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Abstract

When developing a large software program, it is useful to decom-
pose the program into smaller parts and to reuse them in different
contexts. Many modern programming languages provide some forms
of module systems to facilitate such factoring of programs.

The ML module system is well-known for its flexibility in program
structuring. A programmer can factor programs into hierarchy using
nested structures and can define functors, which are functions over
modules, to reuse program codes. Moreover, signatures, which repre-
sent types of modules, allow the programmer to control abstraction of
modules. In spite of this flexibility, modules cannot be defined recur-
sively in ML, since dependencies between modules must accord with
the order of definitions. A complex program may be naturally decom-
posed into recursive modules. Yet, this constraint of ML will force the
programmer to consolidate conceptually separate components into a
single module, intruding on modular programming.

Introducing recursive modules is a natural way out of this predica-
ment. Existing proposals, however, vary in expressiveness and ver-
bosity. In this paper, we propose a type system for recursive modules,
which can infer their signatures. Opaque signatures can also be given
explicitly, to provide type abstraction either inside or outside the re-
cursion. The type system is decidable, and is sound for a call-by-value
semantics.
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Part I

Introduction

The ML module system

When developing a large software program, it is useful to decompose the pro-
gram into smaller parts and to reuse them in different contexts. Module sys-
tems play an important role in facilitating such factoring of programs [29, 5].
Many modern programming languages provide some forms of module sys-
tems. Examples are class systems in object-oriented languages, the package
mechanism in Java and the ML module system.

The family of ML programming languages, which includes Standard ML [46,
45] (hereafter, SML) and Objective Caml [42] (hereafter, O’Caml), provides
a powerful mechanism for modular development of large programs, namely
the ML module system [44, 40, 52]. Three important features of the module
system are nested structures, functors and signature ascription. Here we in-
troduce them by gradually extending a small example program in an attempt
to build a versatile set module.

Nested structures Modules can be nested. That is, they can contain
definitions of modules, in addition to definitions of types and core ex-
pressions. Hence they allow hierarchical decomposition of programs.

In Figure 1, we define a Set module representing sets of integers. We
pack into the Element sub-module type and value components that
are relevant to elements of those integer sets. Observe that module
hierarchy also allows namespace management. The Element module
contains a type component named t, which represents the type of ele-
ments held in sets; the Set module contains a type component of the
same name, which represents the type of sets. A programmer can dis-
tinguish between these two components of the same name by referring
to the former as Set.Element.t and the latter as Set.t. The ML scop-
ing rule for backward references allows us to use Element.t to refer to
Set.Element.t in the definition of Set.t 1

1Precisely, we cannot use Set.Element.t in the definition of Set.t or Set.sum. This
amounts to forward references, that the current ML module system does not allow.
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module Set = struct

module Element = struct

type t = int

val unit = 0

val add x y = x + y

end

type t = Element.t list

val empty = []

val sum l = case l with

[] ⇒ Element.unit

| hd :: tl ⇒ Element.add hd (sum tl)

end

Figure 1: A Set module for integer sets

module FSet =

functor(X : sig type t val unit : t val add : t → t → t end) →
struct

module Element = X

type t = Element.t list

val empty = []

val sum l = case l with

[] ⇒ Element.unit

| hd :: tl ⇒ Element.add hd (sum tl)

end

Figure 2: A FSet functor for a parameterized set module
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module AFSet =

functor(X : sig type t val unit : t val add : t → t → t end) →
(struct

module Element = X

type t = Element.t list

val empty = []

val sum l = case l with

[] ⇒ Element.unit

| hd :: tl ⇒ Element.add hd (sum tl)

end : sig type t val empty : t val sum : t → X.t)

module ASet = AFSet(Set.Element)

Figure 3: A AFSet functor, whose body is ascribed by a signature

Functors Functors are functions over modules, where their formal param-
eters are explicitly annotated with signatures. Signatures are types
of modules. The body of a functor can refer to a component of the
parameter as long as the parameter’s signature says that it has this
component. Functor application instantiates modules, where argument
modules must implement all the components that the signature of the
parameter requires and determine the behavior of the resulting mod-
ules. Functors are useful to ease code reuse.

In Figure 2, we define a functor FSet, a functorized version of the above
Set module. When applied, FSet instantiates a module representing
sets whose element type is determined by the argument module. In-
deed, we can instantiate an equivalent of the above Set module by
applying FSet to Set.Element, i.e., FSet(Set.Element).

Signature ascription Modules can be ascribed by signatures. A signature
does not have to mention all the components that the ascribed module
contains but may only specify some of them translucently [27, 37, 43].
Thus a programmer can flexibly control accessibility of module compo-
nents. Signatures improve modularity of programs.

In Figure 3, we define a functor AFSet by ascribing the above FSet

functor with a signature. The signature abstracts away the underlying
representation of sets and hides the sub-module Element. We can in-
stantiate a module for integer sets by applying AFSet to Set.Element,
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as we do for defining the module ASet. Due to the signature ascription,
ASet.empty is the only value of type ASet.t that we can build.

In spite of this flexibility, the ML module system does not allow recursive
modules. In ML, module dependencies must accord with the definition order.
For instance, we cannot define the function sum before the Element sub-
module in Figure 1. Thus a programmer cannot define recursive functions or
types across module boundaries. The absence of recursive modules is a major
disadvantage of the ML module system, when compared to object-oriented
languages, like Scala [1] and Java. These languages have supported recursive
definitions across class boundaries from the beginning, and this feature is
heavily used in practice.

The ML programming language enjoys strong type safety. Yet, due to
the lack of recursive modules, a programmer may have to consolidate con-
ceptually separate components into a single module, intruding on modular
programming [56]. If ML had both recursive modules and this flexible mod-
ule language, the programmer could enjoy a strongly type safe programming
language with an equally strong expressive power.

Recently, much work has been devoted to investigating extensions with
recursion of the ML module system. There are at least two important issues
involved in recursive modules, namely initialization and type checking.

Initialization: Suppose that a programmer can freely refer to value com-
ponents of structures forward and backward. Then he might carelessly de-
fine value components cyclically like val l = m val m = l. Initialization
of modules having such cyclic value definitions would either raise a runtime
error or cause meaningless infinite computation. Boudol [6], Hirschowitz and
Leroy [34, 33, 31, 32], and Dreyer [15] examined type systems which ensure
safe initialization of recursive modules. Their type systems ensure that the
initialization does not attempt to access undefined recursive variables. The
above cyclic definitions will be rejected by their type systems because ini-
tialization of the value component l requires an access to itself. This path is
not the main focus of this thesis.

Type checking: Designing a type system for recursive modules is another
important and non-trivial issue; this is the main focus of this thesis. Sup-
pose that a programmer can layout modules in any order regardless of their
dependencies. Then, it might happen that a function returns a value whose
type is not yet defined at the point where the function is defined. To type
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check the function, a type system should somehow know about the type,
which is going to be defined in the following part of the program.

Type checking recursive modules

To type check recursive modules, existing proposals [11, 56, 16, 41] rely on
signature annotations from a programmer. The programmer has to assist the
type checker by writing enough type information so that recursive modules
do not burden the type checker with forward references.

The amount of required annotations varies in each proposal and depends
on where to enforce type abstraction. In the context of recursive modules, a
programmer can enforce type abstraction inside the recursion by giving sig-
natures individually to modules, or outside the recursion by writing a single
signature for the whole recursive modules. In all proposals, a programmer
has to write two different signatures for the same module to enforce abstrac-
tion outside the recursion; one of the signatures is solely for assisting the type
checker and does not affect the resulting signature of the module. Moreover,
due to the annotation requirement a programmer cannot use type inference
during development. This is unfortunate since a lot of useful inference algo-
rithms have been and will be developed to support smooth development of
programs.

Even if we write annotations for recursive modules, this still leaves two
subtle issues to be considered.

Cyclic type specifications in signatures

To annotate recursive modules with signatures, existing type systems allow
some forms of recursive references between signatures. To develop a practical
algorithm for judging type equality, one may want to ensure that manifest
type specifications in signatures do not declare cyclic types. For instance, one
may want to forbid programmers from writing the following cyclic signature:

sig type t = s type s = t end

Detection of cyclic type specifications is not a trivial task when the mod-
ule language supports both applicative functors [38, 18] and recursive sig-
natures, as O’Caml does. Applicative functors give us more flexibility in
expressing type sharing constraints between modules by allowing type paths
to contain functor application. For instance, with functors being applicative
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module EAFSet =

functor(X : sig type t val unit : t val add : t → t → t end) →
(struct

module Set = AFSet(X)

include Set

val total l = case l with

[] ⇒ Element.unit

| hd :: tl ⇒ Element.add (Set.sum hd) (total tl)

end : sig

type t = AFSet(X).t val empty : t val sum : t → X.t

val total : t list → X.t

end)

Figure 4: An extension of the AFSet functor

AFSet(Set.Element).t is a valid type in Figure 3. We can further extend
the AFSet functor with a new function total, preserving type equality with
AFset as shown in Figure 4. While applicative functors are useful, there is
the potential that a programmer may carelessly write cyclic type specifica-
tions by combining applicative functors and recursive signatures, in such way
that a näıve check cannot detect the cycle. Here is one pathological example.

module F

: functor(X : sig type t end) → sig type t = F(F(X)).t end

= functor(X : sig type t end) → sig type t = F(F(X)).t end

Compare the above functor definition with the definition below.

module G

: functor(X : sig type t end) → sig type t = G(X).t end

= functor(X : sig type t end) → sig type t = G(X).t end

On the one hand, a type system would easily detect the latter cycle, since
the unrolling of the type G(X).t would be exactly G(X).t. On the other
hand, the former cycle is more difficult to detect, since the unrolling of the
type F(F(X)).t would yield the following infinite rewriting sequence.

F(F(X)).t → F(F(F(X))).t → F(F(F(F(X)))).t → ...

Observe that this sequence is not merely cyclic, but produces types of ar-
bitrary long length. In fact, O’Caml type checker diverges for the former
functor definition of F, since it attempts to build this infinite sequence inter-
nally in an attempt to detect cycles.
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The situation could become harder, if one wants to keep recursive defini-
tions like:

module H

: functor(X : sig type t type s end) →
sig type t = H’(H’(X)).t type s = X.s → X.s end

= functor(X : sig type t type s end) →
struct type t = H’(H’(X)).t type s = X.s → X.s end

and H’

: functor(X : sig type t type s end) →
sig type t = X.t ∗ X.t type s = H(H(X)).s end

= functor(X : sig type t type s end) →
sig type t = X.t ∗ X.t type s = H(H(X)).s end

Neither H nor H’ contains cycles. Hence, from the programmer’s perspective,
there would be no reason to disallow them.

The three examples we have seen are simple. Hence one may easily distin-
guish between them, judging that only the last one is legal. When recursive
modules define more complex types, however, this issue becomes harder to
decide.

Potential existence of cyclic type definitions

Another subtle issue involved in recursive modules is how to account for the
potential existence of cyclic type definitions in structures, when their imple-
mentations are hidden by signatures. For instance, should a type checker
reject the program below?

module M = (struct type t = N.t end : sig type t end)

and N = (struct type t = M.t end : sig type t end)

On the one hand, one could argue that this is unacceptable since the under-
lying implementations of the types M.t and N.t make a cycle. On the other
hand, one could argue that this is acceptable since, according to their signa-
tures, the types M.t and N.t are nothing more than abstract types. Hence
the modules M and N need not be accused of defining cyclic types. At least,
one could argue that potential cycles in type definitions are acceptable, if the
type system is still sound and decidable and this choice has merits over the
other choice.

Existing type systems take different stands on this issue.
In Russo’s system [56], a programmer has to write forward declarations for
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recursive modules, in which implementations of types other than datatypes
cannot be hidden. Thus cyclic type definitions are never hidden by signa-
tures. At the same time, a programmer cannot enforce type abstraction
inside recursive modules.

Dreyer’s work [16] focuses on type abstraction inside recursive modules.
He requires the absence of cyclic type definitions whether or not they are
hidden inside signatures. To ensure the absence of cycles without peeking
inside signatures, he puts a restriction on types whose implementation can
be hidden. As a consequence, the use of structural types is restricted. For
instance, his type system would reject the following program, which uses a
polymorphic variant type [24] and a list type to represent trees and forests, re-
spectively. (Here we use a polymorphic variant type, which is supported only
in O’Caml, since the core language we want to support is that of O’Caml.
Yet, a similar restriction could arise in the context of SML, when one at-
tempts to use a record type to represent trees.)

module Tree = (struct

type t = [ ‘Leaf of int | ‘Node of int * Forest.t ]

end : sig type t end)

and Forest = (struct

type t = Tree.t list end : sig type t end)

By replacing the polymorphic variant type with an usual datatype, one can
make this program typable in Dreyer’s system. Polymorphic variant types,
however, have their own merits that datatypes do not have.

The path O’Caml chose is a more liberal one. It does not care about
potential cycles in type definitions, as long as signatures do not specify cy-
cles. The type checker will report an error when signatures contain cyclic
type specifications. (The type checker can diverge since, as we mentioned
above, recursive modules and applicative functors together make it difficult
to detect cycles in a terminating way.) O’Caml has a very expressive core
language, whose constructs include structural types such as object types [54]
and polymorphic variant types. Moreover, the path it chose keeps flexibility
in using these types and in abstracting them away by signatures.

Our proposal of a type system for recursive modules

The goal of our work is to make recursive modules an ordinary construct of
the module language for ML programmers. We want to use them easily in
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everyday programming, possibly combining with other constructs of the core
and the module languages. With this goal in mind, we propose in this thesis
a type system for recursive modules which overcomes as much of the diffi-
culties discussed above as possible. Concretely, we follow the path O’Caml
chose but extend it by 1) enabling type inference; 2) providing a terminating
procedure to detect cyclic type specifications, in the presence of applicative
functors; 3) formalizing the type system and proving its soundness, but al-
lowing the potential of cyclic type definitions hidden inside signatures, thus
leaving flexibility in using structural types. At the current stage, we con-
fine ourselves to first-order functors. We defer it to future developments to
accommodate higher-order functors.

The rest of this thesis is organized into two parts in the following way.

Part II We tackle the first two of the aforementioned difficulties in typing
recursive modules, that is, type inference and detection of cycles in
type specifications. For a formal study, we design a calculus, named
Marguerite, which supports recursive modules and applicative functors
but does not signature ascription. We develop “expansion algorithms”
which can resolve recursive references between modules by tracing mod-
ule and type abbreviations. These algorithms are terminating; they will
either output the result of the expansion or raise an error when they
cannot prove that input recursive modules do not contain cyclic or
dangling type specifications. Using these algorithms, we design a type
system for Marguerite and prove that the type system is decidable and
sound for a call-by-value operational semantics.

Part III We extend Marguerite with signature ascription to make the
module language full-fledged. The extended language is named Travi-
ata. We reformulate the type system of Marguerite for Traviata. The
resulting type system is two-phased, that is, it consists of a type recon-
struction part and a type-correctness check part. The former part is an
application of the result of Part I; the latter corresponds to a standard
type checking of modules. We prove the type system is still decidable
and sound.
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Part II

Abbreviation expansion for
recursive modules
In this part, we focus on developing “expansion algorithms” for resolving re-
cursive references between modules. The motivation of the algorithms are to
reduce types into canonical forms for judging type equality. One can think of
canonical forms of types as abbreviation-free types that are obtained by re-
placing abbreviations with their definitions. To expand types, the algorithms
trace abbreviations. Yet we have to be careful to keep them terminating,
since the source program may contain dangling or cyclic abbreviations. The
algorithms may raise an error when they cannot prove that both the input
type and the source program do not contain dangling or cyclic references.

Every type has a unique canonical form, in which all references are re-
solved. The type system judges type equality by reducing types into canon-
ical forms using the expansion algorithms and by comparing their syntactic
equality. For decidability of type checking, termination of the algorithms is
critical.

We design the expansion algorithms to be terminating independently of
well-typedness of the source program. We cannot rely on well-typedness to
keep the algorithms terminating, since we need a type equality judgment to
type check the program and our type equality judgment requires types to be
in canonical form. The algorithms are developed separately from the type
system and proved to be terminating for any input.

This separation has the following two useful consequences.

1. Typing rules are kept straightforward. This is particularly useful to
extend the type system later with more expressive language constructs.
These new constructs may be accompanied by rather complex typing
rules, so we would like to add them without polluting their typing rules
with specifics to the expansion algorithms.

2. It is easy to accommodate a possible extension of the algorithms, that
is, when we come up with cleverer expansion algorithms we can replace
the current ones with the new ones without or with little change in
typing rules.

18



For a formal study, we design in this part a calculus, named Marguerite,
which supports nested recursive structures and applicative functors. Mar-
guerite does not support signature ascription, on which we focus in the next
part of this thesis. In this part, we explain the expansion algorithms in de-
tail and prove their termination. We present a type system for Marguerite,
where the expansion algorithms play an important role in judging type equal-
ity. Decidability of the type system is obtained as an immediate consequence
of termination of the algorithms. We also prove a soundness result of the
type system; the result includes that the expansion algorithms are consistent
with the intuition for well-typed programs.

The rest of this part is organized as follows. In the next section, we
overview the main features of Marguerite using an example. In Section 2,
we give the syntax for Marguerite. In Section 3 and 4, we develop expansion
algorithms for reducing module paths and types, respectively. In Section 5,
we present the type system and in Section 6 we prove a soundness result. In
Section 7, we discuss how to apply the expansion algorithms to define a core
type inference algorithm.
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1 Example

In this section, we present a scenario where recursive modules naturally arise
and explain difficulties involved in type checking recursive modules, using an
example given in Figure 5.

The top-level structure contains three sub-modules S, Tree and Forest,
where Tree and Forest are defined in a mutually recursive way. The module
S is an abbreviation for a module IntSet, which is we assume given in a
library. The module Tree represents trees whose leaves and nodes are labeled
with integers. The module Forest represents unordered sets of those integer
trees.

To enable forward references between modules, we extend the top-level
structure with an implicitly typed declaration of a self variable. Components
of the top-level structure can refer to each other recursively using the self
variable, regardless of definition ordering. For instance in the example, the
top-level structure declares a self variable named TF, which is used inside Tree
and Forest for recursive references to each other. We keep the usual ML
scoping rules for implicit backward references. Thus the function Tree.split

can refer to the Leaf and Node constructors without going through the self
variable. It was possible to use Tree, instead of TF.Tree, inside Forest,
since Tree is a backward reference for Forest. But the explicit notation
seems clearer.

Let us explain the implementations of Tree and Forest in detail. Two
types Tree.t and Forest.t refer to each other recursively. On the one
hand, the datatype definition of Tree.t involves a type name s, which is an
abbreviation for the type TF.Forest.t, a reference to the type Forest.t.
On the other hand, the type Forest.t is a synonym for the type T.t list,
where the type T.t is an abbreviation for TF.Tree.t, a reference to the type
Tree.t. Two functions Tree.labels and Forest.labels call each other
recursively. These functions calculate the sets of integers that a tree and
a forest contain, respectively. Using these functions, we define the function
Forest.incr, which augments a given forest only if a given tree contains
original labels that are not contained in the forest.

The function split in Tree cuts off the root node of a given tree, then
returns the resulting forest. The function sweep in Forest gathers leaves
from a given forest. These two functions also make recursive references. The
second case branch of Tree.split depends on the fact that a forest is a
list of trees; Forest.sweep constructs and deconstructs trees through the
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struct (TF)

module S = IntSet

module Tree = struct

module F = TF.Forest

type s = F.t

datatype t = Leaf of int | Node of int * s

val labels = λx.case x of Leaf i ⇒ TF.S.singleton i

| Node (i, f) ⇒ TF.S.add i (F.labels f)

val split = λx.case x of Leaf i ⇒ [Leaf i]

| Node (i, f) ⇒ (Leaf i) :: f

end

module Forest = struct

module T = TF.Tree

type t = T.t list

val labels = λx.case x of [] ⇒ TF.S.empty

| hd :: tl ⇒ TF.S.union (T.labels hd) (labels tl)

val incr = λf.λt.let l1 = labels f in

let l2 = T.labels t in

if TF.S.diff l2 l1 != TF.S.empty then (t :: f) else f

val sweep = λx.case x of [] ⇒ []

| (T.Leaf y) :: tl ⇒ (T.Leaf y) :: (sweep tl)

| (T.Node y) :: tl ⇒ sweep tl

end

end

Figure 5: Tree and forest
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sig (TF)

module Tree : sig type t val split : t → TF.Forest.t end

module Forest : sig

type t val incr : TF.Tree.t → t → t val sweep : t → t end

end

Figure 6: A signature for Tree and Forest

constructors Leaf and Node, which are declared inside Tree.

Judging type equality The main difficulty in type checking this example
is in judging type equality. For instance, let us consider type checking the
second branch of the function Tree.split. For the list cons operation (Leaf

i) :: f to be well-typed, f must be a list of trees. In the datatype definition
of Tree.t, the constructor Node is described to contain an integer and a
forest. By tracing underlined four abbreviations, a type system could expand
the type Tree.s into TF.Tree.t list. Then it would conclude that the list
cons operation is well-typed.

In this simple well-typed example, there is clearly no potential of diver-
gence in tracing abbreviations. Having both recursive modules and applica-
tive functors, however, a programmer might carelessly write pathologically
cyclic abbreviations which are hard to detect. Then a näıve way of tracing ab-
breviations may diverge, causing non-terminating type checking. In Section 3
and 4, we examine such pathological examples and develop “expansion algo-
rithms” which trace abbreviations in a terminating way for reducing types
into abbreviation-free forms.

Type inference To type check the example, a type system also needs to
support type inference. Suppose that we want to give a signature in Figure 6
to the example, where we extend usual ML signatures with implicitly typed
declarations of self variables to allow recursive references inside signatures.
The signature enforces type abstraction by hiding underlying implementa-
tions of the types Tree.t and Forest.t. Moreover it does not mention
functions Tree.labels and Forest.labels. Since the implementation of
the function Forest.incr relies on these two functions, a type system has
to infer their types to type check Forest.incr.

Indeed, without type inference, a programmer has to write two different
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signatures to enforce desired abstraction; one for the abstraction, which is
given in Figure 6 and one for assisting the type checker, which we will examine
below.

To avoid presenting too verbose signature annotations, we consider in the
following examination the program in Figure 5 without the module abbrevi-
ation module F = TF.Forest inside Tree. We can dispense with abbrevia-
tions by replacing them with their definitions; yet abbreviations are useful
in practical programs [57].

To type check the example in Dreyer’s system [16] or O’Caml [42], a
programmer has to write fully manifest signatures of Tree and Forest, that
is, he has to present the type checker with the following signatures:

module Tree : sig

datatype t = Leaf of int | Node of int * Forest.t

val labels : t → S.t

val split : t → Forest.t

end
and

module Forest : sig

type t = Tree.t list

val labels : t → S.t

val incr : Tree.t → t → t

val sweep : t → t

end

In Russo’s system [56], the self variable TF of the top-level structure must
be annotated with the recursive signature below. In his system, a recursive
signature contains a typed declaration of a self variable to support forward
references in the signature.

sig (Z : sig module Tree : sig type t end

module Forest : sig type t = Tree.t list end end)

module Tree : sig

datatype t = Leaf of int | Node of int * Z.Forest.t end

module Forest : sig

type t = Tree.t list val labels : t → S.t end

end

These additional signature annotations are indispensable in existing pro-
posals and must be given beforehand. Then, the type checker first type checks
the example assisted by these manifest signatures. Once this succeeds, type
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abstraction can be enforced using the signature given in Figure 6.

Marguerite supports type inference unlike other proposals, hence it does
not need the assistance of signature annotations. Indeed, it has an ability
to reconstruct the fully manifest signatures of Tree and Forest, which the
programmer has to write by himself in Dreyer’s and O’Caml type systems.
This implies that the signature in Figure 6 is sufficient for Marguerite to type
check the example and to enforce type abstraction together. In Section 7, we
explain how we define a type inference algorithm using our abbreviation ex-
pansion algorithms. In the next part of this thesis we examine and formalize
how to type check the example when the signature in Figure 6 is given by
the programmer.
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2 Syntax

We give the syntax for the module language of Marguerite in Figure 7. It is
based on Leroy’s applicative functor calculus [38]. We use M as a metavari-
able for module names, X for names of module variables and Z for names of
self variables. For simplicity, we distinguish them syntactically, however the
context could tell them apart without this distinction. We also use t as a
metavariable for type names, l for value names and c for constructor names.

Every module expression and signature is labeled with an integer. We use
these integer labels to keep expansion algorithms terminating. For instance,
a module expression E is a module expression body Ed labeled with an
integer i. One can think of the integer label i of Ei

d as the location of Ed

in the source program. For the interest of brevity, we may omit integer
labels when they are not used. For the interest of clarity, we may write
additional parentheses, for instance (functor(X : sig type t end2) → X3)1.
We use metavariables i, j for integers.

A module expression body Ed is either a structure, a functor or a module
path. A structure is a sequence of module, type and value definitions. A
type definition may generate a new datatype or may be an alias for another
type. In particular, that structures can contain sub-modules is an important
feature of the ML module system. A functor is a function over modules.
Signatures for functor arguments must be given explicitly. A functor can
only be applied to a module which implements the specified signature of
the argument. A signature is a sequence of specifications labeled with an
integer. A type specification may expose the underlying implementation of
the specified type (datatype and manifest type specifications) or may hide
the implementation (abstract type specification). A value is specified with
its type.

A module path is a reference to a module. The flexible referencing mech-
anism given by module paths is a key feature of Marguerite. A module path
may refer to a module at any level of nesting within the recursive struc-
ture, regardless of component ordering. Moreover, module paths can contain
simple cases of functor applications, where the functor and its arguments
themselves are paths. Concretely, module paths are constructed from self
variables, the dot notation [9] “.M”, which represents access to the sub-
module named M of a structure, and functor applications. The syntax of
module paths in Figure 7 restricts module paths not to contain paths of the
forms X.M and X(p). We explain this later.
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Module expression

E ::= Ei
d

Module expression bodies

Ed ::= struct D1 . . . Dn end structure
| functor (X : S) → E functor
| p module path

Definitions

D ::= module M = E module def.
| datatype t = c of τ datatype def.
| type t = τ type abbreviation

| val l = e value def.
Signature

S ::= Si
d

Signature body

Sd ::= sig B1 . . . Bn end structure type
Specifications

B ::= datatype t = c of τ datatype type spec.

| type t = τ manifest type spec.

| type t abstract type spec.

| val l : τ value spec.

Module identifiers

mid ::= Z | mid .M | mid(p)
Module paths

p, q, r ::= mid | X
Program

P ::= struct (Z) D1 . . . Dn endi

Figure 7: Syntax for the module language
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Core types
τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | p.t

Core expressions
e ::= x | () | (e1, e2) | πi(e) | (λx.e : τ) | e1(e2)

| p.c e | case e of p.c x ⇒ e | p.l

Figure 8: Syntax for the core language

For the sake of simplicity, we assume that functor applications only con-
tain module paths but not structures or functors. This does not reduce the
expressive power of the language [39] and we believe that in several situa-
tions we can allow a larger class of functor applications, following Leroy’s
proposal [40].

A program is a top-level structure extended with an implicitly typed dec-
laration of a self variable. A self variable is bound inside the top-level struc-
ture where the variable is declared. In this thesis, we only consider a bunch
of recursive modules but not ordinary ones (i.e., non-recursive modules).

To develop a decidable type system, we impose a first-order structure
restriction that requires functors 1) not to take functors as arguments and
2) not to access sub-modules of arguments. The first restriction means that
our functors are not higher-order, while they can still return functors. The
second restriction implies that a programmer has to pass sub-modules as
independent parameters to a functor instead of passing a single module which
contains all the sub-modules. The restriction on the syntax of module paths
is consistent with this restriction.

In Figure 8, we give the syntax for the core language of Marguerite.
A core type is either a unit type 1, an arrow type τ1 → τ2, a pair type

τ1 ∗ τ2 or a type path p.t, which refers to a type component named t in the
structure that the module path p refers to. A core expression is either a core
variable (variable, for short) x, a null (), a pair (e1, e2), a projection πi(e),
an abstraction (λx.e : τ), an application e1(e2), a value construction p.c e or
deconstruction case e of p.c x ⇒ e, or a value path p.l, which refers to a
value component named l in the structure that the module path p refers to.

We may say paths to mean module, type and value paths as a whole.

An unusual convention is that a module variable is bound inside its own
signature. For instance,
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functor(X : sig type t val l : X.t end) → X

is legal in Marguerite, which should be understood as

functor(X : sig type t val l : t end) → X

This convention is convenient when proving a soundness result, as the syntax
of paths is kept uniform, that is, every path is prefixed by either a self variable
or a module variable. In Section 13, we give an example where this convention
is useful.

We write MVars(p) to denote the set of module variables contained in
the module path p. We also write MVars(τ), MVars(e) etc, with obvious
meanings.

In the formalization, 1) function definitions are explicitly type annotated;
2) a path is always prefixed by either a self variable or a module variable. Our
examples do not stick to these rules. Instead, we have assumed that there is
an elaboration phase, prior to type checking, that adds type annotations for
functions by running a type inference algorithm for the core language. The
original program may still require some type annotations, to avoid running
into the polymorphic recursion problem [30]. In Section 7, we discuss the
details of this inference algorithm. The elaboration phase also infers omitted
self variables, to complete implicit backward references.

We assume the following three conventions: 1) a program does not con-
tain free module variables or free self variables; 2) all binding occurrences of
module variables use distinct names; 3) any sequence of module definitions,
datatype definitions, type abbreviations, value definitions, datatype specifi-
cations, manifest and abstract type specifications, and value specifications
does not contain duplicate definitions or specifications for the same name.
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3 Module path expansion

In this section, we develop a module path expansion algorithm for deter-
mining the module that a module path refers to. The type system uses the
algorithm in the following three contexts.

1. To type check a functor application p1(p2), the type system expands p1

to make sure that p1 indeed refers to a functor definition and to dis-
cover the argument signature of the functor which p2 must implement
(Section 5).

2. The type expansion algorithm is defined on top of the module path
expansion algorithm (Section 4).

3. The type system decides an order for type inference using the module
path expansion algorithm (Section 7).

The module path expansion algorithm reduces module paths into located
forms. Intuitively, a module path p is in located form when, for all paths q
contained in p, the reference of q is already resolved. To define formally, we
introduce a look-up judgment.

Look-up judgment A program environment ∆ is a mapping from a self
variable to a top-level structure and from module variables to signatures. For
a program P , the program environment of P , written ∆P , is the program
environment whose domain exactly contains the self variable declared in the
top-level structure of P and all module variables appearing in P and which
sends the self variable to P and module variables to their own signatures
specified in P . We write dom(∆) to denote the domain of ∆.

Given a module environment ∆, we define in Figure 10 a look-up judg-
ment which determines the module that a given module path refers to with
respect to ∆. We use θ as a metavariable for module variable bindings, which
map module variables to module paths and write dom(θ) to denote the do-
main of θ. The judgment ∆ ` p 7→ (θ,K) means that the module path
p resolves to the module description K, where each module variable X is
bound to θ(X) w.r.t.2 ∆. We write ε to denote the empty module variable
binding, that is, a module variable binding whose domain is empty. We use

2with respect to
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the notation convention in Figure 9. In particular, we use Kd as a metavari-
able for module description bodies, which are either module expression bodies
or signature bodies, and K for module descriptions, which are either module
expressions or signatures. For a module variable binding θ, θ[X 7→ p] denotes
a module variable binding whose domain is dom(θ) ∪ {X} and which maps
X to p and coincides with θ on dom(θ)\{X}.

Let us examine each rule of the look-up. For self variables and module
variables, the judgment consults the program environment ∆. A path p.M
resolves to the sub-module named M in the structure that p resolves to.
Hence p1 must resolve to a structure. A path p1(p2) resolves to the body of the
functor that p1 resolves to, where the module variable binding is augmented
with a new binding [X 7→ p2].

The look-up judgment only holds for module paths whose references are
already resolved. For instance, consider the program P1 in Figure 11. Let ∆P1

be the program environment of P1, or ∆P1 = [Z 7→ P1, X 7→ sig type t end3].
We have a derivation whose conclusion is:

∆P1 ` Z.M1(Z.M2).M11 7→ ([X 7→ Z.M2], struct end5)

but no derivation for the path Z.M3.M11.

Corresponding to the convention of the absence of free module variables
in programs, we assume that any program variable environment we consider
in this thesis does not contain free module variables. Precisely,

Definition 1 A program variable environment ∆ does not contain free mod-
ule variables if, for any module path p other than module variables, when
∆ ` p 7→ (θ,K) then the following two conditions hold.

1. MVars(K) ⊆ dom(θ)

2. For all X in dom(θ), MVars(∆(X)) ⊆ dom(θ).

For a module description K, MVars(K) denotes the set of free module vari-
ables in K.

Located forms Now we define located forms, which are output of the
module path expansion. A module path p is in located form if and only if p
does not contain a module path which resolves to a module path according
to the look-up judgment. Precisely,
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Module description K ::= Ki
d

Module description bodies Kd ::= Ed | Sd

ss ::= struct | sig

Figure 9: Notation convention

[lk-self ]

∆ ` Z 7→ (ε, ∆(Z))

[lk-mvar]

∆ ` X 7→ (ε, ∆(X))

[lk-dot]
∆ ` p 7→ (θ, struct . . . module M = E . . . endi)

∆ ` p.M 7→ (θ, E)

[lk-app]
∆ ` p1 7→ (θ, (functor(X : S) → E)i)

∆ ` p1(p2) 7→ (θ[X 7→ p2], E)

Figure 10: Look-up

struct (Z)
module M1 = (functor(X : sig type t end3) →
struct

module M11 = struct end5

module M12 = X6

end4)2

module M2 = struct type t = int end7

module M3 = Z.M1(Z.M2)
8

end1

Figure 11: A program P1

31



Definition 2 A module path p is in located form w.r.t. a program environ-
ment ∆ if the following two conditions hold:

• ∆ ` p 7→ (θ,K i
d) where Kd is not a module path.

• For all q in args(p), q is in located form w.r.t. ∆.

For a module path p, args(p) denotes the set of module paths appearing
inside p as functor arguments. Precisely:

args(Z) = ∅ args(X) = ∅
args(p.M) = args(p) args(p1(p2)) = args(p1) ∪ {p2}

We say that a module variable binding θ is in located form w.r.t. ∆ if and
only if, for all X in dom(θ), θ(X) is in located form w.r.t. ∆.

The module path expansion algorithm reduces a module path into a lo-
cated form or raises an error when it cannot prove that the input path does
not contain dangling or cyclic references. The basic idea of the algorithm is
straightforward. It traces module abbreviations until either the input mod-
ule path resolves to a structure or a functor or it is reduced to a module
variable. To keep the algorithm terminating, we have to be careful about
the potential existence of cyclic module abbreviations. Below we give two
pathological examples which contain cycles.

To reduce notational burden, we may omit, in examples here and else-
where, preceding self variables even for forward references when no ambiguity
arises. Moreover, we may omit the top-level struct and end together with
a declaration of a self variable.

The first example is:

module F = functor(X : sig end) → X

module L = F(L)

Through the identity functor F, the definition of L makes a cycle. The second
example is:

module M = M.N

This second example is more annoying than the first one, since the unrolling
of M’s definition would result in the following infinite rewriting sequence,
yielding module paths of arbitrary long length.

M → M.N → M.N.N → M.N.N.N → ...
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∆, ∅ ` p ;g q ∆ ` varnlz (q) = r

∆ ` p ; r

Figure 12: Module path expansion

3.1 Module path expansion algorithm

We define the module path expansion in Figure 12. It is a composite of
ground expansion and variable normalization. The inference rule in Figure 12
means that the expansion reduces a given module path p into q w.r.t. a given
program environment ∆, if the ground expansion reduces p into q, written
∆, ∅ ` p ;g q and the variable normalization reduces q into r, written
∆ ` varnlz (q) = r. We may say that q is the located form of p when
∆ ` p ; q.

The ground expansion and the variable normalization are defined below.
Both are terminating (Proposition 2 and 3). As a result, the module expan-
sion is also terminating (Proposition 4).

3.1.1 Ground expansion

The ground expansion is ground in the sense that it does not rely on functor
arguments. It either reduces a module path into a pre-located form or raises
an error when 1) it cannot prove that the input module path does not contain
cyclic or dangling references, or 2) the input module path does not obey the
first-order structure restriction.

We first introduce pre-located forms, the central idea for defining the
ground expansion. A module path p is in pre-located form if and only if p does
not contain a module path which resolves to a module identifier according to
the look-up judgment. Precisely,

Definition 3 A module path p is in pre-located form w.r.t. a program envi-
ronment ∆ if the following two conditions hold:

• ∆ ` p 7→ (θ,K i
d) and Kd is not a module identifier. (Hence Kd can be

a module variable.)

• For all q in args(p), q is in pre-located form w.r.t. ∆.
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The locution “pre-located form” indicates that we can turn a pre-located
form into a located form by substituting functor arguments, as we show in
Proposition 3.

We say that a module variable binding θ is in pre-located form w.r.t. ∆
if and only if, for all X in dom(θ), θ(X) is in pre-located form w.r.t. ∆.

The important feature of pre-located forms is that they satisfy a substitu-
tion property, as stated in Lemma 1 below. We first define length of module
paths, which we use to prove the lemma.

len(Z) = 1 len(X) = 1

len(p.M) = 1 + len(p) len(p(q)) = len(p) + len(q)

For a module path p and a module variable binding θ, we write θ(p)
to denote the module path obtained by applying the substitution θ to p.
Precisely,

θ(Z) = Z θ(X) =

{
X when X 6∈ dom(θ)
p when X ∈ dom(θ) and θ(X) = p

θ(p.M) = θ(p).M θ(p1(p2)) = θ(p1)(θ(p2))

Lemma 1 (Substitution property) Let p and θ be in pre-located form
w.r.t. ∆. Then θ(p) is in pre-located form w.r.t. ∆.

Proof. By induction on the length of p. 2

We also use the following lemma to define the ground expansion.

Lemma 2 Let p be in pre-located form w.r.t. ∆. If ∆ ` p 7→ (θ,K), then θ
is in pre-located form w.r.t. ∆.

Proof. By induction on the derivation of ∆ ` p 7→ (θ,K). 2

It is an important observation that Lemma 1 holds due to the fist-order
structure restriction. If functors took nested structures as arguments, then
the module path [X 7→ L]X.M would not be in pre-located form in the program:

module F = functor(X : sig module M : sig end end) →
struct module M = X.M end

module L = struct

module N = struct end

module M = N

end
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[gnlz-mvar]
−

∆, Σ ` X ;g X

[gnlz-self ]
−−

∆, Σ ` Z ;g Z

[gnlz-def1]
∆, Σ ` p ;g p′

∆ ` p′.M 7→ (θ,K i
d) Kd 6∈ mid

∆, Σ ` p.M ;g p′.M

[gnlz-pth1]
∆, Σ ` p ;g p′ ∆ ` p′.M 7→ (θ, qi)

q 6= X ∆, Σ ] i ` q ;g r

∆, Σ ` p.M ;g θ(r)

[gnlz-def2]
∆, Σ ` p1 ;g p′1 ∆, Σ ` p2 ;g p′2 ∆ ` p′1(p

′
2) 7→ (θ,Ki

d) Kd 6∈ mid

∆, Σ ` p1(p2) ;g p′1(p
′
2)

[gnlz-pth2]
∆, Σ ` p1 ;g p′1 ∆, Σ ` p2 ;g p′2

∆ ` p′1(p
′
2) 7→ (θ, qi) q 6= X ∆, Σ ] i ` q ;g r

∆, Σ ` p1(p2) ;g θ(r)

Figure 13: Ground expansion

The module variable binding [X 7→ L] is in pre-located form, but the module
path L.M is not (because L.M resolves to a module identifier).

We define the ground expansion in Figure 13. The judgment ∆, Σ `
p ;g q means that the ground expansion reduces the module path p into
the module path q with Σ locked w.r.t. the program environment ∆. We use
Σ as a metavariable for sets of integers. The notation Σ ] i means Σ ∪ {i}
whenever i 6∈ Σ. We may say that q is the pre-located form of p w.r.t. ∆
when ∆, Σ ` p ;g q holds for some Σ.

Observe that for any program environment ∆, module path p and lock Σ,
proof search for ∆, Σ ` p ;g is deterministic, where “ ” is a place-holder.
In other words, for any ∆, p and Σ we can search a derivation tree whose
conclusion is ∆, Σ ` p ;g in a deterministic way. The search may fail with
no applicable rules. When it is successful, we find a module path q such that
∆, Σ ` p ;g q holds. In this way, we regard the inference rules of the ground
expansion as defining an algorithm which takes ∆, p and Σ as input then
either returns q when the search succeeds in building a derivation tree of
∆, Σ ` p ;g q or raises an error when the search fails. We prove termination
of the proof search later in Proposition 2.

Let us examine each rule in Figure 13. The first two rules [gnlz-mvar]
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and [gnlz-self ] are straightforward. For a path of the form p.M , the ground
expansion first reduces the prefix p ([gnlz-def1][gnlz-pth1]). Suppose that p′

is the pre-located form of p. Then there are two cases depending on whether
p′.M resolves to a module identifier or not. When p′.M resolves to a module
description other than a module identifier ([gnlz-def1]), then p′.M is in pre-
located form and the ground expansion terminates. When p′.M resolves to
a module identifier q ([gnlz-pth1]), then the ground expansion traces the
abbreviation q. This is the key rule, hence we explain it in detail.

As a simple case, suppose that q is in pre-located form w.r.t. ∆. Then
∆, Σ ] i ` q ;g q holds immediately whenever i is not in Σ (see Lemma 6)
and the ground expansion returns θ(q). By Lemma 1 and 2, we know that
θ(q) is in pre-located form. In general, q is not necessarily in pre-located
form. Hence, the ground expansion reduces q first to obtain its pre-located
form in the premise ∆, Σ ] i ` q ;g r, then applies the substitution θ to r.

This explains the idea of the ground expansion. It additionally holds a
lock Σ during the expansion for termination. In short, when the ground
expansion holds a lock Σ, then it is in the middle of reducing the module
paths labeled with the integers in Σ. The rules [gnlz-pth1] and [gnlz-pth2]
have the side condition i 6∈ Σ implicitly; thanks to the condition, the ground
expansion avoids tracing the same module abbreviation cyclically.

The rules [gnlz-def2] and [gnlz-pth2] for paths of the form p1(p2) are
similar to [gnlz-exp1] and [gnlz-pth1], respectively.

3.1.2 Well-definedness and termination

Here we prove that the ground expansion does reduce module paths into
pre-located forms unless it raises an error and that it is terminating.

Proposition 1 (Well-definedness of the ground expansion) For any pro-
gram environment ∆, lock Σ and module paths p, q, if ∆, Σ ` p ;g q then q
is in pre-located form w.r.t. ∆.

Proof. By induction on the derivation of ∆, Σ ` p ;g q and by case on the
last rule used. Use Lemma 1 and 2 for the rules [gnlz-pth1] and [gnlz-pth2].
2

We prove termination by defining well-founded relations.
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Definition 4 A binary relation R on any set is well-founded if there is no
infinitely descending sequence in R, that is, there is no sequence {ri}∞i=1 such
that, for all i in 1, 2, . . ., ri R ri+1 holds.

Proposition 2 (Termination of the ground expansion) For any program
environment ∆, lock Σ and module path p, proof search for ∆, Σ ` p ;g

will terminate.

Proof. Below, we define a well-founded relation >g∆
on pairs (p, Σ) of a

module path p and a lock Σ w.r.t. ∆. It is easy to check that if ∆, Σ2 `
p2 ;g is a premise of ∆, Σ1 ` p1 ;g , then (p1, Σ1) >g∆

(p2, Σ2).
Thus, if there is an infinitely deep derivation tree of the ground expansion,
then there is an infinitely descending sequence in >g∆

. This contradicts
well-foundedness of >g∆

. By Köning’s lemma on finitely branching trees, we
obtain the proposition.

(p1, Σ1) >g∆
(p2, Σ2) holds if and only if either of the following three con-

ditions holds. We write IntLabs∆ to denote the set of integer labels appearing
in ∆.

1. p1 = p′1.M and p2 = p′1 and Σ1 = Σ2.

2. p1 = p11(p12) and p2 = p1i with i being either 1 or 2, and Σ1 = Σ2.

3. i is not in Σ1 and Σ2 = Σ1 ∪ {i} ⊆ IntLabs∆

Well-foundedness of >g∆
follows from the finiteness of IntLabs∆. 2

3.2 Variable normalization

The variable normalization turns pre-located forms into located forms. In
Figure 14 we define the variable normalization using two functions varnlz
and varsubst. When the input module path resolves to a module variable,
these functions recursively substitute for the variable the module path which
is bound to the variable, according to the look-up judgment.

The proposition 3 below indicates that by combining the ground expan-
sion and the variable normalization, we can calculate located forms.

Lemma 3 Let p be in located form w.r.t. ∆. If ∆ ` p 7→ (θ,K), then θ is
in located form w.r.t. ∆.
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∆ ` varnlz (X) = X ∆ ` varnlz (Z) = Z

∆ ` varnlz (p) = p′ ∆ ` varsubst(p′.M) = q

∆ ` varnlz (p.M) = q

∆ ` varnlz (p1) = p′1 ∆ ` varnlz (p2) = p′2 ∆ ` varsubst(p′1(p
′
2)) = q

∆ ` varnlz (p1(p2)) = q

∆ ` p 7→ (θ,X i)

∆ ` varsubst(p) = θ(X)

∆ ` p 7→ (θ,Ki
d) Kd 6= X

∆ ` varsubst(p) = p

Figure 14: Variable normalization

Proof. By induction on the derivation of ∆ ` p 7→ (θ,K). 2

Lemma 4 Let p be in pre-located form w.r.t. ∆. If ∆ ` p 7→ (θ,Ki
d) with

Kd 6= X and ∆ ` varnlz (p) = q, then ∆ ` q 7→ (θ1, K
i
d) where, for all X in

dom(θ), ∆ ` varnlz (θ(X)) = θ1(X).

Proof. By induction on the length of p. Observe that by definition on the
look-up, dom(θ) = dom(θ1). 2

Proposition 3 When p is in pre-located form w.r.t. ∆, then there is a unique
q in located form w.r.t. ∆such that ∆ ` varnlz (p) = q.

Proof. By induction on the length of p. We show the main case.
When p = p1.M . By induction hypothesis, there is a unique p2 in located
form such that ∆ ` varnlz (p1) = p2. Since p1.M is in pre-located form,
∆ ` p1 7→ (θ, struct . . . endi). By Lemma 4, we obtain the lemma. 2

3.3 Termination and well-definedness of
the module path expansion

Finally we prove that the module path expansion is terminating and that it
does reduces module paths into located forms unless the ground expansion
raises an error. We also present some lemmas that are used later in this
thesis.

Proposition 4 (Termination of the module path expansion) For any
program environment ∆ and module path p, proof search for ∆ ` p ; will
terminate.
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Proof. The proposition is an immediate consequence of Proposition 2 and
Proposition 3. 2

Proposition 5 (Well-definedness of the module path expansion) For
any program environment ∆ and module paths p, q, if ∆ ` p ; q, then q is
in located form w.r.t. ∆.

Proof. By hypothesis, we have ∆, ∅ ` p ;g p′ and ∆ ` varnlz (p′) = q. By
Proposition 1, p′ is in pre-located form w.r.t. ∆. By Proposition 3, q is in
located form w.r.t. ∆. 2

The following lemmas are proven by easy induction.

Lemma 5 Let p and θ be in located form w.r.t. ∆. Then θ(p) is in located
form w.r.t. ∆.

Lemma 6 Let p be in pre-located form w.r.t. ∆. Then ∆, Σ ` p ;g p for
any Σ.

Lemma 7 Let p be in located form w.r.t. ∆. Then ∆ ` varnlz (p) = p.

Lemma 8 Let p be in located form w.r.t. ∆. Then ∆ ` p ; p.

Proof. By Lemma 6 and 7. Recall that pre-located forms include located
forms. 2

It is a useful observation that located forms are invariant of the module
path expansion, ground expansion and variable normalization, and that pre-
located forms are invariant of the ground expansion.
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4 Type expansion

In this section, we develop a type expansion algorithm, which reduces types
into canonical forms by unrolling type abbreviations. The purpose of the type
expansion is to define type equality. Each type has a unique canonical form
unless it does not contain dangling or cyclic references. Hence, once types
are reduced into canonical forms we can judge their equality in a syntactic
way.

Located types We first introduce canonical forms of types, named located
types, which are output from the type expansion. A located type consists
of simple located types and unit types. A simple located type is an abstract
type, i.e.

Definition 5 A simple located type w.r.t. a program environment ∆ is a
type path p.t where p is in located form w.r.t. ∆ and either ∆ ` p 7→
(θ, ss . . . datatype t = c of τ . . . endi) or ∆ ` p 7→ (θ, sig . . . type t . . . endi)
holds.

For a type τ , typaths(τ) denotes the set of type paths that τ contains.
Precisely,

typaths(τ) =


typaths(τ1) ∪ typaths(τ2) when τ = τ1 → τ2

or τ = τ1 ∗ τ2

{p.t} when τ = p.t
∅ when τ = 1

Then we define located types as follows.

Definition 6 A located type w.r.t. a program environment ∆ is a type τ
where each type τ ′ in typaths(τ) is a simple located type w.r.t. ∆.

4.1 Type expansion algorithm

We define the type expansion in Figure 15. The judgment ∆; Ω ` τ ↓ τ ′

means that the expansion reduces the type τ into the type τ ′ where Ω is
locked w.r.t. the program environment ∆. We use Ω as a metavariable for
sets of pairs (i, t) of an integer i and a type name t.

Observe that for any program environment ∆, lock Ω and type τ , proof
search for ∆; Ω ` τ ↓ is deterministic. We regard inference rules of the type
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[tnlz-uni]
−−

∆; Ω ` 1 ↓ 1

[tnlz-arr]
∆; Ω ` τ1 ↓ τ ′

1 ∆; Ω ` τ2 ↓ τ ′
2

∆; Ω ` τ1 → τ2 ↓ τ ′
1 → τ ′

2

[tnlz-pair]
∆; Ω ` τ1 ↓ τ ′

1 ∆; Ω ` τ2 ↓ τ ′
2

∆; Ω ` τ1 ∗ τ2 ↓ τ ′
1 ∗ τ ′

2

[tnlz-dtyp]
∆ ` p ; p′ ∆ ` p′ 7→ (θ, ss . . . datatype t = c of τ . . . endi)

∆; Ω ` p.t ↓ p′.t

[tnlz-atyp]
∆ ` p ; p′ ∆ ` p′ 7→ (θ, ss . . . type t . . . endi)

∆; Ω ` p.t ↓ p′.t

[tnlz-abb]
∆ ` p ; p′ ∆ ` p′ 7→ (θ, ss . . . type t = τ1 . . . endi)
−−−∆; Ω ] (i, t) ` τ1 ↓ τ2 ∆; Ω ` θ(τ2) ↓ τ−−−

∆; Ω ` p.t ↓ τ

Figure 15: Type expansion

expansion as defining an algorithm which takes ∆, Ω and τ as input then
either returns τ ′ as output when the search succeeds in building a derivation
tree for ∆; Ω ` τ ↓ τ ′ or raises an error when the search fails. We prove
termination of the proof search later in Proposition 7.

Let us examine each rule of the type expansion. The first three rules
[tnlz-uni], [tnlz-arr] and [tnlz-pair] are straightforward.

For a type type p.t, the expansion first reduces its prefix p into a located
form p′ to determine the module that p refers to ([tnlz-dtyp][tnlz-atyp][tnlz-
abb]). When the module path expansion fails, then the type expansion fails
too. Even though the module path expansion succeeds, the type expansion
may fail, if p′ resolves to a functor; in that case the type path p′.t is dangling,
hence so is p.t. When the module path expansion succeeds in reducing p into
p′ and when p′ resolves to a structure or structure type, the type expansion
continues. There are four possible cases:

1) The structure (type) does not contain a type component named t. In
this case p.t is dangling.
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2) It contains a datatype definition or specification named t ([tnlz-dtyp]).

3) It contains an abstract type specification named t ([tnlz-atyp]).

4) It contains a type abbreviation or manifest type specification named t
([tnlz-abb]).

For the cases 2) and 3), the expansion terminates immediately returning the
type p′.t, which is already a located type. The last case 4) is very important
and we will explain in detail.

When t is an alias for another type, then the expansion should trace the
aliased type while avoiding divergence possibly caused by cyclic abbrevia-
tions. The rule [tnlz-abb] says that to reduce θ(τ1), for which the type p′.t
is alias, the expansion 1) first reduces τ1 into a located type τ2 without ap-
plying the module variable binding θ to τ1, 2) then reduces the type θ(τ2) by
applying θ to the newly obtained type τ2. When reducing τ1, the expansion
augments the lock Ω with a new entry (i, t), which is released when reducing
θ(τ2).

Compare the rule [tnlz-abb] to the rule [gnlz-pth1] of the ground expan-
sion. Both handle abbreviations and have similar premises except that the
type expansion continues after applying the module variable binding θ to the
newly obtained type τ2, while the ground expansion terminates immediately
after applying θ to the newly obtained path r. Since located types do not
satisfy a substitution property like module paths in located form do, it does
not necessarily hold that applying a module variable binding in located form
to a located type produces a located type. Due to this difference, the type
expansion appears to be more involved than the ground expansion. We first
study a simple case in detail below, to give the intuition of the type expan-
sion. Then we examine key cases by giving concrete examples in Example 1
and 2.

First, we prove two useful lemmas about the type expansion. Lemma 9
presents a weak substitution property that simple located types satisfy.
Lemma 10 states that located types are invariant of the type expansion.

Lemma 9 (Weak substitution property) Let a type path p.t be a simple
located type w.r.t. a program environment ∆, and θ be in located form w.r.t.
∆, and MVars(p) ⊆ dom(θ). Then either of the following two conditions
holds.
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1. θ(p.t) is a simple located type.

2. p is a module variable.

Proof. By definition of simple located types. Use Lemma 5 to prove that
θ(p) is in located form w.r.t. ∆. 2

Lemma 10 Let τ be a located type w.r.t. a program environment ∆, then
∆; Ω ` τ ↓ τ for any Ω.

Proof. By induction on the structure of τ . We show the main case where
τ = p.t. By definition of simple located types, p is in located form w.r.t. ∆.
By Lemma 8, ∆ ` p ; p. The only applicable rule is either [tnlz-dtyp] or
[tnlz-atyp], hence we have the claim. 2

Now let us study a simple case. Suppose that every type abbreviation
and manifest type specification appearing in a program environment ∆ ab-
breviates a simple located type. That is, suppose that, for all type t = τ
appearing in ∆, τ is a simple located type w.r.t. ∆. To reduce a type path
p.t, the expansion first reduces p. Let us assume that the module path expan-
sion successfully reduces p into p′ where p′ is not a module variable and that
∆ ` p′ 7→ (θ, ss . . . type t = τ . . . endi) holds. Since τ is a simple located
type, ∆; Ω ` τ ↓ τ holds immediately (Lemma 10). Hence, by Lemma 9,
θ(τ) is either a simple located type or τ = X.t1 for some module variable
X and a type name t1. When θ(τ) is a simple located type, the expansion
terminates successfully returning θ1(τ) as output. Otherwise, the expansion
continues reducing θ(X).t1. Since θ(X) is in located form (Lemma 3) and
located forms are invariant of the module path expansion (Lemma 8), we
have ∆ ` θ(X) ; θ(X). Thus the only possible case where the expansion
further continues is where ∆ ` θ(X) 7→ (θ2, ss . . . type t1 = τ1 . . . endj)
holds. Again, by Lemma 9, θ2(τ1) is either a simple located type or else
τ1 = X2.t2 for some X2 and t2. Here one should notice that θ2(X2) is struc-
turally smaller than θ(X), since θ2(X2) literally appears inside θ(X). Since
θ(X) is structurally finite, the expansion eventually terminates.

In general, type abbreviations may contain more complex types than
simple located types and so may manifest type specifications. Yet, if the
expansion knows all the type abbreviations and manifest type specifications
that are looked up during the expansion of a type τ and if it has expanded
these types in advance, it can reduce τ in a similar way to the above simple
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case we examined. In other words, the expansion reduces types in an appro-
priate order so that a type τ is expanded only after all those types that are
looked up during the expansion of τ have been expanded. The expansion
simultaneously searches such an order and reduces types along the order. It
uses locks Ω to ensure that the order does not contain cycles.

The following two examples are good exercises to understand how the
type expansion works in more complex cases.

Example 1 Consider a functor definition:

module F =

(functor(X : sig type t end2) → struct type t = F(F(X)).t end3)1

The type t in the body of the functor F defines a cyclic abbreviation. The
type expansion raises an error for input F(F(X)).t, when attempting to lock
(3,t) under the lock {(3,t)} during the reduction. If the expansion traced
the abbreviation in the intuitive way, it would yield the following infinite
sequence:

F(F(X)).t →F(F(F(X))).t →F(F(F(F(X)))).t →...

Observe that this sequence is not merely cyclic, but produces types of arbitrary
long length.

Example 2 Consider the following program:

module F = (functor(X : sig type t end2) →
struct module L = X4 type t = L.t * int end3)1

module M = struct type s = int type t = s end5

module N = struct type t = F(F(M)).t end6

The type N.t has a valid reference, and the type expansion successfully
reduces the type F(F(M)).t into int * int * int.

Here are two important observations on this example.

1. The expansion reduces L.t * int into X.t * int before reducing
F(F(M)).t, since the expansion of F(F(M)).t looks up the type t de-
fined in F’s body.

2. If we restricted the expansion from tracing the same abbreviation twice
during the reduction instead of having the rule [tnlz-abb], then the
expansion could not reduce F(F(M)).t, since the abbreviation type t

= L.t * int in F’s body is looked up twice.
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4.2 Well-definedness and termination

Here we prove that the type expansion does reduce types into located types
unless it raises an error and that it is terminating.

Proposition 6 (Well-definedness of the type expansion) For any pro-
gram environment ∆, lock Ω and types τ, τ ′, if ∆; Ω ` τ ↓ τ ′, then τ ′ is a
located type w.r.t. ∆.

Proof. By induction on the derivation of ∆; Ω ` τ ↓ τ ′ and by case on the
last rule used. 2

Proposition 7 (Termination of the type expansion) For any program
environment ∆, lock Ω and type τ , proof search for ∆; Ω ` τ ↓ will
terminate.

Proof. Below, we define a well-founded relation >t∆ on pairs (τ, Ω) of a
type τ and a lock Ω w.r.t. ∆. Using Lemma 9 and Proposition 6, it can be
easily checked that if there is an infinitely deep derivation tree of the type
expansion, then one can construct an infinitely descending sequence in >t∆

from the tree. This contradicts well-foundedness of >t∆ . By Köning’s lemma
on finitely branching trees, we obtain the proposition.

(τ1, Ω1) >t∆ (τ2, Ω2) holds if and only if either of the following four con-
ditions holds. We write IntLabs∆ and Tnames∆ to denote the set of integer
labels and type names appearing in ∆, respectively.

1. Ω1 = Ω2 and τ1 = τ11 ∗ τ12 and either τ2 = τ11 or τ2 = τ12.

2. Ω1 = Ω2 and τ1 = τ11 → τ12 and either τ2 = τ11 or τ2 = τ12.

3. All the following three conditions hold.

• Ω1 = Ω2.

• τ1 = p.t and ∆ ` p ; p1 and ∆ ` p1 7→ (θ, ss . . . type t =
τ ′ . . . endi).

• For all τ in typaths(τ2), either τ is a simple located type w.r.t. ∆
or else τ = θ(X).t1 for some module variable X in dom(θ) and
some type name t1.
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4. (i, t) is not in Ω1 and Ω2 = Ω1 ∪ {(i, t)} ⊆ {(i, t) | i ∈ IntLabs∆, t ∈
Tnames∆}.

To prove well-foundedness of >t∆ , we define a well-founded relation >τ∆

on types w.r.t. ∆. Then we show that well-foundedness of >τ∆ implies that
of >t∆ .

τ1 >τ∆ τ2 holds if and only if either of the following three conditions holds.

1. τ1 = τ11 → τ12, and either τ2 = τ11 or τ2 = τ12.

2. τ1 = τ11 ∗ τ12, and either τ2 = τ11 or τ2 = τ12.

3. The following two conditions hold.

• τ1 = p.t and ∆ ` p 7→ (θ, ss . . . type t = τ ′ . . . endi)

• For all τ in typaths(τ2), τ is either a simple located type w.r.t. ∆
or else θ(X).t1 for some module variable X in dom(θ) and some
type name t1.

Note the slight but crucial difference between the second condition of the
rule 3. of >t∆ and the first condition of the rule 3. of >τ∆ . In the latter,
we do not expand p.

First we show well-foundedness of >τ∆ . Suppose that there is an infinitely
descending sequence {τi}∞i=1 in >τ∆ . Such sequence can only be constructed
using the rule 3. of >τ∆ infinitely often. Hence there is an infinite sequence
{pi.ti}∞i=1 such that, for all i in 1, 2, . . ., pi+1 is in args(pi). Since the length
of p1 is finite, this is a contradiction. (Note that if a type path p.t is a simple
located type, then ∆ ` p 7→ (θ, ss . . . type t = τ ′ . . . endi) cannot hold.)

Now we show well-foundedness of >t∆ . Suppose that there is an infinitely
descending sequence in >t∆ . Since {(i, t) | i ∈ IntLabs∆, t ∈ Tnames∆} is
finite, there is a lock Ω0 such that there is an infinitely descending sequence
{(τi, Ω0)}∞i=1 in >t∆ . Let j be an integer such that (τj, Ω0) >t∆ (τj+1, Ω0)
holds due to the rule 3. of >t∆ . (It is easy to check that such j exists.) Let
τj = p.t. We have ∆ ` p ; p1 and ∆ ` p1 7→ (θ, ss . . . type t = τ ′ . . . endi1).
By Proposition 5, p1 is in located form w.r.t. ∆. By Lemma 3, for all X
in dom(θ), θ(X) is also in located form w.r.t. ∆. Since located forms are
invariant of the module path expansion (Lemma 8), it holds that, for all
k > j, if (τk, Ω0) >t∆ (τk+1, Ω0) holds due to the rule 3. of >t∆ and τk = p′.t′

for some p′ and t′, then ∆ ` p′ ; p′. Thus, {τi}∞i=j+1 is a descending sequence
in >τ∆ . This contradicts well-foundedness of >τ∆ . 2
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5 Typing

In this section, we define a type system for Marguerite. Having defined ex-
pansion algorithms, the remaining part of the type system is straightforward.

5.1 Type equality

We define a type equivalence judgment in Figure 16, with an auxiliary judg-
ment in Figure 17. The judgment ∆ ` τ1 ≡ τ2 states that two the types τ1

and τ2 are equivalent w.r.t. the program environment ∆. The type system
checks equivalence between two arbitrary types by reducing them into lo-
cated ones. Figure 17 defines a type equivalence judgment on located types.
All rules are syntax directed and straightforward.

It would be easy to observe that the type equivalence judgment defines
an equivalence relation. Recall that the type expansion is deterministic, that
is, if ∆; Ω ` τ ↓ τ ′ and ∆; Ω ` τ ↓ τ ′′ then τ ′ = τ ′′.

Decidability of the type equivalence judgment follows from termination
of the type expansion.

Lemma 11 For any program environment ∆and types τ, τ ′, it is decidable
whether ∆ ` τ ≡ τ ′ holds or not.

5.2 Core type reconstruction

The core type reconstruction algorithm infers types of expressions, but does
not assure that the inferred types are correct. For instance, to reconstruct a
type of an application e1(e2) ([rcnstr-app] in Figure 18), it only reconstructs
a type of e1, which must be an arrow type τ ′ → τ , then returns the result
type τ . We defer ensuring that e2 does have a type equivalent to τ ′ to a
well-typedness judgment of the form ∆; Γ ` e : τ , which is defined later in
Figure 20.

We define the core type reconstruction in Figure 18, with an auxiliary
judgment in Figure 19. The judgment ∆; Γ; Ψ ` e :: τ means that the recon-
struction infers the type τ for the expression e under the type environment Γ
with Ψ locked w.r.t. the program environment ∆. We use Ψ as a metavariable
for pairs (i, l) of an integer i and a value name l and Γ for type environments,
which assign located types to variables. For a type environment Γ, dom(Γ)
denotes the domain of Γ.
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∆; ∅ ` τ1 ↓ τ ′
1 ∆; ∅ ` τ2 ↓ τ ′

2 ` τ ′
1 ≡τ τ ′

2

∆ ` τ1 ≡ τ2

Figure 16: Type equivalence

` 1 ≡τ 1

` τ1 ≡τ τ ′
1 ` τ2 ≡τ τ ′

2

` τ1 → τ2 ≡τ τ ′
1 → τ ′

2

` τ1 ≡τ τ ′
1 ` τ2 ≡τ τ ′

2

` τ1 ∗ τ2 ≡τ τ ′
1 ∗ τ ′

2 ` p.t ≡τ p.t

Figure 17: Type equivalence on located types

Observe that for any program environment ∆, type environment Γ, lock
Ψ and expression e, proof search for ∆; Γ; Ψ ` e :: is deterministic. We
regard inference rules of the reconstruction as defining an algorithm which
takes ∆, Ψ, Γ and e as input then either returns τ as output when the search
succeeds in building a derivation tree for ∆; Γ; Ψ ` e :: τ or raises an error
when the search fails. We prove termination of the proof search later in
Proposition 8.

In the same way as the type expansion does, the reconstruction holds a
lock Ψ so as to avoid tracing the same value abbreviations cyclically. For
instance, it does not attempt to reconstruct a type of the value component
l in the program below, but raises an error.

struct (Z) val l = Z.m val m = Z.l end

The rules in Figure 18 are mostly straightforward. Here, we focus on the
rules [rcnstr-vpth1] and [rcnstr-vpth2] for reconstructing a type of a value
path p.l. Firstly, the reconstruction determines the module that p refers to
by expanding p into a located form. When either the module path expan-
sion fails or the located form p′ of p does not resolve to a structure (type)
containing a value component named l, the reconstruction fails. Otherwise
there are two possibilities: 1) When p′ resolves to a structure type which
contains a value specification val l : τ ′ with θ being the module variable
binding ([rcnstr-vpth1]), then the reconstruction returns the located type
of θ(τ ′). 2) When p′ resolves to a structure which contains a value definition
val l = e with θ being the module variable binding ([rcnstr-vpth2]), then
the reconstruction returns the located type of θ(τ ′), where τ ′ is the inferred
type of e. This rule corresponds to the rule [tnlz-abb] of the type expansion.
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[rcnstr-var]
−−

∆; Γ; Ψ ` x :: Γ(x)

[rcnstr-uni]
−−

∆; Γ; Ψ ` () :: 1

[rcnstr-prd]
∆; Γ; Ψ ` e1 :: τ1 ∆; Γ; Ψ ` e2 :: τ2

∆; Γ; Ψ ` (e1, e2) :: τ1 ∗ τ2

[rcnstr-prj]
∆; Γ; Ψ ` e :: τ1 ∗ τ2

∆; Γ; Ψ ` πi(e) :: τi

[rcnstr-fun]
∆; ∅ ` τ ′ ↓ τ

∆; Γ; Ψ ` (λx.e : τ ′) :: τ

[rcnstr-app]
∆; Γ; Ψ ` e1 :: τ ′ → τ

∆; Γ; Ψ ` e1(e2) :: τ

[rcnstr-cnstr]
∆ ` p ; p′ ∆ ` cnstrlkup(p′, c) = (t, τ)

∆; Γ; Ψ ` p.c e :: p′.t

[rcnstr-case]
∆ ` p ; p′ ∆ ` cnstrlkup(p′, c) = (t, τ1)

−−−−−∆; Γ, x : τ1; Ψ ` e2 :: τ−−−−−
∆; Γ; Ψ ` case e1 of p.c x ⇒ e2 :: τ

[rcnstr-vpth1]
∆ ` p ; p′ ∆ ` p′ 7→ (θ, sig . . . val l : τ ′ . . . endi) ∆; ∅ ` θ(τ ′) ↓ τ

∆; Γ; Ψ ` p.l :: τ

[rcnstr-vpth2]
∆ ` p ; p′ ∆ ` p′ 7→ (θ, struct . . . val l = e . . . endi)

−−−−−∆; ∅; Ψ ] (i, l) ` e :: τ ′ ∆; ∅ ` θ(τ ′) ↓ τ−−−−−
∆; Γ; Ψ ` p.l :: τ

Figure 18: Type reconstruction

∆ ` cnstrlkup(p, c) = (t, τ) when
∆ ` p 7→ (θ, ss . . . datatype t = c of τ ′ . . . endi) and ∆; ∅ ` θ(τ ′) ↓ τ

Figure 19: Datatype look-up
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When inferring a type of e, the reconstruction augments the lock Ψ with an
new entry {(i, l)} to avoid divergence.

Observe that the third premise of the rule [rcnstr-vpth2] has an empty
type environment. Hence the reconstruction always infers the same type for
the same value path under whatever type environment, unless it raises an
error.

Proposition 8 (Termination of the core type reconstruction) For any
program environment ∆, type environment Γ, lock Ψ and expression e, proof
search for ∆; Γ; Ψ ` e :: will terminate.

Proof. Below we define a well-founded relation >v∆
on pairs (e, Ψ) of an

expression e and a lock Ψ w.r.t. ∆. It can be easily checked that if there
is an infinitely deep derivation tree of the core type reconstruction, then
one can construct an infinitely descending sequence in >v∆

from that tree.
This contradicts well-foundedness of >v∆

. By Köning’s lemma on finitely
branching trees, we obtain the claim.

We write IntLabs∆ and Vnames∆ to denote the set of integer labels and
value names appearing in ∆, respectively.

(e1, Ψ1) >v∆
(e2, Ψ2) holds if and only if either of the following two con-

ditions holds.

1. e2 is structurally smaller than e1 and Ψ1 = Ψ2.

2. (i, l) 6∈ Ψ1 and Ψ2 = Ψ1 ∪ {(i, l)} ⊆ {(i, l) | i ∈ IntLabs∆, l ∈
Vnames∆}.

The well-foundedness of >v∆
follows from the finiteness of {(i, l) | i ∈

IntLabs∆, l ∈ Vnames∆}. 2

5.3 Typing rules

Finally we present well-typedness judgments for the module language and
for the core language in Figure 20 and 21, respectively. Auxiliary judgments
are found in Figure 22 and 23.

The judgments ∆ ` E ¦ and ∆ ` S ¦ mean that the module expression
E and the signature S are well-typed w.r.t. the program environment ∆,
respectively. The judgment ∆; Γ ` e : τ means that the core expression e
has the type τ under the type environment Γ w.r.t. ∆. The other judgments
are read similarly.
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Module expression & Signature

∆ ` Ed ¦
∆ ` Ei

d ¦
∆ ` Sd ¦
∆ ` Si

d ¦
Module expression bodies

∆ ` D1 ¦ . . . ∆ ` Dn ¦
∆ ` struct D1 . . . Dn end ¦

∆ ` S ¦ ∆ ` E ¦
∆ ` functor(X : S) → E ¦

∆ ` p wf

∆ ` p ¦
Signature body

∆ ` B1 ¦ . . . ∆ ` Bn ¦
∆ ` sig B1 . . . Bn end ¦

Definitions & Specifications

∆ ` E ¦
∆ ` module M = E ¦

∆ ` τ ¦
∆ ` datatype t = c of τ ¦

∆ ` τ ¦
∆ ` type t = τ ¦ ∆ ` type t ¦

∆; ∅ ` e : τ

∆ ` val l = e ¦
∆ ` τ ¦

∆ ` val l : τ ¦

Figure 20: Typing rules

The purpose of well-typedness judgments is to ensure well-formedness of
module paths (explained later) and correctness of the core type reconstruc-
tion. As we explained earlier, we do not require the reconstruction to be
correct. Instead, the type system checks its correctness here.

All typing rules in Figure 20 and for core types in Figure 21 are straight-
forward. They traverse the constituents of given module expressions, signa-
tures and others. When typing a functor, we do not extend the program
environment ∆ with a new binding [X 7→ S], assuming that ∆ already con-
tains that binding. Typing rules for expressions are analogous to those found
in [51], except for the last rule. To check well-typedness of a value path, the
type system consults the core type reconstruction, which is responsible for
resolving p.l’s reference and inferring its type.

In Figure 22, we define a well-formedness judgment of module paths. The
judgment ∆ ` p wf means that the module path p is well-formed w.r.t. the
program environment ∆. It ensures 1) that p does not contain dangling or
cyclic references by checking expandability of p and 2) that functor applica-
tions contained in p are type-correct in the sense that a functor argument
implements the signature of the functor’s formal parameter.
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Core types

∆ ` 1 ¦
∆ ` τ1 ¦ ∆ ` τ2 ¦

∆ ` τ1 → τ2 ¦
∆ ` τ1 ¦ ∆ ` τ2 ¦

∆ ` τ1 ∗ τ2 ¦
∆ ` p wf ∆; ∅ ` p.t ↓ τ

∆ ` p.t ¦
Core expressions

∆; Γ ` () : 1

x ∈ dom(Γ)

∆; Γ ` x : Γ(x)

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` (e1, e2) : τ1 ∗ τ2

∆; Γ ` e : τ1 ∗ τ2

∆; Γ ` πi(e) : τi

∆ ` τ ¦ ∆; ∅ ` τ ↓ τ1 → τ2 ∆; Γ, x : τ1 ` e : τ3 ∆ ` τ2 ≡ τ3

∆; Γ ` (λx.e : τ) : τ1 → τ2

∆; Γ ` e1 : τ1 → τ ∆; Γ ` e2 : τ2 ∆ ` τ2 ≡ τ1

∆; Γ ` e1 (e2) : τ

∆ ` p wf ∆ ` p ; p′ ∆ ` cnstrlkup(p′, c) = (t, τ1)
−−−−−−−∆; Γ ` e : τ2 ∆ ` τ1 ≡ τ2−−−−−−−

∆; Γ ` p.c e : p′.t

∆; Γ ` e1 : τ1 ∆ ` p wf ∆ ` p ; p′

∆ ` cnstrlkup(p′, c) = (t, τ2) ∆ ` τ1 ≡ p′.t ∆; Γ, x : τ2 ` e2 : τ

∆; Γ ` case e1 of p.c x ⇒ e2 : τ

∆ ` p wf ∆; ∅; ∅ ` p.l :: τ

∆; Γ ` p.l : τ

Figure 21: Typing for the core language

X ∈ dom(∆)

∆ ` X wf

Z ∈ dom(∆)

∆ ` Z wf

∆ ` p wf ∆ ` p.M ; q

∆ ` p.M wf

∆ ` p1 wf ∆ ` p2 wf ∆ ` p1 ; p′1 ∆ ` p2 ; p′2 ∆ ` p1(p2) ; q
∆ ` p′1 7→ (θ, (functor(X : sig B1 . . . Bn endj) → E)i)

−−−−−−−∀i ∈ {1, . . . , n}, ∆ ` p′2 . θ[X 7→ p′2] Bi−−−−−−−
∆ ` p1(p2) wf

Figure 22: Well-formed module paths
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∆; ∅ ` p.t ↓ τ

∆ ` p . type t

∆ ` p.t ≡ τ

∆ ` p . type t = τ

∆; ∅; ∅ ` p.l :: τ ′ ∆ ` τ ≡ τ ′

∆ ` p . val l : τ

∆ ` cnstrlkup(p, c) = (t, τ ′) ∆ ` τ ≡ τ ′

∆ ` p . datatype t = c of τ

Figure 23: Realization

The type system checks type-correctness of functor applications by means
of the realization judgment defined in Figure 23. The judgment ∆ ` p .
B means that the module path p resolves to a module which contains a
component satisfying the specification B.

Let us examine each rule. For a module path p to satisfy an abstract
type specification type t, p must resolve to a structure (type) which contains
a type component named t. This is ensured by checking expandability of
the type p.t. For p to satisfy a manifest type specification type t = τ , p
must resolve to a structure (type) whose type component t is equivalent to
τ . This means that two types p.t and τ are equivalent. For p to satisfy a
value specification val l : τ , p must resolve to either a structure containing
a value component named l of type τ ′ or a structure type containing a value
specification for l with type τ ′, where τ ′ is equivalent to τ . Observe that the
rule consults core type reconstruction, instead of core typing (i.e., the first
premise is ∆; ∅; ∅ ` p.l :: τ ′, not ∆; ∅ ` p.l : τ ′.). We do not require p.l to be
well-typed at this stage, avoiding a circular typing strategy. For p to satisfy
a datatype specification datatype t = c of τ , p must resolve to a structure
(type) containing an equivalent datatype definition or specification, which
has the same named constructor c whose argument type is equivalent to τ .

Definition 7 A program P is well-typed if ∆P ` P ¦ holds.

Decidability of the type system is an immediate consequence of termi-
nation of the module path expansion, the type expansion and the core type
reconstruction.

Proposition 9 (Decidability of the type system) For any program P ,
it is decidable whether P is well-typed or not.

Proof. Decidability of the realization judgment follows from termination
of the type expansion (Proposition 7) and of the core type reconstruction
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(Proposition 8) and decidability of the type equivalence judgment (Lemma 11).
This and termination of the module path expansion (Proposition 4) result
in decidability of the well-formedness judgment of module paths. Then the
claim can be proven by induction on the structure of P , again using the same
lemma and propositions. 2
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6 Soundness

In this section, we define a call-by-value operational semantics as small step
reductions of core expressions and prove a soundness result with respect to
the reductions.

We first define the intuitive expansion of module paths, named normal-
ization, in Figure 24. We use normalization to resolve path references in the
reductions. The judgment ∆ ` p ;n q means that the normalization reduces
the module path p into the module path q w.r.t. the program environment
∆. Normalization expands module paths by tracing module abbreviations in
the intuitive way. Hence it may not be terminating. We prove in Proposi-
tion 11 that the module path expansion and the normalization coincide for
well-typed programs. The proposition implies that normalization terminates
for well-typed programs.

Values v and evaluation contexts L are:

v ::= () | (v1, v2) | p.c v | (λx.e : τ)
L ::= {} | (L, e) | (v, L) | πi(L) | L (e) | v (L)

| p.c L | case L of p.c x ⇒ e

where p does not contain module variables.
A small step reduction is defined with respect to a program environment

∆, which is either:

∆ ` πi(v1, v2)
prj→ vi ∆ ` (λx.e : τ)(v)

fun→ [x 7→ v]e

∆ ` case p.c v of q.c x ⇒ e
case→ [x 7→ v]e

∆ ` p.l
vpth→ θ(e) when ∆ ` p ;n q

and ∆ ` q 7→ (θ, struct . . . val l = e . . . endi)

or an inner reduction obtained by induction:

∆ ` e1 → e2 L 6= {}
∆ ` L{e1} → L{e2}

where write ∆ ` e → e′ when e reduces into e′ with one of the above three
reductions.

For an expression e, [x 7→ v]e denotes the expression obtained by applying
the substitution [x 7→ v] to e, and θ(e) does the expression obtained by
applying the module variable binding θ to e.

When deconstructing a value through the case expression case p.c v of
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∆ ` X ;n X ∆ ` Z ;n Z

∆ ` p ;n p′ ∆ ` p′.M 7→ (θ,K i
d) Kd 6= q

∆ ` p.M ;n p′.M

∆ ` p ;n p′ ∆ ` p′.M 7→ (θ, qi) ∆ ` θ(q) ;n r

∆ ` p.M ;n r

∆ ` p1 ;n p′1 ∆ ` p2 ;n p′2 ∆ ` p′1(p
′
2) 7→ (θ,Ki

d) Kd 6= q

∆ ` p1(p2) ;n p′1(p
′
2)

∆ ` p1 ;n p′1 ∆ ` p2 ;n p′2 ∆ ` p′1(p
′
2) 7→ (θ, qi) ∆ ` θ(q) ;n r

∆ ` p1(p2) ;n r

Figure 24: Normalization of module paths

q.c x ⇒ e, we do not explicitly check that p and q resolve to the same
module. The type system already ensures that they expand into the same
module path.

Proposition 10 (Soundness) Let a program P be well-typed, and an ex-
pression e contain no module variables. When ∆P ; ∅ ` e : τ , we have the
following two results.

1. If ∆P ` e → e′, then ∆P ; ∅ ` e′ : τ ′ with ∆P ` τ ≡ τ ′.

2. Either e is a value or else there is some e′ with ∆P ` e → e′.

6.1 Proof of the soundness

The soundness result can be proven in a standard way for the most part.

The only difficulty in the proof is about the reduction rule
vpth→ . Below we

prove progress and subject reduction properties for this rule in Proposition 12
and 14, respectively.

We have already shown decidability of the type system in Proposition 9.
Locks Σ, Ω and Ψ are useful only for the decidability result. For soundness,
we are interested in derivation trees which prove well-typedness of programs,
but not in how we can construct the trees. Hence, in the proof below, we
use judgments of the ground expansion, the type expansion and the core
type reconstruction that do not hold locks. For instance, we may say that
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[ugnlz-mv]
−−

∆ ` X ;ug X

[ugnlz-sf ]
−−

∆ ` Z ;ug Z

[ugnlz-def1]
∆ ` p ;ug p′

∆ ` p′.M 7→ (θ,K i
d) Kd 6∈ mid

∆ ` p.M ;ug p′.M

[ugnlz-pth1]
∆ ` p ;ug p′ ∆ ` p′.M 7→ (θ, qi)

−−−q 6= X ∆ ` θ(q) ;ug r−−−
∆ ` p.M ;ug r

[ugnlz-def2]
∆ ` p1 ;ug p′1 ∆ ` p2 ;ug p′2 ∆ ` p′1(p

′
2) 7→ (θ,K i

d) Kd 6∈ mid

∆ ` p1(p2) ;ug p′1(p
′
2)

[ugnlz-pth2]
∆ ` p1 ;ug p′1 ∆ ` p2 ;ug p′2

∆ ` p′1(p
′
2) 7→ (θ, qi) q 6= X ∆ ` θ(q) ;ug r

∆ ` p1(p2) ;ug r

Figure 25: Unsafe ground-normalization

∆ ` p ;g q holds, when ∆, ∅ ` p ;g q can be proven by the inference
rules that are same as the rules for the ground expansion (Figure 13) but
that do not use locks. (It is clear that whether or not the inference rules use
locks does not affect output of the ground expansion. The ground expansion
without locks may diverge and the ground expansion with locks may raise
more errors than without.)

We first define a sanity condition on program variable environments.

Definition 8 A program environment ∆ is well-formed if both the following
conditions hold.

1. for all X in dom(∆), ∆ ` ∆(X) ¦

2. for all Z in dom(∆), ∆ ` ∆(Z) ¦

Note that if a program P is well-typed then so is the program environment
of P .

We first show in Proposition 11 that the module path expansion coincides
with the normalization for well-typed module paths. The proof proceeds in
two steps: 1) we prove in Lemma 19 that the ground expansion coincides
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with the unsafe ground expansion defined in Figure 25; then 2) we prove in
Lemma 24 that the composition of the unsafe one and the variable normal-
ization coincides with the normalization. For the unsafe ground expansion,
we use judgments of the form ∆ ` p ;ug q. In rules [ugnlz-pth1] and
[ugnlz-pth2], the unsafe one applies θ to q before expanding q, whereas the
original one applies θ to the result of expansion of q in rules [gnlz-pth1] and
[gnlz-pth2].

For a module variable binding θ, we write MVars(θ) to denote the set
of module variables contained in the range of θ, or MVars(θ) =

∪
X∈dom(θ)

MVars(θ(X)). For module variable environments θ1 and θ2, their composi-
tion θ1 ◦ θ2 denotes a module variable environment θ3 such that dom(θ3) =
dom(θ2) and, for all X in dom(θ3), θ3(X) = θ1(θ2(X)). Then the following
three lemmas can be proven by easy induction.

Lemma 12 Let p be not a module variable and MVars(p) ⊆ dom(θ). If
∆ ` p 7→ (θ1, K), then ∆ ` θ(p) 7→ (θ ◦ θ1, K) and MVars(θ1) ⊆ dom(θ).

Lemma 13 If ∆ ` p ;ug q then q is in pre-located form w.r.t. ∆.

Lemma 14 Let p be in pre-located form w.r.t. ∆. Then ∆ ` p ;ug p.

Lemma 15 Let θ be in pre-located form w.r.t. ∆ and MVars(p) ⊆ dom(θ).
If ∆ ` p ;ug q, then ∆ ` θ(p) ;ug θ(q) and MVars(q) ⊆ dom(θ).

Proof. By induction on the derivation of ∆ ` p ;ug q and by case on the
last rule used. Use above three lemmas. 2

Lemma 16 Let θ be in pre-located form w.r.t. ∆ and MVars(p) ⊆ dom(θ).
If ∆ ` p ;g q, then ∆ ` θ(p) ;g θ(q) and MVars(q) ⊆ dom(θ).

Proof. By induction on the derivation of ∆ ` p ;g q and by case on the last
rule used. Use Lemma 1 and 6. 2

Corollary 1 Let θ be in located form w.r.t. ∆ and MVars(p) ⊆ dom(θ). If
∆ ` p ;g q, then ∆ ` θ(p) ;g θ(q) and MVars(q) ⊆ dom(θ) .

Lemma 17 Let θ and p be in pre-located form w.r.t. ∆ and MVars(p) ⊆
dom(θ), and θ′ be such that dom(θ) = dom(θ′) and, for all X in dom(θ′),
∆ ` varnlz (θ(X)) = θ′(X). If ∆ ` varnlz (p) = q , then ∆ ` varnlz (θ(p)) =
θ′(q) and MVars(q) ⊆ dom(θ).
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Proof. By induction on the derivation of ∆ ` varnlz (p) = q and by case on
the last rule used. 2

Lemma 18 Let θ be in pre-located form w.r.t. ∆, and θ′ be such that dom(θ)
= dom(θ′) and, for all X in dom(θ′), ∆ ` varnlz (θ(X)) = θ′(X). If ∆ ` p ;

q and MVars(p) ⊆ dom(θ), then ∆ ` θ(p) ; θ′(q) and MVars(q) ⊆ dom(θ).

Proof. By Lemma 16 and 17. 2

Lemma 19 If ∆ ` p ;g q, then ∆ ` p ;ug q.

Proof. By induction on the derivation of ∆ ` p ;g q and by case on the last
rule used. We show the main case.
[gnlz-pth1] Suppose p = p1.M and ∆ ` p1 ;g p′1 and ∆ ` p′1.M 7→ (θ, ri)
and r 6= X and ∆ ` r ;g q1 and q = θ(q1). By induction hypothesis,
∆ ` p1 ;ug p′1 and ∆ ` r ;ug q1. By Proposition 1 and Lemma 2, θ is in
pre-located form w.r.t. ∆. Since ∆ does not contain free module variables,
MVars(r) ⊆ dom(θ). By Lemma 15, ∆ ` θ(r) ;ug θ(q1). 2

The two lemmas below are proven by easy induction.

Lemma 20 If ∆ ` p ;n q then q is in located form w.r.t. ∆.

Lemma 21 Let p be in located form w.r.t. ∆. Then ∆ ` p ;n p.

Lemma 22 Let p be in pre-located form w.r.t. ∆. If ∆ ` varnlz (p) = q,
then ∆ ` p ;n q.

Proof. By induction on the structure of p. Use Lemma 20 and 21. 2

Lemma 23 Let θ be in pre-located form w.r.t. ∆ and θ′ be such that dom(θ) =
dom(θ′) and, for all X in dom(θ), ∆ ` varnlz (θ(X)) = θ′(X). If ∆ `
θ(p) ;n q and MVars(p) ⊆ dom(θ), then ∆ ` θ′(p) ;n q.

Proof. By induction on the structure of p. For the case where p is a module
variable, use Proposition 3, and Lemma 21 and 22. 2

Lemma 24 If ∆ ` p ;ug q and ∆ ` varnlz (q) = r, then ∆ ` p ;n r.
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Proof. By induction on the derivation of ∆ ` p ;ug q and by case on the
last rule used. We show the main case.
[ugnlz-pth1] Suppose p = p1.M and ∆ ` p1 ;ug p′1 and ∆ ` p′1.M 7→ (θ, ri)
and r 6= X and ∆ ` θ(r) ;ug q. By Proposition 1 and 3, ∆ ` varnlz (p′1) =
p′′1 and ∆ ` varnlz (q) = q′ for some p′′1 and q′. By induction hypothesis,
∆ ` p ;n p′′1 and ∆ ` θ(r) ;n q′. We have ∆ ` p′′1.M 7→ (θ′, ri) where
θ′ is such that, for all X in dom(θ′), ∆ ` varnlz (θ(X)) = θ′(X). Since ∆
does not contain free module variables, MVars(r) ⊆ dom(θ′). By Lemma 23,
∆ ` θ′(r) ;n q′. 2

Lemma 25 Let θ be in located form w.r.t. ∆. If ∆ ` varnlz (p) = q and
MVars(p) ⊆ dom(θ), then ∆ ` varnlz (θ(p)) = θ(q) and MVars(q) ⊆ dom(θ).

Proof. By induction on the derivation of ∆ ` varnlz (p) = q and by case on
the last rule used. For the case where p is a module variable X in dom(θ),
use Lemma 7. 2

Lemma 26 Let θ be in located form w.r.t. ∆. If ∆ ` p ; q and MVars(p) ⊆
dom(θ), then ∆ ` θ(p) ; θ(q) and MVars(q) ⊆ dom(θ).

Proof. By hypothesis, ∆ ` p ;g p′ and ∆ ` varnlz (p′) = q. By Corollary 1,
∆ ` θ(p) ;g θ(p′). By Lemma 25, ∆ ` varnlz (θ(p′)) = θ(q). Thus we
deduce ∆ ` θ(p) ; θ(q). 2

Lemma 27 If ∆ ` p ¦, then ∆ ` p ; q for some q.

Proof. By case on the structure of p. 2

Proposition 11 Suppose ∆ ` p ¦, then ∆ ` p ; q if and only if ∆ ` p ;n

q.

Proof. By ∆ ` p ¦ in the hypothesis and Lemma 27, ∆ ` p ; q′ for some q′.
Since derivations of the module path expansion are deterministic, q = q′. By
definition of the module path expansion ∆ ` p ;g p1 and ∆ ` varnlz (p1) = q
for some p1. By Lemma 19, ∆ ` p ;ug p1. By Lemma 24, ∆ ` p ;n q.
Since derivations of the normalization are deterministic, if ∆ ` p ;n q1 and
∆ ` p ;n q2 then q1 and q2 are identical. Thus we have the claim. 2

Now we show a progress property for the reduction
vpth→ .

60



Proposition 12 (Progress for the reduction
vpth→ ) Let a program P be

well-typed. If ∆P ; ∅ ` p.l : τ , then ∆P ` p ;n q and
∆P ` q 7→ (θ, struct . . . val l = e . . . endi)

Proof. By ∆P ; ∅ ` p.l : τ in the hypothesis, ∆P ` p ¦ and ∆P ` p ; p1

and ∆P ` p1 7→ (θ′, struct . . . val l = e′ . . . endj). By Proposition 11,
∆P ` p ;n p1. 2

Before proving a subject reduction property for the reduction
vpth→ , we

prove in Proposition 13 that well-formedness of module paths is invariant of
the module path expansion.

For module variable bindings, we define their well-formedness as follows.

Definition 9 A module variable binding θ is well-formed w.r.t. a program
environment ∆, written ∆ ` θ wf, if, for all X in dom(θ), the following two
conditions hold.

1. ∆ ` θ(X) wf.

2. When ∆(X) = sig B1 . . . Bn endi, then ∀i ∈ {1, . . . , n}, MVars(Bi) ⊆
dom(θ) and ∆ ` θ(X) . θ(Bi).

Lemma 28 Let θ be in located form w.r.t. ∆ and MVars(τ) ⊆ dom(θ). If
∆ ` τ ↓ τ ′ and ∆ ` θ wf, then ∆ ` θ(τ) ≡ θ(τ ′) with MVars(τ ′) ⊆ dom(θ).

Proof. By induction on the derivation of ∆ ` τ ↓ τ ′ and by case on the last
rule used. We show the main case.
[tnlz-abb] Suppose τ = p.t and ∆ ` p ; p′ and ∆ ` p′ 7→ (θ1, ss . . . type t =
τ1 . . . endi) and ∆ ` τ1 ↓ τ ′

1 and ∆ ` θ1(τ
′
1) ↓ τ ′. By Lemma 26, we have

∆ ` θ(p) ; θ(p′). Now we have two cases.

• When p′ is not a module variable, then ∆ ` θ(p′) 7→ (θ◦θ1, ss . . . type t =
τ1 . . . endi) by Lemma 12. By induction hypothesis, we have the claim.

• When p′ = X for some module variable X in dom(θ). Then, since
θ1 is an identity substitution, we have τ ′

1 = τ ′ by Proposition 6 and
Lemma 10. By well-formedness of θ, ∆ ` θ(X).t ≡ θ(τ1). By induction
hypothesis, we have the claim.

2
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Corollary 2 Let θ be in located form w.r.t. ∆ and MVars(τ1) ⊆ dom(θ). If
∆ ` τ1 ↓ τ2 and ∆ ` θ wf, then ∆ ` θ(τ1) ↓ τ3 for some τ3.

Corollary 3 Let θ be in located form w.r.t. ∆ and MVars(τ)∪MVars(τ ′) ⊆
dom(θ). If ∆ ` τ ≡ τ ′ and ∆ ` θ wf, then ∆ ` θ(τ) ≡ θ(τ ′).

We say that a type environment Γ is in located form w.r.t. a program
environment ∆ if and only if, for all x in dom(Γ), Γ(x) is a located type
w.r.t. ∆.

Lemma 29 Let Γ, Γ1 and θ be in located form w.r.t. ∆ and and MVars(Γ)∪
MVars(e) ⊆ dom(θ). Suppose that Γ1 satisfies the two conditions: 1) dom(Γ)
= dom(Γ1) and 2) for all x in dom(Γ), ∆ ` θ(Γ(x)) ≡ Γ1(x). If ∆; Γ ` e :: τ
and ∆ ` θ wf, then ∆; Γ1 ` θ(e) :: τ1 with ∆ ` θ(τ) ≡ τ1 and MVars(τ) ⊆
dom(θ).

Proof. By induction on the derivation of ∆; Γ ` e :: τ and by case on the last
rule used. We show the main case.
[v-vpth1] Suppose e = p.l and ∆ ` p ; p1 and
∆ ` p1 7→ (θ1, struct . . . val l = e1 . . . endi) and ∆; ∅ ` e1 :: τ2 and
∆ ` θ1(τ2) ↓ τ . By Lemma 26, ∆ ` θ(p) ; θ(p1). By Lemma 12, ∆ `
θ(p1) 7→ (θ ◦ θ1, struct . . . val l = e1 . . . endi). By Lemma 28, we have
∆ ` θ ◦ θ1(τ2) ≡ θ(τ), which also implies ∆ ` θ ◦ θ1(τ2) ↓ τ3 for some τ3.
Thus we deduce ∆; Γ ` θ(p).l :: τ3. 2

Lemma 30 Let θ be in located form w.r.t. ∆ and MVars(p) ∪MVars(B) ⊆
dom(θ). If ∆ ` p . B and ∆ ` θ wf, then ∆ ` θ(p) . θ(B).

Proof. We show the main case. Suppose B = val l : τ . We have ∆; ∅ ` p.l ::
τ1 and ∆ ` τ ≡ τ1. By Lemma 29, ∆; ∅ ` θ(p).l :: τ2 with ∆ ` θ(τ1) ≡ τ2. By
Lemma 3, ∆ ` θ(τ) ≡ θ(τ1). Since the type equivalence relation is transitive,
∆ ` τ2 ≡ θ(τ). 2

Lemma 31 Let θ be in located form w.r.t. ∆ and MVars(p) ⊆ dom(θ). If
∆ ` p wf and ∆ ` θ wf, then ∆ ` θ(p) wf.

Proof. By induction on the derivation of ∆ ` p wf and by case on the last
rule used. We show the main case.
Suppose p = p1(p2). We have ∆ ` p1 wf, ∆ ` p2 wf, ∆ ` p1 ; p′1, ∆ ` p2 ;
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p′2, ∆ ` p1(p2) ; q, ∆ ` p′1 7→ (θ1, (functor(X : sig B1 . . . Bn endj) →
E)i) and, for all i in 1 . . . n, ∆ ` p′2.θ1[X 7→ p′2](Bi). By induction hypothesis,
∆ ` θ(p1) wf and ∆ ` θ(p2) wf. By Lemma 26, ∆ ` θ(p1) ; θ(p′1),
∆ ` θ(p2) ; θ(p′2) and ∆ ` θ(p1(p2)) ; θ(q). By definition of the look-
up, ∆ ` θ(p′1) 7→ (θ ◦ θ1, (functor(X : sig B1 . . . Bn endj) → E)i). By
Lemma 30, for all i in 1 . . . n, ∆ ` θ(p′2) . θ ◦ θ1[X 7→ θ(p′2)](Bi). 2

Lemma 32 Let p be in pre-located form w.r.t. ∆. If ∆ ` p wf and ∆ `
varnlz (p) = q then ∆ ` q wf.

Proof. By induction on the derivation of ∆ ` varnlz (p) = q. 2

Lemma 33 Let θ be in pre-located form w.r.t. ∆ and MVars(p) ⊆ dom(θ).
If ∆ ` p wf and ∆ ` θ wf, then ∆ ` θ(p) wf.

Proof. By induction on the derivation of ∆ ` p wf and by case on the last
rule used. Use Lemma 18 and 32. 2

Lemma 34 Let ∆ be well-formed. If ∆ ` p wf and ∆ ` p ;ug q, then
∆ ` q wf.

Proof. By induction on the derivation of ∆ ` p ;ug q and by case on the
last rule used. Use Lemma 33. 2

Proposition 13 Let ∆ be well-formed. If ∆ ` p wf and ∆ ` p ; q, then
∆ ` q wf.

Proof. By hypothesis, we have ∆ ` p ;g r and ∆ ` varnlz (r) = q. By
Lemma 19, ∆ ` p ;ug r. By Lemma 34, 13 and 32, ∆ ` q wf. 2

Finally, we show a subject reduction property for the reduction
vpth→ in

Proposition 14.

Lemma 35 Let θ be in located form w.r.t. ∆ and MVars(τ) ⊆ dom(θ). If
∆ ` τ ¦ and ∆ ` θ wf, then ∆ ` θ(τ) ¦.

Proof. By induction on the derivation of ∆ ` τ ¦ and by case on the last
rule used. We show the main case.
Suppose τ = p.t. Then we have ∆ ` p wf and ∆ ` p.t ↓ τ1. By Lemma 31,
we have ∆ ` θ(p) wf. By Corollary 2, ∆ ` θ(p.t) ↓ τ2 for some τ2. 2
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Lemma 36 Let ∆ be well-formed. If ∆ ` τ ¦ and ∆ ` τ ↓ τ ′, then ∆ ` τ ′ ¦.

Proof. By induction on the derivation of ∆ ` τ ↓ τ ′ and by case on the last
rule used. We show the main case.
[tnlz-abb] Suppose τ = p.t and ∆ ` p ; p′ and ∆ ` p′ 7→ (θ, ss . . . type t =
τ1 . . . endi) and ∆ ` τ1 ↓ τ2 and ∆ ` θ(τ2) ↓ τ ′. By Proposition 13, ∆ ` p′ wf,
hence ∆ ` θ wf. By well-formedness of∆ in the hypothesis, ∆ ` τ1 ¦. By
induction hypothesis, ∆ ` τ2 ¦. By Lemma 35, ∆ ` θ(τ2) ¦, By induction
hypothesis, ∆ ` τ ′ ¦. 2

We say that a type environment Γ is well-formed, written ∆ ` Γ wf, if
and only if Γ is in located form w.r.t. ∆, and for all x in dom(Γ), ∆ ` Γ(x) ¦.

Lemma 37 Let ∆ and Γ be well-formed and θ and Γ1 be in located form
w.r.t. ∆ and MVars(Γ) ∪ MVars(e) ⊆ dom(θ). Suppose that Γ1 satisfies the
two conditions: 1) dom(Γ) = dom(Γ1) and 2) for all x in dom(Γ), ∆ `
θ(Γ(x)) ≡ Γ1(x). If ∆ ` θ wf and ∆; Γ ` e : τ , then ∆; Γ1 ` θ(e) : τ ′ for
some τ ′ with ∆ ` τ ′ ≡ θ(τ) and MVars(τ) ⊆ dom(θ).

Proof. By induction on the derivation of ∆; Γ ` e : τ and by case on the last
rule used. We show the main cases.
Suppose e = (λx.e1 : τ1) and ∆ ` τ1 ¦ and ∆ ` τ1 ↓ τ2 → τ3 and ∆; Γ, x :
τ2 ` e1 : τ4 and ∆ ` τ4 ≡ τ3. By Lemma 35 ∆ ` θ(τ1) ¦. By Lemma 28,
∆ ` θ(τ1) ↓ τ5 → τ6 with MVars(τ2) ∪ MVars(τ3) ⊆ dom(θ) and ∆ ` τ5 ≡
θ(τ2) and ∆ ` τ6 ≡ θ(τ3) By Lemma 36, ∆ ` τ2 ¦. By induction hypothesis,
∆; Γ1, x : τ5 ` θ(e1) : τ7 with ∆ ` τ7 ≡ θ(τ4) and MVars(τ4) ⊆ dom(θ).
By Corollary 3, ∆ ` θ(τ4) ≡ θ(τ3), hence ∆ ` τ7 ≡ τ6. As a whole we
have, ∆; Γ1 ` θ(λx.e1 : τ1) : τ5 → τ6 with ∆ ` θ(τ2 → τ3) ≡ τ5 → τ6 and
MVars(τ2 → τ3) ⊆ dom(θ).
Suppose e = case e1 of p.c x ⇒ e2 and ∆; Γ ` e1 : τ1 and ∆ ` p wf and
∆ ` p ; p′ and ∆ ` cnstrlkup(p′, c) = (t, τ2) and ∆ ` τ1 ≡ p′.t and ∆; Γ, x :
τ2 ` e2 : τ . By induction hypothesis, ∆; Γ1 ` θ1(e1) : τ3 with ∆ ` τ3 ≡ θ(τ1)
and MVars(τ1) ⊆ dom(θ). By Lemma 31, ∆ ` θ(p) wf. By Lemma 26,
∆ ` θ(p) ; θ(p′) with MVars(p′) ⊆ dom(θ). By Lemma 13, ∆ ` p′ wf.
By well-formedness of ∆ and Lemma 35 and 36, ∆ ` τ2 ¦. By hypothesis
on θ, we have ∆ ` cnstrlkup(θ(p′), c) = (t, τ4) with ∆ ` τ4 ≡ θ(τ2) with
MVars(τ2) ⊆ dom(θ). By Corollary 3 and transitivity of the type equivalence
relation, ∆ ` τ3 ≡ θ(p′).t. By induction hypothesis, ∆; Γ1, x : τ4 ` θ(e2) : τ ′

with ∆ ` τ ′ ≡ θ(τ) and MVars(τ) ⊆ dom(θ). 2
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Proposition 14 (Subject reduction for the reduction
vpth→ ) Suppose a

program P is well-typed. If ∆P ; ∅ ` p.l : τ and ∆P ` p ;n p′ and ∆P ` p′ 7→
(θ, struct . . . val l = e . . . endi) then ∆P ; ∅ ` θ(e) : τ ′ with ∆P ` τ ≡ τ ′.

Proof. By Proposition 11, ∆P ` p ; p′. By Proposition 13, ∆P ` p′ wf.
By ∆P ; ∅ ` p.l : τ in the hypothesis, ∆P ; ∅ ` p.l :: τ . Hence we have
∆P ; ∅ ` e :: τ1 and ∆P ` θ(τ1) ↓ τ . By Lemma 37, ∆P ; ∅ ` θ(e) : τ2 with
∆P ` θ(τ1) ≡ τ2, hence ∆P ` τ ≡ τ2. 2
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7 Type inference for the core language

A type inference algorithm for the core language can be defined by 1) deter-
mining an inference order using the module path expansion algorithm, then
2) running a standard core type inference algorithm, for instance one found in
[36], along this order. Concretely, using the module path expansion, we build
a call graph of functions (represented by a directed graph), which expresses
how components in recursive modules depend on each other: the strongly
connected components of the graph indicate sets of value components whose
types should be inferred simultaneously, referring to each other monomor-
phically; by topologically sorting the connected components, we generalize
types in a connected component before moving on to typing the next one.
For instance in Figure 5, we build an inference order:

{Tree.labels, Forest.labels} → Tree.split

→ Forest.incr → {Forest.sweep}
where braces specify strongly connected components. That is, Tree.labels
and Forest.labels are mutually recursive, and Forest.sweep is a recursive
function.

We must also check for well-formedness of types, as module variables
should not escape their scope during unification. This can be checked after
the inference in a straightforward way.

Explicit type annotations can be used to break dependencies in the call
graph and to allow polymorphic recursion. Currently, we do not attempt to
infer polymorphic recursion, whose complete type inference is known to be
undecidable [30]. To define those functions, type annotations are required.
Otherwise the inference will fail.
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Part III

Recursive modules for
programming
The ability to control abstraction of modules with explicit signatures is an
important feature of the ML module system. A programmer can make a value
component defined in a structure inaccessible to the outside by explicitly
giving the structure a signature that does not mention the component. By
specifying a type component of the structure as an abstract type in the
signature, one can hide the underlying implementation of the type, thus can
protect its invariants.

Supporting type abstraction between recursive modules gives rise to a
subtle design issue. How to treat cyclic type definitions, when the cycles
are hidden inside signatures? For instance, should a type system reject the
program below?

module M1 = (struct type t = N1.t end : sig type t end)

and N1 = (struct type t = M1.t end : sig type t end)

If it should, then how can it detect the cycle? The type system is supposed
to obey type abstraction, that is, it must not peek inside signatures so as to
know underlying implementations of abstract types. Then it would be im-
possible to reject exactly cycles but allow all other valid cases. For instance,
the type system should allow the program below, which does not contain
cycles.

module M2 = (struct type t = N2.t end : sig type t end)

and N2 = (struct type t = int end : sig type t end)

Existing proposals take different stands on this issue. Russo’s [56] and
Dreyer’s [17] type systems disallow cyclic type definitions whether or not
cycles are hidden inside signatures. To prevent a programmer from defining
cycles, they put restrictions on types which can be abstracted in signatures.
As a result in Russo’s system, a programmer cannot enforce type abstraction
between recursive modules. This is not a desirable restriction. Dreyer’s
system is more lenient. Only types that depend on non-stable types cannot
be abstracted. For instance in the above two programs, the types N1.t

and N2.t are not stable inside M1 and M2, respectively. Since the types
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module Tree = (struct

type t = [ ‘Leaf of int | ‘Node of int * Forest.t ]

end : sig type t end)

and Forest = (struct

type t = Tree.t list end : sig type t end)

Figure 26: Tree and Forest with structural recursive types

M1.t and M2.t depend on these non-stable types, they cannot be abstracted
in signatures. This means that Dreyer’s system prohibits a programmer
from writing neither of the above two programs, although the latter does
not contain cycles. 3 This aside, Dreyer’s restriction may be acceptable in
practice for SML. Yet, for O’Caml, which supports structural recursive types
such as polymorphic variant types and object types, his restriction seems
still severe. Indeed, Dreyer’s system would reject the program in Figure 26,
which uses a polymorphic variant type and a list type to represent trees and
forests, respectively. The type Tree.t depends on the type Forest.t, which
is not stable inside Tree. Hence his system does not allow the type Tree.t

to be abstracted in the signature.
O’Caml type checks all the three programs we have seen. It does not care

whether or not cyclic type definitions are hidden inside signatures, as long
as signatures themselves do not specify cycles. For instance, while O’Caml
rejects:

module M3 = (struct type t = N3.t end : sig type t = N3.t end)

and N3 = (struct type t = M3.t end : sig type t = M3.t end)

it accepts:

module M4 = (struct type t = N4.t end : sig type t end)

and N4 = (struct type t = M4.t end : sig type t end)

In the former program, cycles in type definitions are visible since signatures
specifies the cycles; in the latter, they are invisible.

3To be precise, it is possible to make the latter program typed in Dreyer’s system by
permuting the definition order of the modules M2 and N2, that is, by defining N2 first. Yet
permutation does not always work. For instance, there is no way to make the following
program typed in his system.

module M = (struct type t = int type s = N.s end : sig type t type s end)
and N = (struct type t = M.t type s = int end : sig type t type s end)
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module F = functor(X : sig type t val eval : t -> int end) ->

struct

type t = Int of int | Pair of X.t * X.t

val eval = λx.case x with Int y ⇒ y

| Pair(y1, y2) ⇒ (X.eval y1) + (X.eval y2)

end

module Eval = (F(Eval) : sig type t val eval : t -> int end)

Figure 27: Taking the fix-point of a functor

Now we face a design choice between

1. To disallow cyclic type definitions whether or not they are hidden in-
side signatures. This choice entails restrictions on non-cyclic type def-
initions as we have discussed above.

2. To disallow only cycles which are visible in signatures, but allow them
when they are hidden inside signatures. A downside of this approach
may be that a well-typed program may not type check anymore once
signatures are erased. Besides, except for the experimental implemen-
tation inside O’Caml type checker, there is no formal account of this
approach.

For our language, we prefer to the latter choice since we believe it is
worth keeping liberal uses of polymorphic variant types and object types
together with recursive modules. Our experience in programming with re-
cursive modules in O’Caml is that recursive modules are even more useful
when combined with other language constructs. Hence we do not want to
restrict such possible combinations by following the former choice.

Moreover our design choice enables a new style of programming; a pro-
grammer can take the fix-point of a functor. For instance, we type check
the program in Figure 27: the functor F defines an open recursion, where the
formal argument X contains both type-level and value-level forwardings; then
the module Eval closes the both level recursion simultaneously, by taking the
fix-point of F. Except for O’Caml, no previous work by others on recursive
modules have not explored this new style of programming. In Section 13,
we give another example of this programming style by solving the notorious
expression problem [60] in a type-safe and modular manner, in support of
our design choices.
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For a formal study, we design a language, named Traviata, in this part
(Section 8 and 9). Traviata is an extension of Marguerite with signature
ascription. To accommodate the extension, we divide the type system of
Traviata into two part, namely, a reconstruction part and a type-correctness
check part. In the reconstruction part, the type system infers fully manifest
signatures of recursive modules (Section 10). We design an inference engine
by using the expansion algorithms developed in Part I with little change.
In particular, termination of the inference follows from that of the expan-
sion algorithms. In the type-correctness check part, the type system type
checks programs using the result of the reconstruction as type environment
(Section 11). We prove that the type system is sound for a call-by-value
operational semantics (Section 12).
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8 Example

Traviata is an extension with signature ascription of Marguerite. We intro-
duce this new feature using an example in Figure 28.

The toplevel structure contains two sub-modules Tree and Forest. The
module Tree represents trees whose leaves and nodes are labeled with inte-
gers. The module Forest represents unordered sets of those integer trees.

The modules Tree and Forest refer to each other in a mutually recursive
way. Their type components Tree.t and Forest.t refer to each other, as do
their value components Tree.max and Forest.max. These functions calculate
the maximum integers a tree and a forest contain, respectively.

Unlike the example of Figure 5 in Part I, we enforce type abstraction
between Tree and Forest here, by sealing them with signatures individu-
ally. Each signature specifies the type component t as an abstract type,
hence its underlying implementation is hidden to each other, that is, the
type Forest.t is not equivalent to the type Tree.t list inside Tree and
the constructors Leaf and Node are invisible inside Forest. One of reasons
that signature ascription is useful is that a programmer can make it explicit
that the outside of a signature does not depend on the inside of the signature.
For instance, the function Tree.max does not depend on the underlying im-
plementation of the type Forest.t, but only requires the module Forest to
provide a function max of type Forest.t → int. Hence, it does not affect
Tree.max’s behavior to modify the implementation of Forest.t to (T.t *

T.t) list, as long as implementation of Forest.max is modified properly.

As seen in this example, we extend every structure and signature with
an implicitly typed declaration of a self variable in Traviata, whereas we did
only the toplevel structure in Marguerite. When a module is sealed with a
signature, it is important that a programmer can declare a self variable inside
the sealed module to refer to components which are only visible inside the
module, but not outside. To enforce type abstraction properly, we require
module paths to only contain bound self variables. For instance in Figure 28,
the self variable T is bound inside Tree but unbound inside Forest. In this
way, constructors Leaf and Node are only accessible inside Tree but not
inside Forest, enforcing type abstraction of Tree towards Forest. As in
Marguerite, we can keep the ML scoping rule for backward references in
a practical system by providing an elaboration phase. Yet in the example
we use complete paths by letting both forward and backward references go
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struct (TF)

module Tree = (struct (T)

module F = TF.Forest

datatype t = Leaf of int | Node of int * T.F.t

val max = λx.case x of T.Leaf i ⇒ i

| T.Node (i, f) ⇒
let j = T.F.max f in if i > j then i else j

end : sig (TS) type t val max : TS.t → int end)

module Forest = (struct (F)

module T = TF.Tree

type t = T.t list

val max = λx.case x of [] ⇒ 0

| hd :: tl ⇒
let i = F.T.max hd in let j = F.max tl in

if i > j then i else j

end : sig (FS) type t val max : FS.t → int end)

end

Figure 28: Modules for trees and forests

through self variables for clarity.

As we mentioned in the beginning of this part, the ability to take fix-
points of functors is a useful feature of Traviata. This ability was not available
in Marguerite, but is in Traviata thanks to signature ascription. Indeed, the
module Eval may not be defined as:

module Eval = F(Eval)

since the module path expansion cannot safely reduce the path F(Eval)

with this definition. By writing Eval’s signature explicitly as in Figure 27,
a programmer can break possible cycles in type definitions that might arise
from connecting the result of the instantiation of F to the argument.
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9 Syntax

Figure 29 gives the syntax for the module language of Traviata. We use M
as a metavariable for module names, X for names of module variables, Z for
names of self variables, t for type names, l for (core) value names and c for
constructor names.

For Traviata, we extend module expressions of Marguerite with a sealing
construct of the form (E : S), which seals the module expression E with
the signature S. To seal functors and nested structures with signatures, we
extend signatures with functor types and specifications with module speci-
fications, respectively. Note that, compared to Marguerite, neither module
expressions nor signatures are labeled with integers, which we explain later
in Section 10.3.

As mentioned in the previous section, every structure and signature con-
tains an implicitly typed declaration of a self variable. In the construct
struct (Z) D1 . . . Dn end, the self variable Z is bound in D1 . . . Dn. Simi-
larly, in the construct sig (Z) B1 . . . Bn end, the self variable Z is bound in
B1 . . . Bn.

Figure 30 gives the syntax for module paths, which is same as Marguerite.
In Traviata, a program may declare several self variables. We require module
paths only to contain bound self variables. Otherwise type abstraction can
be broken. Through the self variable declared in a structure, one can refer to
any module named in that structure except for those hidden within sealed
sub-structures.

The type system of Traviata uses expansion algorithms in a similar way
that Marguerite does. For termination of the algorithms, we again put the
first-order structure restriction on Traviata that requires functors not to take
functors as arguments or to access sub-modules of arguments.

The core language of Traviata is same as Marguerite, which is repeated
in Figure 31.

We assume the following five conventions: 1) a program does not contain
free module variables or free self variables; 2) all binding occurrences of mod-
ule or self variables use distinct names; 3) any sequence of module definitions,
type abbreviations, datatype definitions, value definitions, module specifica-
tions, manifest and abstract type specifications, datatype specifications and
value specifications does not contain duplicate definitions or specifications for
the same name; 4) signatures for module variables are structure types that
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Module expression

E ::= struct (Z) D1 . . . Dn end structure
| functor (X : S) → E functor
| (E : S) sealing
| p module path

Definitions

D ::= module M = E module def.
| datatype t = c of τ datatype def.
| type t = τ type abbreviation

| val l = e value def.
Signature

S ::= sig (Z) B1 . . . Bn end structure type
| functor(X : S1) → S2 functor type

Specifications

B ::= module M : S module spec.
| datatype t = c of τ datatype spec.
| type t = τ manifest type spec.
| type t abstract type spec.
| val l : τ value spec.

Program

P ::= struct (Z) D1 . . . Dn end

Figure 29: The module language of Traviata

Module identifiers

mid ::= Z | mid .M | mid(p)

Module paths

p, q, r ::= mid | X

Figure 30: Syntax for module paths

Core types τ ::= 1 | τ1 → τ2 | τ1 ∗ τ2 | p.t
Core expr. e ::= x | () | (λx.e : τ) | (e1, e2) | πi(e) | e1(e2)

| p.c e | case e of p.c x ⇒ e | p.l

Figure 31: The core language of Traviata
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do not contain module specifications; 5) for any sealing construct (E : S),
neither E nor S is a functor (type). The fourth convention is consistent with
the first-order structure restriction. The fifth convention does not diminish
the expressive power of the language. Since functors cannot take functors
as argument, direct sealing of functors has no use. Note that we still need
functor types to seal structures which contain functors as sub-modules.

9.1 Elaboration

Prior to type checking, we elaborate the syntax for modules (Figure 29) and
module paths (Figure 30) to Figure 32 and 33 respectively, in order to make it
easier for the type system to manipulate module paths during type checking.
The elaboration operation is summarized as follows:

1. To erase declarations of self variables for which self variables declared
in outer structures or structure types can be substituted.

2. Responsively, to replace each self variable whose declaration is erased
with a module path which refers to the structure or structure type that
the self variable is declared.

3. To annotate each non-erased self variable with an identity module vari-
able binding4. The domain of the binding exactly contains the module
variables that are bound in the structure or structure type that the self
variable is declared.

A module variable binding is a mapping from module variables to module
paths. Unlike in Marguerite, we regard domains of module variable bindings
as sequences of module variables. For a module variable binding θ = [X1 7→
p1, . . . , Xn 7→ pn], dom(θ) denotes {{X1, . . . , Xn}}, where we use “{{“ and
“}}” to denote sequences. Application of a module variable binding θ to a
module path p is defined inductively as follows:

θ(Zθ1) = Zθ◦θ1 θ(X) =

{
X when X 6∈ dom(θ)
p when X ∈ dom(θ) and θ(X) = p

θ(p.M) = θ(p).M θ(p1(p2)) = θ(p1)(θ(p2))

For module variable bindings θ1 and θ2, their composition θ1 ◦ θ2 denotes a

4Note that we will distinguish between identity module variable bindings and the empty
module variable binding. The domain of an identity module variable binding is not empty.
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Toplevel module expressions

TE ::= struct (Zθ) D1 . . . Dn end

| (TE : TS)
| p

Non-toplevel module expressions

NE ::= struct D1 . . . Dn end

| functor (X : NS) → NE
| (TE : TS)
| p

Definitions

D ::= module M = NE
| datatype t = c of τ | type t = τ | val l = e

Toplevel signature

TS ::= sig (Zθ) B1 . . . Bn end

Non-toplevel signatures

NS ::= sig B1 . . . Bn end | functor(X : NS1) → NS2

Specifications

B ::= module M : NS
| datatype t = c of τ | type t = τ | type t | val l : τ

Program

P ::= struct (Zθ) D1 . . . Dn end

Module expressions

E ::= TE | NE

Signatures

S ::= TS | NS

Figure 32: The module language after elaboration

Module identifiers

mid ::= Zθ | mid .M | mid(p)

Module paths

p, q, r ::= mid | X

Figure 33: Module paths after elaboration
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module variable environment such that dom(θ1 ◦ θ2) = dom(θ2) and, for all
X in dom(θ1 ◦ θ2), θ1 ◦ θ2(X) = θ1(θ2(X)). For a set of module variables X
and a sequence of module variables Λ, we write X ⊆ Λ when all elements in
X is also in Λ.

We examine two examples to deliver the intuition of the elaboration,
then review the syntax after the elaboration and define a function for the
elaboration operation.

The first example is:

struct (Z1)

module M = struct (Z2) type s = int type t = Z2.s end

end

The declaration of Z2 is superfluous and all uses of Z2 can be substituted
by Z1.M. Indeed, Z1.M refers to the structure that Z2 is declared. Hence, the
above program is elaborated into:

struct (Zε
1)

module M = struct type s = int type t = Zε
1.M.s end

end

The elaboration also annotated Z1 with the empty module variable binding
ε, which is the module variable binding whose domain is empty. There are
no module variables bound in the structure where Z1 is declared.

The elaboration cannot erase declarations of self variables in the outer-
most structures and structure types inside sealing. For instance in Figure 34,
we keep the declaration of Z4, but erase that of Z5. The use of Z5 can be sub-
stituted by Z4.N. We do not expand types during elaboration. The type
definition of u in the module N is elaborated into type u = Zε

4.s * Zε
4.N.t,

not into type u = int * Zε
4.N.t. Hence, elaboration does not diverge. We

keep declarations of self variables in the outermost sealing signatures. The
type system uses these self variables when type checking a sealing construct.
Hence, the declaration of Z2 is kept, but not that of Z3. As a whole, Figure 34
is elaborated into Figure 35.

Now let us review the syntax of modules after elaboration (Figure 32).
Module expressions and signatures are divided into toplevels and non-toplevels,
where toplevels declare self variables but non-toplevels do not. We nominate
module expressions and signatures as toplevels when they are immediate
sub-constructs of sealing. Due to the conventions described earlier, neither
toplevel module expression nor signature cannot be a functor (type). Pro-
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struct (Z1)

module M = (struct (Z4)

type s = int

module N = struct (Z5)

datatype t = A type u = Z4.s * Z5.t end

end : sig (Z2)

type s

module N : sig (Z3) type t type u = Z2.s * Z3.t end

end)

end

Figure 34: Example of elaboration

struct (Zε
1)

module M = (struct (Zε
4)

type s = int

module N = struct datatype t = A type u = Zε
4.s * Zε

4.N.t end

end : sig (Zε
2)

type s

module N : sig type t type u = Zε
2.s * Zε

2N.t end

end)

end

Figure 35: Result of elaboration
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grams are toplevel structures.
We often say module expressions to denote both toplevel and non-toplevel

module expressions together and use E as a metavariable for them. Similarly,
we say signatures to denote toplevel and non-toplevel signatures and use S
as a metavariable for them.

Figure 33 gives the syntax for module paths after elaboration. Self vari-
ables are annotated with module variable bindings. Otherwise module paths
have the same syntax as before.

In Figure 36, we define a function elb for the elaboration operation. The
notation [Z 7→ p]D denotes substitution of p for Z in D. The notation
[Z 7→ p]B is read similarly. The behavior of elb is already summarized in the
beginning of this subsection. We use three helper functions. The function
elb nt traverses non-top levels, hence it erases declarations of self variables
(in (?)-labeled rules). The function elb t does top levels, hence it annotates
self variables with module variable bindings (in (??)-labeled rules). The
function elb mv operates on signatures of functor arguments. It substitutes
a functor’s formal parameter for the self variable declared in the parameter’s
signature. Recall our convention that a module variable is bound inside its
own signature. Hence elb mv does not introduce unbound module variables.

In the rest of the thesis, we only consider programs after elaboration.
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elb(struct (Z) D1 . . . Dn end) = struct (Zε) D′
1 . . . D′

n end

where D′
i = elb nt(ε, Zε, [Z 7→ Zε]Di)

(?) elb nt(θ, p, struct (Z) D1 . . . Dn end)
= struct elb nt(θ, p, [Z 7→ p]D1) . . . elb nt(θ, p, [Z 7→ p]Dn) end

elb nt(θ, p, functor(X : S) → E)
= functor(X : elb mv(X,S)) → elb nt(θ[X 7→ X], p(X), E)

elb nt(θ, p, (E : S)) = (elb t(θ, E) : elb t(θ, S))

elb nt(θ, p, q) = q

(?) elb nt(θ, p, sig (Z) B1 . . . Bn end)
= sig elb nt(θ, p, [Z 7→ p]B1) . . . elb nt(θ, p, [Z 7→ p]Bn) end

elb nt(θ, p, functor(X : S1) → S2)
= functor(X : elb mv(X,S1)) → elb nt(θ[X 7→ X], p(X), S2)

elb nt(θ, p, module M = E) = module M = elb nt(θ, p.M,E)

elb nt(θ, p,D) = D when D is not a module definition

elb nt(θ, p, module M : S) = module M : elb nt(θ, p.M, S)

elb nt(θ, p, S) = S when S is not a module specification

(??) elb t(θ, struct (Z) D1 . . . Dn end) = struct (Zθ) D′
1 . . . D′

n end

where D′
i = elb nt(θ, Zθ, [Z 7→ Zθ]Di)

elb t(θ, (E : S)) = (elb t(θ, E) : elb t(θ, S))

elb t(θ, p) = p

(??) elb t(θ, sig (Z) B1 . . . Bn end) = sig (Zθ) B′
1 . . . B′

n end

where B′
i = elb nt(θ, Zθ, [Z 7→ Zθ]Bi)

elb mv(X, sig (Z) B1 . . . Bn end) = [Z 7→ X](sig B1 . . . Bn end)

Figure 36: Elaboration operation
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10 Reconstruction

The type system is composed of two parts, namely a type reconstruction part
and a type-correctness check part. Concretely, we type check a given program
P in two steps: 1) reconstruct a lazy program type of P ; at this point, we do
not require the reconstructed type to be correct; 2) check type-correctness of
P by type checking P in the intuitive way, using the reconstructed type as
type environment. Once this second step is completed, we are certain both
that P is type-correct and that the reconstruction was correct.

In this section we explain the reconstruction part; in the next section we
do the type-correctness check part.

The rest of this section is organized as follows. We first introduce lazy pro-
gram types, which are output from the reconstruction (Section 10.1). Then
we define a look-up judgment for using programs and lazy program types as
lookup tables (Section 10.2). We define expansion algorithms for Traviata,
by adapting those for Marguerite (Section 10.3). Finally, we present an algo-
rithm for reconstructing lazy program types from programs (Section 10.4).

10.1 Lazy module types

In Figure 37, we give the syntax for lazy module types, which we use as
types of modules during type checking. The syntax mimics that for module
expressions (Figure 32). We have toplevel and non-toplevel lazy signatures,
where only toplevels declare self variables. Both toplevel and non-toplevel
lazy signatures may be lazy sealing types (TT : TS) or lazy paths types p.
We use lazy sealing types to check type-correctness of a sealing construct
(TE : TS) of module expressions (in rule (33) in Figure 55). We use lazy
path types to instantiate signatures lazily (in rule (59) in Figure 57). In the
construct sig (Zθ) C1 . . . Cn end, the name Z is bound in C1 . . . Cn. A lazy
program type is a toplevel lazy structure type. We may say lazy signatures
to denote toplevel and non-toplevel lazy signatures together and use T as a
metavariable for them. Note that lazy signatures include signatures.

Lazy path types are important for keeping a flexible module abbreviation
mechanism. For instance, for the implementation of the Tree module in Fig-
ure 28, the type system reconstructs a lazy signature:
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Toplevel lazy signatures

TT ::= sig (Zθ) C1 . . . Cn end lazy structure type
| (TT : TS) lazy sealing type
| p lazy path type

Non-toplevel lazy signatures

NT ::= sig C1 . . . Cn end

| functor(X : NS) → NT lazy functor type
| (TT : TS)
| p

Lazy specifications

C ::= module M : NT lazy module spec.
| datatype t = c of τ
| type t = τ
| type t
| val l : τ

Lazy program type

U ::= sig (Zθ) C1 . . . Cn end

Lazy signatures

T ::= TT | NT

Figure 37: Lazy module types
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Toplevels O ::= struct (Zθ) D1 . . . Dn end

| sig (Zθ) C1 . . . Cn end

| sig (Zθ) B1 . . . Bn end

Toplevel module descriptions TK ::= TE | TS | TT
Non-toplevel module descriptions NK ::= NE | NS | NT

Module descriptions K ::= TK | NK
Module components J ::= D | C | B

:= ::= = | :
ss ::= struct | sig

Figure 38: Notation convention

sig (Tε)

module F = TFε.Forest

datatype t = Leaf of int | Node of int * TFε.Forest.t

val max : Tε.t → int

end

The module abbreviation module F = TFε.Forest is kept using a lazy path
type. We cannot expand it out to a structure type, which would require in-
finitely nesting structure types. In addition, lazy path types make it possible
for Traviata to support fully applicative functors. We examine it in detail in
Section 14.

We use the notation convention in Figure 38. In particular, we use O
as a metavariable for toplevels, which are either toplevel structures, toplevel
structure types or toplevel lazy structure types, and K for module descrip-
tions, which are either module expressions, signatures or lazy signatures, and
J for module components, which are either definitions, specifications or lazy
specifications.

10.2 Look-up

We introduce self variable environments, module variable environments and
variable environments as the corresponding notions in Traviata to program
environments in Marguerite.

A self variable environment is a mapping from names of self variables to
pairs of a module description and a sequence of module variables. We use
self variable environments as look-up tables when resolving module path ref-
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∆ = (µ, ν)

∆ ` X 7→ (ε, ν(X))
(1)

∆ = (µ, ν) µ(Z) = (K, Λ) dom(θ) = Λ

∆ ` Zθ 7→ (θ,K)
(2)

∆ ` p 7→ (θ, ss . . . module M := K . . . end) K 6= (K1 : K2)

∆ ` p.M 7→ (θ,K)
(3)

∆ ` p 7→ (θ, ss . . . module M := K . . . end) K = (K1 : K2)

∆ ` p.M 7→ (θ,K2)
(4)

∆ ` p1 7→ (θ, functor(X : NS) → K) K 6= (K1 : K2)

∆ ` p1(p2) 7→ (θ[X 7→ p2], K)
(5)

∆ ` p1 7→ (θ, functor(X : NS) → K) K = (K1 : K2)

∆ ` p1(p2) 7→ (θ[X 7→ p2], K2)
(6)

Figure 39: Look-up

mkselfenv(ss (Zθ) J1 . . . Jn end)
= (Z, (ss (Zθ) J1 . . . Jn end, dom(θ))) ∪ ∪

i mkselfenv(Ji)

mkselfenv(ss J1 . . . Jn end) =
∪

i mkselfenv(Ji)

mkselfenv(functor(X : S) → K) = mkselfenv(K)

mkselfenv(module M := K) = mkselfenv(K)

mkselfenv(J) = ∅ when J is not a module definition
or (lazy) module specification.

Figure 40: Self variable environments of module descriptions
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erences with the look-up judgment defined later. For a module description
K, the self variable environment of K, written µK , is the self variable envi-
ronment whose domain exactly contains all names of self variables declared
in K and which sends a name Z of a self variable to the pair (O, Λ), where
Z is the self variable of the toplevel O and Λ sets out all module variables
bound in O in the binding order. Precisely, the self variable environment of
K is computed by the function mkselfenv defined in Figure 40. Then µK is
defined by:

µK(Z) =

{
(K ′, Λ) when (Z, (K ′, Λ)) ∈ mkselfenv(K)
undefined otherwise

We use µ as a metavariable for self variable environments and Λ for se-
quences of module variables. We write dom(µ) and µε to denote the domain
of µ and a self variable environment of the empty domain, respectively. For
self variable environments µ1 and µ2 we write µ1µ2 to denote a self variable
environment such that dom(µ1µ2) = dom(µ1) ∪ dom(µ2) and for any Z in
dom(µ1µ2),

µ1µ2(Z) =

{
µ2(Z) when Z is in dom(µ2)
µ1(Z) otherwise

A module variable environment is a mapping from module variables to
signatures. For a module description K, the module variable environment
of K, written νK , is the module variable environment whose domain exactly
contains all the module variables appearing in K and which sends a module
variable to its own signature specified in K.

We use ν as a metavariable for module variable environments. We write
dom(ν), νε and ν1ν2 with similar meanings to those for self variable environ-
ments. That is, dom(ν) denotes the domain of ν, and νε denotes a module
variable environment whose domain is empty. For module variable envi-
ronments ν1 and ν2, ν1ν2 denotes a module variable environment such that
dom(ν1ν2) = dom(ν1) ∪ dom(ν2) and for any X in dom(ν1ν2),

ν1ν2(X) =

{
ν2(X) when X is in dom(ν2)
ν1(X) otherwise

A variable environment is a pair of a self variable environment and a
module variable environment. For a module description K, the variable
environment of K, written ∆K , is (µK , νK). For variable environments ∆1 =
(µ1, ν1) and ∆2 = (µ2, ν2), we write ∆1∆2 to denote (µ1µ2, ν1ν2).

85



struct (Zε
1)

module M = (struct (Zε
2)

module N = struct type t = int end

end : sig (Zε
3) module N = sig type t end end)

end

Figure 41: A program P1

In Figure 39, we define a look-up judgment for Traviata to use variable
environments as look-up tables. The judgment ∆ ` p 7→ (θ,K) means that
the module path p resolves to the module description K w.r.t. the variable
environment ∆, where each module variable X is bound to θ(X).

Now let us examine each rule of the look-up. For a module variable,
the judgment consults the variable environment ∆, where the signature of
X should be found. For a self variable Zθ, the judgment again consults ∆,
where the toplevel that Z is declared should be found. The side condition
dom(θ) = Λ ensures coherence of the annotation θ, that is, that all free
module variables in K must be bound by θ. Next two rules (3) and (4)
handle module paths of the form p.M . A module path p.M resolves to the
sub-module named M in the module that p resolves to. Hence p must resolve
to either a structure of a (lazy) structure type. The two rules distinguish
whether M is bound to a sealing construct (K1 : K2) or not; when it is, then
p.M resolves to the sealing part K2. Thus, the judgment prevents peeking
inside sealed modules from outside them. The last two rules (5) and (6)
handle module paths of the form p1(p2). When p1 resolves to either a functor
or a (lazy) functor type, then p1(p2) does to the body of the functor, where
the module variable environment is augmented with a new binding [X 7→ p2].
Again the two rules distinguish whether the body is a sealing construct or
not.

For instance in Figure 41, the module paths Zε
1.M.N and Zε

2.N resolve to
sig type t end and struct type t = int end, respectively.

For brevity, we extend the look-up judgment to handle type and value
paths in Figure 42. All rules are as expected.

Corresponding to the convention of the absence of free module variables
in programs, we assume that any variable environment we consider in this
thesis does not contain free module variables. Precisely,
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∆ ` p 7→ (θ, ss . . . type t . . . end)

∆ ` p.t 7→ (θ, type t)

∆ ` p 7→ (θ, ss . . . type t = τ . . . end)

∆ ` p.t 7→ (θ, type t = τ)

∆ ` p 7→ (θ, ss . . . datatype t = c of τ . . . end)

∆ ` p.l 7→ (θ, datatype t = c of τ)

∆ ` p 7→ (θ, ss . . . val l : τ . . . end)

∆ ` p.l 7→ (θ, val l : τ)

∆ ` p 7→ (θ, ss . . . val l = e . . . end)

∆ ` p.l 7→ (θ, val l = e)

Figure 42: Look-up for type and value paths

Definition 10 A variable environment ∆ = (µ, ν) does not contain free
module variables if, for any module path p other than a module variable,
when ∆ ` p 7→ (θ,K) then the following two conditions hold.

1. MVars(K) ⊆ dom(θ)

2. For all X in dom(θ), MVars(ν(X)) ⊆ dom(θ).

10.3 Expansion algorithms

From a technical point of view, expansion algorithms we use for Traviata are
mostly same as those we used for Marguerite. In particular, their termination
and well-definedness (i.e., that the module path expansion reduces module
paths into located forms and that the type expansion does types into located
types) are proven in a similar way. We adapt them for Traviata in the
following two ways.

1. Expansions in Traviata use module paths instead of integers as locks.

2. The ground expansion performs path compression so that module paths
after expansion contain the innermost self variables. For instance in
Figure 41, the module path Zε

1.M.N expands into Zε
3.N. This is useful for

defining type equality.

Location equivalence When checking whether or not a module path is
already held in a lock, the expansions use a location equivalence judgment,
defined in Figure 43. The judgment ` p1

.
= p2 means that the module paths

p1 and p2 are location equivalent. Two module paths are location equivalent if
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` X
.
= X ` Zθ1

.
= Zθ2

` p1
.
= p2

` p1.M
.
= p2.M

` p1
.
= q1

` p1(p2)
.
= q1(q2)

Figure 43: Location equivalence

and only if they have the syntactically same structure in disregard of functor
arguments. It is easy to observe that when two module paths are location
equivalent then they resolve to the same module description at the same
location, according to the look-up judgment.

Module path expansion The module path expansion algorithm reduces
module paths into located forms. For Traviata we adapt located forms from
Marguerite so that they contain the innermost self variables.

We first define two auxiliary functions subpaths and head on module paths.
For a given module path p, subpaths(p) returns the set of sub-paths contained
in the trunk of p, and head(p) returns the self variable or the module variable
at the head of p. Precisely,

subpaths(X) = {X} subpaths(Zθ) = {Zθ}
subpaths(p.M) = {p.M} ∪ subpaths(p)

subpaths(p1(p2)) = {p1(p2)} ∪ subpaths(p1)

and

head(X) = X head(Zθ) = Zθ

head(p.M) = head(p) head(p1(p2)) = head(p1)

Then, located forms are defined as follows.

Definition 11 A module path p is in located form w.r.t. a variable environ-
ment ∆ if the following three conditions hold.

• ∆ ` p 7→ (θ,K) where K is not a module path.

• For all q in subpaths(p) other than head(p), if ∆ ` q 7→ (θ′, K ′) then
K ′ is not a toplevel.

• For all q in args(p), q is in located form w.r.t. ∆.

For a module path p, args(p) denotes the set of module paths appearing
inside p as functor arguments, or:
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args(X) = ∅ args(Zθ) = {θ(X) | X ∈ dom(θ)}
args(p.M) = args(p) args(p1(p2)) = args(p1) ∪ {p2}

We say that a module variable binding θ is in located form w.r.t. ∆ if and
only if, for all X in dom(θ), θ(X) is in located form w.r.t. ∆.

In Figure 44, we define the ground expansion for Traviata. We use Π as
a metavariable for sets of module paths. The notation Π]p q means Π∪ {q}
whenever Π does not contain a module path r such that ` q

.
= r. Compared

to the ground expansion in Marguerite, we introduced two new rules [gnlz-
comps1] [gnlz-comps2] to perform path compression. When a module path
resolves to a toplevel, then the ground expansion substitutes the self variable
declared in the toplevel for the module path. The other rules are same as
those in Marguerite.

Variable normalization and module path expansion for Traviata are de-
fined by the same inference rules as those in Marguerite. We repeat their
definitions in Figure 45 and 46, respectively.

Termination and well-definedness of the module path expansion are proven
in a similar way to in Marguerite. We only need a sanity condition on anno-
tations of self variables, which we assume to hold for any input module path
to the module path expansion.

Definition 12 A module path p has located variables w.r.t. a variable envi-
ronment ∆ if all the self variables contained in p are in located form w.r.t.
∆.

Definition 13 A variable environment ∆ has located variables if all the mod-
ule paths appearing in ∆ have located variables w.r.t. ∆.

After the elaboration described in Section 9.1, all self variables in a pro-
gram P are annotated with identity module variable bindings which have
appropriate domains. Hence all module paths in P have located variables
w.r.t. ∆P .

The lemma below ensures that the ground expansion cannot augment a
lock infinitely often.

Lemma 38 For any variable environment ∆, let P be the set of module paths
in located form w.r.t. ∆. The quotient set of P by the location equivalence
relation is finite.
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[gnlz-mvar]
−−

∆, Π ` X ;g X

[gnlz-self ]

∆, Π ` Zθ ;g Zθ

[gnlz-comps1]
∆, Π ` p ;g p′ ∆ ` p′.M 7→ (θ, ss (Zθ′) . . . end)

∆, Π ` p.M ;g θ(Zθ′)

[gnlz-def1]
∆, Π ` p ;g p′ ∆ ` p′.M 7→ (θ,K) K 6∈ mid K 6= O

∆, Π ` p.M ;g p′.M

[gnlz-pth1]
∆, Π ` p ;g p′ ∆ ` p′.M 7→ (θ, q) q 6= X
−−−−∆, Π ]p p′.M ` q ;g r−−−−

∆, Π ` p.M ;g θ(r)

[gnlz-comps2]
∆, Π ` p1 ;g p′1 ∆, Π ` p2 ;g p′2
∆ ` p′1(p

′
2) 7→ (θ, ss (Zθ′) . . . end)

∆, Π ` p1(p2) ;g θ(Zθ′)

[gnlz-def2]
∆, Π ` p1 ;g p′1 ∆, Π ` p2 ;g p′2

∆ ` p′1(p
′
2) 7→ (θ,K) K 6∈ mid K 6= O

∆, Π ` p1(p2) ;g p′1(p
′
2)

[gnlz-pth2]
∆, Π ` p1 ;g p′1 ∆, Π ` p2 ;g p′2

∆ ` p′1(p
′
2) 7→ (θ, q) ∆, Π ]p p′1(p

′
2) ` q ;g r

∆, Π ` p1(p2) ;g θ(r)

Figure 44: Ground expansion
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∆ ` varnlz (X) = X ∆ ` varnlz (Zθ) = Zθ

∆ ` varnlz (p) = p′ ∆ ` varsubst(p′.M) = q

∆ ` varnlz (p.M) = q

∆ ` varnlz (p1) = p′1 ∆ ` varnlz (p2) = p′2 ∆ ` varsubst(p′1(p
′
2)) = q

∆ ` varnlz (p1(p2)) = q

∆ ` p 7→ (θ,X)

∆ ` varsubst(p) = θ(X)

∆ ` p 7→ (θ,K) K 6= X

∆ ` varsubst(p) = p

Figure 45: Variable normalization

∆, ∅ ` p ;g q ∆ ` varnlz (q) = r

∆ ` p ; r

Figure 46: Module path expansion

Proof. Suppose that all module descriptions appearing in ∆ are labeled with
distinct natural numbers. Let n be the greatest number among these labels.
Let p1 and p2 be in located form w.r.t. ∆ and ` p1

.
= p2. By definition, we

have ∆ ` p1 7→ (θ1, K
i1
1 ) and ∆ ` p2 7→ (θ2, K

i2
2 ), where i1 and i2 are labels.

By induction on the derivation of ` p1
.
= p2, we prove i1 = i2. Hence we

conclude that the number of the elements of the quotient set of P by the
location equivalence relation is less than n + 1. 2

Proposition 15 For any variable environment ∆ having located variables
and module path p having located variables w.r.t. ∆, proof search for ∆ `
p ; will terminate.

Proposition 16 For any variable environment ∆ having located variables
and module path p having located variables w.r.t. ∆., if ∆ ` p ; q, then q is
in located form w.r.t. ∆.

Type expansion We define the type expansion for Traviata in Figure 47.
We use Πτ as a metavariable for sets of type paths. The notation Πτ ]τ p.t
means Πτ ∪ {p.t} whenever Πτ does not contain a type path q.t such that
` p

.
= q. Except that we use type paths as locks, inference rules in Figure 47

are same as those for the type expansion of Marguerite.
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[tnlz-uni]

∆; Πτ ` 1 ↓ 1

[tnlz-arr]
∆; Πτ ` τ1 ↓ τ ′

1 ∆; Πτ ` τ2 ↓ τ ′
2

∆; Πτ ` τ1 → τ2 ↓ τ ′
1 → τ ′

2

[tnlz-pair]
∆; Πτ ` τ1 ↓ τ ′

1 ∆; Πτ ` τ2 ↓ τ ′
2

∆; Πτ ` τ1 ∗ τ2 ↓ τ ′
1 ∗ τ ′

2

[tnlz-atyp]
∆ ` p ; p′ ∆ ` p′.t 7→ (θ, type t)

∆; Πτ ` p.t ↓ p′.t

[tnlz-dtyp]
∆ ` p ; p′ ∆ ` p′.t 7→ (θ, datatype t = c of τ)

∆; Πτ ` p.t ↓ p′.t

[tnlz-abb]
∆ ` p ; p′ ∆ ` p′.t 7→ (θ, type t = τ1)
∆; Πτ ]τ p′.t ` τ1 ↓ τ2 ∆; Πτ ` θ(τ2) ↓ τ3

∆; Πτ ` p.t ↓ τ3

Figure 47: Type expansion

Located types in Traviata are defined in the exactly same way as in Mar-
guerite.

Definition 14 A simple located type w.r.t. a variable environment ∆ is a
type path p.t where p is in located form w.r.t. ∆ and either ∆ ` p.t 7→
(θ, datatype t = c of τ) or ∆ ` p.t 7→ (θ, type t) holds.

Definition 15 A located type w.r.t. a variable environment ∆ is a type τ
where every type path p.t in typaths(τ) is a simple located type w.r.t. ∆.

The function typaths was defined in Section 4.

Termination and well-definedness of the type expansion are proven in a
similar way as in Marguerite. Again we need a sanity condition which we
assume to hold for any input type to the type expansion.

Definition 16 A type τ has located variables w.r.t. a variable environment
∆ if if all the module paths contained in τ have located variables w.r.t. ∆.
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Proposition 17 For any variable environment ∆ having located variables,
lock Πτ , and type τ1 having located variables w.r.t. ∆, proof search for ∆; Πτ `
τ1 ↓ will terminate.

Proposition 18 For any variable environment ∆ having located variables,
lock Πτ , and type τ1 having located variables w.r.t. ∆ and type τ2, if ∆; Πτ `
τ1 ↓ τ2, then τ2 is a located type w.r.t. ∆.

Core type reconstruction We define a core type reconstruction algo-
rithm for Traviata in Figure 48 with an auxiliary judgment in Figure 49. We
use Πe as a metavariable for sets of value paths. The notation Πe]ep.l means
Πe ∪ {p.l} whenever Πe does not contain a value path q.l such that ` p

.
= q.

Except that we use value paths as locks, inference rules in Figure 48 are same
as those for the core type reconstruction in Marguerite.

Termination of the core type reconstruction can be proven in a similar
way to in Marguerite. We need a sanity condition which we assume to hold
for any input expression to the reconstruction.

Definition 17 A core expression e has a located variables w.r.t. a variable
environment ∆ if all the module paths contained in e have located variables
w.r.t. ∆.

Definition 18 A type environment Γ is in located form w.r.t. a variable
environment ∆ if, for all x in dom(Γ), Γ(x) is a located type w.r.t. ∆.

Proposition 19 For any variable environment ∆ having located variables,
type environment Γ in located form w.r.t. ∆, lock Πe, and expression e having
located variables w.r.t. ∆, proof search for ∆; Γ; Πe ` e :: will terminate.

10.4 Lazy program type reconstruction

In Figure 50, we define an algorithm which reconstructs a lazy program type
from a given program, with functions found in Figure 51. The judgments
∆ ` E . T means that the reconstruction infers the lazy signature T for the
module expression E w.r.t. the variable environment ∆. The other judgments
are read similarly.

Observe that for any variable environment ∆ and a program P , proof
search for ∆ ` P . is deterministic. We regard inference rules of the
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[rcnstr-var]
−−

∆; Γ; Πe ` x :: Γ(x)

[rcnstr-uni]
−−

∆; Γ; Πe ` () :: 1

[rcnstr-prd]
∆; Γ; Πe ` e1 :: τ1 ∆; Γ; Πe ` e2 :: τ2

∆; Γ; Πe ` (e1, e2) :: τ1 ∗ τ2

[rcnstr-prj]
∆; Γ; Πe ` e :: τ1 ∗ τ2

∆; Γ; Πe ` πi(e) :: τi

[rcnstr-fun]
∆; ∅ ` τ ′ ↓ τ

∆; Γ; Πe ` (λx.e1 : τ ′) :: τ

[rcnstr-app]
∆; Γ; Πe ` e1 :: τ ′ → τ

∆; Γ; Πe ` e1(e2) :: τ

[rcnstr-cnstr]
∆ ` p ; p′ ∆ ` cnstrlkup(p′, c) = (t, τ)

∆; Γ; Πe ` p.c e1 :: p′.t

[rcnstr-case]
∆ ` p ; p′ ∆ ` cnstrlkup(p′, c) = (t, τ1)

∆; Γ, x : τ1; Πe ` e2 :: τ

∆; Γ; Πe ` case e1 of p.c x ⇒ e2 :: τ

[rcnstr-vpth1]
∆ ` p ; p′ ∆ ` p′.l 7→ (θ, val l : τ ′) ∆; ∅ ` θ(τ ′) ↓ τ

∆; Γ; Πe ` p.l :: τ

[rcnstr-vpth2]
∆ ` p ; p′ ∆ ` p′.l 7→ (θ, val l = e1)
∆; ∅; Πe ]e p′.l ` e1 :: τ ′ ∆; ∅ ` θ(τ ′) ↓ τ

∆; Γ; Πe ` p.l :: τ

Figure 48: Core type reconstruction

∆ ` cnstrlkup(p, c) = (t, τ) when
∆ ` p 7→ (θ, ss . . . datatype t = c of τ ′ . . . end) and ∆; ∅ ` θ(τ ′) ↓ τ

Figure 49: Datatype look-up
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Module expressions

∆ ` D1 . C1 . . . ∆ ` Dn . Cn

∆ ` struct (Zθ) D1 . . . Dn end . sig (Zθ) C1 . . . Cn end
(7)

∆ ` D1 . C1 . . . ∆ ` Dn . Cn

∆ ` struct D1 . . . Dn end . sig C1 . . . Cn end
(8)

∆ ` NS . NS ′ ∆ ` E . T
∆ ` functor(X : NS) → E . functor(X : NS ′) → T

(9)

∆ ` TS . TS ′ manif (TE, TS) = TS2

−−−−∆(µTS2 , νε) ` TE . TT−−−−
∆ ` (TE : TS) . (TT : TS ′)

(10)
∆ ` p ; q

∆ ` p . q
(11)

Signatures

∆ ` B1 . B′
1 . . . ∆ ` Bn . B′

n

∆ ` sig (Zθ) B1 . . . Bn end . sig (Zθ) B′
1 . . . B′

n end
(12)

∆ ` B1 . B′
1 . . . ∆ ` Bn . B′

n

∆ ` sig B1 . . . Bn end . sig B′
1 . . . B′

n end
(13)

∆ ` NS . NS ′ ∆ ` S . S ′

∆ ` functor(X : NS) → S . functor(X : NS ′) → S ′ (14)

Definitions and Specifications

∆ ` NE . NT
∆ ` module M = NE . module M : NT

(15)

∆ ` NS . NS ′

∆ ` module M : NS . module M : NS ′ (16)

∆; ∅ ` τ ↓ τ ′

∆ ` datatype t = c of τ . datatype t = c of τ ′ (17)

∆; ∅ ` τ ↓ τ ′

∆ ` type t = τ . type t = τ ′ (18)

∆; ∅; ∅ ` e :: τ

∆ ` val l = e . val l : τ
(19)

∆; ∅ ` τ ↓ τ ′

∆ ` val l : τ . val l : τ ′ (20)

Figure 50: Lazy program type reconstruction
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manif (ss (Zθ) . . . end, TS) = update(Zθ, TS)

manif ((TK : sig (Zθ) . . . end), TS) = update(Zθ, TS)

manif (p, TS) = update(p, TS)

update(p, sig (Zθ) B1 . . . Bn end)
= sig (Zθ) update(p,B1) . . . update(p,Bn) end

update(p, sig B1 . . . Bn end)
= sig update(p,B1) . . . update(p,Bn) end

update(p, functor(X : NS) → NS ′) = update(p(X), NS ′)

update(p, type t) = type t = p.t

update(p, datatype t = c of τ) = type t = p.t

update(p, module M : NS) = update(p.M,NS)

update(p, type t = τ) = type t = τ

update(p, val l : τ) = val l : τ

Figure 51: Manifestation of type specifications

reconstruction as defining an algorithm which takes ∆ and P as input then
either returns U when the search succeeds in building a derivation tree for
∆ ` P .U or else raises an error when the search fails. We prove termination
of the proof search in Proposition 20 below.

The reconstruction is mostly a straightforward composite of the module
path and the type expansions and the core type reconstruction except for the
rule (10), which reconstructs a lazy signature for a sealing construct. This
rule aside, the task of the reconstruction is summarized as follows.

• When a module expression is a module path, then the reconstruction
expands the path (in rule (11)).

• For a type definition or type specification, it expands all types contained
in the definition or specification (in rules (17), (18)).

• For a value specification, it expands the specified type (in rule (20)).

• For a value definition, it consults the core type reconstruction (in rule
(19)).
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Hence, the reconstruction fails when either the module path expansion,
the type expansion or the core type reconstruction fails.

Now we examine the rule (10) for a sealing construct. In the first premise
∆ ` TS : TS ′, the reconstruction infers the lazy signature TS ′ for the seal-
ing signature TS by expanding each type in TS into a located type. Before
inferring a lazy signature for the sealed module expression TE, the recon-
struction enriches the variable environment so as to recover type equality
between the sealing signature and the sealed module expression, by adding
type equality constraint to abstract type and datatype specifications in the
sealing signature.

The function manif in Figure 51 formalizes this manifestation operation.
It takes two arguments, a toplevel module description TK and a toplevel
signature TS, then returns a toplevel signature which is built from TS by
connecting every abstract type and datatype specification in TS to its cor-
respondence in TK. The functionality of manif is to find the module path
which resolves to the toplevel inside a sealing construct. Then a helper func-
tion update adds type equality constraint, traversing the constituents of the
sealing signature.

Definition 19 A program has located variables w.r.t. a variable environment
∆ if all the module paths appearing in P have located variables w.r.t. ∆.

Proposition 20 If a program P has located variables w.r.t. ∆P , proof search
for ∆P ` P . will terminate.

Proof. By induction on the structure of P . Termination of the function
update is easily proved by structural induction on the input. Then the claim
is an immediate consequence of termination of the module path expansion
(Proposition 15), the type expansion (Proposition 17) and the core type
reconstruction (Proposition 19). 2

In the rest of the thesis, we only consider module variable environments
having located variables and module paths having located variables w.r.t.
specified variable environments. Thanks to Proposition 16, there is no pos-
sibility of breaking this assumption through expansions.
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11 Type-correctness check

In this section, we present the latter part of the type system, namely the
type-correctness check part.

One of the main difficulties in type checking recursive modules is how
to reason about forward references. Usually, a type checker consults a type
environment for the necessary type information about paths. When paths
only contain backward references, it is sufficient to accumulate in the type
environment signatures of previously type checked modules. When modules
are defined recursively, however, paths may contain forward references. Then
the type checker may attempt to ask the type environment for a signature
of a module which is not yet type checked.

To circumvent difficulties arising from forward references, other existing
type systems rely on signature annotations from a programmer. As we exam-
ined in Section 1, this requirement can compel the programmer to write two
different signatures for the same module. Moreover, the programmer cannot
rely on type inference during development due to the requirement. This is
unfortunate since a lot of useful inference algorithms have been and will be
developed to support smooth development of programs.

We have a reconstruction algorithm, hence we do not need the assistance
of signature annotations. That is, we use the result of reconstruction as type
environment instead of using programmer-supplied annotations.

There are three tasks to be completed in this type-correctness check part.

1. To check type-correctness of core expressions. (Recall that the core type
reconstruction does not ensure type-correctness of expressions that it
reconstructs types for.)

2. To check well-formedness of module paths, that is, to check that functor
applications contained in the paths are type-correct and that the paths
do not contain cyclic or dangling references.

3. To check that, for every sealing construct (TE : TS), the module ex-
pression TE inhabits the signature TS.

11.1 Type equality

We define a type equivalence judgment in Figure 52, with auxiliary judg-
ments in Figure 53 and 54. The judgment ∆ ` τ1 ≡ τ2 means that the
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∆; ∅ ` τ1 ↓ τ ′
1 ∆; ∅ ` τ2 ↓ τ ′

2 ` τ ′
1 ≡τ τ ′

2

∆ ` τ1 ≡ τ2
(21)

Figure 52: Type equivalence

` 1 ≡τ 1
(22)

` τ1 ≡τ τ ′
1 ` τ2 ≡τ τ ′

2

` τ1 → τ2 ≡τ τ ′
1 → τ ′

2

(23)

` τ1 ≡τ τ ′
1 ` τ2 ≡τ τ ′

2

` τ1 ∗ τ2 ≡τ τ ′
1 ∗ τ ′

2

(24)
` p1 ≡p p2

` p1.t ≡τ p2.t
(25)

Figure 53: Equivalence on located types

two types τ1 and τ2 are equivalent w.r.t. the variable environment ∆. As in
Marguerite, the type system judges type equivalence by reducing types into
located ones. Figure 53 defines an equivalence judgment on located types
and Figure 54 does on module paths in located forms. Both judgments are
syntactic and straightforward. The rule (29) on self variables may appear
unfamiliar, however. Two self variables are equivalent if and only if 1) they
have the same name and 2) they are annotated with module variable bindings
which have the same domain and map each module variable in the domain
to equivalent module paths.

11.2 Typing rules

We present typing rules for type-correctness check of the module language
and of the core language in Figure 55 and 56, respectively. Auxiliary judg-
ments and functions are found in Figure 51 to 59.

The judgment ∆ ` E : T means that the module expression E of the lazy
signature T is type-correct w.r.t. the variable environment ∆. The judgment
∆; Γ ` e : τ means that the core expression e of the type τ is type-correct

` X ≡p X
(26)

` p1 ≡p p2

` p1.M ≡p p2.M
(27)

` p1 ≡p q1 ` p2 ≡p q2

` p1(p2) ≡p q1(q2)
(28)

dom(θ1) = dom(θ2) ∀X ∈ dom(θ1), ` θ1(X) ≡p θ2(X)

` Zθ1 ≡p Zθ2
(29)

Figure 54: Equivalence on module paths in located forms
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Module expressions

∆ ` D1 : C1 . . . ∆ ` Dn : Cn

∆ ` struct (Zθ) D1 . . . Dn end : sig (Zθ) C1 . . . Cn end
(30)

∆ ` D1 : C1 . . . ∆ ` Dn : Cn

∆ ` struct D1 . . . Dn end : sig C1 . . . Cn end
(31)

∆ ` NS : NS ′ ∆ ` NE : NT
∆ ` functor(X : NS) → NE : functor(X : NS ′) → NT

(32)

∆ ` TS : TS ′ manif (TT, TS) = TS2

∆(µTS2 , νε) ` TE : TT ∆(µTS2 , νε) ` TT < TS ′

∆ ` (TE : TS) : (TT : TS′)
(33)

∆ ` p wf ∆ ` p ; q

∆ ` p : q
(34)

Signatures

∆ ` B1 : B′
1 . . . ∆ ` Bn : B′

n

∆ ` sig (Zθ) B1 . . . Bn end : sig (Zθ) B′
1 . . . B′

n end
(35)

∆ ` B1 : B′
1 . . . ∆ ` Bn : B′

n

∆ ` sig B1 . . . Bn end : sig B′
1 . . . B′

n end
(36)

∆ ` NS1 : NS ′
1 ∆ ` NS2 : NS ′

2

∆ ` functor(X : NS1) → NS2 : functor(X : NS ′
1) → NS ′

2

(37)

Definitions and Specifications

∆ ` NE : NT
∆ ` module M = NE : module M : NT

(38)

∆; ∅ ` e : τ

∆ ` val l = e : val l : τ
(39)

∆ ` τ ¦ ∆; ∅ ` τ ↓ τ ′

∆ ` datatype t = c of τ : datatype t = c of τ ′ (40)

∆ ` τ ¦ ∆; ∅ ` τ ↓ τ ′

∆ ` type t = τ : type t = τ ′ (41)

∆ ` NS : NS ′

∆ ` module M : NS : module M : NS ′ (42)

∆ ` type t : type t
(43)

∆ ` τ ¦ ∆; ∅ ` τ ↓ τ ′

∆ ` val l : τ : val l : τ ′ (44)

Figure 55: Typing rules for the module language
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Core types

∆ ` 1 ¦ (45)
∆ ` τ1 ¦ ∆ ` τ2 ¦

∆ ` τ1 → τ2 ¦ (46)
∆ ` τ1 ¦ ∆ ` τ2 ¦

∆ ` τ1 ∗ τ2 ¦ (47)

∆ ` p wf ∆; ∅ ` p.t ↓ τ

∆ ` p.t ¦ (48)

Core expressions

∆; Γ ` () : 1
(49)

x ∈ dom(Γ)

∆; Γ ` x : Γ(x)
(50)

∆; Γ ` e1 : τ1 ∆; Γ ` e2 : τ2

∆; Γ ` (e1, e2) : τ1 ∗ τ2
(51)

∆; Γ ` e : τ1 ∗ τ2

∆; Γ ` πi(e) : τ1
(52)

∆ ` τ ¦ ∆; ∅ ` τ ↓ τ1 → τ2 ∆; Γ, x : τ1 ` e : τ3 ∆ ` τ2 ≡ τ3

∆; Γ ` (λx.e : τ) : τ1 → τ2
(53)

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ3 ∆ ` τ1 ≡ τ3

∆; Γ ` e1 (e2) : τ2
(54)

∆ ` p wf ∆ ` p ; p′ ∆ ` cnstrlkup(p′, c) = (t, τ1)
−−−−−−∆; Γ ` e : τ2 ∆ ` τ1 ≡ τ2−−−−−−

∆; Γ ` p.c e : p′.t
(55)

∆; Γ ` e1 : τ1 ∆ ` p wf ∆ ` p ; p′

∆ ` cnstrlkup(p′, c) = (t, τ2) ∆ ` τ1 ≡ p′.t ∆; Γ, x : τ2 ` e2 : τ

∆; Γ ` case e1 of p.c x ⇒ e2 : τ
(56)

∆ ` p wf ∆ ` p ; p′ ∆ ` p′.l 7→ (θ, val l : τ ′) ∆; ∅ ` θ(τ ′) ↓ τ

∆; Γ ` p.l : τ
(57)

Figure 56: Typing rules for the core language
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∆ ` TS < S
∆ ` (TT : TS) < S

(58)

∆ ` p ; p′ ∆ ` p′ 7→ (θ, T ) ∆ ` θ(T ) < S

∆ ` p < S
(59)

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, ∆ ` Cσ(i) < Bi

∆ ` sig [(Zθ1
1 )] C1 . . . Cn end < sig (Zθ2

2 ) B1 . . . Bm end
(60)

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, ∆ ` Cσ(i) < Bi

∆ ` sig [(Zθ1
1 )] C1 . . . Cn end < sig B1 . . . Bm end

(61)

∆ ` NS2 < [X1 7→ X2]NS1 ∆ ` [X1 7→ X2]T < S

∆ ` functor(X1 : NS1) → T < functor(X2 : NS2) → S
(62)

∆ ` type t < type t
(63)

∆ ` type t = τ < type t
(64)

∆ ` datatype t = c of τ < type t
(65)

∆ ` τ1 ≡ τ2

∆ ` type t = τ1 < type t = τ2
(66)

∆ ` τ1 ≡ τ2

∆ ` val l : τ1 < val l : τ2
(67)

∆ ` τ1 ≡ τ2

∆ ` datatype t = c of τ1 < datatype t = c of τ2
(68)

∆ ` T < S
∆ ` module M : T < module M : S

(69)

Figure 57: Subtyping

∆ = (µ, ν) X ∈ dom(ν)

∆ ` X wf
(70)

∆ = (µ, ν) Z ∈ dom(µ)

∆ ` Zθ wf
(71)

∆ ` p wf ∆ ` p.M ; q

∆ ` p.M wf
(72)

∆ ` p1 wf ∆ ` p2 wf
∆ ` p1 ; p′1 ∆ ` p2 ; p′2 ∆ ` p1(p2) ; q

∆ ` p′1 7→ (θ, functor (X : NS) → T ) ∆ ` p′2 . θ[X 7→ p′2](NS)

∆ ` p1(p2) wf
(73)

Figure 58: Well-formed module paths

102



∆; ∅ ` p.t ↓ τ

∆ ` p . type t

∆ ` p.t ≡ τ

∆ ` p . type t = τ

∆; ∅; ∅ ` p.l :: τ1 ∆ ` τ ≡ τ1

∆ ` p . val l : τ

∆ ` cnstrlkup(p, c) = (t, τ ′) ∆ ` τ ≡ τ ′

∆ ` p . datatype t = c of τ

Figure 59: Realization

under the type environment Γ w.r.t. ∆. Other judgments are read similarly.
Typing rules in Figure 55 and 56 are mostly straightforward and similar

to the typing rules in Marguerite, except that here they associate lazy module
types to typed objects. Observe that the type system enriches the variable
environment when checking type-correctness of a sealing construct (in the
rule (33)), in the same way as the reconstruction did.

In Figure 57, we define a subtyping judgment between lazy signatures and
signatures ((58) to (62)) and between lazy specifications and specifications
((63) to (69)). We write sig [(Zθ)] C1 . . . Cn end to denote sig (Zθ) C1 . . . Cn

end and sig C1 . . . Cn end together. The only interesting rule is (59), which
checks subtyping between a lazy path type and a signature. The rule instan-
tiates the lazy signature of the module that p refers to, by determining the
referred module with the module path expansion.

We define a well-formedness judgment for module paths in Figure 58 and
a realization judgment in Figure 59. Both judgments are same as those in
Marguerite. Note that the type system applies the rule (71) only to self
variables which carry identity module variable bindings.

Definition 20 A program P is well-typed if and only if ∆P ` P . U and
∆U ` P : U hold.

Finally, we prove in Proposition 21 that the type system is decidable.

Lemma 39 For any variable environment ∆, we have the following two re-
sults.

1. For any lazy signature T and signature S, it is decidable whether ∆ `
T < S holds or not.

2. For any lazy specification C and specification B, it is decidable whether
∆ ` C < B holds or not.

103



Proof. By simultaneous induction on the structures of S and B. Most cases
are straightforward. Yet, induction hypothesis does not immediately apply
to rules (59) and (58).
For the rule (58), TS is a structure type by syntactic convention. Hence only
applicable rules to the premise ∆ ` TS < S is either (60) or (61). Both rules
deconstruct S.
For the rule (59), since p′ is in located form w.r.t. ∆, θ(T ) is not a mod-
ule path. Hence applicable rules to the premise ∆ ` θ(T ) < S is among
(58), (60), (61) and (62). The last three rules deconstruct S. The first rule
eventually deconstructs S as examined above. 2

Proposition 21 (Decidability of the type system) For any program P ,
it is decidable whether P is well-typed or not.

Proof. In Proposition 20, we have already proved termination of the proof
search for ∆P ` P . . Hence it is sufficient to prove decidability of the
judgment ∆U ` P : U . Decidability of the realization judgment and the well-
formedness judgment follows from termination of the module path expansion
(Proposition 15), the type expansion (Proposition 17) and the core type
reconstruction (Proposition 19). Then the claim is proven by induction on
the structure of P using lemma 39. 2
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12 Soundness

In this section, we define a call-by-value operational semantics as small step
reductions of module paths and core expressions, then prove a soundness
result with respect to the reductions.

We define an erasure look-up judgment in Figure 60 with an auxiliary
function in Figure 61. During reductions we use this judgment in order to
look up concrete module expressions instead of sealing signatures. The judg-
ment ∆ ` p 7→er (θ,K) means that the module path p resolves to the module
description K when all sealings are erased w.r.t. the variable environment ∆,
where each module variable X is bound to θ(X). The judgment is supposed
to be used for module paths containing no module variables.

Correspondingly to the erasure look-up judgment, we introduce erasure
environments for mapping self variables to module expressions inside seal-
ing. The erasure environment of a module description K is a self variable
environment whose domain exactly contains all self variables declared in K
and which sends a name Z of a self variable to a pair (K ′, Λ) satisfying the
following three conditions:

1. When µK(Z) = (K ′′, Λ′), then Λ = Λ′.

2. When Z is declared in a toplevel structure in K, then K ′ is the toplevel
structure.

3. When Z is declared in a toplevel sealing signature in K, then K ′ is
the innermost module expression in the sealing construct. (Hence K ′

is not a sealing construct.)

In Figure 62, we define a small step normalization of module paths. The
judgment ∆ ` p → q means that the module path p reduces into the module
path q in one step w.r.t. the variable environment ∆. The normalization
traces module abbreviations in the intuitive way and expands module paths
in a lazy strategy in the sence that functor arguments are not reduced. Note
that in the context of Traviata well-typed programs may still contain cyclic
module abbreviations since signatures can hide these cycles, whereas in the
context of Marguerite they may not.

Values v and evaluation contexts L are:

v ::= () | (v1, v2) | p.c v | (λx.e : τ)
L ::= {} | (L, e) | (v, L) | πi(L) | L (e) | v (L)

| p.c L | case L of p.c x ⇒ e
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∆ = (µ, ν) µ(Z) = (K, Λ) dom(θ) = Λ

∆ ` Zθ 7→er (θ,K)

∆ ` p 7→er (θ, ss . . . module M = K . . . end)

∆ ` p.M 7→er (θ, erase(K))

∆ ` p1 7→er (θ, functor(X : NS) → K)

∆ ` p1(p2) 7→er (θ[X 7→ p2], erase(K))

Figure 60: Erasure look-up

erase((K : S)) = erase(K)

erase(K) = K when K 6= (K ′ : S)

Figure 61: Sealing erasure

where p does not contain module variables.
A small step reduction of core expressions is defined with respect to a

variable environment ∆, which is either:

∆ ` πi(v1, v2)
prj→ vi ∆ ` (λx.e : τ)(v)

fun→ [x 7→ v]e

∆ ` case p.c v of q.c x ⇒ e
case→ [x 7→ v]e

∆ ` p.l
mp→ p′.l when ∆ ` p → p′

∆ ` p.l
vpth→ θ(e) when ∆ ` p 7→er (θ, struct . . . val l = e . . . end)

or an inner reduction obtained by induction:

∆ ` e1 → e2 L 6= {}
∆ ` L{e1} → L{e2}

where write ∆ ` e → e′ when e reduces into e′ with one of the above four
reductions.

We assume that the outermost toplevel structure of a program P declares
a self variable named Z0 and that it contains a value component named main.
Evaluation of P begins by reducing the defining expression of main.

Proposition 22 (Soundness) Let a program P be well-typed and µ be the
erasure environment of P . Then the reduction of Z0.main w.r.t. (µ, νε) either
returns a value or else gives rise to an infinite reduction sequence.

We cannot state a subject reduction property in the context of Traviata.
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∆ ` p → p′

∆ ` p.M → p′.M

∆ ` p → p′

∆ ` p(q) → p′(q)

∆ ` p 7→er (θ, q)

∆ ` p → θ(q)

Figure 62: Small step normalization of module paths

For the decidability result, the type system of Traviata rejects cyclic type
abbreviations. for proving subject reduction, we want to establish a type
equivalence relation which can account for these cycles. In proof, we define
another type system, called TraviataX, which may not be decidable but can
handle cycles. We prove that TraviataX is sound for the operational seman-
tics of this section, by proving subject reduction and progress properties.
Then, we prove that if a program P is well-typed in Traviata, then so is in
TraviataX.

12.1 Proof of the soundness

As we did when proving the soundness result for Marguerite, below we use
judgments of the ground expansion, the type expansion and the core type
reconstruction that do not hold locks.

12.1.1 Results from Marguerite

Most lemmas we proved for the soundness result of Marguerite also hold in
the context of Traviata. In particular, lemmas listed below can be proven in
a similar way to in Marguerite.

Lemma 40 Let p be not a module variable. If ∆ ` p 7→ (θ1, K) and
MVars(p) ⊆ dom(θ), then ∆ ` θ(p) 7→ (θ◦θ1, K) with MVars(θ1) ⊆ dom(θ).

Lemma 41 Let p be in located form w.r.t. ∆. Then ∆ ` p ; p.

Lemma 42 Let τ be a located type w.r.t. ∆, then ∆; Πτ ` τ ↓ τ for any Πτ .

Definition 21 A variable environment ∆ = (µ, ν) is well-formed, written
∆ ` ∆ wf, if both the following conditions hold.

1. for all X in dom(ν), ∆ ` ν(X) : ν(X)

2. for all Z in dom(µ), when µ(Z) = (T, Λ) then ∆ ` T : T
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Lemma 43 Let p and θ be in located form w.r.t. ∆ and MVars(p) ⊆ dom(θ).
Then θ(p) is in located form w.r.t. ∆.

Lemma 44 Let p be in located form w.r.t. ∆. If ∆ ` p 7→ (θ,K), then θ is
in located form w.r.t. ∆.

Definition 22 A module variable binding θ is well-formed w.r.t. a variable
environment ∆, written ∆ ` θ wf, if, for all X in dom(θ), the following three
conditions hold.

• θ(X) is in located form w.r.t. ∆.

• ∆ ` θ(X) wf

• When ∆ ` X 7→ (θ′, sig B1 . . . Bn end) then ∀i ∈ {1, . . . , n},
MVars(Bi) ⊆ dom(θ) and ∆ ` θ(X) . θ(Bi). (Note that by definition
of the look-up, θ′ = ε.)

Lemma 45 If MVars(p) ⊆ dom(θ) and ∆ ` p wf and ∆ ` θ wf, then
∆ ` θ(p) wf.

Lemma 46 If ∆ ` ∆ wf and ∆ ` p wf and ∆ ` p ; q, then ∆ ` q wf.

Lemma 47 If MVars(τ) ⊆ dom(θ) and ∆ ` θ wf and ∆ ` τ ¦, then ∆ `
θ(τ) ¦.

Lemma 48 If ∆ ` ∆ wf and ∆ ` τ ¦ and ∆ ` τ ↓ τ ′, then ∆ ` τ ′ ¦.

We say that a type environment Γ is in located form w.r.t. a variable
environment ∆ if and only if, for all x in dom(Γ), Γ(x) is a located type
w.r.t. ∆. We also say that a type environment Γ is well-formed w.r.t. ∆,
written ∆ ` Γ wf, if and only if Γ is in located form w.r.t. ∆, and, for all x
in dom(Γ), ∆ ` Γ(x) ¦.

Lemma 49 Suppose ∆ ` ∆ wf and ∆ ` θ wf and ∆ ` Γ wf and MVars(Γ)∪
MVars(e) ⊆ dom(θ). Suppose also that Γ1 is in located form w.r.t. ∆ and
satisfies two conditions: 1) dom(Γ) = dom(Γ1) and 2) for all x in dom(Γ),
∆ ` θ(Γ(x)) ≡ Γ1(x). If ∆; Γ ` e : τ , then ∆; Γ1 ` θ(e) : τ ′ for some τ ′ with
∆ ` τ ′ ≡ θ(τ) and MVars(τ) ⊆ dom(θ).
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∆ ` X ;n X ∆ ` Zθ ;n Zθ

∆ ` p ;n p′ ∆ ` p′.M 7→ (θ, ss (Zθ′) . . . end)

∆ ` p.M ;n θ(Zθ′)

∆ ` p ;n p′ ∆ ` p′.M 7→ (θ,K) K 6= q K 6= O

∆ ` p.M ;n p′.M

∆ ` p ;n p′ ∆ ` p′.M 7→ (θ, q) ∆ ` θ(q) ;n r

∆ ` p.M ;n r

∆ ` p1 ;n p′1 ∆ ` p2 ;n p′2 ∆ ` p′1(p
′
2) 7→ (θ, ss (Zθ′) . . . end)

∆ ` p1(p2) ;n θ(Zθ′)

∆ ` p1 ;n p′1 ∆ ` p2 ;n p′2 ∆ ` p′1(p
′
2) 7→ (θ,K) K 6= q K 6= O

∆ ` p1(p2) ;n p′1(p
′
2)

∆ ` p1 ;n p′1 ∆ ` p2 ;n p′2 ∆ ` p′1(p
′
2) 7→ (θ, q) ∆ ` θ(q) ;n r

∆ ` p1(p2) ;n r

Figure 63: Normalization of module paths in Traviata

To prove that the module path expansion coincides with the intuitive
normalization for well-formed module paths, we need adapt the normaliza-
tion of Marguerite to perform path compression. In Figure 63, we define
normalization of module paths for Traviata.

Lemma 50 Suppose ∆ has located variables and so does p w.r.t. ∆. When
∆ ` p wf, then ∆ ` p ; q if and only if ∆ ` p ;n q.

12.1.2 Type system TraviataX

TraviataX only provides a type-correctness check part, but not a reconstruc-
tion part. Given a program P , its expected lazy program type U and a
variable environment ∆, it checks that U is a correct type of P w.r.t. ∆.

Here are two notable differences between Traviata and TraviataX.

1. The type equivalence relation in TraviataX is defined by confluence
of types with respect to a rewriting relation on types. In this way,
TraviataX handles cyclic type abbreviations.
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∆ ` τ1 → τ ′
1

∆ ` τ1 → τ2 → τ ′
1 → τ2

∆ ` τ2 → τ ′
2

∆ ` τ1 → τ2 → τ1 → τ ′
2

∆ ` τ1 → τ ′
1

∆ ` τ1 ∗ τ2 → τ ′
1 ∗ τ2

∆ ` τ2 → τ ′
2

∆ ` τ1 ∗ τ2 → τ1 ∗ τ ′
2

∆ ` p.t 7→ (θ, type t = τ)

∆ ` p.t → θ(τ)

∆ ` p.t 7→ (θ, datatype t = p1.t1 = c of τ)

∆ ` p.t → θ(p1.t1)

Figure 64: A small step reduction of types

2. TraviataX does not enrich the variable environment when type check-
ing a sealing construct like Traviata does. Instead we provide Travi-
ataX a variable environment which already contains type equality con-
straint between sealing signatures and corresponding sealed module
expressions, by performing the manifestation operation that the func-
tion manif (Figure 51) does beforehand. This is further explained in
Section 12.1.3.

Variable environments that TraviataX uses may contain manifest datatype
specifications of the form “datatype t = p1.t1 = c of τ”. We extend the
range of the metavariable C to contain manifest datatype specifications and
write “datatype t [= p1.t1] = c of τ” to denote datatype t = c of τ and
datatype t = p1.t1 = c of τ together. We assume that manifest datatype
specifications do not appear in signatures of module variables, precisely, for
any variable environment ∆, when ∆ ` X 7→ (θ, sig B1 . . . Bn end) or ∆ `
p 7→ (θ, functor(X : sig B1 . . . Bn end) → K), then any Bi is not a
manifest datatype specification.

Type equality We define a small step reduction relation on types in
Figure 64. The judgment ∆ ` τ → τ ′ states that the type τ reduces
into the type τ ′ in one step w.r.t. the variable environment ∆. The no-
tation ∆ ` τ ⇒ τ ′ means that there is a sequence of zero or more re-
ductions from τ to τ ′. Formally, ∆ ` τ ⇒ τ ′ holds if and only if either
τ = τ ′ or else there are types τ0 = τ, τ1, . . . , τn = τ ′ with n ≥ 1 such that
∆ ` τ0 → τ1, ∆ ` τ1 → τ2, . . . , ∆ ` τn−1 → τn. We also call n the length of
the reductions
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A type equivalence relation in TraviataX is defined as confluence with
respect to this reduction relation.

Definition 23 Two types τ1 and τ2 are equivalent w.r.t. a variable environ-
ment ∆, written ∆ `X τ1 ≡ τ2, if there is τ3 such that ∆ ` τ1 ⇒ τ3 and
∆ ` τ2 ⇒ τ3.

Corollary 4 below states that the type equivalence relation is transitive.

Lemma 51 If ∆ ` τ1 ⇒ τ2 and ∆ ` τ1 ⇒ τ3, then ∆ ` τ2 ⇒ τ4 and
∆ ` τ3 ⇒ τ4 for some τ4.

Proof. It is easy to observe that if ∆ ` τ1 → τ2 and ∆ ` τ1 → τ3, then
either τ2 = τ3 or there is τ4 such that ∆ ` τ2 → τ4 and ∆ ` τ3 → τ4. Hence
the reflexive closure of this reduction relation on types satisfies the diamond
property, from which the claim follows. 2

Corollary 4 If ∆ `X τ1 ≡ τ2 and ∆ `X τ2 ≡ τ3, then ∆ `X τ2 ≡ τ3.

Typing rules We present TraviataX’s typing rules for type-correctness
check of the module and of the core languages in Figure 65 and 66, respec-
tively. Auxiliary judgments are found in Figure 68 to 71, where we define
∆ `X θ wf below. The subscript X is used to distinguish judgments in
TraviataX from those in Traviata.

Definition 24 A module variable binding θ is well-formed in TraviataX
w.r.t. a variable environment ∆, written ∆ `X θ wf, if, for all X in dom(θ),
the following two conditions hold.

• ∆ `X θ(X) wf

• When ∆ ` X 7→ (θ′, sig B1 . . . Bn end), then, for all i in 1, . . . , n,
MVars(Bi) ⊆ dom(θ) and ∆ `X θ(X) . θ(Bi).

Most rules in figures are similar to those in Traviata. We use the rule (82)
for type checking manifest datatype specifications to state well-formedness of
variable environments (Definition 28). As we indicated above, TraviataX does
not enrich the variable environment when type checking a sealing construct
(rule (77)).
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Module expressions

∆ `X D1 : C1 . . . ∆ `X Dn : Cn

∆ `X struct (Zθ) D1 . . . Dn end : sig (Zθ) C1 . . . Cn end
(74)

∆ `X D1 : C1 . . . ∆ `X Dn : Cn

∆ `X struct D1 . . . Dn end : sig C1 . . . Cn end
(75)

∆ `X NS : NS ′ ∆ `X E : T

∆ `X functor(X : NS) → E : functor(X : NS ′) → T
(76)

∆ `X E : T ∆ `X S : S ′

∆ `X T < S ′

∆ `X (E : S) : (T : S ′)
(77)

∆ `X p wf

∆ `X p : p
(78)

Definitions and Specifications

∆ `X E : T
∆ `X module M = E : module M : T

(79)

∆ `X S : S ′

∆ `X module M : S : module M : S ′ (80)

∆ `X τ ¦
∆ `X datatype t = c of τ : datatype t = c of τ

(81)

∆ `X p1 wf ∆ `X τ ¦
∆ `X cnstrlkup(p1, c) = (t1, τ

′) ∆ `X τ ≡ τ ′

∆ `X datatype t = p1.t1 = c of τ : datatype t = p1.t1 = c of τ
(82)

∆ `X τ ¦
∆ `X type t = τ : type t = τ

(83)
∆ `X type t : type t

(84)

∆; ∅ `X e : τ

∆ `X val l = e : val l : τ
(85)

∆ `X τ ¦
∆ `X val l : τ : val l : τ

(86)

Signatures

∆ `X B1 : B′
1 . . . ∆ `X Bn : B′

n

∆ `X sig (Zθ) B1 . . . Bn end : sig (Zθ) B′
1 . . . B′

n end
(87)

∆ `X B1 : B′
1 . . . ∆ `X Bn : B′

n

∆ `X sig B1 . . . Bn end : sig B′
1 . . . B′

n end
(88)

∆ `X NS : NS ′ ∆ `X S : S ′

∆ `X functor(NX : S) → S : functor(X : NS ′) → S ′ (89)

Figure 65: Typing rules for the module language in TraviataX
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Core types

∆ `X 1 ¦ (90)

∆ `X τ1 ¦ ∆ `X τ2 ¦
∆ `X τ1 → τ2 ¦ (91)

∆ `X τ1 ¦ ∆ `X τ2 ¦
∆ `X τ1 ∗ τ2 ¦ (92)

∆ `X p wf ∆ ` p.t 7→ (θ, C)

∆ `X p.t ¦ (93)

Core expressions

∆; Γ `X e : τ ′ ∆ `X τ ≡ τ ′ ∆ `X τ ¦
∆; Γ `X e : τ

(94)

∆; Γ `X () : 1
(95)

x ∈ dom(Γ)

∆; Γ `X x : Γ(x)
(96)

∆; Γ `X e1 : τ1 ∆; Γ `X e2 : τ2

∆; Γ `X (e1, e2) : τ1 ∗ τ2
(97)

∆; Γ `X e : τ1 ∗ τ2

∆; Γ `X πi(e) : τ1
(98)

∆ `X τ ¦ ∆ `X τ ≡ τ1 → τ2

∆ `X τ1 → τ2 ¦ ∆; Γ, x : τ1 `X e : τ2

∆; Γ ` (λx.e : τ) : τ
(99)

∆; Γ `X e1 : τ ′ → τ ∆; Γ `X e2 : τ ′

∆; Γ `X e1 (e2) : τ
(100)

∆ `X p wf ∆ `X cnstrlkup(p, c) = (t, τ1) ∆; Γ `X e : τ1

∆; Γ `X p.c e : p.t
(101)

∆ `X p wf ∆; Γ `X e1 : p.t
∆ `X cnstrlkup(p, c) = (t, τ2) ∆; Γ, x : τ2 `X e2 : τ

∆; Γ `X case e1 of p.c x ⇒ e2 : τ
(102)

∆ `X p wf ∆ ` p.l 7→ (θ, val l : τ)

∆; Γ `X p.l : θ(τ)
(103)

Figure 66: Typing rules for the core language in TraviataX

p is in located form w.r.t. ∆

∆ ` p lctd

Figure 67: Located form judgment
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∆ `X cnstrlkup(p, c) = (t, θ(τ)) when
∆ ` p 7→ (θ, ss . . . datatype t [= p1.t1] = c of τ . . . end)

Figure 68: Datatype look-up in TraviataX

∆ `X S < S ′

∆ `X (T : S) < S ′ (104)

∆ `X NS ′ < [X 7→ X ′]NS ∆ `X [X 7→ X ′]T < S

∆ `X functor(X : NS) → T < functor(X ′ : NS ′) → S
(105)

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, ∆ `X Cσ(i) < Bi

∆ `X sig [(Zθ1
1 )] C1 . . . Cn end < sig (Zθ2

2 ) B1 . . . Bm end
(106)

σ : {1, . . . ,m} 7→ {1, . . . , n} ∀i ∈ {1, . . . ,m}, ∆ `X Cσ(i) < Bi

∆ `X sig [(Zθ1
1 )] C1 . . . Cn end < sig B1 . . . Bm end

(107)

∆ `X type t < type t
(108)

∆ `X type t = τ < type t
(109)

∆ `X type t = c of τ < type t
(110)

∆ `X τ1 ≡ τ2

∆ `X type t = τ1 < type t = τ2
(111)

∆ `X τ1 ≡ τ2

∆ `X datatype t = c of τ1 < datatype t = c of τ2
(112)

∆ `X τ1 ≡ τ2

∆ `X val l : τ1 < val l : τ2
(113)

∆ `X T < S
∆ `X module M : T < module M : S

(114)

Figure 69: Subtyping in TraviataX
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∆ = (µ, ν) X ∈ dom(ν)

∆ `X X wf
(115)

∆ = (µ, ν) Z ∈ dom(µ) ∆ `X θ wf

∆ `X Zθ wf
(116)

∆ `X p wf ∆ ` p.M lctd

∆ `X p.M wf
(117)

∆ ` p1(p2) lctd ∆ `X p1 wf ∆ `X p2 wf
∆ ` p1 7→ (θ, functor (X : sig B1 . . . Bn end) → T )
−−−∀i ∈ {1, . . . , n}, ∆ `X p2 . θ[X 7→ p2](Bi)−−−

∆ `X p1(p2) wf
(118)

Figure 70: Well-formed module paths in TraviataX

∆ ` p.t 7→ (θ, C)

∆ `X p . type t

∆ `X p.t ≡ τ

∆ `X p . type t = τ

∆; ∅ `X p.l : τ

∆ `X p . val l : τ

∆ `X cnstrlkup(p, c) = (t, τ ′) ∆ `X τ ≡ τ ′

∆ `X p . datatype t = c of τ

Figure 71: Realization in TraviataX

Figure 67 defines a located form judgment, which Traviata does not use.
TraviataX requires well-typed programs only contain module paths in located
form. Note also that it does not instantiate lazy path types during subtyping
checking (Figure 69). This implies that module abbreviations are appropri-
ately inline expanded according to sealing signatures in well-typed programs.
(We explain this further in Section 12.1.3.) These two requirements make
soundness proof simpler, since evaluation of well-typed programs does not
trace module abbreviations, hence we need not consider the reduction

mp→.
We introduce a sanity condition which ensures consistency between lazy

program types and variable environments.

Definition 25 A lazy program type U conforms with a variable environment
∆ if, for any value path p.l, if ∆ ` p.l 7→ (θ, C) then ∆U ` p.l 7→ (θ, C).

Definition 26 Let a lazy program type U conform with a variable environ-
ment ∆. Then U is a correct-type of a program P w.r.t. ∆ in TraviataX if
∆ `X P : U holds.

Soundness We establish a soundness result for TraviataX by proving a
subject reduction property (in Proposition 24) and a progress property (in
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Proposition 23).
Firstly, we prove in Lemma 54 that well-formed module variable bindings

preserve type equality.

Lemma 52 Suppose ∆ `X θ wf and MVars(τ1) ⊆ dom(θ). If ∆ ` τ1 → τ2

then then MVars(τ2) ⊆ dom(θ) and ∆ `X θ(τ1) ≡ θ(τ2).

Proof. By induction on the derivation of ∆ ` τ1 → τ2 and by case on the last
rule used. We show the main case where τ1 = p.t and ∆ ` p.t 7→ (θ1, type t =
τ3).

1. When p is not a module variable. Then by Lemma 40, ∆ ` θ(p).t 7→
(θ ◦ θ1, type t = τ3) and MVars(θ1) ⊆ dom(θ). We deduce ∆ `
θ(p).t → θ ◦ θ1(τ3). Hence ∆ `X θ(p).t ≡ θ ◦ θ1(τ3). Since ∆ does
not contain free module variables, MVars(τ3) ⊆ dom(θ1). Thus we
have MVars(θ1(τ3)) ⊆ dom(θ).

2. When p = X. Then θ1 = ε and τ2 = τ3. The claim follows from
well-formedness of θ.

2

Lemma 53 Suppose ∆ `X θ wf and MVars(τ1) ⊆ dom(θ). If ∆ ` τ1 ⇒ τ2

then MVars(τ2) ⊆ dom(θ) and ∆ `X θ(τ1) ≡ θ(τ2).

Proof. By induction on the length of ∆ ` τ1 ⇒ τ2.

1. When τ1 = τ2. We immediately have the claim.

2. When ∆ ` τ1 ⇒ τ3 and ∆ ` τ3 → τ2. By induction hypothe-
sis, MVars(τ3) ⊆ dom(θ) and ∆ `X θ(τ1) ≡ θ(τ3). By Lemma 52,
MVars(τ2) ⊆ dom(θ) and ∆ `X θ(τ3) ≡ θ(τ2). By Corollary 4,
∆ `X θ(τ1) ≡ θ(τ2).

2

Lemma 54 Suppose ∆ `X θ wf and MVars(τ1) ∪ MVars(τ2) ⊆ dom(θ). If
∆ `X τ1 ≡ τ2, then ∆ `X θ(τ1) ≡ θ(τ2).
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Proof. By definition, there is τ3 such that ∆ ` τ1 ⇒ τ3 and ∆ ` τ2 ⇒ τ3.
By Lemma 53, we have ∆ `X θ(τ1) ≡ θ(τ3) and ∆ `X θ(τ2) ≡ θ(τ3). By
Corollary 4, ∆ `X θ(τ1) ≡ θ(τ2). 2

Using Lemma 54, we prove that well-formed module variable bindings
preserve well-typedness of module paths (in Lemma 60), types (in Lemma 61)
and core expressions (in Lemma 69). This is a similar path we followed when
proving the subject reduction property in Marguerite.

Lemma 55 If ∆; Γ `X e : τ1 and ∆; Γ `X e : τ2, then ∆ `X τ1 ≡ τ2

Proof. By induction on the derivations of ∆; Γ `X e : τ1 and ∆; Γ `X e : τ2.
2

Lemma 56 Suppose ∆ `X θ wf and MVars(p) ⊆ dom(θ). If ∆ ` p.t 7→
(θ1, C1) then ∆ ` θ(p).t 7→ (θ2, C2).

Proof. When p is not a module variable, then we have ∆ ` θ(p).t 7→ (θ◦θ1, C1)
by Lemma 40. When p = X, then we have the claim by well-formedness of
θ. 2

Lemma 57 Suppose ∆ `X θ wf and MVars(p) ⊆ dom(θ).
If ∆ `X cnstrlkup(p, c) = (t, τ), then ∆ `X cnstrlkup(θ(p), c) = (t, τ1) with
MVars(τ) ⊆ dom(θ) and ∆ `X θ(τ) ≡ τ1.

Proof. Analogous to Lemma 56. 2

Lemma 58 Suppose ∆ ` p lctd and ∆ `X θ wf and MVars(p) ⊆ dom(θ).
If ∆; ∅ `X p.l : τ , then there is τ ′ such that ∆ `X τ ≡ τ ′ and MVars(τ ′) ⊆
dom(θ) and ∆; ∅ `X θ(p).l : θ(τ ′).

Proof. By ∆; ∅ `X p.l : τ in the hypothesis and Lemma 55, we have ∆ `
p.l 7→ (θ1, val l : τ1) and ∆ `X θ1(τ1) ≡ τ . We have two cases to consider.

1. When p is not a module variable. By Lemma 40, ∆ ` θ(p).l 7→ (θ ◦
θ1, val l : τ1) with MVars(θ1) ⊆ dom(θ), hence ∆; ∅ `X θ(p).l : θ ◦
θ1(τ1). By the absence of free module variables in ∆ and MVars(θ1) ⊆
dom(θ), MVars(θ1(τ1)) ⊆ dom(θ).

2. When p = X. Then θ1 = ε and we have the claim by the well-
formedness of θ.

117



2

Lemma 59 Suppose ∆ ` p lctd and ∆ `X θ wf and MVars(p)∪MVars(B) ⊆
dom(θ). If ∆ `X p . B, then ∆ `X θ(p) . θ(B).

Proof. By case on B.

1. Suppose B = val l : τ . By hypothesis, ∆; Γ `X p.l : τ . By Lemma 58,
there is τ ′ such that ∆ `X τ ≡ τ ′ and MVars(τ ′) ⊆ dom(θ) and
∆; Γ `X θ(p).l : θ(τ ′). By Lemma 54, ∆ `X θ(τ) ≡ θ(τ ′), which
concludes ∆ `X θ(p) . val l : θ(τ).

2. Suppose B = type t. By hypothesis, ∆ ` p.t 7→ (θ1, C). By Lemma 56,
∆ ` θ(p).t 7→ (θ2, C2).

3. When B = type t = τ . By hypothesis, ∆ `X p.t ≡ τ . By Lemma 54,
∆ `X θ(p.t) ≡ θ(τ), which concludes ∆ `X θ(p) . type t = θ(τ).

4. When B = datatype t = c of τ . By hypothesis, ∆ `X cnstrlkup(p, c) =
(t, τ ′) with ∆ `X τ ≡ τ ′. By Lemma 57, ∆ `X cnstrlkup(θ(p), c) =
(t, τ2) with MVars(τ ′) ⊆ dom(θ) and ∆ `X θ(τ ′) ≡ τ2. By Lemma 54
∆ `X θ(τ) ≡ τ ′. By Corollary 4, ∆ `X θ(τ) ≡ τ2, from which the claim
follows.

2

Lemma 60 Suppose ∆ `X θ wf and MVars(p) ⊆ dom(θ). If ∆ `X p wf,
then ∆ `X θ(p) wf.

Proof. By induction on the derivation of ∆ `X p wf and by case on the last
rule used. We show the main case where p = p1(p2).
By ∆ `X p1(p2) wf in the hypothesis, we have ∆ `X p1 wf and ∆ `X p2 wf
and ∆ ` p1 7→ (θ1, functor(X : sig B1 . . . Bn end) → K) and, for all
i in 1, . . . , n, ∆ `X p2 . θ1[X 7→ p2](Bi). Since ∆ does not contain free
module variables, MVars(Bi) ⊆ dom(θ1) ∪ {X}. By induction hypothesis,
∆ `X θ(p1) wf and ∆ `X θ(p2) wf. Due to the first-order structure re-
striction, p1 cannot be a module variable. By Lemma 40, ∆ ` θ(p1) 7→
(θ ◦ θ1, functor(X : sig B1 . . . Bn end) → K) and MVars(θ1) ⊆ dom(θ).
For any i in 1, . . . , n, MVars(θ1[X 7→ p2](Bi)) ⊆ dom(θ), by MVars(θ1) ⊆
dom(θ), MVars(p2) ⊆ dom(θ), and MVars(Bi) ⊆ dom(θ1) ∪ {X}. By
Lemma 59, we conclude ∆ `X θ(p2) . (θ ◦ θ1)[X 7→ θ(p2)](Bi) for all i in
1, . . . , n. 2
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Lemma 61 Suppose ∆ `X θ wf and MVars(τ) ⊆ dom(θ). If ∆ `X τ ¦,
then ∆ `X θ(τ) ¦.

Proof. By induction on the derivation of ∆ `X τ ¦ and by case on the last
rule used. We show the main case where τ = p.t. By hypothesis, we have
∆ `X p wf and ∆ ` p.t 7→ (θ′, C). We have ∆ `X θ(p) wf by Lemma 60,
and ∆ ` θ(p).t 7→ (θ′′, C ′) by Lemma 56. 2

Definition 27 A type environment Γ is well-formed w.r.t. a variable envi-
ronment ∆, written ∆ `X Γ wf, if, for all x in dom(Γ), ∆ `X Γ(x) ¦.

Lemma 62 Suppose ∆ ` Γ1 wf and ∆ ` Γ2 wf and dom(Γ1) = dom(Γ2)
and, for all x in dom(Γ1), ∆ `X Γ1(x) ≡ Γ2(x). If ∆; Γ1 `X e : τ , then
∆; Γ2 `X e : τ .

Proof. By induction on the derivation of ∆; Γ1 `X e : τ and by case on
the last rule used. The main case is where e = x and ∆; Γ1 `X e : τ
is deduced from Γ1(x) = τ (rule (96)). By dom(Γ1) = dom(Γ2) in the
hypothesis, ∆; Γ2 `X e : Γ2(x). By ∆ `X Γ1(x) ≡ Γ2(x) and ∆ ` Γ1 wf in
the hypothesis, we deduce ∆; Γ2 `X e : τ . 2

Definition 28 A variable environment ∆ = (ν, µ) is well-formed, written
∆ ` ∆ wf, if the following two conditions hold.

1. For all X in dom(ν), ∆ `X ν(X) : ν(X).

2. For all Z in dom(µ), let µ(Z) = (T, Λ). There is a derivation for
∆ `X T : T , where we replace the typing rule (77) in Figure 65 with
the following rule by removing subtyping checking.

∆ `X K : T ∆ `X S : S ′

∆ `X (K : S) : (T : S ′)

Lemma 63 Suppose ∆ `X ∆ wf and ∆ `X p1 wf and ∆ ` p1.t → τ , then
∆ `X τ ¦.

Proof. By ∆ ` p1.t → τ , we have τ = θ(τ ′) with either ∆ ` p1.t 7→
(θ, type t = τ ′) or ∆ ` p1.t 7→ (θ, datatype t = τ ′ = c of τ ′′). By ∆ `X

∆ wf, ∆ `X τ ′ ¦. Since ∆ `X p1 wf, we have ∆ `X θ wf. When p1 is a
module variable then θ = ε and τ = τ ′. Suppose p1 is not a module variable.
Since ∆ does not contain free module variables, MVars(τ ′) ⊆ dom(θ). By
Lemma 61, ∆ `X θ(τ ′) ¦. 2
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Lemma 64 Suppose ∆ `X ∆ wf and ∆ `X τ ¦ and ∆ ` τ → τ ′, then
∆ `X τ ′ ¦.

Proof. By induction on the derivation of ∆ ` τ → τ ′. Use Lemma 63 for the
case where τ is a type path. 2

Corollary 5 Suppose ∆ `X ∆ wf and ∆ `X τ ¦ and ∆ ` τ ⇒ τ ′, then
∆ `X τ ′ ¦.

Lemma 65 Suppose ∆ `X ∆ wf and ∆ `X p1 wf and ∆ ` p1.t1 → τ
and ∆ `X cnstrlkup(p1, c) = (t1, τ1), then τ = p2.t2 and ∆ `X p2.t2 ¦ and
∆ `X cnstrlkup(p2, c) = (t2, τ2) with ∆ `X τ1 ≡ τ2.

Proof. By Corollary 5, ∆ `X τ ¦. By ∆ `X ∆ wf and ∆ `X cnstrlkup(p1, c) =
(t, τ1) and ∆ ` p1.t → τ , we have ∆ ` p1.t 7→ (θ1, datatype t = p3.t3 =
c of τ3) and τ = θ(p3.t3) and τ1 = θ1(τ3). By ∆ `X ∆ wf, ∆ ` p3.t3 7→
(θ2, datatype t3 = p4.t4 = c of τ4) with ∆ `X τ3 ≡ θ2(τ4). When p1 is a mod-
ule variable, then we immediately have the claim. Suppose p1 is not a mod-
ule variable. Since ∆ does not contain free module variables, MVars(p3) ∪
MVars(τ3) ⊆ dom(θ1). By ∆ `X p1 wf, ∆ `X θ1 wf. By Lemma 57,
∆ `X cnstrlkup(θ1(p3), c) = (t3, τ5) with MVars(θ2(τ4)) ⊆ dom(θ1) and
∆ `X τ5 ≡ θ1(θ2(τ4)). By Corollary 4 and Lemma 54, ∆ `X τ5 ≡ τ1.
2

Corollary 6 Suppose ∆ `X ∆ wf and ∆ `X p1 wf and ∆ `X cnstrlkup(p1, c) =
(t1, τ1) and ∆ ` p1.t1 ⇒ τ , then τ = p2.t2 and ∆ `X p2.t2 ¦ and ∆ `X

cnstrlkup(p2, c) = (t2, τ2) with ∆ `X τ1 ≡ τ2.

Lemma 66 Suppose ∆ `X ∆ wf and ∆ `X p wf and ∆ `X cnstrlkup(p, c) =
(t, τ), then ∆ `X τ ¦.

Proof. ∆ `X cnstrlkup(p, c) = (t, τ) implies ∆ ` p.t 7→ (θ, datatype t [=
p1.t1] = τ ′) and τ = θ(τ ′). When p is a module variable, then the claim
follows immediately from ∆ `X ∆ wf. When p not a module variable, then,
since ∆ `X θ wf, the claim follows from ∆ `X ∆ wf and Lemma 61. 2

Lemma 67 Suppose ∆ `X ∆ wf and ∆ `X Γ wf and ∆; Γ `X e : τ , then
∆ `X τ ¦.

120



Proof. By induction on the derivation of ∆; Γ `X e : τ and by case on the
last rule used. 2

Lemma 68 If ∆; Γ `X e : τ and x is not in dom(Γ), then ∆; Γ, x : τ ′ `X e :
τ .

Proof. By induction on the derivation of ∆; Γ `X e : τ and by case on the
last rule used. 2

Lemma 69 Suppose ∆ `X ∆ wf and ∆ `X Γ wf and ∆ `X Γ1 wf and
∆ `X θ wf and MVars(e) ⊆ dom(θ). Suppose also that dom(Γ) = dom(Γ1)
and, for all x in dom(Γ), there is τ such that ∆ `X Γ(x) ≡ τ and MVars(τ) ⊆
dom(θ) and ∆ `X θ(τ) ≡ Γ1(x). If ∆; Γ `X e : τ , then there is τ ′ such that
∆ `X τ ≡ τ ′ and MVars(τ ′) ⊆ dom(θ) and ∆; Γ1 `X θ(e) : θ(τ ′).

Proof. By induction on the derivation of ∆; Γ `X e : τ and by case on the
last rule used. We show the main cases.
rule (94) Suppose ∆; Γ `X e : τ1 and ∆ `X τ ≡ τ1 and ∆ `X τ ¦. By
induction hypothesis, there is τ2 such that ∆ `X τ1 ≡ τ2 and MVars(τ2) ⊆
dom(θ) and ∆; Γ1 `X θ(e) : θ(τ2). By transitivity of the type equivalence
(Corollary 4), ∆ `X τ ≡ τ2.
rule (99) Suppose e = (λx.e1 : τ) and ∆ `X τ ¦ and ∆ `X τ ≡ τ1 → τ2 and
∆ `X τ1 → τ2 ¦ and ∆; Γ, x : τ1 `X e1 : τ2. By Lemma 61, ∆ `X θ(τ) ¦.
By ∆ `X τ ≡ τ1 → τ2, there is τ3 and τ4 such that ∆ ` τ ⇒ τ3 → τ4 and
∆ ` τ1 ⇒ τ3 and ∆ ` τ2 ⇒ τ4. By Lemma 53, ∆ `X θ(τ) ≡ θ(τ3 → τ4)
with MVars(τ3) ∪ MVars(τ4) ⊆ dom(θ). By Corollary 5 and Lemma 61,
∆ `X θ(τ3) ¦. Since ∆ `X τ1 ≡ τ3, by induction hypothesis, there is τ5

such that ∆ `X τ2 ≡ τ5 and MVars(τ5) ⊆ dom(θ) and ∆; Γ1, x : θ(τ3) `X

θ(e1) : θ(τ5). By Corollary 4 and Lemma 54, ∆ `X θ(τ5) ≡ θ(τ4). By
Corollary 5 and Lemma 61, ∆ `X θ(τ4) ¦, by which and the rule (94) we
deduce ∆; Γ1 `X θ(λx.e1 : τ) : θ(τ).
rule (101) Suppose e = p.c e1 and ∆ `X p wf and ∆ `X cnstrlkup(p, c) =
(t, τ1) and ∆; Γ `X e1 : τ1 and τ = p.t. We have ∆ `X θ(p) wf by Lemma 60,
and ∆ `X cnstrlkup(θ(p), c) = (t, τ3) with MVars(τ1) ⊆ dom(θ) and ∆ `X

θ(τ1) ≡ τ3 by Lemma 57. By induction hypothesis, there is τ4 such that
∆ `X τ2 ≡ τ4 and MVars(τ4) ⊆ dom(θ) and ∆; Γ1 `X θ(e1) : θ(τ4). By
Corollary 4 and Lemma 54 and 66 and the rule (94), ∆; Γ1 `X θ(e1) : τ3,
with which we deduce ∆; Γ1 `X θ(p.c e1) : θ(p).t
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∆ ` p 7→er (θ, ss . . . val l : τ . . . end)

∆ ` p.l 7→er (θ, val l : τ)

∆ ` p 7→er (θ, ss . . . val l = e . . . end)

∆ ` p.l 7→er (θ, val l = e)

Figure 72: Erasure look-up for value paths

rule (102) Suppose e = case e1 of p.c x ⇒ e2 and ∆ `X p wf and
∆; Γ `X e1 : p.t and ∆ `X cnstrlkup(p, c) = (t, τ2) and ∆; Γ, x : τ2 `X e2 : τ .
We have ∆ `X θ(p) wf by Lemma 60. By induction hypothesis, there is τ3

such that ∆ `X p.t ≡ τ3 and MVars(τ3) ⊆ dom(θ) and ∆; Γ1 `X θ(e1) :
θ(τ3). By Lemma 61 and 54, ∆; Γ1 `X θ(e1) : θ(p).t. By Lemma 57, ∆ `X

cnstrlkup(θ(p), c) = (t, τ3) with MVars(τ2) ⊆ dom(θ) and ∆ `X τ3 ≡ θ(τ2).
We have the claim by induction hypothesis.
rule (103) By Lemma 58 and 68. 2

As we we did for the look-up judgment, we extend the erasure look-up
judgment for value paths in Figure 72.

Lemma 70 Suppose ∆ `X θ1 wf and ∆ `X θ2 wf and MVars(θ2) ⊆ dom(θ1),
then ∆ `X θ1 ◦ θ2 wf.

Proof. By Lemma 60, for all X in dom(θ2), ∆ `X θ1 ◦ θ2(X) wf. For any
X in dom(θ2), let ∆(X) = sig B1 . . . Bn end. By ∆ `X θ2 wf, for all i in
1, . . . , n, ∆ `X θ2(X) . θ2(Bi). By Lemma 59, ∆ `X θ1 ◦ θ2(X) . θ1 ◦ θ2(Bi).
2

Definition 29 A type path p.t is stable w.r.t. a variable environment ∆ if
∆ ` p.t 7→ (θ, datatype t [= p1.t1] = c of τ) holds.

Lemma 71 For any types τ1, τ2 and stable type p.t w.r.t. ∆, there are no
derivations for

1. ∆; Γ `X () : τ1 ∗ τ2

2. ∆; Γ `X () : τ1 → τ2

3. ∆; Γ `X () : p.t.

4. ∆; Γ `X (v1, v2) : τ1 → τ2.

5. ∆; Γ `X (v1, v2) : 1.
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6. ∆; Γ `X (v1, v2) : p.t.

7. ∆; Γ `X (λx.e : τ) : τ1 ∗ τ2.

8. ∆; Γ `X (λx.e : τ) : 1.

9. ∆; Γ `X (λx.e : τ) : p.t.

10. ∆; Γ `X p.c v : τ1 → τ2

11. ∆; Γ `X p.c v : τ1 ∗ τ2

12. ∆; Γ `X p.c v : 1

Proof. Observe that for any types τ1, τ2 and stable type p.t w.r.t. ∆, none of
∆ `X τ1 ∗ τ2 ≡ 1, ∆ `X τ1 → τ2 ≡ 1, ∆ `X τ1 → τ2 ≡ p.t, ∆ `X τ1 → τ2 ≡
τ1 ∗ τ2 ∆ `X τ1 ∗ τ2 ≡ p.t or ∆ `X τ1 → τ2 ≡ p.t holds. 2

Lemma 72 Suppose ∆ `X ∆ wf and ∆; ∅ `X v : p.t and
∆ `X cnstrlkup(p, c) = (t, τ), then v = p1.c v1 with ∆; ∅ `X v1 : τ for some
p1 and v1.

Proof. By Lemma 71, v = p1.c1 v1 for some p1 and v1. By ∆; ∅ `X p1.c1 v1 :
p.t and Lemma 55, ∆ `X cnstrlkup(p1, c1) = (t1, τ1) and ∆; ∅ `X v1 : τ1

and ∆ `X p1.t1 ≡ p.t. Hence, there is τ3 such that ∆ ` p1.t1 ⇒ τ3 and
∆ ` p.t ⇒ τ3. By Lemma 67, ∆ `X p wf and ∆ `X p1 wf. By Corollary 6,
c = c1 and ∆ `X τ1 ≡ τ . We deduce ∆; ∅ `X v1 : τ by Lemma 66 and the
rule (94). 2

Lemma 73 Suppose ∆ `X ∆ wf and ∆ `X Γ wf and ∆ `X τ ′ ¦ and
∆; Γ, x : τ ′ `X e : τ and ∆; Γ `X e′ : τ ′, then ∆; Γ `X [x 7→ e′]e : τ .

Proof. By induction on the derivation of ∆; Γ, x : τ ′ `X e : τ and by case on
the last rule used. 2

Proposition 23 (Progress in TraviataX) Suppose that a lazy program type
U conforms with a variable environment ∆ and that U is a correct type of a
program P w.r.t. ∆ in TraviataX and ∆ `X ∆ wf. Let µ be the erasure en-
vironment of P . If ∆; ∅ `X e : τ and MVars(e) = ∅, then either e is a value
or else there is some e′ with (µ, νε) ` e → e′. Particularly, if ∆; ∅ `X p.l : τ

and MVars(p) = ∅, then (µ, νε) ` p.l
vpth→ e′.
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Proof. By induction on the derivation of ∆; ∅ `X e : τ . We show the main
cases.
Suppose e = p.l. By ∆; ∅ `X p.l : τ in the hypothesis, ∆ ` p.l 7→ (θ, val l :
τ1). Since U conforms with ∆, ∆U ` p.l 7→ (θ, val l : τ1). By ∆ `X P : U ,

(µ,νε) ` p.l 7→er (θ1, val l = e1), from which (µ,νε) ` p.l
vpth→ θ1(e1) follows.

Suppose e = e1(e2). When either e1 or e2 is not a value, then by induction
hypothesis, we have (µ,νε) ` e1 → e′1 or (µ,νε) ` e2 → e′2. Suppose
e1 and e2 are values v1 and v2, respectively. By well-typedness of v1(v2),
∆; ∅ `X v1 : τ1 → τ2. By Lemma 71, v1 = (λx.e3 : τ3), hence we have

(µ,νε) ` (λx.e3 : τ3)v2
fun→ [x 7→ v2]e3.

Suppose e = case e1 of p.c x ⇒ e2. When e1 is not a value, then by induction
hypothesis (µ,νε) ` e1 → e′1. Suppose e1 is a value v1. By well-typedness
of e, ∆; ∅ `X v1 : p.t where ∆ `X cnstrlkup(p, c) = (t, τ1). By Lemma 72,
v1 = p1.c v2 for some p1 and v2. Now we have (µ,νε) ` case p1.c v2 of p.c x ⇒
e2 → [x 7→ v2]e2 2

Proposition 24 (Subject reduction in TraviataX) Suppose that a lazy pro-
gram type U conforms with a variable environment ∆ and that U is a correct
type of a program P w.r.t. ∆ in TraviataX and ∆ `X ∆ wf. Let µ be
the erasure environment of P . If ∆; ∅ `X e : τ and MVars(e) = ∅ and
(µ,νε) ` e → e′, then ∆; ∅ `X e′ : τ with MVars(e′) = ∅.

Proof. By induction on the derivation of (µ,νε) ` e → e′ and by case on the
last rule used. We show the main cases.
Suppose e is a value path p.l and (µ,νε) ` p.l 7→er (θ, val l = e1) and
e′ = θ(e1). Since P does not contain free module variables, MVars(e′) = ∅.
Let µ′ be the erasure environment of U and (µ′, νε) ` p.l 7→er (θ, val l : τ1)
and ∆U ` p.l 7→ (θ1, val l : τ2). By Lemma 55, ∆ `X τ ≡ θ1(τ2). By
∆ `X P : U , ∆; ∅ `X e1 : τ1. Let dom(θ) = {{X1, . . . , Xn}} and dom(θ1) =
{{X ′

1, . . . , X
′
n}} and θ2 = [X1 7→ X ′

1, . . . , Xn 7→ X ′
n]. We have θ = θ1 ◦ θ2.

By ∆ `X P : U and Lemma 70, ∆ `X θ1 ◦ θ2 wf. By Lemma 69, there
is τ3 such that ∆ `X τ1 ≡ τ3 and MVars(τ3) ⊆ dom(θ1 ◦ θ2) and ∆; ∅ `X

θ1 ◦ θ2(e1) : θ1 ◦ θ2(τ3), which means ∆; ∅ `X θ(e1) : θ(τ3). By ∆ `X P : U ,
∆ `X θ2(τ1) ≡ τ2. By Lemma 54, ∆ `X θ(τ3) ≡ τ . By Lemma 67, we deduce
∆; ∅ `X θ(e) : τ .
Suppose e = case v of p.c x ⇒ e2. By ∆; ∅ `X e : τ and Lemma 55,
∆ `X p wf and ∆; ∅ `X v : p.t and ∆ `X cnstrlkup(p, c) = (t, τ1) and
∆; x : τ1 `X e2 : τ ′ with ∆ `X τ ′ ≡ τ . By Lemma 72, v1 = p1.c v2 for some
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p1 and v2 with ∆; ∅ `X v2 : τ1. By Lemma 73, ∆; ∅ `X [x 7→ v]e2 : τ ′, by
which and Lemma 67 we conclude ∆; ∅ `X [x 7→ v]e2 : τ . 2

12.1.3 From Traviata to TraviataX

In this section, we convert well-typedness in Traviata to well-typedness in
TraviataX. As we explained in the beginning of Section 12.1.2, type equiva-
lence relations and ways of type checking a sealing construct are two notable
differences between Traviata and TraviataX. We prove in Corollary 7 that
the type equivalence relation in Traviata is included in that of TraviataX.
To bridge the latter gap, we provide TraviataX the fully manifest variable
environment that already contains all type equality constraint added by the
manifestation operation during type-correctness check in Traviata. This vari-
able environment is built in a straightforward way by, roughly, applying the
function manif throughout the reconstructed lazy program type of a program.

TraviataX requires well-typed programs to only contain module paths in
located form. Hence we need expand module paths beforehand. Moreover,
it does not have the ability to instantiate lazy path types during subtyp-
ing checking. This requires us to inline expand module abbreviations into
structures and functors that the abbreviating paths refer to.

Our operational semantics evaluates modules in a lazy way, that is, it only
evaluates components of modules that are accessed and functor application
does not trigger any reductions. Hence, neither expansion of module paths
nor inline path expansion has any impact on the semantics of programs.

Full manifestation of type specifications When type checking a seal-
ing construct (E : S), Traviata enriched the variable environment to make
manifest abstract type and datatype specifications in the sealing signature S.
To build fully manifest variable environments, we apply a similar operation
throughout reconstructed lazy program types using the function fullmanif
defined in Figure 73.

We used manif to add type equality constraint locally to a single sealing
construct, whereas we do fullmanif to add the constraint globally throughout
a lazy program type. The function fullmanif traverses the constituents of a
lazy program type. The behavior of manifX and updateX is identical to that
of manif and update in Figure 51 respectively, except for the (?)-labeled rule.
To make a datatype specification manifest, updateX introduces a manifest
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fullmanif (sig (Zθ) C1 . . . Cn end)
= sig (Zθ) fullmanif (C1) . . . fullmanif (Cn) end

fullmanif (sig C1 . . . Cn end) = sig fullmanif (C1) . . . fullmanif (Cn) end

fullmanif (functor(X : S) → T ) = functor(X : S) → fullmanif (T )

fullmanif ((T : S)) = (fullmanif (T ):manifX (T, S))

fullmanif (p) = p

fullmanif (module M : T ) = module M : fullmanif (T )

fullmanif (C) = C when C is not a lazy module specification

manifX (ss (Zθ) . . . end, TS) = updataX (Zθ, TS)

manifX ((TT : sig (Zθ) . . . end), TS) = updataX (Zθ, TS)

manifX (p, TS) = updataX (p, TS)

updateX (p, sig (Zθ) B1 . . . Bm end)
= sig (Zθ) updataX (p,B1) . . . updataX (p,Bm) end

updateX (p, sig B1 . . . Bm end)
= sig updataX (p,B1) . . . updataX (p,Bm) end

updateX (p, functor(X : S) → S ′)
= functor(X : S) → updateX (p(X), S ′)

updataX (p, module M : S) = module M : updateX (p.M, S)

updataX (p, type t) = type t = p.t

updataX (p, type t = τ) = type t = τ

(?) updataX (p, datatype t = c of τ) = datatype t = p.t = c of τ

updataX (p, val l : τ) = val l : τ

Figure 73: Full manifestation of type specifications
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datatype specification, instead of a manifest specification. This avoids erasing
the necessary type information.

Inline path expansion For every module expression in a program which
seals a module path p with a signature S, we inline expand p into the structure
or functor that p refers to so that after the expansion the nesting level inside
the sealing becomes same as that of the sealing signature S.

In Figure 74, we define the inline path expansion operation on programs.
We write ∆ ` e ≺ e′ to denote that e′ is obtained from e by expanding
all module paths contained in e into located forms w.r.t. ∆. The judgment
∆ ` K ≺ K ′ means that the module description K inline path expands
into the module description K ′ w.r.t. the variable environment ∆ and the
judgment ∆ ` K ≺S K ′ means that K does into K ′ along the signature S
w.r.t. ∆. The other judgments are read similarly.

The (?)-labeled rule uses two helper functions and is the only important
rule in Figure 74. The function outer replaces every occurrence of a sealing
construct (T : S) with S in the given lazy signature. The function inst is
defined in Figure 75. It instantiates module expressions from lazy signatures,
by adapting their syntax (e.g. to turn the keyword sig to struct ) and by
reifying value specifications into value definitions (in the (?)-labeled rule).
The reification uses inst’s first argument, which keeps track of the location,
by means of module paths, of the value specification to be reified. Let us
return to the (?)-labeled rule in Figure 74. To inline expand a module path
p along a signature S, we instantiate a module expression from the lazy
signature that p refers to. Since q is in located form, T is not a module path.

The inline path expansion operation on lazy program types is defined by
the same inference rules as those in Figure 74, except that we replace the
(?)-labeled rule with the rule:

∆ ` p ; q ∆ ` q 7→ (θ, T ) ∆ ` outer(θ(T )) <S K

∆ ` p <S K

For inline path expansion on lazy program types, we use judgments of the
forms ∆ ` K < K ′ and ∆ ` K <S K ′, instead of ∆ ` K ≺ K ′ and
∆ ` K ≺S K ′ respectively.

Lemma 74 Suppose ∆ ` K : T , then ∆ ` T < T ′ for some T ′.

Proof. We prove if ∆ ` T < S then ∆ ` T <S T ′ for some T ′, by induction

127



∆ ` J1 ≺ J ′
1 . . . ∆ ` Jn ≺ J ′

n

∆ ` ss (Zθ) J1 . . . Jn end ≺ ss (Zθ) J ′
1 . . . J ′

n end

∆ ` J1 ≺ J ′
1 . . . ∆ ` Jn ≺ J ′

n

∆ ` ss J1 . . . Jn end ≺ ss J ′
1 . . . J ′

n end

∆ ` S ≺ S ′ ∆ ` K ≺ K ′

∆ ` functor(X : S) → K ≺ functor(X : S ′) → K ′

∆ ` TS ≺ S manif (TK, TS) = TS′ ∆(µTS′ , νε) ` TK ≺TS K

∆ ` (TK : TS) ≺ (K : S)

∆ ` p ; q

∆ ` p ≺ q

∆ ` K ≺ K ′

∆ ` module M := K ≺ module M := K ′

∆ ` type t ≺ type t

∆ ` τ ↓ τ ′

∆ ` type t = τ ≺ type t = τ ′

∆ ` τ ↓ τ ′

∆ ` datatype t = c of τ ≺ datatype t = c of τ ′

∆ ` τ ↓ τ ′

∆ ` val l : τ ≺ val l : τ ′
∆ ` e ≺ e′

∆ ` val l = e ≺ val l = e′

∆ ` TS ≺ S ∆ ` TK ≺ K
∆ ` (TK : TS) ≺S1 (K : S)

∀i ∈ {1, . . . , n}, ∆ ` Ji ≺Bσ(i)
J ′

i when i exists, otherwise ∆ ` Ji ≺ J ′
i

∆ ` ss J1 . . . Jn end ≺
sig [(Z

θ1
1 )] B1...Bm end

ss J ′
1 . . . J ′

n end

∀i ∈ {1, . . . , n}, ∆ ` Ji ≺Bσ(i)
J ′

i when i exists, otherwise ∆ ` Ji ≺ J ′
i

∆ ` ss (Zθ) J1 . . . Jn end ≺
sig [(Z

θ1
1 )] B1...Bm end

ss (Zθ) J ′
1 . . . J ′

n end

∆ ` S1 ≺ S ′
1 ∆ ` K ≺S K ′

∆ ` functor(X1 : S1) → K ≺functor(X2:S2)→S functor(X1 : S ′
1) → K ′

∆ ` p ; q ∆ ` q 7→ (θ, T ) ∆ ` inst(q, outer(θ(T ))) ≺S K

∆ ` p ≺S K
(?)

∆ ` K ≺S K ′

∆ ` module M := K ≺module M :S module M := K ′

J 6= module M := K ∆ ` J ≺ J ′

∆ ` J ≺B J ′

Figure 74: Inline path expansion
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inst(p, sig (Zθ) C1 . . . Cn end)
= struct (Zθ) inst(p, C1) . . . inst(p, Cn) end

inst(p, sig C1 . . . Cn end)
= struct inst(p, C1) . . . inst(p, Cn) end

inst(p, functor(X : S) → T ) =
functor(X : S) → inst(p(X), T )

inst(p, q) = q

inst(p, module M : T ) = module M = inst(p.M, T )

inst(p, type t) = type t

inst(p, type t = τ) = type t = τ

inst(p, datatype t = c of τ) = datatype t = c of τ

(?) inst(p, val l : τ) = val l = p.l

Figure 75: Instantiation of module expressions

on the derivation of ∆ ` T < S. Then the lemma is proven by induction on
the derivation of ∆ ` K : T . 2

Lemma 75 Suppose ∆ ` K : T and ∆ ` T < T ′, then ∆ ` K ≺ K ′ for
some K ′.

Proof. By induction on the structure of K. 2

Correctness We prove in Corollary 7 that the type equivalence relation
in Traviata is included in that of TraviataX. Then Proposition 25 states the
main claim of this subsection.

Lemma 76 Suppose that all module paths contained in ∆ and τ, τ ′ are in
located form w.r.t. ∆ and that all types contained in ∆ are located types w.r.t.
∆. If ∆ ` τ ↓ τ ′, then ∆ ` τ ⇒ τ ′.

Proof. By induction on the derivation of ∆ ` τ ↓ τ ′ and by case on the last
rule used. We show the main case.
[tnlz-abb] Suppose τ = p.t and ∆ ` p ; p′ and ∆ ` p′.t 7→ (θ, type t = τ1)
and ∆ ` τ1 ↓ τ2 and ∆ ` θ(τ2) ↓ τ ′. Since located forms are invariant of
the module path expansion (Lemma 41) , p = p′. Similarly, since located

129



types are invariant of the type expansion (Lemma 42), τ1 = τ2. By induction
hypothesis, ∆ ` θ(τ2) ⇒ τ ′. 2

Corollary 7 Suppose that all module paths contained in ∆ and τ, τ ′ are in
located form w.r.t. ∆ and that all types contained in ∆ are located types w.r.t.
∆. If ∆ ` τ ≡ τ ′, then ∆ `X τ ≡ τ ′.

Lemma 77 Let ∆1 = (µ, ν1) and ∆2 = (µ, ν2) be such that X is not in
dom(ν1) and dom(ν2) = dom(ν1) ∪ {X}.

1. If ∆1 `X K : T , then If ∆2 `X K : T .

2. If ∆1; Γ `X e : τ , then ∆2; Γ `X e : τ .

3. If ∆1 `X τ ¦ then ∆2 `X τ ¦.

4. If ∆1 `X p wf then ∆2 `X p wf.

5. If ∆1 `X p . B then ∆2 `X p . B.

6. If ∆1 `X T < S then ∆2 `X T < S.

Proof. By easy induction. 2

Lemma 78 Suppose T does not contain a sealing construct and ∆ ` T :
T . For any θ in located form w.r.t. (µ, ν) such that (µ, ν) ` θ wf and
MVars(T ) ⊆ dom(θ), let T ′ be the lazy signature obtained from θ(T ) by ex-
panding all module paths and types into located forms and located types w.r.t.
(µ, ν) and by renaming bound module variables so that all binding occurrences
of module variables use distinct names and that dom(ν) and dom(νT ′) are
disjoint, then (µ, ννT ′) ` T ′ : T ′.

Proof. By induction on the structure of T . Use lemmas in Section 12.1.1. 2

Proposition 25 Suppose ∆P ` P . U and ∆U ` P : U and ∆U ` P ≺ P ′

and ∆U ` U ≺ U ′. Suppose that we have renamed bound module variables
in U ′ so that all binding occurrences of module variables use distinct names.
Correspondingly, suppose that we have renamed bound module variables in P ′

so that νP ′ and νU ′ coincide. Then we have ∆fullmanif (U)(µε, νU ′) `X P ′ : U ′.
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Proof. We say that a variable environment ∆ is available in ∆U ` P : U , if the
derivation of ∆U ` P : U contains a judgment whose variable environment
is ∆. Observe that ∆fullmanif (U) contains all type equality constraints that
any ∆ available in ∆U ` P : U contains. Hence Corollary 7 and Lemma 46
and 78 together prove by induction on the derivation of ∆U ` P : U that, if
we replace the rule (77) in Figure 65 with the rule:

∆ `X E : T ∆ `X S : S ′

∆ `X (E : S) : (T : S ′)

then there is a derivation for ∆fullmanif (U)(µε, νU ′) `X P ′ : U ′. Again by
induction on the derivation of ∆U ` P : U , it is proven that if the derivation
of ∆U ` U ≺ U ′ contains ∆ ` T ≺S T ′ then ∆ ` T < S and ∆ ` T ′ < S.
This means that for any sealing construct (T : S) in U ′, there is ∆ available
in ∆U ` P : U such that ∆ ` T < S. Hence, by Corollary 7, for any sealing
construct (T : S) in U ′, ∆fullmanif (U) `X T < S. By Lemma 77, we conclude
∆fullmanif (U)(µε, νU ′) `X P ′ : U ′. 2
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13 The expression problem

In this section, we present an advanced example of recursive modules, by
giving a solution to the expression problem [22, 60].

The expression problem, originally named by Phil Wadler, dates back to
Cook, who first discussed this problem [10]. It is one of the most fundamental
problems a programmer faces during the development of extensible software.
Here, we paraphrase a typical example of this problem in the following way:
suppose that we have a small expression language, composed of a recursively
defined datatype and operations on this datatype; then we want to extend the
expression language in two dimensions, that is, to extend the datatype with
new constructors and to add new operations that can handle both existing
and new constructors. That a programming language can solve this problem
in a type safe and concise way has been regarded as one measure of the
expressive power of the language. Many researchers have addressed this
problem, using different programming languages [53, 61, 58].

Our aim here is not to draw a conclusion that our solution is better than
other solutions. It is not easy to compare the quality of different solutions,
without deep understandings of each implementation language that is used
to express each solution. Instead, we aim to give a useful example of recur-
sive modules, in order to show that by combining recursive modules with
other constructs of the core and the module languages we can obtain more
expressive power in a modular way.

The example we use here extends an example presented in [25]. It is a
variation on the expression problem, where we only insist on the addition of
new constructors. Adding new processors is easy in this setting of .

We shall assume that we have extended Traviata with polymorphic vari-
ants [24], private row types [25] and some usual module language construc-
tions. Adding polymorphic variants and private row types is straightforward.
We add typing rules for them to our language. Allowing any structure to
contain module type definitions may not be easy, but having module type
definitions in the top-level is easy.

We define our first expression language in Figure 76, using the functor
PF. The module type E specifies the signature of the expression languages
we are to define. They contain a type component named exp and two op-
erations eval and simp of the specified types. The type exp defined in the
body of PF indicates that the first language supports expressions composed
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module type E =

sig type exp val eval : exp → int val simp : exp → exp end

module PF =

functor(X : E with type exp = private [> PF(X).exp ] ) →
struct

type exp = [‘Num of int | ‘Plus of X.exp * X.exp]

val eval : exp → int = λx.case x of

‘Num n ⇒ n

| ‘Plus (e1, e2) ⇒ X.eval e1 + X.eval e2

val simp : exp → X.exp = λx.case x of

‘Num n ⇒ ‘Num n

| ‘Plus(e1, e2) ⇒ case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒ ‘Num(m+n)

| e12 ⇒ ‘Plus e12

end

module Plus = (PF(Plus) : E with type exp = PF(Plus).exp)

Figure 76: A first language

of integer constants and addition. The function eval is for evaluating the ex-
pressions into integers. The function simp is for simplifying the expressions,
by reducing the ‘Plus constructor into the ‘Num constructor when possible.

To keep the first language extensible, we leave recursion open in PF; the
polymorphic variant type exp and functions eval and simp recur through
PF’s parameter X.

The intuition of the example is that PF takes as argument an expression
language which is built by extending the addition language that PF defines.
This is exactly what the signature of X expresses; here is the key of the exam-
ple. The type specification type t = private [> PF(X).exp] specifies an
abstract type into which the type PF(X).exp can be coerced, or, informally,
an abstract type which is a supertype of PF(X).exp. The type PF(X).exp

refers to the type exp defined inside PF’s body. Hence X’s signature specifies
that PF can only be applied to a module whose defining expression language
supports both integer constant and addition. This recursive use of PF(X).exp
to constrain PF’s argument is the main difference with the solution in [25].
By avoiding the need to define types outside of the functor, it allows for a
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module MF =

functor(X : E with type exp = private [> MF(X).exp ]) →
struct

module Plus = PF(X)

type exp = [Plus.exp | ‘Mult of X.exp * X.exp ]

val eval : exp → int = λx.case x of

#Plus.exp as e ⇒ Plus.eval e

|‘Mult(e1, e2) ⇒ X.eval e1 * X.eval e2

val simp : exp → X.exp = λx.case x of

#Plus.exp as e ⇒ Plus.simp e

|‘Mult(e1, e2) ⇒ case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒ ‘Num(m*n)

| e12 ⇒ ‘Mult e12

end

module Mult = (MF(Mult) : E with type exp = MF(Mult).exp)

Figure 77: A second language

more concise and scalable solution. Observe that if we do not have all of
applicative functors, private row types and flexible path references, we could
not write X’s signature in this way.

The use of a polymorphic variant type, which is a structural type unlike
usual nominal datatypes, is important also for defining the function simp.
The function simp has the type exp → X.exp. Since the type X.exp struc-
turally contains the type exp, as specified in the X’s signature, all of ‘Num n,
‘Num(m+n) and ‘Plus e12, which are the results of the case branches, are of
type X.exp.

The module Plus instantiates the addition language, by closing PF’s open
recursion. Observe that both the type and the value level open recursion are
closed simultaneously, that is, by taking the fix-point of PF, the forwardings
X.exp, X.eval and X.simp are connected to exp, simp and eval themselves,
thus yielding self contained recursive type exp and recursive functions eval
and simp.

Now we can perform addition on the first language. For instance,
val e1 = Plus.eval (‘Plus(‘Num 3, ‘Num 4))

Next, we define our second expression language using the functor MF in
Figure 77. The second language supports expressions composed of multipli-
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cation and addition on integer constants.
We use the exactly same idiom as the first language to define this second

language. In particular, the type MF(X).exp appearing in X’s signature refers
to the type exp defined in the body of MF.

Note that we instantiate the first addition language inside MF, and use it
when defining the type exp with variant inheritance and defining functions
eval and simp to delegate known cases by variant dispatch. In this way we
avoid duplication of program codes.

The module Mult instantiates the second language, by closing MF’s open
recursion. Now we can do arithmetic on the second language. For instance,

val e2 = Mult.eval (‘Plus(‘Mult(‘Num 3, ‘Num 4), ‘Num 5))

Finally, we demonstrate in Figure 78 that it is easy to compose indepen-
dently developed extensions into a single expression language.

Having seen examples here and in Section 1 and 8, we confirm that re-
cursive modules are useful in several situations. Moreover, when combined
with other language constructs, they give us the highly expressive power in a
modular way. We believe that recursive modules are a promising candidate
for supporting robust extensible software.
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module NF =

functor(X: E with type exp = private [> NF(X).exp]) →
struct

type exp = [‘Num of int | ‘Minus of X.exp * X.exp ]

val eval : exp → int = λx.case x of

‘Num n ⇒n

| ‘Minus(e1, e2) ⇒ (X.eval e1) - (X.eval e2)

val simp : exp → X.exp = λx.case x of

‘Num n ⇒‘Num n

| ‘Minus(e1, e2) ⇒ case (X.simp e1, X.simp e2) of

(‘Num m, ‘Num n) ⇒‘Num(m-n)

| e12 ⇒‘Minus e12

end

module GF =

functor(X : E with type exp = private [> GF(X).exp]) →
struct

module Plus = PF(X)

module Minus = NF(X)

type exp = [Plus.exp | Minus.exp]

val eval : exp → int = λx.case x of

#Plus.exp as e ⇒ Plus.eval e

| #Minus.exp as e ⇒ Minus.eval e

val simp : exp → X.exp = λx.case x of

#Plus.exp as e ⇒ Plus.simp e

| #Minus.exp as e ⇒ Minus.simp e

end

Figure 78: To merge independantly developed extensions
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Part IV

Discussions

14 Related work

Much work has been devoted to investigating recursive module extensions of
the ML module system. Notably, type systems and initialization of recursive
modules pose non-trivial issues, and have been the main subjects of study.
Here we first examine previous work on these issues, then overview work on
mixin modules, another proposal for introducing recursion to ML-like module
systems.

14.1 Type systems

To the best of our knowledge, no previous work has proposed a type system
for recursive modules with applicative functors, except for the experimental
implementation in O’Caml [41], or examined type inference for recursive
modules whether functors are applicative or generative. Traviata has the
ability to take fix-points of functors, which is not formalized or even explored
in previous work by others.

The experimental implementation of recursive modules in O’Caml is most
related to our work. Indeed, we followed it in large part when designing
Traviata. O’Caml supports a highly expressive core language and a strong
type inference algorithm, which are one of our motivations for the effort to
enable type inference.

In O’Caml, a programmer can write signatures of recursive modules with
rather concise syntax. However, it allows to write problematic modules whose
type checking diverges due to cyclic type specifications in signatures. The
potential for divergence when typing O’Caml modules is well-known, but is
assumed to be a rare phenomenon in practice. Recursive modules seem to
make the problem much more acute. This motivated us to insist on decidable
type checking for Traviata. Of course we obtain it through restrictions, and
a less expressive signature language. We put the first-order restriction on
functors to detect cycles; we do not support module type definitions inside
arbitrary structures, avoiding the avoidance problem [43, 26]. Yet, this may
be a price for safety.
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module F = functor(X : sig type t end) →
struct datatype t = A of X.t end

module Int = struct type t = int end

module AofInt1 = F(Int)

module AofInt2 = F(Int)

module I = Int

module AofInt3 = F(I)

Figure 79: Example of O’Caml applicative functors

module Forest =

functor(X : sig type t val compare : t → t →bool end) →
functor(T : sig type t val labels : t → MakeSet(X).t end) →
struct

module Elm = X

module ElmSet = MakeSet(Elm)

type t = T.t * T.t

val labels = λx.let (t1, t2) = x in

ElmSet.union (T.labels t1) (T.labels t2)

end

Figure 80: Weakness of applicative functors in O’Caml
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Compared to O’Caml, Traviata has stronger notion of type equality in the
sense that functors are fully applicative in Traviata. For instance in Figure 79,
thanks to applicative functors, the two types AofInt1.t and AofInt2.t are
equivalent. Yet the types AofInt1.t and AofInt3.t are not equivalent in
O’Caml, since functors are not fully applicative. This is occasionally in-
convenient for the use of module abbreviations. For instance, a program
in Figure 80 is not typable in O’Caml. Since two types MakeSet(X).t and
ElmSet.t are not equivalent, the body of the function labels cannot be
typed. Traviata can type Figure 80, since it supports fully applicative func-
tors.

Crary, Harper and Puri [11] (revisited later in [19]) gave a foundational
type theoretic account of recursive modules. They analyzed recursive mod-
ules in terms of a phase-distinction formalism [28]. They introduced a fixed-
point operator for structures and recursively dependent signatures, which can
represent signatures of structures defined by the fixed-point operator. Then
they interpreted these new constructs into primitive constructs of the struc-
ture calculus in [28]. The interpretation requires fully transparent signatures
for recursive structures and contractiveness [2] of these signatures.

Russo designed a recursive module extension of the ML modules system
in [56], which is implemented in Moscow ML [55]. He introduced explic-
itly typed declarations of self variables inside structures and signatures to
enable forward references between structure components and between sig-
nature components, respectively. Self variables are a familiar construct in
(class-based) object-oriented languages, where recursive definitions across
class boundaries are a fundamental ingredient. We think the use of self vari-
able in the context of recursive modules is intuitive to programmers and
useful in practice. We extended his approach when designing Traviata by
introducing implicitly typed declarations of self variables.

Dreyer [16] gave a theoretical account for type abstraction inside recursive
modules. He investigated generative functors in the context of recursive
modules, by interpreting type generativity in a destination passing style [59].
He gave a solution to the double vision problem, a typing difficulty involved in
type abstraction inside recursive modules observed in [11], but in the process
he sacrificed some flexibility in using structural types.
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14.2 Initialization

Boudol [6], Hirschowitz and Leroy [31, 32, 33, 34], and Dreyer [15] have
proposed type systems which ensure that initialization of recursive modules
does not try to access components of modules that are not yet evaluated,
under a call-by-value evaluation strategy of recursive modules. They are
interested in the safety of initialization, hence their modules do not have
type components.

Their type systems judge both the two programs:

struct (Z) val l = Z.m val m = Z.l end

and

struct (Z) val l = fun x → x + Z.m val m = Z.l(3) end

to be ill-typed. In both, evaluation of the component m cyclically requires
evaluation of itself. Our type system, in particular the core type reconstruc-
tion, can detect the cycle for the former program, but not for the latter.

14.3 Mixin modules

Mixin modules have been investigated as a new construct for module lan-
guages, where recursive linking is primal and hierarchical linking is special.

Duggan and Sourelis [20, 21] proposed mixin modules specifically for
SML. Their mixin modules can split individual definitions of a datatype and
a function into separate mixins: constructors of a datatype can be defined
in several mixins; a function defined by cases on a datatype can be defined
in several mixins, each mixin defining only certain cases. An operator for
linking mixins is provided, to stitch together these constructors and cases to
form a single datatype definition and a single function definition. Although
we share the same motivation in principle, the ways we address are rather
different.

Ancona and Zucca [3, 4] developed a theory for mixin modules in a call-by-
name setting. Their work focuses on value level recursion of mixin modules,
and is closely related to work on initialization of recursive modules.

Odersky et al. designed a calculus, named νObj [49], for classes and ob-
jects with dependent types, which is implemented as the Scala programming
language [1]. Although the concrete syntax is rather different, νObj supports
most mechanisms of the ML module system, including higher-order functors
and nested structures with type components. Intuitively, νObj classes cor-
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respond to ML functors and νObj objects to ML structures. νObj allows
liberal recursion between classes and objects, which implies that it can ex-
press recursive ML modules.

The type system of νObj is undecidable. It traces type abbreviations in
the intuitive way, which is one reason for the undecidability since there is the
potential of cyclic type abbreviations.

Scala type system is kept decidable [12]. To avoid divergence in abbrevi-
ation expansion, it does not trace the same type abbreviation twice during
expansion. As we examined in Example 2 of Section 4, this strategy sacrifices
some flexibility of functors.

Recent work by S. Owens and M. Flatt [50] designed a module language
which extends their previous work [23] on a MzScheme’s module language
with translucency and sharing of type information. Although their formal-
ization does not include datatype definitions, which are a vital constituent
of the ML core language, their language appears to be as expressive as the
SML module system extended with recursion. Similarly to previous work on
recursive modules, they do not examine support for type inference.

The operational semantics of their modules is different from that of ML
modules. In their system modules are first-class values and can be dynam-
ically composed and invoked. This semantics gives us insights into other
possible design choices of recursive modules.

The generative nature of abstract types in their language is a notable
difference from Traviata. It seems difficult to express applicative functors
in their language. Hence Traviata and their language do offer distinct ex-
pressiveness. We would like to draw more thorough comparison between our
proposals, which would be useful for even better design of recursive modules.
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15 Future work

There is still a lot of work to be done to obtain a fully practical system. Here
we give an overview of future work.

15.1 Separate type checking and compilation

Although we have not discussed in the thesis, Traviata is already prepared
for separate type checking. We only have to extend the look-up judgment
(Figure 39) so that the judgment informs the type system of signatures of
modules which are type checked separately (i.e., to replace concrete module
expressions with their signatures).

Indeed, we need not reconstruct a complete lazy program type from a
given program P at once before checking type-correctness of P . When check-
ing type correctness of a module expression, the type system only has to know
signatures of modules that are visible from the module expression, but not
signatures of modules hidden inside sealing. Hence a practical way of type
checking programs would be to alternate reconstruction and type-correctness
check in turn so that when type checking a module expression the type sys-
tem only reconstructs signatures of visible modules. Once module expressions
outside sealing have been type checked, the type system proceeds to recon-
struct signatures of and type check module expressions inside sealing. For
simplicity, we prefer to the current presentation of the type system.

Support for separate compilation [8] of recursive modules is another non-
trivial issue, if one wants to ensure safe linking and evaluation of separately
compiled recursive modules. We would like to investigate this issue, too.

15.2 Lazy modules

The operational semantics presented in the thesis adopts a lazy evaluation
strategy for both modules and their value components, in the sense that only
components of modules that are accessed are evaluated and the evaluation is
triggered at access time. This semantics simplifies the soundness statements
and their proof. It might not be natural for practical programming, however.
Currently we are investigating lazy modules with eager value components,
that is, to keep modules lazy but evaluate all the value components (but
not module components) of a module at once, triggered by the first access
to some component of the module. Lazy semantics of modules would allow
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flexible uses of recursive modules; eager semantics of value components would
give programmers a way to initialize recursive modules. Moreover, this se-
mantics seems to give us a uniform way to handle statically and dynamically
loaded modules, that is, we can trigger initialization of a module by access-
ing its components whether the module is loaded statically or dynamically.
We believe that our expansion algorithms are useful for efficient and safe
implementation of lazy recursive modules. We need more investigation on
this topic.

15.3 Relaxing the first-order structure restriction

It would be nice to relax the first-order structure restriction we put on func-
tors. Support of higher-order functors does not seem urgent in practice. Yet,
lack of nested functor arguments may be sever on occasion.

As we explained in Section 2, a programmer can pass sub-modules as inde-
pendent parameters to a functor. Yet, if he wants to express type sharing con-
straint between these submodules, a typical situation is the coherence prob-
lem [29], he has to factor out the shared types in the sharing-by-construction
style [7, 35]. This style is cumbersome compared to sharing-by-specification
style [44], which requires functors to take nested arguments.

The reason of the restriction is for termination of the module and the type
expansions. The module path expansion is based on ground term rewriting,
where termination conditions are well-investigated [13]. We obtained ideas
from recursive path ordering [14] when designing the type expansion. Al-
though it is clear that these expansions are closely related to rewriting the-
ory, we have not yet succeeded in formalizing them in the standard rewriting
terminology. We think that such formalization will make clear the intrinsic
difficulties in keeping expansions terminating and may open an avenue to
apply known technique in rewriting theory for relaxing the restriction.

15.4 The double vision problem

K. Crary et al. observed a typing difficulty involved in type abstraction
between recursive modules [11]. Dreyer named it the double vision problem
and gave a detailed examination of this problem in his PhD thesis [17]. A
typical situation of this problem occurs when a programmer attempts to
cyclically import, inside a sealed module, a value that was exported by the
same module as a value of an abstract type. Then a type system might not
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struct (Z1)

module F = functor(X : sig type t end) →
struct datatype t = A of X.t end

module M = (struct (Z3)

type t = Z1.F(Z3).t end : sig (Z2) type t = Z1.F(Z2).t end)

end

Figure 81: Example on the double vision problem

regard the reimported value as of type of the underlying representation of
the abstract type, with which the value was exported.

We do not solve this problem in a satisfactory way. In particular, the
double vision problem can arise when a sealing signature involves type paths
containing functor application where the self variable declared in the signa-
ture appears. For instance a program in Figure 81 is not typed in Traviata,
since two self variables Z2 and Z3 are not equivalent even after the manifes-
tation operation described in Section 11.

The double vision problem does not decrease the expressive power of the
language; there is an encoding to avoid such a problematic situation. Yet
this encoding is verbose. To give a fully satisfactory solution, we need 1) to
sophisticate the manifestation operation and 2) to enrich the type environ-
ment so that it becomes aware of equivalence between self variables declared
in different layers of sealing signatures which share the same implementation
module. We are now undertaking formalization of this solution.
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16 Conclusion

In this thesis, we designed and formalized a programming language, named
Traviata, for a ML-like module system extended with liberal recursion be-
tween modules.

Traviata is strongly typed in the sense that the type system guarantees
that well-typed programs never get stuck. We proved that the type system is
sound for a call-by-value operational semantics. Moreover the type system is
decidable, that is, whether or not a given program is well-typed is determined
in a deterministic and terminating way.

The language design of Traviata is largely motivated by O’Caml. Typing
of recursive modules in O’Caml is not formalized and is a rather liberal
extension over previous proposals. It can handle practically useful examples.
At the same time, it gives rise to several non-trivial issues, which include
divergence in type expansion and lack of type inference for recursive modules.

We examined these issues in detail and gelled our proposal in Traviata.
As we pointed out in Section 15, there is still a lot of work to be done to make
Traviata a fully practical system. Yet we believe that Traviata can serve as a
framework for formalizing a highly expressive module system with arbitrary
nested structures, applicative functors and liberal recursion between modules.
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