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Abstract

The indefinite orthogonal group G = O(p, q) has a distinguished
infinite dimensional irreducible unitary representation π for p+ q even
and greater than 4, which is the “smallest” in the sense that the
Gelfand–Kirillov dimension of π attains its (positive) minimum value
p + q − 3 among the unitary dual of G. Moreover, π is the minimal
representation if p+ q > 6.

The Schrödinger model realizes π on the Hilbert space L2(C) con-
sisting of square integrable functions on a Lagrangean submanifold C
of the minimal nilpotent coadjoint orbit. Among various concrete mod-
els of π, the Hilbert structure (e.g. inner product) of the Schrödinger
model is so simple, whereas the G-action on L2(C) has not been well-
understood except for a specific maximal parabolic subgroup.

The subject of this paper is the analysis of the Schrodinger model
of the minimal representation. We establish the “global formula” for
the Schrödinger model with an explicit description of the action of
the whole group G. For this, we describe the unitary operator π(w0)
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on L2(C) for the “conformal inversion” w0 as a singular integral, and
find its kernel by means of a distribution which we call a Bessel dis-
tribution. Our results generalize the well-established case, namely, the
original Schrödinger model L2(Rn) for the Weil representation of the
metaplectic group, where the “conformal inversion” gives rise to the
Fourier transform. However, a new mysterious phenomenon arises in
our case G = O(p, q), namely, the kernel distribution is not always lo-
cally integrable. In fact, this happens if and only if π is a non-highest
weight minimal representation, equivalently, p, q > 2 and p + q > 6.
We analyze the kernel distributions by using singular Radon transforms
and Mellin–Barnes type integral formulas.

Large group symmetries in the minimal representations bring us
naturally to functional equations of various special functions, which
we also emphasize in this paper. For example, we find explicit K-finite
vectors on L2(C) by means of Bessel functions for every K-type, and
give a representation theoretic proof of the inversion formula and the
Plancherel formula for Meijer’s G-transforms.
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1 Introduction and statement of main results

The subject of this paper is the analysis of the L2-model (Schrödinger
model) for the minimal representation π of the indefinite orthogonal group
G = O(p, q) for even p + q. Motivated by recent developments of alge-
braic representation theory, we try to shed new light on geometric analysis
including a group theoretic approach to special functions.

1.1 Minimal representation and L2-model

For a reductive Lie group a particularly interesting irreducible unitary rep-
resentation, sometimes referred to as the minimal representation, is the one
corresponding via “geometric quantization” to the minimal nilpotent coad-
joint orbit O. Minimal representations are one of the most fundamental
irreducible unitary representations in the sense that they cannot be built up
from any smaller groups by existing methods of (ordinary or cohomological)
induced representations.

One of the important algebraic properties of minimal representations is
that the Gelfand–Kirillov dimension attains its minimum at minimal repre-
sentations among all irreducible unitary representations of the same group.
Analytically, this in turn implies that there are more “symmetries” on the
representation space of the minimal representation than other irreducible
unitary representations. Then, realizing the minimal representation in the
space of certain functions, we could expect an abundant and fruitful theory
of concrete global analysis for the minimal representations. Thus, we initiate
a new line of investigation on various special functions (e.g. Bessel functions,
Appell’s hypergeometric functions, Meijer’s G-functions, etc.) arising from
the minimal representation by group theoretic approaches.

By the Schrödinger model, we mean a realization of π on the Hilbert
space L2(C) consisting of L2-functions on a Lagrangean variety C of O.
Although the variety C is so small that the whole group G cannot act on
C, a maximal parabolic subgroup Pmax acts on C, and correspondingly we
can define naturally a unitary representation of Pmax on L2(C). We proved
in [35] that this Pmax action on L2(C) extends to an irreducible unitary
representation of G, leading us to construction of the Schrödinger model of
the minimal representation. In a series of papers [33, 34, 35], we also found
some basic properties of this model including the infinitesimal character of
the center of the enveloping algebra U(g) and an explicit vector that belongs
to the minimal K-type in terms of the K-Bessel function. The missing
piece of [35] is an explicit formula for the action of the whole group G on
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L2(C) other than the action of Pmax. In light of the Bruhat decomposition
G = Pmax

∐
Pmaxw0Pmax, the crux of the theory is to find an explicit

formula for π(w0). In this paper, we shall find the integro-differential kernel
for the unitary “inversion operator” π(w0) on L2(C).

1.2 Schrödinger model for the Weil representation of Mp(n, R)

Our group G = O(p, q) (p+ q even) is a reductive group of type D. In order
to clarify our motivation, we begin with the best understood minimal rep-
resentation of a reductive group of type C, that is, the (Segal–Shale–)Weil
representation $, or sometimes referred to as the oscillator representation,
of the metaplectic group G′ = Mp(n,R), the twofold cover of the real sym-
plectic group Sp(n,R). Let ξ0 denote the (unique) non-trivial element in
the kernel of the homomorphism G′ → Sp(n,R).

The Schrödinger model is originally the term concerning with a real-
ization of the Weil representation $ on the Hilbert space L2(Rn). Since
our model (π,L2(C)) of the minimal representation of G has a strong re-
semblance to ($,L2(Rn)) of G′, we list some important features of the
Schrödinger model of $ (see e.g. [11], [25]):

C1 The representation is realized on a very explicit Hilbert space, that is,
L2(Rn).

C2 The restriction of $ to the Siegel parabolic subgroup PSiegel is still
irreducible, and the restriction to PSiegel has a relatively simple form
(translations and multiplications).

C3 The infinitesimal action d$ of the Lie algebra sp(n,R) is given by dif-
ferential operators of at most second order.

C4 There is a distinguished element w′
0 of G′ that sends PSiegel to the op-

posite parabolic subgroup. The corresponding unitary operator $(w ′
0)

on L2(Rn) is proportional to the Fourier transform F. Correspondingly
to the fact that (w′

0)
4 = ξ0 and $(ξ0) = − id, the Fourier transform F

is of order four (F4 = id).

Since G′ is generated by PSiegel and w′
0, C2 and C4 determine the action

of G′ on L2(Rn) (see [42] for an explicit formula for the action of the whole
group G′ on L2(Rn)). C3 asserts in particular that the action d$ is not
given by vector fields. This reflects the fact that G′ acts only on L2(Rn),
not on Rn.
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1.3 Schrödinger model for the minimal representation of O(p, q)

Now, let us consider our representation π. To fix notation, we set

Ip,q :=

(
Ip 0
0 −Iq

)
,

and define the indefinite orthogonal group G = O(p, q) of signature (p, q) as
the following matrix group:

O(p, q) := {g ∈ GL(p+ q,R) : tgIp,qg = Ip,q}.

The unitary representation π of O(p, q) was constructed by Kostant in [36]
for p = q = 4, and by Binegar and Zierau [5], Huang and Zhu [24], and
Kobayashi and Ørsted [33, 35] for general p, q ≥ 2 such that p+ q is an even
integer and greater than 4. Yet another realization was studied in Brylinski
and Kostant [6], and Torasso [51]. Among various different realizations of
π, we have proved in [35] that π can be realized on the Hilbert space L2(C)
consisting of square integrable functions on the conical subvariety

C := {ζ := (ζ1, · · · , ζp+q−2) ∈ Rp+q−2 \ {0} : Q(ζ) = 0},

where

Q(ζ) := ζ2
1 + · · · + ζ2

p−1 − ζ2
p − · · · − ζ2

p+q−2. (1.3.1)

We remark that C is defined in Rp+q−2, and G = O(p, q) cannot act (non-
trivially) on C. (In fact, any (non-trivial) G-space is of dimension at least
greater than p+ q − 2 = dimC + 1.)

In our model (π,L2(C)) of the indefinite orthogonal group G, the max-
imal parabolic subgroup Pmax (see Subsection 2.2 for definition) plays a
similar role of the Siegel parabolic subgroup PSiegel, and it is proved in [35]
that analogous results to the properties C1, C2 and C3 also hold. If we set

w0 := Ip,q,

then w0 sends Pmax to the opposite parabolic subgroup, and G is generated
by w0 and Pmax.

Our main concern of this paper is to establish an analogous result to C4
for G = O(p, q), namely, to find the unitary operator π(w0) on L2(C) for
the “conformal inversion” w0 (see Subsection 2.4 for a geometric meaning).
We shall give an explicit kernel distribution K(ζ, ζ ′) of the unitary operator
π(w0).

6



1.4 Bessel distributions

For a locally integrable function f(t) on R, we write

f(t+) :=

{
f(t) (t > 0)

0 (t ≤ 0),
f(t−) :=

{
0 (t ≥ 0)

f(|t|) (t < 0).

If fλ(t) is a locally integrable function on R with parameter λ in a cer-
tain domain in C, and if fλ(t+) (or fλ(t−)) extends meromorphically as a
distribution, we shall use the same notation fλ(t+) (or fλ(t−)).

In order to state our main theorem, we introduce the following tempered
distributions (which we call Bessel distributions) on R by

Φ+
m(t) := (2t)

−m
2

+ Jm(2
√

2t+), (1.4.1)

Ψ+
m(t) := (2t)

−m
2

+ Jm(2
√

2t+) −
m∑

k=1

(−1)k−1

2k(m− k)!
δ(k−1)(t), (1.4.2)

Ψm(t) := (2t)
−m

2
+ Ym(2

√
2t+) +

2(−1)m+1

π
(2t)

−m
2

− Km(2
√

2t−). (1.4.3)

Here, Jν(x), Yν(x) and Kν(z) are the (modified) Bessel functions (see Ap-
pendix 7.2), and δ(l)(t) denotes the l-th differential of the Dirac delta func-
tion δ(t). The singular part of the distribution Ψm(t) is given by a linear
combination of the distribution t−k (k = 1, 2, . . . ,m) (see Theorem 6.2.1).

A rigorous definition of Ψ+
m and Ψm is given in Section 6.1 by means

of the Mellin–Barnes type integral for distributions (see also Remark 6.2.3).
We shall also discuss in Section 6 other aspects of Bessel distributions such as
differential equations that Ψm(t) and Ψ+

m(t) satisfy (see Proposition 6.3.3).

1.5 The unitary inversion formula

Let p, q be integers satisfying the following condition:

p, q ≥ 2, p+ q is even, and (p, q) 6= (2, 2). (1.5.1)

Let 〈ζ, ζ ′〉 be the standard (positive definite) inner product of Rp+q−2.
We define a generalized function K(ζ, ζ ′) (depending on p and q) on the
direct product manifold C × C by

K(ζ, ζ ′) ≡ K(p, q; ζ, ζ ′) := cp,qΦp,q(〈ζ, ζ ′〉), (1.5.2)
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where the constant cp,q and the distribution Φp,q(t) are determined as fol-
lows:

cp,q :=
2(−1)

(p−1)(p+2)
2

π
p+q−4

2

, (1.5.3)

Φp,q(t) :=





Φ+
p+q−6

2

(t) if min(p, q) = 2,

Ψ+
p+q−6

2

(t) if p, q > 2 are both even,

Ψ p+q−6
2

(t) if p, q > 2 are both odd.

(1.5.4)

Then, here is our main result.

Main Theorem (see Theorem 5.1.1). Let p, q ≥ 2 and p+ q ≥ 6 be even.
Then the unitary operator π(w0) : L2(C) → L2(C) is given by the following
integro-differential operator:

π(w0)u(ζ) =

∫

C

K(ζ, ζ ′)u(ζ ′)dµ(ζ ′), u ∈ L2(C). (1.5.5)

We list some distinguishing new features of our results on the minimal
representation (π,L2(C)) of G = O(p, q) from the known results on the
Schrödinger model ($,L2(Rn)) of the Weil representation of G′ = Mp(n,R).

P1 (singular integral) We note that π is a non-highest weight representa-
tion iff p, q > 2. Further, it is a minimal representation in the sense
that the annihilator is the Joseph ideal iff p + q ≥ 8. Now, suppose
p, q > 2 and p+ q ≥ 8. Then, the kernel function K(ζ, ζ ′) for π(w0) is
not locally integrable, whereas, in the case of the Weil representation,

the kernel function
(√−1

2π

)n
2 e

√
−1〈ζ,ζ′〉 for $(w′

0) = e
√

−1nπ
4 F (the Fourier

transform) is locally integrable. In other words, the unitary inversion
operator π(w0) is given as a singular integral. For instance, for p, q > 2
both even, the kernel function K(ζ, ζ ′) = cp,qΨ

+
p+q−6

2

(〈ζ, ζ ′〉) involves

the p+q−8
2 th derivatives of a measure. Here, the derivatives are taken

as normal derivatives with respect to the hyperplane {(ζ, ζ ′) ∈ C × C :
〈ζ, ζ ′〉 = 0}.

P2 (support of the kernel) The supports of the kernel function K(ζ, ζ ′)
differ according to the parity of p, q, as one observes from (1.5.4)

suppΦp,q =

{
R+ if p, q both even,

R if p, q both odd.
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In particular,

suppΦp,q $ R and suppK(ζ, ζ ′) $ C × C

if both p and q are even. This is a distinguishing feature from the
known cases for highest weight representations such as the Weil repre-
sentation, where the kernel function K ′(ζ, ζ ′) is given by Φ′

n(〈ζ, ζ ′〉) if

we set Φ′
n(t) := (

√
−1
2π

)
n
2 e

√
−1t. Thus,

suppΦ′
n = R and suppK ′(ζ, ζ ′) = Rn × Rn

for any n ∈ N.

On the other hand, here are some similarities of π(w0) for our minimal
representation π of G = O(p, q) to $(w′

0) for the Weil representation of
G′ = Mp(n,R).

P3 (Plancherel and reciprocal formula) Denote by S the integral transform
in (1.5.5). Then the integro-differential operator S has the following
Plancherel and reciprocal formulas (see Corollaries 5.1.2 and 5.1.3):

‖Su‖L2(C) = ‖u‖L2(C) for u ∈ L2(C),

S2 = id in L2(C).

Analogous results for the Weil representation are well-known properties
for the Fourier transform F:

‖Fu‖L2(Rn) = ‖u‖L2(Rn) for u ∈ L2(Rn),

F
4 = id in L2(Rn).

Here, we adopt the normalization of the Fourier transform F on Rn as
follows:

Fu(ξ) =
1

(2π)
n
2

∫

Rn

u(x)e
√
−1〈x,ξ〉dx, (1.5.6)

where 〈x, ξ〉 =
∑n

i=1 xiξi and dx = dx1 · · · dxn. Then the inverse Fourier
transform F−1 is given by

F
−1F (x) =

1

(2π)
n
2

∫

Rn

F (ξ)e−
√
−1〈x,ξ〉dξ. (1.5.7)

In our context, in view of π(w0) = S and $(w′
0) = e

√
−1nπ

4 F, the iden-
tities S2 = id and F4 = id corresponds to the group laws w2

0 = 1 ∈ G
and (w′

0)
4 = ξ0 ∈ G′, respectively. It is noteworthy that an integro-

differential operator S arises as a unitary operator on L2(C).
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P4 (action of the whole group) The action of Pmax on L2(C) is of a simple
form. In light of the Bruhat decomposition G = Pmax q Pmaxw0Pmax,
we can get directly the concrete form of the action of the whole group
G once we know π(w0) explicitly.

In the case q = 2 (likewise p = 2), π splits into the direct sum of a highest
weight module and a lowest weight module when restricted to the identity
component SO0(p, 2) of the conformal group O(p, 2) of the Minkowski space
Rp−1,1, namely, the Euclidean space Rp equipped with the flat Lorentz metric
of signature (p − 1, 1). In this case our representation π has been studied
also in physics, π may be interpreted as the solution space to the mass-zero
spin-zero wave equation. π may be also regarded as the bound states of the
Hydrogen atom. For q = 2, π extends to a holomorphic semigroup, and we
can regard π(w0) as the boundary value of a holomorphic semigroup. This
was the approach taken in [31]. The approach in this paper (the proof of
Main Theorem in the special case q = 2) gives a new proof of the formula
of π(w0).

1.6 Special functions and minimal representations

Yet another theme of this paper is special functions arising from the minimal
representation.

As we explained, the representation space of a minimal representation is
“small” relative to the original group itself. For example, in the Schrödinger
model L2(C) of G = O(p, q), we observe

dimC = p+ q − 3

is strictly smaller than the dimension of any manifold on which G acts
non-trivially. This suggests that we could expect a lot of relations among
functions in L2(C) reflected by the group structure of G.

We shall see that various special functions arise from the minimal rep-
resentation. For example, K-Bessel functions arise in describing K-finite
vectors in the Schrödinger model L2(C). Meijer’s G-function appear as
the “K-component” of the integral kernel of our unitary inversion operator
π(w0) as explained below. Appell’s hypergeometric functions bridge two
models of the minimal representation, namely, the Schrödinger model and
the conformal model. All together, we initiate a new line of investigation on
various special functions arising from the minimal representation by group
theoretic approaches.
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We shall also find in Theorem 4.1.1 the integral kernel for π(w0) when
restricted to each component of the following decomposition:

L2(C) '
∞∑⊕

l,k=0

L2(R+,
1

2
rp+q−5dr) ⊗ H

l(Rp−1) ⊗ H
k(Rq−1),

by using the polar coordinate C ' R+ × Sp−2 × Sq−2. Here, Hl(Rp−1) is
the space of spherical harmonics (see Appendix). It is easy to see that the
unitary inversion operator π(w0) stabilizes each component and acts trivially
on Hl(Rp−1) ⊗ Hk(Rq−1). Hence π(w0) induces the integral transform on
the function space L2(R+, r

p+q−5dr) of one variable, which we denote by
Tl,k. Then, Tl,k is a unitary operator depending on p, q and degrees l, k
of spherical harmonics. Tl,k is nothing but the Hankel transform given by
Bessel functions if min(p, q) = 2. For general p, q ≥ 3, the integral kernel of
Tl,k is given by Meijer’s G-function. We think it is interesting that Meijer’s
G-functions arise in the representation theory of reductive Lie groups. We
note that G-functions G20

04 solve ordinary differential equations of order four
(see (7.6.6)), that is explained from our viewpoint by the fact that the
Casimir element acts on L2(C) as a fourth order differential operator. As
a consequence of the fact that π(w0) is a unitary operator of order two, we
get the Plancherel and reciprocal formulas for the G-functions. This gives a
group theoretic proof of Fox’s theorem [12] on G-functions.

1.7 Organization of this paper

This article is organized as follows. After a quick review of the L2-realization
(a generalization of the classic Schrödinger model) of the minimal repre-
sentation of O(p, q) in Section 2, we find some K-finite vectors on L2(C)
explicitly by means of K-Bessel function Kν(z) in Section 3. Section 4
is devoted entirely to the integral formula of the unitary operator Tl,k on
L2(R+, r

p+q−5dr) (see Theorem 4.1.1). In Section 5, by using the integral
formula on the Gegenbauer polynomials, we prove our main theorem (see
Theorem 5.1.1). In Appendix, we collect the formulas and the properties of
various special functions used in this article.

A part of the results here was announced in [32] with a sketch of proof.

The first author would like to Ms. Suenaga for indispensable help in
preparing LATEXmanuscript.

Notation: R+ := {x ∈ R : x > 0}, N := {0, 1, 2, · · · }.
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2 Review of the minimal representation of O(p, q)

In this section, we review from [33, 35] two concrete realizations of the
minimal representation of the group G = O(p, q), namely, the conformal
model ($p,q, V p,q) by using the Yamabe operator (2.1.2) in Subsection 2.1
and the L2-model (π,L2(C)) (the Schrödinger model) in Subsection 2.2. In
the terminology of representation theory of reductive Lie groups (e.g. [27]),
the former corresponds to the K-picture, whereas the latter corresponds to
the Fourier transform of the N -picture.

The intertwining operator T between these two models will be given in
(2.2.8), which is summarized as the following diagram:

L2(C)
T
↪→ S′(Rp+q−2)

T
?

↑ F

K-picture →
eΨ∗

N -picture.

Here, Ψ̃∗ is the twisted pull-back for the conformal map Ψ : Rp+q−2 →
Sp−1 × Sq−1.

2.1 K-picture — realization via conformal geometry

In this subsection, we give a brief review of the conformal model of the
minimal representation of the indefinite orthogonal group G = O(p, q) (p+
q : even). See [33] for details. See also [29] for an elementary exposition
from viewpoints of conformal transformation groups. In the terminology
of representation theory, this model corresponds to a subrepresentation of
the most degenerate principal series representations (with a very special
parameter). See [5, 23, 36] for this approach. The same subrepresentation
can be also captured by the theta correspondence arising from the dual pair
O(p, q) · SL(2,R) ⊂ Sp(p+ q,R) (see [24]).

We denote by Rp,q the Euclidean space Rp+q equipped with the pseudo-
Riemannian structure gRp,q of signature (p, q):

ds2 = dx2
1 + · · · + dx2

p − dy2
1 − · · · − dy2

q .

Then, the restriction of ds2 to the submanifold

M := {(x, y) ∈ Rp+q : |x| = |y| = 1, x ∈ Rp, y ∈ Rq} (2.1.1)

' Sp−1 × Sq−1

12



is non-degenerate, and defines a pseudo-Riemannian structure on M of sig-
nature (p − 1, q − 1). Here, | · | stands for the usual Euclidean norm. The
resulting pseudo-Riemannian structure gM on M is nothing but the direct
product of the standard unit sphere Sp−1 (positive definite metric) and the
unit sphere Sq−1 equipped with the negative definite metric ((−1)× the
standard metric).

The Yamabe operator ∆̃X on an n-dimensional Riemannian (or more
generally, pseudo-Riemannian) manifold X is defined to be

∆̃X := ∆X +
n− 2

4(n− 1)
κ (2.1.2)

where ∆X is the Laplace–Beltrami operator, and κ is the scalar curvature of
X. The second factor n−2

4(n−1)κ acts as a multiplication. In the case X = M ,

the Yamabe operator ∆̃M of M takes the following form (see [35, (3,4,1)]):

∆̃M = ∆Sp−1 − ∆Sq−1 −
(
p− 2

2

)2

+

(
q − 2

2

)2

, (2.1.3)

where ∆Sp−1 and ∆Sq−1 are the Laplace–Beltrami operators on Sp−1 and
Sq−1 respectively.

The indefinite orthogonal group G = O(p, q) acts naturally on Rp,q as
isometries. This action preserves the cone

Ξ := {(x, y) ∈ Rp,q : |x| = |y| 6= 0}
but does not preserve M . In order to let G act on M , we set a function ν
on Rp,q by

ν : Rp,q → R, (x, y) 7→ |x|.
If v ∈ M(⊂ Ξ) and h ∈ G, then h · v ∈ Ξ, and consequently h·v

ν(h·v) ∈ M .
Thus, we can define the action of G on M by

Lh : M →M, v 7→ h · v
ν(h · v) (h ∈ G).

Then, we have L∗
hgM = 1

ν(h·v)2
gM at TvM and thus the diffeomorphism Lh is

conformal with respect to the pseudo-Riemannian metric on M . Conversely,
any conformal diffeomorphism of M is of the form Lh for some h ∈ G (see
[28, Chapter IV]).

By the general theory of conformal geometry (see [33, Theorem A]), we
can construct a representation, denoted by $p,q, of G on the solution space
to ∆̃M in C∞(M):

V p,q := Ker ∆̃M = {f ∈ C∞(M) : ∆̃Mf = 0},
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where we set

($p,q(h−1)f)(v) := ν(h · v)− p+q−4
2 f(Lhv), (2.1.4)

for h ∈ G, v ∈M , and f ∈ V p,q. The following theorem was proved in [35]
in this geometric framework. There are also algebraic proofs (see Remark
2.1.2).

Fact 2.1.1 (see [35, Theorem 3.6.1]). Let p, q ≥ 2 and p+ q ≥ 6 be even.
1)(irreducibility) ($p,q, V p,q) is an irreducible unitary representation of

G.
2)(unitarizability) There exists a G-invariant inner product ( , )M on

V p,q.
We write V p,q for its Hilbert completion, and use the same letter $p,q to

denote the resulting irreducible unitary representation.
3)(K-type formula) The K-type formula of ($p,q, V p,q) is given as fol-

lows:

V p,q '
∞∑⊕

a+ p−q

2
=b,

a,b∈N

H
a(Rp) ⊗ H

b(Rq). (2.1.5)

4) (Parseval–Plancherel formula) On each K-type Ha(Rp)⊗Hb(Rq) for
(a, b) ∈ N2 such that a + p−q

2 = b, or equivalently, a + p−2
2 = b + q−2

2 , the
unitary inner product (·, ·)M is of the form:

(F, F )M =
(
a+

p− 2

2

)
‖F‖2

L2(M). (2.1.6)

Remark 2.1.2. Our manifold M is a double cover of the generalized flag
variety G/Pmax by a maximal parabolic subgroup Pmax (see (2.3.6)). Then,
($p,q, V p,q) is identified with a subrepresentation of the degenerate principal
series representation induced from a certain one-dimensional representation
of Pmax. In this framework, Fact 2.1.1 was proved by Kostant [36] for
p = q = 4 and by Binegar–Zierau [5], for general p, q satisfying (1.5.1).
Huang and Zhu [24] identified this subrepresentation with the local theta
correspondence associated to the dual pair O(p, q)×SL(2,R) in Sp(p+q,R)
(to be more precise, its metaplectic cover) and the trivial one-dimensional
representation of SL(2,R).

Remark 2.1.3. If p+q ≥ 8, then $p,q becomes a minimal representation in
the sense that the annihilator of $p,q in the enveloping algebra is the Joseph
ideal (see [5]).
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2.2 L2-model (the Schrödinger model)

We recall from Introduction that the quadratic form

Q(ζ) := ζ2
1 + · · · + ζ2

p−1 − ζ2
p − · · · − ζ2

p+q−2 (2.2.1)

is the defining polynomial of the cone C in Rp+q−2. The substitution δ(Q)
of Q into the Dirac delta function δ of one variable defines a distribution on
Rp+q−2\{0}, which is given as the measure on C defined by the volume form
ω|C . Here, ω is an (p+q−3) form such that dQ∧ω = dζ1∧dζ2∧· · ·∧dζp+q−2

(see [14, Chapter III, Section 2]).
In the polar coordinate:

R+ × Sp−2 × Sq−2 ∼→ C, (r, ω, η) 7→
(
rω
rη

)
, (2.2.2)

the distribution δ(Q) is given by

〈δ(Q), ϕ〉 =
1

2

∫ ∞

0

∫

Sp−2

∫

Sq−2

ϕ(

(
rω
rη

)
)rp+q−5drdωdη (2.2.3)

for a test function ϕ ∈ C0(C). Here, dω and dη denote the standard measures
on Sp−2 and Sq−2, respectively. By this formula, we see that if p + q > 4
then rp+q−5dr is locally integrable. Thus, δ(Q) gives a Schwartz distribution
on Rp+q−2 of measure class if p+ q > 4. Obviously, we have

supp δ(Q) = C ∪ {0}.

We shall write dµ for the measure 1
2r

p+q−5drdωdη on C, and L2(C) ≡
L2(C, dµ) for the Hilbert space consisting of square integrable functions on
C. Thus, for a function ϕ on C,

‖ϕ‖L2(C) =
1

2

∫ ∞

0

∫

Sp−2

∫

Sq−2

|ϕ(rω, rη)|2rp+q−5drdωdη. (2.2.4)

Correspondingly to the coordinates, we have an isomorphism of Hilbert
spaces:

L2(R+,
1

2
rp+q−5dr) ⊗̂ L2(Sp−2) ⊗̂ L2(Sq−2) ' L2(C). (2.2.5)

If p+ q > 4, then u 7→ uδ(Q) defines a continuous, injective map from the
Hilbert space L2(C) into the space S′(Rp+q−2) of tempered distributions on
Rp+q−2:

T : L2(C) → S
′(Rp+q−2), u 7→ uδ(Q). (2.2.6)
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See [35, §3.4]. Following [35, (2.8.2)], we define an injective map by

Ψ : Rp+q−2 →M, z 7→ τ(z)−1ι(z),

where for z = (z′, z′′) ∈ Rp−1 ⊕ Rq−1 we set

τ(z) :=

(
1 +

( |z′| + |z′′|
z

)2
) 1

2
(

1 +
( |z′| − |z′′|

2

)2
) 1

2

,

ι : Rp+q−2 → Rp+q, (z′, z′′) 7→
(

1 − |z′|2 − |z′′|2
4

, z′, z′′, 1 +
|z′|2 − |z′′|2

4

)
.

Then, Ψ is a conformal map such that Ψ∗gM = τ(z)−2gRp−1,q−1 . The image
M+ of Ψ is roughly the half of M :

M+ := {u = (u0, u
′, u′′, up+q−1) ∈M : u0 + up+q−1 > 0}.

We note that Ψ induces a conformal compactification of the flat space
Rp−1,q−1:

Rp−1,q−1 ↪→ (Sp−1 × Sq−1)/ ∼ Z2,

where ∼ Z2 denotes the equivalence relation in M = Sp−1 × Sq−1 defined
by u ∼ −u. The inverse of Ψ : Rp+q−2 ∼→M+ is given by

Ψ−1(u0, u
′, u′′, up+q−1) =

(u0 + up+q−1

2

)−1
(u′, u′′).

We note that Ψ−1 is the ordinary stereographic projection of the sphere
Sp−1 if q = 1.

We write (Ψ̃∗)−1 = (̃Ψ−1)
∗

for the twisted pull-back (in the sense of [33,
Definition 2.3]) of the conformal map Ψ−1 : M+ → Rp+q−2, that is,

(Ψ̃∗)−1 : C∞(Rp+q−2) → C∞(M+)

is given by

(Ψ̃∗)−1(F )(v) := (
v0 + vp+q−1

2
)−

p+q−4
2 F (

2

v0 + vp+q−1

(
v′

v′′

)
), (2.2.7)

where v = t(v0, v
′, v′′, vp+q−1) ∈ M , v0, vp+q−1 ∈ R, v′ ∈ Rp−1, v′′ ∈ Rq−1.

In the group language, this is the standard intertwining operator from the
N -picture to the K-picture.

Now, we are ready to introduce a key map which will give an intertwining
operator between the conformal model and the L2-model.

T := (Ψ̃∗)−1 ◦ F
−1 ◦ T. (2.2.8)
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Here, we recall from (1.5.7) that F−1 is the inverse Fourier transform on
Rp+q−2 given by

f(ζ) 7→
( 1

2π

) p+q−2
2

∫

Rp+q−2

f(ζ)e−
√
−1〈z,ζ〉dζ.

For u ∈ C∞
0 (C), Tu ∈ C∞(M+). We extend Tu to a function on M+ ∪

(−M+) by

(Tu)(−v) = (−1)
p−q

2 (Tu)(v) (v ∈M+).

We recall from Fact 2.1.1 that the inner product on V p,q is given by
the formula (2.1.6). Then, the main ingredient of [35, Theorem 4.9] can be
restated as:

Fact 2.2.1. T extends to a unitary operator (up to scalar) from L2(C) onto
V p,q.

Remark 2.2.2. The definition (1.5.6) of the Fourier transform adopted
here involves the scalar multiplication by (2π)−

n
2 . Accordingly, the normal-

ization of T is different from that of [35] by a scalar multiplication. In our
normalization, we have

‖Tu‖2 =
1

2
‖u‖2

L2(C) (u ∈ L2(C))

as we shall observe in (3.1.10).

Through the unitary operator T, we can transfer the unitary represen-
tation ($p,q, V p,q) of G = O(p, q) to a unitary representation on the Hilbert
space L2(C) by

πp,q(g) := T
−1 ◦$p,q(g) ◦ T, g ∈ G. (2.2.9)

Hereafter we shall write π for πp,q for simplicity. Then, π is irreducible be-
cause so is $p,q (see Subsection 2.1). We note that the unitary inner product
of π is nothing but the L2-inner product of L2(C). Naming after the classi-
cal Schrödinger model L2(Rn) for the Weil representation of the metaplectic
group (e.g. [11]), we shall say the resulting irreducible unitary representa-
tion (π,L2(C)) is the Schrödinger model for the minimal representation of
G = O(p, q).

We have explained two models of ($p,q, V p,q) and (π,L2(C)) for the
minimal representation of G. In the realization of V p,q, the K-structure is
very clear to see, while on L2(C), it is not clear a priori. If it is possible
to compute the intertwining operator T (see (2.2.8)) explicitly, then we can
transfer the information from one to the other. Along this line, we shall
explicitly find in the next Section 3 explicit K-finite vectors of L2(C) by
computing the Hankel transform of the K-Bessel functions.
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2.3 Explicit formulas for the group action on L2(C)

In this subsection, we summarize the known results on the Schrödinger
model of the minimal representation (π,L2(C)) of G.

First, we define subgroups Mmax
+ ,Mmax, a maximal compact subgroup

K, and a compact subgroup K ′ of G = O(p, q) as follows:

m0 := −Ip+q,

Mmax
+ := {g ∈ G : g · e0 = e0, g · ep+q−1 = ep+q−1} ' O(p− 1, q − 1),

Mmax := Mmax
+ ∪m0M

max
+ ' O(p− 1, q − 1) × Z2,

K := G ∩O(p+ q) ' O(p) ×O(q),

K ′ := K ∩Mmax
+ ' O(p− 1) ×O(q − 1).

We note that the group Mmax
+ acts on the cone C transitively, and leaves

the measure dµ (see Subsection 2.2) invariant.
Next we set

εj :=

{
1 (1 ≤ j ≤ p− 1),

−1 (p ≤ j ≤ p+ q − 2).

Let Nj, N j (1 ≤ j ≤ p + q − 2) and E be elements of the Lie algebra
g = o(p, q) given by

Nj := Ej,0 −Ej,p+q−1 − εjE0,j − εjEp+q−1,j, (2.3.1)

N j := Ej,0 +Ej,p+q−1 − εjE0,j + εjEp+q−1,j, (2.3.2)

E := E0,p+q−1 +Ep+q−1,0.

Then, we define abelian Lie subgroups Nmax, Nmax and A by

Rp+q−2 ' Nmax, a = (a1, a2, · · · , ap+q−2) 7→ na := exp(

p+q−2∑

j=1

ajNj),

Rp+q−2 ' Nmax, a = (a1, a2, · · · , ap+q−2) 7→ n̄a := exp(

p+q−2∑

j=1

ajN j),

(2.3.3)

A := exp(RE).

Then, we have

Mmax
+ Nmax = {g ∈ G : g(e0 + ep+q−1) = e0 + ep+q−1} (2.3.4)

18



and a diffeomorphism

G/Mmax
+ Nmax ' {(ζ0, · · · , ζp+q−1) ∈ Rp+q :

p−1∑

j=0

ζ2
j −

p+q−1∑

j=p

ζ2
j = 0}. (2.3.5)

The Lie algebras of the above subgroups will be denoted by their corre-
sponding German lowercase letters.

We review from [35, §3.3] how G acts on L2(C). The action of the
maximal parabolic subgroup

Pmax := MmaxANmax (2.3.6)

on L2(C) is described explicitly as follows:

(π(m)ψ)(ζ) = ψ(tmζ) (m ∈Mmax
+ ), (2.3.7)

(π(m0)ψ)(ζ) = (−1)
p−q

2 ψ(ζ), (2.3.8)

(π(etE)ψ)(ζ) = e−
p+q−4

2
tψ(e−tζ) (t ∈ R), (2.3.9)

(π(na)ψ)(ζ) = e2
√
−1(a1ζ1+···+ap+q−2ζp+q−2)ψ(ζ) (a ∈ Rp+q−2). (2.3.10)

Here, we remark that the maximal parabolic subgroup Pmax of G plays
an analogous role to the Siegel parabolic subgroup PSiegel of the metaplectic
group G′ = Mp(n,R). L := MmaxA is a Levi subgroup of Pmax.

It follows from (2.3.10) that the differential action of Nmax is given as

dπ(N j) = 2
√
−1ζj (1 ≤ j ≤ p+ q − 2). (2.3.11)

On the other hand, the Nmax-action on L2(C) is not simple to describe.
Reflecting the fact that the action Pmax on C does not extend to G, the
differential action of Nmax on L2(C) is given not as vector fields but as
differential operators of second order. To describe its explicit form, it is
convenient to write the differential operator in the ambient space Rp+q−2 by
using the inclusion map T : L2(C) ↪→ S′(Rp+q−2), u 7→ uδ(Q) (see (2.2.6)).
Then the differential action dπ(Nj) (1 ≤ j ≤ p+ q − 2) is characterized by
the commutative diagram:

L2(C)K
T−→ S′(Rp+q−2)

dπ(Nj)
y

yDj

L2(C)K
T−→ S′(Rp+q−2).

(2.3.12)
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Here, Dj is a differential operator on Rp+q−2 given in [35, Lemma 3.2] as
follows (in the notation loc. cit., Dj = d$̂λ,ε(Nj) with λ = p+q−4

2 ):

Dj =
√
−1

(
−p+ q

2
εj

∂

∂ζj
−
(p+q−2∑

k=0

ζk
∂

∂ζk

)
εj

∂

∂ζj
+

1

2
ζj
(p+q−2∑

k=1

εk
∂2

∂ζ2
k

))
.

(2.3.13)

2.4 The conformal inversion w0

In this subsection, we list some important features of the element

w0 =

(
Ip 0
0 −Iq

)
.

I0 (Involution) The element w0 is of order two. Therefore, w0 acts as an
involution for any action (in particular, any representation) of G.

I1 (Bruhat decomposition) Retain the notation as in Subsection 2.3. Then,

Ad(w0)E = −E, (2.4.1)

and therefore w0|a = − id. We see also readily from (2.3.1) and (2.3.2)
that

Ad(w0)N j = εjNj (1 ≤ j ≤ p+ q − 2), (2.4.2)

and therefore
Ad(w0)n

max = nmax. (2.4.3)

On the group level, we have the following Bruhat decomposition of G:

G = Pmaxw0Pmax q Pmax. (2.4.4)

I2 (Jordan algebras) Let Rp−1,q−1 ' Rp+q−2 be the semisimple Jordan al-
gebra with indefinite quadratic form Q(ζ) (see (1.3.1)). This Jordan
algebra is euclidean if min(p, q) = 2, and non-euclidean if p, q > 2. The
conformal group (Kantor–Koecher–Tits group) of Rp−1,q−1 is nothing but
the group G = O(p, q), and the action of the element w0 on Rp−1,q−1 cor-
responds to the conformal inversion ζ 7→ −ζ−1 (see [46]). Thus, hereafter
we shall call w0 the conformal inversion. The structure group

L+ := Mmax
+ A (2.4.5)

acts on Rp−1,q−1 as x 7→ etm−1x for (m, etE) ∈ Mmax
+ × A, and on its

dual space by

ζ 7→ e−t tmζ, (m, etE) ∈Mmax
+ ×A.
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I3 (Restricted root system) Let g = k + p be a Cartan decomposition and b

be a maximal abelian subalgebra of p. Since Ad(w0) acts on p as − id, w0

acts on the restricted root system Σ(g, b) as − id. This coincides with
the longest element in the Weyl group W (Σ(g, b)) except for the case
p = q is odd, where

w0|b = − id /∈W (Σ(g, b)) ' Sq n (Z/2Z)q−1 (type Dq).

I4 (center of K) w0 lies in the center of K.

I5 (The action on the minimal representation) In the conformal model
($p,q, V p,q) (see Section 2.1),

($p,q(w0)h)(v
′, v′′) = h(v′,−v′′)

by (2.1.4). In the Schrödinger model (π,L2(C)),

π(w0) = T
−1 ◦$p,q(w0) ◦ T

by (2.2.9). However, it is not a simple task (as far as we understand) to
find the formulas (1.4.1)–(1.4.3) from the definition of T.
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3 K-finite eigenvectors in L2(C)

In the conformal model (see Subsection 2.1), we can find readily explicit
K-finite vectors. However, it is far from being obvious to find explicit forms
of K-finite vectors in the L2-model for the minimal representation. In this
section, generalizing the idea of [35, Theorem 5.8] that dealt with the explicit
form of the minimal K-type, we find explicit vectors in L2(C) for every K-
type, by computing the integral operator T : L2(C) ∼→V p,q (see Fact 2.2.1).

3.1 Result of this section

Throughout this section, we assume p ≥ q ≥ 2 and p+q ≥ 6. For (l, k) ∈ N2,
we consider the following two (non-exclusive) cases:

Case 1 : p−q
2 + l − k ≥ 0,

Case 2 : p−q
2 + l − k ≤ 0.

(3.1.1)

The case p−q
2 + l − k = 0 belongs to both Cases 1 and 2. This convention

will be convenient later because all the formulas below are the same for both
Cases 1 and 2 if (l, k) satisfies p−q

2 + l − k = 0.
For (l, k) ∈ N2, we define real analytic functions fl,k on R+ by

fl,k(r) :=




r−

q−3
2

+lK q−3
2

+k
(2r) Case 1,

r−
p−3
2

+kK p−3
2

+l
(2r) Case 2,

(3.1.2)

= rl+k ×




K̃ q−3

2
+k

(2r) Case 1,

K̃ p−3
2

+l
(2r) Case 2.

(3.1.3)

Here, Kν(z) is theK-Bessel function, i.e., the modified Bessel function of the
second kind (see Appendix 7.2) and K̃ν(z) = ( z

2)−νKν(z) is the normalized
K-Bessel function (see (7.2.6)).

By using the polar coordinate (2.2.2), we define a linear subspace Hl,k

of C∞(C) consisting of linear combinations of the following functions:

fl,k(r)φ(ω)ψ(η) (φ ∈ H
l(Rp−1), ψ ∈ H

k(Rq−1)). (3.1.4)

We recall from Subsection 2.3 that there are two key compact subgroups
for the analysis on the minimal representation L2(C):

K ' O(p) ×O(q),

K ′ = K ∩Mmax
+ ' O(p− 1) ×O(q − 1).
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We note that the K ′-action on L2(C) is just the pull-back of the K ′-action
on C (see (2.3.7)), but the K-action on L2(C) is more complicated because
K cannot act on C. Then, here is our main result of this section:

Theorem 3.1.1. For each pair (l, k) ∈ N2, we have
1) (asymptotic behavior) Hl,k ⊂ L2(C) for any l, k ∈ N.
2) (K-type and K ′-type) Hl,k ' Hl(Rp−1) ⊗ Hk(Rq−1) as a K ′-module.

Furthermore, Hl,k belongs to the K-type Ha(l,k)(Rp) ⊗ H
a(l,k)+ p−q

2 (Rq) of
L2(C). Here, we define a non-negative integer a(l, k) by

a(l, k) := max(l, k − p− q

2
) =

{
l Case 1,

k − p−q
2 Case 2.

(3.1.5)

3) (eigenspace of π(w0)) π(w0) acts on Hl,k by the scalar (−1)a(l,k)+ p−q

2 .
4) (intertwining operator) Fix any φ ∈ Hl(Rp−1), ψ ∈ Hk(Rq−1), and set

ul,k(rω, rη) := fl,k(r)φ(ω)ψ(η) ∈ Hl,k. (3.1.6)

Then T : L2(C) → V p,q has the following form on the subspace Hl,k:

Tul,k = cl,kI
p
l→a(l,k)(φ)Iq

k→a(l,k)+ p−q

2

(ψ), (3.1.7)

where Im
i→j : Hi(Rm−1) → Hj(Rm)(0 ≤ i ≤ j) is an O(m−1)-homomorphism

defined in Fact 7.5.1, and the constant cl,k is given by

cl,k :=

√
−1

l+k

√
π

×





Γ(p−q
2 + l − k + 1)

2
p−q

2
+l−k+3Γ(p−2

2 + l)
Case 1,

Γ(−p−q
2 − l + k + 1)

2−( p−q

2
+l−k)+3Γ( q−2

2 + k)
Case 2.

(3.1.8)

5) (L2-norm) For any (l, k) ∈ N2,

‖Tul,k‖2
L2(M) =

1

2a(l, k) + p− 2
‖ul,k‖2

L2(C). (3.1.9)

By using the unitary inner product ( , )M (see (2.1.6)) for the conformal
model ($p,q, V p,q), the formula (3.1.9) can be restated as

(Tul,k,Tul,k)M =
1

2
‖ul,k‖2

L2(C). (3.1.10)
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Remark 3.1.2. Theorem 3.1.1 (1) for l = k = 0 was proved in [35, Theorem
5.8]. Since p ≥ q, we are dealing with Case 1 if l = k = 0 and a(0, 0) = 0. In

this particular case, Theorem 3.1.1(2) asserts that f0,0(r) = r−
q−3
2 K q−3

2
(2r)

belongs to the minimal K-type H0(Rp) ⊗ H
p−q

2 (Rq) of (π,L2(C)).

Remark 3.1.3. For q = 2, Hk(Rq−1) is non-zero only if k = 0 or 1 (see
Appendix 7.5). Thus our assumption p + q ≥ 6 combined with q = 2 and
k = 0, 1 implies p−q

2 + l − k = p+q
2 − 2 + l − k ≥ 0. Hence, (l, k) belongs

automatically to Case 1. In this case, fl,0(r) = fl,1(r) =
√

π
2 r

le−2r with the
notation here coincides with the function fl,l(r) with the notation in [31,
Proposition 3.4] up to a constant multiple.

Our method is based on the technique used in [35, §5.6, §5.7]. The
key lemma is Lemma 7.8.1, which gives a formula of the Hankel transform
of the K-Bessel function with trigonometric parameters by means of the
Gegenbauer polynomial.

The subspace
⊕

l,k∈N

Hl,k is not dense in L2(C), but is large enough (see

Subsection 3.2) that we can make use of Theorem 3.1.1 for the proof of
Theorem 4.1.1 in Section 4 (see also Subsection 4.1 for its idea).

3.2 The subspace Hl,k

The subspace
⊕

l,k∈N

Hl,k is not dense in L2(C), but serves as a ‘skeleton’. In

this subsection, we try to clarify its meaning.
We begin with the branching law G ↓ K (see (2.1.5)) and K ↓ K ′ (K ′

denotes K ′ := K ∩Mmax
+ ' O(p− 1) ×O(q − 1)):

L2(C)K '
∞⊕

a=0

H
a(Rp) ⊗ H

a+ p−q

2 (Rq) (3.2.1)

'
∞⊕

a=0

a⊕

l=0

a+ p−q

2⊕

k=0

H
l(Rp−1) ⊗ H

k(Rq−1). (3.2.2)

The irreducible decomposition (3.2.1) shows that L2(C)K is multiplicity-free

as a K-module. Hereafter, we identify the K-module Ha(Rp)⊗H
a+ p−q

2 (Rq)
with the corresponding subspace of L2(C)K . Then we observe

S1 (K ′-type) Fix a pair (l, k) ∈ N2. In light of (3.2.1) and (3.2.2), the K ′-

type Hl(Rp−1)⊗Hk(Rq−1) occurs in theK-module Ha(Rp)⊗H
a+ p−q

2 (Rq)
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if and only if a ≥ a(l, k). Further, Hl,k is characterized as a subspace of
L2(C) satisfying the following two conditions:

{
W ' Hl(Rp−1) ⊗ Hk(Rq−1) as K ′-modules,

W ⊂ Ha(l,k)(Rp) ⊗ H
a(l,k)+ p−q

2 (Rq).

S2 (K-type) Fix a ∈ N. Then for (l, k) ∈ N2,
(⊕

l,k∈N

Hl,k

)
∩
(

H
a(Rp) ⊗ H

a+ p−q

2 (Rq)

)

is non-zero if and only if at least one of l and k attains its maximum in
the set {(l′, k′) ∈ N2 : 0 ≤ l′ ≤ a, 0 ≤ k′ ≤ a+ p−q

2 } or equivalently, in

the set of the K ′-types (l′, k′) occurring in Ha(Rp) ⊗ H
a+ p−q

2 (Rq) (see
the black dots in the figure below).

Case 1

Case 2
k − l =

p− q

2

k

p− q

2

0 a l

a+
p− q

2

3.3 Integral formula for the intertwiner

Before proving Theorem 3.1.1, we prepare, in this subsection, the explicit
integral formula for the G-isomorphism T : L2(C) → V p,q(⊂ L2(M)) (see
Fact 2.2.1).

We write v ∈M = Sp−1 × Sq−1 ⊂ Rp+q as

v = t(v0, v
′, v′′, vp+q−1), v0, vp+q−1 ∈ R, v′ ∈ Rp−1, v′′ ∈ Rq−1 (3.3.1)

satisfying
v2
0 + |v′|2 = |v′′|2 + v2

p+q−1 = 1.
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Lemma 3.3.1. Suppose that u ∈ L2(C) is of the form

u(rω, rη) = f(r)φ(ω)ψ(η),

for φ ∈ Hl(Rp−1), ψ ∈ Hk(Rq−1), and f ∈ L2(R+, r
p+q−5dr) with regard to

the polar coordinate (2.2.2). Then, Tu is reduced to the following integral
transform of one variable: for v ∈M such that v0 + vp+q−1 > 0,

(
Tu
)
(v) = e−

√
−1(l+k)π

2
|v′|− p−3

2 |v′′|− q−3
2

v0 + vp+q−1
φ

(
v′

|v′|

)
ψ

(
v′′

|v′′|

)

×
∫ ∞

0
f(r)J p−3

2
+l

(
2|v′|r

v0 + vp+q−1

)
J q−3

2
+k

(
2|v′′|r

v0 + vp+q−1

)
r

p+q−4
2 dr, (3.3.2)

where Jν(z) denotes the Bessel function.

Proof. As T = (Ψ̃∗)−1 ◦ F−1 ◦ T , we begin with the computation of (F−1 ◦
Tu)(z) for z ∈ Rp+q−2. By the formula (2.2.3) and (2.2.6) for Tu = uδ(Q),
we have

2(F−1 ◦ Tu)(z)

= (2π)−
p+q−2

2

∫ ∞

0

∫

Sp−2

∫

Sq−2

f(r)φ(ω)ψ(η)e−
√
−1(〈z′,rω〉+〈z′′,rη〉)rp+q−5drdωdη

=
√
−1

−(l+k)|z′|− p−3
2 |z′′|− q−3

2 φ

(
z′

|z′|

)
ψ

(
z′′

|z′′|

)

×
∫ ∞

0
f(r)J p−3

2
+l

(r|z′|)J q−3
2

+k
(r|z′′|)r p+q−4

2 dr. (3.3.3)

Here, in (3.3.3), we used the following formula (see e.g. [20, Introduction,
Lemma 3.6]):

∫

Sm−1

e
√
−1λ〈η,ω〉φ(ω)dω = (2π)

m
2

√
−1

l
φ(η)

Jl−1+ m
2
(λ)

λ
m
2
−1

. (3.3.4)

Finally, by the definition (2.2.7) of the pull-back (Ψ̃∗)−1, we get the desired
result (3.3.2).

3.4 K-finite vectors fl,k in L2(C)

In this section, we prove basic properties of the real analytic functions fl,k

defined in (3.1.2).

Lemma 3.4.1. fl,k ∈ L2(R+,
1
2r

p+q−5dr).

26



Proof. The K-Bessel function decays exponentially at infinity. The asymp-
totic formula (see Fact 7.2.1 (2) in Appendix) implies

fl,k(r) ∼
{
c r−

q−2
2

+le−2r Case 1,

c r−
p−2
2

+ke−2r Case 2,
(3.4.1)

as r → ∞. On the other hand, since K̃ν(r) = O(r−2ν) as r tends to 0 (see
(7.2.10)),

fl,k =

{
O(rl−k−q+3) Case 1,

O(r−l+k−p+3) Case 2,
(3.4.2)

as r tends to 0. In either case, fl,k = O(r
−p−q

2
+3) by the definition (3.1.1) of

Cases 1 and 2. Hence, we have fl,k ∈ L2(R+,
1
2r

p+q−5dr) for p+ q > 4.

The explicit formula of the L2-norm of fl,k is obtained by the integration
formula (7.2.13) of K-Bessel functions as follows:

Proposition 3.4.2.

‖fl,k‖2
L2(R+, 1

2
rp+q−5dr)

=





Γ(p−1
2 + l)2Γ(p+q−4

2 + l + k)Γ(p−q+2
2 + l − k)

16Γ(p− 1 + 2l)
Case 1,

Γ( q−1
2 + k)2Γ(p+q−4

2 + k + l)Γ( q−p+2
2 + k − l)

16Γ(q − 1 + 2k)
Case 2.

(3.4.3)

Lemma 3.4.3.
∫ ∞

0
r

p+q−6
2

+
√
−1ζfl,k(r)dr

=

{
1
4Γ(p+q−4

4 + l+k+
√
−1ζ

2 )Γ(p−q
4 + l−k+1+

√
−1ζ

2 ) Case 1,
1
4Γ(p+q−4

4 + k+l+
√
−1ζ

2 )Γ( q−p
4 + k−l+1+

√
−1ζ

2 ) Case 2.

Proof. Apply the formula (7.2.11) of the Mellin transform of K-Bessel func-
tions.

In order to compute Tul,k explicitly by using the integral formula (3.3.2),
we need another lemma:
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Lemma 3.4.4. For a pair (l, k) ∈ N2, let fl,k be the function on C defined
in (3.1.2). With respect to the coordinate t(v0, v

′, v′′, vp+q−1) ∈ M ⊂ Rp+q

(see (3.3.1)), the integral

∫ ∞

0
fl,k(r)J p−3

2
+l

(
2|v′|r

v0 + vp+q−1

)
J q−3

2
+k

(
2|v′′|r

v0 + vp+q−1

)
r

p+q−4
2 dr (3.4.4)

is equal to:

Γ(p−q
2 + l − k + 1)

2
p−q
2

+l−k+3√π
(v0 + vp+q−1)|v′|

p−3
2

+l|v′′| q−3
2

+kC̃
q−2
2

+k
p−q

2
+l−k

(vp+q−1) Case 1,

Γ(−p−q
2 − l + k + 1)

2−
p−q

2
−l+k+3√π

(v0 + vp+q−1)|v′|
p−3
2

+l|v′′| q−3
2

+kC̃
p−2
2

+l

−( p−q

2
+l−k)

(v0) Case 2.

Proof of Lemma 3.4.4. We treat Case 1 first. By the change of variables
t := 2r, the integral (3.4.4) amounts to

1

2
p+1
2

+l

∫ ∞

0
t

p−1
2

+lJ p−3
2

+l

( |v′|t
v0 + vp+q−1

)
J q−3

2
+k

( |v′′|t
v0 + vp+q−1

)
K q−3

2
+k

(t) dt.

Applying Lemma 7.8.1 with

µ :=
p− 3

2
+ l, ν :=

q − 3

2
+ k, cos θ := v0, cosφ := vp+q−1,

we get the formula in Case 1.
The proof for Case 2 goes similarly. In this case, the integral amounts

to

1

2
q+1
2

+k

∫ ∞

0
t

q−1
2

+kJ p−3
2

+l

( |v′|t
v0 + vp+q−1

)
J q−3

2
+k

( |v′′|t
v0 + vp+q−1

)
K p−3

2
+l

(t)dt

by the change of variables t := 2r. Now, we substitute µ := q−3
2 + k,

ν := p−3
2 + l, cos θ := vp+q−1, and cosφ := v0 into (7.8.1).

3.5 Proof of Theorem 3.1.1

In this subsection, we complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.1. 1) By the isomorphism

L2(C) ' L2(R+,
1

2
rp+q−5dr) ⊗̂ L2(Sp−2) ⊗̂ L2(Sq−2) (see (2.2.5))
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in the polar coordinate, the first statement follows immediately from Lemma
3.4.1.

4) By (3.3.2) and Lemma 3.4.4, we have

Tul,k(v) =





cl,kΓ(p−2
2 + l)|v′|lφ( v′

|v′|)|v′′|kψ( v′′
|v′′|)C̃

q−2
2

+k
p−q

2
+l−k

(vp+q−1) Case 1,

cl,kΓ( q−2
2 + k)|v′|lφ( v′

|v′|)C̃
p−2
2

+l

−( p−q

2
+l−k)

(v0)|v′′|kψ( v′′
|v′′|) Case 2,

where cl,k is the constant defined in (3.1.8) and v = t(v0, v
′, v′′, vp+q−1) ∈

Sp−1 × Sq−1. Now we use the definition (7.5.1) that

Im
i→j(φ)(x0, x

′) = |x′|iφ
( x′
|x′|
)
C̃

m−2
2

+i

j−i (x0)

for (x0, x
′) ∈ Sm−1, and in particular, for i = j,

Im
j→j(φ)(x0, x

′) = Γ
(m− 2

2
+ j
)
|x′|jφ

( x′
|x′|
)
.

See (7.5.5). Thus, the formula (3.1.7) follows.
2) The first statement is obvious. Since Im

i→j maps Hi(Rm−1) to Hj(Rm)
(see Fact 7.5.1), (3.1.7) implies

THl,k ⊂ H
a(l,k)(Rp) ⊗ H

a(l,k)+ p−q
2 (Rq).

Hence, we have proved the second statement.
3) By (2.1.4), the unitary inversion operator $p,q(w0) on V p,q is given

by (
$p,q(w0)h

)
(v′, v′′) = h(v′,−v′′).

On the other hand, it is easy to see h(−x) = (−1)jh(x) for h ∈ Hj(Rq) (see
Appendix 7.5, H1). Therefore, $p,q(w0) acts on each K-type component

Ha(Rp) ⊗ H
a+ p−q

2 (Rq) by a scalar multiple (−1)a+ p−q

2 . Since T : L2(C) →
V p,q intertwines π and $p,q, π(w0) acts on Hl,k as the scalar (−1)a+ p−q

2

because Hl,k belongs to the K-type Ha(l,k)(Rp) ⊗ H
a(l,k)+ p−q

2 (Rq). Thus,
the third statement is proved.

5) We shall show the following formula:

‖Tul,k‖2
L2(Sp−1×Sq−1) = bl,kΓ(k + l +

p+ q

2
− 2)‖φ‖2

L2(Sp−1)‖ψ‖2
L2(Sq−1),

(3.5.1)
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where

bl,k =





πΓ(p− 2 + 2l)Γ( p−q
2 + l − k + 1)

22p+4lΓ(l + p
2 )2

Case 1,

πΓ(q − 2 + 2k)Γ(k − l − p−q
2 + l)

22q+4kΓ(k + q
2)2

Case 2.

To see this, we begin with (3.1.7):

‖Tul,k‖2
L2(Sp−1×Sq−1) = |cl,k|2‖Ip

l→a(l,k)(φ)‖2
L2(Sp−1)‖I

q

k→a(l,k)+ p−q

2

(ψ)‖2
L2(Sq−1).

By (3.1.7) and the norm formula (7.5.2), the right-hand side equals

|cl,k|2
23−p−2lπΓ(p− 2 + l + a(l, k))

(a(l, k) − l)!(a(l, k) + p−2
2 )

‖φ‖2
L2(Sp−1)

× 23−q−2kπΓ(q − 2 + k + a(l, k) + p−q
2 )

(a(l, k) + p−q
2 − k)!(a(l, k) + p−q

2 + q−2
2 )

‖ψ‖2
L2(Sq−1).

Now, substituting (3.1.5) and (3.1.8) into this formula, we get (3.5.1) by
elementary computations.

Finally, comparing (3.5.1) with Proposition 3.4.2, we obtain (3.1.9) by
the Gauss duplication formula (7.4.3) of gamma functions. Hence, Theorem
3.1.1 is proved.
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4 Radial part of the inversion

The goal of this section is to find the ‘radial’ part Tl,k of the unitary inversion
operator π(w0) : L2(C) → L2(C). The main result here is Theorem 4.1.1.

4.1 Result of this section

Suppose p ≥ q ≥ 2 and p + q ≥ 6. We recall from Subsection 2.2 that the
polar coordinate of the (generalized) light cone C:

R+ × Sp−2 × Sq−2 ' C, (r, ω, η) 7→ (rω, rη)

induces the isomorphism of Hilbert spaces:

L2(C) ' L2(R+,
1

2
rp+q−5dr)⊗̂L2(Sp−2)⊗̂L2(Sq−2).

Here, we employ the usual notation ⊗̂ for the completion of a tensor prod-
uct space as a Hilbert space. This isomorphism respects the action of the
compact group

K ′ := K ∩Mmax
+ ' O(p− 1) ×O(q − 1).

Since the Hilbert space L2(Sp−2) is decomposed into the direct Hilbert sum
of spherical harmonics (see H6 in Appendix 7.5):

L2(Sp−2) '
∞∑⊕

j=0

H
j(Rp−1),

and likewise for L2(Sq−2), we have a decomposition of the Hilbert space
L2(C) into the discrete direct sum:

L2(C) '
∞∑⊕

l,k=0

L2(R+,
1

2
rp+q−5dr) ⊗ H

l(Rp−1) ⊗ H
k(Rq−1). (4.1.1)

Each summand of (4.1.1) is a K ′-isotypic component.
For each (l, k) ∈ N2, we introduce real analytic function Kl,k(t) by

Kl,k(t) :=

{
4(−1)l+ p−q

2 G20
04(t

2| l+k
2 , −q+3+l−k

2 , −p−q+6−l−k
2 , −p+3−l+k

2 ) Case 1,

4(−1)kG20
04(t

2| l+k
2 , −p+3−l+k

2 , −p−q+6−l−k
2 , −q+3+l−k

2 ) Case 2.

(4.1.2)
Here, G20

04(x|b1, b2, b3, b4) denotes Meijer’s G-function (see Appendix 7.6 for
definition). For the definition of Cases 1 and 2 with regard to the parameter
(l, k) ∈ N2, we recall (3.1.1), namely,
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Case 1: p−q
2 + l − k ≥ 0,

Case 2: p−q
2 + l − k ≤ 0.

The above formulas are the same in Cases 1 and 2 if p−q
2 + l− k = 0. Later,

we shall give an integral expression of Kl,k by means of the Mellin–Barnes
type integral (see Lemma 4.5.2). This expression looks more natural because
the formula is independent of Cases 1 and 2.

Theorem 4.1.1. 1) The unitary inversion operator π(w0) preserves each
summand of (4.1.1), on which π(w0) acts as a form Tl,k ⊗ id⊗ id. Here,
Tl,k is a unitary operator on L2(R+,

1
2r

p+q−5dr).
2) For each l, k ∈ N, the unitary operator Tl,k is given by the integral

transform against the real analytic function Kl,k (see (4.1.2) for definition):

(Tl,kf)(r) =
1

2

∫ ∞

0
Kl,k(rr

′)f(r′)r′p+q−5dr′. (4.1.3)

Remark 4.1.2 (Case q = 2). Theorem 4.1.1 covers the case q = 2. In
this case, Hk(R1) is non-zero only if k = 0 or 1 (see Appendix 7.5 for
convention). As we saw in Remark 3.1.3, the pair (l, k) belongs to Case 1
for any l ∈ N because the inequality p−q

2 +l−k ≥ 0 is implied by p ≥ 6−q = 4.
Hence, by the definition (4.1.2) of Kl,k(t), we have

Kl,0(t) = 4(−1)l+ p−2
2 G20

04(t
2| l

2
,
l + 1

2
,
−p+ 4 − l

2
,
−p+ 3 − l

2
),

Kl,1(t) = 4(−1)l+ p−2
2 G20

04(t
2| l + 1

2
,
l

2
,
−p+ 3 − l

2
,
−p+ 4 − l

2
).

In view of the symmetric property of the G-function:

G20
04(x|b1, b2, b3, b4) = G20

04(x|b2, b1, b4, b3),

the above formulas show Kl,0(t) = Kl,1(t). Applying the reduction formula
(7.6.13) of the G-function of the form G20

04(x|a, a+ 1
2 , b, b+ 1

2 ), we get

Kl,0(t) = Kl,1(t) = 4(−1)l+ p−2
2 t−

p−3
2 Jp−3+2l(4

√
t). (4.1.4)

Thus, the integral transform Tl,k (k = 0, 1) is the Hankel transform on R+

(after a suitable change of variables). Therefore, Theorem 4.1.1 in the case
q = 2 gives the same result with [31, Theorem 6.1.1], but the proof here is
different from that of [31].
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Remark 4.1.3 (Comparison with the Weil representation). We record here
the corresponding result for the Schrödinger model L2(Rn) of the Weil rep-
resentation $ of Mp(n,R) (see also [31, Remark 6.1.3]). We adopt the
same normalization of the Weil representation with [25]. Then, the unitary

inversion operator $(w′
0) = e

√−1nπ

4 F.
1) According to the O(n)-isotypic decomposition of L2(Rn)

L2(Rn) '
∞∑⊕

l=0

L2(R+, r
n−1dr) ⊗ H

l(Rn),

the unitary inversion operator $(w′
0) decomposes as

$(w′
0) '

∞∑⊕

l=0

T ′
l ⊗ id,

by a family of unitary operators T ′
l (l ∈ N) on L2(R+, r

n−1dr).
2) The unitary operator T ′

l is given by the Hankel transform

(T ′
l f)(r) =

∫ ∞

0
K ′

l(rr
′)f(r′)r′n−1dr′,

where the kernel K ′
l(t) is defined by

K ′
l(t) := e−

√
−1(n−1+2l)

4
π t−

n−2
2 Jn−2+2l

2
(t).

Returning to Theorem 4.1.1, we remark that the group law w2
0 = 1

in G implies π(w0)
2 = id, and consequently T 2

l,k = id for every l, k ∈ N.

Further, as π(w0) is a unitary operator on L2(C), so is its restriction Tl,k on
L2(R+,

1
2r

p+q−5dr) for every l, k. Hence, Theorem 4.1.1 gives a simple group
theoretic proof for the Plancherel and reciprocal formulas on the integral
transform involving the G-functions due to C. Fox [12]:

Corollary 4.1.4 (Plancherel formula). Let b1, b2, γ be half-integers such that
b1 ≥ 0, γ ≥ 1, 1−γ

2 ≤ b2 ≤ 1
2 + b1. Then the integral transform

Sb1,b2,γ : f(x) 7→ 1

γ

∫ ∞

0
G20

04((xy)
1
γ |b1, b2, 1 − γ − b1, 1 − γ − b2)f(y)dy

is a unitary operator on L2(R+), namely,

‖Sb1,b2,γf‖L2(R+) = ‖f‖L2(R+). (4.1.5)
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Proof. Set b1 := l+k
2 , b2 := −q+3+l−k

2 , γ := p+q−4
2 , x = r2γ , y = r′2γ . Then,

(4.1.5) is equivalent to the fact that Tl,k is a unitary operator on L2(R+,
1
2r

p+q−5dr).

Corollary 4.1.5 (Reciprocal formula). Retain the notation and the assump-
tion as in Corollary 4.1.4. Then, the unitary operator Sb1,b2,γ is of order two
in L2(R+), that is, the following reciprocal formula holds for f ∈ L2(R+):

f(x) =

∫ ∞

0
G20

04((xy)
1
γ |b1, b2, 1 − γ − b1, 1 − γ − b2)

×
(∫ ∞

0
G20

04((yz)
1
γ |b1, b2, 1 − γ − b1, 1 − γ − b2)f(z)dz

)
dy. (4.1.6)

Remark 4.1.6 (Fox’s reciprocal formula). The reciprocal formula for the
G-transform was found by C. Fox [12] for the following generality:

Gm,n
2n,2m

(
x
∣∣∣a1, · · · , an, 1 − γ − a1, · · · , 1 − γ − an

b1, · · · , bm, 1 − γ − b1, · · · , 1 − γ − bm

)
.

Corollary 4.1.5 is a special case of Fox’s formula corresponding to the case
(m,n) = (2, 0). On the other hand, it follows from Remark 4.1.2 that Corol-
lary 4.1.5 in the special case when q = 2 yields the classic reciprocal formula
of the Hankel transform ([53, §14.3], and [31]). Our approach gives a new
representation theoretic interpretation (and also a proof) of these formulas.

Remark 4.1.7 (Fourth order differential equation). Let Ω be the Casimir
element for the Lie algebra k. Since an element of the Lie algebra nmax acts
on smooth vectors of L2(C) as a differential operator of second order (see
(2.3.13)), the Casimir operator dπ(Ω) acts as a differential operator on C
of fourth order. Let us examine what information on Kl,k(t) we can obtain
from the Casimir operator dπ(Ω).

Since Ad(w0)Ω = Ω, we have the commutative relation

π(w0) ◦ dπ(Ω) = dπ(Ω) ◦ π(w0). (4.1.7)

On the other hand, Ω commutes with all the elements in k, in particular with
k′. This implies that the differential operator dπ(Ω) preserves each summand
of (4.1.1), and the identity (4.1.7) can be regarded as the identity on each
summand of (4.1.1). Hence, (4.1.7) leads us to the fact that the kernel
function Kl,k(t) for π(w0) solves a certain differential equation of order four
for each (l, k). In view of the formula (4.1.2) of Kl,k, this corresponds to the
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fact that Meijer’s G-function G20
04(x | b1, b2, b3, b4) satisfies the fourth order

differential equation (see (7.6.6)):

4∏

j=1

(x
d

dx
− bj)u = 0.

For q = 2, the situation is simpler because the minimal representation
π is essentially a highest weight module. In this case, the Lie algebra k =
so(p) ⊕ so(q) contains the center so(q) = so(2). Taking a suitable generator
Z in so(2), we can show

dπ(Ω) = dπ(Z)2 + constant .

We note that the differential operator dπ(Z) is of order two, and this in turn
corresponds to the fact that the kernel function Kl,k reduces to the Bessel
function (see (4.1.4)) solving the ordinary differential equation of order two.

The rest of this section is devoted to the proof of Theorem 4.1.1. The
key properties of the element w0 and the unitary inversion operator π(w0)
that we use in the proof are listed as follows:

1) w0 commutes with K ′.
2) Ad(w0)E = −E (see (2.4.1)).
3) π(w0)|Hl,k

= ± id (Theorem 3.1.1 (3)).
The first property (1) gives immediately the proof of Theorem 4.1.1 (1)

(see Subsection 4.2).
The second property (2) implies that the kernel function Kl,k of Tl,k is

a function essentially of one variable rr ′ (see Subsection 4.4).
The non-trivial part of Theorem 4.1.1 is to prove that this one variable

function is given by Meijer’s G-function, namely, by the formula (4.1.2). The
property (3) is crucial to this part. Our trick here is based on Fact 4.3.1,
which assures that (4.1.3) holds for any f once we can prove (4.1.3) holds for
a specific case f = fl,k (a (K,K ′)-skeleton function). Actual computations
for this are carried out in Subsection 4.6. A technical ingredient of the proof
is to show that Kl,k is a tempered distribution (see Proposition 4.5.6).

Summing up the formulas for Kl,k over l, k, we shall give a proof of
an integral formula of π(w0) for an arbitrary L2-function on C in the next
Section 5 (see Theorem 5.1.1).

4.2 Proof of Theorem 4.1.1 (1)

As we have explained at the beginning of Subsection 4.1, the decomposition
(4.1.1) of L2(C) corresponds to the branching laws of the restriction of the
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unitary representation (π,L2(C)) fromG toK ′ ' O(p−1)×O(q−1). Thanks
to the group law w0m = mw0, the relation π(w0)◦π(m) = π(m)◦π(w0) holds
for all m ∈ K ′. Therefore, the unitary inversion operator π(w0) preserves
each summand of the decomposition (4.1.1).

We now observe that the group K ′ acts irreducibly on Hl(Rp−1) ⊗
Hk(Rq−1) (see Appendix 7.5 H2). Therefore, it follows from Schur’s lemma
that π(w0) acts on each summand:

L2(R+,
1

2
rp+q−5dr) ⊗ H

l(Rp−1) ⊗ H
k(Rq−1)

as the form Tl,k ⊗ id⊗ id for some operator Tl,k on L2(R+,
1
2r

p+q−5dr). Such
an operator Tl,k must be unitary because π(w0) is unitary. Now Theorem
4.1.1 (1) has been proved.

4.3 Preliminary results on multiplier operators

We recall the classic theory of multipliers on R, followed by an observation
that the multiplier is determined by the action on an (appropriate) single
function.

We write l(t) (t ∈ R) for the translation operator on L2(R), namely,

(l(t)F )(x) := F (x− t) for F ∈ L2(R). (4.3.1)

An operator B on L2(R) is called translation invariant if

B ◦ l(t) = l(t) ◦ B for any t ∈ R.

We write S(R) for the space of rapidly decreasing C∞-functions on R
(the Schwartz space endowed with the Fréchet topology), and S′(R) for its
dual space consisting of tempered distributions. Then, the Fourier transform
F : S(R) → S(R), g 7→ 1√

2π

∫
R
g(x)e

√
−1xξdx (see (1.5.6)) extends to S′(R)

by
〈U, g〉 = 〈U,Fg〉 for U ∈ S

′(R), g ∈ S(R). (4.3.2)

If U is a tempered distribution and f ∈ S(R), then it is easy to see that

l(t)(U ∗ f) = U ∗ (l(t)f)

for any t ∈ R. Furthermore,

‖U ∗ f‖L2(R) = ‖F(U ∗ f)‖L2(R) =
√

2π‖(FU)(Ff)‖L2(R).
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Therefore, if FU is a bounded measurable function, then f 7→ U ∗ f ex-
tends to a bounded operator on L2(R) and its operator norm is given by√

2π‖FU‖L∞(R). Conversely, it is well-known that the following theorem
also holds:

Fact 4.3.1. Let B be a bounded, translation invariant operator on L2(R).
Then we have

1) There exists a unique tempered distribution U whose Fourier trans-
form FU is a bounded measurable function such that Bf = U ∗ f for any
f ∈ L2(R).

2) If, moreover, Bf0 = f1 for some function f0 ∈ S(R) such that
Ff0(ξ) 6= 0 for any ξ ∈ R, then U = 1√

2π
F−1

(
Ff1

Ff0

)
.

Proof. 1) See Stein–Weiss [48, Chapter I, Theorem 3.18], for example.
2) It follows from Bf0 = f1 that F(U ∗f0) = Ff1, and therefore we have

√
2π(FU)(Ff0) = Ff1.

Hence, the bounded measurable function FU is determined by the for-
mula

FU(ξ) =
1√
2π

Ff1(ξ)

Ff0(ξ)
.

Next, we introduce two linear maps σ+ and σ− by

σ+ : L2(R+,
1
2r

p+q−5dr) → L2(R), f(r) 7→ 1√
2
e

p+q−4
2

xf(ex),

σ− : L2(R+,
1
2r

p+q−5dr) → L2(R), f(r) 7→ 1√
2
e−

p+q−4
2

xf(e−x).
(4.3.3)

Then, both σ+ and σ− are unitary operators. Further, clearly we have

(σ−f)(x) = (σ+f)(−x). (4.3.4)

The inverse map σ−1
− is given by

(σ−1
− F )(r) =

√
2r−

p+q−4
2 F (− log r) for F ∈ L2(R).

We define a subspace S of L2(R+,
1
2r

p+q−5dr) by

S := σ−1
−
(
S(R)

)
= σ−1

+ (S(R)), (4.3.5)

and endow S with the topology induced from that of the Schwartz space
S(R). Now let S′ be the dual space of S.
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The unitarity of σ− implies the following identity for u ∈ L2(R+,
1
2r

p+q−5dr)
and F ∈ L2(R):

〈σ−u, F 〉L2(R) =

∫

R

(σ−u)(x)F (x)dx

= 〈u, σ−1
− F 〉L2(R+, 1

2
rp+q−5dr).

Then σ− extends naturally to an isomorphism from the dual space S′

onto S′(R) by the formula

〈σ−u, F 〉 := 〈u, σ−1
− F 〉, for F ∈ S(R), u ∈ S

′. (4.3.6)

Recall from (3.1.2) that we have defined a family of real analytic func-
tions fl,k on R+ parametrized by (l, k) ∈ N2. As we saw in Lemma 3.4.1,
fl,k ∈ L2(R+,

1
2r

p+q−5dr).
For a continuous operator A on L2(R+,

1
2r

p+q−5dr), we define a contin-

uous operator Ã on L2(R) by

Ã := σ− ◦ A ◦ σ−1
+ . (4.3.7)

Thus, the following diagram commutes:

L2(R+,
1

2
rp+q−5dr)

A−→ L2(R+,
1

2
rp+q−5dr)

σ+ ↓ σ− ↓ (4.3.8)

L2(R)
Ã−→ L2(R).

Since σ± are unitary operators, A is unitary if and only if Ã is unitary.
For κ ∈ S′, we define an operator Aκ by

Aκ : S → S
′, f(r) 7→ 1

2

∫ ∞

0
κ(rr′)f(r′)r′p+q−5dr′. (4.3.9)

It follows from the definition (4.3.3) of σ+ and σ− that

(σ−κ ∗ σ+f)(x) =
1

2
e−

p+q−4
2

x

∫ ∞

−∞
e(p+q−4)yκ(e−xey)f(ey)dy.

Then, by a change of variables, we have

Aκf =
1√
2
σ−1
− (σ−κ ∗ σ+f) for f ∈ S. (4.3.10)

The following lemma characterizes operators of the form Aκ:
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Lemma 4.3.2. Let {ρ(t) : t ∈ R} be a one parameter family of unitary
operators on L2(R+,

1
2r

p+q−5dr) defined by

(ρ(t)f)(r) := e−
p+q−4

2
tf(e−tr). (4.3.11)

Suppose that a unitary operator T on L2(R+,
1
2r

p+q−5dr) satisfies the fol-
lowing (anti-)commutative relation:

T ◦ ρ(t) = ρ(−t) ◦ T for any t ∈ R. (4.3.12)

Then, there exists a unique distribution κ ∈ S′ such that T = Aκ.

Proof. For a general operator A on L2(R+,
1
2r

p+q−5dr), we shall use the

symbol Ã to denote σ− ◦ A ◦ σ−1
+ as in (4.3.7). Then we have

˜T ◦ ρ(t) = σ− ◦ (T ◦ ρ(t)) ◦ σ−1
+ = T̃ ◦ (σ+ ◦ ρ(t) ◦ σ−1

+ ),

˜ρ(−t) ◦ T = σ− ◦ (ρ(−t) ◦ T ) ◦ σ−1
+ = (σ− ◦ ρ(−t) ◦ σ−1

− ) ◦ T̃ .

On the other hand, by a simple computation, we have the following identi-
ties:

σ+ ◦ ρ(t) ◦ σ−1
+ = σ− ◦ ρ(−t) ◦ σ−1

− = l(t).

Here, l(t) denotes the translation operator (4.3.1). Hence, the relation
(4.3.12) is equivalent to

T̃ ◦ l(t) = l(t) ◦ T̃ for any t ∈ R,

that is, T̃ is a translation invariant bounded operator on L2(R). Therefore,
the operator T̃ must be a convolution operator U∗ for some tempered distri-
bution U ∈ S′(R) such that its Fourier transform FU is a bounded function
(see Fact 4.3.1 (1)).

Finally, by setting κ :=
√

2σ−1
− U , we have for any f ∈ L2(R+,

1
2r

p+q−5dr),

Tf = σ−1
− ◦ T̃ ◦ σ+f

=
1√
2
σ−1
− (σ−κ ∗ σ+f)

= Aκf

by (4.3.10). Therefore, T = Aκ.
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4.4 Reduction to Fourier analysis

The classic theory of multipliers on R helps us to get some useful information
about Tl,k. The main result of this subsection is Proposition 4.4.4.

We begin with a refinement of Lemma 3.4.1.

Lemma 4.4.1. fl,k belongs to S. In particular, fl,k ∈ L2(R+,
1
2r

p+q−5dr).

Proof. By the definition of S (see (4.3.5)), it is sufficient to show σ−fl,k ∈
S(R). The proof is divided into two steps.

Step 1: For any m ∈ N, xm(σ−fl,k)(x) is rapidly decreasing.
By the definition (3.1.2) of fl,k, we have

(σ−fl,k)(x) =
1√
2
e−(l+k+ p+q

2
−2)x ×




K̃ q−3

2
+k

(2e−x) Case 1,

K̃ p−3
2

+l
(2e−x) Case 2.

(4.4.1)

Therefore, by the asymptotic behavior of K-Bessel functions (see Fact 7.2.1
(1), (2), respectively), we see

(σ−fl,k)(x) ∼
e−x

2
√

2
×
{

Γ( q−3
2 + k)e−( p−q

2
+l−k)x Case 1,

Γ(p−3
2 + l)e(

p−q

2
+l−k)x Case 2,

as x→ +∞,

(4.4.2)

(σ−fl,k)(x) ∼
1√
2

{
e−( p−2

2
+l)xe−e−x

Case 1,

e−( q−2
2

+k)xe−e−x

Case 2,
as x→ −∞. (4.4.3)

Thus, Step 1 is proved.
Step 2: For any n ∈ N, dn

dxn (σ−fl,k(x)) is rapidly decreasing.
We use induction on n. We already know from Step 1 that the statement

is true for any l, k ∈ N in the case n = 0. Now assume that the statement is
true for n. Then the statement for n+ 1 immediately follows from the next
claim. Now Step 2 has been proved, and so has Lemma 4.4.1.

Claim 4.4.2. For any l, k ∈ N, we have the following recurrence formula:

d

dx
(σ−fl,k) = −(

p+ q − 4

2
+ l + k)σ−fl,k + 2σ−fl+1,k+1. (4.4.4)

Proof. The formula (4.4.1) says

(σ−fl,k)(x) =
1√
2
e−axK̃ν(2e−x),
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where

a =
p+ q − 4

2
+ l + k, ν =

{
q−3
2 + k Case 1,

p−3
2 + l Case 2.

By (7.2.1), we have

d

dx
(σ−fl,k)(x) =

1√
2
(−ae−axK̃ν(2e

−x) + 2e−(a+2)xK̃ν+1(2e
−x))

= −a(σ−fl,k)(x) + 2(σ−fl+1,k+1)(x).

Here, we have used the observation that (k, l) belongs to Case 1 (i.e. p−q
2 +

l − k ≥ 0, see (3.1.1)) if and only if (k + 1, l + 1) belongs to Case 1, and
likewise for Case 2. Therefore, we have proved Claim 4.4.2.

Observation 4.4.3. We shall prove in Proposition 4.5.6 that Kl,k ∈ S′,
namely, σ−Kl,k ∈ S′(R). Unlike the proof for fl,k ∈ S in Lemma 4.4.1, this
is not obvious from the asymptotic behavior of Kl,k (see Remark 4.5.1). In
fact, it follows from (4.5.1) that

lim sup
x→−∞

e−ε|x|(σ−Kl,k)(x) = lim sup
x→−∞

e−ε|x|−x
4

( 4√
2π

cos(4e−
x
2 − 2q − 3

4
π)
)

= +∞

if ε < 1
4 . Thus, the asymptotic behavior of Kl,k is worse than that of poly-

nomials as x tends to −∞. Instead, our proof for Kl,k ∈ S′ uses an explicit
computation of the Fourier integral (see Proposition 4.5.6). We note that
(σ−Kl,k)(x) decays exponentially as x tends to +∞.

Proposition 4.4.4. Let Tl,k be the unitary operator defined in Theorem
4.1.1 (1). Then, there exists uniquely a distribution κl,k ∈ S′ such that

(Tl,kf)(r) =
1

2

∫ ∞

0
κl,k(rr

′)f(r′)r′p+q−5dr′. (4.4.5)

Namely, Tl,k = Aκl,k
with the notation as in (4.3.9).

Proof of Proposition 4.4.4. We recall from (2.3.9) that the unitary operator
π(etE) on L2(C) can be written by means of the unitary operator ρ(t) (see
(4.3.11)) on L2(R+,

1
2r

p+q−5dr) as follows:

π(etE)
(
f(r)φ(ω)ψ(η)

)
=
(
ρ(t)f

)
(r)φ(ω)ψ(η),

where f ∈ L2(R+,
1
2r

p+q−5dr), φ ∈ Hl(Rp−1), and ψ ∈ Hk(Rq−1).
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Applying π(w0) to the both sides, together with the definition of Tl,k

(see Theorem 4.1.1 (1)), we obtain

π(w0) ◦ π(etE)(f(r)φ(w)ψ(η)) = (Tl,kρ(t)f)(r)φ(w)ψ(η).

Similarly, applying π(w0) followed by π(e−tE), we get

π(e−tE) ◦ π(w0)(f(r)φ(w)ψ(η)) = (ρ(−t)Tl,kf)(r)φ(w)ψ(η).

On the other hand, it follows from Ad(w0)E = −E (see (2.4.1)) that

w0e
tE = e−tEw0,

and then we have

π(w0) ◦ π(etE) = π(e−tE) ◦ π(w0).

Therefore,
Tl,k ◦ ρ(t) = ρ(−t) ◦ Tl,k.

Now, Proposition 4.4.4 follows from Lemma 4.3.2.

4.5 Kernel function Kl,k

As a preparation for the proof of Theorem 4.1.1 (2), we summarize some
properties of the real analytic function Kl,k(t) defined in (4.1.2). The main
result of this subsection is Proposition 4.5.6.

Lemma 4.5.1 (Asymptotic behavior). Kl,k(t) has the following asymptotics
as t tends to 0 or ∞:

1) As t tends to 0,

Kl,k(t) =

{
O(t−q+3+l−k) Case 1

O(t−p+3−l+k) Case 2
(q > 2),

Kl,k(t) = O(tl) (q = 2).

2) There are some constants P1, · · · , Q1, · · · such that

Kl,k(t) =
4√
2π

t−
2p+2q−9

4 cos
(
4t

1
2 − 2q − 3

4
π
)
(1 + P1t

−1 + P2t
−2 + · · · )

+ t−
2p+2q−9

4 sin
(
4t

1
2 − 2q − 3

4
π
)
(Q1t

− 1
2 +Q2t

− 3
2 + · · · ), (4.5.1)

as t tends to +∞.
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Proof. Directly obtained from the asymptotic formula of Meijer’s G-function
G20

04(x | b1, b2, 1 − γ − b1, 1 − γ − b2) given in Lemma 7.6.4.

Next, we give an integral expression of Kl,k(t) (t > 0) following the
definition (4.1.2).

The integral path L will be taken independently of l, k ∈ N. We note
that the integral formulas (4.5.2) and (4.5.3) are valid both in Cases 1 and
2 (see also Remark 4.5.3).

Lemma 4.5.2. Fix a real number γ > − p+q−5
2 , and let L be a contour that

starts at γ −
√
−1∞ and ends at γ +

√
−1∞ and passes the real axis at a

point s0 satisfying s0 < −p+q−6
2 (see Figure 4.5.1). (Later, we shall assume

also that − p+q−4
2 < s0 in Section 5.) Then, we have

Kl,k(t) =
(−1)l+ p−q

2

π
√
−1

∫

L

Γ( l+k−s
2 )Γ(−q+3+l−k−s

2 )

Γ(p+q−4+l+k+s
2 )Γ(p−1+l−k+s

2 )
tsds (4.5.2)

=
(−1)k

π
√
−1

∫

L

Γ( l+k−s
2 )Γ(−p+3−l+k−s

2 )

Γ(p+q−4+l+k+s
2 )Γ( q−1−l+k+s

2 )
tsds. (4.5.3)

γ +
√
−1∞

−p+q−5

2
−p+q−6

2

0

γ −
√
−1∞

s-plane

L

γ s0

Figure 4.5.1
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Proof. The equality (4.5.2) = (4.5.3) is an immediate consequence of the
following formula:

Γ(−q+3+l−k−s
2 )

Γ(p−1+l−k+s
2 )

· Γ( q−1−l+k+s
2 )

Γ(−p+3−l+k−s
2 )

= (−1)
p−q

2
+l−k, (4.5.4)

which is derived from
Γ(z)Γ(1 − z) =

π

sinπz
.

Let us show (4.5.2) in Case 1, and (4.5.3) in Case 2 (see (3.1.1) for the
definition of Cases 1 and 2). First, we note that the poles of the numerators
in the integrands (4.5.2) and (4.5.3) with respect to s are given by

W1 := {l + k + 2a,−q + 3 + l − k + 2a : a ∈ N},
W2 := {l + k + 2a,−p+ 3 − l + k + 2a : a ∈ N},

respectively. Then,

infW1 ≥ −p+ q − 6

2
in Case 1 (i.e.

p− q

2
+ l − k ≥ 0),

infW2 ≥ −p+ q − 6

2
in Case 2 (i.e.

p− q

2
+ l − k ≤ 0).

Therefore, in either case, the contour L leaves all these sets W1 and W2 on
the right because our L passes the real axis at some point s0 < −p+q−6

2 .
By the definition of Meijer’s G-function (see (7.6.2) in Appendix, see

also Example 7.6.3), we get (4.5.2) in Case 1 and (4.5.3) in Case 2 by the
change of variables s := 2λ. Hence, Lemma is proved.

Remark 4.5.3. We shall use the expression (4.5.2) in Case 1 and (4.5.3)
in Case 2 later. The point here is that there is no cancellation of the poles
of the numerator and the denominator of the integrand. For example, the
poles of the denominator of the integrand (4.5.2) are given by

V1 := {−p− q + 4 − l − k − 2b, −p+ 1 − l + k − 2b : b ∈ N}.

Then,
supV1 < infW1 in Case 1,

and therefore V1 ∩W1 = ∅. Likewise, there is no cancellation of the poles of
the numerator and the poles of the denominator of the integrand (4.5.3) in
Case 2.
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As Kl,k is a real analytic function on R+, so is (σ−Kl,k)(x) on R (see
(4.3.3) for the definition of σ−), which in turn is a distribution on R. More
strongly, we shall see in Proposition 4.5.6 that (σ−Kl,k)(x) is a tempered
distribution.

For this, we define a meromorphic function ψ(ζ) on C by

ψ(ζ) := (−1)l+ p−q

2
Γ
(

p+q−4
4 + l+k−

√
−1ζ

2

)
Γ
(

p−q
4 + l−k+1−

√
−1ζ

2

)

Γ
(

p+q−4
4 + l+k+

√
−1ζ

2

)
Γ
(

p−q
4 + l−k+1+

√
−1ζ

2

) (4.5.5)

= (−1)k Γ
(

p+q−4
4 + l+k−

√
−1ζ

2

)
Γ
(
−p−q

4 + −l+k+1−
√
−1ζ

2

)

Γ
(

p+q−4
4 + l+k+

√
−1ζ

2

)
Γ
(
−p−q

4 + −l+k+1+
√
−1ζ

2

) (4.5.6)

We shall use (4.5.5) in Case 1, and (4.5.6) in Case 2. The proof of the
equality (4.5.5) = (4.5.6) is the same as the proof of the equality (4.5.2) =
(4.5.3).

Here, we remark that the letter ζ denoted a point on C in the previous
sections, but by a little abuse of notation, ζ in this subsection stands for a
complex number.

Lemma 4.5.4. 1) |ψ(ζ)| = 1 for ζ ∈ R. In particular, the inverse Fourier
transform F−1ψ is defined to be a tempered distribution.

2) ψ(ζ) is a meromorphic function on C, and the set of its poles is
contained in

{−
√
−1m : m = 1, 2, 3, . . .}.

3) For η1 ≤ η ≤ η2,

|ψ(ξ −
√
−1η)| ∼

∣∣∣∣
ξ

2

∣∣∣∣
−2η

as |ξ| → ∞. (4.5.7)

Proof. 1) Since Γ(z) = Γ(z) for z ∈ C, we have |ψ(ζ)| = 1. Therefore
ψ ∈ S′(R) and thus F−1ψ ∈ S′(R).

2) The proof is straightforward from the definitions (4.5.5) and (4.5.6)
in each case.

3) We recall Stirling’s asymptotic expansion of the gamma function (see
[1, Corollary 1.4.4] for example):

∣∣Γ(a+
√
−1b)

∣∣ =
√

2π|b|a− 1
2 e−

π|b|
2 (1 +O(|b|−1)) (4.5.8)

when a1 ≤ a ≤ a2 and |b| → ∞. Then, for α ∈ R and z = x +
√
−1y

(y1 ≤ y ≤ y2),
∣∣∣∣
Γ(α−

√
−1z)

Γ(α+
√
−1z)

∣∣∣∣ = |x|2y(1 +O(|x|−1)) as |x| → ∞, (4.5.9)
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where the constant implied by O depends only on α, y1 and y2. Now,
applying (4.5.9) to z = 1

2(ξ −
√
−1η) twice, we get (4.5.7).

By the change of variable s =
√
−1ζ − p+q−4

2 , the integral formula of
Kl,k (Lemma 4.5.2) can be restated as follows:

Lemma 4.5.5. Let γ > − p+q−5
2 and L′ be an integral path starting from

−(γ + p+q−4
2 )

√
−1 −∞ and ending at −(γ + p+q−4

2 )
√
−1 + ∞ passing the

imaginary axis at some point in the open interval (−
√
−1
2 ,−

√
−1) (see Figure

4.5.2). Then, we have

Kl,k(t) =
1

π

∫

L′
ψ(ζ)t−

p+q−4
2

+
√
−1ζdζ, (4.5.10)

or equivalently (see (4.3.3) for the definition of σ−),

(σ−Kl,k)(x) =
1√
2π

∫

L′
ψ(ζ)e−

√
−1xζdζ. (4.5.11)

ζ-plane

0

−(γ + p+q−4

2
)
√
−1−∞ −(γ + p+q−4

2
)
√
−1 + ∞

ζ = −
√
−1(s+ p+q−4

2
)

s =
√
−1ζ − p+q−4

2

−
√
−1

−
√
−1

2

L′

Figure 4.5.2
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With these preparations, we recall from Subsection 4.3 that S′ is the
dual space of S = σ−1

− (S(R)) via the following diagram:

S′ ∼→ S′(R)
∪ ∪

σ− : L2(R+,
1
2r

p+q−5dr) ∼→ L2(R)
∪ ∪
S

∼→ S(R).

The following is the main result of this subsection:

Proposition 4.5.6. 1) Kl,k belongs to S′. That is, σ−Kl,k ∈ S′(R).
2) The Fourier transform F(σ−Kl,k)(ζ) of σ−Kl,k is equal to 1√

π
ψ(ζ)

(see (4.5.5) for definition). In particular, |F(σ−Kl,k)(ζ)| = 1√
π

for ζ ∈ R.

Proof. It follows from Lemma 4.5.4 (1) that ψ is a tempered distribution,
and therefore, its inverse Fourier transform F−1ψ ∈ S′(R). We also know
that σ−Kl,k ∈ C∞(R) by definition. Let D′(R) be the space of distributions,
namely, the dual space of C∞

0 (R). In light of the inclusion

S
′(R) ⊂ D

′(R) ⊃ C∞(R),

all the statements of Proposition 4.5.6 will be proved if we show
√
πσ−Kl,k = F

−1ψ in D
′(R), (4.5.12)

that is,

√
π

∫ ∞

−∞
(σ−Kl,k)(x)φ(x)dx =

∫ ∞

−∞
(F−1ψ)(x)φ(x)dx (4.5.13)

holds for any test function φ ∈ C∞
0 (R). In fact, (4.5.12) will imply that

σ−Kl,k ∈ S′(R) and
√
πF(σ−Kl,k) = ψ as a tempered distribution.

The main machinery of the proof for (4.5.13) is Lemma 4.5.5. By
(4.5.11), the left-hand side of (4.5.13) amounts to

1√
2π

∫ ∞

−∞

(∫

L′
ψ(ζ)e−

√
−1xζdζ

)
φ(x)dx

=
1√
2π

∫

L′
ψ(ζ)

(∫ ∞

−∞
φ(x)e

√
−1xζ̄dx

)
dζ

=

∫

L′
ψ(ζ)(Fφ)(ζ̄)dζ

=

∫ ∞

−∞
ψ(ζ)(Fφ)(ζ)dζ

= right-hand side of (4.5.13).
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In what follows, we give detailed comments on the above equalities:
First equality is by Fubini’s theorem. To see this, take a > 0 such that

Suppφ ⊂ [−a, a]. Then,

|φ(x)e−
√
−1xζ | ≤ ‖φ‖∞eaη

for ζ = ξ −
√
−1η with η > 0. Here, ‖φ‖∞ denotes the L∞ norm.

Since γ > −p+q−5
2 , we may assume ζ = ξ −

√
−1η ∈ L′ satisfies

η1 ≤ η ≤ η2

for some constants η1 and η2 such that η1 >
1
2 if |ξ| is sufficiently large.

Then, there exists a constant C > 0 such that |ψ(ζ)| ≤ C|ξ|−2η as |ξ| → ∞,
by Lemma 4.5.4 (3). Thus, if |ξ| is sufficiently large, we have

|ψ(ζ)φ(x)e−
√
−1xζ | ≤ C‖φ‖∞|ξ|−2η1 .

Hence, ψ(ζ)φ(x)e−
√
−1xζ is absolutely integrable on L′ × [−a, a] (and there-

fore, on L′ × (−∞,∞)). Thus, we can apply Fubini’s theorem.
Second equality follows immediately from the definition (1.5.6) of the

Fourier transform.
Third equality follows from Cauchy’s integral formula. To see this,

we observe that ψ(ζ)(Fφ)(ζ̄) is holomorphic in the domain between the
two integral paths (−∞,∞) and L′ since its poles lie only on {−

√
−1m :

m = 1, 2, · · ·} (see Lemma 4.5.4(2)). Thus, it is sufficient to show

lim
|ξ|→∞

∫ η0

0
|ψ(ξ −

√
−1η)(Fφ)(ξ +

√
−1η)|dη = 0 (4.5.14)

for a fixed η0 (≥ γ + p+q−4
2 ) (see Figure 4.5.2). We suppose as before the

support of φ ∈ C∞
0 (R) is given by Suppφ ⊂ [−a, a]. Then, by the Paley–

Wiener theorem, there exists a constant C such that |Fφ(ξ +
√
−1η)| ≤

Ceaη .
Now combining this with Lemma 4.5.4 (3), we get

|ψ(ζ)Fφ(ζ̄)| ≤ C ′|ξ|−2η as |ξ| → ∞
for ζ = ξ −

√
−1η and bounded η. Hence, (4.5.14) is proved. Thus, by

Cauchy’s integral formula, we get the third equality.
Last equality is by the definition of the Fourier transform for tempered

distributions:

(f, g) = (F−1f,F−1g) f ∈ S
′(R), g ∈ S(R).

Hence, we have proved (4.5.12). Now, the proof of Proposition 4.5.6 is
completed.
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4.6 Proof of Theorem 4.1.1 (2)

In this subsection, we complete the proof of Theorem 4.1.1 (2). For this, it
is sufficient to show the following proposition:

Proposition 4.6.1. κl,k = Kl,k.

Here, we recall that the kernel distribution κl,k of Tl,k is given in Propo-
sition 4.4.4 and that Kl,k is defined in (4.1.2).

Proof. The proof makes use of the following:

Lemma 4.6.2. Let κ1, κ2 ∈ S′. If there exists φ ∈ S such that

F(σ+φ)(ζ) 6= 0 for any ζ ∈ R, (4.6.1)

Aκ1φ = Aκ2φ, (4.6.2)

then κ1 = κ2. Here, we recall from (4.3.9) for the definition of Aκ.

Proof of Lemma 4.6.2. The identity (4.6.2) implies

σ−κ1 ∗ σ+φ = σ−κ2 ∗ σ+φ

by the formula (4.3.10) of Aκ. Therefore, we have an identity

F(σ−κ1)(ζ) · F(σ+φ)(ζ) = F(σ−κ2)(ζ) · F(σ+φ)(ζ)

in S′(R) by taking their Fourier transforms.
On the other hand, it follows from the assumption that σ+φ ∈ S(R) and

its Fourier transform F(σ+φ) does not vanish on R, we can divide the above
identity by F(σ+φ)(ζ), and obtain an identity in S′(R):

F(σ−κ1)(ζ) = F(σ−κ2)(ζ).

Hence, σ−κ1 = σ−κ2, and in turn, κ1 = κ2.

We want to apply Lemma 4.6.2 with κ1 := κl,k, κ2 := Kl,k, φ := fl,k (see
(3.1.2) for the definition). The conditions in the lemma will be verified by
the following steps.

Step 1. κl,k,Kl,k ∈ S′. These statements have been already proved in
Propositions 4.4.4 and 4.5.6.

Step 2. fl,k ∈ S. This has been proved in Lemma 4.4.1.
Step 3. F(σ+fl,k)(ζ) has no zero points on R. This statement will

follow readily from Claim 4.6.3. We note that we have assumed p ≥ q ≥ 2
and p+ q ≥ 6.

49



Claim 4.6.3. We recall from (3.1.1) the definitions of Cases 1 and 2. Then,

F(σ+fl,k)(ζ) =
1

8
√
π

Γ(
p+ q − 4

4
+
l + k +

√
−1ζ

2
)

×
{

Γ(p−q
4 + l−k+1+

√
−1ζ

2 ) Case 1,

Γ(−p−q
4 + −l+k+1+

√
−1ζ

2 ) Case 2.
(4.6.3)

Proof. By the definition (3.1.2) of fl,k and the definition (4.3.3) of σ+, we
have

(σ+fl,k)(x) =
1√
2
e(l+k+ p+q

2
−2)x ×




K̃ q−3

2
+k

(2ex) Case 1,

K̃ p−3
2

+l
(2ex) Case 2.

In Case 1, we have

F(σ+fl,k)(ζ) =
1√

2π
√

2

∫ ∞

−∞
e(l+k+ p+q

2
−2)xK̃ q−3

2
+k

(2ex)e
√
−1xζdx

=
1

2
√
π

∫ ∞

0
r(l+k+ p+q

2
−3+

√
−1ζ)K̃ q−3

2
+k

(2r)dr.

Applying the formula (7.2.11) of the Mellin transform for the K-Bessel
function, we obtain the right-hand side of (4.6.3). Likewise, in Case 2,
F(σ+fl,k)(ζ) is equal to

1√
2π

√
2

∫ ∞

−∞
e(l+k+ p+q

2
−2)xK̃ p−3

2
+l

(2ex)e
√
−1xζdx.

Switching the role of (p, l) and (q, k), we see (4.6.3) holds also in Case 2.

Step 4. Aκl,k
fl,k = AKl,k

fl,k.
To see this, we shall prove the following explicit formulas: Recall from

(3.1.5) the notation a(l, k).

Claim 4.6.4. We have
1) Aκl,k

fl,k = (−1)a(l,k)+ p−q

2 fl,k.

2) AKl,k
fl,k = (−1)a(l,k)+ p−q

2 fl,k.

Proof of Claim 4.6.4. As we shall see below, the proof of (1) is algebraic by
using the fact that π(w0) acts on each K-type as ± id. On the other hand,
the proof of (2) is based on an explicit integral computation.
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1) The function fl,k belongs to theK ′-invariant subspaceHl,k (see (3.1.4)),
and therefore, by Theorem 3.1.1 (3), we have

π(w0)(fl,kφψ) = (−1)a(l,k)+ p−q

2 fl,kφψ

for φ ∈ Hl(Rp−1) and ψ ∈ Hk(Rq−1). In light of the definition of Tl,k (see
Theorem 4.1.1 (1)), this implies

Tl,kfl,k = (−1)a(l,k)+ p−q

2 fl,k.

By the definition of Aκl,k
(see Proposition 4.4.4), the first statement follows.

2) We consider Case 1, namely, the case p−q
2 + l−k ≥ 0. By the integral

expression of Kl,k (see Lemma 4.5.5 and the definition (4.3.9) of AKl,k
), we

have

(AKl,k
fl,k)(r) =

1

2π

∫ ∞

0

(∫

L′
ψ(ζ)(rr′)−

p+q−4
2

+
√
−1ζdζ

)
fl,k(r

′)r′p+q−5dr′

=
1

2π

∫

L′
r−

p+q−4
2

+
√
−1ζ

(∫ ∞

0
r′

p+q−6
2

+
√
−1ζfl,k(r

′)dr′
)
ψ(ζ)dζ

=
(−1)l+ p−q

2

8π

∫

L′
Γ
(p+ q − 4

4
+
l + k −

√
−1ζ

2

)

×Γ
(p− q

4
+
l − k + 1 −

√
−1ζ

2

)
r−

p+q−4
2

+
√
−1ζdζ

=
(−1)l+ p−q

2

8π
√
−1

∫

L

Γ
( l + k − s

2

)
Γ
(−q + 3 + l − k − s

2

)
rsds (4.6.4)

=
1

2
(−1)l+ p−q

2 G20
02

(
r2
∣∣∣ l + k

2
,
−q + 3 + l − k

2

)

= (−1)l+ p−q

2 r−
q−3
2

+lK q−3
2

+k
(2r)

= (−1)a(l,k)+ p−q

2 fl,k(r).

Second equality. We recall the upper estimate of |ψ(ζ)| given in
Lemma 4.5.4 (3) and the asymptotic behavior of fl,k(r

′) (see (3.4.1) and
(3.4.2)). Then, in light of

|ψ(ζ)r′
p+q−6

2
+
√
−1ζfl,k(r

′)| ≤ |ψ(ζ)|r′ p+q−6
2

+η|fl,k(r
′)| for ζ = ξ −

√
−1η,

the second equality follows from Fubini’s theorem.
Third equality is by Lemma 3.4.3.
Fourth equality is from the change of the variable as before: s =√

−1ζ − p+q−4
2 .
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Fifth equality. The poles of the integrand in (4.6.4) are of the form
l + k + 2a (a ∈ N) or −q + 3 + l − k + 2a (a ∈ N). These lie on the right of
the contour L because of the assumption p−q

2 + l−k ≥ 0. Hence, the second
equality holds by the definition of the G-function.

Sixth equality follows from the reduction formula of the G-function
(see (7.6.12)).

Seventh equality is by the definition (3.1.2) of fl,k and the definition
(3.1.5) of a(l, k).

Case 2 can be treated in the same manner. In this case, the integral

∫

L

Γ(
l + k − s

2
)Γ(

−p+ 3 − l + k − s

2
)rsds

arises instead of (4.6.4). But again, by the assumption p−q
2 + l − k ≤ 0,

this defines the G-function which reduces to fl,k by the same reduction
formula.

Step 5. κl,k = Kl,k.
Steps 3 and 4 imply κl,k = Kl,k by Lemma 4.6.2. Thus, Proposition 4.5.6

is proved.

Now the proof of Theorem 4.1.1 finishes.
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5 Main theorem

This section gives a proof of the main result of this paper, namely, Theorem
5.1.1, where we find an explicit integral kernel for the unitary inversion op-
erator π(w0) on the Schrödinger model L2(C) of the minimal representation.

5.1 Result of this section

Let C be the conical variety {ζ ∈ Rp+q−2 \ {0} : Q(ζ) = 0} where Q(ζ) =
ζ2
1 + · · · + ζ2

p−1 − ζ2
p − · · · − ζ2

p+q−2. We recall from Introduction that the
generalized function K(ζ, ζ ′) on C × C is defined by the following formula:

K(ζ, ζ ′) ≡ K(p, q; ζ, ζ ′) := cp,qΦp,q(〈ζ, ζ ′〉), (5.1.1)

where 〈·, ·〉 stands for the standard (positive definite) inner product on

Rp+q−2, cp,q = 2(−1)
(p−1)(p+2)

2 π−
p+q−4

2 (see (1.5.3)), and Φp,q is the distribu-
tion of one variable introduced in (1.5.4) as Bessel distributions.

Now the main result of this paper is stated as follows:

Theorem 5.1.1 (Integral formula for the unitary inversion operator).
Let (π,L2(C)) be the Schrödinger model of the minimal representation of

G = O(p, q) for p, q ≥ 2 and p+q ≥ 6 even, and w0 =

(
Ip 0
0 −Iq

)
. Then the

unitary operator π(w0) : L2(C) → L2(C) is given by the following integro-
differential operator:

π(w0)u(ζ) =

∫

C

K(ζ, ζ ′)u(ζ ′)dµ(ζ ′), u ∈ L2(C). (5.1.2)

The right-hand side of (5.1.2) involves a singular integral. It factors through
the Radon transform (see Subsection 5.2), and we shall see that the right-
hand side of (5.1.2) is well-defined for any compactly supported smooth
function u on C, and extends as a unitary operator on L2(C).

As for the Bessel distribution Φp,q, we shall give a Mellin–Barnes type
integral formula for Φp,q in Subsection 6.2, and the differential equation
satisfied by Φp,q in Subsection 6.3.

Since the action of the maximal parabolic subgroup Pmax on L2(C) is of
a simple form (see (2.3.7)–(2.3.10)), Theorem 5.1.1 gives an explicit action
of the whole group G on L2(C) because G = Pmax

∐
Pmaxw0Pmax.

Theorem 5.1.1 immediately yields two corollaries about the Plancherel
formula and the reciprocal formula of our integral transform.
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Corollary 5.1.2 (Plancherel formula). Let S : L2(C) → L2(C) be an inte-
gral transform whose kernel function is given by K(ζ, ζ ′) (see (5.1.1)). Then
S is unitary:

‖Su‖L2(C) = ‖u‖L2(C).

Since the group law w2
0 = 1 in O(p, q) implies π(w0)

2 = id on L2(C), we
immediately obtain the following corollary to Theorem 5.1.1, which can also
be viewed as giving the inversion formula S−1 = S.

Corollary 5.1.3 (Reciprocal formula). Retain the notation as in Corollary
5.1.2. The unitary operator S is of order two in L2(C). Namely, we have
the following reciprocal formula for u ∈ L2(C):

u(ζ) =

∫

C

K(ζ, ζ ′′)
(∫

C

K(ζ ′′, ζ ′)u(ζ ′)dµ(ζ ′)
)
dµ(ζ ′′).

Remark 5.1.4 (Comparison with the Schrödinger model of the Weil rep-
resentation). In the case of the Schrödinger model of the Segal–Shale–Weil
representation $ of the metaplectic group Mp(n,R), the corresponding ‘in-

version’ element w′
0 acts on L2(Rn) as e

√
−1nπ
4 F, where F denotes the Fourier

transform. We note that (w′
0)

4 gives the unique non-trivial element ξ0 in the
kernel of the metaplectic covering Mp(n,R) → Sp(n,R), and $(ξ0) = − id.
This fact reflects the identity F4 = id on L2(Rn). Thus, the above two corol-
laries can be interpreted as the counterparts to the Plancherel formula and
the equality F4 = id of the Fourier transform F on Rn.

Remark 5.1.5. In [31, Corollary 6.3.1], we gave a different proof of the
same Plancherel and reciprocal formulas in the case q = 2 based on analytic
continuation of holomorphic semigroup of operators.

This section is organized as follows. In Subsection 5.2, we analyze the
integral transform (5.1.2) by means of the (singular) Radon transform. In
particular, we prove that the integral transform (5.1.2) is well-defined in the
sense of distributions for u ∈ C∞

0 (C). The key ingredient of the proof of
Theorem 5.1.1 is the restriction from G to K ′ = K ∩Mmax

+ (see Subsection
2.3) and is to show the (l, k)-th spectrum of the unitary inversion operator
π(w0) coincides with the radial part Tl,k of π(w0) when restricted to each
K ′-isotypic component Hl(Rp−1)⊗Hk(Rq−1) (see Lemma 5.4.1). The latter
operator Tl,k was studied in details in the previous section (see Theorem
4.1.1). Subsection 5.3 is devoted to the formula giving spectra of a K ′-
invariant integral operator.
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5.2 Radon transform-analog of the plane wave expansion

This subsection studies the kernel K(ζ, ζ ′). The subtle point in defining
K(ζ, ζ ′) is that the distribution Φp,q(t) is not locally integrable near t = 0,
whereas the level set 〈ζ, ζ ′〉 = t is not a regular submanifold in C × C if
t = 0. In fact, Φp,q(t) involves a linear combination of distributions δ(k−1)(t)
and t−k (k = 1, 2, . . . , p+q−6

2 ) as we shall see in Subsection 6.2 on the one
hand, and the differential form

dQ(ζ) ∧ dQ(ζ ′) ∧ d(〈ζ, ζ ′〉 − t)

of ζ, ζ ′ vanishes if (ζ, ζ ′) belongs to the submanifold

Y := {(ζ, ζ ′) ∈ C ×C : Rζ = R(Ip,qζ
′)}.

Here, we note that Y ⊂ {(ζ, ζ ′) : 〈ζ, ζ ′〉 = 0}.
Our idea to give a rigorous definition ofK(ζ, ζ ′) is factorize the transform

(5.1.2) by using the (singular) Radon transform.
Let δ denote the Dirac delta function of one variable. The Radon trans-

form of a function ϕ on Rp+q−2 is defined by the formula (see for example
[15, Chapter I]):

(Rϕ)(ζ, t) :=

∫

Rp+q−2

ϕ(ζ ′)δ(t − 〈ζ, ζ ′〉)dζ ′, (5.2.1)

for ζ ∈ Rp+q−2 \ {0}, t ∈ R.
The Radon transform Rϕ is well-defined, for example, for a compactly

supported continuous function ϕ. More generally, Rϕ makes sense if ϕ
is a compactly supported distribution such that the multiplication of two
distributions ϕ(ζ ′) and δ(t− 〈ζ, ζ ′〉) makes sense.

Now we recall the injective map (see (2.2.6))

T : L2(C) → S
′(Rp+q−2), u 7→ uδ(Q)

yields a compactly supported distribution Tu if u ∈ C∞
0 (C). In this context,

what we need here is the following result:
Let Ck

0 (R) denote the space of compactly supported functions on R with
continuous derivatives up to k.

Lemma 5.2.1. Suppose u ∈ C∞
0 (C).

0) The Radon transform R(Tu)(ζ, t) is well-defined and continuous as a
function of (ζ, t) ∈ C × (R \ {0}). Moreover, there exists A > 0 such that

SuppR(Tu) ⊂ {(ζ, t) ∈ C × (R \ {0}) : t ≤ A|ζ|},
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where |ζ| := (ζ2
1 + · · · + ζ2

p+q−2)
1
2 . In particular, R(Tu)(ζ, t) vanishes if |t|

is sufficiently large for a fixed ζ ∈ C.
1) If p, q > 2 and p + q ≥ 8, then R(Tu)(ζ, t) extends continuously to

t = 0 and R(Tu)(ζ, ·) ∈ Ck
0 (R) where k := p+q−8

2 .
2) If min(p, q) = 2, then R(Tu)(ζ, t) is bounded on C × (R \ {0}).
3) If p, q > 2 and p + q = 6 (namely, (p, q) = (3, 3)), then there exists

C ≡ C(ζ) > 0 such that

|R(Tu)(ζ, t)| ≤ C |log |t||
if t is sufficiently small.

Proof. See [38].

We note that R(Tu)(ζ, t) is well-defined for (ζ, t) ∈ (Rp+q \ {0}) × (R \
{0}), but we need here only the case where ζ ∈ C.

In order to justify the right-hand side of (5.1.2) for u ∈ C∞
0 (C), we

consider

(Su)(ζ) :=

∫

C

K(ζ, ζ ′)u(ζ ′)dµ(ζ ′)

= cp,q

∫

Rp+q−2

Φp,q(〈ζ, ζ ′〉)Tu(ζ ′)dζ ′ by (5.1.1)

= cp,q

∫

R

∫

〈ζ,ζ′〉=t

Φp,q(〈ζ, ζ ′〉)Tu(ζ ′)dω(ζ ′)dt

= cp,q

∫

R

Φp,q(t)R(Tu)(ζ, t)dt. (5.2.2)

Lemma 5.2.2. The right-hand side of (5.2.2) is well-defined for u ∈ C∞
0 (C).

The above lemma defines a linear map

S : C∞
0 (C) → C∞(C),

and defines K(ζ, ζ ′) as a distribution on the direct product manifold C×C.
In Subsection 5.4, we shall see that the image is contained in L2(C), and S
extends to a unitary operator on L2(C), which in turn equals the unitary
inversion operator π(w0).

Proof. It follows from Theorem 6.2.1 which we shall prove later and from
the definition (1.5.4) of the distribution Φp,q(t) that Φp,q(t) has the following
decomposition:

Φp,q(t) = Φreg
p,q (t) + Φsing

p,q (t),

where Φreg
p,q (t) and Φsing

p,q (t) are distributions on R such that
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1) Φreg
p,q (t)|t|−ε is a locally integrable function on R for any sufficiently

small ε ≥ 0,

2)

Φsing
p,q (t) =





0 if min(p, q) = 2,

−
p+q−6

2∑

k=1

(−1)k−1

2k(m− k)!
δ(k−1)(t) if p, q > 2 both even,

− 1

π

m∑

k=1

(k − 1)!

2k(m− k)!
t−k if p, q > 2 both odd.

We note that Φsing
p,q (t) 6= 0 only if p, q > 2 and p + q ≥ 8. Combining with

Lemma 5.2.1, we see that the right-hand side of (5.2.2) is well-defined in all
the cases.

Remark 5.2.3. The plane wave expansion gives a decomposition of the
Fourier transform F on L2(Rn) into the one-dimensional integral transform
(Mellin transform) and the Radon transform, namely:

(Fu)(ζ) = cn〈Ψ, (Ru)(ζ, ·)〉,

where cn :=
(

1
2π

)n
2 and Ψ(t) := e

√
−1t (e.g. [15, Chapter I, §1.2]). In this

sense, the formula (5.2.2) can be regarded as an analog of the plane wave
expansion for the unitary operator π(w0) on L2(C).

5.3 Spectra of a K ′-invariant operator on Sp−2 × Sq−2

The expansion into spherical harmonics

L2(Sn−1) '
∞∑⊕

l=0

H
l(Rn)

gives a multiplicity-free decomposition of O(n) into its irreducible represen-
tations (see Appendix 7.5), and consequently, any O(n)-intertwining opera-
tor on L2(Sn−1) acts on Hl(Rn) as a scalar multiplication owing to Schur’s
lemma. The scalar is given by the Funk–Hecke formula (see [1, §9.7], see
also [31, Lemma 5.5.1]): for an integrable function h on the interval [−1, 1]
and for φ ∈ Hl(Rn),

∫

Sn−1

h(〈ω, ω′〉)φ(ω′)dω′ = cl,n(h)φ(ω)
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where the eigenvalue cl,n(h) is given by

cl,n(h) =
2n−2π

n−2
2 l!

Γ(n− 2 + l)

∫ 1

−1
h(x)C̃

n−2
2

l (x)(1 − x2)
n−3

2 dx. (5.3.1)

Here, C̃µ
l (x) stands for the normalized Gegenbauer polynomial (see Subsec-

tion 7.4).
Likewise, anyK ′-intertwining operator on L2(Sp−2×Sq−2) acts on Hl(Rp−1)⊗

Hk(Rq−1) as a scalar multiplication for each k, l ∈ N (we recall K ′ '
O(p−1)×O(q−1)). In this subsection, we determine this scalar for specific
intertwining (integral) operators. In particular, the scalar in Example 5.3.2
will be used in the proof of our main theorem (Theorem 5.1.1).

We begin with a general setup for aK ′-intertwining operator on L2(Sp−2×
Sq−2). Let h be an integrable function of two variables on [−1, 1] × [−1, 1].
We consider the following integral transform:

Bh : C(Sp−2 × Sq−2) → C(Sp−2 × Sq−2),

ϕ(ω, η) 7→
∫

Sp−2×Sq−2

h(〈ω, ω′〉, 〈η, η′〉)ϕ(ω′, η′)dω′dη′. (5.3.2)

Then, Bh becomes a K ′-invariant integral operator on L2(Sp−2 × Sq−2).

Lemma 5.3.1. Bh acts on each K ′-type Hl(Rp−1) ⊗ Hk(Rq−1) by a scalar
multiplication of αl,k(h) ∈ C. The spectrum αl,k(h) is given by the following
formulas.

1) If min(p, q) = 2, say q = 2, then for k = 0, 1,

αl,k(h) =
2p−3π

p−3
2 l!

Γ(p− 3 + l)

∫ 1

−1
(Ukh)(x)C̃

p−3
2

l (x)(1 − x2)
p−4
2 dx, (5.3.3)

where we set
(Ukh)(x) := h(x, 1) + (−1)kh(x,−1). (5.3.4)

For k ≥ 2, αl,k(h) = 0.
2) If p, q > 2, then

αl,k(h) =
2p+q−6π

p+q−6
2 l! k!

Γ(p− 3 + l)Γ(q − 3 + k)

×
∫ 1

−1

∫ 1

−1
h(x, y)C̃

p−3
2

l (x)C̃
q−3
2

k (y)(1 − x2)
p−4
2 (1 − y2)

q−4
2 dxdy. (5.3.5)
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Proof. 1) If q = 2, then Sp−1 × Sq−1 = Sp−1
∐
Sp−1 (disjoint union), and

Hk(Rq−1) = 0 if k ≥ 2 (see Subsection 7.5). Then, the formula (5.3.3) is
essentially the Funk–Hecke formula (5.3.1) for Sp−1.

2) Applying (5.3.1) to each factor, we get (5.3.5).

Here, we give an example of the explicit computation of the spectrum
αl,k(h).

Example 5.3.2 (Riesz potential). Consider the following Riesz potential
for Reλ > −1:

h±λ (x, y) :=
(x+ y)λ

±
Γ(λ+ 1)

,

=





(x+ y)λ

Γ(λ+ 1)
if ε(x+ y) > 0,

0 if ε(x+ y) ≤ 0,

(5.3.6)

where ε = ±1. Then, the spectrum αl,k(h
±
λ ) for the K ′-intertwining operator

Bh±
λ

amounts to

αl,k(h
±
λ ) =

21−λπ
p+q−2

2 (±1)l+kΓ(λ+ p+q−4
2 )

Γ(λ+p+q−4+l+k
2 )Γ(λ+p−1+l−k

2 )Γ(λ+q−1−l+k
2 )Γ(λ−l−k+2

2 )

=
(±1)l+k

π
Γ
(
λ+ p+q−4

2

)
sin
(

λ−l−k+2
2 π

)
sin
(

λ+q−1−l+k
2 π

)
γl,k(λ),

where we set

γl,k(λ) := 21−λπ
p+q−4

2
Γ( l+k−λ

2 )Γ(−q+3+l−k−λ
2 )

Γ(λ+p+q+l+k−4
2 )Γ(λ+p−1+l−k

2 )
. (5.3.7)

Proof of Example 5.3.2. Use (5.3.5). We postpone the actual computation
of the integral (the first equation of αl,k(h

±
λ )) until Appendix (see Lemma

7.9.1 with µ = p−3
2 , ν = q−3

2 ). In the second equation of αl,k(h
±
λ ), we have

used the functional equation Γ(z)Γ(1 − z) = π
sin(zπ) .

We define a kernel function hλ(x, y) ≡ hp,q
λ (x, y) with parameter λ as

follows:

hλ(x, y) :=
Γ(−λ)

Γ(λ+ p+q−4
2 )

×





(x+ y)λ
+ if p, q > 2 both even,

(
(x+ y)λ

+

tanλπ
+

(x+ y)λ
−

sinλπ

)
if p, q > 2 both odd.

(5.3.8)
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Proposition 5.3.3. Let Reλ > −1. For a kernel function hλ (see (5.3.8)),
the spectrum αl,k(hλ) given in Lemma 5.3.1 amounts to

αl,k(hλ) =
(−1)l+[ q−3

2
]π

p+q−4
2

2λ

Γ( l+k−λ
2 )Γ(−q+3+l−k−λ

2 )

Γ(λ+p+q+l+k−4
2 )Γ(λ+p−1+l−k

2 )
(5.3.9)

=
(−1)k+[ p−3

2
]π

p+q−4
2

2λ

Γ( l+k−λ
2 )Γ(−p+3−l+k−λ

2 )

Γ(p+q−4+l+k+λ
2 )Γ( q−1−l+k+λ

2 )
. (5.3.10)

Proof. The second equation (5.3.10) follows from the identity (4.5.4) of
gamma functions. Let us show the first equation (5.3.9). In terms of h±λ
defined in (5.3.6), we rewrite hλ (see (5.3.8)) as

hλ =
π

Γ(λ+ p+q−4
2 ) sin(−λπ)

×




h+

λ if p, q both even,

h+
λ

tan(λπ) +
h−

λ

sin(λπ) if p, q both odd.

(5.3.11)
Since αl,k is linear, i.e., αl,k(ah + bg) = aαl,k(h) + bαl,k(g), a, b ∈ C, by

(5.3.11), we have
αl,k(hλ) = Cl,k(λ)γl,k(λ),

(see (5.3.7)). Here,

Cl,k(λ) :=
sin λ−l−k+2

2 π sin λ+q−1−l+k
2 π

sin(−λπ)
×
{

1 if p, q both even,
1

tan(λπ) + (−1)l+k

sin(λπ) if p, q both odd.

Hence, Proposition is proved by the following claim:

Claim 5.3.4.

Cl,k(λ) =
(−1)l+[ q−1

2
]

2
.

Proof. Let us first consider the case where both p and q are even. Then, the
two integers −l− k + 2 and q − 1 − l + k have different parities. Hence,

Cl,k(λ) = (−1)l+ q−2
2

sin λ
2π cos λ

2π

sinλπ
=

(−1)l+ q−2
2

2
.

Next, suppose both p and q are odd. Then,

1

tan(λπ)
+

(−1)l+k

sin(λπ)
=

{
1

tan λ
2
π
,

− tan λ
2π,

sin λ−l−k+2
2 π sin λ+q−1−l+k

2 π

sin(−λ)π
=





(−1)−l+ q−1
2

sin2 λ
2
π

sinλπ
= (−1)−l+

q−1
2

2 tan λ
2π,

(−1)−l+ q+1
2

cos2 λ
2
π

sin λπ
= (−1)−l+

q+1
2

2
1

tan λ
2
π
,
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according as l + k is even (upper row) and odd (lower row). Thus we have

Cl,k(λ) =
(−1)

q−1
2

−l

2

in either case. Hence, Claim 5.3.4 is verified.

Let T be the triangular domain in R2 given by

T := {(x, y) ∈ R2 : x < 1, y < 1, 0 < x+ y},

and define a function gλ(x, y) with parameter λ ∈ C by

gλ(x, y) :=

{
(x+ y)λ(1 − x2)

p−4
2 (1 − y2)

q−4
2 (x, y) ∈ T,

0 (x, y) /∈ T.
(5.3.12)

Lemma 5.3.5. 1) For Reλ > −1, gλ is a distribution of compact support,
and with holomorphic parameter λ. That is, 〈gλ, ϕ〉 is holomorphic in {λ ∈
C : Reλ > −1} for any ϕ ∈ C∞(R2).

2) gλ extends meromorphically to all λ ∈ C. That is, 〈gλ, ϕ〉 is a mero-
morphic function with respect to λ ∈ C for any ϕ ∈ C∞(R2).

Proof. The first statement is clear because gλ ∈ L′(R2) if Re λ > −1. For
the second statement, we rewrite gλ as

gλ(x, y) = (x+ y)λ
+(1 − x)

p−4
2

+ (1 + x)
p−4
2

+ (1 − y)
q−4
2

+ (1 + y)
q−4
2

+ .

Then, Lemma follows from Bernstein’s theorem [4].

5.4 Proof of Theorem 5.1.1

As in Lemma 5.2.2, we shall denote by S the map u(ζ) 7→
∫
C
K(ζ, ζ ′)u(ζ ′)dµ(ζ ′).

Since S commutes with the K ′-action (K ′ ' O(p − 1) × O(q − 1)), S pre-
serves each K ′-isotypic component of L2(C) given in the decomposition (see
(4.1.1)):

L2(C) '
∞∑⊕

l,k=0

L2(R+,
1

2
rp+q−5dr) ⊗ H

l(Rp−1) ⊗ H
k(Rq−1).

On the other hand, we have seen in Theorem 4.1.1 that π(w0) also preserves
each K ′-isotypic component, and accordingly has a decomposition:

π(w0) =

∞∑⊕

l,k=0

Tl,k ⊗ id⊗ id,
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where Tl,k is a unitary operator on L2(R+,
1
2r

p+q−5dr) whose kernel Kl,k(t)
is explicitly given in (4.1.2).

We shall show the equality S = π(w0) by restricting to each (l, k) com-
ponent, namely,

Lemma 5.4.1. For each l, k ∈ N, we have

S|L2(R+,rp+q−5dr)⊗Hl(Rp−1)⊗Hk(Rq−1) = Tl,k ⊗ id⊗ id . (5.4.1)

Instead of proving Lemma 5.4.1, we shall provide Lemma 5.4.2 on the
spectra αl,k and the kernel functions Kl,k, which turns out to be equivalent
to Lemma 5.4.1. For that purpose, we set

hr,r′(x, y) := cp,qΦp,q(rr
′(x+ y)), (5.4.2)

where cp,q and Φp,q are defined in (1.5.3) and (1.5.4). Then, by the definition
(5.1.1) of K(ζ, ζ ′), we have

K(

(
rω
rη

)
,

(
r′ω′

r′η′

)
) = cp,qΦp,q

(
rr′(〈w,w′〉 + 〈η, η′〉)

)

= hr,r′(〈ω, ω′〉, 〈η, η′〉).

Suppose f(r)u(ω, η) ∈ L2(R+, r
p+q−5dr) ⊗ Hl(Rp−1) ⊗ Hk(Rq−1). Then, it

follows from Theorem 4.1.1(2) that
(
(Tl,k ⊗ id⊗ id)(fu)

)
(rω, rη)

= (Tl,kf)(r)u(ω, η)

=
1

2

∫ ∞

0
Kl,k(rr

′)f(r′)r′p+q−5dr′u(ω, η).

On the other hand,

S(fu)(rω, rη)

=

∫

C

K

((
rω
rη

)
, ζ ′
)

(fu)(ζ ′)dµ(ζ ′)

=
1

2

∫ ∞

0

∫

Sp−2

∫

Sq−2

hr,r′(〈ω, ω′〉, 〈η, η′〉)f(r′)u(ω′, η′)r′p+q−5dr′dω′dη′

=
1

2

∫ ∞

0
(Bhr,r′u)f(r′)r′p+q−5dr′.

Since Bhr,r′u = αl,k(hr,r′)u by Lemma 5.3.1, we have

S(fu)(rω, rη) =
1

2

∫ ∞

0
αl,k(hr,r′)f(r′)r′p+q−5dr′u(ω, η).
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Thus, in light of Theorem 4.1.1 (2), (5.4.1) is equivalent to showing the
following formula between kernel functions:

Lemma 5.4.2. We have

αl,k(hr,r′) = Kl,k(rr
′).

The proof of Lemma 5.4.2 will be given in the following two Subsections.

5.5 Proof of Lemma 5.4.2 (min(p, q) = 2)

Suppose q = 2. By the definition (1.5.4) of Φp,2(t), the definition (5.4.2) of
hr,r′ amounts to:

hr,r′(x, y) = cp,2Φ
+
p−4
2

(rr′(x+ y)).

Since Φ+
p−4
2

(t) is a locally integrable function supported on t ≥ 0 (see

(1.4.1) and Theorem 6.2.1), we have from the definition (5.3.4) of the oper-
ator Uk: for −1 ≤ x ≤ 1,

(Ukhr,r′)(x) = cp,2Φ
+
p−4
2

(rr′(x+ 1)) + (−1)kcp,2Φ
+
p−4
2

(rr′(x− 1))

= cp,2Φ
+
p−4
2

(rr′(x+ 1))

=
2−

p−8
4 (−1)

(p−1)(p+2)
2

π
p−2
2

(rr′)−
p−4
4 (x+ 1)−

p−4
4 J p−4

2
(2
√

2rr′(x+ 1)).

Applying the formula (5.3.3), αl,k(hr,r′) amounts to

αl,k(hr,r′) =
2

3p−4
4 (−1)

(p−1)(p+2)
2 l!√

πΓ(p− 3 + l)
(rr′)−

p−4
4 ×

∫ 1

−1
J p−4

2
(2
√

2rr′(x+ 1))C̃
p−3
2

l (x)(1 + x)
p−4
4 (1 − x)

p−4
2 dx

= 4(−1)
(p−1)(p+2)

2
+l(rr′)−

p−3
2 Jp−3+2l(4

√
rr′)

= (−1)
p2

2 Kl,k(rr
′).

Here, the second equality follows from (7.4.10) with α = 2
√

2rr′ and ν =
p−4
2 , and the last equality follows from (4.1.4). Since p is even if q = 2,

the right-hand side is equal to Kl,k(rr
′). Hence, Lemma 5.4.2 is proved for

q = 2.
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5.6 Proof of Lemma 5.4.2 (p, q > 2)

First, we give an integral formula of Mellin–Barnes type for hr,r′(x, y) (see
(5.4.2)) by means of hλ(x, y) (see (5.3.8)): Suppose p, q > 2.

Claim 5.6.1. Let γ > −1 and L be a contour that starts at γ−
√
−1∞ and

ends at γ+
√
−1∞ and that passes the real axis in the interval (− p+q−4

2 ,−p+q−6
2 ).

Then, we have

hr,r′(x, y) =
cp,q

2π
√
−1

∫

L

(2rr′)λhλ(x, y)dλ. (5.6.1)

Proof. By the definition (5.3.8) of hλ(x, y) ≡ hp,q
λ (x, y) and the integral

formulas (6.2.2) and (6.2.4) of Ψ+
p+q−6

2

(t) and Ψ p+q−6
2

(t) respectively, we

have

1

2π
√
−1

∫

L

sλhλ(x, y)dλ =





Ψ+
p+q−6

2

( s(x+y)
2

)
p, q even,

Ψ p+q−6
2

( s(x+y)
2

)
p, q odd,

for s > 0. In either case, it follows from the definition(1.5.4) of Φp,q(t) that

1

2π
√
−1

∫

L

sλhλ(x, y)dλ = Φp,q

(s(x+ y)

2

)
. (5.6.2)

Hence, we get Claim5.6.1 by the definition (5.4.2) of hr,r′(x, y).

Thus,

αl,k(hr,r′) =
cp,q

2π
√
−1

∫

L

αl,k(hλ)(2rr′)λdλ

=
(−1)l+ p−q

2

π
√
−1

∫

L

Γ( l+k−λ
2 )Γ(−q+3+l−k−λ

2 )

Γ(λ+p+q+l+k−4
2 )Γ(λ+p−1+l−k

2 )
(rr′)λdλ

= Kl,k(rr
′).

Here, in the second equality, we applied Proposition 5.3.3 and then used

the equality (−1)l+[ q−1
2

](−1)
(p−1)(p+2)

2 = (−1)l+ p−q

2 , which follows from the
congruence equality:

(p− 1)(p+ 2)

2
+

[
q − 1

2

]
≡ p− q

2
mod 2

under the assumption that p + q is even. The last equality follows from
Lemma 4.5.2.

64



6 Bessel distributions

We have seen in the previous section (see Theorem 5.1.1) that the unitary
inversion operator π(w0) : L2(C) → L2(C) is given by the distribution kernel
K(ζ, ζ ′) which is the composition of the restriction of the bilinear map

C × C → R, (ζ, ζ ′) 7→ 〈ζ, ζ ′〉

and Bessel distributions (see (1.4.1) – (1.4.3)) of one variable. In this section,
we analyze the distribution kernel from three viewpoints: integral formulas,
power series expansion (including distributions such as δ(k)(x) and x−k),
and differential equations.

The results of Subsection 6.3 are not used for the proof of our main
results, but gives a heuristic account on why K(ζ, ζ ′) is essentially of one
variable, and why the Bessel distribution arises in K(ζ, ζ ′). Subsection 6.3
can be read independently of other subsections.

6.1 Meijer’s G-distributions

In this subsection, we give a definition of Meijer’s G-distributions which
have the following two properties:

1) They are distributions on R.

2) The restrictions to the positive half line {x > 0} are (usual) Meijer’s
G-functions (see Appendix 7.6).

Let m, n, p and q be integers with 0 ≤ m ≤ q and 0 ≤ n ≤ p. Sup-
pose moreover that the complex numbers a1, . . . , ap and b1, . . . , bq fulfill the
condition

aj − bk 6= 1, 2, 3, . . . (j = 1, . . . , n; k = 1, . . . ,m).

This means that no pole of the gamma function Γ(bj − λ) (j = 1, . . . ,m)
coincides with any pole of Γ(1 − ak + λ) (k = 1, . . . , n). We set

c∗ := m+ n− p+ q

2
, (6.1.1)

µ :=

q∑

j=1

bj −
p∑

j=1

aj +
p− q

2
+ 1. (6.1.2)

Throughout this section, we assume c∗ ≥ 0. If c∗ = 0 then we also assume

p− q < 0 or p− q > Reµ. (6.1.3)
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It is easy to see that the condition (6.1.3) allows us to find γ ∈ R such that

γ > −1 and (q − p)γ > Reµ. (6.1.4)

Remark 6.1.1. The conditions (6.1.3) and γ > −1 will not be used when
we define (usual) Meijer’s G-function as an analytic function in x > 0 (see
(7.6.2)). They will be used in showing that the Mellin–Barnes type integral
(6.1.8) gives a locally integrable function if we take an appropriate contour
L (see Proposition 6.1.2 (3)).

We now take a contour L which starts at the point γ −
√
−1∞ and

finishes at γ +
√
−1∞. Later, we shall impose the following conditions on

L:

L does not go through any negative integer. (6.1.5)

L leaves bj (1 ≤ j ≤ m) to the right, and aj − 1 (1 ≤ j ≤ n)
to the left. (6.1.6)

We note that the condition (6.1.6) implies:

L does not go through any point in
{bj + k : 1 ≤ j ≤ m, k ∈ N} ∪ {aj − 1− k : 1 ≤ j ≤ n, k ∈ N}. (6.1.6)′

With these parameters, we define a meromorphic function of λ by

Γm,n
p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
:=

m∏
j=1

Γ(bj − λ)
n∏

j=1
Γ(1 − aj + λ)

q∏
j=m+1

Γ(1 − bj + λ)
p∏

j=n+1
Γ(aj − λ)

. (6.1.7)

For Re λ > −1, we set

xλ
+ :=

{
xλ (x > 0)

0 (x ≤ 0),
xλ
− :=

{
0 (x ≥ 0)

|x|λ (x < 0).

Then, xλ
+ and xλ

− are locally integrable functions of the variable x in R, and
extend to distributions with meromorphic parameter λ in the entire complex
plane (see Appendix 7.1).

Proposition 6.1.2. Let L be a contour satisfying (6.1.5) and (6.1.6)′.
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1) The Mellin–Barnes type integral (cf. [9, §1.19]):

G(x+)L ≡ Gm,n
p,q

(
x+

∣∣∣ a1, . . . , ap

b1, . . . , bq

)
L

:=
1

2π
√
−1

∫

L

Γm,n
p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
xλ

+dλ (6.1.8)

is well-defined as a distribution on R.
Its support is given by

suppG(x+)L = {x ∈ R : x ≥ 0}.

2) If the contour L satisfies (6.1.6), then the restriction of G(x+)L to
the positive half line {x ∈ R : x > 0} is a real analytic function, which

coincides with the (usual) G-function Gm,n
p,q

(
x
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
(see (7.6.2) for

definition).
3) If the contour L is contained in the half plane {λ ∈ C : Re λ > −1},

then G(x+)L is a locally integrable function. More precisely, there exists
ε0 > 0 such that G(x+)L x

−ε
+ is locally integrable for any ε with 0 ≤ ε < ε0.

Likewise, we can define the distribution

G(x−)L ≡ Gm,n
p,q

(
x−
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
L

:=
1

2π
√
−1

∫

L

Γm,n
p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
xλ
−dλ

by using the same contour L, and the support of G(x−)L is equal to the
negative half line {x ∈ R : x ≤ 0}.

Remark 6.1.3. The distribution G(x±)L depends on the choice of the con-
tour L even when we assume L satisfies the conditions (6.1.5) and (6.1.6).
In fact, if L and L′ are contours satisfying (6.1.5) and (6.1.6), then G(x±)L
may differ from G(x±)L′ by a distribution supported at 0, namely, a finite
sum of Dirac’s delta function and its derivatives. This is because the distri-
bution xλ

± has simple poles at λ = −1,−2, . . . , and consequently, its residues
(see (7.1.1) and (7.1.2)) may appear when we move the contour L across
negative integers. For the uniqueness of the G-distribution, we need to im-
pose an additional constraint on the contour L. We shall work with concrete
examples for this in Subsection 6.2 where we use Cauchy’s integral formula
for distributions with meromorphic parameter.
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In order to prove Proposition 6.1.2, we need an asymptotic estimate of
the Γ-factors in the integrand of (6.1.8) as follows:

Lemma 6.1.4. For any ε > 0, there exists a constant C > 0 such that
∣∣∣∣Γm,n

p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)∣∣∣∣ ≤ Ce−πc∗|Im λ| |Imλ|Re µ+(p−q)γ−1+ε

for any λ ∈ L such that |Imλ| is sufficiently large. Here, c∗ and µ are
defined as in (6.1.1) and (6.1.2), and γ = lim

λ∈L
|Im λ|→∞

Re λ.

Proof. Fix a ∈ C. By Stirling’s asymptotic formula (4.5.8) of the gamma
function, we have

|Γ(a− λ)| = Ca |Imλ|Re a−Re λ− 1
2 e−

π
2
|Im λ|(1 +O(|Imλ|−1)),

|Γ(1 − a+ λ)| = Ca |Imλ|−Re a+Re λ+ 1
2 e−

π
2
|Im λ|(1 +O(|Imλ|−1)),

as |Imλ| tends to infinity with Re λ bounded. Here, the constant Ca is given
by

Ca =
√

2π e−
π
2

sgn(Im λ)|Im a|.

By the definition (6.1.7) of Γm,n
p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
, we now get the follow-

ing asymptotic behavior:
∣∣∣∣Γm,n

p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)∣∣∣∣ = C ′ |Imλ|s e−π
2
t|Im λ|(1 +O(|Imλ|−1)),

as |Imλ| tends to infinity, where C ′ is a constant depending on Im aj and
Im bj , and

s =
m∑

j=1

Re(bj − λ− 1

2
) +

n∑

j=1

Re(−aj + λ+
1

2
)

−
q∑

j=m+1

Re(
1

2
− bj + λ) −

p∑

j=n+1

Re(aj − λ− 1

2
)

= Reµ+ (p− q)Re λ− 1,

t = m+ n− (q −m) − (p− n)

= 2c∗.

As Re λ converges to γ when λ ∈ L goes to infinity, we get Lemma 6.1.4.
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We are ready to give a proof of Proposition 6.1.2.

Proof of Proposition 6.1.2. 3) We begin with the proof of the third state-
ment. Suppose L is contained in the half plane {λ ∈ C : Re λ > −1}. We
need to show the integral (6.1.8) gives rise to a locally integrable function.
The non-trivial part is an estimate in the neighborhood of x = 0. Let us
consider the interval 0 < x ≤ 1.

Since the contour L has the property:

γ = lim
λ∈L

|Im λ|→∞
Reλ > −1,

the assumption L ⊂ {λ ∈ C : Reλ > −1} implies δ > −1, where we set

δ := inf
λ∈L

Re λ.

Hence, we get
|xλ

+| ≤ xδ for 0 < x ≤ 1.

On the other hand, it follows from Lemma 6.1.4 that

∣∣∣∣Γm,n
p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)∣∣∣∣ ≤
{
Ce−πc∗|Im λ| if c∗ > 0,

C |Imλ|−1+ε if c∗ = 0,

when |Imλ| is sufficiently large. Here, we used the inequality Reµ + (p −
q)γ < 0 (see (6.1.4)) in the second case. Hence, Γm,n

p,q

(
λ
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
is

absolutely integrable on L in either case. Therefore, the integration (6.1.8)
converges, giving rise to a function of x which is bounded by a scalar multiple
of xδ on the interval 0 < x ≤ 1, whence a locally integrable function of x.
Thus, G(x+)L is locally integrable. Similarly, if we set

ε0 := 1 + δ (> 0),

then for any 0 ≤ ε < ε0, x
−ε+δ is locally integrable, and consequently

G(x+)L x
−ε
+ is locally integrable. Hence, the third statement of Proposition

is proved.
1) We divide the integral (6.1.8) into the sum of the following two inte-

grals ∫

L

=

∫

L′
+

∫

C

,

where L′ is a contour contained in the right half plane {λ ∈ C : Reλ > −1},
and C is the closed oriented curve given by L− L′ (see Figure 6.1.1).
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an−1

−1

C

L

a2−1

0

a1−1

b2

b1

L′

Figure 6.1.1

Then, the second term gives a locally integrable function of x by 3), and
the third term is well-defined as a distribution because C is compact and
the integrand is a distribution of x that depends continuously on λ as far as
λ lies in C. Hence, the first statement is also proved.

2) This statement is well-known. See Appendix 7.6 and references therein.

6.2 Integral expression of Bessel distributions

In this subsection, we apply general results on Meijer’s G-distributions de-
veloped in Subsection 6.1 to special cases, and the Mellin–Barnes type inte-
gral expression for the distribution kernel of the unitary inversion operator
π(w0).

Let m be a non-negative integer. We take a contour L such that

1) L starts at γ −
√
−1∞, passes the real axis at some point s, and ends

at γ +
√
−1∞.

2) −1 < γ and −m− 1 < s < −m.
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Likewise, we take a contour L0 (with analogous notation) such that

3) −1 < γ0 and −1 < s0 < 0.

For later purpose, we may and do take γ = γ0. See Figure 6.2.1.

−m−m−1

L

γ s0

L0

−1 0

Figure 6.2.1

Then, we consider the following Mellin–Barnes type integrals:

Φ+
m(t) :=

1

2π
√
−1

∫

L0

Γ(−λ)

Γ(λ+ 1 +m)
(2t)λ

+dλ, (6.2.1)

Ψ+
m(t) :=

1

2π
√
−1

∫

L

Γ(−λ)

Γ(λ+ 1 +m)
(2t)λ

+dλ, (6.2.2)

Φm(t) :=
1

2π
√
−1

∫

L0

Γ(−λ)

Γ(λ+ 1 +m)

(
(2t)λ

+

tan(πλ)
+

(2t)λ
−

sin(πλ)

)
dλ, (6.2.3)

Ψm(t) :=
1

2π
√
−1

∫

L

Γ(−λ)

Γ(λ+ 1 +m)

(
(2λ)λ

+

tan(πλ)
+

(2t)λ
−

sin(πλ)

)
dλ. (6.2.4)

We shall see that these integrals are special cases of (6.1.8) and define distri-
butions on R. The next theorem is the main result of this subsection, which
will be derived from Proposition 6.1.2 by applying the reduction formula of
Meijer’s G-functions.
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Theorem 6.2.1. 1) Φ+
m(t) and Φm(t) are locally integrable functions on R.

Furthermore, for a sufficiently small ε > 0, Φ+
m(t)|t|−ε and Φm(t)|t|−ε are

also locally integrable.
2)

Ψ+
m(t) = Φ+

m(t) −
m∑

k=1

(−1)k−1

2k(m− k)!
δ(k−1)(t). (6.2.5)

Ψm(t) = Φm(t) − 1

π

m∑

k=1

(k − 1)!

2k(m− k)!
t−k. (6.2.6)

See (7.1.5) in Appendix for the definition of the distribution t−k. In par-
ticular, Ψ+

m and Ψm are defined as functionals on the space Cm−1
0 (R) of

compactly supported functions on R with continuous derivatives up to m− 1
if m ≥ 1.

We shall prove Theorem 6.2.1 after Lemma 6.2.2 below.
Before regarding the integrals (6.2.1)–(6.2.4) as those for distributions,

we consider the classical cases, namely, their restrictions to R \ {0}, which
are analytic functions.

Let Li (i = 1, 2, 3) be contours that start at γi −
√
−1∞ and end at

γi +
√
−1∞, and pass the real axis at some point si. We assume

− m

2
< γ1, s1 < 0,

− m

2
< γ2, s2 < −m,

s3 < −m.

Then, we have the following integral expressions of Bessel functions. Al-
though the results are classical, we shall give a proof as a preparation for
passing from Bessel functions to Bessel distributions. We shall derive these
integral expressions by applying those of Meijer’s G-functions (see Appendix
7.6, see also Proposition 6.1.2 2)):

Lemma 6.2.2. 1) For t > 0,

J̃m(2
√

2t) = (2t)−
m
2 Jm(2

√
2t)

=
1

2π
√
−1

∫

L1

Γ(−λ)

Γ(λ+m+ 1)
(2t)λ

+dλ. (6.2.7)
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2) For t > 0,

Ỹm(2
√

2t) = (2t)−
m
2 Ym(2

√
2t)

=
1

2π
√
−1

∫

L2

Γ(−λ)

Γ(λ+m+ 1)

(2t)λ
+

tan(πλ)
dλ. (6.2.8)

3) For t < 0,

K̃m(2
√

2|t|) = (2|t|)−m
2 Km(2

√
2|t|)

=
(−1)m+1

4
√
−1

∫

L3

Γ(−λ)

Γ(λ+m+ 1)

(2t)λ
−

sin(πλ)
dλ. (6.2.9)

Proof of Lemma. Each of the first equalities is by the definition of the nor-
malized Bessel functions J̃m, Ỹm, and K̃m given in (7.2.3), (7.2.5), and
(7.2.6), respectively. Let us verify the second equalities (the integral formu-
las for the Bessel functions).

1) By the reduction formula (7.6.11) of the G-function G10
02, we have

(2t)−
m
2 Jm(2

√
2t) = G10

02(2t
∣∣ 0,−m)

for t > 0. Then, by the integral expression (7.6.2) of the G-function G10
02, we

have

G10
02(2t

∣∣ 0,−m) =
1

2π
√
−1

∫

L1

Γ(−λ)

Γ(1 +m+ λ)
(2t)λdλ

for t > 0. Hence, (6.2.7) is proved.
2) By the reduction formula (7.6.14) of the G-function G20

13, we have

(2t)−
m
2 Ym(2

√
2t) = G20

13

(
2t
∣∣∣

−m− 1
2

−m, 0,−m− 1
2

)
,

for t > 0. Then, by Example 7.6.2, we have

G20
13

(
2t
∣∣∣

−m− 1
2

−m, 0,−m− 1
2

)

=
1

2π
√
−1

∫

L2

Γ(−m− λ)Γ(−λ)

Γ(m+ 3
2 + λ)Γ(−m− 1

2 − λ)
(2t)λdλ.

Now, (6.2.8) is deduced from this formula and the following identity:

Γ(−m− λ)Γ(λ+ 1 +m)

Γ(m+ 3
2 + λ)Γ(−m− 1

2 − λ)
=

1

tanπλ
for any m ∈ Z.
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Here, the last identity is an elementary consequence of the formula Γ(z)Γ(1−
z) = π

sin πz
.

3) By the reduction formula (7.6.12) of the G-function G20
02, we have

(2|t|)−m
2 Km(2

√
2|t|) =

1

2
G20

02

(
2|t|

∣∣∣ 0,−m
)
.

Suppose t < 0. Then, again by the integral expression (7.6.2) of G20
02, the

right-hand side amounts to

1

4π
√
−1

∫

L3

Γ(−λ)Γ(−m− λ)(2t)λ
−dλ.

Then, (6.2.9) follows from the identity:

Γ(λ+ 1 +m)Γ(−m− λ) =
π

sin(−π(λ+m))
=

(−1)m+1π

sinπλ
.

Thus, all the statements of Lemma 6.2.2 are proved.

The integrals in Lemma 6.2.2 do not depend on the choice of Li (i =
1, 2, 3) as ordinary functions on R \ {0}. However, as we mentioned in
Remark 6.1.3, they may depend on the choice of Li as distributions on R
because the poles of the distributions tλ± are located at λ = −1,−2,−3, . . . .

To avoid this effect, we need to impose more constraints on the contours
Li. Thus, let us assume further −1 < s1 and −m − 1 < si (i = 2, 3).
Moreover, we assume −1 < γj (j = 1, 2). That is, we shall assume from now
that the integral paths Li (i = 1, 2, 3) are under the constraints:

− 1 < γ1, − 1 < s1 < 0, (6.2.10)

− 1 < γ2, −m− 1 < s2 < −m, (6.2.11)

−m− 1 < s3 < −m. (6.2.12)

Then, the right-hand sides of (6.2.7)–(6.2.9) define distributions on R, which
are independent of the choice of the integral paths Li (i = 1, 2, 3).

Proof of Theorem 6.2.1. The first statement is a special case of Proposition
6.1.2 3).

Let us show the second statement. The contour L used in (6.2.2) and
(6.2.4) meets the constraints (6.2.11) and (6.2.12), and can be used as L2

and L3. Likewise, the contour L0 used in (6.2.1) and (6.2.3) can be used
as L1. Further, we shall assume that the contour L0 coincides with L when
|Imλ| is sufficiently large.
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The integrand of (6.2.1) has poles at λ = −1,−2, . . . ,−m inside the
closed contour L0 − L, and its residue is given by

res
λ=−k

Γ(−λ)

Γ(λ+ 1 +m)
(2t)λ

+ =
(−1)k−1

2k(m− k)!
δ(k−1)(t)

for k = 1, 2, . . . ,m by (7.1.1). Therefore, by Cauchy’s integral formula, we
have

1

2π
√
−1

(∫

L0

−
∫

L

)
Γ(−λ)

Γ(λ+ 1 +m)
(2t)λ

+dλ

=

m∑

k=1

(−1)k−1

2k(m− k)!
δ(k−1)(t)

as distributions. Hence, (6.2.5) is proved.
Next, let us prove (6.2.6). We recall from (7.1.3) that the Laurent ex-

pansion of the distribution tλ± at λ = −k (k = 1, 2, . . . ) is given by

tλ+ =
1

λ+ k

(−1)k−1

(k − 1)!
δ(k−1)(t) + t−k

+ + · · · ,

tλ− =
1

(λ+ k)(k − 1)!
δ(k−1)(t) + t−k

− + · · · .

Combining with the Taylor expansions at λ = −k (k = 1, 2, . . . ,m):

sinπλ = (−1)kπ(λ+ k) + · · · ,
tan πλ = π(λ+ k) + · · · ,

Γ(−λ)2λ

Γ(λ+ 1 +m)
= b0 + b1(λ+ k) + · · · ,

where b0 = (k−1)!
2k(m−k)!

, we have

Γ(−λ)

Γ(λ+ 1 +m)

(
(2t)λ

+

tan(πλ)
+

(2t)λ
−

sin(πλ)

)

=
b0
(
(−1)k−1δ(k−1)(t) + (−1)kδ(k−1)(t)

)

π(k − 1)!

1

(λ+ k)2

+

(
b0(t

−k
+ + (−1)kt−k

− )

π
+
b1
(
(−1)k−1δ(k−1)(t) + (−1)kδ(k−1)(t)

)

π(k − 1)2

)
1

λ+ k
+ · · ·

=
(k − 1)! t−k

2k(m− k)!π

1

λ+ k
+O(1).
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Therefore, by (6.2.3) and (6.2.4), we have

Ψm(t) − Φm(t) =
1

2π
√
−1

(∫

L

−
∫

L0

)
Γ(−λ)

Γ(λ+ 1 +m)

(
(2t)λ

+

tan(πλ)
+

(2t)λ
−

sin(πλ)

)
dλ

= −
m∑

k=1

(k − 1)!

2k(m− k)!π
t−k.

Hence, (6.2.6) is proved. Now, we have completed the proof of Theorem
6.2.1.

Remark 6.2.3. We shall use the symbols

J̃m(2
√

2t+) = (2t)
−m

2
+ Jm(2

√
2t+), (6.2.13)

K̃m(2
√

2t+) = (2t)
−m

2
+ Km(2

√
2t+), (6.2.14)

Ỹm(2
√

2t−) = (2t)
−m

2
− Ym(2

√
2t−), (6.2.15)

to denote the distributions defined by the right-hand sides of (6.2.7)–(6.2.9)
and by the contours Li (i = 1, 2, 3) satisfying (6.2.10)–(6.2.12), respectively.

It is noteworthy that J̃m(2
√

2t+) is locally integrable, but K̃m(2
√

2t+)
and Ỹm(2

√
2t−) are not. Then, by the above proof of Theorem 6.2.1, we

have

Φ+
m(t) = J̃m(2

√
2t+)

= (2t)
−m

2
+ Jm(2

√
2t+), (6.2.16)

Ψ+
m(t) = J̃m(2

√
2t+) −

m∑

k=1

(−1)k−1

2k(m− k)!
δ(k−1)(t)

= (2t)
−m

2
+ Jm(2

√
2t+) −

m∑

k=1

(−1)k−1

2k(m− k)!
δ(k−1)(t), (6.2.17)

Ψm(t) = Ỹm(2
√

2t+) +
2(−1)m+1

π
K̃m(2

√
2t−)

= (2t)
−m

2
+ Ym(2

√
2t+) +

2(−1)m+1

π
(2t)

−m
2

− Km(2
√

2t−). (6.2.18)

6.3 Differential equation

As defined in Introduction, the kernel function K(ζ, ζ ′) is given by means
of the (modified) Bessel distribution Φp,q(t). In this subsection, we shall
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give a heuristic account on why the Bessel function arises in the kernel
function. Loosely, it turns out from the L+-intertwining operator (see (2.4.5)
for the definition of L+ = Mmax

+ A) that the kernel function K(ζ, ζ ′) should
be a function of one variable 〈ζ, ζ ′〉 because generic L+-orbits on C × C
are of codimension one (see Lemma 6.3.2). Instead of using the Casimir
operator, our idea is to make use of the differential equation arising from
Ad(w0)n

max = nmax (see (2.4.3)). This argument gives a differential equation
of second order since n acts on L2(C) as differential operator of second order.
The result here gives a useful information about K(ζ, ζ ′). In fact, we used
Proposition 6.3.3 as a clue to find the explicit form of K(ζ, ζ ′). However,
we did not use the results of this subsection for the actual proof of our main
theorem. We hope that the heuristic argument here will be helpful to find
the integral kernel of the inversion π(w0) of the minimal representation of
other groups.

Let θ : g 7→ tg−1 be the Cartan involution of G. Since g ∈ G = O(p, q)

satisfies tgIp,qg = Ip,q where Ip,q =

(
Ip 0
0 −Iq

)
, we have tg−1 = Ip,qgI

−1
p,q .

Since w0 = Ip,q, we get
θ(g) = w0gw

−1
0 . (6.3.1)

We let L+ = Mmax
+ A act on C by

metE · ζ = etmζ

for m ∈ Mmax
+ ' O(p − 1, q − 1) and a = etE ∈ A (see Subsection 2.3 for

notation).

Lemma 6.3.1. The kernel function K(ζ, ζ ′) of the unitary operator π(w0)
satisfies the following functional equation:

K(ζ, ζ ′) = K(θ(l)ζ, lζ ′) for all l ∈ L+. (6.3.2)

Proof. Building on the unitary representation (π,L2(C)), we define another
unitary representation πθ on L2(C) by the following twist:

πθ(g) := π(θ(g)).

Then, (6.3.1) implies that π(w0) : L2(C) → L2(C) is an intertwining opera-
tor from (π,L2(C)) to (πθ, L2(C)). In particular, we have,

πθ(l) ◦ π(w0) = π(w0) ◦ π(l) for any l ∈ L+. (6.3.3)

For l = m ∈Mmax
+ , we recall from (2.3.3) that

(π(m)u)(ζ) = u(tmζ) for ζ ∈ C.
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Hence, for any u ∈ L2(C), we have

∫

C

K(tθ(m)ζ, ζ ′)u(ζ ′)dµ(ζ ′) =

∫

C

K(ζ, ζ ′′)u(tmζ ′′)dµ(ζ ′′).

Since dµ is Mmax
+ -invariant, the right-hand side is equal to

∫

C

K(ζ, tm−1ζ ′)u(ζ ′)dµ(ζ ′).

Since u is arbitrary, the kernel function must coincide:

K(tθ(m)ζ, ζ ′) = K(ζ, tm−1ζ ′).

Replacing tθ(m)ζ with ζ, we have

K(ζ, ζ ′) = K(mζ, tm−1ζ ′) for any m ∈Mmax
+ .

Thus, (6.3.2) holds for l ∈ Mmax
+ . For l = a := etE ∈ A, we recall from

(2.3.9) that

(π(a)u)(ζ) = e−
p+q−4

2
tu(e−tζ) (ζ ∈ C).

Since πθ(a) = π(a−1), the equation (6.3.3) amounts to

π(w0) = π(a) ◦ π(w0) ◦ π(a).

Hence, for any u ∈ L2(C), we have

∫

C

K(ζ, ζ ′)u(ζ ′)dµ(ζ ′) = e−(p+q−4)t

∫

C

K(e−tζ, ζ ′′)u(e−tζ ′′)dµ(ζ ′′).

By the formula (2.2.3) of the measure dµ in the polar coordinate, we have

dµ(ζ ′′) = e(p+q−4)tdµ(ζ ′) for ζ ′ = e−tζ ′′.

Thus, the right-hand side equals
∫
C
K(e−tζ, etζ ′)u(ζ ′)dµ(ζ ′). Hence, we have

K(ζ, ζ ′) = K(e−tζ, etζ ′) for any t ∈ R

and therefore

K(ζ, ζ ′) = K(θ(a)ζ, aζ ′) for any a ∈ A.

Now, Lemma 6.3.1 is proved.
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Now let Mmax
+ act on the direct product manifold C×C by the formula:

Mmax
+ × C × C → C × C, (l, ζ, ζ ′) 7→ (θ(l)ζ, lζ ′).

Furthermore, we define the level set of C × C by

Ht := {(ζ, ζ ′) ∈ C × C : 〈ζ, ζ ′〉 = t}, t ∈ R

with respect to the standard positive definite inner product 〈·, ·〉 on Rp+q−2.
Then we have:

Lemma 6.3.2. 1) The level set Ht is stable under the Mmax
+ -action.

2) Moreover Ht is a single Mmax
+ -orbit for any non-zero t.

Proof. 1) For ζ, ζ ′ ∈ Rp+q−2 (⊂ Rp+q) and l ∈ Mmax
+ ' O(p− 1, q − 1), we

have

〈θ(l)ζ, lζ ′〉 = 〈w0lw
−1
0 ζ, lζ ′〉

= tζ ′tlw0lw
−1
0 ζ

= tζ ′w0w
−1
0 ζ

= 〈ζ, ζ ′〉.

Hence, Ht is Mmax
+ -stable.

2) We replace (p− 1, q − 1) by (p, q), and consider the G-action on

C̃ := {(ζ0, · · · , ζp+q−1) : ζ2
0 + · · · + ζ2

p−1 − ζ2
p − · · · − ζ2

p+q−1 = 0}

in place of the Mmax
+ action on C (this change allows us to use the no-

tation Nmax
+ and Nmax

+ in Subsection 2.3). Then, we recall from (2.3.5)

that G acts transitively on C̃ and the isotropy subgroup at e0 + ep+q−1 =
t(1, 0, · · · , 0, 1) is given by Mmax

+ Nmax (see (2.3.5)). Let us consider the

orbit of θ(Mmax
+ Nmax) = Mmax

+ N
max

on C̃. In view of (2.3.3), we have

nb




x0

x
xp+q−1


 =




x0 − txw0b
0

xp+q−2 + txw0b


+

x0 + xp+q−2

2



−Q(b)

2b
Q(b)


 ,

for b = t(b1, · · · , bp+q−2) and x = t(x1, · · · , xp+q−2) ∈ Rp+q−2. If x0 +

xp+q−1 6= 0 and t(x0, · · · , xp+q−1) ∈ C̃, we set

b :=
−x

x0 + xp+q−1
=

(x0 − xp+q−1)x

Q(x)
.
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Then, we have

nb




x0

x
xp+q−1


 =




x0

0
xp+q−1


+

Q(x)

2(x0 + xp+q−1)




1
0
−1


 =

x0 + xp+q−1

2




1
0
1


 .

Hence, the second statement is proved.

Thus it follows from Lemma 6.3.1 and Lemma 6.3.2 that K(ζ, ζ ′)
∣∣
C×C\H0

is of the form
K(ζ, ζ ′) = Ψ(〈ζ, ζ ′〉) (6.3.4)

for some function Ψ(t) defined on R \ {0}.
By lifting the inversion relation Ad(w0)n

max = nmax (see (2.4.3)) in the
Lie algebra g to the actions on L2(C)K , we get the differential equation
satisfied by Ψ. More precisely,

Proposition 6.3.3. Ψ(t) satisfies the following ordinary differential equa-
tion on R \ {0}:

t
d2Ψ

dt2
+
p+ q − 4

2

dΨ

dt
+ 2Ψ = 0. (6.3.5)

Proof. It follows from Ad(w0)N j = εjNj (see (2.4.2)) that

π(w0) ◦ dπ(N j) = εjdπ(Nj) ◦ π(w0). (6.3.6)

We recall from (2.2.6) that Tu = uδ(Q) for u ∈ L2(C) and from (2.3.13)
that Dj is a differential operator on Rp+q−2. Then, by diagram (2.3.12),
(6.3.6) implies:

T ◦ π(w0) ◦ dπ(N j)u = εjDj ◦ T ◦ π(w0)u, u ∈ L2(C)K . (6.3.7)

Now we recall from (6.3.4) that the kernel function of π(w0) is given by
K(ζ, ζ ′) = Ψ(〈ζ, ζ ′〉). Therefore, (6.3.7) equals

δ(Q(ζ))

∫

C

Ψ(〈ζ, ζ ′〉)2
√
−1ζ ′ju(ζ

′)dµ(ζ ′)

= εjDj

(
δ(Q(ζ))

∫

C

Ψ(〈ζ, ζ ′〉)u(ζ ′)dµ(ζ ′)
)
. (6.3.8)

where δ(Q(ζ)) stands for the delta function δ(Q) with respect to the variable
ζ. Here, the left-hand side follows from (2.3.11). Let us show that the right-
hand side of (6.3.8) is equal to

−
√
−1δ(Q(ζ))

∫

C

(
〈ζ, ζ ′〉Ψ′′(〈ζ, ζ ′〉) +

p+ q − 4

2
Ψ′(〈ζ, ζ ′〉)

)
ζ ′ju(ζ

′)dµ(ζ ′).

80



Claim 6.3.4. For 1 ≤ j ≤ p+ q − 2 and for any function f on R, we have

Dj

(
δ(Q(ζ))f(〈ζ, ζ ′〉)

)

= −
√
−1εjζ

′
jδ(Q(ζ))

(
〈ζ, ζ ′〉f ′′(〈ζ, ζ ′〉) +

p+ q − 4

2
f ′(〈ζ, ζ ′〉)

)
.

Sketch of Proof. The actual computation consists of a differentiation such
as ∂

∂ζj

(
δ(Q(ζ))f(〈ζ, ζ ′〉)

)
, which can be computed by using, for example, the

following formula (see [14, Chapter III, §2.2]),

δ(Q(ζ)) =
Q(ζ)λ

+

Γ(λ+ 1)

∣∣
λ=−1

.

Now since the equation (6.3.8) holds for all u ∈ L2(C)K , we have

2Ψ(〈ζ, ζ ′〉) = −
(
〈ζ, ζ ′〉Ψ′′(〈ζ, ζ ′〉) +

p+ q − 4

2
Ψ′(〈ζ, ζ ′〉)

)
.

Hence, Ψ satisfies the differential equation (6.3.5).
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7 Appendix: special functions

We have seen that various special functions arise naturally in the analysis
on the minimal representations. Some of their fundamental properties (e.g.
integral formulas, differential equations, etc.) have been used in the proof of
the unitary inversion formulas. Conversely, representation theoretic prop-
erties are reflected as algebraic relations (e.g. functional equations) of such
special functions. Further, different models of the same representation yield
formulas connecting special functions arising from each model.

For the convenience of the reader, we collect the formulas and the prop-
erties of special functions that were used in the previous sections.

7.1 Riesz distribution xλ
+

A distribution fλ on R with parameter λ ∈ C is said to be a distribution
with meromorphic parameter λ if the pairing

〈fλ, ϕ〉

is a meromorphic function of λ for any test function ϕ ∈ C∞
0 (R). We say

fλ has a pole at λ = λ0 if 〈fλ, ϕ〉 has a pole at λ = λ0 for some ϕ. Then,
taking a residue at λ = λ0, we get a distribution:

C∞
0 (R) → C, ϕ 7→ res

λ=λ0

〈fλ, ϕ〉,

which we denote by res
λ=λ0

fλ.

By Cauchy’s integral formula, if C is a contour surrounding λ = λ0, then
we have

res
λ=λ0

〈fλ, ϕ〉 =
1

2π
√
−1

∫

C

〈fλ, ϕ〉dλ,

and in turn we get an identity of distributions:

res
λ=λ0

fλ =
1

2π
√
−1

∫

C

fλ dλ.

A classic example of distributions with meromorphic parameter is the Riesz
distribution xλ

+ defined as a locally integrable function (and hence a distri-
bution):

xλ
+ =

{
xλ (x > 0)

0 (x ≤ 0)
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for λ ∈ C such that Reλ > −1. Then, xλ
+ extends meromorphically to the

entire complex plane, and all the poles are located at λ = −1,−2, . . . . The
residue is given by

res
λ=−k

xλ
+ =

(−1)k−l

(k − 1)!
δ(k−1)(x) (7.1.1)

for k = 1, 2, 3, . . . . To see this, we set

ϕN (x) := ϕ(x) −
N∑

k=1

ϕ(k−1)(0)

(k − 1)!
xk−1.

Then,

〈xλ
+, ϕ〉 =

N∑

k=1

ϕ(k−1)(0)

(k − 1)!

∫ 1

0
xλ+k−1dx+

∫ 1

0
xλϕN (x)dx

+

∫ ∞

1
xλϕ(x)dx

=

N∑

k=1

1

λ+ k

ϕ(k−1)(0)

(k − 1)!
+

∫ 1

0
xλϕN (x)dx

+

∫ ∞

1
xλϕ(x)dx.

The first two term has a simple pole at λ = −k with residue

ϕ(k−1)(0)

(k − 1)!
=

〈
(−1)k−1

(k − 1)!
δ(k−1)(x), ϕ(x)

〉
,

the second term is holomorphic if Re λ > −N − 1 because ϕN (x) = O(xN ),
and the last term is an entire function of λ because ϕ is compactly supported.
Hence, (7.1.1) is proved. Likewise,

xλ
− :=

{
|x|λ (x < 0)

0 (x ≥ 0)

extends a distribution with meromorphic parameter λ and all the poles are
located at λ = 0,−1,−2, . . . . They are simple poles with

res
λ=−k

xλ
− =

δ(k−1)(x)

(k − 1)!
. (7.1.2)
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We write the Laurent expansions of xλ
+ and xλ

− at λ = −k (k = 1, 2, 3, . . . )
as follows:

xλ
+ =

(−1)k−1

λ+ k
δ(k−1)(x) + x−k

+ + (λ+ k)x−k
+ log x+ + · · · , (7.1.3)

xλ
− =

1

λ+ k
δ(k−1)(x) + x−k

− + (λ+ k)x−k
− log x− + · · · . (7.1.4)

Then, x−k
+ and x−k

− are tempered distributions supported on the half lines
x ≥ 0 and x ≤ 0, respectively. We note that they are not homogeneous
as distributions. Then, the sum xλ

+ + (−1)λxλ
− becomes a distribution with

holomorphic parameter λ in the entire complex plane because

res
λ=−k

(xλ
+ + (−1)λxλ

−) = 0

for k = 1, 2, 3, . . . . We now define a distribution

x−k :=
(
xλ

+ + (−1)λxλ
−
)∣∣

λ=−k
. (7.1.5)

This distribution is homogeneous, and coincides with x−k
+ + (−1)kxk

−.
For k = 1, x−1 is the distribution that gives Cauchy’s principal value:

〈x−1, ϕ〉 = lim
ε↓0

(∫ −ε

−∞
+

∫ ∞

ε

)
ϕ(x)

x
dx.

This formula is valid for any ϕ ∈ C0(R). Likewise, x−k extends to a func-
tional on the space Ck−1

0 (R) of compactly supported functions on R with
continuous derivatives up to k − 1. See the textbook [14] of Gelfand and
Shilov for a nice introduction to these distributions.

7.2 Bessel functions

For ν ≥ 0, the series

Jν(z) :=
(z

2

)ν
∞∑

j=0

(−1)j( z
2 )2j

j! Γ(j + ν + 1)

converges in the entire complex plane. Its sum Jν(z) is called the Bessel
function of the first kind of order ν (see [53, §3.54]).

We set

Yν(z) :=
Jν(z) cos νπ − J−ν(z)

sin νπ
.
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If ν is an integer, say ν = m, then this definition reads as

Ym(z) := lim
ν→m

Jν(z) cos νπ − J−ν(z)

sin νπ
.

Yν is known as the Bessel function of the second kind or Neumann’s function.

Iν(z) = e−
√−1νπ

2 Jν(e
√−1π

2 z)

=
(z

2

)ν
∞∑

j=0

( z
2 )2j

j! Γ(j + ν + 1)
,

Kν(z) =
π

2 sin νπ
(I−ν(z) − Iν(z))

solve the differential equation

z2d
2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0.

Iν(z) is known as the modified Bessel function of the first kind, and is real
when ν ∈ R and z > 0.

Kν(z) is known as the modified Bessel function of the third kind or Bas-
set’s function. Clearly we have

K−ν(z) = Kν(z).

We call Yν , Iν , andKν simply as Y -Bessel, I-Bessel, andK-Bessel functions.
The K-Bessel function satisfies the following formula (see [9, II, §7.11

(22)]): ( d

z dz

)m

(z−νKν(z)) = (−1)mz−ν−mKν+m(z).

This formula may be stated as

(
− 2d

z dz

)m

K̃ν(z) = K̃ν+m(z)

in terms of the normalized K-Bessel function (7.2.6). By the change of
variables z = 2e−x, the m = 1 case amounts to:

d

dx
(e−axK̃ν(2e

−x)) = − ae−axK̃ν(2e−x)

+ 2e−(a+2)xK̃ν+1(2e
−x). (7.2.1)
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The K-Bessel functions Kν(z) reduce to combinations of elementary
functions if ν is half of an odd integer. For n ∈ N we have

Kn+ 1
2
(z) =

( π
2z

) 1
2
e−z

n∑

j=0

(n+ j)!

j!(n− j)!

1

(2z)j

= (−1)n
( π

2z

) 1
2
zn+1

( d

z dz

)n e−z

z
.

For instance, if n = 0, we have

K 1
2
(z) =

( π
2z

) 1
2
e−z. (7.2.2)

The following renormalization is sometimes convenient:

J̃ν(z) := (
z

2
)−νJν(z) =

∞∑

j=0

(−1)j( z
2 )2j

j! Γ(ν + j + 1)
, (7.2.3)

Ĩν(z) := (
z

2
)−νIν(z) =

∞∑

j=0

( z
2 )2j

j! Γ(j + ν + 1)
, (7.2.4)

Ỹν(z) := (
z

2
)−νYν(z), (7.2.5)

K̃ν(z) := (
z

2
)−νKν(z). (7.2.6)

By the Taylor expansion as above, we see that both J̃ν(z) and Ĩν(z) are
holomorphic function of z in the entire complex plane.

J̃ν(x) and Ỹν(x) are linearly independent of each other (whether ν is an
integer or not) and form a basis of the space of solutions to the following
differential equation:

x
d2u

dx2
+ (ν + 1)

du

dx
+ u = 0. (7.2.7)

For m = 1, 2, 3, . . . , the infinite sum expressions of Ym(z) and Km(z) (or
Ỹm(z) and K̃m(z)) at z = 0 are given in [9, II, §7.2, (31) and (37)], which
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may be stated as follows:

Ỹm(z) = − 1

π

m∑

k=1

(
z

2
)−2k (k − 1)!

(m− k)!

+
2

π
J̃m(z) log(

z

2
)

− 1

π

∞∑

l=0

(−1)l(
z

2
)2l ψ(m+ l + 1) + ψ(l + 1)

l!(m+ l)!
. (7.2.8)

K̃m(z) =
1

2

m∑

k=1

(−1)m−k(
z

2
)−2k (k − 1)!

(m− k)!

+ (−1)m+1Ĩm(z) log(
z

2
)

+
1

2
(−1)m

∞∑

l=0

(
z

2
)2l ψ(m+ l + 1) + ψ(l + 1)

l!(m+ l)!
. (7.2.9)

Here, the function ψ(z) is the logarithmic derivative of the gamma function:

ψ(z) :=
d log Γ(z)

dz
=

Γ′(z)
Γ(z)

.

Th ψ function is meromorphic with simple poles at z = 0,−1,−2, . . . .
Next, we summarize the asymptotic behaviors of the Bessel functions:

Fact 7.2.1 (see [1, Chapter 4], [53, Chapter VII]). The asymptotic behaviors
of the Bessel functions at x = 0,∞ are given by

1) As x tends to 0, Jν(x), Iν(x) = O(xν).
For ν > 0,

K̃ν(x) =
Γ(ν)

2

(x
2

)−2ν

+ o(x−2ν) as x tends to 0. (7.2.10)
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2) As x tends to infinity

Jν(x) ∼
√

2

πx

(
cos
(
x− νπ

2
− π

4

) ∞∑

j=0

(−1)j(ν, 2j)

(2x)2j

− sin
(
x− νπ

2
− π

4

) ∞∑

j=0

(−1)j(ν, 2j + 1)

(2x)2j+1

)
(| arg x| < π),

Yν(x) ∼
√

2

πx

(
sin
(
x− νπ

2
− π

4

) ∞∑

j=0

(−1)j (ν, 2j)

(2x)2j

+ cos
(
x− νπ

2
− π

4

) ∞∑

j=0

(−1)j (ν, 2j + 1)

(2x)2j+1

)
(| arg x| < π),

Iν(x) ∼
ex√
2πx

∞∑

j=0

(−1)j(ν, j)

(2x)j
+
e−x+(ν+ 1

2
)
√
−1π

√
2πx

∞∑

j=0

(α, j)

(2x)j
(−π

2
< arg x <

3

2
π),

Kν(x) ∼
√

π

2x
e−x
(
1 +

∞∑

j=1

(ν, j)

(2x)j

)
(| arg x| < 3π

2
).

In particular, we have

K̃ν(2x) =

√
π

2
e−2x x−ν− 1

2 (1 +O(
1

x
)) as x→ ∞.

Here, we have used Hankel’s notation:

(α, j) := (−1)j (1
2 − α)j(

1
2 + α)j

j!

=
(4α2 − 12)(4α2 − 32) · · · (4α2 − (2j − 1)2)

22jj!
.

Finally, we list some integral formulas for the Bessel functions:

B1 (the Mellin transform of K-Bessel functions, see [16, p684]). For Re(µ+
1 ± ν) > 0 and Re a > 0,

∫ ∞

0
xµKν(ax)dx = 2µ−1a−µ−1Γ(

1 + µ+ ν

2
)Γ(

1 + µ− ν

2
).

Equivalently, we have
∫ ∞

0
xsK̃ν(ax)dx = 2s−1a−s−1Γ(

1 + s

2
)Γ(

1 + s

2
− ν). (7.2.11)
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B2 Formula of the Hankel transform due to W. Bailey [3] (see also [10,
§ 19.6 (8)]).
∫ ∞

0
tλ−1Jµ(at)Jν(bt)Kρ(ct)dt

=
2λ−2aµbνΓ(1

2 (λ+ µ+ ν − ρ))Γ( 1
2 (λ+ µ+ ν + ρ))

cλ+µ+νΓ(µ+ 1)Γ(ν + 1)

× F4(
1

2
(λ+ µ+ ν − ρ),

1

2
(λ+ µ+ ν + ρ);µ+ 1, ν + 1;−a

2

c2
,−b

2

c2
).

(7.2.12)

Here, F4 is Appell’s hypergeometric function of two variables (see (7.7.4)).

B3 (see [10, §7, 14.2 (36)]) For Re(α+ β) > 0 and Re(ρ± µ± ν + 1) > 0,

2ρ+2Γ(1 − ρ)

∫ ∞

0
Kµ(αt)Kν(βt)t−ρdt

= αρ−ν−1βν
2F1(

1 + ν + µ− ρ

2
,
1 + ν − µ− ρ

2
; 1 − ρ; 1 − β2

α2
)

× Γ(
1 + ν + µ− ρ

2
)Γ(

1 + ν − µ− ρ

2
)Γ(

1 − ν + µ− ρ

2
)Γ(

1 − ν − µ− ρ

2
).

In particular, we have
∫ ∞

0
Kµ(2t)2t2s−1dt =

Γ(s)2Γ(s+ µ)Γ(s− µ)

8Γ(2s)
. (7.2.13)

7.3 Associated Legendre functions

The associated Legendre functions on the interval (−1, 1) is defined as the
special value of the hypergeometric function:

P µ
ν (x) =

1

Γ(1 − µ)

(1 + x

1 − x

) µ

2

2F1

(
−ν, ν + 1; 1 − µ;

1 − x

2

)
. (7.3.1)

The associated Legendre functions satisfy the following functional relation:

d

dx

(
(1 − x2)−

µ

2 P µ
ν (−x)

)
= (1 − x2)−

µ+1
2 P µ+1

ν (−x), (7.3.2)

which is derived from the following recurrence relation (see [16, §8.733 (1)]):

(1 − x2)
d

dx
P µ

ν (x) = −
√

1 − x2P µ+1
ν (x) − µxP µ

ν (x).

Integral formulas for the associated Legendre functions:
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L1 (see [16, p803]) Formula of the Riemann–Liouville integral: Reλ < 1,
Reµ > 0, 0 < y < 1,

1

Γ(µ)

∫ y

0
(y−x)µ−1

(
x(1−x)

)−λ
2P λ

ν (1−2x)dx =
(
y(1−y)

)µ

2
−λ

2 P λ−µ
ν (1−2y).

(7.3.3)

L2 (see [16, p798]) For 2Re λ > |Reµ|,
∫ 1

−1
(1−x2)λ−1P µ

ν (x)dx =
π2µΓ(λ+ µ

2 )Γ(λ− µ
2 )

Γ(λ+ ν
2 + 1

2)Γ(λ− ν
2 )Γ(−µ+ν+2

2 )Γ(−µ−ν+1
2 )

.

(7.3.4)

7.4 Gegenbauer polynomials

Definition of the Gegenbauer polynomials: For l ∈ N, we define

Cµ
l (x) :=

(−1)l

2l

Γ(2µ+ l)Γ(µ+ 1
2)

Γ(2µ)Γ(µ+ l + 1
2)

(1 − x2)
1
2
−µ

l!

dl

dxl

(
(1− x2)µ+l− 1

2
)
. (7.4.1)

Slightly different from the usual notation in the literature, we adopt the
following normalization of the Gegenbauer polynomial:

C̃µ
l (x) := Γ(µ)Cµ

l (x). (7.4.2)

By using Gauss’s duplication formula

Γ(2µ) = 22µ−1π−
1
2 Γ(µ)Γ(µ+

1

2
), (7.4.3)

the definition (7.4.1) may be stated as

C̃µ
l (x) =

(−1)lΓ(2µ+ l)
√
π

22µ+l−1l! Γ(µ+ l + 1
2)

(1 − x2)−µ+ 1
2
dl

dxl

(
(1 − x2)µ+l− 1

2
)
. (7.4.4)

The special value at µ = 0 is given by the limit formula (see [9, §3.15.1
(14)]):

C̃0
l (cos θ) = lim

µ→0
Γ(µ)Cµ

l (cos θ) =
2 cos(lθ)

l
. (7.4.5)

On the other hand, the special value at l = 0 is given by

C̃µ
0 (x) = Γ(µ).
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Connection with Gauss’ hypergeometric function (see [9, §3.15 (3)]):

C̃µ
l (x) =

Γ(l + 2µ)Γ(µ)

Γ(l + 1)Γ(2µ)
2F1(l + 2µ,−l;µ+

1

2
;
1 − x

2
)

=
Γ(l + 2µ)Γ(µ)

Γ(l + 1)Γ(2µ)
2F1(

l + 2µ

2
,− l

2
;µ+

1

2
; 1 − x2). (7.4.6)

Here, the second equation is derived from the formula of quadratic transfor-
mation for hypergeometric function (see [9, §2.11 (2)]):

2F1(a, b; a + b+
1

2
; 4x(1 − x)) = 2F1(2a, 2b; a + b+

1

2
;x).

By using Kummer’s transformation formula for the hypergeometric func-
tions:

2F1(α, β; γ; z) = (1 − z)γ−α−β
2F1(γ − α, γ − β; γ; z),

one can obtain the following relationship between the Gegenbauer polyno-
mials and the associated Legendre functions.

C̃µ
l (x) =

√
πΓ(2µ+ l)

2µ− 1
2 Γ(l + 1)

(1 − x2)
1
4
−µ

2 P
1
2
−µ

µ+l− 1
2

(x), −1 < x < 1. (7.4.7)

Integral formulas for the Gegenbauer polynomials:

Ge1 (Orthogonality relations; see [9, §3.15.1 (17)]) For Reµ > − 1
2 ,

∫ 1

−1
C̃µ

l (x)C̃µ
m(x)(1 − x2)µ−

1
2 dx =

{
0 if l 6= m,
21−2µπΓ(l+2µ)

(l+µ)Γ(l+1) if l = m.
(7.4.8)

Ge2 (see [16, §7.321]) For Reµ > − 1
2 ,

∫ 1

−1
(1 − x2)µ−

1
2 e

√
−1axC̃µ

l (x)dx =
π21−µΓ(2µ+ l)

Γ(l + 1)
a−µJµ+l(a).

(7.4.9)

Ge3 (see [31, Lemma 8.5.2]) For α ∈ C, Re ν > −1, and l ∈ N,

∫ 1

−1
Jν(α

√
x+ 1)C̃

ν+ 1
2

l (x)(1 + x)
ν
2 (1 − x)νdx =

2
3
2 (−1)l

√
πΓ(2ν + l + 1)

αν+1l!
J2ν+2l+1(

√
2α). (7.4.10)
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Ge4 For Re ν > − 1
2 and Reλ > −1,

∫ 1

−x

(x+ y)λC̃ν
k (y)(1 − y2)ν−

1
2dy

=

√
πΓ(2ν + k)Γ(λ+ 1)

2ν− 1
2 k!

(1 − x2)
λ
2
+ ν

2
+ 1

4P
−λ−ν− 1

2

ν+k− 1
2

(−x). (7.4.11)

This formula (7.4.11) is essentially the integration formula (7.3.3) for the
associated Legendre functions. For the sake of completeness, we give a
proof:

The left-hand side of (7.4.11)

=

√
πΓ(2ν + k)

2ν− 1
2 k!

∫ 1

−x

(1 − y2)
ν
2
− 1

4 (x+ y)λP
1
2
−ν

ν+k− 1
2

(y)dy by (7.4.7)

=
2λ+1√πΓ(2ν + k)

k!

∫ 1+x
2

0

(
(1 − t)t

)ν
2
− 1

4

(x+ 1

2
− t
)λ

P
1
2
−ν

ν+k− 1
2

(1 − 2t)dt

=
2λ+1√πΓ(2ν + k)Γ(λ+ 1)

k!

(1 − x2

4

)λ
2
+ ν

2
+ 1

4
P

−λ−ν− 1
2

ν+k− 1
2

(−x) by (7.3.3)

= the right-hand side of (7.4.11).

7.5 Spherical harmonics

A spherical harmonics f of degree j = 0, 1, 2, . . . is the restriction to the unit
sphere Sm−1 ⊂ Rm of a homogeneous harmonic polynomials of degree j in
Rm. Equivalently, f is a smooth function satisfying the differential equation:

∆Sm−1f = −j(j +m− 2)f.

The space of spherical harmonics of degree j is denoted by

H
j(Rm) := {f ∈ C∞(Sm−1) : ∆Sm−1f = −j(j +m− 2)f}.

When m = 1, it is convenient to set:

H
0(R1) := C1, H

1(R1) := Csgn, H
j(R1) := 0 (j ≥ 2).

The following facts are well-known (see [20, Introduction], [49]):

H1 For f ∈ Hj(Rm), f(−x) = (−1)jf(x).

H2 O(m) acts irreducibly on Hj(Rm).
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H3 Hj(Rm) is still irreducible as an SO(m)-module if m ≥ 3.

H4 Hj(R2) = Ce
√
−1jθ ⊕ Ce−

√
−1jθ, j ≥ 1 as SO(2)-modules, where θ =

tan−1 y
x
, (x, y) ∈ R2.

H5 Hj(Rm)
∣∣
O(m−1)

'⊕j
i=0 Hi(Rm−1) as O(m− 1)-modules.

H6 The Hilbert space L2(Sm−1) decomposes into a direct sum of the space
of spherical harmonics:

L2(Sm−1) '
∞∑⊕

j=0

H
j(Rm).

Here,
∑⊕

stands for the completion of the algebraic direct sum
⊕∞

j=0 Hj(Rm).

Let (x0, x) ∈ Rm, x ∈ Rm−1 be a coordinate of Rm. Then this branching
law H5 is explicitly constructed by the O(m− 1)-intertwining operator

Im
i→j : H

i(Rm−1) → H
j(Rm)

as follows:

Fact 7.5.1. (e.g. [49, Chapter III]) For 0 ≤ i ≤ j and φ ∈ Hi(Rm−1), we
define a function Im

i→jφ on Sm−1 by

(Im
i→j(φ))(x0, x) := |x|iφ

(
x

|x|

)
C̃

m−2
2

+i

j−i (x0). (7.5.1)

Here, C̃ν
l (z) is the normalized Gegenbauer polynomial (see (7.4.2)). Then,

1) Im
i→j(φ) ∈ Hj(Rm).

2) Im
i→j gives an injective O(m − 1)-homomorphism from Hi(Rm−1) to

Hj(Rm).

3) (norm)

‖Im
i→j(φ)‖2

L2(Sm−1) =
23−m−2iπΓ(m− 2 + i+ j)

(j − i)! (j + m−2
2 )

‖φ‖2
L2(Sm−2). (7.5.2)
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Proof. We use the following coordinate:

[−1, 1] × Sm−2 → Sm−1, (r, η) 7→ ω = (r,
√

1 − r2η). (7.5.3)

Then, the standard volume form dω on the unit sphere Sm−1 is given by

(1 − r2)
m−3

2 dηdr. Therefore,

‖Im
i→j(φ)‖2

L2(Sm−1) =

∫ 1

−1

∫

Sm−2

(1−r2)i|φ(η)|2|C̃
m−2

2
+i

j−i (r)|2(1−r2)
m−3

2 dη dr.

Now, apply (7.4.8).

We illustrate the intertwining operator Iij by the two important cases,
i = 0 and i = j:

Example 7.5.2. 1) The case i = 0. Then,

(Im
0→j1)(x0, x) = C̃

m−2
2

j (x0) (7.5.4)

is the generator of O(m − 1)-invariant vectors in Hj(Rm), where 1 is the
constant function on Sm−1.

2) The case i = j. Then, we have simply

Im
i→j(φ)(x0, x) = Γ(m)|x|jφ(

x

|x| ). (7.5.5)

7.6 Meijer’s G-functions

Let m,n, p and q be integers with 0 ≤ m ≤ q, 0 ≤ n ≤ p and

c∗ := m+ n− p+ q

2
≥ 0.

Suppose further that the complex numbers a1, . . . , ap and b1, . . . , bq fulfill
the condition:

aj − bk 6= 1, 2, 3, . . . (j = 1, . . . n; k = 1, . . . ,m). (7.6.1)

Then, Meijer’s G-function of order (m,n, p, q) is defined by the following
integral (see [9, §5.3], [39, I, §1], [43, §8.2]): for x > 0,

Gm,n
p,q

(
x

∣∣∣∣
a1, · · · , ap

b1, · · · , bq

)

:=
1

2π
√
−1

∫

L

m∏
j=1

Γ(bj − λ)
n∏

j=1
Γ(1 − aj + λ)

q∏
j=m+1

Γ(1 − bj + λ)
p∏

j=n+1
Γ(aj − λ)

xλdλ, (7.6.2)
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where an empty product is interpreted as 1.
The contour L starts at the point γ−

√
−1∞ (γ is a real number satisfying

(7.6.4) below if c∗ = 0), leaving all the poles of the integrand of the forms

λ = bj, bj + 1, bj + 2, . . . (1 ≤ j ≤ m) (7.6.3)

to the right, and all the poles of the forms

λ = aj − 1, aj − 2, aj − 3, . . . (1 ≤ j ≤ n)

to the left of the contour and finishing at the point γ +
√
−1∞.

Here, the condition on the real number γ is given by

(q − p)γ > Reµ, (7.6.4)

where we set

µ :=

q∑

j=1

bj −
p∑

j=1

aj +
p− q

2
+ 1.

It follows from the asymptotic behavior of the gamma factors (see Lemma
6.1.4) that the integral (7.6.2) converges and is independent of γ if one of
the following conditions hold:

1) c∗ > 0, | arg x| < c∗π;
2) c∗ ≥ 0, | arg x| = c∗π, (q − p)γ > Reµ.
In particular, the G-function extends holomorphically to the complex

domain | arg x| < c∗π if c∗ > 0.
The G-function is symmetric in the parameters a1, . . . , an, likewise in

an+1, . . . , ap, in b1, . . . , bm, and in bm+1, . . . , bq.
Obvious changes of variables in the integral give

xsGm,n
p,q

(
x

∣∣∣∣
a1, · · · , ap

b1, · · · , bq

)
= Gm,n

p,q

(
x

∣∣∣∣
a1 + s, · · · , ap + s
b1 + s, · · · , bq + s

)
,

Gm,n
p,q

(
x−1

∣∣∣∣
a1, · · · , ap

b1, · · · , bq

)
= Gn,m

q,p

(
x

∣∣∣∣
1 − b1, · · · , 1 − bq
1 − a1, · · · , 1 − ap

)
.

The G-function Gm,n
p,q

(
x
∣∣∣ a1, . . . , ap

b1, . . . , bq

)
satisfies the differential equation

(see [9, §5.4 (1)]):

(
(−1)p−m−nx

p∏

j=1

(x
d

dx
− aj + 1) −

q∏

j=1

(x
d

dx
− bi)

)
u = 0. (7.6.5)
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If p < q, the only singularities of (7.6.5) are x = 0,∞; x = 0 is a regular
singularity, x = ∞ an irregular one. For example, G20

04(x | b1, b2, b3, b4)
satisfies the fourth order differential equation:

4∏

j=1

(x
d

dx
− bj)u = 0. (7.6.6)

The condition (7.6.1) implies that none of the poles of Γ(bj − λ) (j =
1, 2, . . . ,m) coincides with any of the poles of Γ(1 − ak + λ) (k = 1, . . . , n).
Suppose further that

bj − bk 6= 0,±1,±2, . . . (1 ≤ j < k ≤ m).

Then the integrand (as an ordinary function for x > 0) has simple poles
at the points (7.6.3). (We note that as a distribution of x, xλ has simple
poles at λ = −1,−2,−3, . . . , and the analysis involved is more delicate; see
Subsections 6.1 and 6.2.) For p ≤ q, by the residue calculus, we obtain (see
[39, I, (7)]):

Gm,n
p,q

(
x

∣∣∣∣
a1, · · · , ap

b1, · · · , bq

)

=

m∑

k=1

m∏
j=1
j 6=k

Γ(bj − bk)
n∏

j=1
Γ(1 + bk − aj)

q∏
j=m+1

Γ(1 + bk − bj)
p∏

j=n+1
Γ(aj − bk)

xbk

× pFq−1(1 + bk − a1, . . . , 1 + bk − ap; 1 + bk − b1,
k

·̂ · · , 1 + bk − bq; (−1)p−m−nx).
(7.6.7)

Here, pFq denotes the (usual) generalized hypergeometric function:

pFq(α1, . . . , αp;β1, . . . , βq;x) =

∞∑

k=0

xk
p∏

j=1
αj(αj + 1) · · · (αj + k − 1)

k!
q∏

j=1
βj(βj + 1) · · · (βj + k − 1)

.
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Similarly, for q ≤ p, if aj − ak 6= 0,±1,±2, . . . (1 ≤ j < k ≤ n), we have

Gm,n
p,q

(
x

∣∣∣∣
a1, · · · , ap

b1, · · · , bq

)

=

n∑

k=1

n∏
j=1
j 6=k

Γ(ak − aj)
n∏

j=1
Γ(bj − ak + 1)

p∏
j=n+1

Γ(aj − ak + 1)
q∏

j=m+1
Γ(ak − bj)

xak−1

× qFp−1(1 + b1 − ak, . . . , 1 + bq − ak; 1 + a1 − ak,
k

·̂ · · , 1 + ap − ak; (−1)q−m−nx−1).
(7.6.8)

For p ≤ q, it follows from (7.6.7) that

Gm,n
p,q

(
x

∣∣∣∣
a1, · · · , ap

b1, · · · , bq

)
= O(|x|min(Re b1,...,Re bm)) (7.6.9)

as x → 0 (see also [9, I, §5.4.1 (8)], but there is a typographical error:
max Re bh loc. cit. should be minRe bh). On the other hand, the asymptotic
expansion of Gm,n

p,q (x) (p ≤ q) for large x > 0 that we need in this paper is
the following case:

Fact 7.6.1 ([39, VII, Theorem 17]). Let m, p and q be integers satisfying

0 ≤ p ≤ q − 2 and p+ 1 ≤ m ≤ q − 1.

Then the G-function Gm,0
p,q (x) possesses the following asymptotic expan-

sion for large x > 0 :

Gm,0
p,q (x) ∼ Am,0

qHp,q(xe
(q−m)π

√
−1) + Ām,0

qHp,q(xe
(m−q)π

√
−1).

Here, Hp,q(z) is a function that possesses the following expansion (see
[39, I, (25)]):

Hp,q(z) = exp
(
(p− q)z

1
q−p

)
zθ

(
(2π)

q−p−1
2√

q − p
+

M1

z
1

q−p

+
M2

z
2

q−p

+ · · ·
)
,

where M1,M2, . . . are constants, and θ is given by

θ :=
1

q − p

(
p− q + 1

2
+

q∑

j=1

bj −
p∑

j=1

aj

)
, [39, I, (23)].
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The coefficients Am,0
q and Ām,0

q are given by

Am,0
q := (−2π

√
−1)m−q e−(bm+1+···+bq)π

√
−1, [39, II, (45)],

Ām,0
q := (2π

√
−1)m−q e(bm+1+···+bq)π

√
−1, [39, II, (46)].

Example 7.6.2. For (m,n, p, q) = (2, 0, 1, 3), c∗ = 0. We take γ such that

γ >
1

2
Re(b1 + b2 + b3 − a1).

Then, we have an integral expression:

G20
13

(
x

∣∣∣∣
a1

b1, b2, b3

)
=

1

2π
√
−1

∫

L

Γ(b1 − λ)Γ(b2 − λ)

Γ(1 − b3 + λ)Γ(a1 − λ)
xλdλ,

where the integral path L starts from γ −
√
−1∞, leaves b1, b2 to the right

and ends at γ +
√
−1∞ (see Figure 7.6.1).

L

γ −
√
−1∞

γ +
√
−1∞

γ

×

×

b1

b2

Figure 7.6.1

Example 7.6.3. If p = 0, the G-function is denoted by Gm,0
0,q (x | b1, . . . , bq).

The G-function that we use most frequently in this paper is of type G20
04.

Again, we have c∗ = 0. Then, we have an integral expression:

G20
04(x | b1, b2, b3, b4) =

1

2π
√
−1

∫

L

Γ(b1 − λ)Γ(b2 − λ)

Γ(1 − b3 + λ)Γ(1 − b4 + λ)
xλdλ,
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where L starts from γ −
√
−1∞, leaves b1, b2 to the right, and ends at

γ +
√
−1∞ (see Figure 7.6.1) for γ ∈ R such that

γ >
1

4
(Re(b1 + b2 + b3 + b4) − 1).

In Subsection 4.5, we need the following lemma on the asymptotic be-
havior:

Lemma 7.6.4. The asymptotic behavior of the G-functions G20
04(x | b1, b2, 1−

γ − b1, 1 − γ − b2) are given as follows:
1) As x tends to 0, G20

04(x | b1, b2, 1− γ − b1, 1− γ − b2) = O(xmin(b1,b2)).
2) As x tends to ∞,

G20
04(x | b1, b2, 1 − γ − b1, 1 − γ − b2)

= − 1√
2π

x
1−4γ

8 cos
(
4x

1
4 − (γ + b1 + b2 +

1

4
)π
)
(1 + P1x

− 1
2 + P2x

−1 + · · · )

+ x
1−4γ

8 sin
(
4x

1
4 − (γ + b1 + b2 +

1

4
)π
)
(Q1x

− 1
4 +Q2x

− 3
4 + · · · ).

(7.6.10)

Here, P1, · · · , Q1, · · · are the constants independent of x.

Proof. 1) This estimate is a special case of (7.6.9).
2) We apply Fact 7.6.1 to the case

(m, p, q) = (2, 0, 4), (b1, b2, b3, b4) = (b1, b2, 1 − γ − b1, 1 − γ − b2).

Then, the coefficients A20
4, Ā

20
4 and the constant θ amount to

A20
4 = − 1

4π2
e(2γ−2+b1+b2)π

√
−1, Ā20

4 = − 1

4π2
e−(2γ−2+b1+b2)π

√
−1,

θ =
1 − 4γ

8
.

The expansion of H0,4(xe
±2π

√
−1) is given by

H0,4(xe
±2π

√
−1) = e∓(4x

1
4 − 1−4γ

4
π)

√
−1 x

1−4γ
8

(
(2π)

3
2

2
± M1√

−1x
1
4

+ · · ·
)
.

Hence, G20
04(x) has the following asymptotic expansion:

− 1

4π2
e−(4x

1
4 −π(γ+b1+b2− 7

4
))
√
−1 x

1−4γ

8

(
(2π)

3
2

2
+

M1√
−1x

1
4

+ · · ·
)

− 1

4π2
e(4x

1
4 −π(γ+b1+b2− 7

4
))
√
−1 x

1−4γ

8

(
(2π)

3
2

2
− M1√

−1x
1
4

+ · · ·
)
,
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which is expressed as the right-hand side of (7.6.10) by virtue of the formulas

ecπ
√
−1 + e−cπ

√
−1 = 2 cos(cπ) and ecπ

√
−1 − e−cπ

√
−1 = 2

√
−1 sin(cπ).

Finally, we list the reduction formulas of G-functions that are used in
this paper:

G10
02(x | a, b) = x

1
2
(a+b)Ja−b(2x

1
2 ) [9, §5.6(3)], (7.6.11)

G20
02(x | a, b) = 2x

1
2
(a+b)Ka−b(2x

1
2 ) [9, §5.6(4)], (7.6.12)

G20
04(x | a, a+

1

2
, b, b+

1

2
) = x

1
2
(a+b)J2(a−b)(4x

1
4 ) [9, §5.6(11)], (7.6.13)

G20
13

(
x

∣∣∣∣
a− 1

2
a, b, a− 1

2

)
= x

1
2
(a+b)Yb−a(2x

1
2 ) [9, §5.6(23)]. (7.6.14)

7.7 Appell’s hypergeometric functions

Appell’s hypergeometric functions (in two variables) F1, F2, F3, F4 are de-
fined by the following double power series:

F1(α, β, β
′, γ;x, y) :=

∞∑

m,n=0

(α)m+n(β)m(β′)n
(γ)m+nm!n!

xmyn, (7.7.1)

F2(α, β, β
′, γ, γ′;x, y) :=

∞∑

m,n=0

(α)m+n(β)m(β′)n
(γ)m(γ′)nm!n!

xmyn, (7.7.2)

F3(α, α
′, β, β′, γ;x, y) :=

∞∑

m,n=0

(α)m(α′)n(β)m(β′)n
(γ)m+nm!n!

xmyn, (7.7.3)

F4(α, β, γ, γ
′;x, y) :=

∞∑

m,n=0

(α)m+n(β)m+n

(γ)m(γ′)nm!n!
xmyn. (7.7.4)

Ap1 Reduction from F3 to F1 ([9, §5.11, (11)]):

F3(α, α
′, β, β′, α+ α′;x, y) = (1 − y)−β′

F1(α, β, β
′, α+ α′;x,

y

y − 1
).

(7.7.5)

Ap2 Reduction from F3 to 2F1 ([9, §5.10, (4)]):

F3(α, γ − α, β, γ − β; γ;x, y) = (1 − y)α+β−γ
2F1(α, β, γ;x + y − xy).

(7.7.6)
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Ap3 Reduction formula of F4 ([9, §5.10, (8)]):

F4(α, β; 1 + α− β, β;
−x

(1 − x)(1 − y)
,

−y
(1 − x)(1 − y)

)

= (1 − y)α
2F1(α, β; 1 + α− β;

−x(1 − y)

1 − x
). (7.7.7)

Ap4 Single integral of Euler’s type for F1 ([9, §5.8.2, (5)]): For Reα > 0
and Re(γ − α) > 0,

F1(α, β, β
′, γ;x, y) =

Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0
uα−1(1 − u)γ−α−1(1 − ux)−β(1 − uy)−β′

du.

(7.7.8)

Ap5 Double integral of Euler’s type for F3 ([9, §5.8.1, (3)]):

F3(α, α
′, β, β′, γ;x, y) =

Γ(γ)

Γ(β)Γ(β′)Γ(γ − β − β ′)

×
∫∫

D

uβ−1vβ′−1(1 − u− v)γ−β−β′−1(1 − ux)−α(1 − vy)−α′
dudv

Reβ > 0,Re β ′ > 0,Re(γ − β − β ′) > 0, (7.7.9)

where D := {(u, v) ∈ R2 : u ≥ 0, v ≥ 0, u+ v ≤ 1}.

7.8 Hankel transform with trigonometric parameters

This subsection presents an integral formula (7.8.1) on the Hankel trans-
form with two trigonometric parameters. In the conformal model [33] (i.e.
the solution space to the Yamabe equation) of the minimal representation,
K-finite vectors can be explicitly expressed in terms of spherical harmonics
(e.g. Gegenbauer’s polynomials). On the other hand, in the L2-model (the
Schrödinger model) which is obtained by the Fourier transform of the con-
formal model (or the N -picture in a terminology of representation theory),
it is not easy to find explicit K-finite vectors. The formula (7.8.1) bridges
these two models and gives an explicit formula of K-finite vectors in the
Schrödinger model (see the proof of Lemma 3.4.4).

Since we have not found this formula in the literature, we give a proof
here for the sake of completeness, generalizing the argument in [35, §5.6,
5.7].
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Lemma 7.8.1. The following integral formula on the Hankel transform
holds:

∫ ∞

0
tµ+1Jµ

(
t sin θ

cos θ + cosφ

)
Jν

(
t sinφ

cos θ + cosφ

)
Kν(t)dt

=
2ν−1

√
π

Γ(µ− ν + 1)(cos θ + cosφ) sinµ θ sinν φ C̃
ν+ 1

2
µ−ν (cosφ) (7.8.1)

Proof. By Baily’s formula (7.2.12) of the Hankel transform, the left-hand
side of (7.8.1) equals

Γ(µ+ ν + 1)

Γ(ν + 1)

2µ sinµ θ sinν φ

(cos θ + cosφ)µ+ν

× F4(µ+ 1, µ+ ν + 1;µ+ 1, ν + 1;−(
sin θ

cos θ + cosφ
)2,−(

sinφ

cos θ + cosφ
)2).

(7.8.2)

Here F4 denotes Appell’s hypergeometric function (see (7.7.4)). Thus, the
proof of Lemma 7.8.1 will be completed if we show the following:

Claim 7.8.2. We have

F4(µ+ 1, µ+ ν + 1;µ+ 1, ν + 1;−(
sin θ

cos θ + cosφ
)2,−(

sinφ

cos θ + cosφ
)2)

=
(cos θ + cosφ)µ+ν+1

2µ−ν+1
√
π

Γ(µ− ν + 1)Γ(ν + 1)

Γ(µ+ ν + 1)
C̃

ν+ 1
2

µ−ν (cosφ). (7.8.3)

Claim 7.8.2 is essentially a restatement of [35, Lemma 5.7]. For the
convenience of the reader, we include its proof here.

Proof of Claim 7.8.2. We recall a quadratic transformation for hypergeo-
metric functions (see [9, § 2.11 (32)]):

2F1(α, β; 1 + α− β; z) = (1 − z)−α
2F1(

α

2
,
α+ 1 − 2β

2
; 1 + α− β;

−4z

(1 − z)2
).

(7.8.4)
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Combining the reduction formula (7.7.7) with (7.8.4), and using the sym-
metry of a and b; (c, x) and (d, y) in F4(a, b; c, d;x, y), we have

F4(α, β;α, 1 − α+ β;
−x

(1 − x)(1 − y)
,

−y
(1 − x)(1 − y)

)

=

(
(1 − x)(1 − y)

1 − xy

)β

2F1(
β

2
,
1 − 2α+ β

2
; 1 − α+ β;

4y(1 − x)(1 − y)

(1 − xy)2
).

(7.8.5)

Consider the change of variables from (x, y) to (θ, φ) by the following iden-
tities:

x

(1 − x)(1 − y)
=

(
sin θ

cos θ + cosφ

)2

,
y

(1 − x)(1 − y)
=

(
sinφ

cos θ + cosφ

)2

such that (x, y) = (0, 0) corresponds to (θ, φ) = (0, 0). Then, a simple
computation shows

1 − xy

(1 − x)(1 − y)
=

2

cos θ + cosφ
,

4y(1 − x)(1 − y)

(1 − xy)2
= sin2 φ.

Now, we set
α = µ+ 1, β = µ+ ν + 1,

in (7.8.5). Then, the left-hand side of (7.8.3) amounts to

(
2

cos θ + cosφ

)−µ−ν−1

2F1

(µ+ ν + 1

2
,−µ− ν

2
; ν + 1; sin2 φ

)
. (7.8.6)

By using (7.4.6), (7.8.6) is expressed as

(
cos θ + cosφ

2

)µ+ν+1 Γ(µ− ν + 1)Γ(2ν + 1)

Γ(µ+ ν + 1)Γ(ν + 1
2)
C̃

ν+ 1
2

µ−ν (cosφ).

By using Gauss’s duplication formula (7.4.3), we get Claim.

7.9 Formula for the fractional integral

The following formula is used in Subsection 5.3 where we find explicit eigen-
values of intertwining operators on L2(Sp−2×Sq−2) by using the Funk–Hecke
formula (see Example 5.3.2).
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Lemma 7.9.1. For Reµ,Re ν > − 1
2 ,Re λ > −1 and l, k ∈ N, we have the

following formula for the fractional integral:

∫ 1

−1

∫ 1

−1

(x+ y)λ
±

Γ(λ+ 1)
C̃µ

l (x)C̃ν
k (y)(1 − x2)µ−

1
2 (1 − y2)ν−

1
2dxdy

=
b21−λΓ(λ+ µ+ ν + 1)

Γ(λ+2µ+2ν+l+k+2
2 )Γ(λ+2µ+l−k+2

2 )Γ(λ+2ν−l+k+2
2 )Γ(λ−l−k+2

2 )
, (7.9.1)

where

b :=
(±1)l+kπ2

22µ+2ν

Γ(2µ+ l)Γ(2ν + k)

l! k!

is a constant independent of λ.

Proof. The left-hand side of (7.9.1) amounts to

∫ 1

−1

(∫ 1

−x

(x+ y)λ

Γ(λ+ 1)
C̃ν

k (y)(1 − y2)ν−
1
2dy
)
C̃µ

l (x)(1 − x2)µ−
1
2 dx

=

√
πΓ(2ν + k)

2ν− 1
2k!

∫ 1

−1

(
(1 − x2)

λ
2
+ ν

2
+ 1

4P
−λ−ν− 1

2

ν+k− 1
2

(−x)
)
C̃µ

l (x)(1 − x2)µ−
1
2dx

=
2−ν−2µ−l+ 3

2π

Γ(µ+ l + 1
2)

Γ(2ν + k)Γ(2µ+ l)

k! l!

∫ 1

−1
(1 − x2)

λ
2
+µ+ ν

2
− l

2
− 1

4P
−λ−ν+l− 1

2

ν+k− 1
2

(−x)dx

=
21−λ−2µ−2νπΓ(2µ+ l)Γ(2ν + k)Γ(λ+ µ+ ν + 1)

l! k! Γ(λ+2µ+2ν+l+k+2
2 )Γ(λ+2µ+l−k+2

2 )Γ(λ+2ν−l+k+2
2 )Γ(λ−l−k+2

2 )
.

Hence, the right-hand side of (7.9.1) follows. Some remarks on each equality
are given in turn:

First equality follows from Ge4 in Appendix 7.4.
Second equality. First, we made use of the integral by parts because

we have (see (7.4.1))

C̃µ
l (x)(1 − x2)µ−

1
2 =

(−1)l

22µ+l−1 l!

Γ(2µ+ l)
√
π

Γ(µ+ l + 1
2)

dl

dxl

(
(1 − x2)µ+l− 1

2

)
.

Then, we applied the functional relation

dl

dxl

(
(1 − x2)

λ
2
+ ν

2
+ 1

4P
−λ−ν− 1

2

ν+k− 1
2

(−x)
)

= (1 − x2)
λ
2
+ ν

2
− l

2
+ 1

4P
−λ−ν+l− 1

2

ν+k− 1
2

(−x),

which follows from the iteration of (7.3.2).
Third equality. We applied the integral formula (7.3.4) after changing

the variable x 7→ −x.
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[5] B. Binegar and R. Zierau, Unitarization of a singular representation of
SO(p, q), Comm. Math. Phys., 138 (1991), 245–258.

[6] R. Brylinski and B. Kostant, Differential operators on conical La-
grangean manifolds, Lie Theory and Geometry, Progress in Math., 123

(1994), 65–96.

[7] H. Ding, K. I. Gross, R. A. Kunze, and D. St. P. Richards, Bessel
functions on boundary orbits and singular holomorphic representations,
The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998),
223–254, Proc. Sympos. Pure Math., 68, Amer. Math. Soc., Providence,
RI, 2000.

[8] A. Dvorsky and S. Sahi, Explicit Hilbert spaces for certain unipotent
representations II, Invent. Math., 138 (1999), 203–224.
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124.

107

http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1365.pdf
http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1365.pdf
http://www.springerlink.com/content/pt65717043175035/fulltext.pdf
http://arxiv.org/abs/math.DG/0607007
http://projecteuclid.org/euclid.pja/1176126886
http://projecteuclid.org/euclid.pja/1176126886
http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://dx.doi.org/10.1016/S0001-8708(03)00014-8


[37] P. Macaulay-Owen, Parseval’s theorem for Hankel transforms, Proc.
London Math. Soc., (2) 45 (1939), 458–474.

[38] G. Mano, Radon transform of functions supported on a homogeneous
cone, preprint

[39] C. S. Meijer, On the G-function, I–VIII, Nederl. Akad. Wetensch.
Proc., 49 (1946), 227–237, 344–356, 457–469, 632–641, 765–772, 936–
943, 1063–1072, 1165–1175.
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[51] P. Torasso, Méthode des orbites de Kirillov–Duflo et représentations
minimales des groupes simples sur un corps local de caractéristique
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