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Abstract

A matroid-like structure defined on a convex geometry, called a cg-matroid, is
defined by S. Fujishige, G. A. Koshevoy, and Y. Sano in [6]. Strict cg-matroids are
the special subclass of cg-matroids. In this paper, we show that the greedy algo-
rithm works for strict cg-matroids with natural weightings, and also show that the
greedy algorithm works for a hereditary system on a convex geometry with any nat-
ural weighting if and only if the hereditary system is a strict cg-matroid.
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1. Introduction

A matroid which was introduced by H. Whitney [12] in 1935 is one of the most important
structures in combinatorial optimization. Many researchers have studied and extended
the matroid theory (see [11] and [8]). One of the reasons that matroids are important
is that matroids are closely related to the greedy algorithm, which solves the maximum
base problem efficiently. U. Faigle [5] considered the greedy algorithm for a hereditary
system on the lattice formed by all ideals of a poset in 1979. The greedy algorithm has
been studied in more general framework. A greedoid is a system for which the greedy
algorithm works (see [7] for detail).

F. D. J. Dunstan, A. W. Ingleton, and D. J. A. Welsh [3] introduced the concept of a
supermatroid defined on a poset in 1972 as a generalization of a matroid. A supermatroid
on a distributive lattice is also called a poset matroid. In 1993 and 1998, M. Barnabei, G.



Nicoletti, and L. Pezzoli [1] [2] studied poset matroids in terms of the poset structure of
the ground set.

S. Fujishige, G. A. Koshevoy, and Y. Sano [6] generalized poset matroids by con-
sidering convex geometries, instead of posets, as underlying combinatorial structures on
which they define matroid-like structures, called cg-matroids. They also considered a spe-
cial class of cg-matroids, called strict cg-matroids, for which rank functions are naturally
defined. And they show the equivalence of the concept of a strict cg-matroid and that of a
supermatroid defined on the lattice of closed sets of a convex geometry.

In this paper, we will consider about the greedy algorithm for strict cg-matroids, which
contains the case of poset matroids. It should be emphasized that strict cg-matroids are
not greedoids. We show that the greedy algorithm works for strict cg-matroids with nat-
ural weightings, and give a characterization of strict cg-matroids by using the greedy
algorithm. This paper is organized as follows. In Section 2, we give definitions and
some preliminaries on convex geometries, strict cg-matroids, and the greedy algorithm.
In Section 3, we show that the greedy algorithm works for strict cg-matroids with natural
weightings, and also show that the greedy algorithm works for a hereditary system on a
convex geometry with any natural weighting if and only if the hereditary system is a strict
cg-matroid.

2. Definitions and preliminaries

In this section, we give the definitions of convex geometries, strict cg-matroids, and the
greedy algorithm, and we show some lemmas.

2.1. Convex geometries

A convex geometry is a fundamental combinatorial structure defined on a finite set (see

[4]).

Definition. Let £ be a nonempty finite set and F be a family of subsets of . The pair
(E, F) is called a convex geometry on E if F satisfies the following three conditions:

(FO) 0, E € F.
F1) X,Y e F—= XNY € F.
(F2) VX e F\{E}, Jec E\ X: X U{e} € F.

The set F is called the ground set of the convex geometry (E, F), and each member of
F is called a closed set. It should be noted that the condition (F2) is equivalent to the
following condition:



(F2) Every maximal chain ) = Xy € X; C --- C X,, = E in F has length n =
|E). O

Example 2.1. (a) Let E be a finite set of points in a Euclidean space R?. Define F =
{X € 2P | X = Conv(X) N E}, where Conv(X) denotes the convex hull of X in R,
Then (E, F) is a convex geometry, called a convex shelling.

(b) Let E be the vertex set of a tree 7. Define F = {X € 2F | X is the vertex set of a
subtree of T'}. Then (£, F) is a convex geometry, called a tree shelling.

(c) Let E be a partially ordered set (poset). Define F = {X € 2 | X is an (order) ideal
of E'}. Then (E, F) is a convex geometry, called a poset shelling. It is well-known that a
convex geometry (£, F) is a poset shelling if and only if F is closed with respect to set
union. [

Next, we define operators associated with a convex geometry.

Definition. Let (E, F) be a convex geometry.
The closure operator of (E, F) is an operator 7 : 2 — F defined by

TX)=({YeFlXxCY} (Xe2) 2.1)

That is, 7(.X) is the unique minimal closed set containing X .
The extreme-point operator of (E, F) is an operator ex : F — 2F defined by

ex(X)={ee X | X\{e}eF} (XeF). (2.2)

An element in ex(X) is called an extreme point of X € F.
The co-extreme-point operator of (E, F) is an operator ex* : F — 2F defined by

ex"(X)={e€e E\X | XU{e} e F} (X eF). (2.3)
An element in ex*(X) is called a co-extreme point of X € F. O
Lemma 2.2. For any X € 2F, we have ex(1(X)) C X.

Proof. Take e € ex(7(X)). Then we have 7(X) \ {e} € F. From the definition of a
closure operator, we have X \ {e} C 7(X) \ {e}. From a property of a closure operator,
we have 7(X \ {e}) C 7(X)\ {e}. This implies 7(X \{e}) # 7(X),and thuse € X. [

2.2. Strict cg-matroids

Definition. Let (F,F) be a convex geometry and Z C F be a subfamily. (E,F;T)
is called a hereditary system on the convex geometry (F,F) if Z satisfies the following
properties.



(I10) P eT.
) LeF LeZ [,CIL, = I, 1. O

Definition. Let (E, F;Z) be a hereditary system on a convex geometry. Then (F,F;Z)
is called a strict cg-matroid if 1 satisfies the following equivalent properties.

(IsA) (Strict Augmentation Property)
For any I, I, € Z with |I1| < |I5],
there exists e € 7(I; U I5) \ [ such that I; U {e} € 7.

(ILA) (Local Augmentation Property)
For any [1, [2 € 7 with ’[1’ +1= ’[2’,
there exists e € 7(I; U I3) \ I; such that [; U {e} € 7.

(IS) For each X € F, all the maximal elements of ZX) := {X NI | I € T} have the
same cardinality (as subsets of E). [l

See [6] for the proof of the equivalence of above three properties. Now we see some
examples of strict cg-matroids.

Example 2.3. Let (E, F) be any convex geometry and k be an integer such that 0 < k£ <
|E|. Define
I={XeF||X| <k} (2.4)

Then (E, F;Z) is a strict cg-matroid, called a k-uniform cg-matroid. O

Example 2.4. Let (E, F) be a convex shelling in R?. We call a finite set X of points in
R? a simplex if dim(Conv(X)) = | X| + 1. Let

I ={X € F|dim(Conv(X)) = | X|+ 1} (2.5)

be the family of closed sets which are simplices in R%. Then (E,F;Z) is a strict cg-
matroid.

Proof. Since Conv(f)) = () and dim(()) = —1 by convention, the empty set (} is a simplex
in R%. So we have () € Z and thus (I0) holds.

Suppose that I; € F, I, is a simplex in R%, and I; C I,. Since any subset of a simplex
is also a simplex, we have /; € 7 and thus (I1) holds.

Take any simplices [, [s € 7 such that |I;| < |I5|. Then, since dim(Conv([;)) <
dim(Conv(/y)) < dim(Conv(7({; U I3))), there exists a point e in 7(I; U I5) such that
the point e is not contained in the affine hull of 7; and that I; U {e} is a closed set. Then
I;U{e} is a simplex in R? since dim(Conv(I; U{e})) = dim(Conv([;))+1 = || +2 =
|I; U{e}|+ 1. Sowe have Iy U{e} € Z withe € 7(I;UI)\ I, and thus (IsA) holds. [



Remark. Note that strict cg-matroids are the special subclass of cg-matroids, whose def-
inition is as follows. A hereditary system (£, F;Z) on a convex geometry is called a
cg-matroid if 7 satisfies the following property.

(IA) (Augmentation Property)
For any I, I, € Z with |I;| < |I5| and I, being maximal in Z,
there exists e € 7([; U I) \ I; such that I; U {e} € Z.

See [6] for detail about cg-matroids. O]

Definition. Let (£, F) be a convex geometry and X = {ey, ...,e,} € F be a closed set,
where 1 < k < |E|. An ordering (e, ..., e) of the elements of X is called an F-feasible
ordering of X if X; := {ey,...,e;} € F holds forall 1 <i < k. U]

Definition. Let (E, F) be a convex geometry and w : E' — R, be a nonnegative weight
function on E. w is called a natural weighting on (E,F) if there exists an F-feasible
ordering (e, ..., e,) of F such that w(ey) > ... > w(e,). O

Lemma 2.5. Let (E, F) be a convex geometry and w : E — R be a natural weighting
on (E,F). Then, for any closed set X € F, there exists an F-feasible ordering (ey, ..., ex)
of X such that w(ey) > ... > w(eg).

Proof. Since w : E — R is a natural weighting on (E, F), there exists an F-feasible
ordering (eq, ..., e,) of E such that w(e;) > ... > w(e,). PutY; = {ey,....e;} € F
(1<i<n)andYy=0. Alsoput Z; = X NY; (0 <i < n). Then we have Z; € F and

V=Z,CzZ,C..CZ,=X.
Here we can take the strictly increasing maximal subchain of this chain.
V=2, 7Zi, ... C Z, =X,

where k = |X|. Take é&; € Z;, \ Z;, , (1 <t < k). Then (¢4, ..., ) is an F-feasible
ordering of X such that w(é;) > ... > w(é). Thus the lemma holds. O

Lemma 2.6. Let (E,F) be a convex geometry and w : E — Rsq be a natural weight-
ing of (E,F). Then, for any closed set X € F, there exists ¢ € ex(X) such that
w(é) =min{w(e) | e € X}.

Proof. Take a closed set X € F. Then, from Lemma 2.5, there exists an F-feasible
ordering (ey,...,ex) of X such that w(e;) > ... > w(eg), where & = |X|. Since
{e1,...,ex_1} € F, we have é := ¢; € ex(X) and w(é) =min{w(e) | e € X}. O



2.3. Greedy algorithm

Let (E, F;7) be a hereditary system and w : F — R>( be a nonnegative weight function
on E. We denote Y. xw(e) by w(X). We consider the following problem.

(P,)  maximize w(l) (2.6)
subject to el 2.7

The greedy algorithm is the following algorithm.
Greedy Algorithm.
Set I «— (). Fori =0ton — 1, do

step i: If there exists e € £\ I such that IV U {e} € Z, then choose such an
element e;, ; of maximum weight, i.e.,

w(eiy) = max{w(e) | e € E\IW IV U {e} € I}. (2.8)
Let I0+Y « 1O U {e;,,} and go to step i + 1.
Otherwise, let I; < I and stop. O

Definition. Let (E, F;Z) be a hereditary system on a convex geometry and w : £ — R
be a weight function on E. If the greedy algorithm produces an optimal solution of (P,),
then we say the greedy algorithm works for (E, F;Z) with the weighting w. [l

3. Main results

In this section, we show our main result that the greedy algorithm works for a hereditary
system on a convex geometry with any natural weighting if and only if the hereditary
system is a strict cg-matroid.

First, we show that the greedy algorithm works for any strict cg-matroids with any
natural weightings.

Theorem 3.1. Let (E, F;T) be a strict cg-matroid. Then the greedy algorithm works for
(E, F;T) with any natural weighting on (E, F).

Proof. Fix any natural weighting w : E — Rsgon (E,F). Let [ = {e1,...,e,} € Zbea
solution obtained by the greedy algorithm. Note that (e, ..., e,.) is an F-feasible ordering
such that w(e;) > ... > w(e,). Since w is nonnegative, if X C Y then w(X) < w(Y).
Take any I’ € Z which is maximal in Z. Then, from (IS), I’ has also r elements. From
Lemma 2.5, there exists an F-feasible ordering (€, ..., €}) of I’ such that w(e}) > ... >
w(el). Then it follows from the following Lemma 3.2 that w(e;) > w(e}) forall 1 < i <
r. Thus we have w(lg) = XI_jw(e;) > 37_jw(e}) = w(I’). Hence I is an optimal
solution of the problem (P, ), and the theorem holds. O



Lemma 3.2. The settings are the same as in the proof of Theorem 3.1. Then w(e;) >
w(e}) holds forall 1 < i <.

Proof. Suppose that the lemma does not hold. Let £ be the minimum number such that
w(er) < w(ey). Put Iy = {ey,...,ex_1} and Iy = {€}, ..., e}.}. Then we have I; € F and

I, € F since (eq,...,e,) and (€], ..., e.) are F-feasible orderings. Thus it follows from

(I1) that [; € 7 and I, € Z. Since |I;| < |I3|, from (IsA), there exists e € 7(I[; U I5) \ I
such that I; U {e} € Z. Here there are the following two cases.
(Case ) e € I\ 1.

Since €} has the minimum weight in I, we have w(e) > w(e)) > w(ex). This is a
contradiction to the choice of e, in the greedy algorithm step k£ — 1.

(Case2)e € ([ Uly) \ (1 Uly).

From Lemma 2.6, there exists ¢ € ex(7(/; U I5)) such that w(é) =min{w(e) | e €
7([; U I)}. Here, from Lemma 2.2, we have ex(7([; U I5)) C I; U I,. So we have
é € I, U I, and thus e # é. Since e has the minimum weightin [y U [ and é € I; U [,
we have w(é) > w(e},). Therefore we have

w(e) > min{w(e) |e € T([1 U L)} =w(é) > w(e,) > w(ey).

This is a contradiction to the choice of ej, in the greedy algorithm step £ — 1.
Hence the lemma holds. []

Next, we show that a hereditary system on a convex geometry such that the greedy
algorithm works for it with any natural weighting is a strict cg-matroid.

Theorem 3.3. Let (E, F;I) be a hereditary system on a convex geometry. Suppose that
(G) The greedy algorithm works for (E, F;T) with any natural weighting on (E, F).
Then (E,F;T) is a strict cg-matrioid.

Proof. We will show that (IsA) holds. Take any I3, [s € Z such that || < |L|. If I} C I,
then it is easy to see that (IsA) holds. So we suppose that /1 ¢ I, and suppose that (IsA)
does not hold, i.e., there is no element e € 7(I; U I5) \ I; such that I; U {e} € Z.

Then we have 0 < ’Il — ]2| = ’11’ — |[1 N [2| < |IQ| — |Il N ]2| = |_[2 — ]1’ Take a
positive number € > 0 which satisfies 0 < (1 + €)|I; — I1| < |I; — I;]. Define a weight
function w : &' — R as follows.

2 (66]1ﬂ]2)

w(g)_ ]_/|Il—[2| (66]1\]2)
o (1+€)/|]2-]1| (667’(]1U]2)\11)
0 (GGE\T(IlLJIQ))

3.1



Then w is a natural weighting on (£, F). Because any maximal chain of F that contains
I N Iy, I, and 7(1; U I3) naturally defines an F-feasible ordering (ey, ..., €,) of E such
that w(e;) > ... > w(ey).

Put & = |I,| and consider the greedy algorithm. In step k — 1, we have I*) = I,.
From the assumption, we can not take an element e € 7([; U I5) \ Iy in step k. Let
I € 7 be the solution obtained by the greedy algorithm. We claim that /; does not
contain the elements in 7(I; U I5) \ Iy, i.e., I N 7(I; U Iy) = I;. If there exist such
elements e, ..., e;,, then consider a maximal chain in F which contains /; and the subset
LU{e,,....ei,} =IcN7([;UL) € F. Then I; U{e;} € F for some ¢; € {e;,, ..., €, }.
Since I; U{e;} C I € Z, from (I1), we have I; U {e;} € Z, but this is a contradiction to
the assumption.

Now we have the following.

w(le) = w(h) =2[L N L] +1, (3.2)

w(h) =2 NL|+1+e (3.3)

Thus we have w(lg) < w(ls), i.e., I¢ is not an optimal solution of (P,). This is a
contradiction to (G).
Hence (IsA) holds, and thus (E, F;T) is a strict cg-matroid. O

Combining Theorem 3.1 and Theorem 3.3, we get the following our main theorem.

Theorem 3.4. Let (E, F; T) be a hereditary system on a convex geometry. Then, (E, F;T)
is a strict cg-matroid if and only if the greedy algorithm works for (E, F; T) with any nat-
ural weighting on (E, F). O

At the end of this section, we see some examples, which show that the greedy algo-
rithm fails for a strict cg-matroid with a “not natural” weighting and also fails for a “not
strict” cg-matroid with a natural weighting.

Example 3.5. Let (F,F) be the tree shelling of a path with five vertices, i.e., £ =
{1,2,3,4,5} and F = {0,{1}, {2}, {3}, {4}, {5}, {1,2}, {2,3}, {3,4}, {4,5}, {1, 2,3},
{2,3,4}, {3,4,5}, {1,2,3,4}, {2,3,4,5}, {1,2,3,4,5}}. Consider the 3-uniform cg-
matroid on this convex geometry (E,F), i.e.,Z = {X € F | |X| < 3} (see Figure 1).
Then (E, F;T) is a strict cg-matroid.

Let w : E — R, be a weight function on E defined by w(l) = 10, w(2) = 1,
w(3) = 2, w(4) = 8, w(5) = 9. This is not a natural weighting on (£, F) because the
ordering (1, 5,4, 3,2) is not an F-feasible ordering.

Now the greedy algorithm produces a solution /i = {1,2, 3} with w(Ig) = 13. But
this is not an optimal solution of (P, ). The optimal solution of (P,) is [ = {3,4,5} with
w(I) = 19. O
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Figure 1: A tree shelling of a path with five vertices

Example 3.6. Let (E, F) be the convex shelling of the five points in the plane given in
the left of Figure 2, i.e., E = {1,2,3,4,5} and F = 25\ {{1,2,4,5},{1,2,4},{1,2,5}}.
DefineZ = {0, {1}, {2}, {3}, {4}, {6}. {1,2},{1,3},{2,3},{2,4}, {2,5}, {3, 4}, {3, 5},
{4,5},{1,2,3},{2,4,5},{2,3,4},{2,3,5}} (see the right of Figure 2). Then (£, F;Z)
is a cg-matroid but is not a strict cg-matroid.

Let w : E — R be a weight function on £ defined by w(1) = 10, w(2) = 1,
w(3) = 2, w(4) = 8, w(5) = 9. This is a natural weighting on (F, F) because there is an
F-feasible ordering (1, 5,4, 3,2), which satisfies w(1) > w(5) > w(4) > w(3) > w(2).

Now the greedy algorithm produces a solution I = {1, 3,2} with w(I5) = 13. But
this is not an optimal solution of (P,). The optimal solution of (P,) is [ = {2,4, 5} with
w(l) = 18. O
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Figure 2: A convex shelling of five points in the plane.
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