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Abstract

In the present paper, we study the cuspidalization problem for funda-
mental groups of configuration spaces of proper hyperbolic curves over fi-
nite fields. The goal of this paper is to show that any Frobenius-preserving
isomorphism of the geometrically pro-I/ fundamental groups of hyperbolic
curves induces an isomorphism of the geometrically pro-I fundamental
groups of the associated configuration spaces.
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0 Introduction

In this paper, we study the following problem, which is called the “cuspidaliza-
tion problem” (cf. [7], Problem 0.2):

Problem 0.1. Letr be a positive integer. Then can one reconstruct the (arithmetic)
fundamental group
T (UX(T) )

of the r-th configuration space Ux,,, of a hyperbolic curve X over a field K
(i.e., the open subscheme of the r-th product of X [over K| whose complement
consists of the diagonals “{(x1,---,xr) | @i = x;}” [i # j] from the (arithmetic)
fundamental group 7 (X) of X ¢



Let r be a positive integer, X a proper hyperbolic curve over a finite field
K, and [ a prime number that is invertible in K. We shall denote by IIx

(respectively, 1T X(r>) the geometrically pro-I fundamental group of the r-th con-
_ r

—_—
figuration space Ux,,, of X (respectively, the fiber product X xf -+ xx X of r
T
—
copies of X over K), i.e., the quotient of m (Ux,,, ) (respectively, 71 (X xk -+ xx X))
by the closed normal subgroup obtained as the kernel of the natural projection
T
J— /‘_/_\ J—
from m (Ux,,, @k K) (respectively, m1((X Xk -+ Xk X)®x K)) to its maximal
pro-l quotient, and by PUx (i Ux, — Ux_,, the projection obtained by
forgetting the i-th factor (i = 1,---,r). Let Y be a proper hyperbolic curve over
a finite field L in which [ is invertible; moreover, we shall use similar notations
for Y. Then the main result of this paper is as follows (cf. Theorem 4.32):

Theorem 0.2. Let

def

o < Ty def

Mx ) Iy = My,

be a Frobenius-preserving isomorphism (cf. Definition 2.11). Then, for any
positive integer r, there exists a unique isomorphism

oy lx,, Iy,

well-defined up to composition with a cuspidally inner automorphism (i.e., a
Ker (Ily,,, — Ily,,)-inner automorphism), which is compatible with the natural
respective actions of the symmetric group onr letters such that, fori=1,--- r+
1, the following diagram commutes:

X(r+1)
HX<T+1> HY(rJrl)
via PUX () ll lvia PUy, i
HX » — HYT .
(r) (r)
A(r)

Note that Theorem 0.2 is a generalization of [14], Theorem 3.10. (In [14],
Theorem 3.10, the case where r = 2 is proven.)

An essential part of the proof of this main theorem is to show that the profi-
nite group Ilx, , can be reconstructed from Iy, “group-theoretically”. This
“group-theoretic” reconstruction of the profinite group Il ,,, from the given
profinite group Ilx,,, is performed as follows: Let X é:)g

ration space of X (cf. [7], Definition 1.1). Then the interior of X 22‘% is naturally

be the r-th log configu-

isomorphic to the (usual) r-th configuration space U X(,, of X; moreover, it fol-

lows from the log purity theorem that the natural open immersion Ux,,, <~ X 22‘%
induces an isomorphism of the geometrically pro-/ fundamental group Ilx , of

Ux,, with the geometrically pro-/ log fundamental group of X é:’;g Therefore,

to reconstruct Ilx, , , it is enough to reconstruct the geometrically pro-/ log
log

(r+1)
argument used in the proof of [7], Theorem 2.5, that the images of the geometri-
cally pro-l log fundamental groups of certain irreducible components (equipped

fundamental group of X Now it follows from a similar argument to the



with the log structures induced by the log structure of X éiil)) of the divisor

at infinity of the log scheme X (I:il) topologically generate the desired profinite
group Ilx ., . On the other hand, there exists a topological group HI;(i(CTH)

which arises from the pro-graded Lie algebra obtained by considering the weight
filtration of the pro-l fundamental group Ax, ., of Ux,., ®k K such that
the desired profinite group Ilx, ,, is naturally embedded in HI;(i(CTH); moreover,
this topological group HI)‘ngl)
the given profinite group Ilx, by considering the Galois invariant splitting of
the subquotients of A X(n41) With respect to the weight filtration. Therefore, if

can be reconstructed “group-theoretically” from

one can reconstruct “group-theoretically” the natural images in HI;(i(CTH) of the
geometrically pro-I log fundamental groups of certain irreducible components
(equipped with the log structures) of the divisor at infinity of the log scheme
X (liil), then one can construct a subgroup which is isomorphic to the desired
profinite group Ilx , ,  as the subgroup which is topologically generated by the
images reconstructed.
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Notations and Terminologies:
Numbers:

We shall denote by JBrime the set of all prime numbers, by N the monoid of
rational integers n > 0, by Z the ring of rational integers, by Q the field of ratio-
nal numbers, by Z (respectively, Z;) the profinite completion of Z (respectively,
pro-I completion of Z for a prime number 1), and by Q; the field of fractions of
Z.

Let X be a set of prime numbers, and n an integer. Then we shall say that
n is a X-integer if the prime divisors of n are in X.

Groups:

Let G be a profinite group and ¥ a (non-empty) set of prime numbers. We
shall refer to the quotient
limG/H

of G (where the projective limit is over all open normal subgroups H C G such
that the order [G : H| of H is a Y-integer) as the mazimal pro-X quotient of G.
We shall denote by G the maximal pro- quotient of G.

For a topological group G, we shall denote by G®P the abelianization of G,
i.e., the quotient of G by the closed normal subgroup [G,G] generated by the
commutators of G.



For a Hausdorff topological group G, we shall denote by Aut(G) the group
of continuous automorphisms, and by Out(G) the quotient of Aut(G) by the
subgroup Inn(G) of inner automorphisms of G.

Let G be a center-free Hausdorff topological group and H a topological
group. Then there exists a natural exact sequence:

1— G — Awt(G) — Ouwt(G) — 1

(where G — Aut(Q) is defined by letting G act on G by conjugation). For a
continuous homomorphism H — Out(G), we shall denote by

out

G x H

the group obtained by pulling-back the above exact sequence via the continuous
homomorphism H — Out(G), i.e.,

def
= Aut(G) XOout(@) H.

out
G x H
t
Note that it is immediate that G x H fits into the following natural exact
sequence:

out
1—G—G x H—H—1.

Note that if G is topologically finitely generated, then by considering a basis
of the topology of G consisting of characteristic open subgroups of G, we may
regard Aut(G) as being equipped with a topology. This topology on Aut(G)

t
induces a topology on Out(G), hence also a topology on G % H.
Log schemes:

Let P be a property of schemes [for example, “quasi-compact”, “connected”,
“normal”, “regular”| (respectively, morphisms of schemes [for example, “proper”,
“finite”, “étale”, “smooth”]). Then we shall say that a log scheme (respectively,
a morphism of log schemes) satisfies P if the underlying scheme (respectively,
the underlying morphism of schemes) satisfies P.

For a log scheme X'°% (respectively, a morphism f!°¢ of log schemes), we
shall denote by X the underlying scheme (respectively, by f the underlying
morphism of schemes). For fs log schemes X'°8, Y1°8 and Z'°8, we shall denote
by X198 xy10¢ Z'°8 the fiber product of X'°8 and Z'°¢ over Y'°% in the category
of fs log schemes. In general, the underlying scheme of X'°8 xy1x Z'°8 is not
naturally isomorphic to X xy Z. However, since strictness (a morphism f1°% :
Xlog — Ylog of log schemes is called strict if the induced morphism on the
sheaves of monoids determining the log schemes is an isomorphism) is stable
under base-change in the category of arbitrary log schemes, if X'°8 — Y1°8 is
strict, then the underlying scheme of X'°8 xy1.x Z1°¢ is naturally isomorphic to
X Xy Z.

If there exist both schemes and log schemes in a commutative diagram, then
we regard each scheme in the diagram as the log scheme obtained by equipping
the scheme with the trivial log structure.

We shall refer to the largest open subset (possibly empty) of the underlying
scheme of a log scheme on which the log structure is trivial as the interior of
the log scheme.



Let X'°% be a log scheme, and o : Mx — Ox the log structure of X8,
Then we shall refer to the quotient M x /a=1(0O%) of Mx as the characteristic
sheaf of X1°8.

Curves:

Let f : X — S be a morphism of schemes. Then we shall say that f is
a curve if f is a smooth, geometrically connected morphism whose geometric
fibers are one-dimensional. Moreover, we shall say that f is a hyperbolic curve
(respectively, tripod) if there exist a proper curve f°P*: X°P* — G whose geo-
metric fibers are of genus g and a relative divisor D C X °P* which is finite étale
over S of relative degree r such that X and X °P*\ D are isomorphic over S, and
(g,7) satisfies 2g — 2 + r > 0 (vespectively, (g,7) = (0, 3)).

We shall denote by Mgw the moduli stack of -pointed stable curves of genus
g whose r sections are equipped with an ordering (cf. [9]), and by ./V;)f the

log stack obtained by equipping M, , with the log structure associated to the
divisor with normal crossings which parametrizes singular curves. Moreover, we
oo -— - F——1
shall write M, & Mo and /\/lgog & M;%.
Fundamental groups:

For a locally noetherian, connected scheme X (respectively, log scheme X 1°8)
equipped with a geometric point T — X (respectively, log geometric point
7°8 — X'°8) we shall denote by 7;(X,Z) (respectively, 7 (X'°2 7°8)) the
fundamental group of X (respectively, log fundamental group of X'°8). Since
one knows that the fundamental group is determined up to inner automorphisms
independently of the choice of base-point, we shall often omit the base-point,
i.e., we shall often denote by 71 (X) (respectively, 71 (X'°8)) the fundamental
group of X (respectively, log fundamental group of X'°8).

For a set ¥ of prime numbers and a locally noetherian, connected scheme
X (respectively, log scheme X'°8) we shall refer to the maximal pro-¥ quo-
tient of 7 (X) (respectively, 71 (X'°8)) as the pro-X fundamental group of X
(respectively, pro-Y log fundamental group of X'°%). Moreover, for a geomet-
rically connected scheme X (respectively, log scheme X'°8) which is locally of
finite type over a field K, we shall refer to the quotient of 71 (X) (respectively,
71 (X'°8)) by the closed normal subgroup obtained as the kernel of the natural
projection from 71 (X ®x K*P) (respectively, w1 (X8 @ g K°P)) (where K*P is
a separable closure of K) to its maximal pro-X quotient 71 (X ®x K5P)*) (re-
spectively, 71 (X'°8@ i K5°P)(¥)) as the geometrically pro-X fundamental group of
X (respectively, geometrically pro-Y log fundamental group of X'°8). Thus, the
geometrically pro-X fundamental group mq (X )@ of X (respectively, geometri-
cally pro-X log fundamental group m; (X'°8)&) of X°8) fits into the following
exact sequence:

1 — m (X @ K5P)®) — 1 (X)&) — Gal(K*P/K) — 1
(respectively,

1 — (X8 @ K5P)®) — (X108 E)  Gal(K*P/K) — 1).



1 Exactness properties of the graded Lie alge-

bras arising from a family of curves

In this section, we consider some exactness properties of graded Lie algebras
arising from a family of curves.

Definition 1.1. Let [ be a prime number, G, H, and A topologically finitely
generated pro-I groups, and ¢ : H — A a (continuous) surjective homomor-
phism. Suppose further that A is abelian, and that G is an [-adic Lie group.
Then (cf. [14], Definition 3.1):

(i)

We shall refer to the central filtration
{H(n)} (n>1)

of H defined as
def

H1) € H;

H(2) ¥ Ker ¢;
H(m) < ([H(my), Hmz)] | m1 +ma =m) for m > 3
(where (N; | i € I) is the group topologically generated by the N; [i € I])
as the central filtration with respect to the surjection ¢.
Let a, b, n € Z such that 1 < a < b, n > 1; we shall write

H(a/b) < H(a)/H(b);

Gr(H)(n) = @ H(m/m +1);

Gr(H) © Gr(H)(1);

Gr(H)(a/b) = Gr(H)(a)/Gr(H)(b);
H(a/o0) = lim H(a/b)

(where the projective limit is over all integers b > a + 1).

We shall denote by Lie(G) the Lie algebra over Q; determined by the I-
adic Lie group G. We shall say that G is nilpotent if there exists a positive
integer m such that if we denote by {G(n)} the central filtration with
respect to the natural surjection G — G2 (cf. (i), then G(m) = {1}.
If G is nilpotent, then Lie(G) is a nilpotent Lie algebra over Q;, hence
determines a connected, unipotent linear algebraic group Lin(G), which we
shall refer to as the linear algebraic group associated to G. In this situation,
there is a natural (continuous) homomorphism (with open image)

G — Lin(GQ)(Qy)

which is determined by the condition that it induces the identity morphism
on the associated Lie algebras (cf. [14], Remark 3.3.2). In the situation of
(1), if 1 < a € Z, then we shall write

Lie(H (a/00)) = lim Lie(H (a/b)) ; Lin(H (a/o0)) ' lim Lin(H (a/b))



(where the projective limit is over all integers b > a + 1). (Note that each
H(a/b) is an l-adic Lie group.)

Let K be a separably closed field, and [ a prime number that is invertible
in K. Let S be a connected locally noetherian normal scheme over K. Let
g > 2 and r be natural numbers. Let f: X — S be a hyperbolic curve of type
(g,7) (i-e., there exists a proper, smooth, geometrically connected morphism

fePt 1 XP' — § whose geometric fibers are curves of genera g such that f
cpt
factors as the composite X «— X¢Pt T2 S of an open immersion X < X¢Pt

onto the complement X°P*\ D of a relative divisor D which is finite étale over
S of relative degree r, and (g, r) satisfies 2g — 2 + r > 0). We shall denote by

m(X)&
the geometrically pro-I fundamental group of X.

Lemma 1.2. Let 3 — S be a geometric point of S. Then the homomorphism
T (X)Y — 71(S) induced by f fits into an ezact sequence:

1 — (X xg5)O TP v gy

Proof. Tf the finite étale covering D = X°P*\ X — S is empty or trivial (i.e.,
D is a disjoint union of copies of S, and the covering D — S is induced by the
identity morphism of .S), then this follows from [20], Proposition 2.3. In general,
let S” — S be a connected finite étale covering of S such that D xg S’ — S’ is
trivial, then we obtain a commutative diagram

via 71 (prsy)
—_—

1 —— m(X xg5)® ——  1(X xg8)8 m(S) ——

H ! I

(X x50 — (X)L — () ——
via 71 (pry) via w1(f)

where the horizontal sequences are exact, and the vertical arrows are injective.
via w1 (pry)

Thus, m (X xg35)® ™ P 2 (X))@ is injective. O
We shall denote by
Ax/s

the kernel of the homomorphism 71 (X)) — 7;(S) induced by f. Then by
Lemma 1.2, this pro-/ group Ax/g is isomorphic to the pro-/ fundamental group
of a connected smooth hyperbolic curve X x g5 of type (g,r) (over a separably
closed field). We shall write

cpt def
AX/S = Acht/S,

i.e., the pro-l fundamental group of a geometric fiber of a (unique, up to canon-
ical isomorphism [cf. the discussion entitled “Curves” in [12], Section 0]) com-
pactification fPt: XP* — G of f: X — S. Then we have a natural surjection:

Ax/s = Ag?/ts :



We shall denote by

{Ax/s(n)}
the central filtration of Ax,s with respect to the composite of the natural
surjections (cf. Definition 1.1, (i)):

Axss = AFg = (AF)™.

Remark 1.3. As is well-known, the graded Lie algebra Gr(Ax,s) (where “Gr”
is taken with respect to the central filtration defined above) is center-free (cf.
e.g., [2], Theorem 1, (ii), together with [2], Proposition 5).

Now by Lemma 1.2, we obtain an outer representation:

px/s : m1(S) — Out(Ax/s) .

We shall denote by
Out*(Ax/s) - Out(AX/S)

the subgroup of Out(A x,g) whose elements preserve the central filtration {Ax,g(n)}
of AX/S-

Remark 1.4. If r > 2, then by the definition of Out™(Ax/g), we obtain

Out™(Ax/s) # Out(Axs) .

Indeed, this follows immediately from the definition of {Ax, g(n)}, together
with the fact that the assumption that r # 0 implies that the profinite group
Ax/s is a free pro-l group.

Proposition 1.5. The outer representation px,gs factors through Out™(Ax/g).

Proof. This follows from the fact that the exact sequence obtained in Lemma 1.2
fits into a commutative diagram

I —— Ax/g —— 771(X)Q _via s, m(S) —— 1
1 —— AE?;S — s m(xeend Taj) m(S) —— 1,
where the horizontal sequences are exact (cf. Lemma 1.2). O

Definition 1.6. We shall say that f is of pro-l-exact type if the sequence

1—>AX/5—>AX‘MAS—>1

naturally induced by the exact sequence obtained in Lemma 1.2 is ezact, where

Ax (respectively, Ag) is the pro-l fundamental group of X (respectively, S).

Proposition 1.7. The image of the composite

m(S) 25 Out*(Ax/s) — Aut((AF/g)™)
is a pro-l group (e.g., the action of w1(S) on (A;?;S)ab is triwvial) if and only if
f is of pro-l-exact type.



Proof. Tt is immediate that if f is of pro-l-exact type, then px /g factors through
Ag. Thus, we prove that if the composite in the statement of Proposition 1.7
factors through Ag, then f is of pro-l-exact type. It follows from [11], Lemma
3.1, (i), that the kernel of the natural morphism

Out*(Axys) — Aut((AF)4)™)

is a pro-l group. Therefore, the assumption implies that the homomorphism
px/s factors through Ag. Now let us write
t
T Ax s ™ Ag
(cf. the discussion entitled “Groups’ in Introduction). Then we have a natural
morphism 1 (X ) — I that fits into a commutative diagram

via f
—_—

1 —— Ayys —— m(X)2 m(5) —— 1

H l l

1 —— Ax/s _— T _— AS _— 1,
pry

where the horizontal sequences are exact. Note that since m1(S) — Ag is
surjective, m; (X)Q — I' is also surjective, and that since Ax,g and Ag are
pro-l, T' is also pro-I. Now we shall denote by N (respectively, N2) the kernel
of the natural surjection 71(X)Y — Ax (respectively, 71 (X} — T'). Then
the following hold:

(i) Ny € Ns. (This follows from the fact that I" is pro-I.)
(ii) Ax/s N No = {1}. (This follows from the above diagram.)
(iii) Axss NNy = {1}. (This follows from (i) and (ii).)
By (ii) and (iii), the following natural sequence is exact

1 — Ax/g — Ax — mi(5)/N3 — 1,

where Nj is the image of Ny via the surjection 1 (X)Y — 71 (S). Moreover, by
(i), this exact sequence fits into a commutative diagram

I —— Ax/g —— mnX)YL —— ) —— 1

H ! l

Il —— Axjyg —— Ax —— m(5)/N3 —— 1

H ! l

I —— Ax/g —— r _— Ag — 1

where the horizontal sequences are exact, and all vertical arrows are surjective.
Since Ax is pro-l, the group m1(5)/N3 is also pro-I. Thus, the right-hand lower
vertical arrow m1(S)/N3 — Ag, hence also, Ax — T’ is an isomorphism. This
completes the proof of Proposition 1.7. O



Let Ax and Ag be profinite abelian groups, and Ax — Ax and Ag — Ag
(continuous) surjections. Then we shall denote by

{Ax(n)} (respectively, {Ag(n)})

the central filtration with respect to the surjection Ax — Ax (respectively,
Ag —» As) (thus, Ax ~ Ax(1/2) and Ag ~ As(l/Q))

Now we assume that f is of pro-l-exact type. Moreover, we also assume that
the surjections Ax — Ax and Ag — Ag fit into a commutative diagram

1 ——  Axg Ay 2210 Ag 1
| | |
1l — (A(;?;S)ab Ax Ag L,

where the bottom sequence is also exact. By the commutativity of the above
diagram, the morphisms Ax/s — Ax and Ax — Ag preserve the central
filtrations on these groups associated to the abelian quotients in the bottom
sequence.

Definition 1.8. We assume that f is of pro-l-exact type. Then we shall say
that (f, Ax — Ax, Ag — Ag) is of Lie-exact type if the sequence of graded
Lie algebras

1 — Gr(Ax/s) — Gr(Ax) 24 Gr(Ag) — 1
(where “Gr” is taken with respect to the central filtrations defined above) nat-
urally induced by the exact sequence in Definition 1.6 is exact.

Proposition 1.9. We assume that f is of pro-l-exact type. Then the following
conditions are equivalent:

(i) (f, Ax — Ax, Ag — Ag) is of Lie-exact type.

(i) The action of Ax on Ax g(n/n+1) and the action of Ax(2) on Ax/g(n/n+
2) (induced via conjugation) are trivial for any n > 1.

(i) The action of As on Ax,g(n/n+1) and the action of As(2) on Ax/s(n/n+
2) (induced via px,s) are trivial for any n > 1.

(#ii) The action of Ax(m) on Ax/g(n/n + m) (induced via conjugation) is
trivial for any n, m > 1.

Proof. First, we prove that (i) implies (ii). If (ii) does not hold, then there exists
x € Ay/g(n) and o € Ax(m) (where m =1 or 2) such that o -z -0~ - 27" ¢
Ax/g(n+m). On the other hand, by the definition of the filtration {Ax(n)},
we have that o-2z-07 127! € Ax(n+m)NAx/s. Thus, Ax/s(n+m) # Ax(n+
m) N Ax/g. This implies that the natural morphism Gr(Ax,g) — Gr(Ax) is
not injective. Thus, (i) does not hold.

Next, we prove that (ii) implies (iii). This proof will be by induction on m.
The assertion for m = 1 and 2 follows from (ii). Assume that m > 3. Then it
follows from the induction hypothesis and an well-known identity due to P. Hall
(i.e.,

[A7 [B, C]] - [B, [07 AH : [07 [A> BH

10



for closed normal subgroups A, B, and C of an ambient group [cf. e.g., [10],
Theorem 5.2]) that

[Ax/s(n), [Ax (m1), Ax(m2)]] € Ax/s(n+m)

for positive integers m; and my such that mi+mo = m. Thus, since, in general,
for a finite set I,
(G, Hi]|iel) =[G, (Hi|iel)

for closed normal subgroups H; (i € I) of an ambient group G, we thus obtain
an inclusion
[Ax/s(n), Ax(m)] € Ax/s(n+m)

by the definition of the filtration {Ax(n)}. Therefore, we conclude that (iii)
holds.

The assertion that (iii) implies (i) follows from a similar argument to the
argument used in the proof of [11], Proposition 3.2 (cf. also Remark 1.3 and
[11], Lemma 3.2).

The equivalence of (ii) and (ii’) follows immediately from the exactness of
the following sequences:

1 — Ax/s — Ax — Ag — 1;

1 — Ax/s(2) — Ax(2) — Ag(2) — 1.

Lemma 1.10. Let I°P* be the kernel of the surjection
AX/S - A;?;S .

Lets — S be a geometric point of S. We shall write
Ds ¥ D xg3,

where D C X°PY is the reduced relative divisor over S obtained as the comple-
ment of X in X°Pt. Then the following hold:

(i) The submodule
(AF)™ = Axys(1/2) € Gr(Axys)
and the submodule
IPY/(Axys(3) NIPY) € Axys(2/3) € Gr(Axys)

generate the graded Lie algebra Gr(Ax/g) (as a Lie algebra). In particular,
if [ is of pro-l-exact type, then the following conditions are equivalent:

(1) The action of Ax on Ax;s(n/n + 1) (induced via conjugation) is
trivial for any n > 1.

(') The action of As on Ax;s(n/n+1) (induced via px/g) is trivial for
any n > 1.

11



(2) The action of Ax on (A?}S)ab and I°?*/(Ax/g(3) N IPY) (induced
via conjugation) is trivial.

(2) The action of Ag on (A;?/ts)ab and I°?*/(Ax/s(3) N I°PY) (induced
via px;s) s trivial.

(i5) The submodule
I/ (Axys(3) NIPY) € Axys(2/3)

is a free Z;-module in the formal generators , where ( ranges over the
elements of the underlying set of Ds. Moreover, the action of Ag on
IP*/(Ax,5(3) M I°PY) (induced via pxg) is compatible with the natural
action of As on Ds.

Proof. This follows immediately from [8], Proposition 1. O

Corollary 1.11. If the quotient As — Ag of Ag coincides with the abelianiza-
tion of Ag, and the action of w1 (S) on (Ag?/ts)ab and on I°P*/Ax,g(3) N I°P*
(induced via px,g) are trivial, then f is of pro-l-exact type, and (f, Ax — Ax,
Ag — A% [= Ag)) is of Lie-exact type.

Proof. This follows immediately from Propositions 1.7; 1.9; Lemma 1.10, to-
gether with the well-known identity due to P. Hall applied in the proof of
Proposition 1.9. O

Definition 1.12. Let m be a natural number.
(i) We shall say that

Xy T2 Xy T L xy X = SpecK
is a successive extension of hyperbolic curves of product type if there ex-
ist proper hyperbolic curves C; (i = 0,---,m — 1) over K which satisfy
the following condition: The morphism f; : X;41 — X; factors as the
composite
Xip1 = G xx X; 25 X,

of an open immersion X;11 — C; Xk X; onto the complement (C; X
Xi) \ D; of a relative divisor D; which is finite étale over X;.

Note that it is immediate that X; is a reqular scheme of dimension i, that
fi is a smooth family of connected hyperbolic curves, and that the f;’s
induce an open immersion X; — Cy X -+ Xg Cj_1.

(ii) Let

fm—-1 fm—2

X, et x,, e x o Xy = Spec K

be a successive extension of hyperbolic curves of product type. Then we
shall denote by
{Ax;(n)}

the central filtration with respect to the composite of the natural surjec-
tions

ab ~ Aab ab
AXi - ACUXK"'XKcifl - ACQXK~~~XKCi71(_ AC(} XX A0i71)7

12



where the first arrow is the morphism induced by the open immersion
Xi — CQ XK - XK Ci—l (Cf (1))

Note that it is immediate that the following sequence is exact:

via f;

I — AXi+1/Xi(1/2) - AXi+1 (1/2) - AX1(1/2) — 1.

Corollary 1.13. Let

X, -1 X1 fmoz LXl AX(J:SpeCK
be a successive extension of hyperbolic curves of product type, and 0 < i <m—1
an integer. Then the following hold:

(i) The morphism f; is of pro-l-exzact type.
(i) The following conditions are equivalent:

(1) The relative divisor D; (which appears in Definition 1.12, (1)) is
empty or the finite étale covering D; — X; is trivial (i.e., D; is a
disjoint union of copies of X;, and the covering D; — X, is induced
by the identity morphism of X;).

(2) (fi,Axiyy — Ax,.,(1/2),Ax, — Ax,(1/2)) is of Lie-exact type.
Proof. First, we prove assertion (i). Since the diagram

I —— Ax,.,/x, —— 1 (Xip )L Mt m(X;) —— 1

| l H

1 Ai?i:»l/xi - Wl(ci XKXi)@ vio pra 7T1(Xi) — 1
I —— ACi - ACZ' XT‘—I(XZ') L Wl(Xi) — 1

commutes, the action of 71 (X;) on Ai?:ﬂ /x, is trivial; thus, assertion (i) follows
from Proposition 1.7.

Next, we prove assertion (ii). Assume that condition (1) holds. Then, by
Lemma 1.10, (i), the action of Ax, on IP*/(Ax, ., /x,(3)NI°P") is trivial. Thus,
in light of the triviality of the action of 71(X;) on AE?:H e
proof of assertion (i)), we conclude that the action of Ax, on Ax,., /x,(n/n +
1) is trivial for any n > 1 (c¢f. Lemma 1.10, (i)). Thus, it follows from the
equivalence of (i) and (ii’) in Proposition 1.9 that it is enough to show that
the action of Ax,(2) on Ay, ,/x,(n/n+ 2) is trivial for any n > 1. Moreover,
by the triviality of the action of 1 (X;) on AT
(i), together with the well-known identity due to P. Hall applied in the proof
of Proposition 1.9, the action of [Ax,, Ax,] on Ay, ,/x,(n/n + 2) is trivial for
any n > 1. Since Ax,(2) is generated by [Ax,,Ax,] and the kernel I of the
natural surjection Ax, — Agyx g xx i1 (=2 Agy X+ X Ag,_, ), it is enough to
show that the action of I on Ax, .,/ x,(n/n+2) is trivial for any n > 1. On the
other hand, I is topologically normally generated by the inertia subgroups (well-
defined, up to conjugation) of Ax, determined by the irreducible components of

(observed in the

(observed in the proof of
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the divisor with normal crossings (Co X g+ - X g Ci—1)\ X; C Co Xk -+ Xk Ci_1
(by the purity theorem [cf. [4], Exposé X, Theorem 3.4], together with the
regularity of Cyp X -+ X C;_1), it is enough to show that the action of these
inertia subgroups on Ax, .,/ x,(n/n + 2) is trivial for any n > 1.

For any positive integer N, we shall denote by C; () (respectively, Uc; )
the fiber product of N copies of C; over Spec K (respe_ctively, the N-th config-
uration space of Cj, i.e., the scheme which represents the open subfunctor

S {(s1,--,5n8) € Ciny () = Ci(S)™ | 55 # s if n # m}

of the functor represented by Cjny). By (1), if we denote by 7 the degree

of the (trivial) covering D; — X, then there exist “classifying morphisms”
X, % Uc,,, and X;t1 it Uc, ., that fit into the following cartesian diagram

gi+1
Xitr —— Uc;

]

Xi — UCI (r) 2
9gi
where the right-hand vertical arrow is the morphism induced by the morphism
Ci(r+1) — Ci(r) obtained by forgetting the (r + 1)-st factor. Thus, we obtain a
commutative diagram

via f; AX- B

i

I —— AXi+1/Xi - AXi+1

l via gwll lvia gi (%)

1 —— A — A
Uc; (g1 /Uc (r) Ue, (r41)

where the horizontal sequences are exact, and the left-hand vertical arrow is an
isomorphism. Note that the sequence

Uc

— Uci(T—l) —_— e — UC

. 2y — Ci — Spec K

(where the morphism Ug, ,,, — Uc,, [Where 1 < N <7 —1] is the mor-
phism induced by the morphism Cj(yy1) — C;(n) obtained by forgetting the

(N +1)-st factor) is a successive extension of hypm)olic curves of product type;
thus, the filtration {AUC,( )(n)} is defined (cf. Definition 1.12, (ii)); moreover,

since the sequence

I — Gr(AUc,

1(T+1)/Uci (T)) Gr(AUc'

i(r+1)

) — Gr(Agg, (T)) —1

(naturally induced by the bottom sequence in the commutative diagram (x)) is
exact (cf. [11], Proposition 3.2, (i)), by the equivalence in Proposition 1.9, (i)
and (ii'), the action of Ay, o (2) on Ay, i1, /UC% (n/n+2) is trivial for any
n > 1. Thus, by the commutativity of the above diagram (x) and the fact that
the left-hand vertical arrow in the above diagram (x) is an isomorphism, to prove
assertion that condition (1) implies condition (2), it is enough to show that the
composite X; 25 Uc,(,y = Ci(r) extends to the generic points of the irreducible

14



components of the divisor with normal crossings (Co X -+ xg Ci—1) \ X; C
Co Xk -+ Xk Cj—1. However, this follows from the properness of C; ). This
completes the proof that condition (1) implies condition (2). o

Next, we assume that (fi,Ax, ., — Ax,.,(1/2),Ax, — Ax,(1/2)) is of
Lie-exact type. Then the equivalence of (i) and (ii’) in Proposition 1.9 and the
equivalence of (1’) and (2') in Lemma 1.10, (i) imply that the action of Ax,
on IP*/(Ax,,,/x,(3) N I°P*), where I°P* is the kernel of the natural surjection
Ax . /x, = A;?Ll/xi, is trivial. Therefore, by Lemma 1.10, (ii), we conclude
that either the relative divisor D; is empty, or the finite étale covering D; — X
is trivial. |

Remark 1.14. Note that the fact that

the action of the inertia subgroups of Ax,(2) on Ax,. /x,(n/n+2)
is trivial for any n > 1.

can also be proven as follows. Note that we showed the above claim in the

proof of Corollary 1.13 by means of [11], Proposition 3.2, (i), which is proven

via transcendental techniques; however, the following proof is purely algebraic:
To prove the assertion, it is immediate that we may assume that there exists a

finite field k such that X; 1 5 X; descends to k. (We denote by Gy, the absolute
Galois group of k, by Fri € Gy the Frobenius element, and by ¢ the cardinality
of k.) Then by the “Riemann hypothesis for abelian varieties over finite fields”
(cf. e.g., [16], p. 206) (respectively, as is well-known), the eigenvalues of the
action of Fry on the Gj-module Ay,  /x,(n/n + 1) (respectively, the inertia
subgroup) are algebraic numbers all of whose complex absolute values are equal
to qZ/Q (respectively, qx), i.e., the Gp-module Ax, . /x,(n/n + 1) (respectively,
the inertia subgroup) is “of weight n” (respectively, “of weight 2”). In particular,
the Gg-module

HOHle (AX-;+1/X-; (n/n + 1)7 AX—;+1/X-; (n + 1/n + 2))

is “of weight 1”. On the other hand, since the action of the inertia subgroup on
Ax, . /x,(n/n+1)and Ay, /x,(n+1/n+2)is trivial, by the exactness of the
sequence

Il — AXi+1/Xi (TL+1/1’L+2) - AXi+1/Xi (n/n+2) - AXi+1/Xi (n/n+1) — 1,

the action of the inertia subgroup on Ay,  ,/x,(n/n + 2) determines (and is
determined by!) a Gg-equivariant homomorphism from the inertia subgroup to

HomGk (AX1'+1/X1' (n/n + 1)7 AX1'+1/X1' (n + 1/” + 2)) .

Thus, by considering the “weights” of the domain and codomain of this G-
equivariant homomorphism, we conclude that the Gg-equivariant homomor-
phism is ¢rivial; in particular, the action of the inertia subgroupon Ax,, , /x, (n/n+
2) is trivial.
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2 Fundamental groups of configuration spaces
over finite fields

In this section, we consider the group-theoretic properties of the fundamental
groups of configuration spaces.

Let K be a field, and [ a prime number that is invertible in K. We shall
fix a separable closure K*°P of K. We shall denote by G the Galois group of
K*°P over K. Moreover, in the following, let X be a proper hyperbolic curve of
genus gx > 2 over K.

Definition 2.1. Let r be a natural number.

(i) We shall denote by X,y the fiber product of r copies of X over Spec K,

ie.,
K

C’_/%
Xy ©X xg - xx X .

For an integer 1 < ¢ <r, we shall denote by px,_, i : X(») = X(-—1) the
morphism obtained by forgetting the i-th factor. o

(ii) We shall denote by Ux,,, € X() the r-th configuration space of X, i..,

the scheme which represents the open subfunctor
S=A(fr, fr) € X (8) = X(S)*" | fi # f; if i # j}

of the functor represented by X(,). For an integer 1 < i < r, we shall

denote by PUx, i Ux,, — U);A) the morphism induced by px, _,, -

Let 1 < ¢ < j < r be an integers. Then we shall denote by Dx i3 ©
X(r) the closed subscheme of X, which represents the closed subfunctor

S A1 fr) € X(9) = X(S)" | fi = fi}

of the functor represented by X(,). Then it is immediate that

Uxiy = Xim) \ U Dxg (g} -

1<i<j<r

(iii) We shall denote by II X, the geometrically pro-l fundamental group of
X, and by Ax ) the kernel of the natural surjection

HXQ — GK .
Thus, we have an exact sequence
1—>AXQ—>HX@—>GK—>1.
Moreover, we shall write

def def
HX = HX(1> 3 AX = AX(U'
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(iv) We shall denote by II X(,, the geometrically pro-l fundamental group of
Ux,, by Ax,,, the kernel of the natural surjection

Ux, - Gk,

and by Ag?m /X o) the kernel of the surjection

Thus, we have exact sequences

11— Ax,, —lx,, — Gk — 1;

1 AD A VI PUX () A 1
Xery /X (ro) X X(r-1) )
_ via puy i
(4) (r—1)
1— AXM/X(PU — Ilx,, — Ox, ., —1.

Note that since the sequence obtained as the base-change of

pUX(r—l):T pUX(T72):T71 PUX(I):z
UX(T) — UX(PI) — -vo — X — Spec K

from K to K®°P is a successive extension of hyperbolic curves of prod-
uct type (cf. Definition 1.12, (i)), the family of smooth curve Ux ,, ®x

via pu ( 1);1'
Xy
N

Kep Ux(,_,, ®rx K*P is of pro-l exact type (cf. Corol-
lary 1.13, (i)); thus the pro-l group Ag?( X, is isomorphic to the

pro-I fundamental group of the geometric fiber of the family of smooth
via puy L

curve Ux ) @ 5P = Ux,,_,, @k K> at a geometric point of

UX(T71> R K5°P,

Proposition 2.2. Let r be a positive integer. Then the profinite groups Ax,,

(4) ;
Ax,,, and AXM/X(TA) are slim.
Proof. The slimness of Ag?( /X (in particular, the slimness of Ax) follows

from [1], Propositions 8; 18. The slimness of Ax,, follows from the slimness of
Ax, together with the fact that Ax  is the product of 7 copies of Ax. The
L ()

slimness of Ax,, follows from induction on 7, the slimness of AX( /X1y and
the exactness of the sequence
(i) VI PUX ()
l— AX(T)/X(T—I) - AX(T) - AX(PU —1
in Definition 2.1, (iv). O

Next, let us recall the theory of log configuration schemes (cf. [7], Section
1). Let us denote by X(li)g the r-th log configuration scheme of X i.e.,

log dﬁf ——log
Xy = Spec K X Fglos M, .,
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where the (1-)morphism Spec K — Mbg is the classifying morphism of the

g9

curve X — Spec K, and the (1-)morphism ﬂ;f — Mrg is the (1-)morphism
obtained by forgetting the sections; and by pl;’i_l):i X é:’;g — X é:g_ ;) the mor-

phism induced by the (1-)morphism ﬂ;i — Mt;i_l obtained by forgetting the

i-th section (cf. [7], Definition 1.1). Then, by definition, the interior of the log
scheme X éi)g is naturally isomorphic to the usual r-th configuration space Ux,,
of X, and we have a natural commutative diagram:

1
Ux X(:’;; (r)

i 1 )
pUX(T*l)"LJ/ lp;éifl):i lpxwflyl

1
Ux(oa) ’ X(:Eil) X(r-1) -
This diagram induces a sequence

Ux,, — Wl(X(li)g)@ — Ilx,

where (X (li)g)@ is the geometrically pro-I log fundamental group of X é:)g
Now by [7], Lemma 2.7, the first morphism Ix , — m (Xé:)g)Q (in the above
sequence) is an isomorphism.

Let I be a subset of {1,2,---,r} of cardinality I# > 2. We denote by Dl)c()(g”[

the log scheme defined in [7], Definition 1.10, and by 61)?'(%” I Dl)c()(g” ;= X8

(r)
the strict closed immersion defined in [7], Definition 1.10. Now if 1 <i< j <7
are integers, then pl)?(g”:i o 51)?‘(9;”1){1.&} = pl)?i) ;4O 51)?‘(9;”1){1.&} (cf. the proof of [7],

Lemma 1.14), and these composite are morphisms of type N (cf. [6], Definition
4.1; [7], Lemma 1.14). Let T — Xg?f; be a geometric point whose image lies on

the interior Ux ,, of X é:’;g Then we obtain the following commutative diagram:

log log

Px, . :i90x {i,5}

log — pry log (r) (r+1)1%J log

) X gplog & — D iy X
X(r+1){11]} X;f X(T+1){Z7J} (r)

log

l PX(TH)“J) ’
log — log log
X(TJrl) ><X20§ T — X(TJrl) - X(T) .

" pry ng >
()
This diagram induces a commutative diagram

log =\(1) via pry log (1)

1 m (DX(TH){Z,J} xes 7) m (DX(rH){w})

.. slog

J/ lvm 6X(T+1){i,j}
(2)
1 X1/ Xy X
. log log
VI8 PX () 100X 1y (03}
IIx _
(r)
_
Ix, — 1

.. . log
via Px{ s
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where the horizontal sequences are exact (cf. [6], Proposition 4.22; [7], Remark
2.8, (i)). By [6], Proposition 4.22, we have (Dl)?(gr+1){i7j} X xox 7)) 5 7(1);
moreover, by the definition of D;‘(g o {ig) it follows that the left-hand vertical

log (1)
arrow w1 (D
1( Xr41){i:7} Xry1) /X

the inertia subgroup (well-defined, up to conjugation) associated to the cusp (of
the geometric fiber of PUx,, UX(TH) — UX( ., ata geometric point of UX( ))

Xlog x)() — A is injective, and this image is
(r)

determined by the d1v1sor DX(TH){W} C X(r41)- In particular, the vertical

g (l) . . . .. .
arrow 7 (DX<T+1>{1 J}) — IIx,,,, in the above diagram is also injective.

Definition 2.3. Let r > 2 be an integer, and I a subset of {1,2,---,r} of
cardinality I# > 2. Then we shall denote by ® X(,,1 the image of the morphism

1 (Dl)?(gﬂl)@ — Ilx,,, induced by 510g 1> Where (D}’?iﬂ)@ is the geometri-

cally pro-l log fundamental group of Dl)?(gr) ;- We shall denote by D)A((T) 1 the
intersection of ’DX(T)] and AX(T). Note that these subgroups are well-defined,
up to conjugation in Hx .

Moreover, if I# > 3, then by [7], Proposition 1.12, (iii), the composite

log log

X Px i
log M7 log m X(r-1) log
X(T) I (’I‘) (’I‘ 1)

factors through 5 BNCE D;iﬂ)ﬂ — Xéo 1y where I'! is a unique subset
of {1,2,---,r — 1} Such that for 1 < j <r—1, j € I if and only if

jer ifj<i
j+1lel ifj>i.

On the other hand, by a similar argument to the argument in the proof of [7],
Lemmas 1.14; 1.19, there exists a morphism

log log ——log
Dxly1— X( " r#g1) XK Mo i

which is of type N; moreover, these morphisms fit into a commutative diagram

—log

log log
Dy ;1 —— X ps gy X Mo 141

log ——log
DX(T)[[Z'] - X(T (riy# 1) XK Mo, (1iny# 41

where the left-hand vertical arrow is the morphism induced by the compos-
ite pl)?iil);i o 51)?3)1’ and if 7 ¢ I (respectively, ¢ € I), then the right-hand
vertical arrow is the morphism obtained as the base-change of the morphism

log . log log
PXg it Xrorwsy = X gtye i

Wi . . . I
MO,(I“])#+1 = /\/locﬁ# obtained by forgetting the i’-th section), where 4’ is the
integer such that {1,2,---,r} \ T = {i1,d0, -, dp_ya}; i1 < io < -0 < ipp#;
i =iy (rvespectively, I = {1,492, -, irz}; 01 <o < -+ <lir#; i =1iy). Now it

, —1
y = Xéﬁ%l#) (respectively, Mﬁ#ﬂ —
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follows from [6], Proposition 4.22; Remark 4.24, together with a similar argu-
ment to the argument in the proof of [7], Lemma 2.7, (iv); (v), that the above
diagram induces a commutative diagram

L 70) —— m (DI )0
1 — 7,(1) —— Wl(D};’(g)I[i])Q
—lo
—  lx ,. X6e ™ (M, §#+1) 0 —

l

X G T (Mo

——log

— Iy iy ) —— 1,

(r—liy#41)
where 771(./\/1 £)U is the geometrically pro-l log fundamental group of ./\/lo
and the horizontal sequences are exact; moreover, by considering the restrlc—

tion of Dl)?(g” I D10 1t to the generic point of Dl;;i) 7, the left-hand vertical

arrow is an zsomorphzsm. Thus, the kernel of the morphism m (Dl)?(gr) I)@ —

T (Dl;(g” Tt )Y (in the above diagram) is isomorphic to the kernel of the mor-

via p

——log

X O,
il (respectlvely, w1 (Mg, 1#+1)Q — (/\/l1 o)L

phism II X, H X

—1#41) (r—1#)

-
induced by the morphism MOCE#_H — MO) 7# obtained by forgetting the i'-th
- -l
section). Now the fiber of the morphism ./\/1005# 11— ./\/lo(ﬁ# (obtained by for-
; —1
getting the i’-th section) at a geometric point of Spec K5P — Mocﬁ# whose

—1
image lies on the interior of MOCE# is isomorphic to the log scheme obtained by
equipping P}.., with the log structure associated to the reduced divisor consist-
ing of I* elements of Pk.., (K*°P); thus, if i € I, then the kernel of the morphism

1 (Dl;(gr)l)@ —m (Dl;(’(gﬂ[[i] )Y (induced by the composite plog i © 5;5)1) is

the free profinite group of rank I# —1. More precisely, if we denote by Ap\ r# the
pro-I fundamental group of the log scheme obtained by equipping P}.., with
the log structure associated to the reduced divisor consisting of I# elements

of Plewep (K5°P), then the kernel of m (D I)?f LA, ﬁl(Dl;(g 1t 1)(l) is naturally

isomorphic to Ap\ #; moreover, by base-changing the exact sequence

——lo
L —2Z(1) —m (Dl)%grﬂ)@ — Ix ) Xex MMy, ) —1

——log )(1)

via the natural inclusion Ap\ 1 = {1} x (13 Ap\ 1# — Ilx X G (Mo 1#41)~>

we obtain an exact sequence

(r—I#+1)

1 —Zi(1) — PBx,y1 — Apyy# — 1,

where
def log (1)
sﬁX(T)I = 71 (DX(T)I)* X( Xt o) XGKTrl(M;C:g MO AIF"\I# :
Now by considering the kernel of the morphism 74 (D},?i)l)(” — m (Dl;;(g N ])(l)
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(induced by the composite pl)‘;(g i © 61;’? )1)7 we obtain a section

AIP’\I# - ‘BX(T) I

of the above exact sequence. We shall refer to this section Ap\;# — Px, 1 of

the above exact sequence as the section of Bx ;1 — Ap\1# induced by p{;’? it

Definition 2.4. Let r > 2 be an integer, and I a subset of {1,2,---,r} of
cardinality I# > 2. Then we shall denote by J X(,,1 the kernel of the surjection

—log l
Dxy1 = HX(T,I#H) X G T (Mo 1#41)=

obtained in the above argument. (Note that these subgroups are well-defined,
up to conjugation in HX(T).) By the above argument, Jy ., (i ;} is the iner-
tia subgroup (well-defined, up to conjugation) associated to the cusp (of the
geometric fiber of py, S Ux(.,, — Ux,, at a geometric point of UX(T))
determined by the divisor DX(TH){LJ'} C X(r41)-

Lemma 2.5. In the above situation, the image via the section of Px 1 —

Ap\1# induced by pl)?f ~of the (I" — 1) inertia subgroups of Ap\ % (well-

r—1):%
defined, up to conjugation in Ap\j#) corresponding to inertia subgroups associ-

—1 —1
ated to the cusps (of a geometric fiber ./\/lo(ﬁ#Jrl — ./\/looi# obtained by forgetting
——1 —1
the i'-th section) determined by the first (I* —1) sections of MOCE#H — MOCE#

are conjugates of Tx ., (i} in Ax,,, where j € I.

Proof. Let T8 — Dl)?i_l) be a strict geometric point of Dl)?‘i_l) (cf. [6], Def-
inition 1.1, (i)) whose image is the generic point. First, we consider the log

log —log . log log
structure of DX(T)I ><Dl;<,g o Z°% (where the morphism DX(T)I — DX(T,UIM
(r=1)

is the morphism induced by p{)?i71>:i o 5})‘25) ;) and F'°¢. It is immediate that the
log structure of Z'°¢ has the chart:
N — k(f)

n o+ o".

By the definitions, the underlying scheme of D};’? 11 X ples v Z'°% is the pro-
T X(Til)l[l]
jective line PL over 7, and the log structure of Dl)?(g )1 X plos T8 has the
" X 1lil
(r=1)

following chart:

Let y — PL be a geometric point of the underlying scheme D X(mIXD, L1
(r—1)

T (~P) of DY¥ Xpios 7% Then the following hold:
(r-1)

(1) If the image of § — PL does not lie on the D;i){i)j}’s (where

j € I), then the log structure of Dl)?(gﬂ X plog Tog gt
" X (1)l

7 — PL is induced by
N — k@[]

n o".
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3 3 log —log ~=log
Moreover, the projection DX(T)I X pylos . T °% — T °¢ has the

X(re1yl
chart: _ B
k@) — k@I
T T
N N,
(2) If the image of § — PL lies on Dl;()(g (i} (where j € I), then the
log structure of Dl)c()(g” 7 X b 7198 at 7 — PL is induced by
(r=1)
N2 — k(@[]
(n,m) +— 0"-t™.
Moreover, the projection Dl)?(gr)l X plog y Zlog _, 7108 1as the
X(propy Il
chart: _ 3
k(@) — k@I
T T
N — N®2
n —  (n,0).

(3) If the image of § — PL lies on Dl)?i) ; (where J is the sub-

set of {1,2,---,r} which is uniquely determined by the con-
dition that J C I and JI = IU) then the log structure of

1 _ _ -
D;’? |1 X pios 718 at 7 — PL is induced by
" X 1l
(r=1)

N®2 - — k(@)[[t]

(n,m) +— 0™ -t™.
Moreover, the projection Dl)c()(g” 7 X s Z18 _, 7108 has the
chart: o
k@) —  k@I[t]
7 T
N — N©®2
n —  (n,n).

Therefore, it is immediate that there exists a morphism Dl)?(g) 1 X plos

" X(pqy 11l
%6 — P8 which is of type N (where PX% is the log scheme obtained by
equipping PL with the log structure associated to the divisor determined by the

.. « log log 5 . «ylog log » .
divisors Dy N DX(T){Z.J} [where j € I] and Dy 1N Dx. s [where J is

as in (3)]) which fits into a natural commutative diagram:

log ~log log
DYE | xpos  TE —— P
X 1li]
(r—1)
P%J{ l
zio8 — T.
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This diagram induces a commutative diagram

Zy(1) m (Dl)?‘f;)l X pylos zog) () — m(ﬂplog)(z) 1
" X1y 111
l via pr2l l
Zl(l) 7T1( IOg)(l) 1 1 ’

where the horizontal sequences are exact (cf. [6], Proposition 4.22; [7], Re-
mark 2.8, (i)). By (1), the left-hand vertical arrow is an isomorphism, i.e., the
right-hand square is cartesian. Thus, since the kernel of the middle vertical

arrow m (D})?? )1 Xpls zlog) (D) L o (Flog) () ig naturally isomorphic to
X1y Il
the kernel of m (D})?’? I)(l) — m (Dl;(gﬂm )Y we conclude that the kernel of

T (Dl)?(gr)l)@ — (D;i)l[ ])( ) is naturally isomorphic to T (]P’ &)1 moreover,

it follows from the definitions that this isomorphism determines the section of

PBxy1 — Apyrz (= (P P)D)Y induced by plog _,y:i~ Thus, Lemma 2.5 follows

immediately from observations (2) and (3). O

Proposition 2.6. Let r > 2 be an integer. Then conjugates in Ax, ,, of the
subgroups
A . A
QX(T‘+1){172} ’ QX(T+1){273} < AX(TJrl)
topologically generate Ax, ., .

Proof. Since the composite

A
DXy {12y Ax ) Ax,

is surjective, it is enough to show that the subgroup topologically genereated by
the subgroups in question contains the kernel of the morphism Ax, ,, — Ax,

induced by pury 1, ie, AL |y . On the other hand, if let 7% — Xg")g be a

strict geometric point whose image is the generic point of the divisor D X 1,2}

of Xéo)gv then by [7], Proposition 1.7, the image of

. log —logy (1) Via PIy
gnﬁ(X(rH) X8 A )Y = Ax

(where the projective limit is over all reduced covering points fll\og — T1°8)

is AW Moreover, since the irreducible components of the underlying

X<r+1>/X< )'
—log /__ log log .
cheme of X© oz T =X o are the underlying scheme
S (r+1) XE5TA ( (r+1) % ‘E 2 T)°) ymgs S
log log _log
of D 1 and D28 1 cf. Lemma
DR% iz X0, A X (12,80 X0, X (e [T

1.12, (iii)), by the evident logarithmic version of [19], Corollary 2.3.3 (cf. the
proof of [19], Lemma 6.2.7), the group

hﬁlm( (r+1) X xios fl,\O )

is topologically generated by the images of the natural morphisms from

EIOg)(l)

lim 71 (D'28
— (m 11,2}

Xr+1){2,3} Dlog
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and
. log —log\ (1)
lim 71 (D X 1 T .
limmi (D 123 DYF iy )

Thus, it is enough to show that the subgroup topologically generated by the
subgroups in question contains the image of the natural morphisms from

. log =log\ (1)
%&nﬂ—l (DX(TH){?;?’} XDI)?fT){l,z} A ) (1)
and
. log —log\ (1)
hénm(DXuﬂ){lv?x?’} xDl}(()fwh,z) ™) (x2).
. e . . . . ]og
Now since it is immediate that the natural strict morphism D Xorin) {23} % Dlxo?ﬂ )
_ 1 1 = . .
Zlog _, X(:il) factors through D;i+1>{2x3} ®x K, it thus follows that the image

of the first group (*1) is contained in a conjugate of S)AQTH){ZB}' On the other

hand, it follows immediately from Lemma 2.5 (together with observation (3)
in the proof of Lemma 2.5), that the image of the second group (x3) is con-
tained in the subgroup topologically generated by conjutages of the kernel of
the composite
A via pl)(()i):l
CDX(TH){?B} - AX(T+1> - AX(rH)

and JX(TH){LQ}. This completes the proof of Proposition 2.6 . O

Lemma 2.7. Let r > 2 and 1 < ¢ < j < r be integers. Then the subgroup
@X(T){i,j} (respectively, Q)A((T){i,j}> of x,,, (respectively, AX(T)) 1s the normal-
izer of Tx, (i3 n Ilx, (respectively, Ax,,)-

Proof. Since IX(,y{injy I8 normal in Dy 4 51 (respectively, D)A((T){i)j}), the nor-
malizer of jX(m{i,j} contains QX@){LJ‘} (respectively, CD)A((T){Z.J.}). Moreover, we

have a commutative diagram:

I — Jxtigy —— Oxpy —— Ux,), —— 1

| | |

(@)
1 ’ AX(T)/X(T,U x, Iy 1
via pl}?(g 1):1»
(respectively,
o A
1 jX(”{W} CDX(T){Z}J'} AX(rfl) > 1
(@)
I —— Ay /X (e Ax, Axoy 1)
(r) (r—1) . log
VlapX(r,l):i

Therefore, it is enough to show that the normalizer of jX(m{i,j} in Ag?( /X,

is Ix,,{i,j}- On the other hand, this is well-known (cf. e.g., [17], (2.3.1)). O

Remark 2.8. By a similar argument to the argument used in the proof of
Lemma 2.7 (by replacing [17], (2.3.1) by [12], Lemma 1.3.12), we conclude that:
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Let r > 2 and 1 < i < j < r be integers. Then the subgroup
DX {inj} (respectively, Q)A(m{i’j}) of llx,,, (respectively, Ax,,) is
the commensurator of Ix, iy n x,, (respectively, Ax,,).

Definition 2.9. Let r > 2 and 1 <14 < 7 < r be integers.

(1) We shall denote by Ux,, (i ;; the fiber product of

Ux(,_y

lpUX(T’m j—1

Ux() oo > Ux( oy
Xer—2)™
Moreover, we shall denote by p (3 . and p 53 . the projections
X1y Xr—1)'
Ux. {ijy — Ux(._,, such that PUx(,_y):i=1 © Pyliar ;= PUx(,_,:i ©
(r—1)
Pty
Ux(ily)

(ii) By the definition of Ux,,{i.j}» the commutative diagram

pUX(T*l) i

Ux( Uxio

PUX(Til):jJ( lpUX(T’m -1

e
UX(T‘fl) UX(T72)
PUX(T72) i

induces a morphism Ux ,, — UX(m{i,j}' We shall denote this morphism by
Wi, {id)}- By the definition of LWx, i}y it is immediate that Wi, i)
Ux,, — UX(w){i,j} is an open immersion, which is a “partial compactifi-
cation”, i.e., the natural open immersion Ux,, — X factors through
W, {i,j}; moreover,

Uxe tit = X0 \ U D (it} -
(i3 Y 40,5}

(iii) We shall denote by Il (;;} the geometrically pro-l fundamental group

of Ux(,y{ig}> and by AXm{i,j} the kernel of the natural surjection
Ix, gy > Gk -
Thus, we have an exact sequence

L — Ax) gy — Ux( gy — G — 1.

Lemma 2.10. Letr > 2 and 1 < i < j < r be integers. Then the following
diagram induced by the cartesian diagram which appears in the definition of
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UX(w){i,j} is cartesian:

via i

pU){:{]il) .
N Ut NN

HX(T>{%J} HX(T*U

viap {igy via e

B —

HX(T71) via pu - HX(T72) .
X(p_a)

viap iy
‘ . -1 :
In particular, the kernel of the surjection HX(qn){i,j} — x_,, s nat-

urally isomorphic to Ag?( 1/ X@-2)"

Proof. This follows immediately from the fact that the sequence obtained as the
base-change of

P {i,j
UX{—(:iU:i pUX(T72):T71 pUX(T,g)”*Q PUX(I):Z
UX(T){i,j} — UX(PI) — UX(sz) — -vo —% X — Spec K

from K to K is a successive extension of hyperbolic curves of product type (cf.
Definition 1.12, (i)), together with Corollary 1.13, (i). O

In the following, assume that
the field K is a finite field.

Let us denote by px (respectively, qx) the characteristic (respectively, cardi-
nality) of K. We shall fix an algebraic closure K of K. We shall denote by G g
the Galois group of K over K, and by Frx € Gk the Frobenius element of G .
Moreover, let L be a finite field whose characteristic (respectively, cardinality)

we denote by pr, (respectively, qr) such that [ is invertible in L (i.e., | # pr), L

an algebraic closure of L, G, def Gal(L/L), Y a proper hyperbolic curve over L,

and o : IIx = Iy, an isomorphism. Then it follows from the “Riemann
hypothesis for abelian varieties over finite fields” (cf. e.g., [16], p. 206) and the
fact that Z;(1) is “of weight 2”7 (since the eigenvalues of the action of “Fr_”
are “g_") that the quotient IIx , — Gk (vespectively, Ily,, — Gp) arising
from the structure morphism Uy, — Spec K (respectively, Uy, — Specl)
may be characterized as the (unique) mazimal (Z—)free abelian quotient of Il x
(respectively, Ily,,,). Therefore, the isomorphism «a(,) induces an isomorphism
a(o) : GK — GL.

Definition 2.11. We shall say that an isomorphism a,) : IIx = Iy, is
Frobenius-preserving if the isomorphism o) : Gk — G obtained as above
maps the Frobenius element of Gx to the Frobenius element of G (cf. [14],
Definition 1.18, (iii)).

Proposition 2.12. Let o : Ux,, = Ly, be an isomorphism. Then the
following hold:

(i) There exists an element o of the symmetric group on r letters such that for
(4)

any integer 1 < i <1, the isomorphism o,y maps the kernel Ax( /X
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(i)

of the surjection Ilx , — Ilx, _, induced by pl)‘;iil):i bijectively onto the

kernel Agf(;(‘j)/)x/(r—l) of the surjection Iy, — Ily,,_,  induced by pl{ﬁiil):a(i).
Assume, moreover, that o, : x,,, = Iy, is a Frobenius-preserving
isomorphism (cf. Definition 2.11). Then, for a section G — Ux,,, of the
natural morphism Ilx , — Gk, this section arises from a K -rational point
of Ux,,, if and only if the section of the natural morphism Ily,, — Gp,
corresponding to the section Gx — Ilx ., under the isomorphism o
arises from a L-rational point of Uy, .

Assume, moreover, that v > 2. Then, for any integers 1 <i < j <r, the
isomorphism o,y maps jX(T){i,j} (respectively, @X(T){i,j}) bijectively onto
a conjugate of jy(r){a(i))a(j)} (respectively, ’DY(T){a(i),a(j)}) by an element
of the kernel Ay, of the natural surjection Ily,, — Gp.

Under the assumption in the statement of (i), for any integers 1 < i <
7 <, let us denote by

: (®) ~ €))
TX(r—1){ig} * HX(r) /AX(T)/X(T,U HX(r) /AX(T) /X (-1
(respectively,
: (4) ~ (4
Y-y {ind} - HY(T)/AY(T)/Y(T,I) HY(T)/AY(T)/Y(T,I))

the isomorphism obtained as the composite

() ~ ~ ()
Ix, /AX(T)/X(T,U Ix ) Ix, /AX(T)/X(T,U
(respectively,
() ~ ~ ()
HY(T)/AYM/Y(T—U My HY(T)/AYM/Y(r—m) '

Then the following diagram commutes:

TX (1) {i:d}
_

(1) (49)
HX(T)/AX(T)/X(TA) HX(T) /AX(T)/X(TA)

via a(T)l J{via a(r)

(e(4)

(o(3)
Iy, /A Iy, /AYM/Y(T,U :

Yoy / Yir
/Y- Y1y Lo ()0}

Here, the vertical arrows are the isomorphisms induced by oy (cf. ().

Proof. Assertion (i) follows from the fact that an isomorphism of Ilx, with
Iy,,, induces an isomorphism of Ax ., with Ay, together with [15], Corollary

Next, we prove assertion (ii). If » = 1, then this follows from [14], Remark
1.18.2. Thus, assume that r > 2. Then it is immediate that for a section
s:Gg — x,,, of the natural morphism Ux,, — Gk, the section arises from
a K-rational point of Ux,, if and only if the composite of the section s and the

morphism HX(T) — HX(TA) induced by Px,,

1 . . .
oo . ATises from a K-rational point
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of Ux(,_,, and the section Gg — Hx,,, XTx,,_,, Gk (where the morphism
Ix,, — Ix,_,, is the morphism induced by pl)?i_l):r, and G — Ix,_, is

the composite) induced by the given section s arises from a K-rational point of
the hyperbolic curve obtained as the fiber. Therefore, assertion (ii) follows from
[14], Remark 1.18.2, together with induction on 7.

Next, we prove assertion (iii). It is immediate that there exists an open
subgroup of G C Gk and a section Gg» — Ux,,, Xck Gk such that this
section arises from a K'-rational point of Ux,,. Thus, it follows from asser-
tion (ii), the fact that Jx(,{ij} 18 an inertia subgroup of Ilx,, XTix, Gr
(where the morphism Ix., — Ix,_,, is the morphism induced by pl)?iil);r,

and G+ — llx,, _,, is the composite of the section and the morphism induced by
log
X(.,‘, 1) r
gether with a similar argument to the argument used in the proof of [12], Lemma

) associated to a cusp of the hyperbolic curve obtained as the fiber, to-

.. . . . (o(4))
1.3.9, that a(,) maps jX(r){i,j} bijectively ontf) a conjugate (in AY(r)/Y(Pl)) c.>f
JY(T){U@)’U(]-)}. On the other hand, the assertion that o) maps DX(w){i,j} bi-

(o(1))
Yy /Y1)

fact that a(. maps Jx ;) bijectively onto a conjugate (in Agg(:)/)y( 71)) of

jectively onto a conjugate (in A ) of Dy {o(i),0()} follows from the

JY(T){U@-)’U(]-)}, together with Lemma 2.7. This completes the proof of assertion
(iii).

Finally, we prove assertion (iv). By the discussion preceding Definition 2.3,
we have commutative diagrams

1 jX(r){ivj} QX(T){i,j} — HX(T71> _ ]_
b A e My, —— My, —— 1
. log
VI&PX (. gy
and
L —— Ox,y — Dxe{ig) — lUx,,, — 1
(4)
! AXm/wan Ox,, ——— lx, ) —— 1,

. log
via ]
PX(p_1yii

where the horizontal sequences are exact. In particular, the natural inclusion
QX@){M} — llx,, induces isomorphisms
~ (@)
DX 0.3} Ix oy iy — HX<T>/AX(T>/X<T71>
and 0
~ ~ J
DX iy Ixitigy — Wy A% yxs, -

Thus, the isomorphism TX (1) (-3} coincides with the composite

(%) ~ ~ ~ (1)
Mx,, /AX(T)/X(T,I) — ©X<T){i,j}/JX(r>{i,j} - HX(T)/AX(T)/X(T,I) .
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Therefore, to verify the commutativity of the diagram in the statement of Propo-
sition 2.12, (iv), it is enough to show that the isomorphism a,) maps DX(r){i,j}
(respectively, TJX(T){Z-J-}) bijectively onto a conjugate of DY(T){U(i)vg(j)} (respec-
tively, jy(r){g(i))g(j)}). On the other hand, this follows from (iii). O

Definition 2.13. Let o) : llx, = IIy,,, be an isomorphism.

(1) We shall denote by o4,,, the element of the symmetric group on r letters
defined in Proposition 2.12, (i).

(ii) We shall say that a(, is order-preserving if 04, (defined in (i)) is the
identity morphism. Note that by reordering the coordinates of Uy, one
can always assume that o, is order-preserving.

Let ay @ IIx,, = Ily,,, be a Frobenius-preserving and order-preserving
isomorphism. Now by means of the isomorphisms TX (1 {i-j} (respectively,
T;/(T71>{i7j}) defined in Proposition 2.12, (iv), we identify the quotients

Hx,,, /Ag?m/x(“l) (respectively, y,,, /Agﬁ()ﬂ/y(“l)), wherei =1,---,7, of ILy,
(respectively, Iy, ) and denote by IIx,_, (respectively, Ily,,_,,) the quotient
obtained from this identification, and by a(._1) the isomorphism of lx, _,,
with Ily,, _,, induced by a(,) (cf. Proposition 2.12, (i)). Note that this isomor-
phism «a(,._1) is independent of i. Moreover, by a similar argument to this argu-
ment, for any positive integer v’ < r, we obtain a quotient II X (respectively,
HY(T,)) of Ilx,, (respectively, [Ty, ,) and an isomorphism a() : Ix,., = Iy,
Note that it follows immediately from the definition of the term “Frobenius-
preserving” that the isomorphism oy @ IIx = Iy, (r < r) is also
Frobenius-preserving.
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3 Isomorphisms that preserve the fundamental
groups of tripods

In this section, we define the notion of a tripod-preserving isomorphism (where
we refer to the discussion entitled “Curves” in Introduction concerning the term
“tripod”).

In the following, let K (respectively, L) be a finite field whose cardinality
we denote by g (respectively, q1,), K (respectively, L) an algebraic closure
of K (respectively, L), X (respectively, Y) a proper hyperbolic curve of genus

gx > 2 (respectively, gy > 2) over K (respectively, L), and [ a prime number

which is invertible in K and L. Let us write Gx Gal(K/K) and Gp, def

Gal(L/L). Moreover, let us denote by Ilp,. (respectively, ITp, ) the geometrically
pro-I log fundamental group of the log scheme ]P’ljgg (respectively, }P’lLog) obtained
by equipping P} (respectively, P}) with the log structure associated to the
divisor {0,1,00}, and by Ap, (respectively, Ap,) the kernel of the natural

surjection Ilp,, — Gk (respectively, Ilp, — Gp).

Write E % PL(K) \ Up(K) (where Up C PL is the interior of P8, ie.,

Up = PL \ {0,1,00}), and J. C Ap, for an inertia subgroup associated to
e € E (well-defined, up to conjugation in Ap, ). Then it is immediate that the

composites
Je— APK - (APK)ab

induce an isomorphism
~ ~ ~ ab
Jey ®TJey — (Apy )™,

where e # ea. Moreover, there exists a generator (., € Je, (i =1,2,3; e; # ¢;
if 7 # j) such that the image of ., via the composite

j8’3 — APK - (APK>ab — jel D je2

is (—Cey s —Cey) € Jey ®Tey, i€, the image of the above composite is generated by
(CeysCes) € Ty @ Te,. Thus, if an automorphism ¢ of (Ap, )P maps the image
of Je, in (Ap, )™ (i = 1,2,3) bijectively onto the image of J,(,,) in (Ap,)*"
(where o is an element of the group Aut(FE) of automorphisms of E), then there
exists a unique element dy € Z; such that

¢(C€i) = d$ ’ <U(8i) (7’ =12, 3) :

Let ¢ : Ilp, — IIp, be a Frobenius-preserving automorphism. Then the
automorphism ¢ preserves the inertia subgroups up to conjugation. (Indeed,
this follows from a similar argument to the argument used in the proof of [12],
Lemma 1.3.9.) Therefore, by the above observation, we obtain an element
dg € Zj, where ¢ is the automorphism of (Ap, )P induced by ¢.

Next, let ¢ : Ilp,, — IIp, be a Frobenius-preserving isomorphism. Then it
follows from the existence of such an isomorphism that gx = g1, (by considering
the action of the respective Frobenius elements on (Ap, )2’ and (Ap,)2P). In
particular, the fields K and L are isomorphic. By means of some isomorphism
of fields K = L, we obtain an isomorphism Ip, — Ilp, .

In summary, we obtain a composite map

Isomgyob (Ip, , p, ) /Inn(Ap, ) — Autgon (e, ) /Inn(Ap,,)
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— Autne((Ap,)™) —  Zf

) = dy,
where Isompyob (Ilp, , IIp, ) (respectively, Autgon(Ilp, )) is the set of Frobenius-
preserving isomorphisms (respectively, automorphisms) of Ilp, with IIp, (re-
spectively, of Ip, ), Autimer((Ap, )?P) is the set of automorphisms of (Ap, )*P
which preserve the images of the three inertia subgroups in (Ap, )*?, and the
first arrow is the bijection induced by some isomorphism of fields K = L. Note
that this composite depends on the choice of an isomorphism of K with L; how-
ever, the image of this composite is independent of the choice of an isomorphism
of K with L.

Definition 3.1. We shall refer to the image of this composite
Isomgyob (Ip, , p, ) /Inn(Ap, ) — Autgon (e, )/ Inn(Ap,,)

—  Autme((Ap,)™) —  Zf

5 e dg )
as the set of tripod-degrees (over K). We shall refer to an element of the set of
tripod-degrees (over K) as a tripod-degree (over K).

Remark 3.2.

(i) The set of tripod-degrees (over K) only depends on K (~ L) and [.

(ii) Since the image of the composite
Isom(P2%, PP%) — Isompyon (Ip,, IIp, ) /Inn(Ap, ) — Zj

(where Isom (P28, P'%%) is the set of isomorphisms of P'28 with P2 [as log
schemes], the first arrow is the morphism induced by the functoriality of
the functor of taking the log fundamental group, and the second arrow is
the morphism defining the set of tripod-degrees) is the set (qx) generated
by gk € Zj, the set of tripod-degrees (over K) contains (¢x) C Z;. In
particular, if (gx) = Z], then any element of Z; is a tripod-degree (over

(iii) By an unpublished result of Akio Tamagawa, in general, the set of tripod-
degrees (over K) is a proper subset of Z;.

Next, let o : [Ix = IIy be a Frobenius-preserving isomorphism. Then it fol-
lows from the existence of the isomorphism « that gx = g1, (by considering the
actions of the respective Frobenius elements on H?(Ax,Z;) and H?(Ay,Z;)).
In particular, the fields K and L are isomorphic. By means of some isomorphism

of fields K = L, we obtain an isomorphism Pi2¢ = P'*¢. Now by considering

. def ~
the composite of MX(y1{1,2} Mx = HOle (HQ(A)(,ZZ),ZZ)) — JX(T+1){1;2}

. def ~
(respectively, My, {1,2} My = Homg, (H?(Ay,Z;),Z;)) = 3Y(T+1){112})
(cf. Definition 4.7 below) and the isomorphism of JX(TH){LQ} (respectively,
jy<r+1>{1)2}) with an inertia subgroup of Ap,\3 (respectively, Ap,\3) obtained
in Lemma 2.5, we obtain a natural isomorphism of Mx (respectively, My ) with
an inertia subgroup of Ap,\3 (respectively, Ap,\3) (cf. the discussion following
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Definition 2.3). Thus, by means of the isomorphism ]P’ll‘;g = ]P’lLog7 we obtain

an isomorphism My — My (cf. Remark 3.3 below). Therefore, we obtain a
composite map

Isomgyon (I x, Iy ) /Inn(Ay ) — Isom(Mx, My) — Aut(Mx) — Z],

where Isompyon(ILx, ITy ) is the set of Frobenius-preserving isomorphisms of I x
with ITy, the second arrow is the bijection induced by some isomorphism of fields
K = L. Note that this composite depends on the choice of an isomorphism of
K with L; however, the image of this composite is independent of the choice of
an isomorphism of K with L.

Remark 3.3.

(i) Note that the isomorphism Mx = My (obtained as above) is independent

of a (by construction); moreover, this isomorphism is “geometric”, i.e., it

. . . log ~ ml
arises from an isomorphism P* = P%.

(ii) The morphism
ISOID(M)(, My) ;> Aut(Mx)

(appearing in the above composite map) may be interpreted as a certain
“automorphization” of isomorphisms of My with My by means of the
“geometric” isomorphism of (i), that is independent of «.

Definition 3.4. Let o : IIx = IIy be a Frobenius-preserving isomorphism.
(i) We shall denote by deg(c) € Z; the image of a via the composite
Isompyon (Ix, My ) /Inn(Ay ) — Isom(Mx, My ) — Aut(Mx) — Z; .
Note that deg(«) depends on the choice of an isomorphism of K with L.

(i) We shall say that o : [Ty = Ily is tripod-preserving if deg(a) is a tripod-
degree (over K). Note that this condition is independent of the choice of
an isomorphism of K with L.

Next, let o) : I, = Ily,,, be a Frobenius-preserving and order-preserving
isomorphism.

Definition 3.5. We shall say that «,) is tripod-preserving if the isomorphism
o : IIx = Ily induced by o, (cf. the discussion following Definition 2.13) is
tripod-preserving (cf. Definition 3.4).

Lemma 3.6. If r > 3, then . is tripod-preserving.

Proof. Now it is immediate that there exists an open subgroup G C Gk, and
a section G — Hx,,_, which arises from a K’-rational point of Ux(,_,- By
base-chaging this section via the composite

log

via pX(sz) 1

©X<T—1){1»2} — Hx,_y Hx( s,

we obtain a morphism

. bra
s GK/ XHX(,,‘,2> QX(T,I){LQ} D)((7‘71){112} - HX(T—I) .
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It is immediate that this morphism arises from a “strict log K’-rational point”
of Xéi’il) (i.e., a K'-rational point of X(r—1) equipped with the log structure
induced by the log structure of X é:g_ 1)) for which the image of the underlying
morphism of schemes lies on the open subscheme of D X(r_1{1,2} on which the
stalk of the characteristic sheaf (cf. the discussion entitled “Log schemes’ in
Introduction) of Dl;()(g {12} is isomorphic to N. Thus, the fiber product

(GK/ XHX(T72 HX(T)

QX(T,1>{1,2}) XMx (.,

) )

(where the morphism Gk XM, _, Dx {12y — Ix, ) is s, and x, —

)
Ix,_,, is the morphism induced by p})‘zf; ) .1) is isomorphic to the geometrically

pro-l log fundamental group of the log scheme obtained as the fiber of pl)?iil);l

og

1) corresponding to s, and the

at the “strict log K'-rational point” of X(1
morphism

pry
(Grr Xy, Dxoyyir2y) Xnx, ) Uxy — Gro Xk DX (12)

coincides with the morphism induced by the structure morphism of the log

scheme (obtained as the fiber of p§§T71>;1 at the “strict log K’-rational point”

of X é:% 1)). Now it is immediate that the underlying scheme of the log scheme
obtained as such a fiber has exactly two irreducible components of genera 0 and
gx; moreover, if we denote by H the closed subgroup of

(G XTx(, _y) Dy {1.2}) XIx, ) X

(well-defined, up to conjugation) obtained as the image of the morphism induced
on geometrically pro-l log fundamental groups by the strict closed immersion
from the irreducible component of genus 0, then the kernel H? of the composite

pry
H = (Grr Xy, Ox0y12y) X, Mxgy — Gro Xy, Dx, (1.2

is isomorphic to Ap, (cf. the discussion following Definition 2.3). On the other
hand, it follows that the outer representation

P A
Gg XHX(sz) SX(T71){1,2} A, Out(H*=)
determined by the exact sequence

1— HA L H G X, SX(VU{IQ} —1

factors through Gk XTx,_, SX(PU{M} . Gk, and the profinte group

)

out
]{A X GK/

(where G — Out(H?) is the morphism induced by pz) is isomorphic to the
geometrically pro-I fundamental group of Pk, \ {0, 1,00} (cf. observations (1),
(2), and (3) in the proof of Lemma 2.5). Therefore, Lemma 3.6 follows from
Proposition 2.12, (ii), (iii); [13], Corollary 2.8. O
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4 The reconstruction of the fundamental group
of the configuration space

In this section, we reconstruct the geometrically pro-I fundamental group of the
higher dimensional configuration space.

Let K be a finite field whose characteristic (respectively, cardinality) we
denote by pi (respectively, qi ), and [ a prime number that is invertible in K.
We shall fix an algebraic closure K of K. We shall denote by Gk the Galois
group of K over K, and by Frx € Gk the Frobenius element of Gx. Moreover,
in the following, let X be a proper hyperbolic curve of genus gx > 2 over K.

Definition 4.1. Let r be a natural number.

(i) We shall denote by
{AX(T) (n)}
the central filtration of Ax, defined in Definition 1.12, (ii), associated to

the successive extension of hyperbolic curves of product type obtained as
the base-change of

PUX(Til):T pUX(T72>:7‘—1 pUX(1>:2

Ux,, ——  Ux,_, — -oo —% X — Spec K

from K to K i.e., the central filtration with respect to the natural surjec-

tion
Ax,, = A%})@ ;
and by ‘
{A*(’?(r)/x(r—l) (n)}
the central filtration of Ag?(m X defined in the discussion following

Lemma 1.2, associated to the family of smooth curves

__viapuy

UX(T) ®K K — UX(rfl) ®K ?7
i.e., the central filtration with respect to the natural surjection

(1) Aab
_ .
Xy /Xr—1) X

(ii) The sequence obtained as the base-change of

P {ij}
1% i pu r—1 y4e r—2 pU :2
X p'e X X
(r—1) (r—2) (r—3) 1)
LX(m{i,j} — Ux,_, — Ux(,_a — -+« — X — Spec K

from K to K is a successive extension of hyperbolic curves of product
type. We shall denote by

{Ax, 13y (M)}

the central filtration of AX(T){Z-J-} defined in Definition 1.12, (ii), associated

to this successive extension of hyperbolic curves of product type, i.e., the
central filtration with respect to the natural surjection

ab
AX(T){LJ'} - AXQ'
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Proposition 4.2. Let r be a natural number.

(1)

(i)

The sequence of graded Lie algebras

via ZDUX(T) i

1 — GI’(A;(T)/X( ) B Gr(AX(T+1)) GI’(AX(T)) —1

induced by the exact sequence obtained in Definition 2.1, (iv), is exact. In
particular, the graded Lie algebra Gr(A Xm) s center-free.

There exist 2gx elements

(@) . 3(®) (@) (@)
Ox13 o 9x° BX 1 gk € AX /X VAKX X0, ()

and r elements
X 1 X i—1 X z+17 18X, r41 Xera1) /X (m Xirany/ Xer

: i)
such that the graded Lie algebra Gr(AX( /X
of these elements, and, moreover, CX w (where i # k) topologically gener-
ates the inertia subgroup (well-defined, up to conjugation) associated to the
cusp (of the geometric fiber of PUx i Ux.y — Ux,, at a geometric
point of UX(T)) determined by the divisor Dx ik © X@t1). More-

) is generated by the image

over, the graded Lie algebra Gr(A(Z ) is isomorphic to the graded

i X+ /X ) }
Lie algebra generated by these elements subject to the following relation:

9x
D oIE, B+ T =0,
j=1 k#£i

The graded Lie algebra Gr(AX(Hl)) is isomorphic to the graded Lie algebra
generated by the image of

(4) L)) L p) (1) :
ale""aX,gX7 X153 B gk EAX(T+1)/X(T) QAX(TH) (1§Z§T+1),
together with

@) . 60 (4) (1) .

X155 6xi-13 60X, 60X, € AX(TH)/XM C Axy,y (1<i<r+1)

in (ii) subject to the following relations:

—=(4) .
Jl[aXJ7ﬁ ]+Zk¢ch,k:0(1§Z§’r+1)7

—=(k)
CX k — CX i

(R1)
(R2)
(Rs) [T kuZX V=0 (f {ik} N {i kY =0):
(R4)
(Rs)

Ry

—(1 —(’Ll) . 3 .
Ry [CX o T )] = [Cx,kvﬁx,j] =0 (if i #4 and k #14');
i’ =) (i) e
Rs) [ay;,a% )] = B Bxpl =0 (f i #1);

‘ Cx) (fj=j andi#d)
(R)[QXJ’ﬁXJ] {OX (if j # ' and i # i)
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Proof. Assertion (i) follows from [11], Proposition 3.2, (i). Assertion (ii) follows
from [8], Proposition 1. Assertion (iii) follows from [18], (2.8.2). O

Lemma 4.3. Let 1 <1¢ < j <r be integers.

(1) The following diagram induced by the cartesian diagram defining U,y 5
(¢f. Definition 2.9, (i)) is cartesian: -

viap iy

3 0
(r—1)
Gr(AX(r){iyj}) GY(AX(PI))
viap iy ia e

Gr(AX(rfn)

GI‘(AX(T72>) .

via PUX(, )%

via ¢ i
UX(T) {i.4}

(i4) The kernel of the morphism Gr(Ax,,,) Gr(Ax,,, {ij}) is the

ideal generated by Zg?)l = Zg& (cf. the statement of Proposition 4.2, (iii)).
In particular, the set

=(5)
{Cead
is a base (over Q) of the kernel of

via LUX(T, {i,5}

Gr(Ax,,)(2/3) =" Gr(Ax,15))(2/3).

Proof. Assertion (i) follows from Lemma 2.10, together with Corollary 1.13, (ii).
Assertion (ii) follows from the fact that the kernel of morphism

Gr(Ag?m/X(Til)) — Gr(Ag?(ril)/X(riz)) induced by the left-hand vertical arrow
in the commutative diagram

(7)
1 AX(T)/X(T—I)

7l ! \

1 AX(T*I)/X(T—2) AX(T){i,j}

viap ;5 -

o
is the ideal generated by _g?)l = Zg?] (This follows easily from an obser-
vation concerning the generators of the graded Lie algebras Ag?( /X
AE?(H) /X0, &iven in [8], Proposition 1.) O

and

Let 1 <7 < j <r+ 1 be integers. Next, let us fix choices of the inertia
subgroups

Ix(n lidy & x(, )

(among the various conjugates of 3X(T+1){Z—7j}) for 1 <i < j <r+1. (Note that,
by Lemma 2.7, these choices induce choices of the subgroups

DX iy € Xy 3
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moreover, by considering the images of these subgroups via the surjection in-
duced by pl)(;i 4 [where 1 < k < r+ 1], these choices induce r + 1 respective

choices of the subgroups
Ixtigy & Mxy

and
Dx(tigy € 1x, -)

Lemma 4.4. Let 1 <i < j <r+1 be integers. Let

{i—1,j—1} (fi#1)
{1.j -1}

Itigy =
{1,2}

(if i=1and j # 2)
(if i=1and j=2)

1 (ifi#1)
2 (if i=1andj#2)
3

kigy =
(ifi=1and j =2)

Lo 1 (@ifi#1) S 1—1 (ifi#1)
iy =3 2 (ifi=1) it =3 1 (ifi=1).
Then the commutative diagram
i plos
log (r+1)17 log (r)™ log
Xran {irg} Xery —— X»
log log
l px(r):k{i,j}l lp"w—l):l{i,j}
log log log
Y T Xoy —0o X2y
X 1i 5 X(r—1)'™{i,5}

induces the following cartesian diagram:

. log log
5 VIa Py 5X(T+1){i,j} I
Xr+1){id} X(r)
. log .. . log
VDX (kg gy l lm PXeonytg
DX Iy xi s -
via plog odloe
Xe—nmigy X iay
Proof. By the definitions, the commutative diagram
log log
log X 103} xlos X log
X(v‘+1){1)]} (r+1) (r)
log log
l px(r):k{i,j}l lp"w—n:l{i,j}
log log log
—_— X _— X
X Ii g0 log (r) plos (r-1)
X iy Xr—1)"{i,5)

induces a commutative diagram

1 jX(r+1){i1j} QX(T+1){i1j}

. 1
l e p’?fﬂ?’“{i,j}l

1 IX (i I1i5y Dme{i,j}

vi

log log
A PX (01X (o )

. 1
lwa PX o1yt

HX(r—l) 1 )

via p
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where the horizontal sequences are exact. Now since the restriction of the mor-

. lo lo, . lo, . .
hism D28 . — D8 induced b 8 to the generic point of
p X1 {i:d} X Igingy Y PX(ryikgi gy & p

log
Xy {43}
phism. This completes the proof of Lemma 4.4. O

is strict, we conclude that the left-hand vertical arrow is an isomor-

Remark 4.5. Note that by Lemma 4.4, the commutative diagram

. log log
VI8 PX () 190X () 1)

SX(rH) {i,5} HX(T)
. log i log
e pX(r)?’“{i,j}l lwa PXonyigig
DXy Iiig Hx,_, -

log
VI PX (. _1ymis gy 00X () 1,51

is cartesian; however, the commutative diagram

log log

08 -
log PX (190X gy (023} xlog
Xy {id} (m)
log log
pX(r)?’“{i,j}l lp"w—n:l{i,j}
log Xlog
XI5y log (r—1)

X(po1) im0 5} 0X (1) I{i,5)

which induces the above diagram is not cartesian. Indeed, this follows from the
fact that the pull-back of the invertible sheaf corresponding to the morphism of
type N (cf. [6], Theorem 4.13)

log 5
log PX(rymiigy X iy Xlog
Xy Ii5y (r—1)
via p;(’f; Dilgagy 18 not isomorphic to the invertible sheaf corresponding to the
r—1)-t{i,j
morphism of type N
log  ,glos o
log PX (190X (g (29 xlos
X+ {id} (r) -

However, the restrictions to Ux,, of these two invertible sheaves are isomorphic
(cf. [7], Lemma 1.21).

Moreover, let us fix a section s : Gx — x,,, of the morphism Ux,, — Gk
induced by the structure morphism of Ux, and a lifting so of sy to Gxg —
DX 41y {1,2}, .., a morphism Gk — Dx(,.1,{1,2} such that the composite of

via plf(’i) 1
the morphism and Dx, ., (123 — Ix. — Ix,,, coincides with s.
Note that since Gk is free, such a lifting always exists. Then the section sg
of the natural morphism IT Xergny) — Gk determines natural actions of Gk (by
conjugation) on Ax(,,,, and on AX(T+1>{1»7J»}, hence also on

Linx,,,,(a/b) = Lin(Ax(, ) (a/0))(Q0);
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. def - .
LlnX(r+1)M(a/b) = LIH(AX(TJrI)M(a/b))(QZ);

. def . . def - .
LleX(TH)(a/b) = Lle(AX(TH)(a/b)); LleX(TH){z‘,j} (a/b) = Lle(AX(TH)@(a/b));
Gr@t (AX(T+1) )(a/b) ) GrQl (AX(TJA)@) (a’/b)
for a, b € Z such that 1 < a < b.

Proposition 4.6. Let 1 < i < j < r 41 be integers, and a, b € Z such that
1<a<b.

(i) The eigenvalues of the action of Fric on Liex,, ., (a/a + 1) (respectively,
Liex,, ., {ij}(a/a+1)) are algebraic numbers all of whose complex absolute
a/2
values are equal to qp~.

(i) There is a unique G g -equivariant isomorphism of Lie algebra
LieX(TH) (a/b) — Gr, (AX(HU )(a/b)

(respectively, Liex,, {}(a/b) — Grg, (Ax(, pgig)(a/b))

which induces the identity isomorphism

Liex,,, (¢/c+1) — Grg,(Ax ., )(c/c+1)

(respectively, Liex, ., (i 3(c/c+1) — Grg, (Ax, 1 {ig)(c/c+1))
for all c € Z such that a < c<b—1.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis for
abelian varieties over finite fields” (cf. e.g., [16], p. 206). Assertion (ii) fol-
lows formally from assertion (i) by considering the eigenspaces with respect to
the action of Frg. O

Definition 4.7.

(i) We shall write
My “ Homg, (H2(Ax, 7)), Z;)

(cf. the discussion prededing [14], Remark 1.2.0). Note that Mx is (non-
canonically) isomorphic to Z;(1) as a Gx-module.

(ii) Let 1 <i < j <r+1 be integers. Then there exists a natural isomorphism
Mx = IX (1) {ingy (cf. the statement of [14], Proposition 2.1). We shall
denote this isomorphism by MX (0 {ing}-

(iii) The cup product on the group cohomology of A x

2
J\H'(Ax, Mx) — H*(Ax, Mx ®z, Mx)
determines an isomorphism

Hom(A%}), My) — A%}),

39



hence a natural G g-equivariant injection

2
MX ‘H/\Ag})

(cf. the disucussion preceding [14], Definition 3.2). We shall denote this
G k-equivariant injection by i$'™".

(iv) The isomorphism
Hom (A%, Mx) — A%Y,

in (iii) determines a homomorphism

2
/\ Ag? — Mx .
We shall denote by a Uy a’ the image of a A @’ via this homomorphism.

Proposition 4.8. Let us write

def .
VUX(TH) = @(jX(T+1){ivj} ®z, Qi) © Liex, ., (1/2).

i<j

(Note that by applying the natural isomorphisms mx it Mxgigy =
jX(TH){w‘} and the identity morphism Liex, (1/2) = ( ZS A;?(k)) ®z, Qi,
one obtains a natural isomorphism of VUX( . with the Q;-vector space obtained
by tensoring the free Z;-module

r+1

P Mxjy 0 PAY *

i<j k=1

[where Mx(; jy is the copy of Mx indexed by {i,j}, and A;?(k) is the copy
of A%}) indezed by k] with Q;.) Then the first isomorphism in Proposition 4.6,
(ii), together with the natural inclusions TJX(TH){Z-J-} — AX(TH), determine a
G i -equivariant morphism
VUX<T+1) — Liex,,,,,(1/00)

which exhibits, in o Gg-equivariant fashion, LieX(Hl)(l/oo) as the quotient
of the completion with respect to the filtration topology of the free Lie algebra
£ie(VUX( +1)) generated by VUX( . equipped with a natural grading, hence also
a filtration, by taking the Ix (i3 @z, Qi to be of weight 2, Liex,,,, (1/2) to
be of weight 1, by the relations determined by the images of the morphisms

(R) Mx @z, Q

®j mx {i ~)@icuP .
(r41) 1HI 3 X ~ 2 Aab(7)
( @ IXin (iay @ N A ) @z, Q
J=1,r 41§

incl.&f. ] Lie(Viy, ,, )(2/3) (1<i<r+1);
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~ ~ L]

(RS) (Txp ik} Oz Tx oy i h}) @z, Qu = Lie(Vuy )(4/5)
({i, k} N {i' k') = 0);
~ b (i’ L]

(R) (Ox, 0 ik @2 A ) @2, Q1 = Lie(Viry | )(3/4)
(i#i, k£1);

2 ab (¢ ab (i
(®z, AR) ®z, @ — (A% @ @z, AR @ IX oy L) ©z, Qu

R/
(H5ana) a®ad = (@®as =mx, 4004 (@Ux @)

, |@incl. . . .
VISR Sie(Viry,, )(2/3) (0 £ )

(cf. the relations in the statement of Proposition 4.2, (ii)), where “incl” is the
natural inclusion morphism.

Proof. This follows from Propositions 4.2, (iii); 4.6, (ii). O
Definition 4.9. Let 1 < ¢ < j < r be integers, and a, b € Z such that 1 < a <b.

(i) Now we have natural G g-equivariant surjections:
Liny,,, (a/b) = Linx ., (1.23(a/b); Liex, , (a/b) - Liex, , (1.2}(a/b).
We shall denote by

Lini)r(‘f:H) (a/b); Liei)r(‘f:H) (a/b)

the respective kernels of these surjections.

(ii) Now we have a natural G g-equivariant morphism:
AX(T+1){172} - LinX(TH){lv?}(l/Oo)

(cf. Definition 1.1, (ii)). We shall write

Lie  def ;
AX(TJrl) = AX(T+1){172} XLinx(rﬂ){Lz)(l/Oo) LlnX(r+1) (1/00).

(We regard Liny,, ., (1,2)(1/00) and Liny,, (1/00) as being equipped
with the topology determined by the respective natural [-adic topologies
of Linx,, {1,2}(1/b) and Linx, (1/b) [where b is a positive integer];
I5<i<cr+1)
termined by the profinite topology of Ax (1,2} and the topologies of

moreover, we regard A as being equipped with the topology de-

Linx, ., {1,2)(1/00) and Linx,, , (1/00).) Moreover, we shall denote by

Lie

A .
IntX(r+1) : AX(T+1> AX(T+1)

the Gx-equivariant morphism induced by the morphism
AX(T‘+1) - AX(T+1){1)2}

induced by Wi, {12} (cf. Definition 2.9, (ii)) and the natural G-

equivariant morphism

AX(rJrl) —_— LinX(T+1> (1/00) .
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(iii) Now we have a natural G g-equivariant injection

Linanf:+l> (b+1/00) — {1} X {1} Linanf:+l> (b+1/00)

. ~ Lie
- AX(T+1){1;2} XLinX(T+1){1,2}(1/OO) LmX(TH) (1/00) AX(TH)

whose image forms a closed normal subgroup of AI;(‘EB e We shall denote
ks
by
Lie <b
X(r+1)
Lie

the quotient of A Xoin by this normal subgroup.

(iv) We shall write

mlie  def ALie

Lie<b def  Lie<b
Xrt) X ¥ Gxc 3 1 =A X Gk,

X(rt1) X(rt1)

. i ie < . . .
where the action of Gk on A¥® and AI)‘;C = is the action induced by
(r1) (r+1)

the section sg. Moreover, we shall denote by

i ) Lie
IntX(rH) : HX(T+1) X(rt1)
the morphism induced by Int)A(( -
(v) Now we have a natural morphism:
L T Lie <b
r 1e e =
X X Xert1)
Xy Lie <b

. i ie 1e < .
(respectively, Dx ., 1ij} — x4 Oxo ., 7 x5

Intg
. ~ (r+1) 11Lie Lie <b
respectively, Jx ., i} = x4, I, ., = X(ri1) )
We shall denote the image of this composite by

<b

< : <b . : ~<b .
Xoi1) (respectively, ,DX(TH){LJ'}’ respectively, X<T+1>{i7j})’

moreover, we shall write

<b def - <p Lie<b .
Xty — T X4 Xr41)
A<b def <b Lie <b
Xrg1){i:7} X+ {id} X1y

Proposition 4.10. For each a € Linx,, ,, (1/00), there evists a unique element
B € Liny,, ., (1/00) such that

Fr o Inn(a) = Inn(B) o Frg o Inn(371)

(where “Inn(—)” denotes the inner automorphism of Linx,,, (1/c0) defined
by conjugation by the element “—7). Moreover, when « lies in the subgroup
obtained by tensoring the image of JX(TH){LQ} via Intg((Hl) with Qq, B also lies

. . . . ~ . I .
in the subgroup obtained by tensoring the image of IX () {1,2} ViG IntX(Hl) with

Q.
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Proof. The assertion follows from Proposition 4.6, (i), and successive approxi-
mation of 3 with respect to the natural filtration Linx,, (a/o0) C Linx,,, (1/00).

Remark 4.11. Observe that changing the choice of a lifting
s0:Gr — Dx(,,, {1,2}

of s; affects the image of the element Frix € Gk via the composite of the in-
s . . H .
clusion G — Ilx,,, with the morphism Inty = : Ix, , — HI;(‘(eTH) by
conjugation by an element of the subgroup obtained by tensoring the image of
JX(TH){LQ} via Intg(rﬂ) with @Q; (cf. Proposition 4.10). In particular, it follows
that changing the choice of a lifting Gx — Dx,, ,, (1,2} of sq affects the Galois
invariant splitting of Proposition 4.6, (ii), by conjugation by an element of the
subgroup obtained by tensoring the image of Xy {1,2} Via Intg(rﬂ) with Q.
Put another way, if we identify the “Linx, (1/00)”, “Liny,,, (1,2;(1/00)”

portion of A%}ZH) (cf. Definition 4.9, (ii)) with the topological groups formed

the @;-valued points of the pro-algebraic groups corresponding to the (comple-
tion of the) corresponding graded objects “Gr(—)(1/00)” via the Galois invariant
splitting of Proposition 4.6, (ii), then the following holds:

Changing the choice of a lifting so : Gk — Dx, ., {12} of sy affects
the images of the morphism

Lie

1| .
IntX(T+1) ' HX(TJrl) - HX(T+1)

by conjugation by an element of the subgroup obtained by tensoring
the image of IX(iny (1,2} Via Intgl(wrl) with Q.

Lemma 4.12. Int{ is an injection.
X(r1)

Proof. This follows from induction on r, Corollary 1.13, (ii), together with the
fact that the central filtration

{Ax/s(n)}

defined in the discussion following Lemma 1.2 satisfies that

() Ax/sn) =1.

n>1
[l

Lemma 4.13. Let v > 2 be an integer. Then conjugates (in A)%l() +1)) of the
Lie <b

Xt topologically generate the sub-

A<D A<D
subgroups QX(T+1){172} and SX(TH){?B} of II
<b C ke <b

group AX(T+1) = " X@41”

Proof. This follows immediately from Proposition 2.6 and Lemma 4.12. (|
Lemma 4.14. Let 1 <1 < j <71 be integers, and a, b € Z such that 1 < a < b.

. Lie<1 . . .
(4) AXISTL) is naturally isomorphic to AX(HU{LQ}.
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b+1 . HLIC <b

b Xoan 8 isomorphic to

(i) The kernel of the natural projection Hg(i(cf

Lin  (b+1/b+2).

b+l <b

In particular, the kernel of the natural projection CDX(TH) Xt 18
isomorphic to

1 (i b £ 1 or {i,5} # {1,2})

IX(yiny Ling} (if b=1and {i,5} ={1,2}).

Sy <b+1 <b ,
Therefore, for 2 < b, the natural projection QX(TH) —» ©X<r+1> 15 an
isomorphism.
Proof. This follows immediately from Lemma 4.4; Definition 4.9. (|

In the following, let us consider some assumptions on the section sg : Gx —
Ux,.,, fixed in the discussion preceding Proposition 4.6:

Definition 4.15. Let » > 2 be an integer. Then we shall say that the section
so : Gk — Iy, (fixed in the discussion preceding Proposition 4.6) satisfies
the condition ({p) (respectively, (1g) for a set S = {x1,---,2,} of K-rational
points of X of cardinality = r with an ordering) if the following holds:

The image of the section sg : Gg — Hx, ., is contained in
©X<r+1>{172} N CDX(TH){L?B} < HX(rH)

respectively, the section s}y : G — Ilx, . arises from the K -rational
0 ()
point of Ux,,, corresponding to (x1,---,z,)).

Note that since Gk is free, and DX(TH){LQ} N Dx, ., {123} Is non-empty, a
section which satisfies the condition ({p) always exists.

By the discussion following of Definition 2.3, we have an exact sequence

1 JX(T+1){11273} mX(T+1){17213} APK L

moreover, we also have a section of this sequence which is refered as the section
of Bx (1) (1,2,3) > Apy induced by pl)(;iH);i (i =1, 2, 3). Let us denote by
log

) Xrtyr’
Note that then the subgroup Ap, {i} C Dx({1.2.3) fDx(,, (1,2,3} Is normal

Ap, {i} the image of the section of Px, ,, (1,23} = Ap, induced by p

log

by the definition of the section of mX(T+1){17213} — Ap,. induced by DXy

Definition 4.16. Since the subgroup

Ap, i} CDx(, (12,3

of Dx,,, (1,23} 18 normal, if the section s¢ satisfies the condition (tp) (cf.
Definition 4.15), then the action of Gk on ’DX(TH){LQ)P,} induced via conjugation
induces an action of Gx on Ap, {i}. Therefore, we obtain a subgroup

Ape{i} X Grx S Dx( 41,2 -

We shall write IIp, {i} of Ap, i} x Gk.
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Lemma 4.17. The group Up, {i} is isomorphic to Ip, .

P?"Aoof. This follows immediately from the fact that the subgroup J Xy {1,233 €
©X<r+1>{172,3} of DX<T+1>{L273}
gether with the fact that any element of the subgroup Ax, _,, x{1} C Ax_, X
~ DA A .
Ap, ~ ©X<r+1>{17213}/3X<T+1){172*3} Of@X(r+1){11273} /jX(r+1){17213} commutes with

any element of the subgroup {1} xAp,. C Ax ) XAp, =~ D)A((Hl){17213}/3)((”1){17213}

. . . A
is contained in the center of ©X<T+1>{172,3}’ to

Of z)AQ((T+1){1,2,3}/,:I‘X(7'+1){1)273}' D
Definition 4.18.
(i) We shall denote by
{Apc{2}(n)}

the central filtration of Ap, {2} with respect to the surjection
AIF’K{2} -1

(cf. Definition 1.1, (i)). Then it follows immediately from Lemma 2.5 that
Lin(Ap, {2}(2/3))(Q;) is naturally isomorphic to

(Oxin 12y © Ix, 0 (23)) ©z, Qi

Now we shall write

i def ;.
AF{2} = Lin(Ap, {2}(1/00))(Qu) X (3 1) (2382, Q1) IX (1) (2,3} 5

where the morphism Lin(Ap, {2}(1/00))(Q1) — Jx,,., (2.3} ®z, Qi (re-
spectively, jX(r+1){273} — jX(T+1){213} ®z, Qi) is the composite

Lin(Ap{2}(1/00))(Qi) — Lin(Ap, {2}(2/3))(Q1)

~ ~ ~ pra
— (Ox(n (1.2 ® Ixiny12,3)) ®2, Q= Tx(, 1 28y @z, Q

(respectively, the natural inclusion). Then by the definition of AI;{i(CTH) , the
natural morphism Lin(Ap, {2}(1/00))(Q;) — Linx,,,,,(1/00) (induced
by Ap,{2} — Ax,, ) and the the natural inclusion Jx . (23} <
AX(TH){LQ} induce a natural morphism

Alief2) — Ae
Now let us assume that the section sq fixed in the disucussion preceding
Proposition 4.6 satisfies the condition ({p) (cf. Definition 4.15). Then we
shall write _ b

{2} = ARL{2) % G,

where the action of Gk on A®{2} is the action obtained via conjugate.
Now it follows that the morphism Agi¢{2} — AI;{i(CTH) induces a morphism

Lie Lie .
mEief2) — ¥
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moreover, the following diagram commutes
g, {2} —— Ilx,,,
l llmﬁ}(wl)
HES{Q} - HIS(i(eHl) ’

where the left-hand vertical arrow is the morphism obtained by a similar
way to the way to define Intglqrﬂ).

(ii) Let S = {z1, -, 2.} C X(K) be asubset of X (K) of cardinality = r with
an ordering. Then we shall denote by Us C X (respectively, Us C X)

be the open subscheme obtained as the complement of S (respectively,

§d§f S\ {z1}) in X, and by

{Ays(n)} (respectively, {Ayg(n)})

the central filtration of the pro-I fundamental group Ay, (respectively,
Ayyg) of Us (respectively, Ug) with respect to the natural surjection

Ay, — A (respectively, Ayg — AR).

Now we shall write

def

Ap = Lin(Ayg (1/00))(Q) X Lin(Avg (1/00)) (@) AUs -

Let us denote by ®,, the decomposition subgroup associated to z; of
the geometrically pro-I fundamental group Iy, of Ug (well-defined, up to
conjugate). Then D, fits into an exact sequence

1—3; — Dy, — G — 1,

where J,, is the inertia subgroup associated to z1 of Il (well-defined, up
to conjugate). Let us fix a section s : Gx — D, of this exact sequence.
Then we obtain actions of Gk on Ily,, and on the geometrically pro-I
fundamental group Ily, of Us (via conjugate), hence also on

Lin(Ays (a/b))(Q1); Lin(Ayg (a/b))(Q) ;
Lie(Ays(a/b)); Lie(Aug(a/b));

Gro, (Auvs(a/b)); Gro,(Aug(a/b)); Aps
for a, b € Z such that 1 < a < b. Then we shall write

Lie def A Lie
HUS - Us X GK .

Proposition 4.19.

(4) If the section so satisfies the condition (1p), then there exsits a unique
Gk -equivariant isomorphism of Lie algebras

Lie(Ap,{2}(a/b)) — Gro(Ap,{2})(a/b)
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(where a < b are integers). Now let us write

def
Ve {2} = (Oxppn 12y ©Ix00 (2,3)) @2, Qi
(Note that, by applying the natural isomorphisms mx it - Mxgigy =
IX oy {igy lef. Definition 4.7, (ii)], one obtains a natural isomorphism of
Ve, {2} with the Qq-vector space obtained by tensoring the free Z;-module

Mx 1,2y © Mx(2,3)

[where Mx; ;3 is the copy of Mx indexed by {i,j}] with Q;.) Then the
natural inclusions Tx ., (ij} < Apk {2}, together with the unique G -
equivariant isomorphism of Lie algebras

Lie(Ag, {2}(a/b)) <> Gro(Ap, {2})(a/b)
determine a G g -equivariant morphism
Vo {2} — Lie(Ap, {2}(1/00))

which exhibits, in a Gg-equivariant fashion, Lie(Ap,{2}(1/00)) as the
completion with respect to the filtration topology of the free Lie algebra
Lie(Vp, {2}) generated by Vi, {2} equipped with a natural grading, hence
also a filtration, by taking the Jx (i3 ®z, Qi to be of weight 2. More-
over, the morphism of Lie algebras Lie(Ap, {2}(1/00)) — Liex,,,,,(1/00)
corresponding to the morphism Lin(Ap, {2} (1/00))(Q:) — Linx,, ,,, (1/00)
disucussed in Definition 4.18, (i), coincides with the morphism induced by
the natural inclusion

4% {2} - VUX(TJFU
(¢f. Proposition 4.8).
Let S = {z1,---,z.} C X(K) be a subset of X(K) of cardinality = r

equipped with an ordering. Then there exsits a unique G g -equivariant
isomorphism of Lie algebras

Lie(AUS (a/b)) — GrQ(AUS)(a/b)

(respectively, Lie(Ayg(a/b)) — Gro(Aug)(a/b))

(where a < b are integers). Now let us write

Vs @ (M sy ©2, Q) ® Lie(Au,)(1/2)

1<i<r

(respectively, Vi def

P (Mx gy @z Q) & Lie(A,)(1/2))
2<i<r

where Mx;y is the copy of Mx indexed by {i}. [Note that, by applying
the identity morphism Lie(Ayg)(1/2) = A% ®7z, Qi, one obtains a natural
isomorphism of Vg with the Q-vector space obtained by tensoring the free
Zi-module

@ My & AY  (respectively, @ Mx iy & AR)

1<i<r 2<i<r
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with Q;.] Then the isomorphism
Lie(Ayg(a/b)) — Grg(Aus)(a/b)
(respectively, Lie(Ayg(a/b)) — Gro(Ayg)(a/b)),

together with the composite of the natural isomorphism M x (; = 3,,[Us]
(respectively, Mx iy = J4,[Us]) (cf- Definition 4.7, (ii)) and the natural
inclusions J;,[Us] — Ayg (respectively, J,[Us] — Ayy) [where Ty, [Us]
(respectively, J,,[Us]) is the inertia subgroup of Ay (respectively, Ay,)
associated to x; € S (respectively, x; € S)|, determine a G -equivariant
morphism

VUS - Lie<AUs(1/Oo))

(respectively, Vy, — Lie(Ayg(1/00)))

which exhibits, in a Gk -equivariant fashion, Lie(Ayg(1/00)) (respectively,
Lie(Ayg(1/00))) as the quotient of the completion with respect to the fil-
tration topology of the free Lie algebra Lie(Virg) (respectively, Lie(Vir,))
generated by Vi, (respectively, Vi) equipped with a natural grading, hence
also a filtration, by taking the MX{_i}®ZlQl to be of weight 2, Lie(Ayy(1/2))
(respectively, Lie(Ayg (1/2))) to be of weight 1, by the relations determined
by the image of the morphism:

r 2
D idary BISP u incl.&[,] ..
Mz, Q © ST (@D My 0 \AY) 02, @ " gie(vi)(2/3)
=1
ida, @S T 2
=27 (P Mxpy e \AR) @z, Q

=2

(respectively, Mx ®z, Q; @

" gV (2/3))

Proof. This follows from a similar argument to the argument used in the proof
of Proposition 4.8, together with [14] Proposition 3.3, (i). O

In the following, let L be a finite field whose characteristic (respectively,

cardinality) we denote by py (respectively, ¢qr) such that [ is invertible in L

(i.e., I # pr), L an algebraic closure of L, G, def Gal(L/L), and Y a proper

hyperbolic curve over L. Moreover, let o : x,, = Iy, be a Frobenius-
preserving and order-preserving isomorphism, and ¢, : G, — Iy,,, the section of
the natural morphism Ily, , — G, corresponding to s, under the isomorphism
a(r). Then by Lemma 4.20 below, we obtain an isomorphism

Lie . HLic

~ Lie
Of(,,,+1) — 11

X(r41) Yirgn)
Note that by the construction of a%ﬁ‘il), together with the assumption on the
section sy which is fixed in the discussion preceding Proposition 4.6, we may
assume that

a{jﬂiil) maps the image of TJX(TH){LQ} VG Int};((Hl) bijectively onto

, ~ . I
the image of Iy (1,2} Vi@ IntY(TH)'
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Lemma 4.20. Let o : IIx,, = Ily,,, be a Frobenius-preserving and order-
preserving isomorphism. Then, for any integer 1 < v’ < r + 1, there exists a
unique tsomorphism
Lie . yyLie ~ Lie
Oé(T/) . HX(’I‘/) E— 1/(7‘/)

. Lie<b . ryLie<b ~ rrLie<b
(respectively, AT HX(T/) - HY(r/) for any b > 1)

which, for any integer 1 <1 < 1’| fits into the following commutative diagrams:

Lie Lie

Lie D | pLie Lie G Lie
Xon 0 W, Xy T My,
l l via pUX(T,il) zl lvia pUY(r’—l) i
Lie <b 11k <b Lie Lie
Xty Lie <b Yy X —1) alLie Yooy
(") (r'=1)

Moreover, if ' < r, then a%ri?) fits into the following commutative diagram:

iG]
X, Iy,

I II
IntX(T,) J{ J{Inty(ﬂ)

Lie Lie .
abie TN
Proof. By the discussion following Definition 2.13, «(,) induces a Frobenius-
preserving isomorphism « : ITx = ITy. Thus, the existence of an isomorphism

Lie . yyLie ~ Lie
OC(T/) : HX(T‘,) — HY(T‘,)

(respectively, a%ri?)gb : Hg;(‘ejb -, H%,ii/)gb)
which satisfies the condition in the statement of Lemma 4.20 follows from Propo-
sition 4.8. Now let ' < r. Then the isomorphism ) : Ix,,, = Iy,
(obtained in the discussion following Definition 2.13) induces an isomorphism
HI;(i(CT/) = H{jif/) which fits into the commutative diagram

IGP)
Uxe — Iy,
It Int¥
" X(r')l l e
Lie Lie
_
X HYw) ’

by the definitions of HI;(I(C ) and HI;/;C,). Thus, to prove Lemma 4.20, it is enough

to show that this isomorphism of HLif

i~

) with H{“/ie,) coincides with the isomor-
™

phism a%;,c). On the other hand, this follows from Proposition 4.6, (ii), by
considering the eigenspaces with respect to the action of the Frobenius element
(cf. Proposition 4.6, (ii)). O

Lemma 4.21. Let r > 2 be an integer. Then if the section sg satisfies the
condition (Tp), then the following conditions are equivalent:
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(4) oy 18 tripod-preserving.
Lie
(r+1)
. . . I
tively onto the image of lp, {2} via Inty. -

(i) The isomorphism « maps the image of Ilp, {2} via Intg((HU bijec-

.
(rlil)
Intl)l(wrl)) of the decomposition subgroup QI‘;((T+1){273} of llp, {2} such that

In particular, if oy s tripod-preserving, then « maps the image (via
QIE)((TH){ZB} N Ax,,, coincides with Tx (23} bijectively onto a Iy, -
conjugate of the image (via Intg(rﬂ)) of the decomposition subgroup D%’}( (2,3}

of Ip, {2} such that 911@(”1){2,3} NAy,,,,, coincides with Ty, (2,3}-

Proof. 1t follows immediately from the definition of the term “tripod-preserving”
that condition (ii) implies condition (i) (cf. Lemma 4.17). We prove the asser-
tion that condition (i) implies condition (ii). Since (. is tripod-preserving,
there exists an isomorphism ap : Ip, {2} = IIp, {2} such that the composite
M;‘?Q = Mf/m of the natural isomorphism M;‘?Q = Af;l;’( (cf. Definition 4.7,
(i), the isomorphism A3 = A2 induced by ap, and the natural isomor-

phism A?}Z = MEBQ coincides with the isomorphism obtained by the isomor-
phism Mx — My obtained by «a(,; moreover, it follows from the definitions of

IIpe{2} and IT3*°{2} that ap induces an isomorphism ap'® : TIFi°{2} = IIpi°{2}
which fits into a commutative diagram

HIF’K {2} —— HIF’L {2}

! |

mhie{2) —— Te{2}.
Ap

On the other hand, by Proposition 4.19, (i), the isomorphism My = My in-
duced by «, induces an isomorphism II3°{2} = TI3i°{2} which fits into a
commutative diagram

mef2) —— 1Ee(2)

! |

Lie Lie
—
Xt e Yirsn) 2
(r+1)

where the vertical arrows are the morphism obtained in Definition 4.18, (i).
Thus, to prove Lemma 4.21, it is enough to show that this isomorphism of
Ipie{2} with ITz°{2} coincides with the isomorphism ™. On the other hand,
this follows from the fact that Lie(Ap, {2}(1/00)) (respectively, Lie(Ap, {2}(1/00)))
is generated by the image of Vp, {2} (respectively, Vp, {2}), by considering the
eigenspaces with respect to the action of the respective Frobenius elements (cf.
Proposition 4.19, (i)). O

Lemma 4.22. Let S = {z1,---,2,} be a subset of X(K) of cardinality =
r with an ordering, ss : Gk — llx, the section of the natural morphism
lx,, — Gk corresponding to the K-rational point (1, -+, x,) € Ux,, (K),
and (y1,---,yr) € Uy, (L) an L-rational point of Uy,,, to which the section
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(0) ()
tr obtained as the composite G < Gk 3 HX(T) 5 HY(T) of the natural
morphism Ily, — Gy, corresponds (cf. Proposition 2.12, (ii)). Let us write

T {y1, -+, yr}. Let agr : Uyg = Iy, be an isomorphism of the geometri-

cally pro-l fundamental group Iy of Us df x \ S with the geometrically pro-l

fundamental group Iy, of Vp ey \ T such that the isomorphism x — Iy
induced by ag T coincides with the isomorphism aq : Ix 5 Iy induced by
a(yy. Let us assume that the section sy (respectively, t() of the natural mor-
phism Ilx  — Gk (respectively, Wy, — G1) (fized in the discussion preceding
Proposition 4.6) coincides with sg (respectively, tr). [In particular, the section
Gg — HX(r+1> (respectively, G, — HY<T+1>) fized in the discussion preceding
Proposition 4.6 satisfies the condition (tg) (respectively, (T7)).] Then there ex-
ist morphisms Iy, — HI;{i(CTH) and Iy, — H{ji‘:ﬂ) which fit into a commutative
diagram

as,T
HUS — HVT

! |

Lie Lie
X(r41) alie Y1)
(r+1)
and satisfy the following condition: The quotient of My, (respectively, Iy..)
determined by the composite

Lie
Hys — k0 ) =~ Ix 11,2y

. Li
(respectively, Iy, — Iys,, — My, 0 {1.2})

coincides with the natural quotient Ilys — Ilyg (respectively, Iy, — Ily,.),

where S def {za, -,z } (respectively, T def {y2, -+, yr}); moreover, this com-

posite determines an isomorphism Hyg — Ilx . (1.2} XTx,,, G (respectively,

v, — Iy, 0.2 Xy, G1), where the morphism Hx .2y — Hx,

P {1,2}
U)((iT)Q
(respectively, HY(TH){LQ} — Hy(r)) is the morphism induced by UX(HU{LQ} —
P {12}
UY(T) 12

Ux,, (respectively, Uy, ,, (1,2 Uy,,,), and the morphism G — Ilx,
(respectively, G, — lly,,) is ss (respectively, t). In particular, if we denote
by ©§(<T+1>{273} (respectively, 95(7‘4»1){213}) the decomposition subgroup of Il
(respectively, ly,.) associated to xo (respectively, y2) such that ’Df(( {23y N
Ax,,,, (respectively, ©1T/(T+1>{2,3}0AY(T+1)) coincides wtih Ix , , | (2,3} (respectively,
i
(ri1)
Intgl(wrl) bijectively onto a Ily, ., -conjugate of the image of ©£(r+1){273} via

jY(T+1){213}), then the isomorphism « maps the image of @i( {23} via

II
Intx(T+1) .

Proof. By the assumption on g 7, as,r induces an isomorphism ag 7 : Iy, —
IIy,.. On the other hand, by the definitions of Hx, ., {12} and HY(TH){LQ}, the
isomorphism o) : IIx,, 5 Ily,,, induces an isomorphism HX(HU{LQ} XTx,,,

G > Uy, {12} XTly,,, (1, where these fiber product is as in the statement of
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Lemma 4.22; moreover, it follows from the assumption on sg (respectively, t7)
that the profinite group HX(HU@ XTix,,, G (respectively, HY(HUM XTly,
Gr) is naturally isomorphic to the geometrically pro-! fundamental group of Ug
(respectively, V7). Let us fix isomorphisms ITyy = HX<T+1>M XTix,,, Gx and
My, = HY<T+1)M Xy, , Gr. Then it follows from Proposition 4.23 below that
by composition with a cuspidally inner automorphism of Uy, .. {12} X1y, G
(relative to Wy, {12} XTly,,, G — Ily) if necessary, we may assume that the
following diagram commutes:

s, T
HUi — HVZ

! |

Ux 2y Xy, Gk —— Iy, 10y Xmy,  Gr-
I via 0‘(7‘) I
In particular, it follows from Proposition 4.19, (ii), together with the fact that
the isomorphism of ITx = Iy induced by a7 coincides with the isomorphism
a(1y, that we obtain a commutative diagram

Lie Lie
gs —— Iy
Lie Lie

- )
X1 Lie Yirt1)

(r+1)

On the other hand, by the definitions of HI&‘; and H{“,;?, a7 induces an isomor-

phism a%ﬁ% : Hlﬁlsc = H%,‘TC which fits into the following commutative diagram:

Therefore, Lemma 4.22 follows from a similar argument to the argument used
in the proof of Lemma 4.21, together with Proposition 4.19, (ii). O

Proposition 4.23. Let K be a finite field, S a connected scheme which is
locally of finite type over K, f : X — S a hyperbolic curve, s : S — X a
section of f, U C X the open subscheme of X obtained as the complement of
the (scheme-theoretic) image of s, and fU : U — S the restriction of f to U.
Let

o HU AN HU
be an automorphism of the geometrically pro-l fundamental group Iy of U which

fits into a commutative diagram

HUL HU

! !

IIx IIx,
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where Il x is the geometrically pro-l fundamental group of X, and the vertical
arrows are the surjections induced by the natural open immersion U — X.
Then « is a cuspidally inner automorphism, i.e., there exists an element v of
the kernel of the natural surjection Iy — M x such that o = Inn(7).

Proof. If S is isomorphic to the spectrum of a finite extension field of K, then
Proposition 4.23 follows from a similar argument to the argument used in the
proof of the uniqueness of “as” in [14], Theorem 3.10. Therefore, Proposition
4.23 follows from Lemma 4.24 below, together with the slimness of the kernel of
the surjection induced by fUY on geometrically pro-I fundamental groups. [l

Lemma 4.24. Let

1 —A—II—G—1

be an exact sequence of profinite groups, and ¢ an automorphism of Il which
induces the identity morphisms of A and G. Assume that A is slim. Then ¢ is
the identity morphism.

Proof. By the slimness of A, we have a natural isomorphism
om-= Aut(A) XOut(A) G.

Now it is easily verified that if ¢ is an automorphism of II which preserves the
subgroup A C TII, then the automorphism of Aut(A) Xout(a) G corresponding
to ¢ (under the above isomorphism) is given by

Aut(A) X Out(A) G = Aut(A) XOut(A)_G
(f.9) = (¢laofod™ |a,d(g)),

where ¢ is the automorphism of G induced by ¢. Thus, the assertion is imme-
diate. |

In the following, we assume that
r>2.

In the rest of this section, we reconstruct the geometrically pro-I fundamental
group of the higher dimensional configuration space.

Lemma 4.25. The image of the diagonal morphism
x,, — Ix, RIx(,_y, Hx, — x, ., {1,2}

. ) < ‘ Lie <
(¢f. Lemma 2.10) is a conjugate of D}iﬂ){lﬁ} in My, 12y ~ HXI(CTLl) (cf.

Lemma 4.14, (7).
Proof. This follows from the definitions of % 1 o and Ix, 12y O

Lemma 4.26.
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(i) The diagrams

<2 H<l ns? <1
Xr+1y{1,2} Xy {1,2} X(r+1) X(rt1)

<2 <1 <2 <1
D)_fm{lﬂ} Q)_f(r){lﬂ} H)_(m X(r)

induced by the diagram

Lie <2 Lie <1
R —

X(rt1) Xrt1)

via pl;;(g”:gl lvia plf(’i) 3
Lie <2 [kie <1
X(r) X(r)

are cartestan.
(i) The subgroup of HI;g(e fi obtained as the intersection of the inverse image
of SJS((ITH){L?} (respectively, H)%Hn) via the natural projection

Lie<2 _ prLie<1
X(r41) X(r41)

<2

and the inverse image of Z)X( {12}

. <2 .
(respectively, HX(T)) via

log
1a px’ .3
Lie <2 (r) [lie <2

—»
X(r+1) X(r)
. . <2 ) <2
coincides with 03 respectively, 115 .
QX(TJA){L?} ( P Y X(r+1>)

Proof. Assertion (i) follows immediately from Lemmas 4.4; 4.14, (ii). Assertion
(ii) follows from assertion (i), Lemma 4.27 below, together with the fact that
the homomorphism

log

via X
Lie<2 & PX(y3 ke <2

—
Xrt1) X
induces an isomorphism of the kernel of the natural projection

Lie<2  pplie<1
X(rt1) X(rt1)

with the kernel of the natural projection

[lie<2 _, pplie<1
X(r) X(r)

(cf. Lemma 4.3, (ii); Proposition 4.6). O

Lemma 4.27. Let

¢ . q,

T

Gg —>G4
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be a commutative diagram of groups, and H1 C Gy a subgroup of G1. Write
Hj (respectively, H3) for the image of Hy via fa (respectively, f3). Then if the
morphism

Hy — Hy X, H3

induced by fo and f3 is an isomorphism, and the intersection
Ker fo N Ker f3
is trivial, then the natural inclusion morphism
Hy — f; ' (Hz) N f3 (Hs)
is an isomorphism.

Proof. Observe that the morphisms fs and f3 induce a morphism
fo N(Ha) O f5 (Hs) — Ha %, Hs.
Since the composite
Hy — fy '(H) N f3'(Hs) — Hz xc, Hs

of the natural inclusion H; — fy '(H2) N f; *(H3) and this morphism is an
isomorphism by our assumption, we conclude that this morphism is surjective.
Moreover, since Ker fo N Ker f3 is trivial, this morphism is an isomorphism.
Then the assertion is immediate. |

Lemma 4.28. The composite

. log

via py” ot

<2 <2 () <2
b — TIS e
Xr+1){2,3} X(rt1) X

coincides with the composite

: log |
via :3
<2 p_);(” I . HS2
X(rp1){2,3} X Xy

In particular, the morphism

<2 ~

P! <2 o s
Xr+1){2,3} Xer+1{2,3}

<1
Xy *ngt x, X(r41)

X(r)

N . ‘ . . <1
(¢f. Lemmas 4.14, (ii); 4.26, (i) determined by the natural inclusion ©X<T+1>{273} —

. _log
via py> i3
<1 . <1 (r) <2 o .
HX(TH) and the composzt; ©X<T+1){2,3} . - lx,, — HX(@ coincides with
the natural inclusion ©5<<T+1>{2,3} 3N H)_<<T+1>‘
Proof. This follows immediately from Lemma 4.14, (ii). O

Lemma 4.29. Let1 <i < j <r+1 andb > 2 be integers. Then any two liftings

) ; <b Lie <b : ; <b
of the natural inclusion ©X<T+1>{m} HX(TH) to inclusions ®X<r+1>{m}
ie< , ‘ o fe< ‘
g(l(cjrli;rl differ by conjugation in Hg(l(cjrli;rl by a unique element of the kernel of
ks ks

_— Lie<b+1 Lie<b
the surjection T =Tt — TIY=0
(r+1) (r+1)
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Proof. By Lemma 4.14, (ii), it is enough to show that

i <b . iner —
HU®F" | oy Lne (b+1/b+2)) =0
for ¢ = 0, 1. Since the action of ’D)A(iil){w.} on Lini)?(c; (b4 1/b+ 2) is triv-

ial, it thus suffices to observe (by considering the Hochschild-Serre spectral

sequence associated to the surjection @;(b gy Gk) that the action of

Frg on Lin}‘(ﬁr) (b+1/b+2) is “of weight b+ 1 > 3”7, while the action of Frg

on (Q)A((Sil){ij})ab is “of weight < 2” (cf. Proposition 4.6, (i)). This completes
the proof of assertion. O

Lemma 4.30. Let
oy lx,, — Iy,

be a Frobenius-preserving and order-preserving isomorphism which s either
tripod-preserving or the following condition (x) holds:

(x): There exist

(7) a subset S = {x1,---,xz,} (respectively, T ef {y1, -, yr}) of
X(K) (respectively, Y (L)) of cardinality = r with an ordering
such that if a section ss : Gk — Ilx, of the natural morphism
IIx,,, — Gi corresponds to the K -rational point (x1,- -+, x,) €
Ux,, (K), then the section tr : G, — Iy, of the natural mor-
phism Iy, — G, corresponding to sg (under the isomorphism
() coincides with the section arising from the L-rational point
(Y1, yr) € Uy, (L) (cf. Proposition 2.12, (ii)), and

(i) an isomorphism agr : Uyg — Iy, of the geometrically pro-l

fundamental group Iy of Us df x \ S with the geometrically

pro-l fundamental group Ily, of Vr df y \ T such that the

isomorphism IIx = Iy induced by ag T coincides with the
1somorphism oy : Tlx S Iy induced by -

Then there exists an isomorphism
a1y 1Ix () My,

well-defined up to composition with a Ker (Hy(rﬂ) —» HY(TH){LQ})-innW auto-

morphism such that, fori=1,---,r+ 1, the following diagram commutes:
X(r+1)

HX<T+1> - HY(rJrl)
via i via »
pUX(T) 47/J/ l pUy(T> i

HX — HY .

() N "
)

Proof. 1f o,y is tripod-preserving (respectively, satisfies the condition (x)), then
we assume that the section sq satisfies the condition (fp) (respectively, (1g)).
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Then since ;) is Frobenius-preserving, it follows immediately from the natu-
rality of our construction that o, induces, for each positive integer b, isomor-
phisms

Lie<b , qjlie<b _~ pjlie<b . Lie<b , pjlie<b ~ qyLie<b
(r+1) * 7 X(r41) Yoin 2 () X Yir

that fit into the following commutative diagrams:

Lie Lie<b+1 Lie<b

R —
X(r41) X(r+1) X(r41)
Lie Lie<b+1 Lie<b
O‘(r+1>l Ja(r+1) lo‘(rﬂ)
Lie Lie<b+1 Lie<b
R — —_—
Yir+1) Yir41) Yir+1)
i, Lie<b+1 Lie<b
T Lie e e
—_—
Mx X, X X
Li Lie<b-+1 Lie<b
a('r)l Q(SJ, J,Q(SL la(:f
i je< fe<
Iy, e qrijesttt ____, qpiest
() o (r) (r) (r)
Inty
)
via .
Lie<b PUX (3 [TLie<t
X(r+1) X
oLiest oliesb
(r41) )
Lie<b [plie<b
—_—
Yot viapye 5 YO
HON
(cf. Lemma 4.20).
Lie<b - . . . . .
Moreover, a(Tli—l) is compatible with the Frobenius elements on either side,
and (by the assumption on the section sg fixed in the discussion preceding Propo-

‘s Lie<b <b e ~<b .
sition 4.6) Q(p47) MAps jX(r+1){1,2} bijectively onto JY(T+1){172}' In particular,

Lie<b

(1) Maps
~<b
Xer+1y{1,2} % Gk
bijectively onto
35" Gr

X
Y+ {1,2}

. . <b
[where we note that, by the assumption on the section s, jX(r+1>{172} (respec-
[pkie<b

tively, 35(11“) {172}) is stable under the action of Gk (respectively, Gr,) on KXot

. Lie<b
(respectively, HY:L) )]
On the other hand, if a(,.41) is tripod-preserving (respectively, satisfies the

condition (%)), then it follows from Lemma 4.21 (respectively, Lemma 4.22),

Lie<b P<b . S<b e
a(;f;l) maps DX?r+1>{273} (respectively, CDX;H){ZB}) bijectively onto a Iy, -
conjugate of DI;ST:) (2.3} (respectively, D)T,fil) {273}) [cf. the notation of Lemma 4.21

respectively, Lemma 4.22)], where for “~"=P, S, or T, and “~"7= X or Y

p Y7 3 ) ) ) )

—<b . . .

o is the image of the composite

(12,3}
IntE,( )
_ r+1 Lie Lie<b
—r+1y{2:3} - H_(Tﬂ) Hf/(rﬂ) - —t1)
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. . . . Lie< .
First, I claim that the isomorphism a(;f:l; of Ix, ,q12y With Iy 19

(cf. Lemma 4.14, (i)) induces a bijection between the set of Ilx 5 (12}

conjugates of CD)S(: (respectively, CD)S(: {2 3}) and the set of Iy | (1.2}~

r+1){1,2}
<1
Yirt1y{1,2}
Lemma 4.25 (respectively, a similar argument to the argument used in the proof
of Proposition 2.12, (iii)).

Lie<2

Next, I claim that the isomorphism « 3% induces a bijection between the

conjugates of © (respectively, ’D}S,(lﬂ) 2 3}). Indeed, this follows from

(r+1)
<2 . <2 . <2
set 0f<£[X(T+1)-conl]ugates Of<?x(r+1){1,2} (respectlvely,ix(rﬂ){2)3}) and the set
of H{,(Hl)—conjugates of 917(”1){1,2} (respectively, 937@“){273})' Indeed, this

follows from the claim just verified above, together with Lemma 4.26, (ii) (re-

spectively, Lemma 4.26, (ii), together with Lemma 4.28).

Next, I claim that the isomorphism aI(“Tiigll)’ induces a bijection between the

(respectively, CD)S(b ) and the set

r+1)11,2} (r+1)12,3}
of H}S,(iﬂ)—conjugates of CD%;I){LQ} (respectively, 335(11){2)3}) for each posi-

set of H)S(?TJrl)-conjugates of CD)S(Z(’

tive integer b. To verify this claim, we apply induction on b. The case where
b = 1 or 2 is verified above. Thus, we assume that b > 2, and that the
claim has been verified for “b” that are < the b under consideration. Now
observe that it follows from Lemma 4.29 that any two liftings of the natu-

. . <b Lie <b . <b Lie <b
> [N = = (SN —
ral inclusion ©X<r+1>{172} Xoan (respectively, ©X<r+1>{273} HX(TH)) t
. . <b Lie<b41 . <b Lie<b+1
inclusions ® ¢ — I = respectively, ® ¢ — =
X+ {1,2} X(rt1) (resp Y ¥ X (2,3} X(rt1) )

Lie<b+1
X(r1)

Lie<b+1 Lie<b . .
L=ttt =" s moreover, it follows from the definition that
(r+1) (r+1)

. o< o<
the kernel of the surjection HI;;e—bH — Hgge—b
e (r+1) (r+1)
<
ALle_

_ A<b . A<D
Xoan Therefore, the restriction to ;DX(TH){L?} (respect%vely, QX(T+1){2,3})
of any lifting of the natural inclusion CD)%(Z)H)“ p Iriie st
<b+1 < TIkie<h )

X(rt1)
. . <b Lie<b+1
to an inclusion © g =
Xr+1){2,3} X(r41)
< Lie<b+1 A<b+1

Xoan {2t 7 P X

Xoen{2sr — Ux o) ) coincides with the natural inclusion ’DX( {12}

Lie<b+1 . A<b+1 Lie<b+1 . .

Xoan) (respectlvely, ©X<T+1>{2,3} — I 70 ). Thus, it follows that the iso
morphism a(L;iSll)’H induces a bijection between the set of A)S(?tll)—conjugates
of )A(ilj)l{l,z} (respectively, ’D)A(ilj)l{zg}) and the set of A}S,ii)—conjugates of

A<b+1 . A<b+1 . . . Lie<b+1

Yon {12} (respectively, @Y(:+1){273}); in particular, since oz(rlfrfl)
ble with the Frobenius elements on either side, it follows from Lemma 4.13 that

differ by conjugation in II by a unique element of the kernel of the
surjection II

is contained in the center of

(respectively,

(respectively,

is compati-

. . Lie<b+1 <b+l g <b+1
the isomorphism QGgay  maps HX(T+1> bijectively onto HY<T+1>' Moreover, ob
<b+1 Lie<b . S )
serve that the subgroup ©X<T+1>{1,2} Cllx 7, isa subgroup which is uniquely

determined by the condition that it be a

the image of a lifting of the natural inclusion Z))S(Z(’ {12y < HI;;;EZ;

AN HL1c§b+1

x whose image contains
(r+1)

. . <b
to an inclusion D5
X+ {1,2}

~<b1
X1y {1,2} X GK

(Indeed, the assertion that this condition uniquely determines the subgroup
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<b+1 Lie<b+1 . —
DX(T+1){172} C HX<T+1> may be verified follows: First, let us observe that

. . <b+1 ~ ~<b
the isomorphism D3 — D
p X+ {1,2} X+ {1,2}

ie< < SNk . . <
Liesbtl _ 18e<b [of Lemma 4.14, (ii)] induces an isomorphism jil(’tlm{l gy X

induced by the natural projection

X(r+1) X(r1)
~ <b cpps . .
Gk — 3)—(( {12y X Gg. Thus, any two liftings of the natural inclusion
<b Lie<b . . <b Lie<b+1 . .
< II"=" to inclusions D3 — II whose images contain
Xm{1,2} 1) Xm{1,2} X(rt1) g
~<b+1 Lie<b+1
< x G CII
Xy {1,2} K X(rt1)

Lie<b
C =
X( {12} X G C HX(T+1)' Therefore, by

Lemma 4.29, it is enough to verify that the submodule of Frg-invariants of

Lie<b+1 Lie<b iner
Ker (IS — IS0 ) = Liner | (b+1/b+2)

[since b > 2] in fact coincide on J%

[cf. Lemma 4.14, (ii)] is zero. However, this follows immediately from Propo-

-

sition 4.6, (i).) Now by considering a similar condition for @Y( oty ©

H%efiﬂ, the claim that the isomorphism az‘fﬁljﬂ induces a bijection be-
tween the set of H)S{l():r )-conjugates of Z)XfJT){l 2} and the set of H,—/(bt;

conjugates of DSbH) (1,2} follows from the fact that the isomorphism a%ﬁi?“
maps 7;(?1){1 gy X Gk bijectively onto TJ‘ ){1 oy G, together with the fact
that the isomorphism aI(‘;‘fll)?H maps H<b+1 bijectively onto H;bﬂ) On the
other hand, by replacing {1, 2} by {2, 3}, b x Gk by

X+ {l,2}

{ @E‘;’(S(bit{z 3) (if a(ry is tripod-preserving)

i(gii)l{ZB} (if cry satisfies (x)),
~<bt1
and Ty, 1 12) ¥ Gr by

{ Z)I;Si)l{z gy (if a( is tripodpreserving)

Voipizey (O g satisfes ()

it follows from a similar argument to the argument used in the proof of the

assertion that the isomorphism al(figll)’ﬂ induces a bijection between the set of
<b+1

+
X(TH)-conl]ugates ofCD ){1 2} and the set ofH -conjugates ofiDy(T {12}

that the 1som0rphlsm aL‘e<b+1 induces a leeCthH between the set of st -
(r+1) X(r+1)

< _b+1
conjugates of CD {2 3} and the set of Iy —conJugates of Z)Y +1){2 3}

By the Varlous clalms verified above by takmg the projective hrmt we thus
conclude that the isomorphism oz( induces an isomorphism of Iy, with
Iy, ,,, by Lemma 4.13.

Finally, we note that the indeterminacy, referred to in the statement of
Lemma 4.30, of the isomorphism ;1) up to composition with a cuspidally
inner automorphism arises precisely from the indeterminacy of the choice of
the subgroups Tx, ., iy © Ux(inys Iy (it © v 1<i<j<r+l1,
1 <’ < j' <r+1) and the sections of the natural morphisms Ux., — Gk and
Uy, — GL (cf. Remark 4.11) with respect to cuspidally inner automorphisms
of x(, s Iy, respectively. g

r-l—l)
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Lemma 4.31. Any Frobenius-preserving isomorphisms of Ilx with Iy are
tripod-preserving.

Proof. Let a be a Frobenius-preserving isomorphism of ITx with IIy. Note that
since replacing the base field by a finite extension field of the base field does not
affect the validity of the assertion that « is tripod-preserving, we may assume
that X (K) is non-empty. Then it follows from [14], Theorem 3.10, that there
exists an isomorphism () of IIx, with Iy, which fits into a commutative
diagram

Il OB |
X2 Y2)
O¢><GKO¢
My, —— llyy

via prll lvia pry

Iy —— Iy,

where the left-hand (respectively, right-hand) top vertical arrow is the mor-
phism induced by the natural open immersion Uy, — X Xg X (respec-
tively, Uy, — Y X, Y’). By base-changing the above diagram via the section
Gx — Ilx arising from a K-rational point x of X and the section of the nat-
ural morphism Iy — G|, corresponding to the section Gx — Ilx (under the
isomorphism «), we obtain a commutative diagram

x\ oy — ly\(y

! !

where y is an L-rational point of Y such that the section arising from y coincides
with the section of the natural morphism IIy — G, corresponding to the section
Gk — IIx arising from a K-rational point  of X (cf. Proposition 2.12, (ii)).
Let X’ — X be a non-trivial Galois covering over X, and Y’ — Y the Galois
covering over Y corresponding to X’ — X (under the isomorphism «). Then
by base-changing the above diagram via the natural inclusions IIx/ — IIx and
IIy+ < Ily, we obtain a commutative diagram

’
[0}

I ety = Iyn gy )

l l

I —_— Iy,

o’

where d is the degree of the covering X’ — X, and {1,---,z;} (respectively,
{y1,---,y4}) is the subset of X'(K) (respectively, Y'(L)) obtained as the in-

verse image of {x} (respectively, {y}) via the morphism X'(K) — X (K) (re-

spectively, Y'(L) — Y (L)). Now by extending the base fields, we may assume
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that {z/,---, 2/} (respectively, {y1,---,v,}) is a subset of X'(K) (respectively,
Y'(L)). In particular, we obtain a commutative diagram:

Uxn\gar,ay — yngyre)

! |

Il e 11y .
o

Now we assume that the decomposition subgroup D,/ C xn {4 21} associated
to o} (well-definied, up to conjugate) corresponds to the decomposition subgroup
Dy C Ilyn gy 4 associated to y; (well-definied, up to conjugate) under the
isomorphism «.

Now I claim that the section of the natural morphism IT X[y Gk arising
from (2f,z}) € U X0, (K) corresponds to the section of the natural morphism

My, — Gy, arising from (y},y}) € Uy, (L) under the isomorphism 042) of

HX(/Q) with Hy(lz) obtained from o’ (cf. [14], Theorem 3.10). Indeed, it follows
from Proposition 4.23 that we may assume that the top horizontal arrow in the
diagram

lx,, Xy, Gk —— Iy, xm,, Gr

| |

GK —_— GL

obtained by base-changing the diagram

via the morphism G — Ilx/ induced by the composite Dy = xn (o agy =
I xs and the morphism G, — Ily~ induced by the composite D, — Iy 41 42
Ly coincides with the isomorphism of Iy (41} with Iy (,/y induced by al..
Thus, the claim follows from the fact that the composite D,y — Hxn (a1 211 =
I\ (a7} is compatible with the composite ©,; < Iy (0 4oy = Iy g4y un-
der the isomorphism of Iy (41} with IIyn 1 induced by al.

By the above claim just verified, the isomorphism 0/(2) satisfies the condition

}—»

(*) in the statement of Lemma 4.30; in particular, ab) extends to an isomor-
phism of IT Xy with Hy/S). Thus, it follows from Lemma 3.6 that o/, hence also
« is tripod-preserving (cf. [14], Remark 1.2.0). O

The main result of this paper is as follows:

Theorem 4.32. Let X (respectively, Y) be a proper hyperbolic curve over a
finite field K (respectively, L). Let

a(l) : HX AN Hy
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be a Frobenius-preserving isomorphism. Then, for any positive integer r, there
erists a unique isomorphism

oy lx,, Iy,

well-defined up to composition with a cuspidally inner automorphism (i.e., a
Ker (Ily,,, — Ily,,,)-inner automorphism), which is compatible with the natural
respective actions of the symmetric group onr letters such that, fori=1,--- r+
1, the following diagram commutes:

X(r+1)

HX<T+1> HY(rJrl)
via PUX () ll lvia PUy, i
Mx, My, -
A(r)

Proof. This follows immediately from Proposition 4.23; Lemmas 4.30; 4.31; [14],
Theorem 3.10. |

The following Corollary follows immediately from Theorem 4.32, together
with the fact that a hyperbolic curve over a finite field is Prime-separated (cf.
[14], definition 1.18, (i); Proposition 2.3, (ii)).

Corollary 4.33. Let X (respectively, Y) be a proper hyperbolic curve over a
finite field K (respectively, L).

(i) Let
[0 HX ;> Hy

be a Frobenius-preserving isomorphism of the geometrically pro-l funda-
mental group of X with the geometrically pro-l fundamental group of Y,
and r a positive integer. Let x; (where 1 < i < r) be an element of the
set (X \ {z1, -, zi-1})(K) of K-rational points of X \ {x1,--,2xi—1}.
Then there exist an element y; of the set (Y \ {y1, --,yi—1})(L) and an
isomorphism

Q" T (g )~ T\ (1,0}

of the geometrically pro-l fundamental group of X \ {z1, -,z } with the
geometrically pro-l fundamental group of Y\ {y1,- -, yr} which is compat-
ible with ao. Moreover, such an isomorphism o™V is uniquely determined
up to composition with a cuspidally inner automorphism.

(#) Let
a:m(X) = m(Y)
be a Frobenius-preserving isomorphism of the (profinite) fundamental group
of X with the (profinite) fundamental group of Y, and r a positive inte-
ger. Let x; be an element of X(K) (where 1 < i < r), and y; the el-
ement of Y (L) whose decomposition subgroup of m1(Y) (well-defined, up
to conjugate) corresponds to the decomposition subgroup associated to x;
(well-defined, up to conjugate) via . Then there exists an isomorphism

a®O (X far, o, P S m (Y fye - )P0
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of the maximal cuspidally pro-l quotient of w1 (X \{x1, -, z,}) (relative to
m (X \{x1, -, 2. }) = m (X)) with the mazimal cuspidally pro-l quotient
of m (Y \ {1, -, yr}) (relative to m (Y \ {y1, -, yr}) = m(Y)) which
is compatible with a. Moreover, such an isomorphism a®® is uniquely
determined up to composition with a cuspidally inner automorphism.

Remark 4.34.

(i) Since a hyperbolic curve over a finite field is not [-separated in general (cf.
Remark 4.35 below), the “y;’s” (hence also “a™®V”) in the statement of
Corollary 4.33, (i), depend, unlike the case with Corollary 4.33, (ii), on the
ordering of {x1,- -, x,}.

(ii) In the notation of Corollary 4.33, (ii), since it follows from [14], Theorem
3.12, that there exists a unique isomorphism (of schemes) of ¢ : X =
Y such that the isomorphism 71(X) = 71(Y) induced on fundamental
groups by ¢ coincides with «, it follows immediately that there exists an
isomorphism 71 (X \ {z1, -, 2.}) = m (Y \ {y1, -, ¥-}) which is com-
patible with «. On the other hand, Corollary 4.33, (ii), provides a direct
way to construct such an isomorphism between the fundamental groups,
i.e., a way to construct such an isomorphism without passing through “the
world of schemes”.

Remark 4.35. In general, a hyperbolic curve over a finite field is not I-separated.
The following example of this phenomenon was given by Akio Tamagawa:

Let X be a hyperbolic curve over a finite field K of characteristic p, and
K an algebraic closure of K. Let us denote by IIx the geometrically pro-
fundamental group of X (where [ is a prime number such that [ # p), by Ax
the pro-I fundamental group of X @ ¥ K, and by G the Galois group of K over
K. Then we have a commutative diagram

1l — Ax — IIx — Gk — 1

| l l

1 —— In(Ax) —— Aut(Ax) —— Out(Ax) —— 1,

where the horizontal sequences are exact, and the left-hand vertical arrow is an
isomorphism; in particular, the right-hand square is cartesian. It follows from
[1], Corollary 7, that Out(Ax) is almost pro-l (i.e., there exists a non-trivial
open subgroup which is pro-l), by replacing Gk by an open subgroup of Gk,
we assume that the right-hand vertical arrow Gx — Out(Ax) in the above
diagram factors through a pro-l quotient of Gx. Then since the right-hand
square is cartestan, we conclude that IIx is isomorphic to

out

(Ax % Gy x a7V

where G(I?l) is the maximal pro-(Prime \ {I}) quotient of Gk; thus, Ggl) is
isomorphic to the product of Z;’s (where I’ € Prime \ {I}). Let L C K be a
finite extension field of K of degree [L : K] prime to [ such that X (K) # X (L).
(In fact, it follows from the “Weil conjecture for curves over finite fields” [cf.
e.g., [5], Chapter V, Exercise 1.10] that such an extension field exists.) Let
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x € X(L)\X(K), 2" € X(L) obtained as the conjugate of x via a generator of the
Galois group of the extension L/ K, and xy, € X, (L) (respectively, 2 € X, (L))

the L-rational point of X, “ x k L determined by z (respectively, «’). Then
it follows from the fact ¢ X (K) that x1 # 2 ; however, it follows from the

fact that IIx is isomorphic to (Ax % Gg?) X G(I?l) that the Ilx, -conjugacy
class (where ITx, is the geometrically pro-l fundamental group of X ) of the
section of Ily, — G|, corresponding to xy, coincides with the Ilx, -conjugacy
class of the section of Ilx, — G corresponding to z’;. Therefore, X1, is not
l-separated.

Moreover, it follows immediately from the existence of the isomorphism

HX ~ (AX 0>I;t G(Il()) X ngél)

that there exist automorphisms of IIx which are not Frobenius-preserving.

References

[1] M. P. Anderson, Exactness properties of profinite completion functors,
Topology 13 (1974), 229-239.

. Asada, On the filtration of topological and pro-l mapping class groups o
2] M. Asada, On the fil i f logical and l i 1 f
punctured Riemann surfaces, J. Math. Soc. Japan 48 (1996), no. 1, 13-36.

[3] N. Bourbaki, Lie groups and Lie algebras, Springer Verlag (1989).

[4] A. Grothendieck and M. Raynaud, Cohomologie locale des faicseaux
cohérents et théorémes de Lefschetz locauz et globaur (SGA2), Adv. Stud.
Pure Math., 2, North-Holland, Amsterdam (1968).

[5] R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No.
52. Springer-Verlag, New York-Heidelberg (1977).

[6] Y. Hoshi, The exactness of the log homotopy sequence, RIMS Preprint
1558 (2006).

[7] Y. Hoshi, Fundamental groups of log configuration spaces and the cuspi-
dalization problem, RIMS Preprint 1559 (2006).

[8] M. Kaneko, Certain automorphism groups of pro-I fundamental groups of
punctured Riemann surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36
(1989), 363-372.

[9] F. F. Knudsen, The projectivity of the moduli space of stable curves II,
Math. Scand. 52 (1983), 161-199.

[10] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Inter-
science (1966).

[11] M. Matsumoto, Galois representations on profinite braid groups on curves,
J. Reine. Angew. Math. 474 (1996), 169-219.

64



[12]

[13]

[14]

[20]

S. Mochizuki, The absolute anabelian geometry of hyperbolic curves. Galois
theory and modular forms, Dev. Math., 11, Kluwer Acad. Publ., Boston,
MA (2004), 77-122.

S. Mochizuki, A Combinatorial Version of the Grothendieck Conjecture,
RIMS Preprint 1482 (2004).

S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic
curves, to appear in J. Math. Kyoto Univ.

S, Mochizuki and A. Tamagawa, The algebraic and anabelian geometry of
configuration spaces, RIMS Preprint 1570 (2006).

D. Mumford, Abelian varieties, Oxford Univ. Press (1974).

H. Nakamura, Galois rigidity of the étale fundamental groups of punctured
projective lines, J. Reine Angew. Math. 411 (1990), 205-216.

H. Nakamura, N. Takao and R. Ueno, Some stability properties of Te-
ichmiiller modular function fields with pro-I weight structures, Math. Ann.
302 (1995), no. 2, 197-213.

J. Stix, Projective anabelian curves in positive characteristic and descent
theory for log-étale covers, Dissertation (Rheinische Friedrich-Wilhelmas-
Universitdt Bonn, 2002), Bonner Math. Schriften, 354, Universitdt Bonn,
Mathematisches Institut (2002).

J. Stix, A monodromy criterion for extending curves, Int. Math. Res. Not.
29 (2005), 1787-1802.

65



