we have a contradiction: H0(X,KX) ≃ H0(Y, π∗ωX/Y ⊗ ωY ) = 0.

Hence, we may assume Umax = C⋆. Then, the period map associated with Jmax is constant,

since the universal covering space of Umax is C. In particular, the image of the monodromy

representation π1(Umax, y) → Aut(Jmax,y) is finite. Let τ : Y ′ ≃ P1 → Y be a cyclic

covering étale over Umax such that τ−1Jmax extends to a trivial constant sheaf of Y ′.

We may assume that g lifts to an automorphism g′ of Y ′. Let X ′ → X ×Y Y ′ be a

resolution of singularities and let π′ : X ′ → Y ′ be the induced morphism. Then f × g′

induces a meromorphic endomorphism of X ′ and pg(X
′) > 0. Since τ−1Jmax has trivial

monodromy, a similar variation of Hodge structure J ′
max is defined on Y ′. Thus π′

∗ωX′/Y ′

is a free OY ′-module, and we have the same contradiction as above.

Step 2. General case: Let s ∈ H0(X,mKX) be an eigenvector of f ∗. We shall consider

a cyclic covering corresponding to taking the m-th root of s. Let A =
⊕m−1

i=0 OX(−iKX)

be the OX-algebra determined by s : OX(−mKX) → OX and let X̂ → SpecX A be
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a resolution of singularities. Then, for the composite τ : X̂ → SpecX A → X, τ ∗s ∈
H0(X̂,mK

X̂
) is expressed as σm for a section σ ∈ H0(X̂,K

X̂
). Let X ′ be a connected

component of X̂. Then κ(X ′) = κ(X) and pg(X
′) > 0. Let π′ : X ′ → Y ′ be the fiber

space and let λ : Y ′ → Y be the finite morphism obtained as the Stein factorization of

X ′ → X → Y .

Since s is an eigenvalue of f , we have a meromorphic map f̂ : X̂ ···→ X̂ such that

τ ◦ f̂ = f ◦ τ . Replacing f with a suitable power fk, we may assume that f̂ preserves X ′.

Let f ′ : X ′ ···→X ′ be the induced rational map. Then there is an automorphism g′ of Y ′

such that

π′ ◦ f ′ = g′ ◦ π′ and λ ◦ g′ = g ◦ λ.
If g′ is of finite order, then so is g. If the genus of Y ′ is greater than one, then g′ is of

finite order. Even if the genus of Y ′ is one, g′ is of finite order since g′ preserves the ample

invertible sheaf λ∗O(1). If the genus of Y ′ is zero, then g′ is of finite order by Step 1.

Thus, we are done. �

Remark. If f is a holomorphic endomorphism of X and if X is projective, then Proposi-

tion 2.3 follows from [47], since π has at least three singular fibers preserved by g.

2.2. Proof of Theorem A. We may assume that the order of g is infinite and that

g ∈ G for the connected commutative algebraic group G ⊂ Aut(Wm) in Lemma 2.1. Let

Y → Wm be an equivariant resolution of singularities so thatG acts on Y holomorphically.

There is a sequence

{e} = G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gl = G

of algebraic subgroups such that dimGi/Gi−1 = 1 for 1 ≤ i ≤ l. In particular, Gi/Gi−1 ≃
G

m
or G

a
. Let Y ···→Y1 ⊂ Hilb(Y ) be the meromorphic quotient of Y by G1 (cf. [16,

Theorem 4.1]). Then G/G1 acts on Y1. Replacing Y and Y1 by their non-singular models,

we may assume that Y → Y1 is holomorphic and G-equivariant. Let Y1 ···→Y2 ⊂ Hilb(Y1)

be the meromorphic quotient of Y1 by G2/G1, and replace Y , Y1, and Y2 by their non-

singular models so that Y → Y1 and Y1 → Y2 are G-equivariant morphisms. Continuing

similar constructions, we have a sequence of G-equivariant morphisms

Y = Y0 → Y1 → · · · → Yl

such that Y → Yi is birational to the meromorphic quotient by Gi. Then, for 0 ≤ i < l,

a general fiber of Yi → Yi+1 is a smooth rational curve which is the closure of an orbit of

Gi+1/Gi. There is a similar and stronger assertion in [36, Theorem 4.6].

Let us consider the composition φi : X → Y → Yi for 1 ≤ i ≤ l. For a very general

point yi ∈ Yi, let Fi ⊂ X be the fiber φ−1
i (yi) and let Ci−1 ⊂ Yi−1 be the fiber of Yi−1 → Yi
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over yi. Then κ(Fi) > 0 for i > 0 by the easy addition formula

κ(X) = dimY ≤ κ(Fi) + dimYi.

We may assume that g acts trivially on Yl. Then f : X ···→X is a meromorphic map

over Yl. Thus a dominant meromorphic map Fl ···→Fl is induced. By Proposition 2.3,

the action of g on Cl−1 is of finite order. Thus gk acts on Yl−1 trivially for some k > 0.

Hence, {gkj | j ∈ Z} ⊂ Gl−1. This contradicts that G is the identity component of the

Zariski closure of {gj | j ∈ Z}. This completes the proof of Theorem A. �

Theorem A has an application to the pluricanonical representations of the bimeromor-

phic automorphism group Bim(X) of compact complex manifolds X in the class C. The

following result is proved in [45, §14] (cf. [40]) when X is a Moishezon manifold.

Corollary 2.4. Let X be a compact complex manifold in the class C and let

ρm : Bim(X)→ Aut(H0(X,mKX))

be the m-th pluricanonical representation (cf. [45, §14]) for a positive integer m with

H0(X,mKX) 6= 0. Then the image of the induced group homomorphism below is finite:

ρ′m : Bim(X)→ PGL(H0(X,mKX)) = Aut(H0(X,mKX))/C⋆.

Proof. Let Wm be the image of m-th pluricanonical map X ···→ |mKX |∨. Then Wm is

not contained in any hyperplane of |mKX |∨. Thus, for γ ∈ Bim(X), the order of ρ′m(γ)

equals the order of the action of γ on Wm.

For l > 0, we have a natural rational map Ψm,ml : Wml ···→Wm such that Φm =

Ψm,ml ◦ Φml. In fact, Ψm,ml is defined by the commutative diagram

Wml →֒ |mlKX | = P(H0(X,mlKX))

Ψm,ml

...
↓

...
↓ µ

Wm →֒ |mKX |
ι→֒ P(Syml H0(X,mKX)),

where ι is the Veronese embedding and µ is induced from the natural homomorphism

Syml H0(X,mKX) → H0(X,mlKX). Since Ψm,ml is compatible with the actions of

Bim(X) on Wm and Wml, we may replace m with any multiple ml. Therefore, we may

assume that Φm : X ···→Wm gives rise to the Iitaka fibration of X.

Then, the order of ρ′m(γ) is finite for any γ ∈ Bim(X), by Theorem A. In particular,

ρm(γ) is expressed as a diagonal matrix and its eigenvalues are (αθ1, αθ2, . . . , αθk) for

k = dim H0(X,mKX), for a constant α ∈ C⋆, and for a root θi of unity, where θ1 = 1.

By [45, Proposition 14.1] and by the same argument as in [45, 14.10], αθi are algebraic

integers, |α| = 1, and the degree [Q(αθi) : Q] of field extension Q(αθi)/Q is bounded
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above by a suitable constant N which depends neither on i nor on γ. Thus the degree

[Q(θi) : Q] is bounded above by N2 for any i. Hence, the order of ρ′m(γ) is uniformly

bounded. So the image of ρ′m is a finite group by a theorem of Burnside (cf. [45, Theorem

14.9]). �

3. Nearly étale maps

In this section, we introduce the notion of nearly étale map and study basic properties.

Definition 3.1 (cf. [25]). Let h : V ···→W be a rational (resp. meromorphic) map be-

tween algebraic (resp. complex analytic) varieties. The map h is called proper if the

projections p1 : Γh → X and p2 : Γh → Y are both proper for the graph Γh ⊂ V ×W . For

algebraic varieties V and W , V is called proper birational to W if there exists a proper

birational map V ···→W .

Remark. The first projection p1 : Γh → X is proper for a meromorphic map h. In partic-

ular, a bimeromorphic map is always proper.

Definition 3.2. Let h : V ···→W be a proper rational (resp. meromorphic) map between

algebraic (resp. complex analytic) varieties. The map h is called nearly étale if there exist

proper birational (resp. bimeromorphic) maps µ : Y ···→W , ν : X ···→V and a morphism

f : X → Y such that

(1) X and Y are algebraic (resp. complex analytic) varieties,

(2) f is a finite étale morphism, and

(3) µ ◦ f = h ◦ ν, i.e.,

X
f−→ Y

ν

...
↓

...
↓ µ

V
h···→ W

is commutative.

Remark.

• A nearly étale map is dominant and generically finite.

• A proper birational (resp. bimeromorphic) map is nearly étale.

• A finite étale morphism is nearly étale.

• Any nearly étale rational (resp. meromorphic) map V ···→W is the composition

of a proper birational (resp. bimeromorphic) map V ···→W ♯ and a nearly étale

finite morphism W ♯ → W , where W ♯ → W is regarded as the Stein factorization

of V ···→W ; in other words, W ♯ is the normalization of W in the function field

C(V ) ⊃ C(W ) when V is a normal algebraic variety.
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For the sake of simplicity, we shall study basic properties of nearly étale maps only

between algebraic varieties.

The following is a close relation between étale morphisms and nearly étale maps.

Lemma 3.3. Let h : V ···→W be a nearly étale rational map over a normal algebraic

variety W . Suppose that πalg
1 (W ) ≃ πalg

1 (Y ) for a resolution of singularities Y → W . Let

W ♯ → W be the normalization of W in C(V ). Then W ♯ → W is étale.

Proof. Since πalg
1 (Y ) is a proper birational invariant, we may replace Y with a nonsingular

variety proper birational to W . Thus, by Definition 3.2, we may assume that there

exists a finite étale morphism X → Y from a nonsingular variety X proper birational

to V . Then X is just the normalization of Y in C(V ). Let W̃ → W be the finite

étale covering such that the finite-index subgroup π1(W̃ ) of π1(W ) is isomorphic to the

subgroup π1(X) ⊂ π1(Y ). Then W̃ is proper birational to X, and thus W ♯ = W̃ . �

In particular, we can show that the composition of two nearly étale maps are also

nearly étale. The next shows that a nearly étale finite morphism is turned to be an étale

morphism by a suitable base change.

Corollary 3.4. Let V → W be a nearly étale finite morphism between normal varieties.

Let Z → W be a morphism from a normal variety such that πalg
1 (Z) ≃ πalg

1 (M) for

a resolution of singularities M → Z. Let Z♯ be the normalization of V ×W Z. Then

Z♯ → Z is étale.

Proof. For any connected component Z♯
λ of Z♯, the finite morphism Z♯

λ → Z is nearly

étale. Thus it is étale by Lemma 3.3. �

Definition 3.5 (cf. [31, (7.1.2)], [41, Section 2]). Let (V, P ) be a germ of normal singu-

larity. Let µ : Z → V be a resolution of singularity.

(1) (V, P ) is called an algebraically π1-rational singularity if the algebraic fundamental

group of µ−1(P ) is trivial.

(2) (V, P ) is called a π1-rational singularity if the fundamental group of µ−1(P ) is

trivial.

Remark 3.6.

• If (V, P ) is an algebraically π1-rational singularity, then

(R1 µ∗ZZ)P ≃ H1(µ
−1(P ),Z) = 0, and (R1 µ∗ZZ)P ≃ H1(µ−1(P ),Z) = 0.

• If (V,∆) is log-terminal (klt) at the point P for a Q-divisor ∆ with x∆y = 0, then

(V, P ) is an algebraically π1-rational singularity by [31, Theorem 7.5], and is in

fact a π1-rational singularity by [44].
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Definition 3.7. Let V be a normal variety.

(1) Vreg denotes the nonsingular locus of V .

(2) Vrat denotes the set of points P ∈ V such that (V, P ) is nonsingular or is a rational

singularity.

(3) Vapr denotes the set of points P ∈ V such that (V, P ) is an algebraically π1-rational

singularity.

Remark 3.8.

• Vreg and Vrat are open subset of V , but Vapr is not necessarily open.

• If V = Vapr, then πalg
1 (V ) ≃ πalg

1 (Y ) for any resolution of singularities Y → V . In

particular, this holds if (V,∆) is log-terminal for a Q-divisor ∆ with x∆y = 0 (cf.

Remark 3.6, [31, Theorem 7.8]).

The result below says that a nearly étale endomorphism induces an étale endomorphism

of a certain nonsingular model, provided that the minimal model conjecture is true.

Lemma 3.9. Let h : V → V be a nearly étale finite morphism for a normal variety V .

Assume that there exists the relative canonical model Vcan for resolutions of singularities

of V ; equivalently, the relative canonical ring

RV :=
⊕

m≥0
µ∗OM(mKM)

is a finitely generated OV -algebra for a resolution of singularities µ : M → V , where

Vcan = Proj V RV . Then h induces an étale endomorphism of a certain nonsingular

variety proper birational to V .

Proof. Since Vcan has only π1-rational singularities, by Corollary 3.4, h induces a finite

étale morphism hcan : V ♯
can → Vcan together with a commutative diagram

V ♯
can −−−→ V

hcan

y h

y

Vcan −−−→ V,

which is birationally cartesian. Then V ♯
can is also the relative canonical model, since it

has only canonical singularities and its canonical divisor is also relatively ample over V .

Thus, V ♯
can ≃ Vcan and hcan is regarded as an étale endomorphism of Vcan. Hence, it is

enough to take an equivariant resolution of singularities of Vcan with respect to hcan (cf.

Section 1.4). �

The result below gives a kind of descent of finite étale morphisms. It is used in the

proof of Proposition 3.11 and Lemma 5.3 below.



14 NOBORU NAKAYAMA AND DE-QI ZHANG

Lemma 3.10 (cf. [31, Theorem 5.2]). For a commutative diagram

X
f−−−→ Y

ψ

y π

y

V
h−−−→ W

of proper surjective morphisms of normal complex analytic varieties, suppose that the

following conditions are satisfied :

(1) X and Y are nonsingular.

(2) ψ and π have connected fibers.

(3) X → V ×W Y is an isomorphism over a dense open subset of V .

(4) f is a finite étale morphism, and h is a finite morphism.

(5) Ri π∗OY = 0 and Ri ψ∗OX = 0 for any i > 0.

Then, h : V → W is étale.

Proof. We may assume that deg f = deg h > 1. Let P ∈ W be an arbitrary point. It is

enough to show that the cardinality ♯h−1(P ) of h−1(P ) equals deg h. For the proof, we

may replace Y by a bimeromorphic morphism Y ′ → Y from a nonsingular variety Y ′. In

fact, the pullback f ′ : X ′ → Y ′ of f : X → Y by Y ′ → Y induces a similar commutative

diagram satisfying the same conditions. Thus, we may assume that the reduced structure

E = π−1(P )red of the fiber π−1(P ) = Y ×W {P} is a normal crossing divisor. Then f−1E

is also a reduced normal crossing divisor of X. Here, f−1E is the disjoint union of the

reduced structures ẼQ of the fibers ψ−1(Q) for points Q ∈ h−1(P ).

We shall show χ(E,OE) = 1. In the natural commutative diagram

(Ri π∗CY )P
≃−−−→ Hi(E,C)y

y

(Ri π∗OY )P −−−→ Hi(E,OE),

the right vertical arrow is surjective by the theory of mixed Hodge structures on normal

crossing varieties. Therefore, Hi(E,OE) = 0 for i > 0 by the condition on the vanishing of

Ri π∗OY . In particular, χ(E,OE) = 1. By the same argument, we also have χ(ẼQ,O) =

1. On the other hand, χ(f−1E,O) = (deg f)χ(E,OE) = deg f , since f is étale. Therefore,

♯h−1(P ) =
∑

χ(ẼQ,O) = χ(f−1E,O) = deg f = deg h. �

Proposition 3.11. Let h : V → W be a nearly étale finite morphism between normal

algebraic varieties. Then:

(1) h−1(Wapr) ⊂ Vapr and h is étale along h−1(Wapr).

(2) h is étale along Vrat.
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(3) h−1(Wapr ∩Wrat) = Vapr ∩ Vrat.

(4) h−1(Wreg) = Vreg.

Proof. (1) follows from Lemma 3.3 or Corollary 3.4. Moreover, (3) and (4) are derived

from (1) and (2), since h(Vrat) ⊂ Wrat. Therefore, it suffices to show (2).

Let µ : Y → W be a resolution of singularities, and let f : X := Y ♯ → Y be the étale

morphism induced from µ (cf. Corollary 3.4). We have a proper birational morphism

ν : X → V with µ ◦ f = h ◦ ν. For a point Q ∈ Vrat and P = h(Q) ∈ W , we have analytic

open neighborhoods W and V of P and Q, respectively, such that:

• W is simply connected,

• V is a connected component of h−1(W), and

• V ∩ h−1(P ) = {Q}, set-theoretically.

Applying Lemma 3.10 to the commutative diagram

ν−1(V)
f−−−→ µ−1(W)

ν

y µ

y

V h−−−→ W,

we infer that V → W is an isomorphism. Thus h is étale along Vrat. �

For a nearly étale endomorphism, we have the following stronger property:

Proposition 3.12. Let h : V → V be a nearly étale finite surjective endomorphism of a

normal algebraic variety V . Then h−1(Vrat) = Vrat and h is étale over Vrat.

Proof. Let B be the complement of Vrat in V . Then h−1(B) ⊂ B. Thus, the proof is

reduced to Proposition 3.11 above and Lemma 3.13 below. �

Lemma 3.13. Let h : V → V be a finite surjective endomorphism of an algebraic variety

V . Suppose h−1(B) ⊂ B for a closed subset B ⊂ V . Then h−1(B) = B. Further,

Γ 7→ h(Γ) induces an automorphism of the set IB of irreducible components Γ of B. The

inverse map is given by Γ 7→ h−1(Γ).

Proof. Let I
(k)
B be the set of irreducible components of B of dimension k. Then IB =

⋃
I

(k)
B . Let J

(k)
B be the subset of I

(k)
B consisting of Γ ∈ IB with h(Γ) ⊂ B. It is enough to

show the following two properties for any k:

(1)k: I
(k)
B = J

(k)
B .

(2)k: h∗ : J
(k)
B → I

(k)
B given by Γ 7→ h(Γ) is bijective.

We shall prove by descending induction on k.
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We set d = dimB. For Γ ∈ I(d)
B , some Γ′ ∈ I(d)

B is contained in h−1(Γ). Here, Γ′ ∈ J (d)
B ,

since h(Γ′) = Γ. Hence h∗ : J
(d)
B → I

(d)
B is surjective. Since I

(d)
B is a finite set, J

(d)
B = I

(d)
B

and h∗ : J
(d)
B → I

(d)
B is bijective.

Next, assume that (1)l and (2)l hold for any integer l > k. If Γ ∈ I
(k)
B , then an

irreducible component ∆ of h−1(Γ) dominates Γ, and ∆ ⊂ Γ′ for some Γ′ ∈ IB. If

dim Γ′ > k, then h(Γ′) ⊂ B by induction, and hence Γ ⊂ h(Γ′); this is a contradiction.

Thus dim Γ′ = k, Γ′ = ∆, and Γ′ ∈ J (k)
B . Hence, h∗ : J

(k)
B → I

(k)
B is surjective. Therefore,

I
(k)
B = J

(k)
B and h∗ : J

(k)
B → I

(k)
B is bijective. Thus, we are done. �

If f : X → X is a surjective endomorphism of nonsingular projective variety X of

κ(X) ≥ 0, then f is étale. But if we drop the condition of nonsingularity, then we can

expect neither the étaleness nor even the nearly étaleness. Indeed, we have:

Example 3.14. Let A be an abelian surface and let V be the quotient of A by the involution

ι : A ∋ a 7→ −a ∈ A with respect to a group structure of A. The minimal resolution of

singularities of V is a K3 surface called the Kummer surface associated with A and is

denoted by Km(A). The variety V has only canonical singularities and KV ∼ 0. Let

µ = µm : A → A be the multiplication map a 7→ ma by an odd integer m. Then it

descends to a surjective endomorphism µV : V → V . Here, µV is not nearly étale since

Km(A) is simply connected.

4. The case of zero Kodaira dimension

4.1. Albanese closure.

Definition 4.1. Let V be a normal projective variety. We define qmax(V ) to be the

supremum of the irregularities q(V ′) = dim H1(V ′,OV ′) for all the finite étale coverings

V ′ → V .

Let X be a nonsingular projective variety with κ(X) = 0. Then q(X) ≤ qmax(X) ≤
dimX by [26].

Let V be a normal projective variety with only canonical singularities such that κ(V ) =

0. Let X be a nonsingular projective variety birational to V . Then q(X) = q(V ) and

Alb(X) ≃ Alb(V ), since V has only rational singularities. Furthermore, πalg
1 (X) ≃

πalg
1 (V ) by Remark 3.8. In particular, the category of finite étale coverings over X is

equivalent to that of finite étale coverings over V . Therefore, qmax(X) = qmax(V ).

Definition 4.2. Let F be a normal projective variety with only canonical singularities

such that KF ∼Q 0. If qmax(F ) = 0, then F is called a weak Calabi–Yau variety.
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Let V be a normal projective variety with only canonical singularities such that KV ∼Q

0. Then, by [27, Corollary 8.4], there is a finite étale covering F ×A→ V with F a weak

Calabi-Yau variety and A an abelian variety. Here, qmax(V ) = dimA.

The result below guarantees the uniqueness (up to isomorphism) of minimal étale cover

V ∼ of V realizing qmax(V ) as q(V ∼).

Proposition 4.3. Let V be a normal projective variety with only canonical singularities

such that κ(V ) = 0. Then there exists a finite étale Galois covering V ∼ → V , unique up

to (non-canonical) isomorphisms, such that :

(1) q(V ∼) = qmax(V ), and

(2) if V ′ → V is a finite étale covering from a variety V ′ with q(V ′) = qmax(V ), then

V ′ → V factors through V ∼ → V .

We call the Galois cover V ∼ → V the Albanese closure.

Proof. There is a finite étale Galois covering V0 → V with qmax(V ) = q(V0). For the

Galois group G0 of V0 → V , let H0 be the kernel of the natural homomorphism

G0 → Aut(H1(Alb(V0),Z)).

We set V ∼ to be the quotient space H0\V0. Then H0\Alb(V0) is an abelian variety and

V ∼ → H0\Alb(V0) is the Albanese map of V
∼

. In particular, qmax(V ∼) = q(V ).

Let V1 → V be a finite étale Galois covering such that V1 → V factors as V1 → V0 → V .

For the Galois group G1 of V1 → V , let H1 ⊂ G1 be the kernel of

G1 → Aut(H1(Alb(V1),Z)).

Then H1 is just the pullback of H0 ⊂ G0 by G1 → G0, since Alb(V1) → Alb(V0) is an

isogeny. In particular, H1\V1 ≃ H0\V0 = V ∼. Therefore, V ∼ is independent of the choice

of Galois covering V0 → V .

For an arbitrary finite étale cover V ′ → V with q(V ′) = qmax(V ), we have a finite Galois

cover V0 → V which factors through V ′ → V . Then the Galois group G′
0 of V0 → V ′ acts

on Alb(V0) and, acts on H1(Alb(V0),Z) trivially, since Alb(V0)→ Alb(V ′) is an isogeny.

Thus G′
0 ⊂ H0 and we have an factorization V ′ → V ∼ → V . �

4.2. Splitting endomorphisms. We shall show that any nearly étale rational endo-

morphism ϕ of the product F ×A of a weak Calabi-Yau variety F and an abelian variety

A is split as the product ϕF × ϕA of a nearly étale rational endomorphism ϕF of F and

an étale endomorphism ϕA of A. A slightly general assertion is proved in Proposition 4.8

below. To begin with, we recall the following well known result:
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Lemma 4.4. Let F be a normal projective variety such that q(F ) = 0. If F is not ruled,

then Aut(F ) is discrete.

Proof. LetH be a very ample invertible sheaf of F . For an automorphism f of F belonging

to the identity component Aut0(F ), the invertible sheaf f ∗H is isomorphic to H, since

the tangent space of the Picard scheme of F at OF is isomorphic to the zero-dimensional

vector space H1(F,OF ). Let Φ: F →֒ PN be the embedding defined by the very ample

linear system |H|. Then f induces an automorphism ρ(f) : PN → PN such that the

diagram below is commutative:

F
Φ−−−→ PN

f

y ρ(f)

y

F
Φ−−−→ PN .

The automorphism ρ(f) is contained in a linear subgroup of PGL(N,C) preserving Φ(F ).

Since F is not ruled, we infer that the linear subgroup acts on F trivially. Therefore,

f = idF . Hence, Aut0(F ) = {idF}. �

The following is the first splitting criterion for an étale morphism.

Lemma 4.5. Let F and F ′ be non-ruled normal projective varieties such that q(F ) =

q(F ′) = 0 and dimF = dimF ′. Let A and A′ be abelian varieties with dimA = dimA′.

Let ϕ : F ×A→ F ′×A′ be a surjective étale morphism. Then ϕ = ϕ1×ϕ2 for surjective

étale morphisms ϕ1 : F → F ′ and ϕ2 : A→ A′.

Proof. The second projections p2 : F × A → A and p′2 : F ′ × A′ → A′ are the Albanese

maps of F ×A and F ′×A′, respectively. Thus an étale morphism ϕ2 : A→ A′ is induced

so that the diagram below is commutative:

F × A ϕ−−−→ F ′ × A′

p2

y p′2

y

A
ϕ2−−−→ A′.

So for any a ∈ A, there is an étale morphism ρa : F → F ′ such that

ϕ(x, a) = (ρa(x), ϕ2(a)).

The collection {ρa} gives rise to a morphism from A into the scheme Hom(F, F ′) of

morphisms from F to F ′. For a surjective étale morphism ψ : F → F ′, the tangent space

of Hom(F, F ′) at the point [ψ] ∈ Hom(F, F ′) corresponding to ψ is isomorphic to

HomOF
(ψ∗Ω1

F ′ ,OF ) ≃ HomOF
(Ω1

F ,OF ) ≃ H0(F,ΘF )
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for the tangent sheaf ΘF . In particular, the dimension of the tangent space equals that

of Aut0(F ). So the tangent space is zero by Lemma 4.4. Hence, ρa is independent of the

choice of a ∈ A. Thus, ϕ = ϕ1 × ϕ2 for ϕ1 = ρa. �

The following is a partial generalization of Lemma 4.5 in the birational case.

Lemma 4.6. Let F and F ′ be non-ruled nonsingular projective varieties such that q(F ) =

q(F ′) = 0 and dimF = dimF ′. Let A and A′ be abelian varieties with dimA = dimA′.

Let ϕ : F × A ···→F ′ × A′ be a birational map. Then ϕ = ϕ1 × ϕ2 for a birational map

ϕ1 : F ···→F ′ and an isomorphism ϕ2 : A
≃−→ A′.

Proof. There is an isomorphism ϕ2 : A → A′ such that p′2 ◦ ϕ = ϕ2 ◦ p2 for the second

projections p2 : F × A → A and p′2 : F ′ × A′ → A′. Hence, we may assume that A = A′

and ϕ2 = idA. Then ϕ is a birational map F ×A ···→F ′×A over A. For a general point

a ∈ A, we have a birational map fa : F ···→F ′ as the restriction of ϕ to F × {a}. Thus,

we may also replace F ′ with F by a suitable fa. Therefore, we may assume from the

beginning that ϕ is a birational map F ×A ···→F ×A over A. Then ϕ induces a rational

map from A into the scheme Bir(F ) of birational automorphisms studied in [22]. By [23,

Theorem (2.1)], we have dim Bir(F ) = 0, and hence the map A ···→ Bir(F ) is constant.

Therefore, ϕ = ϕF × idA for a birational map ϕF : F ···→F . �

The next is a sufficient condition to split the variety into a product.

Lemma 4.7. Let V be a normal projective variety with only canonical singularities such

that KV ∼Q 0. Suppose that V is birational to F × A for an abelian variety A and a

normal variety F with only canonical singularities such that KF ∼Q 0 and q(F ) = 0.

Then V ≃ F ′ × A for a variety F ′ birational to F .

Proof. The composition V ···→F × A → A with the second projection is the Albanese

map of V . There is a finite Galois étale covering A′ → A from an abelian variety A′ such

that V ×AA′ ≃ F ′×A′ over A′ for a variety F ′, by [27, Theorem 8.3]. Then F ′ is normal

with only canonical singularities, KF ′ ∼Q 0, q(F ′) = 0, and we have a birational map

ϕ : F × A′ = (F × A)×A A′ ···→V ×A A′ ≃ F ′ × A′

over A′. By Lemma 4.6, ϕ = ϕF × idA′ for a birational map ϕF : F ···→F ′, since the

irregularities of nonsingular models of F and F ′ are both zero. The action of the Galois

group G of A′ → A on F ′ ×A′ ≃ V ×A A′ is written as a diagonal action by Lemma 4.5.

Moreover, it is compatible with the action of G on F × A′ by ϕ, where G acts trivially

on the first factor F . Therefore, G acts trivially on the first factor F ′, and hence,

V ≃ F ′ × A. �
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The following is also a partial generalization of Lemma 4.5.

Proposition 4.8. Let F and F ′ be normal projective varieties with only canonical sin-

gularities such that KF ∼Q 0, KF ′ ∼Q 0, and q(F ) = q(F ′) = 0. Let A and A′ be abelian

varieties with dimA = dimA′. Let ϕ : F × A ···→F ′ × A′ be a nearly étale dominant

rational map such that p′2 ◦ ϕ = ϕA ◦ p2 for an étale morphism ϕA : A → A′ and for

second projections p2 : F ×A→ A and p′2 : F ′×A′ → A′. Then ϕ = ϕF ×ϕA for a nearly

étale dominant rational map ϕF : F ···→F ′.

Proof. Let V ♯ → F ′ × A′ be the étale covering obtained as the Stein factorization of

ϕ. Since there is a birational map F × A ···→V ♯, by Lemma 4.7, V ♯ ≃ F ♯ × A for a

normal projective variety F ♯ birational to F . Further, the étale covering V ♯ → F ′ × A′

is isomorphic to ψ × ϕA for finite étale morphisms ψ : F ♯ → F ′ and ϕA : A → A′ by

Lemma 4.5. So we have only to show that the birational map F ×A ···→V ♯ ≃ F ♯×A is

the product of a birational map F ···→F ♯ and the identity map A→ A. This is done by

Lemma 4.6, since the irregularities of nonsingular models of F and F ♯ are both zero. �

4.3. Proof of Theorem B. Let λ : V ♯ → V be the étale morphism such that h is

the composite of a birational map V ···→V ♯ and λ. Let δ : V ∼ → V be the Albanese

closure of V and let U be a connected component of the fiber product V ♯ ×V V ∼. Then

q(U) = q(V ∼) = qmax(V ), and hence U → V ♯ factors through the Albanese closure

(V ♯)∼ → V ♯ of V ♯. On the other hand, (V ♯)∼ is birational to V ∼ by the birational map

V ···→V ♯. Hence, U = V ♯ ×V V ∼ ≃ (V ♯)∼. Therefore, we have a nearly étale dominant

rational map h∼ : V ∼ ···→V ∼ such that δ ◦ h∼ = h ◦ δ.
Let α : V ∼ → A be the Albanese map of V ∼. Then h∼ induces an étale endomorphism

hA : A→ A such that α ◦ h∼ = hA ◦α. By [27, Theorem 8.3, Corollary 8.4], there exist a

normal projective variety F , an isogeny A′ → A of abelian varieties, and an isomorphism

V ∼ ×A A′ ≃ F × A′ over A′, such that qmax(F ) = 0. Since the induced morphism

A′ → A is an isogeny, we may assume that A′ ≃ A and A′ → A is the multiplication

map by m > 0. By Lemma 4.9 below, there is an étale endomorphism ϕA of A such that

hA(ma) = mϕA(a) for any a ∈ A. Hence, we have a nearly étale dominant rational map

ϕ : F×A ···→F×A such that p2◦ϕ = ϕA◦p2 and θ◦ϕ = h∼◦θ, where θ : F×A→ V ∼ is

the composite of the isomorphism F×A′ ≃ V ∼×AA′ and the projection V ∼×AA′ → V ∼.

By Proposition 4.8, ϕ = ϕF×ϕA for a nearly étale dominant rational map ϕF : F ···→F .

This completes the proof of Theorem B. �

The following is used in the proof above:
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Lemma 4.9. Let µ : A→ A be the multiplication map a 7→ ma by m > 0 for an abelian

variety A with a given abelian group structure. For a morphism h : A → A, there is a

morphism h′ : A→ A such that µ ◦ h′ = h ◦ µ.

Proof. There exist a homomorphism ϕ : A→ A of abelian group and a point c ∈ A such

that h(a) = ϕ(a) + c for any a ∈ A. There is a point c′ ∈ A with mc′ = c, since A is

divisible. We define h′ : A→ A by h′(a) = ϕ(a) + c′ for a ∈ A. Then

mh′(a) = mϕ(a) +mc′ = ϕ(ma) + c = h(ma). �

4.4. Conjectural discussion. We shall pose the following:

Conjecture 4.10. Let X be a nonsingular projective variety such that κ(X) = qmax(X) =

0. Then π1(X) is finite.

This is true forX withKX numerically trivial, by Bogomolov’s decomposition theorem.

Furthermore, it is true when dimX ≤ 3 (cf. [43]).

Lemma 4.11. Let V be a normal projective variety such that πalg
1 (M) is finite for a reso-

lution of singularities M → V . Then any nearly étale rational endomorphism h : V ···→V

is birational.

Proof. We may assume that V is smooth. Consider the Stein factorization V ···→V ♯(l) →
V of the l-th power hl = h◦· · ·◦h. Then V ♯(l) → V is an étale morphism of degree (deg h)l

by Lemma 3.3. Now, πalg
1 (V ) is finite, since π1(M) ≃ π1(V ). Hence deg h = 1. �

So, if Conjecture 4.10 is true, then a nearly étale rational endomorphism of a weak

Calabi–Yau variety is birational. In particular, the building blocks of the étale endomor-

phisms of projective varieties with κ = 0 would then turn out to be the endomorphisms

of abelian varieties and the birational automorphisms of weak Calabi–Yau varieties.

5. The uniruled case

5.1. Maximal rationally connected fibration. A projective variety X is called unir-

uled if there is a dominant rational map P1 × Y ···→X for a variety Y of dimension

dimY = dimX − 1.

For a nonsingular projective variety X, the following conditions are all equivalent (cf.

[7, §3], [34, §2]):

(1) Any two points of X are connected by a chain of rational curves.

(2) Any two general points are contained in one and the same rational curve.

(3) There is a nonsingular rational curve with ample normal bundle.

If X satisfies one of the conditions above, then X is called rationally connected.
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Remark 5.1 (cf. [7, §3], [34, Proposition (2.5)]). A nonsingular rationally connected vari-

ety X has the following properties:

• X is simply connected.

• Hi(X,OX) = 0 for i > 0.

• H0(X, (Ω1
X)⊗m) = 0 for any m > 0.

If X is a uniruled nonsingular projective variety, then there exists uniquely up to

birational equivalence, a rational fiber space π : X ···→Y into a nonsingular projective

variety Y satisfying the following conditions, by [8], [34], [19]:

(1) π is weakly holomorphic, i.e., there exists open dense subsets U ⊂ X, V ⊂ Y such

that π induces a proper surjective morphism U → V .

(2) For a general point P ∈ U , the fiber over π(P ) is a maximal rationally connected

submanifold of X containing P .

(3) Y is not uniruled (cf. [19, Corollary 1.4]).

The fibration π is called the maximal rationally connected fibration of X.

The result below is used in the proof of Theorem C.

Lemma 5.2. Let f : X → X be an étale endomorphism of a uniruled projective variety X.

Then there exist a proper birational morphism µ : M → X, a proper surjective morphism

π : M → Y , an étale endomorphism fM of M , and an endomorphism h of Y satisfying

the following conditions :

(1) M is a nonsingular projective variety.

(2) Y is a normal and non-uniruled projective variety.

(3) π is birational to the maximal rationally connected fibration of M .

(4) µ ◦ fM = f ◦ µ and π ◦ fM = h ◦ π.

Proof. We may assume that X is nonsingular, by replacing it with an equivariant res-

olution of singularities with respect to f . Let X ···→ Chow(X) be a rational map to

the Chow variety of X which defines the maximal rationally connected fibration. By

associating a cycle Z of X with the push-forward f∗Z, we have a functorial morphism

hc : Chow(X) → Chow(X), which is compatible with f . Let X ···→Y → Chow(X) be

the Stein factorization and let h : Y → Y be the induced endomorphism from hc and f .

Note that Y is not uniruled. We consider the graph Γ ⊂ X × Y of the rational map

X ···→Y . Then f × h induces an endomorphism of Γ. Let T → Γ be the normalization

and fT the induced endomorphism of T . Let T1 be the fiber product of f : X → X and

the first projection p1 : T → X over X. Then T1 → T is étale and we have a finite
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birational morphism T → T1 over T by the commutative diagram

T
p1−−−→ X

fT

y f

y

T
p1−−−→ X.

Thus, T ≃ T1 and fT : T → T is étale. Let M → T be an equivariant resolution of singu-

larities with respect to fT , and let fM be the lift of fT to M as an étale endomorphism.

Thus, we are done. �

The following is proved essentially in [31, Theorem 5.2], where F is assumed to be a

rationally connected manifold. We present a slightly different proof.

Lemma 5.3. Let g : M → N be a proper surjective morphism between nonsingular vari-

eties. For a general fiber F of g, suppose that

(1) F is connected,

(2) F is simply connected, and

(3) Hi(F,OF ) = 0 for any i > 0.

Then g∗ : π1(M)→ π1(N) is isomorphic.

Proof. Step 1. If N◦ ⊂ N is a Zariski open subset with the codimension of N \ N◦

bigger than one, then π1(N
◦) ≃ π1(N), and π1(g

−1(N◦))→ π1(M) is surjective. Thus, if

π1(g
−1(N◦))→ π1(N

◦) is isomorphic, then so is π1(M)→ π1(N). Hence, we may replace

N with such an open subset N◦. In particular, we may assume that g : M → N is smooth

outside a nonsingular divisor D =
∑
Di of N , where Di is an irreducible component.

Step 2. Let Ui be an analytic open neighborhood of a point Pi ∈ Di of D such that Ui
is biholomorphic to a unit polydisc

{(t1, t2, . . . , tn) ∈ Cn ; |tj| < 1 for any j}

in which Pi is mapped to the origin 0 = (0, 0, . . . , 0) and Ui∩D is mapped to the coordinate

hypersurface {t1 = 0}. Since Ui\D = Ui\Di is homotopic to a circle, we have a generator

δi of π1(Ui \D). By van Kampen’s theorem, or other topological argument, we infer that

the kernel of the surjection π1(N \D)→ π1(N) is generated by the conjugacy classes of

the images δi of δi under the homomorphisms π1(Ui \D)→ π1(N \D).

Step 3. By the assumptions (1) and (2), and by the homotopy exact sequence, we

infer that the natural homomorphism π1(M \ g−1D) → π1(N \ D) is an isomorphism.

Let δ̂i ∈ π1(M \ g−1D) be the element corresponding to δi ∈ π1(N \ D). In order

to show the homomorphism π1(M) → π1(N) to be isomorphic, it is enough to show

that δ̂i is contained in the kernel of π1(M \ g−1D) → π1(M). Let Ci ⊂ Ui be a curve
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corresponding to an axis with respect to the coordinate (t1, . . . , tn) of the polydisc such

that Ci ∩ D = {0} and let Xi be the fiber product M ×N Ci. By changing Pi, Ui, and

coordinates (t1, . . . , tn) slightly, we may assume that Xi is nonsingular. Then δ̂i comes

from π1(Xi\g−1(Pi)) ≃ π1(Ci\{Pi}) = Zδi. Thus, we have only to show that π1(Xi) = 0,

or equivalently, π1(g
−1(Pi)) = 0, since g−1(Pi) is a deformation retract of Xi.

Step 4. By Step 3, the proof of Lemma 5.3 is reduced to the case where N is a

unit disc and g is smooth outside the origin 0. We shall show π1(g
−1(0)) = 0 in this

case. By shrinking N if necessary, we have a holomorphic curve T ⊂ M such that T is

biholomorphic to a unit disc and T → N is a finite surjective morphism branched only

at 0 ∈ N . We have:

• π1(M \ g−1(0)) ≃ π1(N \ {0}) ≃ Z,

• π1(T \ g−1(0))→ π1(N \ {0}) is an injection into a finite-index subgroup, and

• π1(M \ g−1(0))→ π1(M) is surjective.

Therefore, π1(M) is a finite cyclic group. Let λ : M̃ →M be the universal covering map

and let M̃ → Ñ → N be the Stein factorization of M̃ →M → N . Then M̃ →M ×N Ñ
is isomorphic over (N \ {0}) ×N Ñ by (2). By Lemma 3.10, we infer that Ñ → N is

étale. In fact, the condition (5) of Lemma 3.10 is true over N (and similarly over Ñ),

since the higher direct image sheaves Ri g∗OM are torsion free over the nonsingular curve

N . Hence, Ñ ≃ N and M̃ ≃M . Therefore, M and g−1(0) are simply connected. �

The following gives a sufficient condition for a finite morphism to be nearly étale.

Proposition 5.4. Let h : Ỹ → Y be a finite surjective morphism between normal varieties

with deg h > 1. Then h is nearly étale if the following conditions are satisfied :

(1) There exist proper surjective morphisms π : M → Y and π̃ : M̃ → Ỹ from non-

singular varieties M and M̃ .

(2) There exists a finite étale morphism f : M̃ →M with π ◦ f = h ◦ π̃.
(3) For a general fiber F of π, F is connected and simply connected, and Hi(F,OF ) =

0 for i > 0.

Remark 5.5. Let M1 be the fiber product Ỹ ×Y M . So f induces a finite morphism

λ : M̃ →M1 over M :

M̃
λ−−−→ M1 −−−→ M

π̃

y
y π

y

Ỹ Ỹ
h−−−→ Y.

Then λ is just the normalization of the reduced structure M1,red of M1. This is shown as

follows: Note that M1 is irreducible since h is finite. Since a general fiber of π is simply
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connected, λ is an isomorphism over U ×Y M ⊂ Y ×Y M = M1 for a dense open subset

U ⊂ Y . Let M̃1 → M1,red be the normalization. Then λ induces a finite and birational

morphism M̃ → M̃1. Hence, M̃ ≃ M̃1.

Proof of Proposition 5.4. Let ν : N → Y be a resolution of singularities and let M ′ →M

be a proper birational morphism from a nonsingular varietyM ′ such thatM ′ →M ···→N

is a morphism. Then we have an isomorphism π1(M
′) ≃ π1(N) of fundamental groups by

Lemma 5.3. Let Π ⊂ π1(N) be the image of f∗(π1(M̃)) ⊂ π1(M) under the isomorphism

π1(M) ≃ π1(M
′) ≃ π1(N). Then Π is a finite-index subgroup corresponding to a finite

étale covering φ : Ñ → N . Let M̃ ′ →M ′ be the étale covering which is the pullback of f

by M ′ →M . Then we have a commutative diagram:

M̃ ←−−− M̃ ′ −−−→ Ñ

f

y
y φ

y

M ←−−− M ′ −−−→ N.

By considering the Stein factorization of ν ◦ φ, we have a proper birational morphism

ν̃ : Ñ → Ỹ such that h ◦ ν̃ = ν ◦ φ. Thus, the diagram

M̃
π̃−−−→ Ỹ

ν̃←−−− Ñ

f

y h

y φ

y

M
π−−−→ Y

ν←−−− N

is also commutative. Therefore, h is nearly étale. �

5.2. Proof of Theorem C. We apply Lemma 5.2 to the given étale endomorphism f

of X. Let µ : M → X, π : M → Y , fM , and h be the same objects as in Lemma 5.2. By

Proposition 5.4, h is nearly étale. This completes the proof of Theorem C. �

Appendix A. Topological entropies and fiber spaces

In the appendix, we shall prove the following:

Theorem D. Let π : X → Y be a fiber space from a compact Kähler manifold X to a

compact complex analytic variety Y and let f : X → X be an étale endomorphism such

that π ◦ f = π. Then the equality htop(f) = htop(f |F ) holds for the topological entropies

htop of f : X → X and the restriction f |F : F → F to a smooth fiber F of π.

The proof is based on basic properties of spectral radii, a generalized notion of Kähler

cone, a simple calculation of dynamical degrees, and the results of Gromov [20] and

Yomdin [49] on topological entropies. The proof is given at the end.
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A.1. Spectral radii and Kähler cones. We recall some basic properties of spectral

radii, especially a generalization of the Perron–Frobenius theorem. Furthermore, we in-

troduce a notion of Kähler (k, k)-forms and the Kähler cones in Hk,k(M,R) for a compact

Kähler manifold M .

The spectral radius ρ(ϕ) = ρ(V, ϕ) of an endomorphism ϕ : V → V of a finite-

dimensional C-vector space V is defined to be the maximum of the absolute values of the

eigenvalues of ϕ.

Remark. Let ‖ · ‖ be any norm of V and let ‖ · ‖1 be the L1-norm of EndC(V ) defined by

‖ϕ‖1 := sup{‖ϕ(v)‖ ; ‖v‖ = 1} = sup

{
‖ϕ(v)‖
‖v‖ ; v 6= 0

}
.

Then

ρ(ϕ) = limm→∞ (‖ϕm‖1)1/m .

Suppose that V = VR ⊗ C and ϕ = ϕR ⊗ C for an endomorphism ϕR : VR → VR of a real

vector space VR. Let ‖ · ‖ be a norm on VR. Then ρ(ϕ) = limm→∞ (‖ϕmR ‖1)1/m, where

‖ϕR‖1 := sup{‖ϕR(v)‖ ; v ∈ VR, ‖v‖ = 1}.

Notation. Let VR be a finite-dimensional real vector space. A subset C ⊂ VR is called

a convex cone if C + C ⊂ C and R+C ⊂ C, where R+ denotes the set of positive real

numbers. If C ∩ (−C) ⊂ {0} in addition, then C is called strictly convex.

Remark. A convex cone C ⊂ VR is strictly convex if and only if there exists a linear form

χ : VR → R such that χ > 0 on C \ {0}.

The following is known as a generalization of the Perron–Frobenius theorem on real

n× n matrices A = (aij) of positive entries aij:

Theorem A.1 (cf. [5]). Let C be a strictly convex closed cone of a finite-dimensional

real vector space VR such that C generates VR as a vector space. Let ϕ : VR → VR be an

endomorphism such that ϕ(C) ⊂ C. Then the spectral radius ρ(ϕ) is an eigenvalue of ϕ

and there is an eigenvector in C with the eigenvalue ρ(ϕ).

Let M be a compact Kähler manifold of dimension n. Let ω be a C∞-(k, k)-form on

M for an integer 1 ≤ k ≤ n. For a local coordinate (z1, z2, . . . , zn) of M , ω is locally

expressed as

ω = (
√
−1)k

2 ∑

I,J⊂{1,2,...,n}

aI,JdzI ∧ dz̄J

for C∞-functions aI,J , where ♯I = ♯J = k and

dzI := dzi1 ∧ dzi2 ∧ · · · ∧ dzik
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when I = {i1, i2, . . . , ik} with i1 < i2 < · · · < ik. Assume that ω is d-closed (dω = 0) and

real (ω = ω); The real condition is equivalent to that (aI,J) is an Hermitian matrix. The

(k, k)-form ω is called Kähler if (aI,J) is positive-definite everywhere in M . Note that

this is just the usual definition of Kähler forms in case k = 1.

The following is easily shown:

Lemma A.2.

(1) If η is a (usual) Kähler form ((1, 1)-form), then ηk = η ∧ · · · ∧ η is a Kähler

(k, k)-form for 1 ≤ k ≤ n.

(2) If ω is a Kähler (k, k)-form and if ω′ is a Kähler (n− k, n− k)-form, then
∫
M ω∧

ω′ > 0.

Inside of the real vector space Hk,k(M,R) := Hk,k(M) ∩ H2k(M,R), the set P k(M) of

the classes [ω] of Kähler (k, k)-forms ω on M is a strictly convex open cone. It is called

the Kähler cone of degree k.

Lemma A.3. Let ξ ∈ P k(M) be a non-zero element.

(1)
∫
M ξ ∪ [ω] > 0 for any Kähler (n− k, n− k)-form ω.

(2) If θ ∈ P 1(M) and if θ− [T ] ∈ P 1(M) for a d-closed positive (1, 1)-current T , then
∫
M ξ ∪ θn−k > 0.

Proof. (1): Let (x, y) denote
∫
x ∪ y for x ∈ Hk,k(M,R) and y ∈ Hn−k,n−k(M,R). Then

Hn−k,n−k(M,R) is dual to Hk,k(M,R) by (∗, ∗). Since P n−k(M) generates Hn−k,n−k(M,R)

as the vector space, we can find a Kähler (n − k, n − k)-form ω0 such that (ξ, [ω0]) 6= 0.

By Lemma A.2, we have (ξ, [ω0]) > 0. There is a positive constant C such that Cω − ω0

is also a Kähler (k, k)-form, since M is compact. Thus, by Lemma A.2,

(ξ, [ω]) ≥ C−1(ξ, [ω0]) > 0.

(2): We set α = θ − [T ] ∈ P 1(M). Then the cup product θl = θ ∪ · · · ∪ θ for l ≥ 2 is

calculated as θl = αl + zl−1 ∪ [T ] for

(A–1) zl−1 =
∑l−1

i=0
θi ∪ αl−1−i ∈ P l−1(M).

Hence, by (1), we have (ξ, θn−k) ≥ (ξ, αn−k) > 0. �

The following is a well-known property of Kähler classes.

Lemma A.4. Let ψ : M → X be a generically finite morphism into another compact

Kähler manifold X. If η is a Kähler form on X, then [ψ∗η]− [T ] ∈ P 1(M) for a d-closed

real positive (1, 1)-current T on M .
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Proof. Let M → V → X be the Stein factorization. By Hironaka’s blowing up, we

have a projective bimeromorphic morphism ν : Z → V from another compact Kähler

manifold Z such that µ : Z → V ···→M is holomorphic. Here, OZ(−E) is ν-ample for

a ν-exceptional effective divisor E. Then OY (−E) is also relatively ample over X, and

[µ∗ψ∗η]− ε[E] is represented by a Kähler form on Z for some ε > 0 (cf. [15, Lemma 4.4],

[14, Lemma 2]). Thus

[µ∗ψ∗η]− ε[E]− [µ∗ξ] ∈ P 1(Z)

for a Kähler form ξ on M . Hence, ψ∗[η] − [ξ] is represented by a d-closed real positive

(1, 1)-current on M . �

A.2. Dynamical degrees. Let f : M →M be a surjective endomorphism of a compact

Kähler manifold M of dimension n. Then f induces natural homomorphisms

f ∗ : Hi(M,Z)→ Hi(M,Z) and f∗ : Hi(M,Z)→ Hi(M,Z)

for 0 ≤ i ≤ 2n. Here, the composite

Hi(M,Z)
f∗−→ Hi(M,Z) ≃ H2n−i(M,Z)

f∗−→ H2n−i(M,Z) ≃ Hi(M,Z)

is just the multiplication map by deg f , where the isomorphism above is induced from the

Poincaré duality. Thus f ∗ : Hi(M,R)→ Hi(M,R) is isomorphic. Moreover, f ∗ preserves

the Hodge structure, i.e., f ∗ Hp,q(M) = Hp,q(M). Note that f is a finite morphism, since

f ∗ : H1,1(M,R)→ H1,1(M,R) is an isomorphism.

Definition A.5 (Dynamical degree). Let η be a Kähler form on M . For an integer

1 ≤ l ≤ n, we set

δl(f, η) :=
∫

M
f ∗ηl ∧ ηn−l,

where ηi denotes the i-th power η∧· · ·∧η for 1 ≤ i ≤ n, and η0 := 1. The l-th dynamical

degree of f is defined to be

dl(f) := limm→∞ (δl(f
m, η))1/m .

The following properties on dynamical degrees are well known:

Fact A.6.

(1) The k-th dynamical degree dk(f) equals the spectral radius of

f ∗ = (f ∗)(k,k) : Hk,k(M,C)→ Hk,k(M,C).

(2) d0(f) = 1 and dn(f) = deg f .

(3) dl−1(f)dl+1(f) ≤ dl(f)2 for 1 ≤ l ≤ n. In particular, dn(f) = deg f ≤ d1(f)n (cf.

[21, Proposition 1.2]).
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Lemma A.7. Let x be an element of P 1(M) and y an element of P k(M) such that

x− [T1] ∈ P 1(M) and y − [Tk] ∈ P k(M) for certain d-closed real positive currents T1 of

type (1, 1) and Tk of type (k, k) for 1 ≤ k ≤ n. Then

dn−k(f) = limm→∞

(∫

M
(fm)∗(xn−k) ∪ y

)1/m

.

Proof. There exist d-closed positive currents S1 of type (1, 1) and Sk of type (k, k), and

a constant a > 0 such that ax − [η] = [S1] and ay − [ηk] = [Sk]. We set l := n − k.

Then alxl − [η]l = z ∪ [S1] for an element z ∈ P l−1(M) by (A–1). Thus f ∗(alxl − [η]l) =

f ∗z ∪ f ∗[S1] is represented by a d-closed positive (l, l)-current, since f ∗[S1] = [f ∗S1] for

the positive (1, 1)-current f ∗S1. Therefore,

f ∗(alxl) ∪ (ay)− f ∗[η]l ∪ [η]k = f ∗z ∪ f ∗[S1] ∪ (ay) + f ∗[η]l ∪ [Sk]

is represented by a positive (n, n)-current. Hence,

al+1
∫

M
(fm)∗(xl) ∪ y ≥

∫

M
(fm)∗ηl ∧ ηk = δl(f, η).

Conversely, there exists a constant b > 0 such that b[η] − x ∈ P 1(M) and b[ηk] − y ∈
P k(M). Then bl[η]l−xl ∈ P l(M) by (A–1) and hence f ∗(bl[η]l−xl) ∈ P l(M). Therefore

f ∗(bl[η]l) ∪ [η]k − f ∗(xl) ∪ y ∈ P n(M).

Thus,

bl+1δl(f, η) = bl+1
∫

M
(fm)∗ηl ∧ ηk ≥

∫

M
(fm)∗(xl) ∪ y.

Hence, we have the expected equality. �

Lemma A.8. Suppose that there exist a generically finite surjective morphism µ : M →
X into another compact Kähler manifold X and an endomorphism g : X → X satisfying

µ ◦ f = g ◦ µ. Then dl(f) = dl(g) for any l.

Proof. Let ξ be a Kähler form on X. Then, by Lemma A.4, [aµ∗ξ − η] is represented

by a d-closed real positive (1, 1)-current on M for a certain positive constant a. Then

[alµ∗ξl − ηl] is represented by a d-closed real positive (l, l)-current by (A–1). Therefore,

by Lemma A.7,

dl(f) = limm→∞

(∫

M
(fm)∗(µ∗ξl) ∧ µ∗ξn−l

)1/m

= limm→∞

(
(deg µ)

∫

X
(gm)∗ξl ∧ ξn−k

)1/m

= dl(g). �

For an element x ∈ Hk,k(M,R), we set

δl(f, η;x) :=
∫

M
[f ∗ηl ∧ ηn−k−l] ∪ x
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for l ≤ n − k. Note that δl(f, η; [η
k]) = δl(f, η). There is a constant C > 0 such that

C[ηk] − x ∈ P k(M). Therefore, Cδl(f, η) ≥ δl(f, η;x) for any f : M → M . Hence, we

have

(A–2) dl(f) ≥ limm→∞ (δl(f
m, η;x))1/m .

Proposition A.9. Let F be a compact Kähler manifold of dimension k and let φ : F →M

be a generically finite morphism such that φ ◦ h = f ◦ φ for a surjective endomorphism

h : F → F . Then

dl(f) ≥ dl(h) and dl+n−k(f) ≥ deg(f) deg(h)−1dl(h)

for any 1 ≤ l ≤ k.

Proof. Let Gi : H2i(F,C)→ H2(n−k+i)(X,C) be the Gysin homomorphism

H2i(F,C) ≃ H2k−2i(F,C)
φ∗−→ H2k−2i(X,C) ≃ H2n−2k+2i(X,C)

for 0 ≤ i ≤ k, where the isomorphisms in both sides are induced from the Poincaré duality.

Note that Gi H
p,q(F,C) ⊂ Hp+n−k,q+n−k(M,C). For xF := G0(1) ∈ H2(n−k)(M,R), we

have the projection formula φ∗φ
∗y = y ∪ xF for y ∈ H2k(M,R). Thus,

∫

F
(hm)∗(φ∗ηl) ∧ φ∗ηk−l =

∫

F
φ∗((fm)∗ηl) ∧ φ∗ηk−l =

∫

M
[(fm)∗ηl) ∧ ηk−l] ∪ xF

for any m ≥ 1. Since φ is generically finite, [φ∗η]− [T ] ∈ P 1(F ) for a d-closed real positive

(1, 1)-current T by Lemma A.4. Thus, by Lemma A.7 and (A–2),

dl(h) = limm→∞

(∫

M
[(fm)∗ηl) ∧ ηk−l] ∪ xF

)1/m

= limm→∞ (δl(f
m, η;xF ))1/m ≤ dl(f).

From φ∗ ◦ h∗ = f∗ ◦ φ∗, we have

(deg h)−1Gi ◦ (h∗)(i,i) = (deg f)−1(f ∗)(n−k+i,n−k+i) ◦Gi,

since (deg h)−1h∗ is the inverse of

H2i(F,C) ≃ H2k−2i(F,C)
h∗−→ H2k−2i(F,C) ≃ H2i(F,C)

and (deg f)−1f ∗ is the inverse of

H2(n−k+i)(M,C) ≃ H2k−2i(M,C)
f∗−→ H2k−2i(M,C) ≃ H2(n−k+i)(M,C).

We can find an eigenvector w of (h∗)(l,l) with the eigenvalue dl(h) from the cone P l(M)

by Theorem A.1. Thus, f ∗Gl(w) = deg(f) deg(h)−1dl(h)Gl(w). For the Kähler form η

above, we have ∫

M
Gl(w) ∪ [η]k−l =

∫

F
w ∪ [φ∗η]k−l > 0

by Lemma A.3. Thus, Gl(w) 6= 0 and it is an eigenvector of (f ∗)(n−k+l,n−k+l) with the

eigenvalue deg(f) deg(h)−1dl(h). Thus, dn−k+l(f) ≥ deg(f) deg(h)−1dl(h). �
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By Proposition A.9, and by a similar argument to [50, Remark 2.1 (11)], we have:

Theorem A.10. Let π : X → Y be a surjective morphism from a compact Kähler mani-

fold into a compact complex analytic variety Y such that a general fiber of π is connected.

Let f : X → X be a surjective endomorphism such that π ◦ f = π. Then

d1(f) = d1(f |F )

for the restriction f |F : F → F to a smooth fiber F of π.

Proof. We set d = dimY > 0. We have d1(f) ≥ d1(f |F ) by Proposition A.9. If d1(f) ≤ 1,

then deg f = d1(f) = d1(f |F ) = 1 by Fact A.6. Thus, we may assume that d1(f) > 1.

Let v ∈ P 1(X) ⊂ H1,1(X,R) be an eigenvector of f ∗ with the eigenvalue d1(f). If

v|F ∈ H1,1(F,R) is not zero, then d1(f) = d1(f |F ) by Proposition A.9.

We shall show v|F 6= 0. There is a bimeromorphic morphism ν : S → Y from a

compact Kähler manifold S by [46]. Let M → X ×Y S be a proper surjective morphism

giving a bimeromorphic morphism to the main component of X ×Y S, i.e., the unique

component dominating S. Let µ : M → X be the induced bimeromorphic morphism and

let ̟ : M → S be the induced fiber space. We may replace F with a general fiber of π,

since d1(f |F ) depends only on the class [F ] ∈ H1,1(X,R). Hence we may assume that

ν is an isomorphism over a neighborhood of π(F ) and that µ is an isomorphism along

µ−1(F ). Let fM = µ−1 ◦ f ◦ µ : M ···→M be the meromorphic endomorphism and let

ϕ : Z → M be a bimeromorphic morphism from another compact Kähler manifold Z

such that g := fM ◦ ϕ : Z → M is holomorphic. Let (f ∗
M)(i,i) be an endomorphism of

Hi,i(M,R) for 0 ≤ i ≤ n = dimX defined as

(f ∗
M)(i,i) : Hi,i(M,R)

g∗−→ Hi,i(Z,R)
ϕ∗−→ Hi,i(M,R).

Since ϕ∗ ◦ ϕ∗ = id, we have a commutative diagram:

Hi,i(X,R)
f∗−−−→ Hi,i(X,R)

µ∗

y µ∗

y

Hi,i(M,R)
(f∗

M
)(i,i)−−−−−→ Hi,i(M,R).

Thus, µ∗v ∈ P 1(M) is also an eigenvector of (f ∗
M)(1,1) with the eigenvalue d1(f). We have

also f ∗
M ◦̟∗ = ̟∗ from ̟ ◦ fM = ̟. For Kähler classes α ∈ P 1(X) and β ∈ P 1(S), and

for any ξ ∈ Hi,i(M,R), by the projection formula, we have

(f ∗
M)(i+j,i+j)(ξ ∪ µ∗α) = ϕ∗(g

∗(ξ ∪ µ∗α)) = ϕ∗(g
∗ξ ∪ ϕ∗µ∗f ∗α) = (f ∗

M)(i,i)(ξ) ∪ µ∗f ∗α,

(f ∗
M)(i+j,i+j)(ξ ∪̟∗β) = ϕ∗(g

∗(ξ ∪̟∗β)) = ϕ∗(g
∗ξ ∪ ϕ∗̟∗β) = (f ∗

M)(i,i)ξ ∪̟∗β.
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We set x := µ∗α and y := ̟∗β ∈ H1,1(M,R). Then

yd = c[µ−1F ] ∈ Hd,d(M,R)

for some c > 0. Assuming v|F = 0, we shall derive a contradiction. Then µ∗v ∪ yd = 0.

Let 1 ≤ s ≤ d be the minimum number such that µ∗v ∪ ys = 0. Note that µ∗v ∪ ys−1 = 0

if µ∗v ∪ ys−1 ∪ xn−s = 0 by Lemmas A.3 and A.4, where n = dimX. Then, by [10,

Corollaire 3.5], there is a constant b such that

(µ∗v + by) ∪ ys−1 ∪ µ∗(α1 ∪ · · · ∪ αn−s−1) = 0 ∈ Hn−1,n−1(M,R)

for any αi ∈ H1,1(X,R). Taking f ∗
M , we have

(d1(f)µ∗v + by) ∪ ys−1 ∪ µ∗(f ∗α1 ∪ · · · ∪ f ∗αn−s−1) = 0.

In particular,

(µ∗v + by) ∪ ys−1 ∪ xn−s = (d1(f)µ∗v + by) ∪ ys−1 ∪ xn−s = 0,

which implies µ∗v ∪ ys−1 ∪ xn−s = 0. This is a contradiction. �

A.3. Topological entropies. Let f : M → M be a surjective endomorphism of a com-

pact Kähler manifold M . We consider the properties of topological entropy htop(f) of f .

Instead of giving the definition of htop, we use the following:

Fact A.11 (Gromov [20], Yomdin [49], (cf. [13])). For the topological entropy htop(f) of

f , one has

htop(f) = max1≤i≤n log di(f) = log ρ(H∗(M,C), f ∗).

As a corollary of Proposition A.9, we have:

Corollary A.12. In the situation of Proposition A.9,

htop(f) ≥ log
(
deg(f) deg(h)−1

)
+ htop(h) ≥ htop(h).

Notation A.13. Let ϕ : V → V be an endomorphism of a finite-dimensional C-vector

space V .

(1) Λ(V, ϕ) denotes the set of eigenvalues of ϕ.

(2) For λ ∈ C, we set

Vλ = Vλ,ϕ :=
⋃

l≥1
Ker(λ idV −ϕ)l.

Remark. If λ ∈ Λ(V, ϕ), then Vλ is the generalized eigenvector subspace with the eigen-

value λ. We have the decomposition

V =
⊕

λ∈Λ(V,ϕ)
Vλ,ϕ.



ÉTALE ENDOMORPHISMS OF PROJECTIVE MANIFOLDS 33

Moreover, the decomposition is functorial; Let h : V1 → V2 be a C-linear map of finite-

dimensional C-vector spaces. Let ϕi : Vi → Vi be an endomorphism for i = 1, 2 such that

h ◦ ϕ1 = ϕ2 ◦ h. Then h =
⊕
hλ for

hλ : (V1)λ,ϕ1 → (V2)λ,ϕ2 .

Lemma A.14. Let Y be a reduced compact complex analytic space and let µ : X → Y

be a proper surjective morphism from another reduced compact complex analytic space X

such that µ : µ−1(U) → U is a smooth Kähler morphism for a dense Zariski-open subset

U = Y \ B ⊂ Y . Let g : Y → Y and f : X → X be surjective endomorphisms such that

µ ◦ f = g ◦ µ and g−1(U) = U . Let gB : B → B and fA : A → A for A = µ−1(B) be the

induced endomorphisms. Then, for any p,

Λ(Hp(Y,C), g∗) ⊂ Λ(Hp(X,C), f ∗) ∪ Λ(Hp(B,C), g∗B) ∪ Λ(Hp−1(A,C), f ∗
A).

Proof. For the injection j : U →֒ Y , we have a natural exact sequence

0→ j!ZU → ZY → ZB → 0

inducing a long exact sequence

· · · → Hi
c(U,Z)→ Hi(Y,Z)→ Hi(B,Z)→ · · · .

Considering a similar exact sequence on X, we have a commutative diagram

· · · −−−→ Hi
c(U,Z) −−−→ Hi(Y,Z) −−−→ Hi(B,Z) −−−→ · · ·
µ∗

y µ∗

y µ|∗
A

y

· · · −−−→ Hi
c(µ

−1(U),Z) −−−→ Hi(X,Z) −−−→ Hi(A,Z) −−−→ · · ·
of exact sequences, which are compatible with the actions of g∗ and f ∗. Since µ : µ−1(U)→
U is a smooth Kähler morphism, we have a quasi-isomorphism

Rµ∗CX |U ∼qis

⊕
Ri µ∗CX |U [−i]

in the derived category on U , by the hard Lefschetz theorem on fibers and by [9]. In

particular, the homomorphism µ∗ : Hi
c(U,C)→ Hi

c(µ
−1(U),C) is injective for any i. For

a complex number λ, if Hp(Y,C)λ,g∗ 6= 0 and if Hp(B,C)λ,g∗
B

= Hp(X,C)λ,f∗ = 0, then

Hp−1(A,C)λ,f∗
A
6= 0 by the commutative diagram above. Thus, we have the assertion. �

Corollary A.15. Let Y be a reduced compact complex analytic space with a surjective

endomorphism g : Y → Y . Then there exist a finite set {Zi}N1=1 of closed subvarieties and

a positive integer k such that Y =
⋃
Zi, (gk)−1(Zi) = Zi for any 1 ≤ i ≤ N , and

Λ(Hp(Y,C), (gk)∗) ⊂
⋃N

i=1

⋃p

q=0
Λ(Hq(Zi,C), (gk|Zi

)∗).
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Proof. Let {Yi} be the set of the irreducible components of Y and let τ : X :=
⊔
Yi → Y

be the natural morphism. LetB ⊂ Y be the minimum closed subset such thatX\τ−1B →
Y \B is an isomorphism. By replacing g with a power gk, we may assume that g−1Yi = Yi

for any i. Then

Λ(Hp(Y,C), g∗) ⊂ Λ(Hp(B,C), g∗) ∪
⋃N

i=1

(
Λ(Hp(Yi,C), g∗) ∪ Λ(Hp−1(Yi ∩B,C), g∗)

)

for any p by Lemma A.14. Continuing the same argument to B and Yi ∩B, we have the

assertion. �

Proposition A.16. Let Y be a reduced compact complex analytic space and let φ : M →
Y be a proper surjective morphism from a finite disjoint union M of compact Kähler

manifolds Mα such that φ(Mα) is an irreducible component of Y . Let g : Y → Y and

f : M → M be étale surjective endomorphisms such that φ ◦ f = g ◦ φ. If k is a positive

integer such that (fk)−1(Mα) = Mα for any α, then

ρ(H∗(Y,C), (gk)∗) ≤ maxα ρ(H
∗(Mα,C), (fk|Mα

)∗) = maxα,ℓ dl(f
k|Mα

)

for any p, for the induced endomorphisms fk|Mα
: Mα →Mα.

Proof. We shall prove by induction on dimM = max{dimMα}. If dimM = 0, then the

assertion holds by a trivial reason. Assume that the assertion holds if the dimension is

less than dimM . If the estimate of the spectral radius holds for a power gkl, then it

holds also for k; in fact, ρ(Hp(Y,C), (gkl)∗) = ρ(Hp(Y,C), (gk)∗)l. Thus, we may replace

k with any power kl. We can find the maximum Zariski-open subset U ⊂ Y such that

φ−1(U) → U is smooth. For the complement B = Y \ U and A = φ−1(B), we have

g−1(B) = B and f−1(A) = A by the maximum property of U and by the étaleness of g

and f . Thus, we can apply Lemma A.14, and hence

ρ(H∗(Y,C), g∗) ≤ max{ρ(H∗(M,C), f ∗), ρ(H∗(B,C), (f |B)∗), ρ(H∗(A,C), (f |A)∗)}.

Let A =
⋃
Aβ be the irreducible decomposition. By replacing g with a power gl, we may

assume that f−1(Mα) = Mα and f−1(Aβ) = Aβ for any α and β. Let Zβ → Aβ be an

equivariant resolution of singularities of Aβ with respect to the étale endomorphism f |Aβ
.

Let Z be the disjoint union
⊔
Zβ and let h : Z → Z be the induced étale endomorphism,

i.e., ψ ◦ h = f |A ◦ ψ for the induced morphism ψ : Z → A. Then (Z → A → B, h, g|B)

and (Z → A, h, f |A) satisfy the same condition of Proposition A.16 as (M → Y, f, g). By

induction, we have

max{ρ(H∗(B,C), (g|B)∗), ρ(H∗(A,C), (f |A)∗)} ≤ maxβ ρ(H
∗(Zβ,C), (h|Zβ

)∗)

after replacing g with a power gl. On the other hand,

ρ(H∗(Zβ,C), (h|Zβ)∗) = exp(htop(h|Zβ
)) ≤ exp(htop(f |Mα

)) = ρ(H∗(Mα,C), (f |Mα)
∗)
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for Aβ ⊂Mα, by Proposition A.9. Hence,

ρ(H∗(Y,C), g∗) ≤ maxα ρ(H
∗(Mα,C), (f |Mα)

∗). �

Let π : X → Y be a surjective morphism from a compact complex manifold X into

a compact complex analytic variety Y such that a general fiber of π is connected and

π ◦ f = π. Let f : X → X be a surjective endomorphism such that π ◦ f = π. Then f

induces a surjective endomorphism f |F : F → F of the fiber F = π−1(y) over any point

y.

Proposition A.17. There exist a finite set {Zi}Ni=1 of closed subvarieties of X and a

positive number k such that (fk)−1(Zi) = Zi and π(Zi) is a point for any i, and

Λ(Hp(X,C), (fk)∗) ⊂
⋃p

q=0

⋃N

i=1
Λ(Hq(Zi,C), (fk|Zi

)∗).

Proof. We have an endomorphism f ∗ of the complex Rπ∗CX in the derived category of

sheaves of abelian groups on Y such that the induced endomorphism of R Γ(Y,R π∗CX)

coincides with that of R Γ(X,C). In particular, the Leray spectral sequence

Ep,q
2 = Hp(Y,Rq π∗CX)⇒ Ep+q = Hp+q(X,C)

admits the endomorphisms f ∗ : Ep,q
r → Ep,q

r compatible with f ∗ on Ep+q.

We can consider the subsheaf (Ri π∗CX)λ ⊂ Ri π∗CX of the generalized eigenvectors

with respect to f ∗ and a complex number λ (cf. Notation A.13). Then

(Ep,q
2 )λ ≃ Hp(Y, (Rq π∗CX)λ)

for any p, q, and λ. Now Ep,q
2 ⇒ Ep+q is decomposed into (Ep,q

2 )λ ⇒ (Ep+q)λ. If

Hp(X,C)λ,f∗ 6= 0 for a complex number λ, then Hp′(Y, (Rq′ π∗CX)λ) 6= 0 for some non-

negative integers p′ and q′ with p′ + q′ = p; thus, λ is an eigenvalue of the induced

endomorphism on Hq(Fy,C) for the fiber Fy = π−1(y) over certain point y ∈ Y for some

q ≤ p. Since the sheaves Rq π∗CX are constructible, we can find finitely many points {yα}
such that

Λ(Hp(X,C), f ∗) ⊂
⋃

α
Λ

(
Hq(Fyα

,C), (f |Fyα
)∗

)
.

Applying Corollary A.15 to f |Fyα
: Fyα

→ Fyα
, we can show the assertion. �

We are ready to prove Theorem D.

Proof of Theorem D. Step 1. Let ν : Y ′ → Y be a bimeromorphic morphism from a

complex analytic variety Y ′. Then f induces an étale endomorphism f×Y Y ′ : X×Y Y ′ →
X ×Y Y ′. Let X ′ be the main component of X ×Y Y ′. Thus, there exists an equivariant

resolution of singularities X̃ → X ′ with respect to the étale endomorphism. Let f̃ be the

induced étale endomorphism of X̃. Then dl(f̃) = dl(f) by Lemma A.8. Therefore, we
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may replace Y by a bimeromorphic morphism, freely. Thus, we may assume that Y is

nonsingular and π : X → Y is smooth over the complement Y \D for a divisor D ⊂ Y .

Step 2. We set E = π−1(D)red. For the prime decomposition E =
∑
Ei, there is

a positive integer k such that (fk)−1Ei = Ei. Let νi : Zi → Ei be a bimeromorphic

morphism from a compact Kähler manifold Zi such that hi := ν−1
i ◦ fk|Ei

◦ νi is an étale

endomorphism of Zi. For example, we can take such νi as an equivariant resolution of

singularities of Ei with respect to fk|Ei
. Then htop(f) = htop(f |F ) for a smooth fiber F of

π or htop(f) = max{k−1htop(hi)} by Proposition A.16 and Proposition A.17. Therefore,

it is enough to show that dl(f
k|F ) ≥ dl(hi) for any i.

Step 3. Let σ : S → Y be a flattening of π, i.e., the main component of X ×Y S is flat

over S; the existence of the flattening is proved by Hironaka [24]. Here, we may assume

that σ−1D is also a normal crossing divisor. Let M → X ×Y S be a bimeromorphic

morphism from a compact Kähler manifold M which is given as an equivariant resolution

of singularities of the main component with respect to the induced étale endomorphism.

Let µ : M → X be the induced bimeromorphic morphism, ̟ : M → S the induced fiber

space, and let g : M → M be the induced étale endomorphism, i.e., µ ◦ g = f ◦ µ and

̟◦g = ̟. Let Gi be the proper transform of Ei in M for any i. By taking an equivariant

embedded resolution of singularities, we may assume that all Gi are nonsingular. Then

̟(Gi) is a prime component of σ−1D for any i by the flattening. Let P be a general

point of ̟(Gi), and let C ⊂ S be a holomorphic curve isomorphic to a unit disc such

that C intersects σ−1D with one point P , transversely. Then ̟−1(P ) ∩ Gi is a disjoint

union Γ =
⊔

Γα of submanifolds Γα of Gi, and the scheme-theoretic fiber ̟−1(P ) is flat

deformation equivalent to a smooth fiber ̟−1(s), where s ∈ C \ P . For a Kähler form η

on M and for d = dimY , we have
∫

Γ
(gmk)∗(ηl|Γ) ∧ ηn−d−l ≤

∫

M
[(gmk)∗ηl ∧ ηn−d−l] ∪ [̟−1(P )]

=
∫

M
[(gmk)∗ηl ∧ ηn−d−l] ∪ [̟−1(s)] =

∫

F
(fmk)∗(η|F )l ∧ (η|F )n−d−l = δl(f

mk, η|F )

for a general fiber F of π, for any 1 ≤ l ≤ n− d and any m ≥ 1.

Step 4. For the proof, we use the induction on dimY . The assertion holds if dimY = 0.

Assume that dimY > 0. By Step 3, we have a morphism Gi → ̟(Gi). Let Gi → Si →
̟(Gi) be the Stein factorization. Then gk|Gi

is an étale endomorphism defined over Si

and dimSi = dimY − 1. Thus, by induction,

htop(g
k′|Gi

) = htop(g
k′|Γα

)

for a suitable k′ divisible by k. Hence, htop(g
k′|Gi

) ≤ htop(f
k′|F ) by Step 3. Since we may

replace (Zi → Ei, hi) in Step 2 with (Gi → Ei, g
k|Gi

), we have the expected equality. �
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