
Weighted Competition Graphs

YOSHIO SANO

Research Institute for Mathematical Sciences,
Kyoto University, Kyoto 606-8502, Japan.
sano@kurims.kyoto-u.ac.jp

February 2007

Abstract

We introduce a generalization of competition graphs, called weighted competi-
tion graphs. The weighted competition graph of a digraph D = (V,A), denoted by
Cw(D), is an edge-weighted graph (G,w) such that G = (V,E) is the competition
graph of D, and the weight w(e) of an edge e = xy ∈ E is the number of the
common preys of x and y in D. We investigate properties of weighted competition
graphs.
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1. Introduction
Joel E. Cohen [13] introduced the notion of a competition graph in connection with a
problem in ecology in 1968 (also see [14]). Let D = (V,A) be a digraph, which corre-
sponds to a food web. A vertex x ∈ V in D stands for a species in the food web, and
an arc (x, a) ∈ A in D means that the species x preys on the species a. If two species
x and y have a common prey a, they will compete for the prey a. J. E. Cohen defined a
graph which represents the relations of competition among the species in the food web.
The competition graph C(D) of a digraph D = (V,A) is an undirected graph G = (V,E)
which has the same vertex set V and has an edge between distinct two vertices x, y ∈ V
if there exist a vertex a ∈ V and arcs (x, a), (y, a) ∈ A in D. We say that a graph G
is a competition graph if there exists a digraph D such that C(D) = G. This notion is
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applicable not only in ecology but also in channel assignments, coding, and modeling of
complex economic and energy systems (see [36]).

F. S. Roberts [37] observed that, for any graph, the graph with sufficiently many iso-
lated vertices is the competition graph of some acyclic digraph. The minimum such num-
ber of isolated vertices was called the competition number of the graph G and was denoted
by k(G). R. J. Opsut [35] showed that the computation of the competition number of a
graph is an NP-hard problem. So it seems to be difficult to compute the competition
numbers of graphs, in general. But, for a graph in some special classes, it is easy to
get the competition number of the graph. The following are some of famous results for
competition numbers, which we use in later.

Theorem 1.1. If G is a chordal graph which has no isolated vertices, then k(G) = 1.

Theorem 1.2. If G is a triangle-free connected graph, then k(G) = |E(G)|−|V (G)|+2.

Recent studies about competition numbers are found in [6, 8, 26, 30].
Competition graphs and the competition numbers of graph are closely related to edge

clique covers and of the edge clique cover numbers of the graphs. A clique of a graph G is
an empty set or a subset of V (G) such that its induced subgraph of G is a complete graph.
A clique consisting of 3 vertices is called a triangle. An edge clique cover (or an ECC
for short) of a graph G is a family of cliques of G such that each edge of G is contained
in some clique in the family. The minimum size of a edge clique cover of G is called the
edge clique cover number (or the ECC number for short) of the graph G, and is denoted
by θe(G).

Opsut [35] showed that, for any graph G, the competition number satisfies an inequal-
ity θe(G) − |V (G)| + 2 ≤ k(G) ≤ θe(G). R. D. Dutton and R. C. Brigham [15] showed
that a graph G is a competition graph if and only if θe(G) ≤ |V (G)|, and also character-
ized the competition graphs of acyclic digraphs by using ECCs. F. S. Roberts and J. E.
Steif [43] characterized the competition graphs of digraphs which have no loops by using
ECCs and ECC numbers. J. R. Lundgren and J. S. Maybee [31] characterized graphs
whose competition numbers are less than or equal to a number m by using ECCs. For
other applications of ECCs, see [38].

Competition graphs, competition numbers, and their related objects have been studied
by many researchers since its appearance. There are various notions closely related to
the notion of a competition graph. R. J. Lundgren, and J. S. Maybee [32] introduced
the common enemy graph of a digraph. D. D. Scott [44] introduced the competition-
common enemy graph of a digraph and the double competition number of a graph (also
see [45, 18]). C. Cable, K. F. Jones, J. R. Lundgren, and S. Seager [5] introduced the
niche graph of a digraph and the niche number of a graph (also see [2, 1]). F. S. Roberts,
and L. Sheng [40, 41] introduced the phylogeny graph of a digraph and the phylogeny
number of a graph (also see [42, 39]).
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There are also various generalizations of competition graphs. S. R. Kim, T. A. Mc-
Kee, F. R. McMorris, and F. S. Roberts [28, 27] introduced the p-competition graph of
a digraph and the p-competition number of a graph (also see [22, 23]). R. C. Brigham,
F. R. McMorris, and R. P. Vitray [3] introduced a tolerance competition graph (also see
[4]). H. H. Cho, S. R. Kim, and Y. Nam [10] introduced the m-step competition graph of
a digraph and the m-step competition number of a graph (also see [11, 12, 20, 21]). M.
Sonntag, and H. M. Teichert [46] introduced the competition hypergraph of a digraph.

Surveys of the large literature around competition graphs can be found in [24, 25, 39].
For other topics related to competition graphs, see [7, 9, 16, 17, 19, 33, 34].

In this paper, we introduce another new generalization of competition graphs, called
weighted competition graphs. The weighted competition graph of a digraph has much
more information derived from the digraph than the competition graph of the digraph has.
The weights of a weighted competition graph represent degree of competition between
two species.

This paper is organized as follows. In section 2, we define the weighted competition
graph of a digraph and a weighted edge clique cover of a weighted graph. And we give
characterizations of weighted competition graphs by using weighted edge clique covers.
In section 3, we define the weighted competition number of a weighted graph and inves-
tigate it. In section 4, we consider an application of weighted competition graphs and
weighted edge clique covers to analysis of p-competition graphs. In section 5, we men-
tion some remarks.

Notation. In this paper, we use the following notations. For a graph G, we denote its
vertex set by V (G) and its edge set by E(G). We denote an edge between vertices x and
y by xy. For a digraph D, we denote its vertex set by V (D) and its arc set by A(D). We
denote an arc from a vertex u to a vertex v by (u, v). We call an arc (u, v) an incoming
arc of v, and also call it an outgoing arc of u. We denote the graph of k isolated vertices
with no edges by Ik.

2. Weighted competition graphs
In this section, we define the weighted competition graph of a digraph, and give its char-
acterizations by using a weighted edge clique cover.
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2.1. The weighted competition graph of a digraph
Definition. The weighted competition graph of a digraph D = (V,A) is an edge-weighted
graph (G,w) such that G = (V,E) is the competition graph of D, and the weight w(e) of
an edge e = xy ∈ E is the number of the common preys of x and y in D. We denote the
weighted competition graph of a digraph D by Cw(D).

And we call a weighted graph (G,w) a weighted competition graph if there exists a
digraph D such that Cw(D) = (G,w).

Example. Let D be a digraph on the left in Figure 1. Then the weighted competition
graph of the digraph D is the graph on the center in Figure 1. Note that we can consider
the weighted competition graph as a graph which has multiple edges like the graph on the
right in Figure 1.
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Figure 1:

Remark 2.1. It should be noted the relation between weighted competition graphs and
p-competition graphs (see [28]). Let p be a positive integer. The p-competition graph
Cp(D) of a digraph D = (V,A) is a graph which has same vertex set V and has an edge
between distinct vertices x, y ∈ V if, for some distinct p vertices a1, ..., ap ∈ V , there
exist arcs (x, ai), (y, ai) ∈ A in the digraph D for each i = 1, ..., p. And we call a graph
G a p-competition graph if there exists a digraph D such that Cp(D) = G.

Let Cp(D) = (V,E(Cp(D)) (p = 1, 2, 3, ...) be the p-competition graph of a digraph
D = (V,A). Then we have

E(C1(D)) ⊇ E(C2(D)) ⊇ ... ⊇ E(Cp(D)) ⊇ .... (2.1)

We define a graph Gp = (V,Ep) (p = 1, 2, 3, ...) by

Ep := E(Cp(D)) − E(Cp+1(D)) (p = 1, 2, 3, ...). (2.2)

And we define a weighted graph (G,w) as follows; V (G) := V ,

E(G) := E1 ⊕ E2 ⊕ ... ⊕ Ep ⊕ ... = E(C(D)), (2.3)
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and w(e) := p if e ∈ Ep. Then this weighted graph (G, w) coincides with the weighted
competition graph of the digraph D, i.e., (G,w) = Cw(D).

Conversely, let Cw(D) be the weighted competition graph of a digraph D = (V,A).
For a weighted graph (G,w), the p≤-subgraph (G,w)p≤ of (G,w) is a subgraph (V,Ep≤)
of G defined by

Ep≤ := {e ∈ E(G) | p ≤ w(e)}. (2.4)

Then the p≤-subgraph (Cw(D))p≤ of the weighted competition graph Cw(D) coincides
with the p-competition graph of the digraph D, i.e., (Cw(D))p≤ = Cp(D).

So put it shortly, the weighted competition graph Cw(D) of a digraph D has the in-
formation about the p-competition graphs Cp(D) of D for all p. The relation between
weighted competition graphs and p-competition graphs is considered further in section 4.

Definition. Let (G, w) be a weighted graph. A family F = {S1, ..., Sr} of cliques of G is
called a weighted edge clique cover (or a w-ECC for short) of the weighted graph (G,w)
if each edge e = xy ∈ E(G) is contained in exactly w(e) cliques Si in F , i.e., both x and
y are contained in exactly w(e) same cliques Si in F .

For a weighted graph (G,w), the minimum size of weighted edge clique covers of
(G, w) is called the weighted edge clique cover number (or the w-ECC number for short
of (G,w) and is denoted by θw

e (G,w).

The following relation between w-ECC numbers and ECC numbers holds.

Proposition 2.2. Let G be a graph. Then, for any weight w on E(G), we have

θe(G) ≤ θw
e (G,w). (2.5)

Proof. Since a w-ECC of (G, w) is an ECC of G, the proposition holds.

Theorem 2.3. Let (G,w) be a weighted graph with |V (G)| = n. Then, (G,w) is a
weighted competition graph if and only if θw

e (G,w) ≤ n.

Proof. Let V = V (G) = {v1, ..., vn} and E = E(G).
Suppose that (G,w) is a weighted competition graph. Then there exists a digraph

D = (V,A) such that Cw(D) = (G,w). Put Sj := {vi ∈ V | (vi, vj) ∈ A} (j = 1, ..., n).
For any x and y in Sj , since vj is a common prey of x and y in D, xy is an edge in G, and
thus Sj is a clique of G. If xy ∈ E is an edge which has weight p, then there exist exactly
p common preys vi1 , ..., vip ∈ V of x and y in D. Then exactly p cliques Si1 , ..., Sip

contain both x and y. Hence the family {S1, ..., Sn} is a w-ECC of (G,w), and thus we
conclude θw

e (G,w) ≤ n.
Next, suppose that θw

e (G,w) ≤ n. Then there exists a w-ECC F = {S1, ..., Sr} of
(G, w), where r ≤ n. We define a digraph D as follows; V (D) = V , and A(D) =
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{(vi, vj) | vi ∈ Sj}. Then the competition graph of this digraph D is the graph G. And if
xy ∈ E is an edge which has weight p, then there exist exactly p cliques Si1 , ..., Sip ∈ F
such that each clique contains both x and y. So x and y have exactly p common preys
vi1 , ..., vip ∈ V in the digraph D. Thus the weight of the edge xy in Cw(D) is p. Hence we
have Cw(D) = (G,w), and thus we conclude (G,w) is a weighted competition graph.

Example. Consider weighted graphs shown in Figure 2. A family {{v1, v2, v3}, {v1, v2, v3},
{v2, v3, v4}, {v2, v3, v4}} is a w-ECC of the weighted graph (a), which has size 4. A fam-
ily {{v1, v2, v3}, {v1, v2, v3}, {v2, v3, v4}, {v2, v4}, {v3, v4}} is a w-ECC of the weighted
graph (b) of minimum size 5. A family {{v1, v2, v3}, {v1, v2, v3}, {v2, v3, v4}, {v2, v3},
{v3, v4}} is a w-ECC of the weighted graph (c) of minimum size 5. A family {{v1, v2, v3},
{v1, v2, v3}, {v2, v3, v4}, {v3, v4}} is a w-ECC of the weighted graph (d), which has size
4.

Since the number of vertices is 4, from Theorem 2.3, we have that the weighted graphs
(a), (d) are weighed competition graphs but the weighted graphs (b), (c) are not weighted
competition graphs.
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2.2. The weighted competition graph of a loopless digraph
In ordinary situation, it is natural to assume that there are no species that prey themselves
in a food web. This assumption corresponds to that a digraph D has no loops.

Let V be a finite set, and Di be a subset of V and vi ∈ V for each i = 1, ..., r. Then,
(v1, ..., vr) is called a system of distinct representatives for {D1, ..., Dr} if v1, ..., vr are
distinct and vi ∈ Di (i = 1, ..., r).

Theorem 2.4. Let (G,w) be a weighted graph. Then the following statements are equiv-
alent.
(a) (G,w) is the weighted competition graph of a loopless digraph.
(b) There exist an ordering v1, ..., vn of the vertices of G and a weighted edge clique cover
{S1, ..., Sr} of (G,w) such that r ≤ n and vj 6∈ Sj (j = 1, ..., r).
(c) There exists a weighted edge clique cover {S1, ..., Sr} of (G,w) such that r ≤ n
and {D1, ..., Dr} has a system of distinct representatives, where Dj := V (G) − Sj

(j = 1, ..., r).

Proof. Let V = V (G) = {v1, ..., vn} and E = E(G).
(a)⇒(b): Let D = (V,A) be a loopless digraph such that Cw(D) = (G,w). Put Sj :=
{vi ∈ V | (vi, vj) ∈ A} (j = 1, ..., n). Then {S1, ..., Sn} is a w-ECC of (G,w). Since D
is loopless, we have vj 6∈ Sj (j = 1, ..., n).
(b)⇒(c): Let v1, ..., vn be an ordering of vertices of G and {S1, ..., Sr} be a w-ECC of
(G, w) such that r ≤ n and vj 6∈ Sj (j = 1, ..., r). Then (v1, ..., vr) is a system of distinct
representatives for {D1, ..., Dr}.
(c)⇒(a): Let {S1, ..., Sr} be a w-ECC of (G, w) such that r ≤ n and that {D1, ..., Dr}
has a system of distinct representatives (v1, ..., vr). Then we have vj 6∈ Sj (j = 1, ..., r).
We define a digraph D as follows; V (D) = V , and A(D) = {(vi, vj) | vi ∈ Sj}. Then
we have Cw(D) = (G, w), and that D has no loops since vj 6∈ Sj .

2.3. The weighted competition graph of an acyclic digraph
A digraph D is called acyclic if there is no directed cycle in D. It is well-known that a
digraph D is acyclic if and only if the vertices of D can be labeled so that (vi, vj) ∈ A(D)
⇒ i < j. We call such a labeling an acyclic labeling of D.

Theorem 2.5. Let (G,w) be a weighted graph. Then the following statements are equiv-
alent.
(a) (G,w) is the weighted competition graph of an acyclic digraph.
(b) There exist an ordering v1, ..., vn of the vertices of G and a weighted edge clique cover
{S1, ..., Sn} of (G,w) such that vi ∈ Sj ⇒ i < j.
(c) There exists a weighted edge clique cover {S ′

1, ..., S
′
n−2} of (G,w) such that |S ′

1∪ ...∪
S ′

j| ≤ j + 1 for j = 1, ..., n − 2.
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Proof. Let V = V (G) and E = E(G), and put n = |V (G)|.
(a)⇒(b): Let D = (V,A) be an acyclic digraph such that Cw(D) = (G,w). Then there
exists an acyclic labeling v1, ..., vn of D. Put Sj := {vi ∈ V | (vi, vj) ∈ A} (j = 1, ..., n).
Then {S1, ..., Sn} is a w-ECC of (G,w) such that vi ∈ Sj ⇒ i < j.
(b)⇒(c): Let v1, ..., vn be an ordering of vertices of G and {S1, ..., Sn} be a w-ECC of
(G, w) such that vi ∈ Sj ⇒ i < j. Then S1 = ∅ and S2 = ∅ or {v1}. We define
S ′

j := Sj+2 (j = 1, ..., n − 2). Since S1 and S2 has no edges, {S ′
1, ..., S

′
n−2} is also a

w-ECC of (G,w). For any 1 ≤ j ≤ n − 2, if vi ∈ S ′
1 ∪ ... ∪ S ′

j then i < j + 2. Hence we
have |S ′

1 ∪ ... ∪ S ′
j| ≤ j + 1 for j = 1, ..., n − 2.

(c)⇒(a): Let {S ′
1, ..., S

′
n−2} be a w-ECC of (G,w) such that |S ′

1∪ ...∪S ′
j| ≤ j +1 for j =

1, ..., n−2. We label the vertices of G as follows; Let vn be a vertex in V \(S ′
1∪...∪S ′

n−2)
(Since |S ′

1∪ ...∪S ′
n−2| ≤ n−1, V \ (S ′

1∪ ...∪S ′
n−2) 6= ∅.), and let vn−1(6= vn) be a vertex

in V \ (S ′
1∪ ...∪S ′

n−3), ..., and let vi(6= vj for all j > i) be a vertex in V \ (S ′
1∪ ...∪S ′

i−2),
... Finally, for the remaining two vertices, we label arbitrarily as v2 and v1. Let D be a
digraph defined as follows; V (D) = V , and A(D) = {(vi, vj) | vi ∈ S ′

j−2}. Then we
have Cw(D) = (G,w). Furthermore, (vi, vj) ∈ A(D) implies i ≤ j − 1. So v1, ..., vn is
an acyclic labeling of D, and thus D is acyclic.

Theorem 2.6. Let (G,w) be a weighted graph. Then there exists an nonnegative integer
k such that (G ∪ Ik, w) is the weighted competition graph of some ‘acyclic’ digraph.

Proof. Put M =max{w(e) | e ∈ E(G)}. We define a digraph D as follows;

V (D) = V (G) ∪
M∪

p=1

∪
e∈E,w(e)=p

{ae,1, ..., ae,p}, (2.6)

A(D) =
M∪

p=1

∪
e∈E,w(e)=p

{(x, ae,i), (y, ae,i) | e = xy, 1 ≤ i ≤ p}. (2.7)

Then the digraph D is acyclic and we have Cw(D) = (G ∪ Ik, w) where

k = |
M∪

p=1

∪
e∈E,w(e)=p

{ae,1, ..., ae,p}|.

Thus the theorem holds.

3. Weighted competition numbers
In this section, we define the weighted competition number of a weighted graph and
investigate it.
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3.1. The weighted competition number of a weighted graph
From Theorem 2.6, we can define the following.

Definition. The weighted competition number of a weighted graph (G,w) is the smallest
nonnegative integer k such that (G ∪ Ik, w) is the weighted competition graph of some
‘acyclic’ digraph D. We denote the weighted competition number of a weighted graph
(G, w) by kw(G,w).

First we see the relation between competition numbers and weighted competition
numbers.

Proposition 3.1. Let G be a graph. Then, for any weight w on E(G), we have

k(G) ≤ kw(G, w). (3.1)

Proof. Take any weight w on E(G). Let D be an acyclic digraph such that Cw(D) =
(G ∪ Ik, w), where k = kw(G,w). Then the competition graph of this digraph D is
G ∪ Ik. Thus we have k(G) ≤ k = kw(G,w).

A weighted graph whose weighted competition number is at most one is characterized
as follows.

Theorem 3.2. Let (G, w) be a weighted graph with |V (G)| = n. Then, kw(G,w) ≤ 1 if
and only if there exist an ordering v1, ..., vn of vertices of G and a weighted edge clique
cover {S1, ..., Sn} of (G,w) such that vi ∈ Sj ⇒ i ≤ j.

Proof. Suppose that kw(G,w) ≤ 1. If kw(G,w) = 0, then the result follows from Theo-
rem 2.5. So suppose that kw(G,w) = 1. Let G1 = G ∪ {a}, where a is an extra isolated
vertex. Then, from Theorem 2.5, there exist an ordering v1, ..., vn, vn+1 of vertices of G1

and a w-ECC {S ′
1, ..., S

′
n+1} of (G1, w) such that vi ∈ S ′

j ⇒ i < j. Here, S ′
1 = ∅, and

vn+1 is an isolated vertex in G1. Hence G ∼= G1 −{vn+1}, and {S ′
2, ..., S

′
n+1} is a w-ECC

of (G1 − {vn+1}, w). Put Sj := S ′
j+1 (j = 1, ..., n). Then the ordering v1, ..., vn and the

w-ECC {S1, ..., Sn} satisfy the condition vi ∈ Sj ⇒ i ≤ j.
Conversely, suppose that there exist an ordering v1, ..., vn of vertices of G and a w-

ECC {S1, ..., Sn} of (G,w) such that vi ∈ Sj ⇒ i ≤ j. Put G1 := G∪{vn+1}, S ′
1 = ∅, and

S ′
j := Sj−1 (j = 2, ..., n + 1), where vn+1 is an extra isolated vertex. Then the ordering

v1, ..., vn, vn+1 of vertices of G1 and the w-ECC {S ′
1, ..., S

′
n+1} of (G1, w) satisfy the

condition vi ∈ Sj ⇒ i < j. Thus, from Theorem 2.5, (G1, w) is the weighted competition
graph of an acyclic digraph. Hence we have kw(G,w) ≤ 1.

More generally, a weighted graph whose weighted competition number is at most m
is characterized as follows.
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Theorem 3.3. Let (G,w) be a weighted graph with |V (G)| = n, and m be a positive
integer such that m ≤ n. Then, kw(G,w) ≤ m if and only if there exist an ordering
v1, ..., vn of vertices of G and a weighted edge clique cover {S1, ..., Sn} of (G, w) such
that vi ∈ Sj ⇒ i ≤ j + m − 1.

Proof. We prove the theorem by induction on the number m. When m = 1, the theorem
follows from Theorem 3.2.

Assume that the theorem holds for m− 1, i.e., kw(G,w) ≤ m− 1 if and only if there
exist an ordering v1, ..., vn of vertices of G and a w-ECC {S1, ..., Sn} of (G, w) such that
vi ∈ Sj ⇒ i ≤ j + m − 2.

Suppose that kw(G,w) ≤ m. If kw(G,w) ≤ m − 1, then the theorem follows from
the induction hypothesis. So suppose that kw(G,w) = m. Let G1 = G ∪ {a}, where
a is an extra isolated vertex. Then we have kw(G1, w) = m − 1. Then, from the in-
duction hypothesis, there exist an ordering v1, ..., vn, vn+1 of vertices of G1 and a w-ECC
{S ′

1, ..., S
′
n+1} of (G1, w) such that vi ∈ S ′

j ⇒ i ≤ j + m − 2. Here, S ′
1 = ∅, and vn+1

is an isolated vertex in G1. Hence G ∼= G1 − {vn+1}, and {S ′
2, ..., S

′
n+1} is a w-ECC of

(G1 − {vn+1}, w). Put Sj := S ′
j+1 (j = 1, ..., n). Then the ordering v1, ..., vn and the

w-ECC {S1, ..., Sn} satisfy the condition vi ∈ Sj ⇒ i ≤ j + m − 1.
Conversely, suppose that there exist an ordering v1, ..., vn of vertices of G and a w-

ECC {S1, ..., Sn} of (G,w) such that vi ∈ Sj ⇒ i ≤ j + m − 1. Put G1 := G ∪ {vn+1},
S ′

1 = ∅, and S ′
j := Sj−1 (j = 2, ..., n + 1), where vn+1 is an extra isolated vertex. Then

the ordering v1, ..., vn, vn+1 of vertices of G1 and the w-ECC {S ′
1, ..., S

′
n+1} of (G1, w)

satisfy the condition vi ∈ Sj ⇒ i ≤ j + m − 2. Thus, from the induction hypothesis, we
have kw(G1, w) ≤ m − 1. Hence we have kw(G,w) ≤ m.

3.2. Bounds for weighted competition numbers
Notation. (1) Let w : E → N be a weight function. We denote the sum of weights of all
the elements in E by w(E), i.e., w(E) := Σe∈Ew(e).
(2) Let p be a positive integer. We denote a weight function w : E → N such that
w(e) = p for all e ∈ E by p1. If p = 1, then we denote it by 1 instead of 11.

If a graph G has no isolated vertices, then we have the following lower bound for the
weighted competition number.

Proposition 3.4. Let (G,w) be a weighted graph. If G has no isolated vertices, then

min{w(e) | e ∈ E(G)} ≤ kw(G, w). (3.2)

Proof. Let D be an acyclic digraph such that Cw(D) = (G∪ Ik, w), where k = kw(G,w)
and Ik = {a1, ..., ak}. Consider the digraph D′ := D − {a1, ..., ak}. Since D′ is also
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acyclic, there exists a vertex v such that v has no outgoing arcs in D′. Since the graph
G has no isolated vertices, v is an endpoint of an edge e ∈ E(G). Let u be another
endpoint of the edge e. Since Cw(D) = (G ∪ {a1, ..., ak}, w), v and u have exactly w(e)
common preys in D. Here, since v has no outgoing arcs in D′, all the preys of v in D are
in {a1, ..., ak}. So we have w(e) ≤ k. Thus we have

min{w(e) | e ∈ E(G)} ≤ w(e) ≤ k = kw(G,w).

Hence the proposition holds.

Corollary 3.5. Let Kn be a complete graph with n vertices and p be a positive integer.
Then,

kw(Kn, p1) = p. (3.3)

Proof. Since a complete graph Kn has no isolated vertices, from Proposition 3.4, we have
kw(Kn, p1) ≥ p. Next we define a digraph D as follows; V (D) = V (Kn) ∪ {a1, ..., ap},
and A(D) = {(v, ai) | v ∈ V (Kn), 1 ≤ i ≤ p}. Then the digraph D is acyclic and we
have Cw(D) = (Kn ∪ {a1, ..., ap}, p1). Thus kw(Kn, p1) ≤ p holds. Hence we have
kw(Kn, p1) = p.

If a graph G has no isolated vertices, then we also have the following bounds.

Theorem 3.6. Let (G,w) be a weighted graph. If G has no isolated vertices, then

θw
e (G,w) − |V (G)| + 2 ≤ kw(G, w) ≤ θw

e (G,w). (3.4)

Proof. Let {S1, ..., Sr} be a w-ECC of (G,w), where r = θw
e (G, w).

First, we will show kw(G,w) ≤ θw
e (G,w). We define a digraph D as follows;

V (D) := V (G) ∪ {a1, ..., ar}, and A(D) := {(v, ai) | v ∈ Si, 1 ≤ r ≤ r}. Then the di-
graph D is acyclic and we have Cw(D) = (G∪ Ir, w). Hence kw(G,w) ≤ r = θw

e (G,w).
Second, we will show θw

e (G,w) − |V (G)| + 2 ≤ kw(G,w). Let k = kw(G,w) and
n = |V (G)|. Let D be an acyclic digraph such that Cw(D) = (G ∪ Ik, w). Consider an
acyclic labeling v1, ..., vn+k of the digraph D. Then v1 has no incoming arcs and v2 has at
most one incoming arc. Put Sj := {v ∈ V (D) | (v, vj) ∈ A(D)} (j = 3, 4, ..., n + k).
Then, {S3, ..., Sn+k} is a w-ECC of (G,w). Hence we have θw

e (G,w) ≤ n + k − 2 =
|V (G)| + kw(G,w) − 2, i.e., θw

e (G,w) − |V (G)| + 2 ≤ kw(G,w) holds.

If a graph G is triangle-free and connected, then we have the following explicit for-
mula for the weighted competition number.

Theorem 3.7. Let (G,w) be a weighted graph. If G is triangle-free and connected, then

kw(G,w) = w(E(G)) − |V (G)| + 2. (3.5)
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Proof. Let V = V (G) and E = E(G).
Since G is triangle-free and connected, θw

e (G,w) = w(E) holds. Thus, from Theorem
3.6, we have kw(G, w) ≥ w(E) − |V | + 2.

Next we will show kw(G,w) ≤ w(E)−|V |+2. Since G is triangle-free and connected,
from Theorem 1.2, we have k(G) = |E|−|V |+2. So it is enough to show that kw(G,w) ≤
w(E) − |E| + k(G). From the definition of competition numbers, there is an acyclic
digraph D such that C(D) = G ∪ Ik, where k = k(G). Since G is triangle-free, we can
take such an acyclic digraph D which satisfies Cw(D) = (G ∪ Ik,1). Now we define a
digraph D′ as follows;

V (D′) = V (D) ∪
∪
e∈E

{ae,1, ..., ae,w(e)−1} (3.6)

A(D′) = A(D) ∪
∪
e∈E

{(x, ae,i), (y, ae,i) | e = xy, 1 ≤ i ≤ w(e) − 1} (3.7)

Here we note that l := | ∪e∈E {ae,1, ..., ae,w(e)−1}| = Σe∈E(w(e) − 1) = w(E) − |E|.
Then the digraph D′ is acyclic, and we have Cw(D′) = (G ∪ Ik+l, w). Thus we have
kw(G,w) ≤ k + l ≤ w(E) − |E| + k(G). Hence the theorem holds.

Corollary 3.8. Let (G,w) be a triangle-free connected weighted graph. Then, kw(G,w) =
1 if and only if G is a tree and w = 1.

Proof. If G is a tree and w = 1, then we have kw(G,w) = 1.
Suppose that kw(G,w) = 1. From Theorem 3.7, we have kw(G,w) = w(E(G)) −

|V (G)|+2. w(E(G))−|V (G)|+2 = 1 implies |V (G)|−1 = w(E(G)) ≥ |E(G)|. Since
G is connected, we have |E(G)| ≥ |V (G)| − 1. Thus we have |V (G)| − 1 = w(E(G)) =
|E(G)|. Hence G is a tree and w = 1.

Corollary 3.9. Let Pn be a path with n vertices, Cn be a cycle with n vertices, and p be
a positive integer. Then,

kw(Pn, p1) = (p − 1)(n − 1) + 1. (3.8)

kw(Cn, p1) = (p − 1)n + 2. (3.9)

Proof. Since paths and cycles are triangle-free and connected, the corollary immediately
follow from Theorem 3.7.

At the end of this section, we show that a weighted competition number kw(G,w) can
be very large even though the competition number k(G) is small and w = 1.

Proposition 3.10. For any positive integer t, there exists a weighted graph (G,1) with a
weight function 1 such that k(G) + t ≤ kw(G,1)
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Proof. Take any positive integer t. Let G be a graph with V (G) = {a, b, v1, ..., vt+2} and
E(G) = {ab, v1a, ..., vt+2a, v1b, ..., vt+2b} (see Figure 3). Then G is a connected chordal
graph. Thus, from Theorem 1.1, we have k(G) = 1. Here we can see that θw

e (G,1) =
2t + 3. Since G has no isolated vertices, from Theorem 3.6, we have kw(G,1) ≥ (2t +
3) − (t + 4) + 2 = t + 1 = k(G) + t.

. . . . .

a b

v v vv1 2 3 t+2

1

1

1

1 1

Figure 3:

4. Application to p-competition graphs
In this section, we will consider an application of weighted competition graphs and weighted
edge clique covers to analysis of p-competition graphs. The notion of a w-ECC is very
useful to determine whether a graph is a p-competition graph or not. See Remark 2.1 for
the definitions of p-competition graphs and p≤-subgraphs.

First, we introduce a graph and a weighted graph which are related to ECC and w-
ECC, respectively.

Definition. Let V be a finite set and Si be a subset of V (i = 1, ..., r). The ECC graph
Gecc

F associated with the family F = {S1, ..., Sr} is a graph (V,E) which has V as the
vertex set and has an edge between distinct vertices x, y ∈ V if there exists Si ∈ F which
contains both x and y.

The w-ECC graph associated with a family F = {S1, ..., Sr} is a weighted graph
(Gecc

F , wF), where Gecc
F is the ECC graph associated with F , and the weight wF(e) of an

edge e = xy ∈ E is the number of sets Si ∈ F which contains both x and y.

Note that the subsets Sj ∈ F become cliques of Gecc
F . And also note that the family

F is a w-ECC of (Gecc
F , wF).
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Proposition 4.1. Let G = (V,E) be a graph with n vertices and p be a positive integer.
Then, G is a p-competition graph if and only if there exists a family F = {S1, ..., Sr}
of subsets of V such that r ≤ n and the p≤-subgraph (Gecc

F , wF)p≤ of the w-ECC graph
associated with F coincides with the graph G.

Proof. Let G = (V,E) be a graph with V = {v1, ..., vn}. Suppose that G is a p-
competition graph. Then there exists a digraph D = (V,A) such that Cp(D) = G.
Put Sj = {vi ∈ V | (vi, vj) ∈ A} (j = 1, ..., n) and F = {S1, ..., Sn}. Then we can see
that the p≤-subgraph of w-ECC graph (Gecc

F , wF) associated with the family F coincides
with G = (V,E).

Conversely, suppose that there exists a family F = {S1, ..., Sr} of subsets of V such
that r ≤ n and the p≤-subgraph (Gecc

F , wF)p≤ of the w-ECC graph associated with F
coincides with the graph G = (V,E). We define a digraph D as follows; V (D) = V , and
A(D) = {(vi, vj) | vi ∈ Sj}. Then we can see that the p-competition graph Cp(D) of this
digraph D coincides with the graph G. Thus the graph G is a p-competition graph.

Theorem 4.2. Let Cn be a cycle with n vertices and p be a positive integer. If n > 2p,
then Cn is a p-competition graph.

Proof. Let v0...vn−1v0 be a cycle Cn, and p be a positive integer such that 2p < n. Put
Si = {vi, vi+1, ..., vi+p} (i = 0, ..., n − 1), where the indices are considered in modulo
n. Let (Gecc

F , wF) be the w-ECC graph associated with the family F = {S0, ..., Sn−1}.
Then we have wF(vivi+1) = p and wF(vivj) < p (j 6= i ± 1) since n > 2p. Thus we
have (Gecc

F , wF)p≤ = Cn. Hence, from Proposition 4.1, a cycle Cn is a p-competition
graph.

Theorem 4.3. Let Pn be a path with n vertices and p be a positive integer. If n > 2p,
then Pn is a p-competition graph.

Proof. Let v0...vn−1 be a path Pn, and p be a positive integer such that 2p < n. Put Si =
{vi, vi+1, ..., vi+p} (i = 0, ..., n − 2) and Sn−1 = {v0, v1, ..., vp−1}, where the indices are
considered in modulo n. Let (Gecc

F , wF) be the w-ECC graph associated with the family
F = {S0, ..., Sn−1}. Then we have wF(vivi+1) = p (i = 0, ..., n − 2), wF(v0vn−1) < p,
and wF(vivj) < p (j 6= i ± 1) since n > 2p. Thus we have (Gecc

F , wF)p≤ = Pn. Hence,
from Proposition 4.1, a path Pn is a p-competition graph.

A star K1,n with n + 1 vertices is the graph which consists of a single vertex with n
neighbors.

Theorem 4.4. Let K1,n be a star with n + 1 vertices and p be a positive integer. If n > p,
then K1,n is a p-competition graph.
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Proof. Let u, v0, ..., vn−1 be the vertices of a star K1,n, where u is the center vertex of
K1,n, and p be a positive integer such that p < n. Put Si = {u, vi, vi+1, ..., vi+p−1}
(i = 0, ..., n − 1), where the indices are considered in modulo n. Let (Gecc

F , wF) be the
w-ECC graph associated with the family F = {S0, ..., Sn−1}. Then we have wF(uvi) = p
(i = 0, ..., n − 1) and wF(vivj) < p. Thus we have (Gecc

F , wF)p≤ = K1,n. Hence, from
Proposition 4.1, a star K1,n is a p-competition graph.

5. Concluding remarks
In this paper, we have introduced the concepts of a weighted competition graph, a weighted
edge clique cover, and a weighted competition number, and gave fundamental theorems,
characterizations of weighted competition graphs, and several bounds for weighted com-
petition numbers. But there still remain a number of problems to be considered.

Finally, we left a conjecture for weighted competition numbers. (This is an analogy
to Opsut’s Conjecture [35], also see [29, 47, 48].) For a vertex v ∈ V (G), its closed
neighborhood is

NG[v] = {u ∈ V (G) | uv ∈ E(G)} ∪ {v}. (5.1)

We denote the subgraph of G induced by NG[v] by the same symbol NG[v]. And, for a
vertex v ∈ V (G), we denote the restriction of a weight w on E(G) to on the edges of
NG[v] by simply w|v.

Conjecture 5.1. Let (G,w) be a weighted graph. If θw
e (NG[v], w|v) ≤ 2 holds for all

v ∈ V (G), then kw(G,w) ≤ 2, and kw(G,w) = 2 holds if and only if θw
e (NG[v], w|v) = 2

holds for all v ∈ V (G).

Note that, if a weighted graph (G,w) satisfies the assumption of Conjecture 5.1, then
the weight w(e) is 1 or 2 for any edge e ∈ E(G). To challenge this conjecture, it would
be a good way to start with considering about the cases that the graph G is a chordal
graph, a line graph, or a proper circular arc graph. Note that the example (G1) in the
proof of Proposition 3.10 has a chordal graph G, and each edge of G has weight 1. But,
since θw

e (NG[a],1|a) = θw
e (G,1) = 2t + 3, this weighted graph (G,1) does not satisfy

the assumption of Conjecture 5.1.
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