Indefinite higher Riesz transforms

Toshiyuki Kobayashi*

Research Institute for Mathematical Sciences, Kyoto University *E-mail address:* toshi@kurims.kyoto-u.ac.jp

and

Andreas Nilsson[†] University of Kalmar *E-mail address*: andreas.nilsson@hik.se

March 30, 2007

Abstract

Stein's higher Riesz transforms are translation invariant operators on $L^2(\mathbb{R}^n)$ built from multipliers whose restrictions to the unit sphere are eigenfunctions of the Laplace–Beltrami operators. In this article, generalizing Stein's higher Riesz transforms, we construct a family of translation invariant operators by using discrete series representations for hyperboloids associated to the indefinite quadratic form of signature (p, q). We prove that these operators extend to L^r -bounded operators for $1 < r < \infty$ if the parameter of discrete series representations is generic.

^{*}Partially supported by Grant-in-Aid for Scientific Research 18340037, Japan Society for the Promotion of Science

 $^{^\}dagger \mathrm{Partially}$ supported by Japan Society for the Promotion of Science

²⁰⁰⁰ Mathematics Subject Classification. Primary 22E46, Secondary 42B15

Key words and phrases. Riesz transforms, spherical harmonics, discrete series representations, unitary representations, indefinite orthogonal group

1 Introduction and statement of main results

For a measurable bounded function m on \mathbb{R}^n , the *multiplier operator* T_m : $f \mapsto \mathcal{F}^{-1}(m\mathcal{F}f)$ defines a continuous, translation invariant operator on $L^2(\mathbb{R}^n)$, where \mathcal{F} is the Fourier transform.

Classic examples are the Riesz transforms

$$(R_j f)(x) := \lim_{\varepsilon \to 0} \frac{\Gamma(\frac{n+2}{2})}{\pi^{\frac{n+2}{2}}} \int_{|y| > \varepsilon} \frac{y_j}{|y|^{n+1}} f(x-y) dy \qquad (1 \le j \le n)$$

which are associated to the multipliers $m_j(\xi) := |\xi|^{-1}\xi_j$. One of the important properties of the Riesz transforms is that R_j extends to a continuous operator on the Banach space $L^r(\mathbf{R}^n)$ for any 1 < r < n. From a group theoretic view point, the space $\mathcal{M}_2(\mathbf{R}^n)$ of all continuous, translation invariant operators on $L^2(\mathbf{R}^n)$ is naturally a representation space of the general linear group $\mathrm{GL}(n, \mathbf{R})$ by

$$\mathcal{M}_2(\mathbf{R}^n) \to \mathcal{M}_2(\mathbf{R}^n), \quad T \mapsto L_g \circ T \circ L_g^{-1} \quad (g \in \mathrm{GL}(n, \mathbf{R})),$$

where $(L_g f)(x) := f(g^{-1}x)$. Then, it is noteworthy that the Riesz transforms R_j $(1 \le j \le n)$ span the simplest non-trivial representation (an irreducible *n*-dimensional representation) of the orthogonal group O(n).

More generally, E. M. Stein introduced a family of bounded translation invariant operators T_m (higher Riesz transforms) associated to multipliers mwith the following two properties:

$$m$$
 is a homogeneous function of degree 0, (1.1)

$$m|_{S^{n-1}} \in \mathcal{H}^k(\mathbf{R}^n). \tag{1.2}$$

The condition (1.1) is equivalent to the fact that m is constant on rays emanating from the origin. Thus, m is completely determined by its restriction to the unit sphere. The condition (1.2) concerns this restriction. Here, $\mathcal{H}^k(\mathbf{R}^n)$ denotes the space of spherical harmonics of degree k defined by

$$\mathcal{H}^{k}(\mathbf{R}^{n}) := \{ f \in C^{\infty}(S^{n-1}) : \Delta_{S^{n-1}}f = -k(k+n-2)f \}, \qquad (1.3)$$

where $\Delta_{S^{n-1}}$ is the Laplace–Beltrami operator on the unit sphere S^{n-1} . Then, we have

Fact 1.1 (see [6, II, Theorem 3]). Suppose $k \in \mathbf{N}$. Then, for any *m* satisfying (1.1) and (1.2), T_m extends to a continuous operator on the Banach space $L^r(\mathbf{R}^n)$ for any $1 < r < \infty$.

We note that T_m corresponds to the identity operator for k = 0, and to the Riesz transforms for k = 1. For general k, $\{T_m : m \text{ satisfies (1.1) and} (1.2)\}$ forms an irreducible O(n) submodule in $\mathcal{M}_2(\mathbf{R}^n)$.

In the previous paper [4], we analyzed translation invariant operators from group theoretic view points, and found the following phenomenon: L^2 bounded translation invariant operators with 'large symmetries' are mostly unbounded on $L^r(\mathbf{R}^n)$ ($r \neq 2$) except for the cases that they are built from higher Riesz transforms, as far as 'large symmetries' are defined by *finite* dimensional representations of affine subgroups (e.g. [4, Theorem 9]).

The aim of this paper is to construct a family of L^r -bounded translation invariant operators $(1 < r < \infty)$ with 'large symmetries' by using *infinite* dimensional representations.

To be more precise, we take a quadratic form

$$Q(\xi) := \xi_1^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \dots - \xi_{p+q}^2$$

of a general signature (p,q) (p > 1) and work on the hyperboloid

$$X_{p,q} := \{ \xi \in \mathbf{R}^{p+q} : Q(\xi) = 1 \},\$$

which is a (non-singular) submanifold in the open domain $\mathbf{R}^{p,q}_+ := \{\xi \in \mathbf{R}^{p+q} : Q(\xi) > 0\}$ of \mathbf{R}^{p+q} . We endow $X_{p,q}$ with the standard pseudo-Riemannian structure of signature (p-1,q), and introduce a dense subspace of L^2 -eigenfunctions of the Laplace–Beltrami operator $\Delta \equiv \Delta_{X_{p,q}}$ as follows:

$$\mathcal{H}^{k}(\mathbf{R}^{p,q}) := \{ f \in L^{2}(X_{p,q}) : \Delta f = -k(k+p+q-2)f \}_{K-\text{finite}}.$$

See Section 2 for more details. In the case (p,q) = (n,0), we note $X_{p,q} = S^{n-1}$, $\mathbf{R}^{p,q}_{+} = \mathbf{R}^{n}$, and $\mathcal{H}^{k}(\mathbf{R}^{p,q}) = \mathcal{H}^{k}(\mathbf{R}^{n})$.

In our setting for general p, q, we replace (1.2) with

$$m|_{X_{p,q}} \in \mathcal{H}^k(\mathbf{R}^{p,q}) \quad \text{and} \quad \operatorname{Supp} m \subset \overline{\mathbf{R}^{p,q}_+}.$$
 (1.4)

Then, the following subspace of $\mathcal{M}_2(\mathbf{R}^{p+q})$:

$$\{T_m : m \text{ satisfies } (1.1) \text{ and } (1.4)\}$$

forms a dense subspace of an irreducible (infinite dimensional) unitary representation of the indefinite orthogonal group O(p,q) if p > 1 and q > 0. Our L^r -boundedness theorem is now stated as follows: **Theorem 1.** Suppose k > 4 (p + q: even) or k > 3 (p + q: odd). Then, for any m satisfying (1.1) and (1.4), the multiplier operator T_m extends to a continuous operator on $L^r(\mathbf{R}^{p+q})$ for any $1 < r < \infty$.

Remark 1.2. In place of $X_{p,q} \subset \mathbf{R}^{p,q}_+$, we can also consider the open domain $\mathbf{R}^{p,q}_- := \{\xi \in \mathbf{R}^{p+q} : Q(\xi) < 0\}$ and L^2 -eigenfunctions on another hyperboloid $X'_{p,q} := \{\xi \in \mathbf{R}^{p+q} : Q(\xi) = -1\}$. Then, for m supported on $\overline{\mathbf{R}^{p,q}_-}$ an analogous result also holds by switching (p,q) to (q,p) because $X'_{p,q} \simeq X_{q,p}$ and $\mathbf{R}^{p,q}_- \simeq \mathbf{R}^{q,p}_+$.

The operators T_m with *m* satisfying (1.1) and (1.4) may be regarded as a generalization of Stein's higher Riesz transforms in the following sense:

 $\begin{array}{rcl} \text{spherical harmonics on } S^{n-1} & \Rightarrow & \text{discrete series for } X_{p,q}, \\ & \mathcal{O}(n) & \Rightarrow & \text{indefinite orthogonal group } \mathcal{O}(p,q). \end{array}$

We shall call T_m indefinite Riesz transforms. Then, Theorem 1 for indefinite Riesz transforms is a generalization of Fact 1.1

A distinguishing feature of our generalization is that the restriction of the multiplier m to the unit sphere is no more infinitely differentiable. Our multiplier m has the following property:

$$m(\xi) = 0$$
 if $\xi_1^2 + \dots + \xi_p^2 \le \xi_{p+1}^2 + \dots + \xi_{p+q}^2$.

Unlike Fefferman's ball multiplier theorem [2] and its descendants [4] for multiplier operators with 'large symmetries', the indefinite Riesz transforms T_m remain L^r -bounded for any r $(1 < r < \infty)$.

The crucial point of the proof of Theorem 1 is the asymptotic estimate of the multiplier $m(\xi)$ together with its differentials as ξ approaches the boundary of $\mathbf{R}^{p,q}_+$. This estimate is carried out by using techniques of infinite dimensional representation theory of O(p,q) and non-commutative harmonic analysis (e.g. [1, 5, 7]).

Notation: $\mathbf{R}_+ := \{x \in \mathbf{R} : x > 0\}, \mathbf{N} = \{0, 1, 2, \dots, \}, \text{ and } \mathbf{N}_+ := \{1, 2, \dots\}.$

2 Basic properties of discrete series for $X_{p,q}$

In this section, after a quick review of some of the fundamental facts concerning discrete series representations for hyperboloids $X_{p,q}$, we introduce the linear vector space \mathcal{V}_k^{∞} consisting of smooth functions on an open domain $\mathbf{R}^{p,q}_+$ with certain decay condition. This space \mathcal{V}_k^{∞} will bridge discrete series for $X_{p,q}$ and 'indefinite higher multipliers'.

In what follows, we shall use the notation

$$\xi = (\xi', \xi'') \in \mathbf{R}^{p+q},$$

$$Q(\xi) = |\xi'|^2 - |\xi''|^2 = \xi_1^2 + \dots + \xi_p^2 - \xi_{p+1}^2 - \dots - \xi_{p+q}^2,$$

$$|\xi|^2 = |\xi'|^2 + |\xi''|^2 = \xi_1^2 + \dots + \xi_p^2 + \xi_{p+1}^2 + \dots + \xi_{p+q}^2.$$

Then, the indefinite orthogonal group

$$O(p,q) := \{g \in GL(p+q; \mathbf{R}) : Q(g\xi) = Q(\xi) \text{ for any } \xi \in \mathbf{R}^{p+q} \}$$

is non-compact if p, q > 0. Throughout this paper, we shall write G := O(p,q), and denote by \mathfrak{g} the Lie algebra $\mathfrak{o}(p,q)$ of G. The group G contains

$$K := \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} : A \in \mathcal{O}(p), B \in \mathcal{O}(q) \right\} \simeq \mathcal{O}(p) \times \mathcal{O}(q)$$

as a maximal compact subgroup. We note that in the case q = 0, G = K is nothing but the orthogonal group O(p).

We denote by $\mathbf{R}^{p,q}$ the Euclidean space \mathbf{R}^{p+q} equipped with the flat pseudo-Riemannian structure $ds^2 = d\xi_1^2 + \cdots + d\xi_p^2 - d\xi_{p+1}^2 - \cdots - d\xi_{p+q}^2$. Then, ds^2 is non-degenerate when restricted to the submanifold $X_{p,q}$, and defines a pseudo-Riemannian structure $g_{X_{p,q}}$ of signature (p-1,q) on $X_{p,q}$. Obviously, the group O(p,q) acts on $\mathbf{R}^{p,q}$ and $X_{p,q}$, respectively, as isometries.

The action of O(p,q) on $X_{p,q}$ is transitive, and the isotropy subgroup at ${}^{t}(1,0,\ldots,0)$ is identified with O(p-1,q). Thus, $X_{p,q}$ is realized as a homogeneous space:

$$O(p,q)/O(p-1,q) \simeq X_{p,q}.$$

The group G acts on the space of functions on $\mathbf{R}^{p,q}$, $\mathbf{R}^{p,q}_+$ and also on $X_{p,q}$ by translations:

$$\pi(g): f \mapsto f(g^{-1}\cdot).$$

In particular, G acts unitarily on the Hilbert space $L^2(X_{p,q})$ consisting of square integrable functions on $X_{p,q}$ with respect to the measure induced by $g_{X_{p,q}}$.

The differential of π , denoted by $d\pi$, is formally defined by

$$d\pi(Y)f := \frac{d}{dt}\Big|_{t=0} f(e^{-tY} \cdot) \text{ for } Y \in \mathfrak{g}.$$

Next, we consider L^2 -eigenfunctions of the Laplace–Beltrami operator $\Delta \equiv \Delta_{X_{p,q}}$ on $X_{p,q}$:

$$L_k^2(X_{p,q}) := \{ f \in L^2(X_{p,q}) : \Delta f = -k(k+p+q-2)f \}.$$

Here, the differential equation is interpreted as that of distributions. Then, $L_k^2(X_{p,q})$ is a closed subspace of the Hilbert space $L^2(X_{p,q})$ (possibly, equal to zero). Since Δ commutes with the *G*-action, $L_k^2(X_{p,q})$ is a *G*-invariant subspace.

Suppose $f \in L^2_k(X_{p,q})$. We say f is K-finite if \mathbb{C} -span $\{\pi(k)f : k \in K\}$ is finite dimensional. We set the vector space consisting of K-finite vectors as

$$\mathcal{H}^k(\mathbf{R}^{p,q}) := L^2_k(X_{p,q})_{K\text{-finite.}}$$
(2.1)

We note that any function of $\mathcal{H}^k(\mathbf{R}^{p,q})$ is real analytic although the differential operator Δ is not elliptic. We also note that if q = 0 then G = K and $\mathcal{H}^k(\mathbf{R}^{p,0}) = L^2_k(S^{p-1})_{K\text{-finite}} = L^2_k(S^{p-1}).$

We set

$$\rho := \frac{p+q-2}{2},$$

$$\Lambda_{+}(p,q) := \begin{cases} \{k \in \mathbf{Z} : k > -\rho\} & (q \neq 0), \\ \{k \in \mathbf{Z} : k \ge 0\} & (q = 0). \end{cases}$$

We collect below some known results on discrete series representations for hyperboloids $X_{p,q}$. See [1] and [7] for the pioneering work. See also [5, Fact 5.4] for a survey on algebraic, geometric, and analytic aspects of these representations from modern representation theory:

Fact 2.1. Suppose p > 1.

1) If $k \in \Lambda_+(p,q)$ then $L_k^2(X_{p,q})$ is non-zero. It is irreducible as a representation of G. Conversely, any (non-zero) irreducible closed subspace of $L^2(X_{p,q})$ is of the form $L_k^2(X_{p,q})$ for some $k \in \Lambda_+(p,q)$. 2) $\mathcal{H}^k(\mathbf{R}^{p,q})$ is a K-invariant dense subspace of $L^2_k(X_{p,q})$. As a representation of K,

$$\mathcal{H}^{k}(\mathbf{R}^{p,q}) \simeq \begin{cases} \bigoplus_{\substack{a,b \in \mathbf{N} \\ a-b \geq k+q \\ a-b \equiv k+q \mod 2 \\ \mathcal{H}^{k}(\mathbf{R}^{p})} & (q=0). \end{cases}$$

3) Suppose further q > 0. If $f \in \mathcal{H}^k(\mathbf{R}^{p,q})$, then there exists $a(\omega, \eta) \in C^{\infty}(S^{p-1} \times S^{q-1})$ such that

$$f(\omega \cosh t, \eta \sinh t) = a(\omega, \eta)e^{-(k+2\rho)t}(1 + e^{-2t} \operatorname{O}(t)) \quad as \ t \to \infty.$$

4) $d\pi(Y)\mathcal{H}^k(\mathbf{R}^{p,q}) \subset \mathcal{H}^k(\mathbf{R}^{p,q})$ for any $Y \in \mathfrak{g}$.

The irreducible unitary representation of G realized on a closed subspace of $L^2(X_{p,q})$ is called a *discrete series representation* for the hyperboloid $X_{p,q}$. Discrete series representations for $X_{p,q}$ exist if p > 1. By Fact 2.1 1), $\Lambda_+(p,q)$ is the parameter space of discrete series representations for $X_{p,q}$.

Remark 2.2. 1) In the literature, the normalization of the parameter is often taken to be

$$\lambda := k + \rho \ (= k + \frac{p+q-2}{2}).$$

Then, for p > 1 and q > 0, $k \in \Lambda_+(p,q)$ if and only if

$$\lambda > 0, \quad \lambda \in \mathbf{Z} + \frac{p+q}{2}.$$

2) If $f \in \mathcal{H}^{k}(\mathbf{R}^{p,q})$ belongs to the K-type $\mathcal{H}^{a}(\mathbf{R}^{p}) \otimes \mathcal{H}^{b}(\mathbf{R}^{q})$ (see Fact 2.1 2)), then we have an explicit formula of f as follows:

$$f(\omega \cosh t, \eta \sinh t) = h_a(\omega)h_b(\eta)(\cosh t)^a(\sinh t)^b\varphi_{i\lambda}^{(b+\frac{q}{2}-1,a+\frac{p}{2}-1)}(t), \quad (2.2)$$

for some $h_a \in \mathcal{H}^a(\mathbf{R}^p)$ and $h_b \in \mathcal{H}^b(\mathbf{R}^q)$. Here $\lambda = k + \rho$, and $\varphi_{i\lambda}^{(\lambda'',\lambda')}(t)$ $(\lambda'' \neq -1, -2, \ldots)$ is the Jacobi function which is the unique solution to the following differential equation:

$$(L + (\lambda' + \lambda'' + 1)^2 - \lambda^2)\varphi = 0, \quad \varphi(0) = 1$$

if we set $L := \frac{d^2}{dt^2} + ((2\lambda'+1)\tanh t + (2\lambda''+1)\coth t)\frac{d}{dt}$. Equivalently, in terms of the hypergeometric function $_2F_1$, we have

$$\varphi_{i\lambda}^{(\lambda'',\lambda')}(t) = {}_2F_1\left(\frac{\lambda'+\lambda''+1-\lambda}{2}, \frac{\lambda'+\lambda''+1+\lambda}{2}; \lambda''+1; -\sinh^2 t\right).$$

With these preparations, let us investigate the asymptotic behavior of the multiplier m near the boundary of $\mathbf{R}^{p,q}_+$. For this, we fix $\kappa \in \mathbf{R}_+$ and let

$$\mathcal{V}_{\kappa} := \left\{ f \in C^{\infty}(\mathbf{R}^{p,q}_{+}) : 1 \} \quad f \text{ is a homogeneous function of degree } 0 \\ 2 \right\} \sup_{\xi \in \mathbf{R}^{p,q}_{+}} |f(\xi)| \left(\frac{Q(\xi)}{|\xi|^2}\right)^{-\kappa} < \infty \right\}.$$
(2.3)

Remark 2.3. Obviously, $\mathcal{V}_{\kappa} \subset \mathcal{V}_{\kappa'}$ if $\kappa > \kappa'$.

For any $g \in G$, we set $c := \max(\|g\|, \|g^{-1}\|)$ where $\|g\|$ denotes the operator norm of g. This means that

$$c^{-1}|\xi| \le |g\xi| \le c|\xi| \quad (\xi \in \mathbf{R}^{p+q}).$$

Further, $Q(g\xi) = Q(\xi)$. Hence, \mathcal{V}_{κ} is a *G*-invariant subspace of $C^{\infty}(\mathbf{R}^{p,q}_{+})$. We define

$$\mathcal{V}_{\kappa}^{\infty} := \{ f \in \mathcal{V}_{\kappa} : d\pi(X_1) \circ \cdots \circ d\pi(X_l) f \in \mathcal{V}_{\kappa},$$

for any $l = 0, 1, \dots$ and $X_1, \dots, X_l \in \mathfrak{g} \}.$

Lemma 2.4. Let *m* be as in Theorem 1. Then $m|_{\mathbf{R}^{p,q}_+} \in \mathcal{V}^{\infty}_{\frac{k}{2}+\rho}$.

Proof of Lemma. Suppose $\xi \in \mathbf{R}^{p,q}_+$. Then, $Q(\xi) > 0$ and $Q(\xi)^{-\frac{1}{2}} \xi \in X_{p,q}$. Hence, we can find $\omega \in S^{p-1}$, $\eta \in S^{q-1}$ and $t \in \mathbf{R}$ such that

$$Q(\xi)^{-\frac{1}{2}}\xi = (\omega \cosh t, \eta \sinh t).$$

This means that

$$Q(\xi)^{-1}|\xi|^2 = \cosh^2 t + \sinh^2 t = \cosh 2t$$

If m satisfies (1.1), then $m(\xi) = m(Q(\xi)^{-\frac{1}{2}}\xi) = m(\omega \cosh t, \eta \sinh t)$. Therefore, we have

$$\sup_{\xi \in \mathbf{R}^{p,q}_+} \left(\frac{|\xi|^2}{Q(\xi)}\right)^{\frac{\kappa}{2}+\rho} m(\xi) < \infty$$

by Fact 2.1 3). Hence $m|_{\mathbf{R}^{p,q}_+} \in \mathcal{V}_{\frac{k}{2}+\rho}$. Hence, Lemma follows by iterating Fact 2.1 4).

3 Proof of L^p **-boundedness**

For an open subset V in \mathbb{R}^n , we write $C^k(V)$ for the space of functions on V with continuous derivatives up to order k.

We recall from [6, Section IV, Theorem 3] the Hörmander–Michlin condition for L^r -multipliers:

Fact 3.1. Suppose $m \in C^{[\frac{n}{2}]+1}(\mathbf{R}^n \setminus \{0\})$ satisfies

$$\sup_{\xi \in \mathbf{R}^n \setminus \{0\}} |\xi|^{|\alpha|} \left| \frac{\partial^{\alpha} m(\xi)}{\partial \xi^{\alpha}} \right| < \infty$$
(3.1)

for all multi-indices α such that $|\alpha| \leq \left[\frac{n}{2}\right] + 1$. Then, the multiplier operator T_m extends to a continuous operator on $L^r(\mathbf{R}^n)$ for any r $(1 < r < \infty)$.

In Section 5, we shall show:

Proposition 3.2. If $f \in \mathcal{V}_{\kappa}^{\infty}$, then

$$\sup_{\xi \in \mathbf{R}^{p,q}_{+}} |\xi|^{|\alpha|} \left| \frac{\partial^{\alpha} f}{\partial \xi^{\alpha}} \right| < \infty$$
(3.2)

for any multi-index $\alpha \in \mathbf{N}^{p+q}$ with $|\alpha| \leq \kappa$.

Proposition 3.3. For $f \in \mathcal{V}_{\kappa}^{\infty}$ let F be the extension by zero of f to all of \mathbb{R}^{n} . Let N be any non-negative integer such that $N < \kappa$. Then $F \in C^{N}(\mathbb{R}^{n} \setminus \{0\})$. In particular, F satisfies (3.1) for any α with $|\alpha| < \kappa$.

Admitting Propositions 3.2 and 3.3 for a while, let us complete the proof of Theorem 1.

Proof of Theorem 1. Suppose m is as in Theorem 1. Then $m|_{\mathbf{R}^{p,q}_+} \in \mathcal{V}^{\infty}_{\frac{k}{2}+\rho}$ by Lemma 2.4. Hence, m satisfies (3.1) for any multi-index α with $|\alpha| < \frac{k}{2} + \rho$ by Proposition 3.3.

Since the assumption k > 4 (p + q: even) or k > 3 (p + q: odd) implies

$$\frac{k}{2} + \rho > \left[\frac{p+q}{2}\right] + 1$$

the Hörmander–Michlin condition for m is fulfilled. Therefore, the operator is bounded on $L^r(\mathbf{R}^n)$ by Fact 3.1.

4 Differential operators along O(p,q)-orbits

The vector space $\mathcal{V}_{\kappa}^{\infty}$ in which our multiplier lives (see Lemma 2.4) is stable under the action of the Lie algebra \mathfrak{g} and the Euler operator $E = \sum_{i=1}^{p+q} \xi_i \frac{\partial}{\partial \xi_i}$. In this section, we shall give a formula of the standard derivatives $\frac{\partial}{\partial \xi_i}$ ($1 \leq i \leq p+q$) by means of $d\pi(Y)$ ($Y \in \mathfrak{g}$) and E. The main result of this section is Proposition 4.3, and we shall study the space H_1 of coefficients (or more generally H_N ; see (4.11)) in Section 5.

In the polar coordinate for the first p-factor:

$$\mathbf{R}_{+} \times S^{p-1} \times \mathbf{R}^{q} \to \mathbf{R}^{p+q}, \quad (r, \omega, \xi'') \mapsto (r\omega, \xi''), \tag{4.1}$$

an easy computation shows

$$\frac{\partial}{\partial \xi_i} = a_i(\omega)\frac{\partial}{\partial r} + \frac{1}{r}Y_i(\omega) \qquad (1 \le i \le p), \tag{4.2}$$

where $a_i(\omega) \in C^{\infty}(S^{p-1})$ and Y_i is a smooth vector field on S^{p-1} .

In order to rewrite (4.2) by using the Lie algebra action $d\pi$, we note that $\mathfrak{g} = \mathfrak{o}(p,q)$ is given in matrices as

$$\mathfrak{g} \simeq \left\{ \begin{pmatrix} A & B \\ {}^{t}B & C \end{pmatrix} : {}^{t}A = -A, \; {}^{t}C = -C, \; B \in M(p,q;\mathbf{R}) \right\}$$
$$= (\mathfrak{o}(p) + \mathfrak{o}(q)) + \mathfrak{p} \qquad (Cartan \; decomposition),$$

where we set

$$\mathfrak{p} := \{ \begin{pmatrix} 0 & B \\ {}^tB & 0 \end{pmatrix} : B \in M(p,q;\mathbf{R}) \}.$$

Let $\mathfrak{X}(S^{p-1})$ be the vector space consisting of smooth vector fields on S^{p-1} . Since O(p) acts transitively on S^{p-1} , the map

$$C^{\infty}(S^{p-1}) \otimes \mathfrak{o}(p) \to \mathfrak{X}(S^{p-1}), \quad (b, X) \mapsto b \, d\pi(X)$$

is surjective. Let $\{K_h : 1 \leq h \leq \frac{1}{2}p(p-1)\}$ be a basis of the Lie algebra $\mathfrak{o}(p)$. Then, we can find $b_i^h \in C^{\infty}(S^{p-1})$ such that

$$Y_i(\omega) = \sum_h b_i^h(\omega) d\pi(K_h).$$
(4.3)

Next, we set

$$Y_{ij} := E_{i,p+j} + E_{p+j,i}$$
 $(1 \le i \le p, \ 1 \le j \le q).$

Here, E_{ij} are matrix units in $M(p+q, \mathbf{R})$. By definition, Y_{ij} spans \mathfrak{p} and $d\pi(Y_{ij})$ is the vector field on \mathbf{R}^{p+q} given as

$$d\pi(Y_{ij}) = \xi_{p+j} \frac{\partial}{\partial \xi_i} + \xi_i \frac{\partial}{\partial \xi_{p+j}}.$$
(4.4)

Lemma 4.1. For $1 \le i \le p$ we have

$$\frac{\partial}{\partial\xi_i} = \frac{a_i(\omega)}{rQ(\xi)} \left(r^2 E - \sum_{k=1}^p \sum_{j=1}^q \xi_k \xi_{p+j} d\pi(Y_{kj}) \right) + \frac{1}{r} \sum_h b_i^h(\omega) d\pi(K_h), \quad (4.5)$$

and for $1 \leq j \leq q$

$$\frac{\partial}{\partial \xi_{p+j}} = \frac{1}{r^2} \left(\sum_{i=1}^p \xi_i d\pi(Y_{ij}) - \frac{\xi_{p+j}}{Q(\xi)} \left(r^2 E - \sum_{i=1}^p \sum_{k=1}^q \xi_i \xi_{p+k} d\pi(Y_{ik}) \right) \right). \quad (4.6)$$

Proof. By multiplying (4.4) by ξ_i and summing over $i \ (1 \le i \le p)$, we get

$$\frac{\partial}{\partial \xi_{p+j}} = \frac{1}{r^2} \left(\sum_{i=1}^p \xi_i d\pi(Y_{ij}) - \xi_{p+j} r \frac{\partial}{\partial r} \right), \tag{4.7}$$

where we have used that $r\frac{\partial}{\partial r} = \sum_{i=1}^{p} \xi_i \frac{\partial}{\partial \xi_i}$. Next, we multiply (4.7) by ξ_{p+j} and sum over j $(1 \le j \le q)$, we obtain the identity for the Euler operator $E_{\xi''} = \sum_{j=1}^{q} \xi_{p+j} \frac{\partial}{\partial \xi_{p+j}}$:

$$E_{\xi''} = \frac{1}{r^2} \sum_{i=1}^{p} \sum_{j=1}^{q} \xi_i \xi_{p+j} d\pi(Y_{ij}) - \frac{|\xi''|^2}{r^2} r \frac{\partial}{\partial r}$$

Combining with the identity

$$E_{\xi''} + r\frac{\partial}{\partial r} = E$$

we get

$$r\frac{\partial}{\partial r} = \frac{1}{Q(\xi)} \left(r^2 E - \sum_{i=1}^p \sum_{j=1}^q \xi_i \xi_{p+j} d\pi(Y_{ij}) \right).$$
(4.8)

By (4.7), this proves (4.6).

To prove (4.5) we insert into (4.2) the expressions for $Y_i(\omega)$ and $\frac{\partial}{\partial r}$ obtained in (4.3) and (4.8) respectively. To handle the coefficients of (4.5) and (4.6), we introduce the subspace, denoted by $H_{a,b,c}$, of $C^{\infty}(\mathbf{R}^{p,q}_+)$ for $(a, b, c) \in \mathbf{N}^3$ that consists of finite linear combinations of functions of the form

$$\frac{A(\omega)P_a(\xi'')}{r^{b-c}Q(\xi)^c} = \frac{A(\omega)P_a(\xi'')}{r^{b-c}(r^2 - |\xi''|^2)^c},$$
(4.9)

where $A \in C^{\infty}(S^{p-1})$ and P_a is a homogeneous polynomial of $\xi'' = (\xi_{p+1}, \ldots, \xi_{p+q}) \in \mathbf{R}^q$ of degree a. If $f \in H_{a,b,c}$ and $g \in H_{a',b',c'}$ then $fg \in H_{a+a',b+b',c+c'}$, and likewise for finite linear combinations of such terms. We state this as

$$H_{a,b,c}H_{a',b',c'} \subset H_{a+a',b+b',c+c'}.$$
(4.10)

We also define the space

$$H_N := \bigoplus_{\substack{a,b,c \in \mathbf{N} \\ a \le 2N, c \le N \\ b-a+c=N}} H_{a,b,c}$$
(4.11)

The following lemma is an immediate consequence of (4.10):

Lemma 4.2. $H_N H_{N'} \subset H_{N+N'}$.

We write $H_N d\pi(\mathfrak{g})$ for the vector space consisting of differential operators on $\mathbf{R}^{p,q}_+$ which are of the form $\sum_j f_j d\pi(X_j)$ (finite sum) for some $f_j \in H_N$ and $X_j \in \mathfrak{g}$. The point of the definition of H_N is the following:

Proposition 4.3. $On \mathbb{R}^{p,q}_+$,

$$\frac{\partial}{\partial \xi_i} \in H_1 d\pi(\mathfrak{g}) + C^{\infty}(\mathbf{R}^{p,q}_+)E \qquad (1 \le i \le p+q).$$

Proof. In light of the formulas (4.5) and (4.6), it is sufficient to show that the coefficients

$$\frac{a_i(\omega)\xi_l\xi_{p+j}}{rQ(\xi)}, \frac{b_i^h(\omega)}{r}, \frac{\xi_i}{r^2}, \frac{\xi_i\xi_{p+j}\xi_{p+k}}{r^2Q(\xi)} \in H_1$$

for any $1 \leq i, l \leq p$ and $1 \leq j, k \leq q$. In fact, these coefficients belong to

$$H_{1,1,1}, H_{0,1,0}, H_{0,1,0}, H_{2,2,1},$$

respectively, by definition.

5 Proof of Propositions 3.2 and 3.3

Lemma 5.1. For $1 \le i \le p + q$,

$$\frac{\partial}{\partial \xi_i} H_N \subset H_{N+1}$$

Proof. Since $H_{a,b,c}$ is spanned by functions of the form (4.9), we get

$$a_{i}(\omega)\frac{\partial}{\partial r}(H_{a,b,c}) \subset H_{a,b+1,c} \oplus H_{a,b,c+1},$$

$$\frac{1}{r}Y_{i}(\omega)H_{a,b,c} \subset H_{a,b+1,c}.$$

Thus, by using (4.2) we have

$$\frac{\partial}{\partial \xi_i} H_{a,b,c} \subset H_{a,b+1,c} \oplus H_{a,b,c+1} \quad (1 \le i \le p).$$

For the variables $\xi'' = (\xi_{p+1}, \ldots, \xi_{p+q})$, we obtain directly

$$\frac{\partial}{\partial \xi_{j+p}} H_{a,b,c} \subset H_{a-1,b,c} \oplus H_{a+1,b+1,c+1} \quad (1 \le j \le q).$$

Lemma now follows from the definition (4.11) of H_N .

We denote by $H_N \cdot \mathcal{V}_{\kappa}^{\infty}$ the subspace of $C^{\infty}(\mathbf{R}^{p,q}_+)$ consisting of finite linear combinations of products of elements from H_N and $\mathcal{V}_{\kappa}^{\infty}$. We then have

Lemma 5.2.

$$\frac{\partial}{\partial \xi_i} \mathcal{V}^{\infty}_{\kappa} \subset H_1 \cdot \mathcal{V}^{\infty}_{\kappa} \qquad (1 \le i \le p+q).$$

Proof. Since the Euler operator E acts on $\mathcal{V}^{\infty}_{\kappa}$ by zero and $d\pi(X)\mathcal{V}^{\infty}_{\kappa} \subset \mathcal{V}^{\infty}_{\kappa}$ $(X \in \mathfrak{g})$, Lemma follows from Proposition 4.3.

Proposition 5.3. For any multi-index $\alpha \in \mathbf{N}^{p+q}$,

$$\frac{\partial^{\alpha}}{\partial \xi^{\alpha}} \mathcal{V}^{\infty}_{\kappa} \subset H_{|\alpha|} \cdot \mathcal{V}^{\infty}_{\kappa}.$$
(5.1)

Proof. We have already proved (5.1) for $|\alpha| = 1$ in Lemma 5.2. Suppose we have proved (5.1) for $|\alpha| \leq N$. Then,

$$\begin{split} \frac{\partial}{\partial \xi_i} &\frac{\partial^{\alpha}}{\partial \xi^{\alpha}} \mathcal{V}_{\kappa}^{\infty} \subset \frac{\partial}{\partial \xi_i} (H_{|\alpha|} \cdot \mathcal{V}_{\kappa}^{\infty}) \\ & \subset \left(\frac{\partial}{\partial \xi_i} H_{|\alpha|}\right) \cdot \mathcal{V}_{\kappa}^{\infty} + H_{|\alpha|} \cdot \left(\frac{\partial}{\partial \xi_i} \mathcal{V}_{\kappa}^{\infty}\right) \\ & \subset H_{|\alpha|+1} \cdot \mathcal{V}_{\kappa}^{\infty} + H_{|\alpha|} (H_1 \cdot \mathcal{V}_{\kappa}^{\infty}) \end{split}$$

by Lemmas 5.1 and 5.2. Since $H_{|\alpha|}H_1 \subset H_{|\alpha|+1}$ by Lemma 4.2, (5.1) holds for $|\alpha| = N + 1$. Hence, Proposition 5.3 is proved by induction on $|\alpha|$.

Lemma 5.4. Let $f \in \mathcal{V}_{\kappa}$ and $g \in H_{a,b,c}$. Then

$$|f(\xi)g(\xi)| \le \frac{C}{|\xi|^{b-a+c}} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\kappa-c} \qquad (\xi \in \mathbf{R}^{p,q}_+).$$

In particular, if $f \in \mathcal{V}_{\kappa}$ and $g \in H_N$ such that $N \leq \kappa$, then we have

 $|f(\xi)g(\xi)| \le C|\xi|^{-N} \qquad (\xi \in \mathbf{R}^{p,q}_+).$

Proof. By the definition (2.3) of \mathcal{V}_{κ} , f satisfies

$$|f(\xi)| \le C_1 \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\kappa} \text{ for } \xi \in \mathbf{R}^{p,q}_+,$$

for some constant $C_1 > 0$. Hence, in view of (4.9), there exists C' > 0 such that

$$|f(\xi)g(\xi)| \le C' \frac{1}{r^{b-c}} \frac{|\xi''|^a}{Q(\xi)^c} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\kappa}.$$
(5.2)

We note that for $\xi \in \mathbf{R}^{p,q}_+$, we have $r > |\xi''|$ and therefore $|\xi| = (r^2 + |\xi''|^2)^{\frac{1}{2}}$ satisfies

$$r < |\xi| < \sqrt{2}r$$

Hence the first factor of (5.2) is bounded by

$$\frac{1}{r^{b-c}} \le \frac{C''}{|\xi|^{b-c}}.$$

The last two factors of (5.2) are estimated as

$$\frac{|\xi''|^a}{Q(\xi)^c} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\kappa} \le \frac{1}{|\xi|^{2c-a}} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\kappa-c}.$$

Combining these estimates, we have proved

$$|f(\xi)g(\xi)| \le \frac{C'C''}{|\xi|^{b-a+c}} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\kappa-c}.$$

Proof of Proposition 3.2. Suppose $f \in \mathcal{V}_{\kappa}^{\infty}$. Then $\frac{\partial^{\alpha} f}{\partial \xi^{\alpha}} \in H_{|\alpha|} \cdot \mathcal{V}_{\kappa}^{\infty}$ by Proposition 5.3. If $|\alpha| \leq \kappa$ then $\left| \frac{\partial^{\alpha} f}{\partial \xi^{\alpha}} \right| \leq C |\xi|^{-|\alpha|}$ for $\xi \in \mathbf{R}^{p,q}_+$ by Lemma 5.4. Hence, Proposition 3.2 is proved.

Proof of Proposition 3.3. Let $f \in \mathcal{V}_{\kappa}^{\infty}$. It is sufficient to prove that if $|\alpha| < \kappa$ then

$$\frac{\partial^{\alpha} f}{\partial \xi^{\alpha}}(\xi) \to 0$$

as $\xi \in \mathbf{R}^{p,q}_+$ approaches to the boundary of $\mathbf{R}^{p,q}_+$ in $\mathbf{R}^{p+q} \setminus \{0\}$, namely, the light cone $\{\xi \in \mathbf{R}^{p+q} \setminus \{0\} : Q(\xi) = 0\}$. This follows again from Lemma 5.4. Hence, Proposition 3.3 is also proved.

Thus, the proof of Theorem 1 is completed.

References

- J. Faraut, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58 (1979), 369–444.
- [2] C. Fefferman, The multiplier problem for the ball, Ann. of Math. 94 (1971), 330–336.
- [3] L. Hörmander, Estimate for translation invariant operators in L^p spaces, Acta Math. **104** (1960), 93–140.
- [4] T. Kobayashi and A. Nilsson, Group invariance and L^p -bounded operators, preprint.
- [5] T. Kobayashi and B. Ørsted, Analysis on the minimal representation of O(p, q), II. Adv. Math. **180** (2003), 513–550.
- [6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.

 [7] R. S. Strichartz, Harmonic analysis on hyperboloids, J. Funct. Anal. 12 (1973), 341–383.