A module system
with applicative functors
and recursive path references

Keiko Nakata

Abstract

When developing a large software program, it is useful to decom-
pose the program into smaller parts and to reuse them in different
contexts. Many modern programming languages provide some forms
of module systems to facilitate such factoring of programs.

The ML module system is well-known for its flexibility in program
structuring. A programmer can factor programs into hierarchy using
nested structures and can define functors, which are functions over
modules, to reuse program codes. Moreover, signatures, which repre-
sent types of modules, allow the programmer to control abstraction of
modules. In spite of this flexibility, modules cannot be defined recur-
sively in ML, since dependencies between modules must accord with
the order of definitions. A complex program may be naturally decom-
posed into recursive modules. Yet, this constraint of ML will force the
programmer to consolidate conceptually separate components into a
single module, intruding on modular programming.

Introducing recursive modules is a natural way out of this predica-
ment. Existing proposals, however, vary in expressiveness and ver-
bosity. In this paper, we propose a type system for recursive modules,
which can infer their signatures. Opaque signatures can also be given
explicitly, to provide type abstraction either inside or outside the re-
cursion. The type system is decidable, and is sound for a call-by-value
semantics.

Acknowledgment

Jacques Garrigue strongly supported me throughout my work. We have had
dense and fruitful discussions regularly and he gave me many many many
useful suggestions and never discouraged my premature ideas. He always
listened to me carefully and gave me appropriate advice and references. Our
discussions were not limited to about recursive modules but about various
topics on programming languages. All these discussions were exciting and
useful to my work. I cannot thank him enough for his support.

Masahito Hasegawa supported me throughout my work. He supported
me both technically and spiritually during my study at RIMS. Although
our work is not closely related, he understood my work and gave me useful
suggestions. In particular, his advice from a more technically fundamental
point of view often made my thought clearer. I thank him very much.

Susumu Nishimura gave me useful suggestions on my work. He also care-
fully read my draft papers and gave me comments, which greatly helped me
improve the drafts. I thank him very much.

Declaration

I declare that this work is entirely written by myself. The result presented in
Part I is motivated by my previous work [48] and extends it from a technical
point of view. The result of this whole thesis is condensed in [47], where
proof and details are omitted.

Contents

I

Introduction

II Abbreviation expansion for recursive modules

1

2

Example
Syntax

Module path expansion

3.1 Module path expansion algorithm
3.1.1 Ground expansion
3.1.2 Well-definedness and termination

3.2 Variable normalization

3.3 Termination and well-definedness of

the module path expansion

Type expansion

4.1 Type expansion algorithm
4.2 Well-definedness and termination

Typing

5.1 Typeequality
5.2 Core type reconstruction
5.3 Typingruleso

Soundness

6.1 Proof of the soundness

Type inference for the core language

IIT Recursive modules for programming

8

Example

18
20
25

29
33
33
36
37

38

40
40
45

47
47
47
90

55
o6

66

67

71

9 Syntax
9.1 Elaboration

10 Reconstruction
10.1 Lazy module types
10.2 Look-up
10.3 Expansion algorithms . . .

10.4 Lazy program type reconstruction

11 Type-correctness check
11.1 Type equality
11.2 Typing rules

12 Soundness
12.1 Proof of the soundness . .

12.1.1 Results from Marguerite
12.1.2 Type system TraviataX
12.1.3 From Traviata to TraviataX

13 The expression problem

IV Discussions

14 Related work
14.1 Type systems

14.2 Imitialization
14.3 Mixin modules

15 Future work

15.1 Separate type checking and compilation

15.2 Lazy modules

15.3 Relaxing the first-order structure restriction

15.4 The double vision problem

16 Conclusion

73
1)

81
81
83
87
93

98
98
99

105
107
107
109
125

132

137

137
137
140
140

142
142
142
143
143

145

List of Figures

O 1O Ul Wi

W W WWWWWNNoNNNDNDNDNDNNDN =P === O
DOl W N R O OO UE WN PO OWO U WD~ O

A Set module for integer sets 10
A FSet functor for a parameterized set module 10
A AFSet functor, whose body is ascribed by a signature . . . 11
An extension of the AFSet functor 14
Tree and forest 21
A signature for Tree and Forest 22
Syntax for the module language 26
Syntax for the core language 27
Notation convention 31
Look-up 31
Aprogram Ppo 31
Module path expansion 33
Ground expansion 35
Variable normalization 38
Type expansiono 41
Type equivalence 48
Type equivalence on located types 48
Type reconstruction Lo oL 49
Datatype look-up 49
Typingruleso 51
Typing for the core language 52
Well-formed module paths 52
Realization 53
Normalization of module paths 56
Unsafe ground-normalization 57
Tree and Forest with structural recursive types 68
Taking the fix-point of a functor 69
Modules for trees and forests, 72
The module language of Traviata 74
Syntax for module paths 0000 74
The core language of Traviata 74
The module language after elaboration 76
Module paths after elaboration 76
Example of elaboration 78
Result of elaboration 78
Elaboration operation 80

37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
592
93
54
55
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Lazy module types Lo 82

Notation convention 83
Look-up 84
Self variable environments of module descriptions 84
Aprogram Pp 86
Look-up for type and value paths 87
Location equivalence 88
Ground expansion 90
Variable normalization 91
Module path expansion 91
Type expansiono 92
Core type reconstruction 94
Datatype look-upo 94
Lazy program type reconstruction 95
Manifestation of type specifications 96
Type equivalence 99
Equivalence on located types 99
Equivalence on module paths in located forms 99
Typing rules for the module language 100
Typing rules for the core language 101
Subtyping 102
Well-formed module paths 102
Realization 103
Erasure look-up oo 106
Sealing erasure 106
Small step normalization of module paths 107
Normalization of module paths in Traviata 109
A small step reduction of types 110
Typing rules for the module language in TraviataX 112
Typing rules for the core language in TraviataX 113
Located form judgment L. 113
Datatype look-up in TraviataX 114
Subtyping in TraviataX 114
Well-formed module paths in TraviataX 115
Realization in TraviataX 115
Erasure look-up for value paths 122
Full manifestation of type specifications 126
Inline path expansion 128

75
76
7
78
79
80
81

Instantiation of module expressions 129

A first language Lo 133
A second language 134
To merge independantly developed extensions 136
Example of O’Caml applicative functors 138
Weakness of applicative functors in O’'Caml 138
Example on the double vision problem 144

Part 1
Introduction

The ML module system

When developing a large software program, it is useful to decompose the pro-
gram into smaller parts and to reuse them in different contexts. Module sys-
tems play an important role in facilitating such factoring of programs [29, 5.
Many modern programming languages provide some forms of module sys-
tems. Examples are class systems in object-oriented languages, the package
mechanism in Java and the ML module system.
The family of ML programming languages, which includes Standard ML [46,

45] (hereafter, SML) and Objective Caml [42] (hereafter, O’Caml), provides
a powerful mechanism for modular development of large programs, namely
the ML module system [44, 40, 52]. Three important features of the module
system are nested structures, functors and signature ascription. Here we in-
troduce them by gradually extending a small example program in an attempt
to build a versatile set module.

Nested structures Modules can be nested. That is, they can contain
definitions of modules, in addition to definitions of types and core ex-
pressions. Hence they allow hierarchical decomposition of programs.

In Figure 1, we define a Set module representing sets of integers. We
pack into the Element sub-module type and value components that
are relevant to elements of those integer sets. Observe that module
hierarchy also allows namespace management. The Element module
contains a type component named t, which represents the type of ele-
ments held in sets; the Set module contains a type component of the
same name, which represents the type of sets. A programmer can dis-
tinguish between these two components of the same name by referring
to the former as Set .Element .t and the latter as Set.t. The ML scop-
ing rule for backward references allows us to use Element.t to refer to
Set.Element.t in the definition of Set.t !

!Precisely, we cannot use Set.Element.t in the definition of Set.t or Set.sum. This
amounts to forward references, that the current ML module system does not allow.

module Set = struct
module Element = struct
type t = int
val unit = 0
val add x y = x + ¥y
end
type t = Element.t list
val empty = []
val sum 1 = case 1 with
[] = Element.unit
| hd ::
end

tl = Element.add hd (sum t1)

Figure 1: A Set module for integer sets

module FSet =
functor(X : sig type t val unit
struct
module Element = X
type t = Element.t list
val empty = []
val sum 1 = case 1 with
[l = Element.unit

| hd :: t1 = Element.add hd (sum t1)

end

: t val add :

t -t — t end) —

Figure 2: A FSet functor for a parameterized set module

10

module AFSet =
functor(X : sig type t val unit : t val add : t - t — t end) —
(struct
module Element = X
type t = Element.t list
val empty = []
val sum 1 = case 1 with
[l = Element.unit
| hd :: tl = Element.add hd (sum tl)
end : sig type t val empty : t val sum : t — X.t)

module ASet = AFSet(Set.Element)

Figure 3: A AFSet functor, whose body is ascribed by a signature

Functors Functors are functions over modules, where their formal param-
eters are explicitly annotated with signatures. Signatures are types
of modules. The body of a functor can refer to a component of the
parameter as long as the parameter’s signature says that it has this
component. Functor application instantiates modules, where argument
modules must implement all the components that the signature of the
parameter requires and determine the behavior of the resulting mod-
ules. Functors are useful to ease code reuse.

In Figure 2, we define a functor FSet, a functorized version of the above
Set module. When applied, FSet instantiates a module representing
sets whose element type is determined by the argument module. In-
deed, we can instantiate an equivalent of the above Set module by
applying FSet to Set.Element, i.e., FSet (Set.Element).

Signature ascription Modules can be ascribed by signatures. A signature
does not have to mention all the components that the ascribed module
contains but may only specify some of them translucently [27, 37, 43].
Thus a programmer can flexibly control accessibility of module compo-
nents. Signatures improve modularity of programs.

In Figure 3, we define a functor AFSet by ascribing the above FSet
functor with a signature. The signature abstracts away the underlying
representation of sets and hides the sub-module Element. We can in-
stantiate a module for integer sets by applying AFSet to Set.Element,

11

as we do for defining the module ASet. Due to the signature ascription,
ASet.empty is the only value of type ASet.t that we can build.

In spite of this flexibility, the ML module system does not allow recursive
modules. In ML, module dependencies must accord with the definition order.
For instance, we cannot define the function sum before the Element sub-
module in Figure 1. Thus a programmer cannot define recursive functions or
types across module boundaries. The absence of recursive modules is a major
disadvantage of the ML module system, when compared to object-oriented
languages, like Scala [1] and Java. These languages have supported recursive
definitions across class boundaries from the beginning, and this feature is
heavily used in practice.

The ML programming language enjoys strong type safety. Yet, due to
the lack of recursive modules, a programmer may have to consolidate con-
ceptually separate components into a single module, intruding on modular
programming [56]. If ML had both recursive modules and this flexible mod-
ule language, the programmer could enjoy a strongly type safe programming
language with an equally strong expressive power.

Recently, much work has been devoted to investigating extensions with
recursion of the ML module system. There are at least two important issues
involved in recursive modules, namely initialization and type checking.

Initialization: Suppose that a programmer can freely refer to value com-
ponents of structures forward and backward. Then he might carelessly de-
fine value components cyclically like val 1 = m val m = 1. Initialization
of modules having such cyclic value definitions would either raise a runtime
error or cause meaningless infinite computation. Boudol [6], Hirschowitz and
Leroy [34, 33, 31, 32|, and Dreyer [15] examined type systems which ensure
safe initialization of recursive modules. Their type systems ensure that the
initialization does not attempt to access undefined recursive variables. The
above cyclic definitions will be rejected by their type systems because ini-
tialization of the value component 1 requires an access to itself. This path is
not the main focus of this thesis.

Type checking: Designing a type system for recursive modules is another
important and non-trivial issue; this is the main focus of this thesis. Sup-
pose that a programmer can layout modules in any order regardless of their
dependencies. Then, it might happen that a function returns a value whose
type is not yet defined at the point where the function is defined. To type

12

check the function, a type system should somehow know about the type,
which is going to be defined in the following part of the program.

Type checking recursive modules

To type check recursive modules, existing proposals [11, 56, 16, 41] rely on
signature annotations from a programmer. The programmer has to assist the
type checker by writing enough type information so that recursive modules
do not burden the type checker with forward references.

The amount of required annotations varies in each proposal and depends
on where to enforce type abstraction. In the context of recursive modules, a
programmer can enforce type abstraction inside the recursion by giving sig-
natures individually to modules, or outside the recursion by writing a single
signature for the whole recursive modules. In all proposals, a programmer
has to write two different signatures for the same module to enforce abstrac-
tion outside the recursion; one of the signatures is solely for assisting the type
checker and does not affect the resulting signature of the module. Moreover,
due to the annotation requirement a programmer cannot use type inference
during development. This is unfortunate since a lot of useful inference algo-
rithms have been and will be developed to support smooth development of
programs.

Even if we write annotations for recursive modules, this still leaves two
subtle issues to be considered.

Cyclic type specifications in signatures

To annotate recursive modules with signatures, existing type systems allow
some forms of recursive references between signatures. To develop a practical
algorithm for judging type equality, one may want to ensure that manifest
type specifications in signatures do not declare cyclic types. For instance, one
may want to forbid programmers from writing the following cyclic signature:
sig type t = s type s = t end

Detection of cyclic type specifications is not a trivial task when the mod-
ule language supports both applicative functors [38, 18] and recursive sig-
natures, as O’Caml does. Applicative functors give us more flexibility in
expressing type sharing constraints between modules by allowing type paths
to contain functor application. For instance, with functors being applicative

13

module EAFSet =
functor(X : sig type t val unit : t val add : t — t — t end) —
(struct
module Set = AFSet(X)
include Set
val total 1 = case 1 with
[] = Element.unit
| hd :: tl = Element.add (Set.sum hd) (total tl)
end : sig
type t = AFSet(X).t val empty : t val sum : t — X.t
val total : t list — X.t
end)

Figure 4: An extension of the AFSet functor

AFSet (Set.Element) .t is a valid type in Figure 3. We can further extend
the AFSet functor with a new function total, preserving type equality with
AFset as shown in Figure 4. While applicative functors are useful, there is
the potential that a programmer may carelessly write cyclic type specifica-
tions by combining applicative functors and recursive signatures, in such way
that a naive check cannot detect the cycle. Here is one pathological example.

module F
: functor(X : sig type t end) — sig type t
= functor(X : sig type t end) — sig type t

F(F(X)).t end
F(F(X)).t end
Compare the above functor definition with the definition below.
module G
: functor(X : sig type t end) — sig type t
= functor(X : sig type t end) — sig type t

G(X).t end
G(X).t end

On the one hand, a type system would easily detect the latter cycle, since
the unrolling of the type G(X) .t would be exactly G(X).t. On the other
hand, the former cycle is more difficult to detect, since the unrolling of the
type F(F(X)) .t would yield the following infinite rewriting sequence.

F(F(X)).t - F(F(F(X))).t — FFEFEE))) .t — ...

Observe that this sequence is not merely cyclic, but produces types of ar-
bitrary long length. In fact, O’Caml type checker diverges for the former
functor definition of F, since it attempts to build this infinite sequence inter-
nally in an attempt to detect cycles.

14

The situation could become harder, if one wants to keep recursive defini-
tions like:
module H

: functor(X : sig type t type s end) —

sig type t = H>(H’ (X)) .t type s = X.s — X.s end

= functor(X : sig type t type s end) —

struct type t = H2(H’(X)).t type s = X.s — X.s end
and H’

: functor(X : sig type t type s end) —

sig type t = X.t * X.t type s = H(H(X)).s end

= functor(X : sig type t type s end) —

sig type t = X.t * X.t type s = H(H(X)).s end

Neither H nor H’ contains cycles. Hence, from the programmer’s perspective,
there would be no reason to disallow them.

The three examples we have seen are simple. Hence one may easily distin-
guish between them, judging that only the last one is legal. When recursive
modules define more complex types, however, this issue becomes harder to

decide.

Potential existence of cyclic type definitions

Another subtle issue involved in recursive modules is how to account for the
potential existence of cyclic type definitions in structures, when their imple-
mentations are hidden by signatures. For instance, should a type checker
reject the program below?

module M = (struct type t = N.t end : sig type t end)

and N = (struct type t = M.t end : sig type t end)
On the one hand, one could argue that this is unacceptable since the under-
lying implementations of the types M.t and N.t make a cycle. On the other
hand, one could argue that this is acceptable since, according to their signa-
tures, the types M.t and N.t are nothing more than abstract types. Hence
the modules M and N need not be accused of defining cyclic types. At least,
one could argue that potential cycles in type definitions are acceptable, if the
type system is still sound and decidable and this choice has merits over the
other choice.

Existing type systems take different stands on this issue.

In Russo’s system [56], a programmer has to write forward declarations for

15

recursive modules, in which implementations of types other than datatypes
cannot be hidden. Thus cyclic type definitions are never hidden by signa-
tures. At the same time, a programmer cannot enforce type abstraction
inside recursive modules.

Dreyer’s work [16] focuses on type abstraction inside recursive modules.
He requires the absence of cyclic type definitions whether or not they are
hidden inside signatures. To ensure the absence of cycles without peeking
inside signatures, he puts a restriction on types whose implementation can
be hidden. As a consequence, the use of structural types is restricted. For
instance, his type system would reject the following program, which uses a
polymorphic variant type [24] and a list type to represent trees and forests, re-
spectively. (Here we use a polymorphic variant type, which is supported only
in O’Caml, since the core language we want to support is that of O’Caml.
Yet, a similar restriction could arise in the context of SML, when one at-
tempts to use a record type to represent trees.)

module Tree = (struct
type t = [‘Leaf of int | ‘Node of int * Forest.t]
end : sig type t end)
and Forest = (struct
type t = Tree.t list end : sig type t end)
By replacing the polymorphic variant type with an usual datatype, one can
make this program typable in Dreyer’s system. Polymorphic variant types,
however, have their own merits that datatypes do not have.

The path O’Caml chose is a more liberal one. It does not care about
potential cycles in type definitions, as long as signatures do not specify cy-
cles. The type checker will report an error when signatures contain cyclic
type specifications. (The type checker can diverge since, as we mentioned
above, recursive modules and applicative functors together make it difficult
to detect cycles in a terminating way.) O’Caml has a very expressive core
language, whose constructs include structural types such as object types [54]
and polymorphic variant types. Moreover, the path it chose keeps flexibility
in using these types and in abstracting them away by signatures.

Our proposal of a type system for recursive modules

The goal of our work is to make recursive modules an ordinary construct of
the module language for ML programmers. We want to use them easily in

16

everyday programming, possibly combining with other constructs of the core
and the module languages. With this goal in mind, we propose in this thesis
a type system for recursive modules which overcomes as much of the diffi-
culties discussed above as possible. Concretely, we follow the path O’Caml
chose but extend it by 1) enabling type inference; 2) providing a terminating
procedure to detect cyclic type specifications, in the presence of applicative
functors; 3) formalizing the type system and proving its soundness, but al-
lowing the potential of cyclic type definitions hidden inside signatures, thus
leaving flexibility in using structural types. At the current stage, we con-
fine ourselves to first-order functors. We defer it to future developments to
accommodate higher-order functors.

The rest of this thesis is organized into two parts in the following way.

Part IT We tackle the first two of the aforementioned difficulties in typing
recursive modules, that is, type inference and detection of cycles in
type specifications. For a formal study, we design a calculus, named
Marguerite, which supports recursive modules and applicative functors
but does not signature ascription. We develop “expansion algorithms”
which can resolve recursive references between modules by tracing mod-
ule and type abbreviations. These algorithms are terminating; they will
either output the result of the expansion or raise an error when they
cannot prove that input recursive modules do not contain cyclic or
dangling type specifications. Using these algorithms, we design a type
system for Marqguerite and prove that the type system is decidable and
sound for a call-by-value operational semantics.

Part IIT We extend Marguerite with signature ascription to make the
module language full-fledged. The extended language is named Travi-
ata. We reformulate the type system of Marguerite for Traviata. The
resulting type system is two-phased, that is, it consists of a type recon-
struction part and a type-correctness check part. The former part is an
application of the result of Part I; the latter corresponds to a standard
type checking of modules. We prove the type system is still decidable
and sound.

17

Part II
Abbreviation expansion for
recursive modules

In this part, we focus on developing “expansion algorithms” for resolving re-
cursive references between modules. The motivation of the algorithms are to
reduce types into canonical forms for judging type equality. One can think of
canonical forms of types as abbreviation-free types that are obtained by re-
placing abbreviations with their definitions. To expand types, the algorithms
trace abbreviations. Yet we have to be careful to keep them terminating,
since the source program may contain dangling or cyclic abbreviations. The
algorithms may raise an error when they cannot prove that both the input
type and the source program do not contain dangling or cyclic references.

Every type has a unique canonical form, in which all references are re-
solved. The type system judges type equality by reducing types into canon-
ical forms using the expansion algorithms and by comparing their syntactic
equality. For decidability of type checking, termination of the algorithms is
critical.

We design the expansion algorithms to be terminating independently of
well-typedness of the source program. We cannot rely on well-typedness to
keep the algorithms terminating, since we need a type equality judgment to
type check the program and our type equality judgment requires types to be
in canonical form. The algorithms are developed separately from the type
system and proved to be terminating for any input.

This separation has the following two useful consequences.

1. Typing rules are kept straightforward. This is particularly useful to
extend the type system later with more expressive language constructs.
These new constructs may be accompanied by rather complex typing
rules, so we would like to add them without polluting their typing rules
with specifics to the expansion algorithms.

2. It is easy to accommodate a possible extension of the algorithms, that
is, when we come up with cleverer expansion algorithms we can replace
the current ones with the new ones without or with little change in
typing rules.

18

For a formal study, we design in this part a calculus, named Marguerite,
which supports nested recursive structures and applicative functors. Mar-
guerite does not support signature ascription, on which we focus in the next
part of this thesis. In this part, we explain the expansion algorithms in de-
tail and prove their termination. We present a type system for Marguerite,
where the expansion algorithms play an important role in judging type equal-
ity. Decidability of the type system is obtained as an immediate consequence
of termination of the algorithms. We also prove a soundness result of the
type system; the result includes that the expansion algorithms are consistent
with the intuition for well-typed programs.

The rest of this part is organized as follows. In the next section, we
overview the main features of Marguerite using an example. In Section 2,
we give the syntax for Marqguerite. In Section 3 and 4, we develop expansion
algorithms for reducing module paths and types, respectively. In Section 5,
we present the type system and in Section 6 we prove a soundness result. In
Section 7, we discuss how to apply the expansion algorithms to define a core
type inference algorithm.

19

1 Example

In this section, we present a scenario where recursive modules naturally arise
and explain difficulties involved in type checking recursive modules, using an
example given in Figure 5.

The top-level structure contains three sub-modules S, Tree and Forest,
where Tree and Forest are defined in a mutually recursive way. The module
S is an abbreviation for a module IntSet, which is we assume given in a
library. The module Tree represents trees whose leaves and nodes are labeled
with integers. The module Forest represents unordered sets of those integer
trees.

To enable forward references between modules, we extend the top-level
structure with an implicitly typed declaration of a self variable. Components
of the top-level structure can refer to each other recursively using the self
variable, regardless of definition ordering. For instance in the example, the
top-level structure declares a self variable named TF, which is used inside Tree
and Forest for recursive references to each other. We keep the usual ML
scoping rules for implicit backward references. Thus the function Tree.split
can refer to the Leaf and Node constructors without going through the self
variable. It was possible to use Tree, instead of TF.Tree, inside Forest,
since Tree is a backward reference for Forest. But the explicit notation
seems clearer.

Let us explain the implementations of Tree and Forest in detail. Two
types Tree.t and Forest.t refer to each other recursively. On the one
hand, the datatype definition of Tree.t involves a type name s, which is an
abbreviation for the type TF.Forest.t, a reference to the type Forest.t.
On the other hand, the type Forest.t is a synonym for the type T.t list,
where the type T.t is an abbreviation for TF.Tree.t, a reference to the type
Tree.t. Two functions Tree.labels and Forest.labels call each other
recursively. These functions calculate the sets of integers that a tree and
a forest contain, respectively. Using these functions, we define the function
Forest.incr, which augments a given forest only if a given tree contains
original labels that are not contained in the forest.

The function split in Tree cuts off the root node of a given tree, then
returns the resulting forest. The function sweep in Forest gathers leaves
from a given forest. These two functions also make recursive references. The
second case branch of Tree.split depends on the fact that a forest is a
list of trees; Forest.sweep constructs and deconstructs trees through the

20

struct (TF)
module S = IntSet
module Tree = struct
module F = TF.Forest
type s = F.t
datatype t = Leaf of int | Node of int * s
val labels = Ax.case x of Leaf i = TF.S.singleton i
| Node (i, f) = TF.S.add i (F.labels f)
val split = Ax.case x of Leaf i = [Leaf i]
| Node (i, f) = (Leaf i) :: f
end
module Forest = struct
module T = TF.Tree
type t = T.t list
val labels = Ax.case x of [] = TF.S.empty
| hd :: t1 = TF.S.union (T.labels hd) (labels tl)
val incr = Af.\t.let 11 = labels f in
let 12 = T.labels t in
if TF.S.diff 12 11 != TF.S.empty then (t :: f) else f
val sweep = Ax.case x of [] = []
| (T.Leaf y) :: tl = (T.Leaf y) :: (sweep tl)
| (T.Node y) :: tl = sweep tl
end
end

Figure 5: Tree and forest

21

sig (TF)
module Tree : sig type t val split : t — TF.Forest.t end
module Forest : sig

type t val incr : TF.Tree.t — t — t val sweep : t — t end
end

Figure 6: A signature for Tree and Forest

constructors Leaf and Node, which are declared inside Tree.

Judging type equality The main difficulty in type checking this example
is in judging type equality. For instance, let us consider type checking the
second branch of the function Tree.split. For the list cons operation (Leaf
i) :: f to be well-typed, £ must be a list of trees. In the datatype definition
of Tree.t, the constructor Node is described to contain an integer and a
forest. By tracing underlined four abbreviations, a type system could expand
the type Tree.s into TF.Tree.t list. Then it would conclude that the list
cons operation is well-typed.

In this simple well-typed example, there is clearly no potential of diver-
gence in tracing abbreviations. Having both recursive modules and applica-
tive functors, however, a programmer might carelessly write pathologically
cyclic abbreviations which are hard to detect. Then a naive way of tracing ab-
breviations may diverge, causing non-terminating type checking. In Section 3
and 4, we examine such pathological examples and develop “expansion algo-
rithms” which trace abbreviations in a terminating way for reducing types
into abbreviation-free forms.

Type inference To type check the example, a type system also needs to
support type inference. Suppose that we want to give a signature in Figure 6
to the example, where we extend usual ML signatures with implicitly typed
declarations of self variables to allow recursive references inside signatures.
The signature enforces type abstraction by hiding underlying implementa-
tions of the types Tree.t and Forest.t. Moreover it does not mention
functions Tree.labels and Forest.labels. Since the implementation of
the function Forest.incr relies on these two functions, a type system has
to infer their types to type check Forest.incr.

Indeed, without type inference, a programmer has to write two different

22

signatures to enforce desired abstraction; one for the abstraction, which is
given in Figure 6 and one for assisting the type checker, which we will examine
below.

To avoid presenting too verbose signature annotations, we consider in the
following examination the program in Figure 5 without the module abbrevi-
ation module F = TF.Forest inside Tree. We can dispense with abbrevia-
tions by replacing them with their definitions; yet abbreviations are useful
in practical programs [57].

To type check the example in Dreyer’s system [16] or O’Caml [42], a
programmer has to write fully manifest signatures of Tree and Forest, that
is, he has to present the type checker with the following signatures:

module Tree : sig
datatype t = Leaf of int | Node of int * Forest.t
val labels : t — S.t
val split : t — Forest.t
end
and
module Forest : sig
type t = Tree.t list
val labels : t — S.t
val incr : Tree.t — t — t
val sweep : t — t
end

In Russo’s system [56], the self variable TF of the top-level structure must
be annotated with the recursive signature below. In his system, a recursive
signature contains a typed declaration of a self variable to support forward
references in the signature.

sig (Z : sig module Tree : sig type t end
module Forest : sig type t = Tree.t list end end)
module Tree : sig
datatype t = Leaf of int | Node of int * Z.Forest.t end
module Forest : sig
type t = Tree.t list val labels : t — S.t end
end

These additional signature annotations are indispensable in existing pro-
posals and must be given beforehand. Then, the type checker first type checks
the example assisted by these manifest signatures. Once this succeeds, type

23

abstraction can be enforced using the signature given in Figure 6.

Marguerite supports type inference unlike other proposals, hence it does
not need the assistance of signature annotations. Indeed, it has an ability
to reconstruct the fully manifest signatures of Tree and Forest, which the
programmer has to write by himself in Dreyer’s and O’Caml type systems.
This implies that the signature in Figure 6 is sufficient for Marqguerite to type
check the example and to enforce type abstraction together. In Section 7, we
explain how we define a type inference algorithm using our abbreviation ex-
pansion algorithms. In the next part of this thesis we examine and formalize
how to type check the example when the signature in Figure 6 is given by
the programmer.

24

2 Syntax

We give the syntax for the module language of Marguerite in Figure 7. It is
based on Leroy’s applicative functor calculus [38]. We use M as a metavari-
able for module names, X for names of module variables and Z for names of
self variables. For simplicity, we distinguish them syntactically, however the
context could tell them apart without this distinction. We also use ¢ as a
metavariable for type names, [for value names and ¢ for constructor names.

Every module expression and signature is labeled with an integer. We use
these integer labels to keep expansion algorithms terminating. For instance,
a module expression F is a module expression body FEy labeled with an
integer 7. One can think of the integer label i of Ej as the location of Ey
in the source program. For the interest of brevity, we may omit integer
labels when they are not used. For the interest of clarity, we may write
additional parentheses, for instance (functor(X: sig type t end?) — X°)%.
We use metavariables 7, j for integers.

A module expression body Ej is either a structure, a functor or a module
path. A structure is a sequence of module, type and value definitions. A
type definition may generate a new datatype or may be an alias for another
type. In particular, that structures can contain sub-modules is an important
feature of the ML module system. A functor is a function over modules.
Signatures for functor arguments must be given explicitly. A functor can
only be applied to a module which implements the specified signature of
the argument. A signature is a sequence of specifications labeled with an
integer. A type specification may expose the underlying implementation of
the specified type (datatype and manifest type specifications) or may hide
the implementation (abstract type specification). A value is specified with
its type.

A module path is a reference to a module. The flexible referencing mech-
anism given by module paths is a key feature of Marguerite. A module path
may refer to a module at any level of nesting within the recursive struc-
ture, regardless of component ordering. Moreover, module paths can contain
simple cases of functor applications, where the functor and its arguments
themselves are paths. Concretely, module paths are constructed from self
variables, the dot notation [9] “.M”, which represents access to the sub-
module named M of a structure, and functor applications. The syntax of
module paths in Figure 7 restricts module paths not to contain paths of the
forms X.M and X (p). We explain this later.

25

Module expression
E = B
Module expression bodies

E, = struct D;...D, end
| functor (X:95)— F
P
Definitions
D w= module M =FE
| datatypet=cof 7T
| typet=r
| vall=e
Signature
S u= S
Signature body
Sy n= sig B;...B, end
Specifications
B = datatypet=cof 7
| typet=r
| typet
| vall:7

Module identifiers

mid = Z | mid.M | mid(p)
Module paths
p,q,r == mid|X
Program
P = struct (Z) Dy...D, end’

structure
functor
module path

module def.
datatype def.
type abbreviation
value def.

structure type

datatype type spec.
manifest type spec.
abstract type spec.

value spec.

Figure 7: Syntax for the module language

26

Core types

T = 1 | —n|mxn|pt
Core expressions
e c= x| ()| (er,e2) | mile) | (A\x.e:7) | er(es)

| pcelcaseeof pcx=e|pl

Figure 8: Syntax for the core language

For the sake of simplicity, we assume that functor applications only con-
tain module paths but not structures or functors. This does not reduce the
expressive power of the language [39] and we believe that in several situa-
tions we can allow a larger class of functor applications, following Leroy’s
proposal [40].

A program is a top-level structure extended with an implicitly typed dec-
laration of a self variable. A self variable is bound inside the top-level struc-
ture where the variable is declared. In this thesis, we only consider a bunch
of recursive modules but not ordinary ones (i.e., non-recursive modules).

To develop a decidable type system, we impose a first-order structure
restriction that requires functors 1) not to take functors as arguments and
2) not to access sub-modules of arguments. The first restriction means that
our functors are not higher-order, while they can still return functors. The
second restriction implies that a programmer has to pass sub-modules as
independent parameters to a functor instead of passing a single module which
contains all the sub-modules. The restriction on the syntax of module paths
is consistent with this restriction.

In Figure 8, we give the syntax for the core language of Marguerite.

A core type is either a unit type 1, an arrow type 71 — 7, a pair type
T1 * To or a type path p.t, which refers to a type component named ¢ in the
structure that the module path p refers to. A core expression is either a core
variable (variable, for short) x, a null (), a pair (e;,es), a projection m;(e),
an abstraction (Az.e : 7), an application e;(ey), a value construction p.c e or
deconstruction case e of p.c x = e, or a value path p.l, which refers to a
value component named [in the structure that the module path p refers to.

We may say paths to mean module, type and value paths as a whole.

An unusual convention is that a module variable is bound inside its own
signature. For instance,

27

functor(X : sig type t val 1 : X.t end) — X
is legal in Marguerite, which should be understood as
functor(X : sig type t val 1 : t end) — X

This convention is convenient when proving a soundness result, as the syntax
of paths is kept uniform, that is, every path is prefixed by either a self variable
or a module variable. In Section 13, we give an example where this convention
is useful.

We write MVars(p) to denote the set of module variables contained in
the module path p. We also write MVars(t), MVars(e) etc, with obvious
meanings.

In the formalization, 1) function definitions are explicitly type annotated;
2) a path is always prefixed by either a self variable or a module variable. Our
examples do not stick to these rules. Instead, we have assumed that there is
an elaboration phase, prior to type checking, that adds type annotations for
functions by running a type inference algorithm for the core language. The
original program may still require some type annotations, to avoid running
into the polymorphic recursion problem [30]. In Section 7, we discuss the
details of this inference algorithm. The elaboration phase also infers omitted
self variables, to complete implicit backward references.

We assume the following three conventions: 1) a program does not con-
tain free module variables or free self variables; 2) all binding occurrences of
module variables use distinct names; 3) any sequence of module definitions,
datatype definitions, type abbreviations, value definitions, datatype specifi-
cations, manifest and abstract type specifications, and value specifications
does not contain duplicate definitions or specifications for the same name.

28

3 Module path expansion

In this section, we develop a module path expansion algorithm for deter-
mining the module that a module path refers to. The type system uses the
algorithm in the following three contexts.

1. To type check a functor application p;(ps), the type system expands p;
to make sure that p; indeed refers to a functor definition and to dis-
cover the argument signature of the functor which p, must implement
(Section 5).

2. The type expansion algorithm is defined on top of the module path
expansion algorithm (Section 4).

3. The type system decides an order for type inference using the module
path expansion algorithm (Section 7).

The module path expansion algorithm reduces module paths into located
forms. Intuitively, a module path p is in located form when, for all paths ¢
contained in p, the reference of ¢ is already resolved. To define formally, we
introduce a look-up judgment.

Look-up judgment A program environment A is a mapping from a self
variable to a top-level structure and from module variables to signatures. For
a program P, the program environment of P, written Ap, is the program
environment whose domain exactly contains the self variable declared in the
top-level structure of P and all module variables appearing in P and which
sends the self variable to P and module variables to their own signatures
specified in P. We write dom(A) to denote the domain of A.

Given a module environment A, we define in Figure 10 a look-up judg-
ment which determines the module that a given module path refers to with
respect to A. We use # as a metavariable for module variable bindings, which
map module variables to module paths and write dom(#) to denote the do-
main of #. The judgment A F p — (6, K) means that the module path
p resolves to the module description K, where each module variable X is
bound to 8(X) w.r.t.2 A. We write ¢ to denote the empty module variable
binding, that is, a module variable binding whose domain is empty. We use

2with respect to

29

the notation convention in Figure 9. In particular, we use K, as a metavari-
able for module description bodies, which are either module expression bodies
or signature bodies, and K for module descriptions, which are either module
expressions or signatures. For a module variable binding 6, 8] X — p| denotes
a module variable binding whose domain is dom(f) U {X} and which maps
X to p and coincides with 6 on dom(0)\{X}.

Let us examine each rule of the look-up. For self variables and module
variables, the judgment consults the program environment A. A path p.M
resolves to the sub-module named M in the structure that p resolves to.
Hence p; must resolve to a structure. A path p;(p2) resolves to the body of the
functor that p; resolves to, where the module variable binding is augmented
with a new binding [X +— ps].

The look-up judgment only holds for module paths whose references are
already resolved. For instance, consider the program P; in Figure 11. Let Ap,
be the program environment of P, or Ap = [Z — P,X — sig type t end?].
We have a derivation whose conclusion is:

Ap, F ZM(ZMy) My — ([X +— Z.M,], struct end®)
but no derivation for the path Z.M3.My;.

Corresponding to the convention of the absence of free module variables
in programs, we assume that any program variable environment we consider
in this thesis does not contain free module variables. Precisely,

Definition 1 A program variable environment A does not contain free mod-
ule variables if, for any module path p other than module variables, when
AF pr— (0,K) then the following two conditions hold.

1. MVars(K) C dom(0)
2. For all X in dom(0), MVars(A(X)) C dom(0).

For a module description K, MVars(K) denotes the set of free module vari-
ables in K.

Located forms Now we define located forms, which are output of the
module path expansion. A module path p is in located form if and only if p
does not contain a module path which resolves to a module path according
to the look-up judgment. Precisely,

30

Module description K = K}
Module description bodies Ky = FEq| Sy
ss = struct |sig

Figure 9: Notation convention

[lk-self] [Ik-mvar|
A Zw— (e, A(Z)) AF X — (6, A(X))
[Ik-dot] |
At pr (0, struct...module M = FE...end")
AFpMw— (0,F)

[Ik-app] ,
AF p; — (0, (functor(X : S) — E)")

AF pi(py) — (0[X — po], E)

Figure 10: Look-up

struct (Z)
module M; = (functor(X : sig type t end?®) —
struct
module M;; = struct end®
module My, = X6
end?)?
module M, = struct type t = int end’
module My = Z.M;(Z.M,)8
end!

Figure 11: A program P,

31

Definition 2 A module path p is in located form w.r.t. a program environ-
ment A if the following two conditions hold:

e AFp— (0,K}) where K4 is not a module path.

e For all q in args(p), q is in located form w.r.t. A.

For a module path p, args(p) denotes the set of module paths appearing
inside p as functor arguments. Precisely:

args(Z) = 0 args(X) =0

args(p.-M) = args(p) args(pi(p2)) = args(p1) U {p2}
We say that a module variable binding 6 is in located form w.r.t. A if and
only if, for all X in dom(0), §(X) is in located form w.r.t. A.

The module path expansion algorithm reduces a module path into a lo-
cated form or raises an error when it cannot prove that the input path does
not contain dangling or cyclic references. The basic idea of the algorithm is
straightforward. It traces module abbreviations until either the input mod-
ule path resolves to a structure or a functor or it is reduced to a module
variable. To keep the algorithm terminating, we have to be careful about
the potential existence of cyclic module abbreviations. Below we give two
pathological examples which contain cycles.

To reduce notational burden, we may omit, in examples here and else-
where, preceding self variables even for forward references when no ambiguity
arises. Moreover, we may omit the top-level struct and end together with
a declaration of a self variable.

The first example is:

module F = functor(X : sig end) — X
module L = F(L)

Through the identity functor F, the definition of L makes a cycle. The second
example is:

module M = M.N

This second example is more annoying than the first one, since the unrolling
of M’s definition would result in the following infinite rewriting sequence,
yielding module paths of arbitrary long length.

M —- MN— M.N.N — M.N.N.N — ...

32

ADFEp~yq AFwvarnlz(q) =r
AbFp~sr

Figure 12: Module path expansion

3.1 Module path expansion algorithm

We define the module path expansion in Figure 12. It is a composite of
ground expansion and variable normalization. The inference rule in Figure 12
means that the expansion reduces a given module path p into ¢ w.r.t. a given
program environment A, if the ground expansion reduces p into ¢, written
A0 F p ~, ¢ and the variable normalization reduces ¢ into r, written
A+ warnlz(q) = r. We may say that ¢ is the located form of p when
AFp~q.

The ground expansion and the variable normalization are defined below.
Both are terminating (Proposition 2 and 3). As a result, the module expan-
sion is also terminating (Proposition 4).

3.1.1 Ground expansion

The ground expansion is ground in the sense that it does not rely on functor
arguments. It either reduces a module path into a pre-located form or raises
an error when 1) it cannot prove that the input module path does not contain
cyclic or dangling references, or 2) the input module path does not obey the
first-order structure restriction.

We first introduce pre-located forms, the central idea for defining the
ground expansion. A module path p is in pre-located form if and only if p does
not contain a module path which resolves to a module identifier according to
the look-up judgment. Precisely,

Definition 3 A module path p is in pre-located form w.r.t. a program envi-
ronment A if the following two conditions hold:

e Atpr (0,K!) and Ky is not a module identifier. (Hence Ky can be
a module variable.)

e For all g in args(p), q is in pre-located form w.r.t. A.

33

The locution “pre-located form” indicates that we can turn a pre-located
form into a located form by substituting functor arguments, as we show in
Proposition 3.

We say that a module variable binding 6 is in pre-located form w.r.t. A
if and only if, for all X in dom(0), 6(X) is in pre-located form w.r.t. A.

The important feature of pre-located forms is that they satisfy a substitu-
tion property, as stated in Lemma 1 below. We first define length of module
paths, which we use to prove the lemma.

len(Z) =1 len(X) =1
len(p.M) =1 + len(p) len(p(q)) = len(p) + len(q)

For a module path p and a module variable binding 6, we write 6(p)
to denote the module path obtained by applying the substitution 6 to p.
Precisely,

| X when X ¢ dom(0)
6(X) = { p when X € dom(0) and §(X) =p

0(p-M) = 6(p)-M 0(p1(p2)) = 0(p1)(0(p2))

Lemma 1 (Substitution property) Let p and 0 be in pre-located form
w.r.t. A. Then 0(p) is in pre-located form w.r.t. A.

0(2)=2

Proof. By induction on the length of p. O

We also use the following lemma to define the ground expansion.
Lemma 2 Let p be in pre-located form w.r.t. A. If A+ pw— (0, K), then 0
is in pre-located form w.r.t. A.

Proof. By induction on the derivation of A p+— (0, K). O

It is an important observation that Lemma 1 holds due to the fist-order
structure restriction. If functors took nested structures as arguments, then
the module path [X — L]X.M would not be in pre-located form in the program:

module F = functor(X : sig module M : sig end end) —
struct module M = X.M end
module L = struct

module N = struct end
module M = N
end

34

[gnlz-mvar] [gnlz-self]

AYEX~ X ANYXEZ~y 7
[gn]z-deﬂ] [gl’llZ—pthl]
A Ep~oyp AYtEp~yp AFp.Mw— (0,q)
At p M (0,K)) Kq¢ mid g#X AXWilqgrogr
AYEp M~y p M AYEpM~s,0(r)
[gnlz-def2]

AN Epi~g oy ASEpy~gpy AFpi(ph) — (0,K) Kq& mid
A, Y pi(p2) ~g P1(Dh)

[gnlz-pth2]
AaZl_pl'\”gpll szl_p2’\”gpl2
AFpi(ph) = (0,¢) ¢#X AXWilkqgogr
ALY pr(p2) ~g (1)

Figure 13: Ground expansion

The module variable binding [X — L] is in pre-located form, but the module
path L.M is not (because L.M resolves to a module identifier).

We define the ground expansion in Figure 13. The judgment A /Y F
p ~»4 q means that the ground expansion reduces the module path p into
the module path ¢ with ¥ locked w.r.t. the program environment A. We use
¥ as a metavariable for sets of integers. The notation ¥ Wi means ¥ U {i}
whenever ¢ ¢ . We may say that ¢ is the pre-located form of p w.r.t. A
when A, ¥ p~», g holds for some X.

Observe that for any program environment A, module path p and lock 3,
proof search for A, ¥ = p ~», _is deterministic, where “_” is a place-holder.
In other words, for any A, p and ¥ we can search a derivation tree whose
conclusion is A, ¥ = p ~», _in a deterministic way. The search may fail with
no applicable rules. When it is successful, we find a module path ¢ such that
A, Y = p~»4 qholds. In this way, we regard the inference rules of the ground
expansion as defining an algorithm which takes A, p and ¥ as input then
either returns ¢ when the search succeeds in building a derivation tree of
A, ¥ F p~»4 qorraises an error when the search fails. We prove termination
of the proof search later in Proposition 2.

Let us examine each rule in Figure 13. The first two rules [gnlz-mvar]

35

and [gnlz-self] are straightforward. For a path of the form p.M, the ground
expansion first reduces the prefix p ([gnlz-defl][gnlz-pth1]). Suppose that p’
is the pre-located form of p. Then there are two cases depending on whether
p'.M resolves to a module identifier or not. When p’. M resolves to a module
description other than a module identifier ([gnlz-defl]), then p’.M is in pre-
located form and the ground expansion terminates. When p'.M resolves to
a module identifier ¢ ([gnlz-pth1]), then the ground expansion traces the
abbreviation ¢. This is the key rule, hence we explain it in detail.

As a simple case, suppose that ¢ is in pre-located form w.r.t. A. Then
A, ¥ Wit g~ q holds immediately whenever 7 is not in ¥ (see Lemma 6)
and the ground expansion returns #(q). By Lemma 1 and 2, we know that
0(q) is in pre-located form. In general, ¢ is not necessarily in pre-located
form. Hence, the ground expansion reduces ¢ first to obtain its pre-located
form in the premise A, ¥ Wik g ~, r, then applies the substitution 6 to .

This explains the idea of the ground expansion. It additionally holds a
lock ¥ during the expansion for termination. In short, when the ground
expansion holds a lock >, then it is in the middle of reducing the module
paths labeled with the integers in ¥. The rules [gnlz-pth1] and [gnlz-pth2]
have the side condition ¢ ¢ > implicitly; thanks to the condition, the ground
expansion avoids tracing the same module abbreviation cyclically.

The rules [gnlz-def2] and [gnlz-pth2] for paths of the form p;(p2) are
similar to [gnlz-expl] and [gnlz-pth1], respectively.

3.1.2 Well-definedness and termination

Here we prove that the ground expansion does reduce module paths into
pre-located forms unless it raises an error and that it is terminating.

Proposition 1 (Well-definedness of the ground expansion) For any pro-
gram environment A, lock ¥ and module paths p,q, if A, X F p~», q then q
is in pre-located form w.r.t. A.

Proof. By induction on the derivation of A, F p ~», ¢ and by case on the
last rule used. Use Lemma 1 and 2 for the rules [gnlz-pth1] and [gnlz-pth2].
O

We prove termination by defining well-founded relations.

36

Definition 4 A binary relation R on any set is well-founded if there is no
infinitely descending sequence in R, that is, there is no sequence {r;}32, such
that, for alli in 1,2,..., r; R r;x1 holds.

Proposition 2 (Termination of the ground expansion) For any program
environment A, lock ¥ and module path p, proof search for A, X = p ~»g _
will terminate.

Proof. Below, we define a well-founded relation >, on pairs (p,X) of a
module path p and a lock > w.r.t. A. It is easy to check that if A >y F
p2 ~y - is a premise of A,X; F p; ~, _, then (p1,%1) >, (P2, X2).
Thus, if there is an infinitely deep derivation tree of the ground expansion,
then there is an infinitely descending sequence in >,,. This contradicts
well-foundedness of >,,. By Koning’s lemma on finitely branching trees, we
obtain the proposition.

(p1,21) >4, (p2,22) holds if and only if either of the following three con-
ditions holds. We write IntLabsp to denote the set of integer labels appearing
in A.

1. pr =p).M and py = p} and ¥y = 3.
2. p1 = p11(p12) and ps = py; with ¢ being either 1 or 2, and ¥; = ¥s.
3. 4 is not in 3 and X9 = ¥y U {i} C IntLabsa

Well-foundedness of >,, follows from the finiteness of IntLabsa. O

3.2 Variable normalization

The variable normalization turns pre-located forms into located forms. In
Figure 14 we define the variable normalization using two functions varnlz
and wvarsubst. When the input module path resolves to a module variable,
these functions recursively substitute for the variable the module path which
is bound to the variable, according to the look-up judgment.

The proposition 3 below indicates that by combining the ground expan-
sion and the variable normalization, we can calculate located forms.

Lemma 3 Let p be in located form w.r.t. A. If A+ p— (0,K), then 6 is
in located form w.r.t. A.

37

At wvarnlz(X) =X Arvarnlz(Z) =27
A F varnlz(p) =p" A F varsubst(p'.M) = q
A F varnlz(p.M) = q
A b varnlz(pr) = py A F varnlz(ps) = py A F varsubst(py(ph)) = q
A Fwarnlz(pi(p2)) = g
Ak p (0, X Abpe (0,K) Ki#X
A F varsubst(p) = 0(X) A F varsubst(p) = p

Figure 14: Variable normalization

Proof. By induction on the derivation of A F p+— (6, K). a

Lemma 4 Let p be in pre-located form w.r.t. A. If A+ p— (0,K%) with
Kq# X and A & varnlz(p) = q, then A+ q — (01, K') where, for all X in
dom(0), A+ varnlz(0(X)) = 61(X).

Proof. By induction on the length of p. Observe that by definition on the
look-up, dom(0) = dom(0,). O

Proposition 3 When p is in pre-located form w.r.t. A, then there is a unique
q in located form w.r.t. Asuch that A & varnlz(p) = q.

Proof. By induction on the length of p. We show the main case.

When p = p;.M. By induction hypothesis, there is a unique ps in located
form such that A + varnlz(p1) = pe. Since p;.M is in pre-located form,
At p;— (0, struct...end’). By Lemma 4, we obtain the lemma. O

3.3 Termination and well-definedness of
the module path expansion

Finally we prove that the module path expansion is terminating and that it
does reduces module paths into located forms unless the ground expansion
raises an error. We also present some lemmas that are used later in this
thesis.

Proposition 4 (Termination of the module path expansion) For any
program environment A and module path p, proof search for A F p~» _ will
terminate.

38

Proof. The proposition is an immediate consequence of Proposition 2 and
Proposition 3. O

Proposition 5 (Well-definedness of the module path expansion) For
any program environment A and module paths p,q, if A= p~s q, then q is
in located form w.r.t. A.

Proof. By hypothesis, we have A, () - p ~, p/ and A F varnlz(p') = ¢q. By
Proposition 1, p’ is in pre-located form w.r.t. A. By Proposition 3, ¢ is in
located form w.r.t. A. O

The following lemmas are proven by easy induction.

Lemma 5 Let p and 0 be in located form w.r.t. A. Then 0(p) is in located
form w.r.t. A.

Lemma 6 Let p be in pre-located form w.r.t. A. Then A, ¥ &= p -~y p for
any .

Lemma 7 Let p be in located form w.r.t. A. Then A+ varnlz(p) = p.
Lemma 8 Let p be in located form w.r.t. A. Then At p~» p.

Proof. By Lemma 6 and 7. Recall that pre-located forms include located
forms. O

It is a useful observation that located forms are invariant of the module
path expansion, ground expansion and variable normalization, and that pre-
located forms are invariant of the ground expansion.

39

4 Type expansion

In this section, we develop a type expansion algorithm, which reduces types
into canonical forms by unrolling type abbreviations. The purpose of the type
expansion is to define type equality. Each type has a unique canonical form
unless it does not contain dangling or cyclic references. Hence, once types
are reduced into canonical forms we can judge their equality in a syntactic
way.

Located types We first introduce canonical forms of types, named located
types, which are output from the type expansion. A located type consists
of simple located types and unit types. A simple located type is an abstract
type, i.e.

Definition 5 A simple located type w.r.t. a program environment A is a
type path p.t where p is in located form w.r.t. A and either A F p +—
(0,ss...datatypet =cof 7...end") or A p (0,sig...typet...end’)
holds.

For a type 7, typaths(t) denotes the set of type paths that 7 contains.
Precisely,
typaths(m) U typaths(z) when 7 =1 — 7
B OF T =Ty % Ty
typaths(r) = {p.t} when 7 = p.t
0 when 7 =1

Then we define located types as follows.

Definition 6 A located type w.r.t. a program environment A is a type T
where each type ' in typaths(T) is a simple located type w.r.t. A.

4.1 Type expansion algorithm

We define the type expansion in Figure 15. The judgment A;Q = 7 | 7/
means that the expansion reduces the type 7 into the type 7" where Q is
locked w.r.t. the program environment A. We use 2 as a metavariable for
sets of pairs (i,t) of an integer 7 and a type name .

Observe that for any program environment A, lock Q2 and type 7, proof
search for A; Q F 7 | _is deterministic. We regard inference rules of the type

40

[tnlz-uni]

AQF1T 1

[tnlz-arr] [tnlz-pair]
AQFT L1 AQFT] T AQFE7m L1 AQFT |7

AQFET =TT =T A QF T kT | T TS

[tnlz-dtyp]
Abp~p AbFp+— (0,ss...datatype t = c of 7...end")

A;QFEpt | pt

[tnlz-atyp]
Abp~p AbFp — (0,ss...typet...end")
A;QFEpt | pt

[tnlz-abb]
Abp~p AbFp — (0,ss...typet =T ...end")
A;QW (i)l AQF0(r) T
A;QFEpt | T

Figure 15: Type expansion

expansion as defining an algorithm which takes A, € and 7 as input then
either returns 7’ as output when the search succeeds in building a derivation
tree for A;Q F 7 | 7/ or raises an error when the search fails. We prove
termination of the proof search later in Proposition 7.

Let us examine each rule of the type expansion. The first three rules
[tnlz-uni], [tnlz-arr] and [tnlz-pair] are straightforward.

For a type type p.t, the expansion first reduces its prefix p into a located
form p’ to determine the module that p refers to ([tnlz-dtyp][tnlz-atyp][tnlz-
abb]). When the module path expansion fails, then the type expansion fails
too. Even though the module path expansion succeeds, the type expansion
may fail, if p’ resolves to a functor; in that case the type path p'.t is dangling,
hence so is p.t. When the module path expansion succeeds in reducing p into
p' and when p’ resolves to a structure or structure type, the type expansion
continues. There are four possible cases:

1) The structure (type) does not contain a type component named ¢. In
this case p.t is dangling.

41

2) It contains a datatype definition or specification named t ([tnlz-dtyp]).
3) It contains an abstract type specification named ¢ ([tnlz-atyp]).

4) It contains a type abbreviation or manifest type specification named ¢
([tnlz-abb]).

For the cases 2) and 3), the expansion terminates immediately returning the
type p'.t, which is already a located type. The last case 4) is very important
and we will explain in detail.

When t is an alias for another type, then the expansion should trace the
aliased type while avoiding divergence possibly caused by cyclic abbrevia-
tions. The rule [tnlz-abb] says that to reduce 6(7), for which the type p’.t
is alias, the expansion 1) first reduces 7, into a located type 7, without ap-
plying the module variable binding 6 to 71, 2) then reduces the type 6(72) by
applying 6 to the newly obtained type 7. When reducing 7, the expansion
augments the lock €2 with a new entry (i, t), which is released when reducing
0 (7’ 2).

Compare the rule [tnlz-abb] to the rule [gnlz-pth1] of the ground expan-
sion. Both handle abbreviations and have similar premises except that the
type expansion continues after applying the module variable binding 6 to the
newly obtained type 75, while the ground expansion terminates immediately
after applying 6 to the newly obtained path r. Since located types do not
satisfy a substitution property like module paths in located form do, it does
not necessarily hold that applying a module variable binding in located form
to a located type produces a located type. Due to this difference, the type
expansion appears to be more involved than the ground expansion. We first
study a simple case in detail below, to give the intuition of the type expan-
sion. Then we examine key cases by giving concrete examples in Example 1
and 2.

First, we prove two useful lemmas about the type expansion. Lemma 9
presents a weak substitution property that simple located types satisty.
Lemma 10 states that located types are invariant of the type expansion.

Lemma 9 (Weak substitution property) Let a type path p.t be a simple
located type w.r.t. a program environment A, and 0 be in located form w.r.t.
A, and MVars(p) C dom(0). Then either of the following two conditions
holds.

42

1. O(p-t) is a simple located type.

2. p 1s a module variable.

Proof. By definition of simple located types. Use Lemma 5 to prove that
0(p) is in located form w.r.t. A. O

Lemma 10 Let 7 be a located type w.r.t. a program environment A, then
A;QF T | T for any €.

Proof. By induction on the structure of 7. We show the main case where
7 = p.t. By definition of simple located types, p is in located form w.r.t. A.
By Lemma 8, A F p ~» p. The only applicable rule is either [tnlz-dtyp] or
[tnlz-atyp], hence we have the claim. O

Now let us study a simple case. Suppose that every type abbreviation
and manifest type specification appearing in a program environment A ab-
breviates a simple located type. That is, suppose that, for all type t = 7
appearing in A, 7 is a simple located type w.r.t. A. To reduce a type path
p.t, the expansion first reduces p. Let us assume that the module path expan-
sion successfully reduces p into p’ where p’ is not a module variable and that
AbFp +— (0,ss ...typet = 7... end’) holds. Since 7 is a simple located
type, A;Q F 7 | 7 holds immediately (Lemma 10). Hence, by Lemma 9,
O(7) is either a simple located type or 7 = X.t; for some module variable
X and a type name t;. When 6(7) is a simple located type, the expansion
terminates successfully returning 0 (7) as output. Otherwise, the expansion
continues reducing 6(X).t;. Since §(X) is in located form (Lemma 3) and
located forms are invariant of the module path expansion (Lemma 8), we
have A F 6(X) ~ 0(X). Thus the only possible case where the expansion
further continues is where A F §(X) — (f,8s ... type t; = 71... end’)
holds. Again, by Lemma 9, 65(m) is either a simple located type or else
71 = Xo.t for some Xy and t5. Here one should notice that 05(X5) is struc-
turally smaller than 0(X), since 65(X5) literally appears inside 6(X). Since
6(X) is structurally finite, the expansion eventually terminates.

In general, type abbreviations may contain more complex types than
simple located types and so may manifest type specifications. Yet, if the
expansion knows all the type abbreviations and manifest type specifications
that are looked up during the expansion of a type 7 and if it has expanded
these types in advance, it can reduce 7 in a similar way to the above simple

43

case we examined. In other words, the expansion reduces types in an appro-
priate order so that a type 7 is expanded only after all those types that are
looked up during the expansion of 7 have been expanded. The expansion
simultaneously searches such an order and reduces types along the order. It
uses locks €2 to ensure that the order does not contain cycles.

The following two examples are good exercises to understand how the
type expansion works in more complex cases.

Example 1 Consider a functor definition:

module F =
(functor(X : sig type t end?) — struct type t = F(F(X)).t end®)!

The type t in the body of the functor F defines a cyclic abbreviation. The
type expansion raises an error for input F(F (X)) .t, when attempting to lock
(3,t) under the lock {(3,t)} during the reduction. If the expansion traced
the abbreviation in the intuitive way, it would yield the following infinite
sequence:

F(F(X)).t =»F(FFEX))) .t »FEFEEFEEFEEX))).t —...
Observe that this sequence is not merely cyclic, but produces types of arbitrary
long length.
Example 2 Consider the following program:

module F = (functor(X : sig type t end?) —
struct module L = X* type t = L.t * int end®)!
module M = struct type s = int type t = s end®
module N = struct type t = F(F(M)).t end®

The type N.t has a valid reference, and the type expansion successfully
reduces the type F(F(M)) .t into int * int * int.
Here are two important observations on this example.

1. The expansion reduces L.t * int into X.t * int before reducing
F(F(M) .t, since the expansion of F(F(M)) .t looks up the type t de-
fined in F’s body.

2. If we restricted the expansion from tracing the same abbreviation twice
during the reduction instead of having the rule [tnlz-abb], then the
expansion could not reduce F(F(M)) .t, since the abbreviation type t
= L.t * int in F’s body is looked up twice.

44

4.2 Well-definedness and termination

Here we prove that the type expansion does reduce types into located types
unless it raises an error and that it is terminating.

Proposition 6 (Well-definedness of the type expansion) For any pro-
gram environment A, lock Q and types 7,7, if A;Q 7 | 7/, then 7’ is a
located type w.r.t. A.

Proof. By induction on the derivation of A;€2 F 7 | 7/ and by case on the
last rule used. O

Proposition 7 (Termination of the type expansion) For any program
environment A, lock Q and type T, proof search for A;Q = 7 | _ will
terminate.

Proof. Below, we define a well-founded relation >;, on pairs (7,2) of a
type 7 and a lock Q w.r.t. A. Using Lemma 9 and Proposition 6, it can be
easily checked that if there is an infinitely deep derivation tree of the type
expansion, then one can construct an infinitely descending sequence in >;,
from the tree. This contradicts well-foundedness of >,,. By Koning’s lemma
on finitely branching trees, we obtain the proposition.

(71,821) >1, (72,€2) holds if and only if either of the following four con-
ditions holds. We write IntLabsy and Thamesa to denote the set of integer
labels and type names appearing in A, respectively.

1. Q; = Q9 and 7, = 741 * T2 and either 75 = 771 or 75 = Tqa.
2. Ql = QQ and T = T11 — T12 and either To = T11 O T = T192.

3. All the following three conditions hold.

L] leﬂg.
e =ptand AFp~ p and A F p — (0,ss ...type t =
7'... end’).

e For all 7 in typaths(7y), either 7 is a simple located type w.r.t. A
or else 7 = 0(X).t; for some module variable X in dom(f) and
some type name ;.

45

4. (i,t) is not in ©Q; and Qo = Q; U {(i,t)} C {(i,t) | i € IntLabsa, t €
Tnamesna}.

To prove well-foundedness of >;,, we define a well-founded relation >,
on types w.r.t. A. Then we show that well-foundedness of >, implies that
of >tA‘

71 >, T2 holds if and only if either of the following three conditions holds.
1. 7 = 711 — 712, and either 75 = 741 or 7 = Ty5.

2. T, = Ty * T12, and either 75 = 741 or 7o = Tya.

3. The following two conditions hold.

e =ptand AFp+— (0,ss ...typet =7"... end’)

e For all 7 in typaths(my), 7 is either a simple located type w.r.t. A
or else §(X).t; for some module variable X in dom(6) and some
type name t;.

Note the slight but crucial difference between the second condition of the
rule 3. of >;, and the first condition of the rule 3. of >.,. In the latter,
we do not expand p.

First we show well-foundedness of >.,. Suppose that there is an infinitely
descending sequence {7;}°, in >,,. Such sequence can only be constructed
using the rule 3. of >, infinitely often. Hence there is an infinite sequence
{pi-t;}32, such that, for all i in 1,2,..., p;y1 is in args(p;). Since the length
of py is finite, this is a contradiction. (Note that if a type path p.t is a simple
located type, then A+ p— (,ss ...typet=17"... end’) cannot hold.)

Now we show well-foundedness of >;,. Suppose that there is an infinitely
descending sequence in >;.. Since {(i,t) | ¢ € IntLabsa, t € Tnamesa} is
finite, there is a lock €y such that there is an infinitely descending sequence
{(1:,)}2, in >;,. Let j be an integer such that (7;,) >, (7541, 0)
holds due to the rule 3. of >;,. (It is easy to check that such j exists.) Let
7 =pt. Wehave A p~s>prand AFp; — (0,ss ...typet =7'... end™).
By Proposition 5, p; is in located form w.r.t. A. By Lemma 3, for all X
in dom(#), 6(X) is also in located form w.r.t. A. Since located forms are
invariant of the module path expansion (Lemma 8), it holds that, for all
k> j,if (76, Q0) >t (Tkt1,Q0) holds due to the rule 3. of >;, and 7, = p/.¢/
for some p’ and ', then A = p' ~» p'. Thus, {7;}22,,, is a descending sequence
in >.,. This contradicts well-foundedness of >, . O

46

5 Typing

In this section, we define a type system for Marguerite. Having defined ex-
pansion algorithms, the remaining part of the type system is straightforward.

5.1 Type equality

We define a type equivalence judgment in Figure 16, with an auxiliary judg-
ment in Figure 17. The judgment A F 71 = 7 states that two the types 7y
and 7o are equivalent w.r.t. the program environment A. The type system
checks equivalence between two arbitrary types by reducing them into lo-
cated ones. Figure 17 defines a type equivalence judgment on located types.
All rules are syntax directed and straightforward.

It would be easy to observe that the type equivalence judgment defines
an equivalence relation. Recall that the type expansion is deterministic, that
s, if A;QF7] 7 and A;QF 7 | 77 then 77 = 7.

Decidability of the type equivalence judgment follows from termination
of the type expansion.

Lemma 11 For any program environment Aand types 7,7, it is decidable
whether A =7 = 7' holds or not.

5.2 Core type reconstruction

The core type reconstruction algorithm infers types of expressions, but does
not assure that the inferred types are correct. For instance, to reconstruct a
type of an application e;(e3) ([renstr-app] in Figure 18), it only reconstructs
a type of e;, which must be an arrow type 7/ — 7, then returns the result
type 7. We defer ensuring that e; does have a type equivalent to 7’ to a
well-typedness judgment of the form A;I"' - e : 7, which is defined later in
Figure 20.

We define the core type reconstruction in Figure 18, with an auxiliary
judgment in Figure 19. The judgment A;T'; U I e :: 7 means that the recon-
struction infers the type 7 for the expression e under the type environment I'
with W locked w.r.t. the program environment A. We use ¥ as a metavariable
for pairs (i,1) of an integer i and a value name [and T for type environments,
which assign located types to variables. For a type environment I, dom(I")
denotes the domain of T'.

47

ANObErlr ANOFEr]l Fr= T
AFm=n

Figure 16: Type equivalence

Fn=1 Fn= 7

— — / /
Fi1=,1 FT T =T — T

Fh=1 Fr=m7

FT ok =T % T Fpt = pt

Figure 17: Type equivalence on located types

Observe that for any program environment A, type environment I', lock
U and expression e, proof search for A;I'; W F e :: _ is deterministic. We
regard inference rules of the reconstruction as defining an algorithm which
takes A, W, I" and e as input then either returns 7 as output when the search
succeeds in building a derivation tree for A;I'; ¥ F e :: 7 or raises an error
when the search fails. We prove termination of the proof search later in
Proposition 8.

In the same way as the type expansion does, the reconstruction holds a
lock ¥ so as to avoid tracing the same value abbreviations cyclically. For
instance, it does not attempt to reconstruct a type of the value component
1 in the program below, but raises an error.

struct (Z) val 1 = Z.mval m = Z.1 end

The rules in Figure 18 are mostly straightforward. Here, we focus on the
rules [renstr-vpthl] and [renstr-vpth2] for reconstructing a type of a value
path p.l. Firstly, the reconstruction determines the module that p refers to
by expanding p into a located form. When either the module path expan-
sion fails or the located form p’ of p does not resolve to a structure (type)
containing a value component named [, the reconstruction fails. Otherwise
there are two possibilities: 1) W