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ABSTRACT. We provide a unified approach to the construction of crystal bases
for classical quantum affine algebras. The higher level irreducible highest weigh
crystals are realized as the affine crystals consisting of higher level reduced
Young walls.

1. INTRODUCTION

It is one of the major problems in crystal basis theory to construct explicit
realization of crystal bases for irreducible highest weight modules over quantum
groups. In [4], Kang introduced the combinatorics of Young walls, and gave a new
realization of level-1 irreducible highest weight crystals for classical quantum affine
algebras. More precisely, for the quantum affine algebras of type A%l), B,(Ll), Diﬁ),
Agi)fl, Aéi), and D512+)1= the level-1 highest weight crystals were realized as the
affine crystals consisting of level-1 reduced Young walls.

However, in this work, the case of C’,(Ll) was missing, because the level-1 perfect
crystals for this case are intrinsically of level-2. This difficulty was resolved in [2]
by introducing the notion of splitting blocks and slices, and Hong, Kang and Lee
obtained a realization of level-1 irreducible highest weight crystals for the quantum
affine algebras of type C,(Ll) in terms of reduced Young walls.

Motivated by this work, in [9], Kang and Lee went further to develop the com-
binatorics of higher level Young walls, which led to a realization of higher level
irreducible highest weight crystals for most of classical quantum affine algebras.
However, this time, the case of DS) was missing, because we took the view point
that level-I Young walls should be made up of [/ layers of level-1 Young walls and
that only whole blocks should be used in building Young walls.

In [11], Lee filled up this gap by proposing a new idea that level-I Young walls may
be constructed by concatenating (the equivalence classes of) level-l slices which are
split forms of pre-slices. In particular, in her construction, even the broken halves
of whole blocks may be used in building Young walls.

In this work, we extend her idea to all classical quantum affine algebras. As in
the previous works, the notion of splitting blocks and slices will play an important
role in our construction, but they are different from the ones given in [2] and [9].
In fact, even the patterns for building Young walls are slightly different. The main
difference lies in the fact that we define the slices to be the split forms of pre-
slices, which enables us to provide a unified approach to the construction of higher
level irreducible highest weight crystals for all classical quantum affine algebras.

*This research was supported in part by KRF Grant 2005-070-C00004.
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We first show that level-l perfect crystals are realized as the equivalence classes of
level-l slices as before, but level-l Young walls are viewed as the concatenation of
level-l slices rather than [ layers of level-1 Young walls. We then proceed to define
the notion of proper Young walls, reduced Young walls, ground-state walls, etc. As
the main theorem, we prove that higher level irreducible highest weigh crystals are
realized as affine crystals consisting of higher level reduced Young walls.

The higher level irreducible highest weight crystals for the quantum affine al-
gebras Uq(Agll)) have been constructed in [3,12], and their construction can be
regarded as a special case of our Young wall construction (cf. [9]) which dose not
use the notion of splitting. Thus, in this paper, we will focus on the rest of classical
quantum affine algebras.

2. PERFECT CRYSTALS

In this section, we briefly review some of the basic properties of perfect crystals.
We will follow the general notations given in [1].

Let (A, PV, P,11V, 1) be an affine Cartan datum of type Agn), D;a)_l, Agn)_l, Dfll),
B,(Ll), or C’,(Ll). We denote by I = {0,1,...,n} the index set for the simple roots,
A = (a;j);,jer the affine generalized Cartan matrix, PV = (®iel Zhi) @ Zd the dual
weight lattice, h = C ®z PV the Cartan subalgebra, P = (,.; ZA;) & ZJ (and
P = @,c; ZA;) the weight lattice (resp. classical weight lattice), IIV = {h;|i € I'}
the set of simple coroots and II = {a;|i € I} the set of simple roots. We also
denote by & the null root, A;(i € I) the fundamental weights and Pt the set of
affine dominant integral weights.

Let Uy(g) be the quantum affine algebra associated with (A4, PV, P, 11V, II) and
let e;, fi, Kiﬂ(i € I), ¢ be the generators of U,(g). The subalgebra U,(g) generated
by es, fi, KL (i € T) is also called the quantum affine algebra.

We will not repeat the basic facts such as tensor product rule on general crystal
basis theory. We will just recall that for a dominant integral weight A € P, the
crystal graph B(\) of the irreducible highest weight module V(X) over U,(g) will
be referred to as the irreducible highest weight crystal. As is indicated in the
introduction, the explicit construction of irreducible highest weight crystal B()) is
one of the central problems in crystal basis theory.

Let V be a finite dimensional U, (g)-module with crystal graph B. For b € B, we
write

(2.1) e(d) = eid)Ai, (b) =Y wilb)As.
icl icl
The crystal B is called a perfect crystal of level-l if

(1) there is a finite dimensional U (g)-module with a crystal basis whose crystal
graph is isomorphic to B,

(2) B ® B is connected,

(3) there exists some A\g € P such that

1
Wt(B) C Ao + d_O ; Zgoau #(BAO) =1,

(4) for any b € B, we have (c,e(b)) > I,
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(5) for each A € Pt with (¢, \) = [, there exist unique vectors b¥* € B and
by € B such that
e(b) = A, @(by) = A

Here, dj is the coefficient of g in the null root §.
Let B be a perfect crystal of level-I(> 0). For any dominant integral weight
A € PT of level-l, it was proved in [6] that there exists a crystal isomorphism

:B(A) = B(e(br) @B given by  uy — u.p,) @ by,

where uy (resp. u.(;,)) denotes the highest weight vector of B()) (resp. B(e(bx)))
and by is the unique element of B with ¢(by) = A.
For k > 0, set

Ao = A, Apg1 = e(by,), and bo = bx, bry1 = bx,y,-
The sequence
Pr=(r)icg =" @bpy1 b ® - ® b1 ® bo
is called the ground-state path of weight A\. A A-path in B is a sequence

p=(pk))io=@pk+1)@pk)®- - p(l)®p(0)

such that p(k) = by, for all & > 0. The set P(X) = P(A,B) of all A-paths in B is
given a crystal structure by the tensor product rule, which gives the path realization
of the irreducible highest weight crystal B(X) ([6]) :

B(\) = P(), Ux — Pa.

Hence the realization problem of the irreducible highest weight crystal B()\) is
reduced to the one of finding perfect crystals.

In [5] and [6], a coherent family of perfect crystals B() was constructed for each
of the classical quantum affine algebras. For our use in Section 4, we will give an
explicit description of those perfect crystals :

(1) A (n>1)

2n
BY = {(fla---,$n|9—3m---=571) ‘ﬂ%’,fi €Z>0, Y iy (i +7) < l}-
(2) D, (n>2)

B(l): (ml’...,ﬂ:n‘wo‘in;"')zl)

zo=0o0r1, z;,%; € ZZO’
To + Z?Zl(a:i + fﬁz) <l

BO ={ (@1, waln, . 50) | 00,7 € Zno, Ty (i +7:) =1},

z,=0o0rz, =0, z;,%; € ZZO
S (i +3) =1

B = {(a:l,...,a:n Fryee s T1) ‘a:a: € Zso, 20> Y0 (i + ) € 2z}.
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2zo=0o0r1, x;,%; € Z>o,

B = Ty e T '
@15 s@nl@ol@n, o 1) | 0 s o a o

3. SLICES AND PERFECT CRYSTALS

In this section, we will introduce the notions of splitting blocks and slices, which
are different from the ones given in [9]. We will define a classical crystal structure
on the set C\) of equivalence classes of level-{ slices and show that it is isomorphic
to the level-l perfect crystal B,

Definition 3.1.

(1) If g # CiV, a level-1 slice is defined to be a set of finitely many blocks
stacked in one column of unit depth following the patterns given below.

(2) Ifg= Cr(ll), such a set of blocks will be called a level-1 slice.

A(Q) . A(Q) .
2n—1 * | | 2n
2 2 1
1 0 o
i f [o]
2 2 1
covering { | covering { | covering { |
n—1j n—1j l n
n n ;
] ] : supporting
— — 1
supporting | b supporting o
- || covering — [ 0]
2 2
. 1 . 0
covering — |/ covering —| /]
B(l) . 0(1) .
n’ n -

2 2
1 [§)
0 1
2 2
covering . covering : .
. covering

| I=

—1 —1 -
n n n
e e R
—1 —1 . .
] supporting
: ) 1
supporting . supporting
— — covering —| 0
2 2 |
. T : 0
covering — 0 covering — (
p . e .
nooco_ | n+1 * |—]
2 2 1
T 0 0
0 1 0
2 2 1
covering : covering : covering
—4 —4 —1
=/ = ]
1 | | = |
—4 —4 —1
: supporting : supporting : supporting
2 2 J 1
. T Z : 0 Z [0
covering — (o covering — f covering — [0
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In stacking the blocks, no block can be placed on top of a block of half-unit depth.
Note that the patterns for stacking blocks are slightly different from the ones given
in [9].

As we can see in the figure, the blocks are stacked in a repeating pattern, which
is symmetric with respect to the n-block. We say that an i-block is a supporting
(resp. covering) i-block if it lies in the bottom half (resp. upper half) of one cycle.
An i-block that appears only once in one cycle is regarded as both a supporting
and a covering block.

An i-slot is the top of a level-1 (or level-%) slice where we may add an é-block.
The notions of supporting i-slots and covering i-slots are defined in a similar
manner.

A d-colummn is a set of blocks (and its cyclic variations) that form one cycle of
the stacking patterns. For a level-1 (or level-1) slice ¢, we define ¢+ § (resp. ¢ — §)
to be a level-1 (resp. level-1) slice obtained from ¢ by adding (resp. removing) a
§-column. For level-1 (or level-1) slices ¢ and ¢, we write ¢ C ¢ if ¢ is part of ¢.
For example, we have ¢ — 0 C ¢ C ¢+ 6.

Definition 3.2.

(1) If g # C,(f), a level-l pre-slice is defined to be an ordered [-tuple C' =
(c1,...,¢) of level-1 slices such that ¢; C ey C ¢ C ey + 6.

(2) If g = 07(11), a level-l pre-slice is defined to be an ordered 2i-tuple C =
(c1y...,¢91) of level—% slices such that ¢; C ey C ey Ceq + 0.

(3) The level-1 (or level-3) slice ¢; in c is called the i-th layer of C.

Remark 3.3.

(1) For those quantum affine algebras that allow two stacking patterns, we
choose only one pattern in building a level-l pre-slice. Still, two different
level-l pre-slices can be made from two different stacking patterns.

(2) A level-l pre-slice can be visualized as the set of I columns (or 2! columns)
with the ith layer placed in front of (i + 1)-th layer.

Next, we explain the notion of splitting (whole) blocks. By a whole block, we
mean a unit cube or a gluing of two half-unit depth blocks as is shown in the
following picture :

A 2 e 7 R N B N

The first two (and the next two) whole blocks all be referred to as (1-blocks (resp.
(n-Dn-blocks). Thus, when we deal with whole blocks, we may choose their colors
among I U{0|1, @-)n}. Similarly, we may consider whole i-slots for TU{0|1, (n-Ljn}.

Note that in a given pre-slice, there can be at most two heights in which a
covering (or supporting) i-block may appear as the top of one layer. Similarly,
there may be at most two heights in which a covering (or a supporting) i-slot may
appear.

Definition 3.4. Fix i € I U {0|1, n-In}. Suppose that there is a layer whose
top is a covering (or supporting) whole i-block and another layer whose top is a
supporting (resp. covering) whole i-slot. Choose the covering (resp. supporting)
i-block lying in the fore-most layer among the ones with the higher height and the
supporting (resp. covering) i-slot lying in the rear-most layer among the ones with
the lower hight.
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To split a whole i-block means to break off the top half of the chosen covering
(resp. supporting) i-block and to place it in the chosen supporting (resp. covering)
i-slot. A split form of a pre-slice is a result obtained by splitting all the whole
blocks that can be split. Note that a pre-slice may have several different split forms.

Example 3.5. This example shows two different split forms of a single pre-slice
for Bél)—type. Neither of the split results allows further splitting.

i

|3 ]

ofi[o]1

1 o|1 o|1| \ 2
1

3
1 212

/ 0

|w|w o
|w|w o

0

—
L

10|1 0|1 010|1 0|1|
1

The lower left figure shows the splitting of a covering 2-block and a supporting
2-block. The lower right figure shows the splitting of a supporting 2-block and a
01-block from the same pre-slice.

Definition 3.6. Fix a pattern for building pre-slices. A level-l slice is a split
form of a level-l pre-slice. We denote by S() the set of all level- slices built on a
fixed pattern.

Remark 3.7.

(1) The notions of i-slot, 6-column, and layer, defined for pre-slices, naturally
carries over to those of slices. Some care must be exercised, however. For
example, §-columns should allow for halves of blocks to add up to a §, and
we should now consider halves of i-slots.

(2) We would like to remind the readers that in a level-I (pre-)slice, the top of
a layer is regarded as an i-slot if it is an i-slot when the layer is viewed a
level-1 slice.

We now define the action of Kashiwara operators on the set S®) of level-I slices.
Let C be a level-/ slice and fix an index ¢ € I.

Case 1. Suppose that ¢ # 0,n and that the i-block is a unit cube. The actions

of & and f; are defined by (E1)-(E4) and (F1)-(F4), respectively.

(E1) If C contains both a covering whole i-block and a supporting whole i-block,
then remove the upper half i-block from the fore-most covering whole -
block among the ones with the higher hight and another upper half i-block
from the fore-most supporting whole i-block among the ones with the higher
hight.

(E2) If C contains some whole i-blocks and all of them are of the same type,
then remove the upper half i-block from the fore-front whole i-block among
the ones with the higher height. This would create a lower half i-block.
Consider the (lower) half i-blocks having the same type as this new one.
We then remove the fore-most half i-block among the ones with the higher
height.

(E3) If C contains no whole i-blocks, but does contain some half i-blocks, then
the number of covering half i-blocks and that of supporting half i-blocks
must be the same. We remove the fore-most covering half i-block and the
fore-most supporting half i-block among the ones with the higher hight.



(E4)
(F1)

(F2)

(F3)

(F4)
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If C' contains no i-blocks, we define €;C = 0

If C contains both a covering whole i-slot and a supporting whole i-slot,
then we place a half i-block in the rear-most covering whole i-slot among
the ones with the lower hight and another half i-block in the rear-most
supporting whole i-slot among the ones with the lower height.

If C contains some whole i-slots and all of them are at the same type, then
we place a half i-block in the rear-most whole i-slot among the ones with
the lower height. This would create an (upper) half i-slot. Consider the
(upper) half i-slots having the same type as this new one. We then place
another half i-block in the rear-most (upper) half i-slots among the ones
with the lower height.

If C' contains no whole i-slots, but dose contain some half i-slots, then the
number of covering half i-slots and that of supporting half i-slots must be
the same. We place a half i-block in the rear-most covering half i-slots and
another half i-block in the rear-most supporting half i-slots among the ones
with the lower height.

If C' contains no i-slots, we define f;C' =0

Case 2. Suppose that ¢ = 0,n and that the i-block is a unit cube. The actions
of é; and f; are defined by (E1)-(E3) and (F1)-(F3), respectively.

(E1)

(E2)

(E3)
(F1)

(F2)

(F3)

If C contains at least two whole i-blocks, first remove a upper half i-block
from the fore-most whole i-block among the ones with the higher hight.
Then, do the same once more on the resulting set of blocks. If C' contains
one whole i-block, then remove the upper half i-block from the whole i-
block and remove the fore-most (lower) half i-block among the ones with
the higher hight.

If C contains no whole i-blocks, but does contain some half i-blocks, then
the number of half i-blocks must be even. We first remove the fore-most
half i-block among the ones with the higher hight. Then, do the same once
more on the resulting set of blocks.

If C' contains no i-blocks, we define €;C = 0

If C' contains at least two whole i-slots, we first place a half i-block in the
rear-most whole i-slot among the ones with the lower hight. Then, do the
same once more on the resulting set of blocks. If C' contains one whole i-
slot, then we place a half i-block in the whole i-slot and another half i-block
in the rear-most (upper) half i-slot among the ones with the lower height.
If C' contains no whole i-slots, but does contain some half i-slots, then the
number of half i-slots must be even. We first place a half i-block in the
rear-most half i-slot among the ones with the lower height. Then, do the
same once more on the resulting set of blocks.

If C' contains no i-slots, we define f;C' =0

Case 3. Suppose that i = 0 (resp. i =n) and that the i-block is of half-height.
The actions of é; and f; are defined by (E1)-(E3) and (F1)-(F3), respectively.

(E1)

If C' contains some supporting i-blocks (resp. covering i-blocks), then we
remove the fore-most supporting (resp. covering) i-block among the ones
with the higher height.



(E2)

(F2)

(F3)
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If C contains some i-blocks and all of them are covering blocks (resp. sup-
porting blocks), then remove the fore-most covering (resp. supporting)
i-block among the ones with the higher height.

If C contains no i-blocks, then é;C' = 0.

If C contains some covering i-slots (resp. supporting i-slots), then we place
an i-block in the rear-most covering (resp. supporting) i-slot among the
ones with the lower height.

If C contains some i-slots and all of them are supporting slots (resp. cov-
ering slots), then we place an i-block in the rear-most supporting (resp.
covering) i-slot among the ones with the lower height.

If C' contains no i-slot, the we define f;C' = 0.

Case 4. Suppose that i = 0,1 (resp. n—1, n) and that the i-block is of half-
depth. Un-split all half 0|1-blocks (resp. (n-Ijn-blocks) in C' to obtain C".

(E1)

(F2)

If C' contains an i-block, remove the fore-most i-block among the ones with
the higher height to obtain C"'. We split all 0|1-blocks (resp. (n-Ljn-blocks)
in C" to obtain ¢;C.

If C' contains no ¢-block, we define €;C = 0.

If C' contains an i-slot, place an i-block in the rear-most i-slot among the
ones with the lower height to obtain C". We split all 0|1-blocks (resp.
(n-n-blocks) in C"' to obtain f;C.

If C' contains no i-slot, we define f;C = 0.

Remark 3.8. In a slice, unlike the case for other whole blocks, the result of un-
splitting all 01 and (u-Lp-blocks, mentioned in the above actions of Kashiwara
operators for ¢ = 0,1,n — 1, n, is unique.

Example 3.9. We illustrate fl actions on slices.

(1)

(2)

(3)

Bél)—type f> action; (F1) and (F2) of Case 1

0|1 0|1 0|1 0|1 0|1 0|1
2|2 2|2}y 2|2}y
3 3 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 "2"| 2 2 2 2
0|1 0|1 0|1 0|1| 0|1 0|1 0|1 0|1| 0|1 0|1 0|1 0|1
AP f, action; (F1) of C
4 -type fa action; (F1) of Case 2
5 2Iss
1 1 1 1 1 1 1 1 1
0lo0]0 — [ I ) — 0lo0]0
0lo]0 0lo0l0 0lo]0

Bél)—type fg action; (F1) of Case 4

fol b Fo‘ll EFO i[oli

2 2|22
3[3[s 333
313]3 31 3]3
2|22 ? 2|22
0|1 0|1 0|1 0|1 0|1 0|1
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4. EQUIVALENCE CLASSES OF SLICES

Let C = (¢1,...,¢1) be a level-l slice. We define the slices C' + ¢ to be :

C+6:(027"'=Clacl+6)=

4.1
(41) C—-—6=(q—96c1, - ,c-1)-

We say that two slices C' and C' are related, denoted by C' ~ C’, if one of the two
may be obtained from the other by adding finitely many §’s. Let

(4.2) e =80/ ~

be the set of equivalence classes of level-l slices under this relation. For the equiv-
alence class containing a level-l slice C', we will use the same symbol C. Since the
map C(€ SU) — C 4§ commutes with the action of Kashiwara operators, we may
define the induced Kashiwara operators on CY). We also define

©i(C) = max{k | ffC e ¢V},
(4.3) £:(C) = max{k | &8C e ¢V},
WE(C) =Y (9i(C) — &i(C)) A

i

Then one can verify in a straightforward manner that the set C\¥), together with
the induced Kashiwara operators and the maps ¢;, €; (i € I), wt becomes a U, (g)-
crystal.

Recall that a typical level-l slice is a split form of a level-l pre-slice. Hence the
top of each layer of a level-/ slice may be a usual block or a broken half of a block.
We will classify the layers of level-[ slices into several types depending on the shape
of their top parts, and give an explicit description of the set C¥) in terms of the
numbers of the layers of each type.

We then construct a canonical bijection 1 : BY) — C) and its inverse ¢ : C) —
BW, which will turn out to be a crystal isomorphism.

In the following, we will use the symbols s;, 5;, t;, t;, for the types of layers, and
will write their top parts to their right.

) Agi) case

We first list the types of layers and their top parts :

so : supporting 0-slot (=covering 0-block),

s; : supporting i-slot (i = 1,...,n),

=0

: covering i-block (i = 1,...,n),

~~ W
S

: half of a supporting i-block (i = 1,...,n),

S~
~.

: half of a covering i-block (i = 1,...,n).
For example, the layers of type s; and ; have the following form.

-
i+1

S; = [i—2 ti:
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Let C be a level-l slice in C(¥). Note that the number of layers of type t;

must be the same as that of layers of type ¢;. If we write

ug = the number of layers of type sq¢ in C,

y; = the number of layers of type s; in C (i =1, ...,
§; = the number of layers of type 5, in C (i =1,...,

z; = the number of layers of type t; in C,
= the number of layers of type ¢; in C (i = 1

then 2z, must be even, y;y; = 0 for all i = 1,...,n, and ug + >, (y; +
¥i) +2 Z?;ll zi + 2z, = [. Hence the set CY) can be characterized as

We define the map ¢ : B — C) by

(a:l,...,a:n\irn,...,a_zl) — (U0|y1,...,yn|§1,...,gn‘21,...,

up =1 — 31 (% + T4),

yi =max{0,z; —Z;} (i=1,...,n),
Yi = maX{O,a’:i —ZEZ'} (’L = ,...,n),
zi =min{z;,Z;} (i =1,...,n—1),
zp = 2min{x,, &, },
and the map ¢ : CV) — B" by
(wolyt, -« s YnlU1s -y Unl21, ooy 2n) = (T1y oo, Tn|Tny e -

Ti=Yi+2i, Ti=0i+z@A=1...,n-1),

Tn =Yn+ 520, Tn =Yn + Z2n.

2 2

. D(2+)1 case

n

The types of layers and their top parts are given below :

so : covering 0-block (=supporting 0-slot),
s; : supproting i-slot (i =1,...,n),

i : covering i-block (i = 1,...,n),

P

Yo, Yi, i, 2i € L>o, 2zn is even, y;§; =0,

ug + Z?:l(yi + ﬂz) + 2 Z?:_f zi+zn=1

zn), where

S
t; : half of a supporting i-block (i = 1,...,n — 1),

i + half of a covering i-block (i =1,...,n— 1),

t, : supproting n-block (=covering n-slot).

} |



HIGHER LEVEL YOUNG WALLS 11

For a level-{ slice C' in CV), we write

ug = the number of layers of type sg,
y; = the number of layers of type s; (i =1,...,n),
9; = the number of layers of type 5; (i =1,...,n),
z; = the number of layers of type ¢;,
= the number of layers of type ¢; (i =1,...,n — 1),
zn = the number of layers of type t,.

Then we have y;5; = 0 for all i = 1,...,n and wo + Y, (yi + ¥i) +

3

2 Z?;ll 2i + 2, = 1. Hence the set C(!) can be characterized as

uO:yi:giazi S ZZO) ylgl = 07
Uug + Z?:l(yi + i) + 22?:_11 zit+2n =1 -

¢ = {(uoyl,...,yngl,...,gjn|zl,...,zn)
We define the map ¢ : B — C) by
(@1, s Tp|To|Zny - T1) = (WolYts -« YnlT1y - - -y Tnl21, -+, 2n), Where
Uozl—$0—2?11($i+57i),
yi = max{0,z; —%;} (i =1,...,n),
Yi = maX{O,a’:i —ZEZ'} (’L = 1,...,’!7,),
zi =min{z;,Z;} (i =1,...,n—1),
zp = 2min{z,, T, } + zo,

and the map ¢ : CV) — B" by

(woly1s- - s YnlTts -y Unlz1s- s 2n) = (T1, ..., Zn|To|Tn, ..., T1), where

1 if 2z, is odd,
Ti=Yi+ 2, Ti =i+ 2 (Z:].,,TL—].),

0 if z, is even,
o =

Yn + 2Zn if z,, is even,

Ty =
" Un—+2n —1  if 2, is odd,
) Unt 2 if 2, is even,
" Un + 20 —1 if 2z, is odd.
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The types of layers and their top parts are given below :

S1

ton

: 1-slot with a 0-block,

: 0-slot with a 1-block,

; : supproting i-slot (i = 2,...,n),
: covering i-block (1 =2,...,n),

: half of a supporting i-block (i =2,...,n —1),

3

: half of a covering i-block (i =2,...,n — 1),
: half of an n-block,
: half of a (1-block.

For example, we have

S1

Ao g
A 94
g = or tn

TR
N

I
N

N

For a level- slice C in CV, we write

ug = the number of layers of type ty,

y; = the number of layers of type s; (i =1,...,n),

9; = the number of layers of type 5; (i =1,...,n),

z; = the number of layers of type ¢;,

= the number of layers of type #; (i =2,...,n —1)

Y

zn = the number of layers of type t,.

Then ug and z, must be even, y;y; = 0 for all « = 1,....,n, and uy +
S (i +5i) +2 30, 2i+ 2, = I. Hence the set C(!) can be characterized

as

C(l) = {(uOyh-- -vyn‘gla-' -agn|225' -'7Z’ﬂ)

uo, Yi, gia z; € ZZOa Ug, 2n are even, yzgl = 07
wo + Z?:l (yi +7i) +2 Z?:}l Zi+zn =1 -

We define the map ¢ : BO — ¢ by

(@1, xp|Zny - T1) = (wolyts - YnlT1s - -y Unlz2, -« -, 2n), Where

wo = 2min{xy, 71 },

yi =max{0,z; —Z;} (i=1,...,n),
g =max{0,z; —z;} (i=1,...,n),
zi =min{z;,Z;} (1 =2,...,n—1),

zp = 2min{zy,, Tn},

and the map ¢ : C(V — B by

(woly1s-- s YnlT1s -y Unlz2, . s 2n) = (@1, ..., Zp|Zn, ..., T1), where
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1 _ _
Ty =Y+ FU0, T1 =11 + 5 U0
Ti=Yi+2i, Ti=0i+2z({(=2,...,n—1),
Tn =Yn + 520 Tn = Yn + 520
. D%l) case
The types of layers and their top parts are given below :
s1 @ 1-slot with a 0-block,
31 : 0-slot with a 1-block,
s; : supproting i-slot (i = 2,...,n — 2),
§; : covering i-block (i = 2,...,n — 2),
Sn—1: (n — 1) and n-slots,
Sn—1: (n —1) and n-blocks,
Sy, : n-slot with a (n — 1)-block,
5n : (n — 1)-slot with a n-block,
t; : half of a supporting i-block (1 =2,...,n —2),
; + half of a covering i-block (i =2,...,n —2),
tor = half of a (1-block,
teay : half of a (-Ijn-block.
For a level- slice C in CV, we write
ug = the number of layers of type ty,
wo = the number of layers of type ¢,y
y; = the number of layers of type s; (i =1,...,n),
¥; = the number of layers of type §; (i =1,...,n),
z; = the number of layers of type ¢;,
= the number of layers of type ¢; (i =2,...,n — 2).
Then ug and wg must be even, y;g; = 0 for all i = 2,...,n — 1, and ug +
wo+ 1 (yi+0:) +2 307 zi = I. Hence the set C)) can be characterized

as
Uo, Wo € 2Z>0, Yi, Yi, 2i € L>o, Yi¥i =0,
ug +wo + S0 (i +Fi) + 230 2 =

} |

sUnlz2,. .., 2n_2), where

wo = 2min{x1, 1 }, wo = 2min{x,_1,Tp_1},
y; = max{0,z; — Z;}, J;i = max{0,%; —z;} (i=1,...,n—1),
Yn = Tn, Yn = Tn,

z; =min{z;,Z;} (1 =2,...,n—2),
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and the map ¢ : C(V — B by

(wo,Woly1,- -y YnlUts - Unlz2, .oy 2n—2) & (@1,..., Tp|Tn,...,T1), Where

1 _ _
1=y + §U0= 1 =9y + 5“0,

Ti=yi+zi, Ti=Yi+z ((=2,...,n-2),

Tn—1=Yn-1+ 511)0, Tp-1=Yn-1+ 5100:

In =Yn, Tn = Yn-
. Br(ll) case
The types of layers and their top parts are given below :

s1 : 1-slot with a 0-block,

S1 : 0-slot with a 1-block,

s; : supproting i-slot (1 = 2,...,n),

§; : covering i-block (i =2,...,n),

t; : half of a supporting i-block (i =2,...,n —1),

3

t; : half of a covering i-block (i = 2,...,n — 1),

~
3

: supproting n-block (=covering n-slot),
top : half of a (J1-block.

For a level-{ slice C' in CV), we write

up = the number of layers of type tg,
y; = the number of layers of type s;(i = 1,...,n),
§; = the number of layers of type §;(i = 1,...,n),
z; = the number of layers of type ¢;,
= the number of layers of type &; (i = 2,...,n —1)

Y

zn = the number of layers of type t,.

Then ug must be even, y;5; = 0 for all i = 1,...,n, and, up + Y 1, (y; +
Ui) + 2 Z:.L:_; 2i + 2z, = [. Hence the set CY) can be characterized as

o () 7 il ) ug € 2Z>0,  Yi, i, zi € L>o,
= Uo Y1y s Yn|Yly s Yn|22, ...y 2n n _ n— .

Uug + Zizl(yi + yi) +2 Zi:; 2i+ 2n =1
We define the map ¢ : B — C) by

(woly1, -« s YnlU1y- -y Unl22, ..y 2n) = (X1, ..., Zn|To|Zn, ..., 1), Where

up = 2min{z;, 71 },

yi =max{0,z; —Z;} (i=1,...,n),
gi = max{0,Z; —xz;} (i=1,...,n),
zi =min{z;,Z;} (1 =2,...,n—1),

zp = 2min{z,, T, } + o,
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and the map ¢ : C(V — B by

(@1, Tp|To|ZTny - T1) = (WolYts -« YnlT1y - -« Tnl22, - ., 2n), Where
. +1 o +1
1 =Y 2“0, 1 = 2U0,
T =Y; +2i, Ty =Y; + 25 (i:?,...,n—l),
z _ _ z
Tp = Yn +2[7n], Tn = Yn +2[?n],

xg = 0if 2z, is even, zg = 1 if z, is odd.

° C,(Ll) case
The types of layers and their top parts are given below :

s; : supproting i-slot (i = 1,...,n),

; : covering i-block (i = 1,...,n),

~
~.

: half of a supporting i-block (i =1,...,n — 1),

Sl

; + half of a covering i-block (i =1,...,n —1)
to : half of a 0-block,
t, : half of a n-block.

Y

For a level- slice C in CV, we write

2o = the number of layers of type tg,
zn = the number of layers of type t,,
y; = the number of layers of type s; (i =1,...,n),
¥; = the number of layers of type 5; (i =1,...,n),

z; = the number of layers of type ¢;,

= the number of layers of type ¢; (i = 1,...,n — 1).

Then zy and z, must be even, y;5; =0 for alli =1,....,n, and zg + z, +
S (yi +5i) + 23275 2 = 21. Hence the set C() can be characterized as

20+ 2n + 2y (yi + i) + 2 2?2—11 z; =2l

We define the map ¢ : BO — ¢ by

0 B B 20, 2n € 240,  Yi,Yis 2 € Lixo,
C = (yla"'7y’n‘y17"'ayn|Z05---;Zn) .

(@1, Tn|Zhny- s T1) = Y1y YnlTts - -, Unlz0s -« -5 2n), Where

20 =21—%"  (z1 + ),

y; = max{0,z; — Z;}, y; = max{0,%; —x;} (i =1,...,n),
zi =min{z;,Z;} (i =1,...,n—1),

zp = 2min{x,, T, },

and the map ¢ : CV) — BW by

W1y s Ynlts -y Unlz0s - 2n) = (@1, ..., Zp|Tp, ..., T1), where
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1 _ _
Tn = Yn + §Zn: Tn =Yn+ Ezn
It is straightforward to verify that ¢ and ¢ are inverse to each other. Also it
is easy to see that the maps wt, ;, £;, and the action of the Kashiwara operators

commute with ¢». To summarize, we obtain a new realization of level-l perfect
crystals as the set of equivalence classes of level-l slices.

Theorem 4.1. For all classical quantum affine algebras, there is a crystal isomor-
phism ¢ : BY — C given by above formulas.

5. HIGHER LEVEL YOUNG WALLS

In this section, we will define the notion of (arbitrary level) proper Young walls,
reduced Young walls, ground-state walls, etc., and give a realization of arbitrary
level irreducible highest weight crystals in terms of reduced Young walls. The
patterns for building Young walls are given below :

A2 D@ A2
2n—1 0 /1T /710 /|t ntl 0lololo 2n 0l0]0[0
1l 0 loJolo 0 loJolo
afaf2]2 NEREE NEREE
—1h—1f—1h—1] —th—1f—1k—1 —th—1f—1k—1
T I T D
nln|n|n ninlnfn nln|n|n
—1h—1f—1h—1] —th—1f—1k—1 —th—1f—1k—1
af2f2]2 NEEEEE NEEE
0 /1T /10 /|t o loJolo o loJolo
Wl 0lololo 0lololo
B oW P
n 6T/ /0 " "
2l2]2]2
ol ofofofo AT
2f2f2]2 1|11 ]2 AvAYAYS
. . 22|22
—th—1f—1h—1] —th—1f—1h—1]
nlnln[n wln |n|n —2h—of—oh—
nn [n [n
—1h—th—1h—1 —1h—th—1h—1 e W e R
. I W A
22212 INERERE
o110 1 2222
Wl ojojofo AT
1101410

Definition 5.1. A level-l Young wall is a concatenation of level-] slices, extend-
ing infinitely to the left, satisfying the following conditions.
(1) It is concatenated following the pattern given above.

(2) At each layer, there is no free space to the right of any block (or broken
half-block).

Remark 5.2.

(1) In most cases, it is easy to judge whether there is a free space to the right
of a given block (or broken half-block). In addition, the following nontrivial
cases will be considered as having a free space to the right of a given block
(or broken half-block).
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e The left is a whole block and the right is a broken half of a whole
i-block.

e The left is a single block of half-unit depth and the right is the upper
broken half of a whole j-block.

. A

Here, i = 0,1 and j = (1 or ¢ = n—1,n and j = (n-Ijr. Note that the
color of the broken half on the right will depend on 1.

e The right is a single block of half-unit depth and the left is the lower
broken half of a whole j-block.

A . 1

Here, i = 0,1 and j = 0l or i = n—1,n and j = (n-Dh.
(2) However, the following cases will be considered as having no free space to
the right of a given block (or broken half-block).

A

withi=0,1and j =l or i = n—1,n and j = (@-)n and where the right is

a lower half

with i = 0,1 and j =l or i = n—1,n and j = (@-)n and where the left is
an upper half

Definition 5.3.

(1) A full column is a layer of a level-l slice whose height is an integer and
whose top is of unit depth.

(2) A level-l Young wall Y is said to be proper if for each layer of Y, none of
the full columns have the same height.

(3) A column in a level-l proper Young wall is said to contain a remowvable &
if one may remove a ¢ from that column and still obtain a proper Young
wall.

(4) A level-l proper Young wall is said to be reduced if none of its columns
contain a removable §.

Let A = apAg + a1Ay + -+ + ap A, be a dominant integral weight of level-l so
that

(1 =ag +a; +2(az + -+ ay) Aéi)_l case,
l=ao+2(a+ - +an 1)+ an Dfil case,
(5.1) l=ap+2(ar+ - +ap) Agi) case,
l=ao+ar+2(ax+ -+ an—1)+ay Br(ll) case,
l=ay+a1+ - +ay, C,(Ll)case,
U=ao+a+2(ar+ -+ an2)+a,_1+a, Ds) case.
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We would like to define the ground-state wall Y, of weight \. It will be
constructed as a level-l reduced Young wall. In the following, we will draw part of
Y,. In the AéQn)fl and BY case (resp. DY case) depending on whether ag > a1
or ap < ap (resp. ag > ay or ag < a; and a,_1 > a, or a,—1 < a,), there are two
(resp. four) different forms of the ground-state wall. We will just draw the case

when ag < a; (resp. ap < a; and an—1 > ay).

A§2n)—1 :
5]
] ] ]
] ] 1|
i —"M I —"M T
------ 10000 v 0 v
as Ani12a,%n1 @200 aQ
. aij—aq
Dy,
1]
] ] 1]
i i B
...... 1] .. A
I [To
) a] Gpafied aja
Aéil) : 1 1ao0
1]
] ] ]
] ] ]
i i o
...... 1] {17 . o
I [To

a1  Oni2an,%n1 ailagQ
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By
5]
il il 1]
T [ T [ E
""" 1 e 1 e e 2
L
ag  Apxfinl asag 7;0
07%1) al 0
(1]
] ] 1]
Il Il 1]
1 ]ﬂ 1 ]ﬂ ]
...... P P .T.I.T. P P .T.I.T. 0
a]  Ap42a,%n4 a1 2ag
DY

|M|

AN

------ - [ |"]errﬂﬂlrlrﬂ“'|||||||| |"]Wmﬂﬂmrfo

ag Gp_9an a;fin-2 agap ag
Up_1—an ai—ag

Recall that a Young wall is a concatenation of slices. We have drawn the left-side-
views of the first two slices that make up the Young wall. The actual ground-state
wall should extend infinitely to the left, repeating the same pattern. At the right
end, we have drawn the pattern for stacking the blocks, so as to show the color of
the blocks placed at each height.

For Agi)_l and BY (or DS)) cases, the pattern on the right is just for the even
ith columns. As given by the figures at the beginning of this section, the odd
columns will be stacked in a pattern with 0,1 (resp. 0, 1 and n — 1, n) exchanged.
Since the outline of the first two slices given above (actually, all slices) are exactly
the same, this means that the even and odd columns are identical except for the
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exchange of 0 with 1 (resp. 0 with 1 and n — 1 with n). Below the Oth slice, we
have written down how many layers of each shape should be used.
When ag > aq,

al al
ap—ai

should appear in the first few layers of the Oth column. Notice that in addition to
the exchange of ag with a; from the full diagram above, the position of half-unit
depth blocks appearing in the middle has shifted so that they are now 1-blocks
instead of the 0-blocks used in the full diagram.

A level-l proper Young wall obtained by adding finitely many blocks to the
ground-state wall Y is said to have been built on Y. We denote by Z(A) (and
Y(A)) the set of all proper (resp. reduced) Young walls built on Y.

Let Y be a level-l proper Young wall built on Y and let C' be a column of Y.
Recall that a column C is a level-l slice and that for each i € I, ¢;(C) (resp. £;(C))
is the largest integer k > 0 such that f¥(C) # 0 (resp. €¥(C) # 0).

We now define the action of Kashiwara operators f;, &; (i €1I)onY as follows.

(1) For each column C of Y, write ¢;(C)-many 1’s followed by ¢;(C)-many 0’s
under C. This sequence is called the i-signature of C.

(2) From this sequence of 1’s and 0’s, cancel out each (0,1)-pair to obtain a
sequence of 1’s followed by 0’s (reading from left to right). This sequence
is called the i-signature of Y.

(3) We define f;Y to be the proper Young wall obtained from Y by replacing
the column C corresponding the leftmost 0 in the i-signature of Y with the
column f;C.

(4) We define ;Y to be the proper Young wall obtained from Y by replacing
the column C corresponding the rightmost 1 in the i-signature of Y with
the column ¢;C.

(5) If there is no 0 (or 1) in the i-signature of Y, we define f;¥Y = 0 (resp.
&Y =0).

We need to show that the action of Kashiwara operators on Z(\) is well-defined.
We will just deal with the f; operator.

Since a Young wall extends infinitely to the left, it is not immediately clear as
to whether there exists a leftmost zero. That is, it is not clear whether the number
of zeros in the i-signature of Y is finite. Let us briefly comment on this here.

Since only finitely many blocks were added to the ground-state wall in building
Y, the wall will eventually become identical to the ground-state wall at some point,
as it proceeds to the left. Thus it suffices to check if the ground-state walls give
finite signatures. This one may do easily with each of the explicit ground-state
walls.

Now, we fix some notations. Denote by C the column corresponding to the
leftmost 0 in the i-signature of a proper Young wall Y. The column sitting to the
right of column C' will be denoted by C'.

Suppose that fiY is not a proper Young wall. In fact, it could be that fiY is
not even a Young wall. In such a case, the following statement would be true.
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e There is a free space to the right of some block or half-block in some layer
of the column of f;Y, that corresponds to the column C of Y.

If the result is a Young wall, but just not proper, then the following statement
would be true.

e The columns of f;Y corresponding to the columns C' and C' of Y contain

a layer in which the tops are of unit depth and of the same integer height.

For the index i corresponding to a unit cube or a half-hight block, the follow-
ing lists all possible non-trivial forms for f;Y that satisfy one of the above two

statements.
O, e B [

2
1 —r T
| | | |

For the indices corresponding to blocks of half-unit depth; that is, for i = 0,1 or
n — 1,n, the following lists (almost) all possible forms for f;Y that satisfy one of
the above two statements.

oy P @ e
A, B W A

Here, j = 01 or (n-I)n. As mentioned in Remark 5.2, the right (or left) of the first
(resp. last) two diagrams in the first row is the upper (resp. lower) broken half of
a whole j-block.

In each of these cases, it is possible to obtain one of the following three conclu-
sions.

(1) There is a free space to the right of some block or half-block in some layer
of the column C of Y.
(2) The columns C and C' of the proper Young wall Y contain a layer in which
the tops are of unit depth and of the same integer height.
(3) ¢i(C) < &i(C).
The first of these conclusions violates the assumption that we started out with a
Young wall Y. The second conclusion is in violation of the properness of Y. As for
the third, since C is the column corresponding to the leftmost 0 in the i-signature
of Y we must have ¢;(C) > £;(C"). Each of these conclusions brings us to a
contradiction, and hence the resulting fiY must have been a proper Young wall.
We define the maps wt : Z(A) = P, ¢;,&; : Z(X) = Z by setting

n
wt(Y) = A= kiay,
i=0

5.2
(5-2) ©i(Y) = the number of 0’s in the i-signature of Y,

€;(Y) = the number of 1’s in the i-signature of Y,
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where k; is the number of i-blocks that have been added to Y.

Remark 5.4. We have seen that the i-signatures are always finite. Hence it makes
sense to count the number of 0’s and 1’s in the signature.

Now it is straightforward to verify that the following theorem holds.

Theorem 5.5. The set Z(\) of all level-l proper Young walls built on Y 5, together
with the maps &;, fi, €, @i (i € I), and wt, forms a Uy(g)-crystal.

Finally, we give a new realization of arbitrary level irreducible highest weight
crystals in terms of reduced Young walls. Since the irreducible highest weight
crystal B(\) is isomorphic to the crystal P(\) consisting of A-paths, it suffices to
show that there is a crystal isomorphism @ : Y(\) — P()).

We define the map @ : Y(A) — P()) as follows. Given a reduced Young wall
Y = (Y(k)$, in Y(\), consider the crystal isomorphism ¢ : BY — C() given
in Theorem 4.1, and define ®(Y) to be

Conversely, to each A-path p = (p(k)){2,, by removing an appropriate number of
d’s, one can easily see that there exists a unique reduced Young wall Y = (Y (k))%2,
such that ¢¥(p(k)) = Y(k) for all £ > 0. Hence ® is a bijection.

Moreover, by the same argument used in the proof of Theorem 6.2 in [9], we
can show that Y()\) is a subcrystal of Z(A) and the map ® commutes with the
Kashiwara operators. Therefore we obtain our main result.

Theorem 5.6. We have a U,(g)-crystal isomorphism

(5.4) Y(A) — P(A) — B(\).

In the following figure, we illustrate the top part of the affine crystal Y(3Aq) for
B;l). The shaded part denotes the change through the action of f; (i € 1).
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