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Abstract
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1 Introduction and statement of main results

For a measurable bounded function m on Rn, the multiplier operator Tm :
f 7→ F−1(mFf) defines a continuous, translation invariant operator on
L2(Rn), where F is the Fourier transform.

Classic examples are the Riesz transforms

(Rjf)(x) := lim
ε→0

Γ(n+2
2

)

π
n+2

2

∫

|y|>ε

yj

|y|n+1
f(x − y)dy (1 ≤ j ≤ n)

which are associated to the multipliers mj(ξ) := |ξ|−1ξj. One of the impor-
tant properties of the Riesz transforms is that Rj extends to a continuous
operator on the Banach space Lr(Rn) for any 1 < r < n. From a group the-
oretic view point, the space M2(R

n) of all continuous, translation invariant
operators on L2(Rn) is naturally a representation space of the general linear
group GL(n,R) by

M2(R
n) → M2(R

n), T 7→ Lg ◦ T ◦ L−1
g (g ∈ GL(n,R)),

where (Lgf)(x) := f(g−1x). Then, it is noteworthy that the Riesz transforms
Rj (1 ≤ j ≤ n) span the simplest non-trivial representation (an irreducible
n-dimensional representation) of the orthogonal group O(n).

More generally, E. M. Stein introduced a family of bounded translation
invariant operators Tm (higher Riesz transforms) associated to multipliers m
with the following two properties:

m is a homogeneous function of degree 0, (1.1)

m|Sn−1 ∈ Hk(Rn). (1.2)

The condition (1.1) is equivalent to the fact that m is constant on rays ema-
nating from the origin. Thus, m is completely determined by its restriction to
the unit sphere. The condition (1.2) concerns this restriction. Here, Hk(Rn)
denotes the space of spherical harmonics of degree k defined by

Hk(Rn) := {f ∈ C∞(Sn−1) : ∆Sn−1f = −k(k + n − 2)f}, (1.3)

where ∆Sn−1 is the Laplace–Beltrami operator on the unit sphere Sn−1. Then,
we have
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Fact 1.1 (see [6, II, Theorem 3]). Suppose k ∈ N. Then, for any m satisfying
(1.1) and (1.2), Tm extends to a continuous operator on the Banach space
Lr(Rn) for any 1 < r < ∞.

We note that Tm corresponds to the identity operator for k = 0, and to
the Riesz transforms for k = 1. For general k, {Tm : m satisfies (1.1) and
(1.2)} forms an irreducible O(n) submodule in M2(R

n).
In the previous paper [4], we analyzed translation invariant operators

from group theoretic view points, and found the following phenomenon: L2-
bounded translation invariant operators with ‘large symmetries’ are mostly
unbounded on Lr(Rn) (r 6= 2) except for the cases that they are built from
higher Riesz transforms, as far as ‘large symmetries’ are defined by finite
dimensional representations of affine subgroups (e.g. [4, Theorem 9]).

The aim of this paper is to construct a family of Lr-bounded translation
invariant operators (1 < r < ∞) with ‘large symmetries’ by using infinite
dimensional representations.

To be more precise, we take a quadratic form

Q(ξ) := ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 − · · · − ξ2

p+q

of a general signature (p, q) (p > 1) and work on the hyperboloid

Xp,q := {ξ ∈ Rp+q : Q(ξ) = 1},
which is a (non-singular) submanifold in the open domain R

p,q
+ := {ξ ∈

Rp+q : Q(ξ) > 0} of Rp+q. We endow Xp,q with the standard pseudo-
Riemannian structure of signature (p−1, q), and introduce a dense subspace
of L2-eigenfunctions of the Laplace–Beltrami operator ∆ ≡ ∆Xp,q

as follows:

Hk(Rp,q) := {f ∈ L2(Xp,q) : ∆f = −k(k + p + q − 2)f}K-finite.

See Section 2 for more details. In the case (p, q) = (n, 0), we note Xp,q =
Sn−1, R

p,q
+ = Rn, and Hk(Rp,q) = Hk(Rn).

In our setting for general p, q, we replace (1.2) with

m|Xp,q
∈ Hk(Rp,q) and Supp m ⊂ R

p,q
+ . (1.4)

Then, the following subspace of M2(R
p+q):

{Tm : m satisfies (1.1) and (1.4)}
forms a dense subspace of an irreducible (infinite dimensional) unitary repre-
sentation of the indefinite orthogonal group O(p, q) if p > 1 and q > 0. Our
Lr-boundedness theorem is now stated as follows:
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Theorem 1. Suppose k > 4 (p + q : even) or k > 3 (p + q : odd). Then,
for any m satisfying (1.1) and (1.4), the multiplier operator Tm extends to a
continuous operator on Lr(Rp+q) for any 1 < r < ∞.

Remark 1.2. In place of Xp,q ⊂ R
p,q
+ , we can also consider the open domain

R
p,q
− := {ξ ∈ Rp+q : Q(ξ) < 0} and L2-eigenfunctions on another hyperboloid

X ′
p,q := {ξ ∈ Rp+q : Q(ξ) = −1}. Then, for m supported on R

p,q
− an

analogous result also holds by switching (p, q) to (q, p) because X ′
p,q ' Xq,p

and R
p,q
− ' R

q,p
+ .

The operators Tm with m satisfying (1.1) and (1.4) may be regarded as
a generalization of Stein’s higher Riesz transforms in the following sense:

spherical harmonics on Sn−1 ⇒ discrete series for Xp,q,
O(n) ⇒ indefinite orthogonal group O(p, q).

We shall call Tm indefinite Riesz transforms. Then, Theorem 1 for indef-
inite Riesz transforms is a generalization of Fact 1.1

A distinguishing feature of our generalization is that the restriction of
the multiplier m to the unit sphere is no more infinitely differentiable. Our
multiplier m has the following property:

m(ξ) = 0 if ξ2
1 + · · ·+ ξ2

p ≤ ξ2
p+1 + · · ·+ ξ2

p+q.

Unlike Fefferman’s ball multiplier theorem [2] and its descendants [4] for
multiplier operators with ‘large symmetries’, the indefinite Riesz transforms
Tm remain Lr-bounded for any r (1 < r < ∞).

The crucial point of the proof of Theorem 1 is the asymptotic estimate
of the multiplier m(ξ) together with its differentials as ξ approaches the
boundary of R

p,q
+ . This estimate is carried out by using techniques of infinite

dimensional representation theory of O(p, q) and non-commutative harmonic
analysis (e.g. [1, 5, 7]).

Notation: R+ := {x ∈ R : x > 0}, N = {0, 1, 2, . . . , }, and N+ :=
{1, 2, . . .}.

2 Basic properties of discrete series for Xp,q

In this section, after a quick review of some of the fundamental facts con-
cerning discrete series representations for hyperboloids Xp,q, we introduce the
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linear vector space V∞
k consisting of smooth functions on an open domain

R
p,q
+ with certain decay condition. This space V∞

k will bridge discrete series
for Xp,q and ‘indefinite higher multipliers’.

In what follows, we shall use the notation

ξ = (ξ′, ξ′′) ∈ Rp+q,

Q(ξ) = |ξ′|2 − |ξ′′|2 = ξ2
1 + · · ·+ ξ2

p − ξ2
p+1 − · · · − ξ2

p+q,

|ξ|2 = |ξ′|2 + |ξ′′|2 = ξ2
1 + · · · + ξ2

p + ξ2
p+1 + · · · + ξ2

p+q.

Then, the indefinite orthogonal group

O(p, q) := {g ∈ GL(p + q;R) : Q(gξ) = Q(ξ) for any ξ ∈ Rp+q}

is non-compact if p, q > 0. Throughout this paper, we shall write G :=
O(p, q), and denote by g the Lie algebra o(p, q) of G. The group G contains

K := {
(

A 0
0 B

)

: A ∈ O(p), B ∈ O(q)} ' O(p) × O(q)

as a maximal compact subgroup. We note that in the case q = 0, G = K is
nothing but the orthogonal group O(p).

We denote by Rp,q the Euclidean space Rp+q equipped with the flat
pseudo-Riemannian structure ds2 = dξ2

1+· · ·+dξ2
p−dξ2

p+1−· · ·−dξ2
p+q. Then,

ds2 is non-degenerate when restricted to the submanifold Xp,q, and defines a
pseudo-Riemannian structure gXp,q

of signature (p−1, q) on Xp,q. Obviously,
the group O(p, q) acts on Rp,q and Xp,q, respectively, as isometries.

The action of O(p, q) on Xp,q is transitive, and the isotropy subgroup
at t(1, 0, . . . , 0) is identified with O(p − 1, q). Thus, Xp,q is realized as a
homogeneous space:

O(p, q)/ O(p − 1, q) ' Xp,q.

The group G acts on the space of functions on Rp,q, R
p,q
+ and also on Xp,q

by translations:
π(g) : f 7→ f(g−1·).

In particular, G acts unitarily on the Hilbert space L2(Xp,q) consisting of
square integrable functions on Xp,q with respect to the measure induced by
gXp,q

.
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The differential of π, denoted by dπ, is formally defined by

dπ(Y )f :=
d

dt

∣

∣

∣

t=0
f(e−tY ·) for Y ∈ g.

Next, we consider L2-eigenfunctions of the Laplace–Beltrami operator
∆ ≡ ∆Xp,q

on Xp,q:

L2
k(Xp,q) := {f ∈ L2(Xp,q) : ∆f = −k(k + p + q − 2)f}.

Here, the differential equation is interpreted as that of distributions. Then,
L2

k(Xp,q) is a closed subspace of the Hilbert space L2(Xp,q) (possibly, equal
to zero). Since ∆ commutes with the G-action, L2

k(Xp,q) is a G-invariant
subspace.

Suppose f ∈ L2
k(Xp,q). We say f is K-finite if C-span{π(k)f : k ∈ K} is

finite dimensional. We set the vector space consisting of K-finite vectors as

Hk(Rp,q) := L2
k(Xp,q)K-finite. (2.1)

We note that any function of Hk(Rp,q) is real analytic although the differen-
tial operator ∆ is not elliptic. We also note that if q = 0 then G = K and
Hk(Rp,0) = L2

k(S
p−1)K-finite = L2

k(S
p−1).

We set

ρ :=
p + q − 2

2
,

Λ+(p, q) :=

{

{k ∈ Z : k > −ρ} (q 6= 0),

{k ∈ Z : k ≥ 0} (q = 0).

We collect below some known results on discrete series representations for
hyperboloids Xp,q. See [1] and [7] for the pioneering work. See also [5,
Fact 5.4] for a survey on algebraic, geometric, and analytic aspects of these
representations from modern representation theory:

Fact 2.1. Suppose p > 1.

1) If k ∈ Λ+(p, q) then L2
k(Xp,q) is non-zero. It is irreducible as a repre-

sentation of G. Conversely, any (non-zero) irreducible closed subspace
of L2(Xp,q) is of the form L2

k(Xp,q) for some k ∈ Λ+(p, q).
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2) Hk(Rp,q) is a K-invariant dense subspace of L2
k(Xp,q). As a represen-

tation of K,

Hk(Rp,q) '























⊕

a, b ∈ N

a − b ≥ k + q

a − b ≡ k + q mod 2

Ha(Rp) ⊗Hb(Rq) (q > 0),

Hk(Rp) (q = 0).

3) Suppose further q > 0. If f ∈ Hk(Rp,q), then there exists a(ω, η) ∈
C∞(Sp−1 × Sq−1) such that

f(ω cosh t, η sinh t) = a(ω, η)e−(k+2ρ)t(1 + e−2t O(t)) as t → ∞.

4) dπ(Y )Hk(Rp,q) ⊂ Hk(Rp,q) for any Y ∈ g.

The irreducible unitary representation of G realized on a closed subspace
of L2(Xp,q) is called a discrete series representation for the hyperboloid Xp,q.
Discrete series representations for Xp,q exist if p > 1. By Fact 2.1 1), Λ+(p, q)
is the parameter space of discrete series representations for Xp,q.

Remark 2.2. 1) In the literature, the normalization of the parameter is
often taken to be

λ := k + ρ (= k +
p + q − 2

2
).

Then, for p > 1 and q > 0, k ∈ Λ+(p, q) if and only if

λ > 0, λ ∈ Z +
p + q

2
.

2) If f ∈ Hk(Rp,q) belongs to the K-type Ha(Rp)⊗Hb(Rq) (see Fact 2.1
2)), then we have an explicit formula of f as follows:

f(ω cosh t, η sinh t) = ha(ω)hb(η)(cosh t)a(sinh t)bϕ
(b+ q

2
−1,a+ p

2
−1)

iλ (t), (2.2)

for some ha ∈ Ha(Rp) and hb ∈ Hb(Rq). Here λ = k + ρ, and ϕ
(λ′′,λ′)
iλ (t)

(λ′′ 6= −1,−2, . . .) is the Jacobi function which is the unique solution to the
following differential equation:

(L + (λ′ + λ′′ + 1)2 − λ2)ϕ = 0, ϕ(0) = 1
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if we set L := d2

dt2
+ ((2λ′ + 1) tanh t + (2λ′′ + 1) coth t) d

dt
. Equivalently, in

terms of the hypergeometric function 2F1, we have

ϕ
(λ′′ ,λ′)
iλ (t) = 2F1

(

λ′ + λ′′ + 1 − λ

2
,
λ′ + λ′′ + 1 + λ

2
; λ′′ + 1;− sinh2 t

)

.

With these preparations, let us investigate the asymptotic behavior of the
multiplier m near the boundary of R

p,q
+ . For this, we fix κ ∈ R+ and let

Vκ :=

{

f ∈ C∞(Rp,q
+ ) : 1) f is a homogeneous function of degree 0

2) sup
ξ∈R

p,q
+

|f(ξ)|
(

Q(ξ)

|ξ|2
)−κ

< ∞
}

. (2.3)

Remark 2.3. Obviously, Vκ ⊂ Vκ′ if κ > κ′.

For any g ∈ G, we set c := max(‖g‖, ‖g−1‖) where ‖g‖ denotes the
operator norm of g. This means that

c−1|ξ| ≤ |gξ| ≤ c|ξ| (ξ ∈ Rp+q).

Further, Q(gξ) = Q(ξ). Hence, Vκ is a G-invariant subspace of C∞(Rp,q
+ ).

We define

V∞
κ := {f ∈ Vκ : dπ(X1) ◦ · · · ◦ dπ(Xl)f ∈ Vκ,

for any l = 0, 1, . . . and X1, . . . , Xl ∈ g}.
Lemma 2.4. Let m be as in Theorem 1. Then m|Rp,q

+
∈ V∞

k
2
+ρ

.

Proof of Lemma. Suppose ξ ∈ R
p,q
+ . Then, Q(ξ) > 0 and Q(ξ)−

1

2 ξ ∈ Xp,q.
Hence, we can find ω ∈ Sp−1, η ∈ Sq−1 and t ∈ R such that

Q(ξ)−
1

2 ξ = (ω cosh t, η sinh t).

This means that

Q(ξ)−1|ξ|2 = cosh2 t + sinh2 t = cosh 2t.

If m satisfies (1.1), then m(ξ) = m(Q(ξ)−
1

2 ξ) = m(ω cosh t, η sinh t). There-
fore, we have

sup
ξ∈R

p,q
+

( |ξ|2
Q(ξ)

)
k
2
+ρ

m(ξ) < ∞

by Fact 2.1 3). Hence m|Rp,q
+

∈ V k
2
+ρ. Hence, Lemma follows by iterating

Fact 2.1 4).
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3 Proof of Lp-boundedness

For an open subset V in Rn, we write Ck(V ) for the space of functions on V
with continuous derivatives up to order k.

We recall from [6, Section IV, Theorem 3] the Hörmander–Michlin con-
dition for Lr-multipliers:

Fact 3.1. Suppose m ∈ C [n
2
]+1(Rn \ {0}) satisfies

sup
ξ∈Rn\{0}

|ξ||α|
∣

∣

∣

∣

∂αm(ξ)

∂ξα

∣

∣

∣

∣

< ∞ (3.1)

for all multi-indices α such that |α| ≤ [n
2
] + 1. Then, the multiplier operator

Tm extends to a continuous operator on Lr(Rn) for any r (1 < r < ∞).

In Section 5, we shall show:

Proposition 3.2. If f ∈ V∞
κ , then

sup
ξ∈R

p,q
+

|ξ||α|
∣

∣

∣

∣

∂αf

∂ξα

∣

∣

∣

∣

< ∞ (3.2)

for any multi-index α ∈ Np+q with |α| ≤ κ.

Proposition 3.3. For f ∈ V∞
κ let F be the extension by zero of f to all

of Rn. Let N be any non-negative integer such that N < κ. Then F ∈
CN(Rn \ {0}). In particular, F satisfies (3.1) for any α with |α| < κ.

Admitting Propositions 3.2 and 3.3 for a while, let us complete the proof of
Theorem 1.

Proof of Theorem 1. Suppose m is as in Theorem 1. Then m|Rp,q
+

∈ V∞
k
2
+ρ

by

Lemma 2.4. Hence, m satisfies (3.1) for any multi-index α with |α| < k
2

+ ρ
by Proposition 3.3.

Since the assumption k > 4 (p + q : even) or k > 3 (p + q : odd) implies

k

2
+ ρ >

[

p + q

2

]

+ 1

the Hörmander–Michlin condition for m is fulfilled. Therefore, the operator
is bounded on Lr(Rn) by Fact 3.1.
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4 Differential operators along O(p, q)-orbits

The vector space V∞
κ in which our multiplier lives (see Lemma 2.4) is stable

under the action of the Lie algebra g and the Euler operator E =
∑p+q

i=1 ξi
∂

∂ξi
.

In this section, we shall give a formula of the standard derivatives ∂
∂ξi

(1 ≤
i ≤ p+ q) by means of dπ(Y ) (Y ∈ g) and E. The main result of this section
is Proposition 4.3, and we shall study the space H1 of coefficients (or more
generally HN ; see (4.11)) in Section 5.

In the polar coordinate for the first p-factor:

R+ × Sp−1 × Rq → Rp+q, (r, ω, ξ′′) 7→ (rω, ξ′′), (4.1)

an easy computation shows

∂

∂ξi

= ai(ω)
∂

∂r
+

1

r
Yi(ω) (1 ≤ i ≤ p), (4.2)

where ai(ω) ∈ C∞(Sp−1) and Yi is a smooth vector field on Sp−1.
In order to rewrite (4.2) by using the Lie algebra action dπ, we note that

g = o(p, q) is given in matrices as

g ' {
(

A B
tB C

)

: tA = −A, tC = −C, B ∈ M(p, q;R)}

= (o(p) + o(q)) + p (Cartan decomposition),

where we set

p := {
(

0 B
tB 0

)

: B ∈ M(p, q;R)}.

Let X(Sp−1) be the vector space consisting of smooth vector fields on
Sp−1. Since O(p) acts transitively on Sp−1, the map

C∞(Sp−1) ⊗ o(p) → X(Sp−1), (b, X) 7→ b dπ(X)

is surjective. Let {Kh : 1 ≤ h ≤ 1
2
p(p−1)} be a basis of the Lie algebra o(p).

Then, we can find bh
i ∈ C∞(Sp−1) such that

Yi(ω) =
∑

h

bh
i (ω)dπ(Kh). (4.3)

Next, we set

Yij := Ei,p+j + Ep+j,i (1 ≤ i ≤ p, 1 ≤ j ≤ q).
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Here, Eij are matrix units in M(p + q,R). By definition, Yij spans p and
dπ(Yij) is the vector field on Rp+q given as

dπ(Yij) = ξp+j

∂

∂ξi

+ ξi

∂

∂ξp+j

. (4.4)

Lemma 4.1. For 1 ≤ i ≤ p we have

∂

∂ξi

=
ai(ω)

rQ(ξ)

(

r2E −
p
∑

k=1

q
∑

j=1

ξkξp+jdπ(Ykj)

)

+
1

r

∑

h

bh
i (ω)dπ(Kh), (4.5)

and for 1 ≤ j ≤ q

∂

∂ξp+j

=
1

r2

(

p
∑

i=1

ξidπ(Yij) −
ξp+j

Q(ξ)

(

r2E −
p
∑

i=1

q
∑

k=1

ξiξp+kdπ(Yik)

))

. (4.6)

Proof. By multiplying (4.4) by ξi and summing over i (1 ≤ i ≤ p), we get

∂

∂ξp+j

=
1

r2

(

p
∑

i=1

ξidπ(Yij) − ξp+jr
∂

∂r

)

, (4.7)

where we have used that r ∂
∂r

=
∑p

i=1 ξi
∂

∂ξi
.

Next, we multiply (4.7) by ξp+j and sum over j (1 ≤ j ≤ q), we obtain
the identity for the Euler operator Eξ′′ =

∑q
j=1 ξp+j

∂
∂ξp+j

:

Eξ′′ =
1

r2

p
∑

i=1

q
∑

j=1

ξiξp+jdπ(Yij) −
|ξ′′|2
r2

r
∂

∂r
.

Combining with the identity

Eξ′′ + r
∂

∂r
= E

we get

r
∂

∂r
=

1

Q(ξ)

(

r2E −
p
∑

i=1

q
∑

j=1

ξiξp+jdπ(Yij)

)

. (4.8)

By (4.7), this proves (4.6).
To prove (4.5) we insert into (4.2) the expressions for Yi(ω) and ∂

∂r
ob-

tained in (4.3) and (4.8) respectively.
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To handle the coefficients of (4.5) and (4.6), we introduce the subspace,
denoted by Ha,b,c, of C∞(Rp,q

+ ) for (a, b, c) ∈ N3 that consists of finite linear
combinations of functions of the form

A(ω)Pa(ξ
′′)

rb−cQ(ξ)c
=

A(ω)Pa(ξ
′′)

rb−c(r2 − |ξ′′|2)c
, (4.9)

where A ∈ C∞(Sp−1) and Pa is a homogeneous polynomial of ξ ′′ = (ξp+1, . . . , ξp+q) ∈
Rq of degree a. If f ∈ Ha,b,c and g ∈ Ha′,b′,c′ then fg ∈ Ha+a′,b+b′,c+c′, and
likewise for finite linear combinations of such terms. We state this as

Ha,b,cHa′,b′,c′ ⊂ Ha+a′,b+b′,c+c′. (4.10)

We also define the space

HN :=
⊕

a, b, c ∈ N

a ≤ 2N, c ≤ N

b − a + c = N

Ha,b,c (4.11)

The following lemma is an immediate consequence of (4.10):

Lemma 4.2. HNHN ′ ⊂ HN+N ′.

We write HNdπ(g) for the vector space consisting of differential operators
on R

p,q
+ which are of the form

∑

j fjdπ(Xj) (finite sum) for some fj ∈ HN

and Xj ∈ g. The point of the definition of HN is the following:

Proposition 4.3. On R
p,q
+ ,

∂

∂ξi

∈ H1dπ(g) + C∞(Rp,q
+ )E (1 ≤ i ≤ p + q).

Proof. In light of the formulas (4.5) and (4.6), it is sufficient to show that
the coefficients

ai(ω)ξlξp+j

rQ(ξ)
,
bh
i (ω)

r
,
ξi

r2
,
ξiξp+jξp+k

r2Q(ξ)
∈ H1

for any 1 ≤ i, l ≤ p and 1 ≤ j, k ≤ q. In fact, these coefficients belong to

H1,1,1, H0,1,0, H0,1,0, H2,2,1,

respectively, by definition.
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5 Proof of Propositions 3.2 and 3.3

Lemma 5.1. For 1 ≤ i ≤ p + q,

∂

∂ξi

HN ⊂ HN+1.

Proof. Since Ha,b,c is spanned by functions of the form (4.9), we get

ai(ω)
∂

∂r
(Ha,b,c) ⊂ Ha,b+1,c ⊕ Ha,b,c+1,

1

r
Yi(ω)Ha,b,c ⊂ Ha,b+1,c.

Thus, by using (4.2) we have

∂

∂ξi

Ha,b,c ⊂ Ha,b+1,c ⊕ Ha,b,c+1 (1 ≤ i ≤ p).

For the variables ξ ′′ = (ξp+1, . . . , ξp+q), we obtain directly

∂

∂ξj+p

Ha,b,c ⊂ Ha−1,b,c ⊕ Ha+1,b+1,c+1 (1 ≤ j ≤ q).

Lemma now follows from the definition (4.11) of HN .

We denote by HN · V∞
κ the subspace of C∞(Rp,q

+ ) consisting of finite linear
combinations of products of elements from HN and V∞

κ . We then have

Lemma 5.2.
∂

∂ξi

V∞
κ ⊂ H1 · V∞

κ (1 ≤ i ≤ p + q).

Proof. Since the Euler operator E acts on V∞
κ by zero and dπ(X)V∞

κ ⊂ V∞
κ

(X ∈ g), Lemma follows from Proposition 4.3.

Proposition 5.3. For any multi-index α ∈ Np+q,

∂α

∂ξα
V∞

κ ⊂ H|α| · V∞
κ . (5.1)

13



Proof. We have already proved (5.1) for |α| = 1 in Lemma 5.2. Suppose we
have proved (5.1) for |α| ≤ N . Then,

∂

∂ξi

∂α

∂ξα
V∞

κ ⊂ ∂

∂ξi

(H|α| · V∞
κ )

⊂
(

∂

∂ξi

H|α|

)

· V∞
κ + H|α| ·

(

∂

∂ξi

V∞
κ

)

⊂ H|α|+1 · V∞
κ + H|α|(H1 · V∞

κ )

by Lemmas 5.1 and 5.2. Since H|α|H1 ⊂ H|α|+1 by Lemma 4.2, (5.1) holds
for |α| = N + 1. Hence, Proposition 5.3 is proved by induction on |α|.
Lemma 5.4. Let f ∈ Vκ and g ∈ Ha,b,c. Then

|f(ξ)g(ξ)| ≤ C

|ξ|b−a+c

(

Q(ξ)

|ξ|2
)κ−c

(ξ ∈ R
p,q
+ ).

In particular, if f ∈ Vκ and g ∈ HN such that N ≤ κ, then we have

|f(ξ)g(ξ)| ≤ C|ξ|−N (ξ ∈ R
p,q
+ ).

Proof. By the definition (2.3) of Vκ, f satisfies

|f(ξ)| ≤ C1

(

Q(ξ)

|ξ|2
)κ

for ξ ∈ R
p,q
+ ,

for some constant C1 > 0. Hence, in view of (4.9), there exists C ′ > 0 such
that

|f(ξ)g(ξ)| ≤ C ′ 1

rb−c

|ξ′′|a
Q(ξ)c

(

Q(ξ)

|ξ|2
)κ

. (5.2)

We note that for ξ ∈ R
p,q
+ , we have r > |ξ′′| and therefore |ξ| = (r2 + |ξ′′|2) 1

2

satisfies
r < |ξ| <

√
2r.

Hence the first factor of (5.2) is bounded by

1

rb−c
≤ C ′′

|ξ|b−c
.

The last two factors of (5.2) are estimated as

|ξ′′|a
Q(ξ)c

(

Q(ξ)

|ξ|2
)κ

≤ 1

|ξ|2c−a

(

Q(ξ)

|ξ|2
)κ−c

.

14



Combining these estimates, we have proved

|f(ξ)g(ξ)| ≤ C ′C ′′

|ξ|b−a+c

(

Q(ξ)

|ξ|2
)κ−c

.

Proof of Proposition 3.2. Suppose f ∈ V∞
κ . Then ∂αf

∂ξα ∈ H|α| · V∞
κ by Propo-

sition 5.3. If |α| ≤ κ then
∣

∣

∣

∂αf

∂ξα

∣

∣

∣
≤ C|ξ|−|α| for ξ ∈ R

p,q
+ by Lemma 5.4.

Hence, Proposition 3.2 is proved.

Proof of Proposition 3.3. Let f ∈ V∞
κ . It is sufficient to prove that if |α| < κ

then
∂αf

∂ξα
(ξ) → 0

as ξ ∈ R
p,q
+ approaches to the boundary of R

p,q
+ in Rp+q \ {0}, namely, the

light cone {ξ ∈ Rp+q \ {0} : Q(ξ) = 0}. This follows again from Lemma 5.4.
Hence, Proposition 3.3 is also proved.

Thus, the proof of Theorem 1 is completed.
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