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Abstract

In the present paper, we study the cuspidalization problem for funda-

mental groups of configuration spaces of proper hyperbolic curves over fi-

nite fields. The goal of this paper is to show that any Frobenius-preserving

isomorphism of the geometrically pro-l fundamental groups of hyperbolic

curves induces an isomorphism of the geometrically pro-l fundamental

groups of the associated configuration spaces.
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0 Introduction

In this paper, we study the following problem, which is called the “cuspidaliza-
tion problem” (cf. [7], Problem 0.2):

Problem 0.1. Let r be a positive integer. Then can one reconstruct the (arithmetic)
fundamental group

π1(UX(r)
)

of the r-th configuration space UX(r)
of a hyperbolic curve X over a field K

(i.e., the open subscheme of the r-th product of X [over K] whose complement

consists of the diagonals “{(x1, · · · , xr) | xi = xj}” [i 6= j] from the (arithmetic)
fundamental group π1(X) of X?

1



Let r be a positive integer, X a proper hyperbolic curve over a finite field
K, and l a prime number that is invertible in K. We shall denote by ΠX(r)

(respectively, ΠX(r)
) the geometrically pro-l fundamental group of the r-th con-

figuration space UX(r)
of X (respectively, the fiber product

r︷ ︸︸ ︷
X ×K · · · ×K X of r

copies of X over K), i.e., the quotient of π1(UX(r)
) (respectively, π1(

r︷ ︸︸ ︷
X ×K · · · ×K X))

by the closed normal subgroup obtained as the kernel of the natural projection

from π1(UX(r)
⊗K K) (respectively, π1((

r︷ ︸︸ ︷
X ×K · · · ×K X)⊗K K)) to its maximal

pro-l quotient, and by pUX(r−1):i
: UX(r)

→ UX(r−1)
the projection obtained by

forgetting the i-th factor (i = 1, · · · , r). Let Y be a proper hyperbolic curve over
a finite field L in which l is invertible; moreover, we shall use similar notations
for Y . Then the main result of this paper is as follows (cf. Theorem 4.32):

Theorem 0.2. Let

α(1) : ΠX
def
= ΠX(1)

∼
−→ ΠY

def
= ΠY(1)

be a Frobenius-preserving isomorphism (cf. Definition 2.11). Then, for any

positive integer r, there exists a unique isomorphism

α(r) : ΠX(r)

∼
−→ ΠY(r)

,

well-defined up to composition with a cuspidally inner automorphism (i.e., a

Ker (ΠY(r)
� ΠY(r)

)-inner automorphism), which is compatible with the natural

respective actions of the symmetric group on r letters such that, for i = 1, · · · , r+
1, the following diagram commutes:

ΠX(r+1)

α(r+1)
−−−−→ ΠY(r+1)

via pUX(r)
:i

y
yvia pUY(r)

:i

ΠX(r)
−−−−→

α(r)

ΠY(r)
.

Note that Theorem 0.2 is a generalization of [14], Theorem 3.10. (In [14],
Theorem 3.10, the case where r = 2 is proven.)

An essential part of the proof of this main theorem is to show that the profi-
nite group ΠX(r+1)

can be reconstructed from ΠX(r)
“group-theoretically”. This

“group-theoretic” reconstruction of the profinite group ΠX(r+1)
from the given

profinite group ΠX(r)
is performed as follows: Let X log

(r) be the r-th log configu-

ration space of X (cf. [7], Definition 1.1). Then the interior of X log
(r) is naturally

isomorphic to the (usual) r-th configuration space UX(r)
of X ; moreover, it fol-

lows from the log purity theorem that the natural open immersion UX(r)
↪→ X log

(r)

induces an isomorphism of the geometrically pro-l fundamental group ΠX(r)
of

UX(r)
with the geometrically pro-l log fundamental group of X log

(r) . Therefore,

to reconstruct ΠX(r+1)
, it is enough to reconstruct the geometrically pro-l log

fundamental group of X log
(r+1). Now it follows from a similar argument to the

argument used in the proof of [7], Theorem 2.5, that the images of the geometri-
cally pro-l log fundamental groups of certain irreducible components (equipped
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with the log structures induced by the log structure of X log
(r+1)) of the divisor

at infinity of the log scheme X log
(r+1) topologically generate the desired profinite

group ΠX(r+1)
. On the other hand, there exists a topological group ΠLie

X(r+1)

which arises from the pro-graded Lie algebra obtained by considering the weight

filtration of the pro-l fundamental group ∆X(r+1)
of UX(r+1)

⊗K K such that

the desired profinite group ΠX(r+1)
is naturally embedded in ΠLie

X(r+1)
; moreover,

this topological group ΠLie
X(r+1)

can be reconstructed “group-theoretically” from

the given profinite group ΠX(r)
by considering the Galois invariant splitting of

the subquotients of ∆X(r+1)
with respect to the weight filtration. Therefore, if

one can reconstruct “group-theoretically” the natural images in ΠLie
X(r+1)

of the

geometrically pro-l log fundamental groups of certain irreducible components
(equipped with the log structures) of the divisor at infinity of the log scheme

X log
(r+1), then one can construct a subgroup which is isomorphic to the desired

profinite group ΠX(r+1)
as the subgroup which is topologically generated by the

images reconstructed.
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Notations and Terminologies:

Numbers:

We shall denote by Prime the set of all prime numbers, by N the monoid of
rational integers n ≥ 0, by Z the ring of rational integers, by Q the field of ratio-
nal numbers, by Ẑ (respectively, Zl) the profinite completion of Z (respectively,
pro-l completion of Z for a prime number l), and by Ql the field of fractions of
Zl.

Let Σ be a set of prime numbers, and n an integer. Then we shall say that
n is a Σ-integer if the prime divisors of n are in Σ.

Groups:

Let G be a profinite group and Σ a (non-empty) set of prime numbers. We
shall refer to the quotient

lim
←−

G/H

of G (where the projective limit is over all open normal subgroups H ⊆ G such
that the order [G : H ] of H is a Σ-integer) as the maximal pro-Σ quotient of G.
We shall denote by G(Σ) the maximal pro-Σ quotient of G.

For a topological group G, we shall denote by Gab the abelianization of G,
i.e., the quotient of G by the closed normal subgroup [G, G] generated by the
commutators of G.
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For a Hausdorff topological group G, we shall denote by Aut(G) the group
of continuous automorphisms, and by Out(G) the quotient of Aut(G) by the
subgroup Inn(G) of inner automorphisms of G.

Let G be a center-free Hausdorff topological group and H a topological
group. Then there exists a natural exact sequence:

1 −→ G −→ Aut(G) −→ Out(G) −→ 1

(where G → Aut(G) is defined by letting G act on G by conjugation). For a
continuous homomorphism H → Out(G), we shall denote by

G
out
o H

the group obtained by pulling-back the above exact sequence via the continuous
homomorphism H → Out(G), i.e.,

G
out
o H

def
= Aut(G)×Out(G) H .

Note that it is immediate that G
out
o H fits into the following natural exact

sequence:

1 −→ G −→ G
out
o H −→ H −→ 1 .

Note that if G is topologically finitely generated, then by considering a basis
of the topology of G consisting of characteristic open subgroups of G, we may
regard Aut(G) as being equipped with a topology. This topology on Aut(G)

induces a topology on Out(G), hence also a topology on G
out
o H .

Log schemes:

Let P be a property of schemes [for example, “quasi-compact”, “connected”,
“normal”, “regular”] (respectively, morphisms of schemes [for example, “proper”,
“finite”, “étale”, “smooth”]). Then we shall say that a log scheme (respectively,
a morphism of log schemes) satisfies P if the underlying scheme (respectively,
the underlying morphism of schemes) satisfies P .

For a log scheme X log (respectively, a morphism f log of log schemes), we
shall denote by X the underlying scheme (respectively, by f the underlying
morphism of schemes). For fs log schemes X log, Y log, and Z log, we shall denote
by X log ×Y log Z log the fiber product of X log and Z log over Y log in the category
of fs log schemes. In general, the underlying scheme of X log ×Y log Z log is not

naturally isomorphic to X ×Y Z. However, since strictness (a morphism f log :
X log → Y log of log schemes is called strict if the induced morphism on the
sheaves of monoids determining the log schemes is an isomorphism) is stable
under base-change in the category of arbitrary log schemes, if X log → Y log is
strict, then the underlying scheme of X log ×Y log Z log is naturally isomorphic to
X ×Y Z.

If there exist both schemes and log schemes in a commutative diagram, then
we regard each scheme in the diagram as the log scheme obtained by equipping
the scheme with the trivial log structure.

We shall refer to the largest open subset (possibly empty) of the underlying
scheme of a log scheme on which the log structure is trivial as the interior of
the log scheme.
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Let X log be a log scheme, and α : MX → OX the log structure of X log.
Then we shall refer to the quotientMX/α−1(O∗X ) ofMX as the characteristic

sheaf of X log.

Curves:

Let f : X → S be a morphism of schemes. Then we shall say that f is
a curve if f is a smooth, geometrically connected morphism whose geometric
fibers are one-dimensional. Moreover, we shall say that f is a hyperbolic curve

(respectively, tripod) if there exist a proper curve f cpt : Xcpt → S whose geo-
metric fibers are of genus g and a relative divisor D ⊆ Xcpt which is finite étale
over S of relative degree r such that X and Xcpt \D are isomorphic over S, and
(g, r) satisfies 2g − 2 + r > 0 (respectively, (g, r) = (0, 3)).

We shall denote byMg,r the moduli stack of r-pointed stable curves of genus

g whose r sections are equipped with an ordering (cf. [9]), and by M
log

g,r the

log stack obtained by equipping Mg,r with the log structure associated to the
divisor with normal crossings which parametrizes singular curves. Moreover, we

shall write Mg
def
= Mg,0 and M

log

g
def
= M

log

g,0.

Fundamental groups:

For a locally noetherian, connected scheme X (respectively, log scheme X log)
equipped with a geometric point x → X (respectively, log geometric point
x̃log → X log), we shall denote by π1(X, x) (respectively, π1(X

log, x̃log)) the
fundamental group of X (respectively, log fundamental group of X log). Since
one knows that the fundamental group is determined up to inner automorphisms
independently of the choice of base-point, we shall often omit the base-point,
i.e., we shall often denote by π1(X) (respectively, π1(X

log)) the fundamental
group of X (respectively, log fundamental group of X log).

For a set Σ of prime numbers and a locally noetherian, connected scheme
X (respectively, log scheme X log), we shall refer to the maximal pro-Σ quo-
tient of π1(X) (respectively, π1(X

log)) as the pro-Σ fundamental group of X
(respectively, pro-Σ log fundamental group of X log). Moreover, for a geomet-
rically connected scheme X (respectively, log scheme X log) which is locally of
finite type over a field K, we shall refer to the quotient of π1(X) (respectively,
π1(X

log)) by the closed normal subgroup obtained as the kernel of the natural
projection from π1(X⊗K Ksep) (respectively, π1(X

log⊗K Ksep)) (where Ksep is
a separable closure of K) to its maximal pro-Σ quotient π1(X ⊗K Ksep)(Σ) (re-
spectively, π1(X

log⊗KKsep)(Σ)) as the geometrically pro-Σ fundamental group of
X (respectively, geometrically pro-Σ log fundamental group of X log). Thus, the

geometrically pro-Σ fundamental group π1(X)(Σ) of X (respectively, geometri-

cally pro-Σ log fundamental group π1(X
log)(Σ) of X log) fits into the following

exact sequence:

1 −→ π1(X ⊗K Ksep)(Σ) −→ π1(X)(Σ) −→ Gal(Ksep/K) −→ 1

(respectively,

1 −→ π1(X
log ⊗K Ksep)(Σ) −→ π1(X

log)(Σ) −→ Gal(Ksep/K) −→ 1).
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1 Exactness properties of the graded Lie alge-

bras arising from a family of curves

In this section, we consider some exactness properties of graded Lie algebras
arising from a family of curves.

Definition 1.1. Let l be a prime number, G, H , and A topologically finitely
generated pro-l groups, and φ : H � A a (continuous) surjective homomor-
phism. Suppose further that A is abelian, and that G is an l-adic Lie group.
Then (cf. [14], Definition 3.1):

(i) We shall refer to the central filtration

{H(n)} (n ≥ 1)

of H defined as
H(1)

def
= H ;

H(2)
def
= Ker φ ;

H(m)
def
= 〈[H(m1), H(m2)] | m1 + m2 = m〉 for m ≥ 3

(where 〈Ni | i ∈ I〉 is the group topologically generated by the Ni [i ∈ I ])
as the central filtration with respect to the surjection φ.

Let a, b, n ∈ Z such that 1 ≤ a ≤ b, n ≥ 1; we shall write

H(a/b)
def
= H(a)/H(b) ;

Gr(H)(n)
def
=

⊕

m≥n

H(m/m + 1) ;

Gr(H)
def
= Gr(H)(1) ;

Gr(H)(a/b)
def
= Gr(H)(a)/Gr(H)(b) ;

H(a/∞)
def
= lim
←−

H(a/b)

(where the projective limit is over all integers b ≥ a + 1).

(ii) We shall denote by Lie(G) the Lie algebra over Ql determined by the l-
adic Lie group G. We shall say that G is nilpotent if there exists a positive
integer m such that if we denote by {G(n)} the central filtration with
respect to the natural surjection G � Gab (cf. (i)), then G(m) = {1}.
If G is nilpotent, then Lie(G) is a nilpotent Lie algebra over Ql, hence
determines a connected, unipotent linear algebraic group Lin(G), which we
shall refer to as the linear algebraic group associated to G. In this situation,
there is a natural (continuous) homomorphism (with open image)

G −→ Lin(G)(Ql)

which is determined by the condition that it induces the identity morphism
on the associated Lie algebras (cf. [14], Remark 3.3.2). In the situation of
(i), if 1 ≤ a ∈ Z, then we shall write

Lie(H(a/∞))
def
= lim
←−

Lie(H(a/b)) ; Lin(H(a/∞))
def
= lim
←−

Lin(H(a/b))
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(where the projective limit is over all integers b ≥ a + 1). (Note that each
H(a/b) is an l-adic Lie group.)

Let K be a separably closed field, and l a prime number that is invertible
in K. Let S be a connected locally noetherian normal scheme over K. Let
g ≥ 2 and r be natural numbers. Let f : X → S be a hyperbolic curve of type

(g, r) (i.e., there exists a proper, smooth, geometrically connected morphism
f cpt : Xcpt → S whose geometric fibers are curves of genera g such that f

factors as the composite X ↪→ Xcpt fcpt

→ S of an open immersion X ↪→ Xcpt

onto the complement Xcpt \D of a relative divisor D which is finite étale over
S of relative degree r, and (g, r) satisfies 2g − 2 + r > 0). We shall denote by

π1(X)(l)

the geometrically pro-l fundamental group of X .

Lemma 1.2. Let s → S be a geometric point of S. Then the homomorphism

π1(X)(l) → π1(S) induced by f fits into an exact sequence:

1 −→ π1(X ×S s)(l)
via π1(pr1)
−→ π1(X)(l)

via π1(f)
−→ π1(S) −→ 1 .

Proof. If the finite étale covering D = Xcpt \X → S is empty or trivial (i.e.,
D is a disjoint union of copies of S, and the covering D → S is induced by the
identity morphism of S), then this follows from [20], Proposition 2.3. In general,
let S′ → S be a connected finite étale covering of S such that D ×S S′ → S′ is
trivial, then we obtain a commutative diagram

1 −−−−→ π1(X ×S s)(l) −−−−→ π1(X ×S S′)(l)
via π1(pr2)−−−−−−−→ π1(S

′) −−−−→ 1
∥∥∥

y
y

π1(X ×S s)(l) −−−−−−−→
via π1(pr1)

π1(X)(l) −−−−−−→
via π1(f)

π1(S) −−−−→ 1 ,

where the horizontal sequences are exact, and the vertical arrows are injective.

Thus, π1(X ×S s)(l)
via π1(pr1)→ π1(X)(l) is injective.

We shall denote by
∆X/S

the kernel of the homomorphism π1(X)(l) → π1(S) induced by f . Then by
Lemma 1.2, this pro-l group ∆X/S is isomorphic to the pro-l fundamental group
of a connected smooth hyperbolic curve X ×S s of type (g, r) (over a separably
closed field). We shall write

∆cpt
X/S

def
= ∆Xcpt/S ,

i.e., the pro-l fundamental group of a geometric fiber of a (unique, up to canon-
ical isomorphism [cf. the discussion entitled “Curves” in [12], Section 0]) com-
pactification f cpt : Xcpt → S of f : X → S. Then we have a natural surjection:

∆X/S � ∆cpt
X/S .
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We shall denote by
{∆X/S(n)}

the central filtration of ∆X/S with respect to the composite of the natural
surjections (cf. Definition 1.1, (i)):

∆X/S � ∆cpt
X/S � (∆cpt

X/S)ab .

Remark 1.3. As is well-known, the graded Lie algebra Gr(∆X/S) (where “Gr”
is taken with respect to the central filtration defined above) is center-free (cf.
e.g., [2], Theorem 1, (ii), together with [2], Proposition 5).

Now by Lemma 1.2, we obtain an outer representation:

ρX/S : π1(S) −→ Out(∆X/S) .

We shall denote by
Out∗(∆X/S) ⊆ Out(∆X/S)

the subgroup of Out(∆X/S) whose elements preserve the central filtration {∆X/S(n)}
of ∆X/S .

Remark 1.4. If r ≥ 2, then by the definition of Out∗(∆X/S), we obtain

Out∗(∆X/S) 6= Out(∆X/S) .

Indeed, this follows immediately from the definition of {∆X/S(n)}, together
with the fact that the assumption that r 6= 0 implies that the profinite group
∆X/S is a free pro-l group.

Proposition 1.5. The outer representation ρX/S factors through Out∗(∆X/S).

Proof. This follows from the fact that the exact sequence obtained in Lemma 1.2
fits into a commutative diagram

1 −−−−→ ∆X/S −−−−→ π1(X)(l)
via f
−−−−→ π1(S) −−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆cpt
X/S −−−−→ π1(X

cpt)(l) −−−−→
via f

π1(S) −−−−→ 1 ,

where the horizontal sequences are exact (cf. Lemma 1.2).

Definition 1.6. We shall say that f is of pro-l-exact type if the sequence

1 −→ ∆X/S −→ ∆X
via f
−→ ∆S −→ 1

naturally induced by the exact sequence obtained in Lemma 1.2 is exact, where
∆X (respectively, ∆S) is the pro-l fundamental group of X (respectively, S).

Proposition 1.7. The image of the composite

π1(S)
ρX/S
−→ Out∗(∆X/S) −→ Aut((∆cpt

X/S)ab)

is a pro-l group (e.g., the action of π1(S) on (∆cpt
X/S)ab is trivial) if and only if

f is of pro-l-exact type.
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Proof. It is immediate that if f is of pro-l-exact type, then ρX/S factors through
∆S . Thus, we prove that if the composite in the statement of Proposition 1.7
factors through ∆S , then f is of pro-l-exact type. It follows from [11], Lemma
3.1, (i), that the kernel of the natural morphism

Out∗(∆X/S) −→ Aut((∆cpt
X/S)ab)

is a pro-l group. Therefore, the assumption implies that the homomorphism
ρX/S factors through ∆S . Now let us write

Γ
def
= ∆X/S

out
o ∆S

(cf. the discussion entitled “Groups” in Introduction). Then we have a natural

morphism π1(X)(l) → Γ that fits into a commutative diagram

1 −−−−→ ∆X/S −−−−→ π1(X)(l)
via f
−−−−→ π1(S) −−−−→ 1

∥∥∥
y

y

1 −−−−→ ∆X/S −−−−→ Γ −−−−→
pr2

∆S −−−−→ 1 ,

where the horizontal sequences are exact. Note that since π1(S) → ∆S is

surjective, π1(X)(l) → Γ is also surjective, and that since ∆X/S and ∆S are
pro-l, Γ is also pro-l. Now we shall denote by N1 (respectively, N2) the kernel

of the natural surjection π1(X)(l) → ∆X (respectively, π1(X)(l) → Γ). Then
the following hold:

(i) N1 ⊆ N2. (This follows from the fact that Γ is pro-l.)

(ii) ∆X/S ∩N2 = {1}. (This follows from the above diagram.)

(iii) ∆X/S ∩N1 = {1}. (This follows from (i) and (ii).)

By (ii) and (iii), the following natural sequence is exact

1 −→ ∆X/S −→ ∆X −→ π1(S)/N3 −→ 1 ,

where N3 is the image of N1 via the surjection π1(X)(l) � π1(S). Moreover, by
(i), this exact sequence fits into a commutative diagram

1 −−−−→ ∆X/S −−−−→ π1(X)(l) −−−−→ π1(S) −−−−→ 1
∥∥∥

y
y

1 −−−−→ ∆X/S −−−−→ ∆X −−−−→ π1(S)/N3 −−−−→ 1
∥∥∥

y
y

1 −−−−→ ∆X/S −−−−→ Γ −−−−→ ∆S −−−−→ 1 ,

where the horizontal sequences are exact, and all vertical arrows are surjective.
Since ∆X is pro-l, the group π1(S)/N3 is also pro-l. Thus, the right-hand lower
vertical arrow π1(S)/N3 → ∆S , hence also, ∆X → Γ is an isomorphism. This
completes the proof of Proposition 1.7.
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Let AX and AS be profinite abelian groups, and ∆X � AX and ∆S � AS

(continuous) surjections. Then we shall denote by

{∆X(n)} (respectively, {∆S(n)})

the central filtration with respect to the surjection ∆X � AX (respectively,
∆S � AS) (thus, AX ' ∆X(1/2) and AS ' ∆S(1/2)).

Now we assume that f is of pro-l-exact type. Moreover, we also assume that
the surjections ∆X � AX and ∆S � AS fit into a commutative diagram

1 −−−−→ ∆X/S −−−−→ ∆X
via f
−−−−→ ∆S −−−−→ 1

y
y

y

1 −−−−→ (∆cpt
X/S)ab −−−−→ AX −−−−→ AS −−−−→ 1 ,

where the bottom sequence is also exact. By the commutativity of the above
diagram, the morphisms ∆X/S → ∆X and ∆X → ∆S preserve the central
filtrations on these groups associated to the abelian quotients in the bottom
sequence.

Definition 1.8. We assume that f is of pro-l-exact type. Then we shall say
that (f , ∆X → AX , ∆S → AS) is of Lie-exact type if the sequence of graded
Lie algebras

1 −→ Gr(∆X/S) −→ Gr(∆X )
via f
−→ Gr(∆S) −→ 1

(where “Gr” is taken with respect to the central filtrations defined above) nat-
urally induced by the exact sequence in Definition 1.6 is exact.

Proposition 1.9. We assume that f is of pro-l-exact type. Then the following

conditions are equivalent:

(i) (f , ∆X → AX , ∆S → AS) is of Lie-exact type.

(ii) The action of ∆X on ∆X/S(n/n+1) and the action of ∆X(2) on ∆X/S(n/n+
2) (induced via conjugation) are trivial for any n ≥ 1.

(ii′) The action of ∆S on ∆X/S(n/n+1) and the action of ∆S(2) on ∆X/S(n/n+
2) (induced via ρX/S) are trivial for any n ≥ 1.

(iii) The action of ∆X(m) on ∆X/S(n/n + m) (induced via conjugation) is

trivial for any n, m ≥ 1.

Proof. First, we prove that (i) implies (ii). If (ii) does not hold, then there exists
x ∈ ∆X/S(n) and σ ∈ ∆X(m) (where m = 1 or 2) such that σ · x · σ−1 · x−1 /∈
∆X/S(n + m). On the other hand, by the definition of the filtration {∆X(n)},
we have that σ ·x·σ−1 ·x−1 ∈ ∆X (n+m)∩∆X/S . Thus, ∆X/S(n+m) 6= ∆X(n+
m) ∩ ∆X/S . This implies that the natural morphism Gr(∆X/S) → Gr(∆X ) is
not injective. Thus, (i) does not hold.

Next, we prove that (ii) implies (iii). This proof will be by induction on m.
The assertion for m = 1 and 2 follows from (ii). Assume that m ≥ 3. Then it
follows from the induction hypothesis and an well-known identity due to P. Hall
(i.e.,

[A, [B, C]] ⊆ [B, [C, A]] · [C, [A, B]]
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for closed normal subgroups A, B, and C of an ambient group [cf. e.g., [10],
Theorem 5.2]) that

[∆X/S(n), [∆X (m1), ∆X (m2)]] ⊆ ∆X/S(n + m)

for positive integers m1 and m2 such that m1+m2 = m. Thus, since, in general,
for a finite set I ,

〈[G, Hi] | i ∈ I〉 = [G, 〈Hi | i ∈ I〉]

for closed normal subgroups Hi (i ∈ I) of an ambient group G, we thus obtain
an inclusion

[∆X/S(n), ∆X(m)] ⊆ ∆X/S(n + m)

by the definition of the filtration {∆X(n)}. Therefore, we conclude that (iii)
holds.

The assertion that (iii) implies (i) follows from a similar argument to the
argument used in the proof of [11], Proposition 3.2 (cf. also Remark 1.3 and
[11], Lemma 3.2).

The equivalence of (ii) and (ii′) follows immediately from the exactness of
the following sequences:

1 −→ ∆X/S −→ ∆X −→ ∆S −→ 1 ;

1 −→ ∆X/S(2) −→ ∆X (2) −→ ∆S(2) −→ 1 .

Lemma 1.10. Let Icpt be the kernel of the surjection

∆X/S � ∆cpt
X/S .

Let s→ S be a geometric point of S. We shall write

Ds
def
= D ×S s ,

where D ⊆ Xcpt is the reduced relative divisor over S obtained as the comple-

ment of X in Xcpt. Then the following hold:

(i) The submodule

(∆cpt
X/S)ab = ∆X/S(1/2) ⊆ Gr(∆X/S)

and the submodule

Icpt/(∆X/S(3) ∩ Icpt) ⊆ ∆X/S(2/3) ⊆ Gr(∆X/S)

generate the graded Lie algebra Gr(∆X/S) (as a Lie algebra). In particular,

if f is of pro-l-exact type, then the following conditions are equivalent:

(1) The action of ∆X on ∆X/S(n/n + 1) (induced via conjugation) is

trivial for any n ≥ 1.

(1′) The action of ∆S on ∆X/S(n/n+1) (induced via ρX/S) is trivial for

any n ≥ 1.
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(2) The action of ∆X on (∆cpt
X/S)ab and Icpt/(∆X/S(3) ∩ Icpt) (induced

via conjugation) is trivial.

(2′) The action of ∆S on (∆cpt
X/S)ab and Icpt/(∆X/S(3) ∩ Icpt) (induced

via ρX/S) is trivial.

(ii) The submodule

Icpt/(∆X/S(3) ∩ Icpt) ⊆ ∆X/S(2/3)

is a free Zl-module in the formal generators ζ, where ζ ranges over the

elements of the underlying set of Ds. Moreover, the action of ∆S on

Icpt/(∆X/S(3) ∩ Icpt) (induced via ρX/S) is compatible with the natural

action of ∆S on Ds.

Proof. This follows immediately from [8], Proposition 1.

Corollary 1.11. If the quotient ∆S → AS of ∆S coincides with the abelianiza-

tion of ∆S, and the action of π1(S) on (∆cpt
X/S)ab and on Icpt/∆X/S(3) ∩ Icpt

(induced via ρX/S) are trivial, then f is of pro-l-exact type, and (f , ∆X → AX ,

∆S → ∆ab
S [= AS ]) is of Lie-exact type.

Proof. This follows immediately from Propositions 1.7; 1.9; Lemma 1.10, to-
gether with the well-known identity due to P. Hall applied in the proof of
Proposition 1.9.

Definition 1.12. Let m be a natural number.

(i) We shall say that

Xm
fm−1
−→ Xm−1

fm−2
−→ · · ·

f1
−→ X1

f0
−→ X0 = Spec K ,

is a successive extension of hyperbolic curves of product type if there ex-
ist proper hyperbolic curves Ci (i = 0, · · · , m − 1) over K which satisfy
the following condition: The morphism fi : Xi+1 → Xi factors as the
composite

Xi+1 ↪→ Ci ×K Xi
pr2−→ Xi

of an open immersion Xi+1 ↪→ Ci ×K Xi onto the complement (Ci ×K

Xi) \Di of a relative divisor Di which is finite étale over Xi.

Note that it is immediate that Xi is a regular scheme of dimension i, that
fi is a smooth family of connected hyperbolic curves, and that the fi’s
induce an open immersion Xi ↪→ C0 ×K · · · ×K Ci−1.

(ii) Let

Xm
fm−1
−→ Xm−1

fm−2
−→ · · ·

f1
−→ X1

f0
−→ X0 = Spec K

be a successive extension of hyperbolic curves of product type. Then we
shall denote by

{∆Xi(n)}

the central filtration with respect to the composite of the natural surjec-
tions

∆Xi � ∆C0×K ···×KCi−1 � ∆ab
C0×K ···×KCi−1

(' ∆ab
C0
× · · · ×∆ab

Ci−1
) ,
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where the first arrow is the morphism induced by the open immersion
Xi ↪→ C0 ×K · · · ×K Ci−1 (cf. (i)).

Note that it is immediate that the following sequence is exact:

1 −→ ∆Xi+1/Xi
(1/2) −→ ∆Xi+1(1/2)

via fi
−→ ∆Xi (1/2) −→ 1 .

Corollary 1.13. Let

Xm
fm−1
−→ Xm−1

fm−2
−→ · · ·

f1
−→ X1

f0
−→ X0 = Spec K

be a successive extension of hyperbolic curves of product type, and 0 ≤ i ≤ m−1
an integer. Then the following hold:

(i) The morphism fi is of pro-l-exact type.

(ii) The following conditions are equivalent:

(1) The relative divisor Di (which appears in Definition 1.12, (i)) is

empty or the finite étale covering Di → Xi is trivial (i.e., Di is a

disjoint union of copies of Xi, and the covering Di → Xi is induced

by the identity morphism of Xi).

(2) (fi, ∆Xi+1 → ∆Xi+1(1/2), ∆Xi → ∆Xi(1/2)) is of Lie-exact type.

Proof. First, we prove assertion (i). Since the diagram

1 −−−−→ ∆Xi+1/Xi
−−−−→ π1(Xi+1)

(l) via fi
−−−−→ π1(Xi) −−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆cpt
Xi+1/Xi

−−−−→ π1(Ci ×K Xi)
(l) via pr2−−−−→ π1(Xi) −−−−→ 1

∥∥∥
∥∥∥

∥∥∥

1 −−−−→ ∆Ci −−−−→ ∆Ci × π1(Xi)
pr2−−−−→ π1(Xi) −−−−→ 1

commutes, the action of π1(Xi) on ∆cpt
Xi+1/Xi

is trivial; thus, assertion (i) follows

from Proposition 1.7.
Next, we prove assertion (ii). Assume that condition (1) holds. Then, by

Lemma 1.10, (ii), the action of ∆Xi on Icpt/(∆Xi+1/Xi
(3)∩Icpt) is trivial. Thus,

in light of the triviality of the action of π1(Xi) on ∆cpt
Xi+1/Xi

(observed in the

proof of assertion (i)), we conclude that the action of ∆Xi on ∆Xi+1/Xi
(n/n +

1) is trivial for any n ≥ 1 (cf. Lemma 1.10, (i)). Thus, it follows from the
equivalence of (i) and (ii′) in Proposition 1.9 that it is enough to show that
the action of ∆Xi(2) on ∆Xi+1/Xi

(n/n + 2) is trivial for any n ≥ 1. Moreover,

by the triviality of the action of π1(Xi) on ∆cpt
Xi+1/Xi

(observed in the proof of

(i)), together with the well-known identity due to P. Hall applied in the proof
of Proposition 1.9, the action of [∆Xi , ∆Xi ] on ∆Xi+1/Xi

(n/n + 2) is trivial for
any n ≥ 1. Since ∆Xi(2) is generated by [∆Xi , ∆Xi ] and the kernel I of the
natural surjection ∆Xi � ∆C0×K ···×KCi−1(' ∆C0×· · ·×∆Ci−1), it is enough to
show that the action of I on ∆Xi+1/Xi

(n/n + 2) is trivial for any n ≥ 1. On the
other hand, I is topologically normally generated by the inertia subgroups (well-
defined, up to conjugation) of ∆Xi determined by the irreducible components of
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the divisor with normal crossings (C0×K · · ·×K Ci−1)\Xi ⊆ C0×K · · ·×K Ci−1

(by the purity theorem [cf. [4], Exposé X, Theorem 3.4], together with the
regularity of C0 ×K · · · ×K Ci−1), it is enough to show that the action of these
inertia subgroups on ∆Xi+1/Xi

(n/n + 2) is trivial for any n ≥ 1.
For any positive integer N , we shall denote by Ci (N) (respectively, UCi (N)

)

the fiber product of N copies of Ci over Spec K (respectively, the N -th config-
uration space of Ci, i.e., the scheme which represents the open subfunctor

S 7→ {(s1, · · · , sN) ∈ Ci (N)(S) = Ci(S)×N | sn 6= sm if n 6= m}

of the functor represented by Ci (N)). By (1), if we denote by r the degree

of the (trivial) covering Di → Xi, then there exist “classifying morphisms”

Xi
gi
→ UCi (r)

and Xi+1
gi+1
→ UCi (r+1)

that fit into the following cartesian diagram

Xi+1
gi+1
−−−−→ UCi (r+1)

fi

y
y

Xi −−−−→
gi

UCi (r)
,

where the right-hand vertical arrow is the morphism induced by the morphism
Ci (r+1) → Ci (r) obtained by forgetting the (r + 1)-st factor. Thus, we obtain a

commutative diagram

1 −−−−→ ∆Xi+1/Xi
−−−−→ ∆Xi+1

via fi
−−−−→ ∆Xi −−−−→ 1

y via gi+1

y
yvia gi (∗)

1 −−−−→ ∆UCi (r+1)
/UCi (r)

−−−−→ ∆UCi (r+1)
−−−−→ ∆UCi (r)

−−−−→ 1 ,

where the horizontal sequences are exact, and the left-hand vertical arrow is an
isomorphism. Note that the sequence

UCi (r)
−→ UCi (r−1)

−→ · · · −→ UCi (2)
−→ Ci −→ Spec K

(where the morphism UCi (N+1)
−→ UCi (N)

[where 1 ≤ N ≤ r − 1] is the mor-
phism induced by the morphism Ci (N+1) → Ci (N) obtained by forgetting the

(N +1)-st factor) is a successive extension of hyperbolic curves of product type;
thus, the filtration {∆UCi (r)

(n)} is defined (cf. Definition 1.12, (ii)); moreover,

since the sequence

1 −→ Gr(∆UCi (r+1)
/UCi (r)

) −→ Gr(∆UCi (r+1)
) −→ Gr(∆UCi (r)

) −→ 1

(naturally induced by the bottom sequence in the commutative diagram (∗)) is
exact (cf. [11], Proposition 3.2, (i)), by the equivalence in Proposition 1.9, (i)
and (ii′), the action of ∆UCi (r)

(2) on ∆UCi (r+1)
/UCi (r)

(n/n+2) is trivial for any

n ≥ 1. Thus, by the commutativity of the above diagram (∗) and the fact that
the left-hand vertical arrow in the above diagram (∗) is an isomorphism, to prove
assertion that condition (1) implies condition (2), it is enough to show that the

composite Xi
gi
→ UCi (r)

↪→ Ci (r) extends to the generic points of the irreducible
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components of the divisor with normal crossings (C0 ×K · · · ×K Ci−1) \ Xi ⊆
C0 ×K · · · ×K Ci−1. However, this follows from the properness of Ci (r). This

completes the proof that condition (1) implies condition (2).
Next, we assume that (fi, ∆Xi+1 → ∆Xi+1(1/2), ∆Xi → ∆Xi(1/2)) is of

Lie-exact type. Then the equivalence of (i) and (ii′) in Proposition 1.9 and the
equivalence of (1′) and (2′) in Lemma 1.10, (i) imply that the action of ∆Xi

on Icpt/(∆Xi+1/Xi
(3) ∩ Icpt), where Icpt is the kernel of the natural surjection

∆Xi+1/Xi
� ∆cpt

Xi+1/Xi
, is trivial. Therefore, by Lemma 1.10, (ii), we conclude

that either the relative divisor Di is empty, or the finite étale covering Di → Xi

is trivial.

Remark 1.14. Note that the fact that

the action of the inertia subgroups of ∆Xi(2) on ∆Xi+1/Xi
(n/n + 2)

is trivial for any n ≥ 1.

can also be proven as follows. Note that we showed the above claim in the
proof of Corollary 1.13 by means of [11], Proposition 3.2, (i), which is proven
via transcendental techniques; however, the following proof is purely algebraic:

To prove the assertion, it is immediate that we may assume that there exists a

finite field k such that Xi+1
fi
→ Xi descends to k. (We denote by Gk the absolute

Galois group of k, by Frk ∈ Gk the Frobenius element, and by qk the cardinality
of k.) Then by the “Riemann hypothesis for abelian varieties over finite fields”
(cf. e.g., [16], p. 206) (respectively, as is well-known), the eigenvalues of the
action of Frk on the Gk-module ∆Xi+1/Xi

(n/n + 1) (respectively, the inertia
subgroup) are algebraic numbers all of whose complex absolute values are equal

to q
n/2
k (respectively, qk), i.e., the Gk-module ∆Xi+1/Xi

(n/n + 1) (respectively,
the inertia subgroup) is “of weight n” (respectively, “of weight 2”). In particular,
the Gk-module

HomGk
(∆Xi+1/Xi

(n/n + 1), ∆Xi+1/Xi
(n + 1/n + 2))

is “of weight 1”. On the other hand, since the action of the inertia subgroup on
∆Xi+1/Xi

(n/n+1) and ∆Xi+1/Xi
(n+1/n+2) is trivial, by the exactness of the

sequence

1 −→ ∆Xi+1/Xi
(n+1/n+2) −→ ∆Xi+1/Xi

(n/n+2) −→ ∆Xi+1/Xi
(n/n+1) −→ 1 ,

the action of the inertia subgroup on ∆Xi+1/Xi
(n/n + 2) determines (and is

determined by!) a Gk-equivariant homomorphism from the inertia subgroup to

HomGk
(∆Xi+1/Xi

(n/n + 1), ∆Xi+1/Xi
(n + 1/n + 2)) .

Thus, by considering the “weights” of the domain and codomain of this Gk-
equivariant homomorphism, we conclude that the Gk-equivariant homomor-
phism is trivial; in particular, the action of the inertia subgroup on ∆Xi+1/Xi

(n/n+
2) is trivial.
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2 Fundamental groups of configuration spaces

over finite fields

In this section, we consider the group-theoretic properties of the fundamental
groups of configuration spaces.

Let K be a field, and l a prime number that is invertible in K. We shall
fix a separable closure Ksep of K. We shall denote by GK the Galois group of
Ksep over K. Moreover, in the following, let X be a proper hyperbolic curve of
genus gX ≥ 2 over K.

Definition 2.1. Let r be a natural number.

(i) We shall denote by X(r) the fiber product of r copies of X over Spec K,
i.e.,

X(r)
def
=

r︷ ︸︸ ︷
X ×K · · · ×K X .

For an integer 1 ≤ i ≤ r, we shall denote by pX(r−1) :i : X(r) → X(r−1) the

morphism obtained by forgetting the i-th factor.

(ii) We shall denote by UX(r)
⊆ X(r) the r-th configuration space of X , i.e.,

the scheme which represents the open subfunctor

S 7→ {(f1, · · · , fr) ∈ X(r)(S) = X(S)×r | fi 6= fj if i 6= j}

of the functor represented by X(r). For an integer 1 ≤ i ≤ r, we shall

denote by pUX(r−1)
:i : UX(r)

→ UX(r−1)
the morphism induced by pX(r−1) :i.

Let 1 ≤ i < j ≤ r be an integers. Then we shall denote by DX(r){i,j} ⊆

X(r) the closed subscheme of X(r) which represents the closed subfunctor

S 7→ {(f1, · · · , fr) ∈ X(r)(S) = X(S)×r | fi = fj}

of the functor represented by X(r). Then it is immediate that

UX(r)
= X(r) \

⋃

1≤i<j≤r

DX(r){i,j} .

(iii) We shall denote by ΠX(r)
the geometrically pro-l fundamental group of

X(r), and by ∆X(r)
the kernel of the natural surjection

ΠX(r)
� GK .

Thus, we have an exact sequence

1 −→ ∆X(r)
−→ ΠX(r)

−→ GK −→ 1 .

Moreover, we shall write

ΠX
def
= ΠX(1)

; ∆X
def
= ∆X(1)

.
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(iv) We shall denote by ΠX(r)
the geometrically pro-l fundamental group of

UX(r)
, by ∆X(r)

the kernel of the natural surjection

ΠX(r)
� GK ,

and by ∆
(i)
X(r)/X(r−1)

the kernel of the surjection

∆X(r)

via pUX(r−1)
:i

� ∆X(r−1)
(i = 1, · · · , r) .

Thus, we have exact sequences

1 −→ ∆X(r)
−→ ΠX(r)

−→ GK −→ 1 ;

1 −→ ∆
(i)
X(r)/X(r−1)

−→ ∆X(r)

via pUX(r−1)
:i

−→ ∆X(r−1)
−→ 1 ;

1 −→ ∆
(i)
X(r)/X(r−1)

−→ ΠX(r)

via pUX(r−1)
:i

−→ ΠX(r−1)
−→ 1 .

Note that since the sequence obtained as the base-change of

UX(r)

pUX(r−1)
:r

−→ UX(r−1)

pUX(r−2)
:r−1

−→ · · ·
pUX(1)

:2

−→ X −→ Spec K

from K to Ksep is a successive extension of hyperbolic curves of prod-
uct type (cf. Definition 1.12, (i)), the family of smooth curve UX(r)

⊗K

Ksep
via pUX(r−1)

:i

→ UX(r−1)
⊗K Ksep is of pro-l exact type (cf. Corol-

lary 1.13, (i)); thus the pro-l group ∆
(i)
X(r)/X(r−1)

is isomorphic to the

pro-l fundamental group of the geometric fiber of the family of smooth

curve UX(r)
⊗K Ksep

via pUX(r−1)
:i

→ UX(r−1)
⊗K Ksep at a geometric point of

UX(r−1)
⊗K Ksep.

Proposition 2.2. Let r be a positive integer. Then the profinite groups ∆X(r)
,

∆X(r)
, and ∆

(i)
X(r)/X(r−1)

are slim.

Proof. The slimness of ∆
(i)
X(r)/X(r−1)

(in particular, the slimness of ∆X ) follows

from [1], Propositions 8; 18. The slimness of ∆X(r)
follows from the slimness of

∆X , together with the fact that ∆X(r)
is the product of r copies of ∆X . The

slimness of ∆X(r)
follows from induction on r, the slimness of ∆

(i)
X(r)/X(r−1)

, and

the exactness of the sequence

1 −→ ∆
(i)
X(r)/X(r−1)

−→ ∆X(r)

via pUX(r−1)
:i

−→ ∆X(r−1)
−→ 1

in Definition 2.1, (iv).

Next, let us recall the theory of log configuration schemes (cf. [7], Section

1). Let us denote by X log
(r) the r-th log configuration scheme of X , i.e.,

X log
(r)

def
= Spec K ×

M
log
g
M

log

g,r ,
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where the (1-)morphism Spec K → M
log

g is the classifying morphism of the

curve X → Spec K, and the (1-)morphism M
log

g,r → M
log

g is the (1-)morphism

obtained by forgetting the sections; and by plog
X(r−1) :i

: X log
(r) → X log

(r−1) the mor-

phism induced by the (1-)morphismM
log

g,r →M
log

g,r−1 obtained by forgetting the
i-th section (cf. [7], Definition 1.1). Then, by definition, the interior of the log

scheme X log
(r) is naturally isomorphic to the usual r-th configuration space UX(r)

of X , and we have a natural commutative diagram:

UX(r)
−−−−→ X log

(r) −−−−→ X(r)

pUX(r−1)
:i

y
yplog

X(r−1):i

ypX(r−1):i

UX(r−1)
−−−−→ X log

(r−1) −−−−→ X(r−1) .

This diagram induces a sequence

ΠX(r)
−→ π1(X

log
(r) )

(l) −→ ΠX(r)
,

where π1(X
log
(r) )

(l) is the geometrically pro-l log fundamental group of X log
(r) .

Now by [7], Lemma 2.7, the first morphism ΠX(r)
→ π1(X

log
(r) )

(l) (in the above

sequence) is an isomorphism.

Let I be a subset of {1, 2, · · · , r} of cardinality I# ≥ 2. We denote by Dlog
X(r)I

the log scheme defined in [7], Definition 1.10, and by δlog
X(r)I

: Dlog
X(r)I

↪→ X log
(r)

the strict closed immersion defined in [7], Definition 1.10. Now if 1 ≤ i < j ≤ r

are integers, then plog
X(r) :i

◦ δlog
X(r+1){i,j}

= plog
X(r):j

◦ δlog
X(r+1){i,j}

(cf. the proof of [7],

Lemma 1.14), and these composite are morphisms of type N (cf. [6], Definition

4.1; [7], Lemma 1.14). Let x → X log
(r) be a geometric point whose image lies on

the interior UX(r)
of X log

(r) . Then we obtain the following commutative diagram:

Dlog
X(r+1){i,j}

×Xlog
(r)

x
pr1−−−−→ Dlog

X(r+1){i,j}

plog
X(r) :i

◦δlog
X(r+1){i,j}

−−−−−−−−−−−−−→ X log
(r)y

yδlog
X(r+1){i,j}

∥∥∥

X log
(r+1) ×Xlog

(r)
x −−−−→

pr1
X log

(r+1) −−−−→
plog

X(r) :i

X log
(r) .

This diagram induces a commutative diagram

1 −−−−→ π1(D
log
X(r+1){i,j}

×Xlog
(r)

x)(l)
via pr1−−−−→ π1(D

log
X(r+1){i,j}

)(l)

y
yvia δlog

X(r+1){i,j}

1 −−−−→ ∆
(i)
X(r+1)/X(r)

−−−−→ ΠX(r+1)

via plog
X(r) :i

◦δlog
X(r+1){i,j}

−−−−−−−−−−−−−−−→ ΠX(r)
−−−−→ 1

∥∥∥

−−−−−−→
via plog

X(r) :i

ΠX(r)
−−−−→ 1 ,

18



where the horizontal sequences are exact (cf. [6], Proposition 4.22; [7], Remark

2.8, (i)). By [6], Proposition 4.22, we have π1(D
log
X(r+1){i,j}

×Xlog
(r)

x)(l)
∼
→ Zl(1);

moreover, by the definition of Dlog
X(r+1){i,j}

, it follows that the left-hand vertical

arrow π1(D
log
X(r+1){i,j}

×Xlog
(r)

x)(l) → ∆
(i)
X(r+1)/X(r)

is injective, and this image is

the inertia subgroup (well-defined, up to conjugation) associated to the cusp (of
the geometric fiber of pUX(r)

:i : UX(r+1)
→ UX(r)

at a geometric point of UX(r)
)

determined by the divisor DX(r+1){i,j} ⊆ X(r+1). In particular, the vertical

arrow π1(D
log
X(r+1){i,j}

)(l) → ΠX(r+1)
in the above diagram is also injective.

Definition 2.3. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r} of
cardinality I# ≥ 2. Then we shall denote by DX(r)I the image of the morphism

π1(D
log
X(r)I

)(l) → ΠX(r)
induced by δlog

X(r)I
, where π1(D

log
X(r)I

)(l) is the geometri-

cally pro-l log fundamental group of Dlog
X(r)I

. We shall denote by D∆
X(r)I

the

intersection of DX(r)I and ∆X(r)
. Note that these subgroups are well-defined,

up to conjugation in ΠX(r)
.

Moreover, if I# ≥ 3, then by [7], Proposition 1.12, (iii), the composite

Dlog
X(r)I

δlog
X(r)I

↪→ X log
(r)

plog
X(r−1):i

−→ X log
(r−1)

factors through δlog
X(r−1)I[i] : Dlog

X(r−1)I[i] ↪→ X log
(r−1), where I [i] is a unique subset

of {1, 2, · · · , r − 1} such that for 1 ≤ j ≤ r − 1, j ∈ I [i] if and only if

{
j ∈ I if j < i

j + 1 ∈ I if j ≥ i .

On the other hand, by a similar argument to the argument in the proof of [7],
Lemmas 1.14; 1.19, there exists a morphism

Dlog
X(r)I

−→ X log
(r−I#+1)

×K M
log

0,I#+1

which is of type N; moreover, these morphisms fit into a commutative diagram

Dlog
X(r)I

−−−−→ X log
(r−I#+1)

×K M
log

0,I#+1y
y

Dlog
X(r)I[i] −−−−→ X log

(r−(I [i])#+1)
×K M

log

0,(I[i])#+1 ,

where the left-hand vertical arrow is the morphism induced by the compos-
ite plog

X(r−1) :i
◦ δlog

X(r)I
, and if i /∈ I (respectively, i ∈ I), then the right-hand

vertical arrow is the morphism obtained as the base-change of the morphism

plog
X

(r−I#)
:i′ : X log

(r−I#+1)
→ X log

(r−(I [i])#+1)
= X log

(r−I#)
(respectively, M

log

0,I#+1 →

M
log

0,(I[i])#+1 =M
log

0,I# obtained by forgetting the i′-th section), where i′ is the
integer such that {1, 2, · · · , r} \ I = {i1, i2, · · · , ir−I#}; i1 ≤ i2 ≤ · · · ≤ ir−I# ;
i = ii′ (respectively, I = {i1, i2, · · · , iI#}; i1 ≤ i2 ≤ · · · ≤ iI# ; i = ii′). Now it
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follows from [6], Proposition 4.22; Remark 4.24, together with a similar argu-
ment to the argument in the proof of [7], Lemma 2.7, (iv); (v), that the above
diagram induces a commutative diagram

1 −−−−→ Zl(1) −−−−→ π1(D
log
X(r)I

)(l)

y
y

1 −−−−→ Zl(1) −−−−→ π1(D
log
X(r)I[i])

(l)

−−−−→ ΠX
(r−I#+1)

×GK π1(M
log

0,I#+1)
(l) −−−−→ 1

y

−−−−→ ΠX
(r−(I[i] )#+1)

×GK π1(M
log

0,(I[i])#+1)
(l) −−−−→ 1 ,

where π1(M
log

0,−)(l) is the geometrically pro-l log fundamental group of M
log

0,−,
and the horizontal sequences are exact; moreover, by considering the restric-
tion of Dlog

X(r)I
→ Dlog

X(r)I[i] to the generic point of Dlog
X(r)I

, the left-hand vertical

arrow is an isomorphism. Thus, the kernel of the morphism π1(D
log
X(r)I

)(l) →

π1(D
log
X(r)I[i])

(l) (in the above diagram) is isomorphic to the kernel of the mor-

phism ΠX
(r−I#+1)

via plog

X
(r−I#)

:i′

→ ΠX
(r−I#)

(respectively, π1(M
log

0,I#+1)
(l) → π1(M

log

0,I#)(l)

induced by the morphism M
log

0,I#+1 → M
log

0,I# obtained by forgetting the i′-th

section). Now the fiber of the morphism M
log

0,I#+1 →M
log

0,I# (obtained by for-

getting the i′-th section) at a geometric point of Spec Ksep → M
log

0,I# whose

image lies on the interior ofM
log

0,I# is isomorphic to the log scheme obtained by
equipping P1

Ksep with the log structure associated to the reduced divisor consist-
ing of I# elements of P1

Ksep(Ksep); thus, if i ∈ I , then the kernel of the morphism

π1(D
log
X(r)I

)(l) → π1(D
log

X(r)I[i])
(l) (induced by the composite plog

X(r−1):i
◦ δlog

X(r)I
) is

the free profinite group of rank I#−1. More precisely, if we denote by ∆P\I# the
pro-l fundamental group of the log scheme obtained by equipping P1

Ksep with
the log structure associated to the reduced divisor consisting of I# elements
of P1

Ksep(Ksep), then the kernel of π1(D
log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l) is naturally

isomorphic to ∆P\I# ; moreover, by base-changing the exact sequence

1 −→ Zl(1) −→ π1(D
log
X(r)I

)(l) −→ ΠX
(r−I#+1)

×GK π1(M
log

0,I#)(l) −→ 1

via the natural inclusion ∆P\I#
∼
→ {1}×{1}∆P\I# ↪→ ΠX

(r−I#+1)
×GK π1(M

log

0,I#+1)
(l),

we obtain an exact sequence

1 −→ Zl(1) −→ PX(r)I −→ ∆P\I# −→ 1 ,

where

PX(r)I
def
= π1(D

log
X(r)I

)(l) ×
(ΠX

(r−I#+1)
×GK

π1(M
log

0,I# )(l))
∆P\I# .

Now by considering the kernel of the morphism π1(D
log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l)
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(induced by the composite plog
X(r−1) :i

◦ δlog
X(r)I

), we obtain a section

∆P\I# −→ PX(r)I

of the above exact sequence. We shall refer to this section ∆P\I# → PX(r)I of

the above exact sequence as the section of PX(r)I → ∆P\I# induced by plog
X(r−1) :i

.

Definition 2.4. Let r ≥ 2 be an integer, and I a subset of {1, 2, · · · , r} of
cardinality I# ≥ 2. Then we shall denote by IX(r)I the kernel of the surjection

DX(r)I � ΠX
(r−I#+1)

×GK π1(M
log

0,I#+1)
(l)

obtained in the above argument. (Note that these subgroups are well-defined,
up to conjugation in ΠX(r)

.) By the above argument, IX(r+1){i,j} is the iner-
tia subgroup (well-defined, up to conjugation) associated to the cusp (of the
geometric fiber of pUX(r)

:i : UX(r+1)
→ UX(r)

at a geometric point of UX(r)
)

determined by the divisor DX(r+1){i,j} ⊆ X(r+1).

Lemma 2.5. In the above situation, the image via the section of PX(r)I →

∆P\I# induced by plog
X(r−1) :i

of the (I# − 1) inertia subgroups of ∆P\I# (well-

defined, up to conjugation in ∆P\I#) corresponding to inertia subgroups associ-

ated to the cusps (of a geometric fiberM
log

0,I#+1 →M
log

0,I# obtained by forgetting

the i′-th section) determined by the first (I#−1) sections ofM
log

0,I#+1 →M
log

0,I#

are conjugates of IX(r+1){i,j} in ∆X(r)
, where j ∈ I.

Proof. Let xlog → Dlog
X(r−1)

be a strict geometric point of Dlog
X(r−1)

(cf. [6], Def-

inition 1.1, (i)) whose image is the generic point. First, we consider the log

structure of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog (where the morphism Dlog

X(r)I
→ Dlog

X(r−1)I[i]

is the morphism induced by plog
X(r−1) :i

◦ δlog
X(r)I

) and xlog. It is immediate that the

log structure of xlog has the chart:

N −→ k(x)
n 7→ 0n .

By the definitions, the underlying scheme of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog is the pro-

jective line P1
x over x, and the log structure of Dlog

X(r)I
×Dlog

X(r−1)I[i]
xlog has the

following chart:

Let y → P1
x be a geometric point of the underlying scheme DX(r)I×D

X(r−1)I[i]

x (' P1
x) of Dlog

X(r)I
×Dlog

X(r−1)I[i]
xlog. Then the following hold:

(1) If the image of y → P1
x does not lie on the Dlog

X(r){i,j}
’s (where

j ∈ I), then the log structure of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog at

y → P1
x is induced by

N −→ k(y)[[t]]
n 7→ 0n .
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Moreover, the projection Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → xlog has the

chart:
k(x) −→ k(y)[[t]]
↑ ↑

N
idN−→ N .

(2) If the image of y → P1
x lies on Dlog

X(r){i,j}
(where j ∈ I), then the

log structure of Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog at y → P1

x is induced by

N⊕2 −→ k(y)[[t]]
(n, m) 7→ 0n · tm .

Moreover, the projection Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → xlog has the

chart:
k(x) −→ k(y)[[t]]
↑ ↑
N −→ N⊕2

n 7→ (n, 0) .

(3) If the image of y → P1
x lies on Dlog

X(r)J
(where J is the sub-

set of {1, 2, · · · , r} which is uniquely determined by the con-
dition that J ( I and J [i] = I [i]), then the log structure of

Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog at y → P1

x is induced by

N⊕2 −→ k(y)[[t]]
(n, m) 7→ 0n · tm .

Moreover, the projection Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog → xlog has the

chart:
k(x) −→ k(y)[[t]]
↑ ↑
N −→ N⊕2

n 7→ (n, n) .

Therefore, it is immediate that there exists a morphism Dlog
X(r)I

×Dlog

X(r−1)I[i]

xlog → P
log
x which is of type N (where P

log
x is the log scheme obtained by

equipping P1
x with the log structure associated to the divisor determined by the

divisors “Dlog
X(r)I

∩Dlog
X(r){i,j}

” [where j ∈ I ] and “Dlog
X(r)I

∩Dlog
X(r)J

” [where J is

as in (3)]) which fits into a natural commutative diagram:

Dlog
X(r)I

×Dlog

X(r−1)I[i]
xlog −−−−→ P

log
x

pr2

y
y

xlog −−−−→ x .
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This diagram induces a commutative diagram

1 −−−−→ Zl(1) −−−−→ π1(D
log
X(r)I

×Dlog

X(r−1)I[i]
xlog)(l) −−−−→ π1(P

log
x )(l) −−−−→ 1

y via pr2

y
y

1 −−−−→ Zl(1) −−−−→ π1(x
log)(l) −−−−→ 1 −−−−→ 1 ,

where the horizontal sequences are exact (cf. [6], Proposition 4.22; [7], Re-
mark 2.8, (i)). By (1), the left-hand vertical arrow is an isomorphism, i.e., the
right-hand square is cartesian. Thus, since the kernel of the middle vertical

arrow π1(D
log
X(r)I

×Dlog

X(r−1)I[i]
xlog)(l)

via pr2→ π1(x
log)(l) is naturally isomorphic to

the kernel of π1(D
log
X(r)I

)(l) → π1(D
log
X(r)I[i])

(l), we conclude that the kernel of

π1(D
log
X(r)I

)(l) → π1(D
log

X(r)I[i])
(l) is naturally isomorphic to π1(P

log
x )(l); moreover,

it follows from the definitions that this isomorphism determines the section of
PX(r)I → ∆P\I#(' π1(P

log
x )(l)) induced by plog

X(r−1) :i
. Thus, Lemma 2.5 follows

immediately from observations (2) and (3).

Proposition 2.6. Let r ≥ 2 be an integer. Then conjugates in ∆X(r+1)
of the

subgroups

D∆
X(r+1){1,2} ; D∆

X(r+1){2,3} ⊆ ∆X(r+1)

topologically generate ∆X(r+1)
.

Proof. Since the composite

D∆
X(r+1){1,2} ↪→ ∆X(r+1)

via pUX(r)
:1

−→ ∆X(r)

is surjective, it is enough to show that the subgroup topologically genereated by
the subgroups in question contains the kernel of the morphism ∆X(r+1)

→ ∆X(r)

induced by pUX(r)
:1, i.e., ∆

(1)
X(r+1)/X(r)

. On the other hand, if let xlog → X log
(r) be a

strict geometric point whose image is the generic point of the divisor Dlog
X(r){1,2}

of X log
(r) , then by [7], Proposition 1.7, the image of

lim
←−

π1(X
log
(r+1) ×Xlog

(r)
xlog

λ )(l)
via pr1−→ ∆X(r+1)

(where the projective limit is over all reduced covering points xlog
λ → xlog)

is ∆
(1)
X(r+1)/X(r)

. Moreover, since the irreducible components of the underlying

scheme of X log
(r+1)×Xlog

(r)
xlog

λ (= X log
(r+1)×Dlog

X(r){1,2}
xlog

λ ) are the underlying schemes

of Dlog
X(r+1){2,3}×Dlog

X(r){1,2}
xlog

λ and Dlog
X(r+1){1,2,3}×Dlog

X(r){1,2}
xlog

λ (cf. [7], Lemma

1.12, (iii)), by the evident logarithmic version of [19], Corollary 2.3.3 (cf. the
proof of [19], Lemma 6.2.7), the group

lim
←−

π1(X
log
(r+1) ×Xlog

(r)
xlog

λ )(l)

is topologically generated by the images of the natural morphisms from

lim
←−

π1(D
log
X(r+1){2,3} ×Dlog

X(r){1,2}
xlog

λ )(l)
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and
lim
←−

π1(D
log
X(r+1){1,2,3} ×Dlog

X(r){1,2}
xlog

λ )(l) .

Thus, it is enough to show that the subgroup topologically generated by the
subgroups in question contains the image of the natural morphisms from

lim
←−

π1(D
log
X(r+1){2,3} ×Dlog

X(r){1,2}
xlog

λ )(l) (∗1)

and
lim
←−

π1(D
log
X(r+1){1,2,3} ×Dlog

X(r){1,2}
xlog

λ )(l) (∗2) .

Now since it is immediate that the natural strict morphism Dlog
X(r+1){2,3}×Dlog

X(r){1,2}

xlog → X log
(r+1) factors through Dlog

X(r+1){2,3}⊗K K, it thus follows that the image

of the first group (∗1) is contained in a conjugate of D∆
X(r+1){2,3}. On the other

hand, it follows immediately from Lemma 2.5 (together with observation (3)
in the proof of Lemma 2.5), that the image of the second group (∗2) is con-
tained in the subgroup topologically generated by conjutages of the kernel of
the composite

D∆
X(r+1){2,3} ↪→ ∆X(r+1)

via plog
X(r):1

� ∆X(r+1)

and IX(r+1){1,2}. This completes the proof of Proposition 2.6 .

Lemma 2.7. Let r ≥ 2 and 1 ≤ i < j ≤ r be integers. Then the subgroup

DX(r){i,j} (respectively, D∆
X(r){i,j}

) of ΠX(r)
(respectively, ∆X(r)

) is the normal-

izer of IX(r){i,j} in ΠX(r)
(respectively, ∆X(r)

).

Proof. Since IX(r){i,j} is normal in DX(r){i,j} (respectively, D∆
X(r){i,j}

), the nor-

malizer of IX(r){i,j} contains DX(r){i,j} (respectively, D∆
X(r){i,j}

). Moreover, we

have a commutative diagram:

1 −−−−→ IX(r){i,j} −−−−→ DX(r){i,j} −−−−→ ΠX(r−1)
−−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆
(i)
X(r)/X(r−1)

−−−−→ ΠX(r)
−−−−−−−−→
via plog

X(r−1):i

ΠX(r−1)
−−−−→ 1

(respectively,

1 −−−−→ IX(r){i,j} −−−−→ D∆
X(r){i,j}

−−−−→ ∆X(r−1)
−−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆
(i)
X(r)/X(r−1)

−−−−→ ∆X(r)
−−−−−−−−→
via plog

X(r−1):i

∆X(r−1)
−−−−→ 1) .

Therefore, it is enough to show that the normalizer of IX(r){i,j} in ∆
(i)
X(r)/X(r−1)

is IX(r){i,j}. On the other hand, this is well-known (cf. e.g., [17], (2.3.1)).

Remark 2.8. By a similar argument to the argument used in the proof of
Lemma 2.7 (by replacing [17], (2.3.1) by [12], Lemma 1.3.12), we conclude that:

24



Let r ≥ 2 and 1 ≤ i < j ≤ r be integers. Then the subgroup

DX(r){i,j} (respectively, D∆
X(r){i,j}

) of ΠX(r)
(respectively, ∆X(r)

) is

the commensurator of IX(r){i,j} in ΠX(r)
(respectively, ∆X(r)

).

Definition 2.9. Let r ≥ 2 and 1 ≤ i < j ≤ r be integers.

(i) We shall denote by UX(r){i,j} the fiber product of

UX(r−1)ypUX(r−2)
:j−1

UX(r−1)
−−−−−−−→
pUX(r−2)

:i

UX(r−2)
.

Moreover, we shall denote by p
U

{i,j}

X(r−1)
:i

and p
U

{i,j}

X(r−1)
:j

the projections

UX(r){i,j} → UX(r−1)
such that pUX(r−2)

:j−1 ◦ p
U

{i,j}

X(r−1)
:i

= pUX(r−2)
:i ◦

p
U

{i,j}

X(r−1)
:j
.

(ii) By the definition of UX(r){i,j}, the commutative diagram

UX(r)

pUX(r−1)
:i

−−−−−−−→ UX(r−1)

pUX(r−1)
:j

y
ypUX(r−2)

:j−1

UX(r−1)
−−−−−−−→
pUX(r−2)

:i

UX(r−2)

induces a morphism UX(r)
→ UX(r){i,j}. We shall denote this morphism by

ιUX(r)
{i,j}. By the definition of ιUX(r)

{i,j}, it is immediate that ιUX(r)
{i,j} :

UX(r)
→ UX(r){i,j} is an open immersion, which is a “partial compactifi-

cation”, i.e., the natural open immersion UX(r)
↪→ X(r) factors through

ιUX(r)
{i,j}; moreover,

UX(r){i,j} = X(r) \
⋃

{i′,j′}6={i,j}

DX(r){i′,j′} .

(iii) We shall denote by ΠX(r){i,j} the geometrically pro-l fundamental group

of UX(r){i,j}, and by ∆X(r){i,j} the kernel of the natural surjection

ΠX(r){i,j} � GK .

Thus, we have an exact sequence

1 −→ ∆X(r){i,j} −→ ΠX(r){i,j} −→ GK −→ 1 .

Lemma 2.10. Let r ≥ 2 and 1 ≤ i < j ≤ r be integers. Then the following

diagram induced by the cartesian diagram which appears in the definition of
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UX(r){i,j} is cartesian:

ΠX(r){i,j}

via p
U

{i,j}

X(r−1)
:i

−−−−−−−−−→ ΠX(r−1)

via p
U

{i,j}

X(r−1)
:j

y
yvia pUX(r−2)

:j−1

ΠX(r−1)
−−−−−−−−−→
via pUX(r−2)

:i

ΠX(r−2)
.

In particular, the kernel of the surjection ΠX(r){i,j}

via p
U

{i,j}

X(r−1)
:i

� ΠX(r−1)
is nat-

urally isomorphic to ∆
(i)
X(r−1)/X(r−2)

.

Proof. This follows immediately from the fact that the sequence obtained as the
base-change of

UX(r){i,j}

p
U

{i,j}

X(r−1)
:i

−→ UX(r−1)

pUX(r−2)
:r−1

−→ UX(r−2)

pUX(r−3)
:r−2

−→ · · ·
pUX(1)

:2

−→ X −→ Spec K

from K to K is a successive extension of hyperbolic curves of product type (cf.
Definition 1.12, (i)), together with Corollary 1.13, (i).

In the following, assume that

the field K is a finite field.

Let us denote by pK (respectively, qK) the characteristic (respectively, cardi-
nality) of K. We shall fix an algebraic closure K of K. We shall denote by GK

the Galois group of K over K, and by FrK ∈ GK the Frobenius element of GK .
Moreover, let L be a finite field whose characteristic (respectively, cardinality)
we denote by pL (respectively, qL) such that l is invertible in L (i.e., l 6= pL), L

an algebraic closure of L, GL
def
= Gal(L/L), Y a proper hyperbolic curve over L,

and α(r) : ΠX(r)

∼
→ ΠY(r)

an isomorphism. Then it follows from the “Riemann
hypothesis for abelian varieties over finite fields” (cf. e.g., [16], p. 206) and the
fact that Zl(1) is “of weight 2” (since the eigenvalues of the action of “Fr−”
are “q−”) that the quotient ΠX(r)

� GK (respectively, ΠY(r)
� GL) arising

from the structure morphism UX(r)
→ Spec K (respectively, UY(r)

→ Spec L)

may be characterized as the (unique) maximal (Ẑ-)free abelian quotient of ΠX(r)

(respectively, ΠY(r)
). Therefore, the isomorphism α(r) induces an isomorphism

α(0) : GK → GL.

Definition 2.11. We shall say that an isomorphism α(r) : ΠX(r)

∼
→ ΠY(r)

is
Frobenius-preserving if the isomorphism α(0) : GK → GL obtained as above
maps the Frobenius element of GK to the Frobenius element of GL (cf. [14],
Definition 1.18, (iii)).

Proposition 2.12. Let α(r) : ΠX(r)

∼
→ ΠY(r)

be an isomorphism. Then the

following hold:

(i) There exists an element σ of the symmetric group on r letters such that for

any integer 1 ≤ i ≤ r, the isomorphism α(r) maps the kernel ∆
(i)
X(r)/X(r−1)
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of the surjection ΠX(r)
� ΠX(r−1)

induced by plog
X(r−1) :i

bijectively onto the

kernel ∆
(σ(i))
Y(r)/Y(r−1)

of the surjection ΠY(r)
� ΠY(r−1)

induced by plog
Y(r−1) :σ(i).

(ii) Assume, moreover, that α(r) : ΠX(r)

∼
→ ΠY(r)

is a Frobenius-preserving

isomorphism (cf. Definition 2.11). Then, for a section GK → ΠX(r)
of the

natural morphism ΠX(r)
→ GK , this section arises from a K-rational point

of UX(r)
if and only if the section of the natural morphism ΠY(r)

→ GL

corresponding to the section GK → ΠX(r)
under the isomorphism α(r)

arises from a L-rational point of UY(r)
.

(iii) Assume, moreover, that r ≥ 2. Then, for any integers 1 ≤ i < j ≤ r, the

isomorphism α(r) maps IX(r){i,j} (respectively, DX(r){i,j}) bijectively onto

a conjugate of IY(r){σ(i),σ(j)} (respectively, DY(r){σ(i),σ(j)}) by an element

of the kernel ∆Y(r)
of the natural surjection ΠY(r)

→ GL.

(iv) Under the assumption in the statement of (iii), for any integers 1 ≤ i <
j ≤ r, let us denote by

τX(r−1){i,j} : ΠX(r)
/∆

(i)
X(r)/X(r−1)

∼
−→ ΠX(r)

/∆
(j)
X(r)/X(r−1)

(respectively,

τY(r−1){i,j} : ΠY(r)
/∆

(i)
Y(r)/Y(r−1)

∼
−→ ΠY(r)

/∆
(j)
Y(r)/Y(r−1)

)

the isomorphism obtained as the composite

ΠX(r)
/∆

(i)
X(r)/X(r−1)

∼
−→ ΠX(r−1)

∼
←− ΠX(r)

/∆
(j)
X(r)/X(r−1)

(respectively,

ΠY(r)
/∆

(i)
Y(r)/Y(r−1)

∼
−→ ΠY(r−1)

∼
←− ΠY(r)

/∆
(j)
Y(r)/Y(r−1)

) .

Then the following diagram commutes:

ΠX(r)
/∆

(i)
X(r)/X(r−1)

τX(r−1){i,j}

−−−−−−−−→ ΠX(r)
/∆

(j)
X(r)/X(r−1)

via α(r)

y
yvia α(r)

ΠY(r)
/∆

(σ(i))
Y(r)/Y(r−1)

−−−−−−−−−−−→
τY(r−1){σ(i),σ(j)}

ΠY(r)
/∆

(σ(j))
Y(r)/Y(r−1)

.

Here, the vertical arrows are the isomorphisms induced by α(r) (cf. (i)).

Proof. Assertion (i) follows from the fact that an isomorphism of ΠX(r)
with

ΠY(r)
induces an isomorphism of ∆X(r)

with ∆Y(r)
, together with [15], Corollary

6.7.
Next, we prove assertion (ii). If r = 1, then this follows from [14], Remark

1.18.2. Thus, assume that r ≥ 2. Then it is immediate that for a section
s : GK → ΠX(r)

of the natural morphism ΠX(r)
→ GK , the section arises from

a K-rational point of UX(r)
if and only if the composite of the section s and the

morphism ΠX(r)
→ ΠX(r−1)

induced by plog
X(r−1) :r

arises from a K-rational point
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of UX(r−1)
, and the section GK → ΠX(r)

×ΠX(r−1)
GK (where the morphism

ΠX(r)
→ ΠX(r−1)

is the morphism induced by plog
X(r−1) :r

, and GK → ΠX(r−1)
is

the composite) induced by the given section s arises from a K-rational point of
the hyperbolic curve obtained as the fiber. Therefore, assertion (ii) follows from
[14], Remark 1.18.2, together with induction on r.

Next, we prove assertion (iii). It is immediate that there exists an open
subgroup of GK′ ⊆ GK and a section GK′ → ΠX(r)

×GK GK′ such that this
section arises from a K ′-rational point of UX(r)

. Thus, it follows from asser-
tion (ii), the fact that IX(r){i,j} is an inertia subgroup of ΠX(r)

×ΠX(r−1)
GK′

(where the morphism ΠX(r)
→ ΠX(r−1)

is the morphism induced by plog
X(r−1) :r

,

and GK′ → ΠX(r−1)
is the composite of the section and the morphism induced by

plog
X(r−1) :r

) associated to a cusp of the hyperbolic curve obtained as the fiber, to-

gether with a similar argument to the argument used in the proof of [12], Lemma

1.3.9, that α(r) maps IX(r){i,j} bijectively onto a conjugate (in ∆
(σ(i))
Y(r)/Y(r−1)

) of

IY(r){σ(i),σ(j)}. On the other hand, the assertion that α(r) maps DX(r){i,j} bi-

jectively onto a conjugate (in ∆
(σ(i))
Y(r)/Y(r−1)

) of DY(r){σ(i),σ(j)} follows from the

fact that α(r) maps IX(r){i,j} bijectively onto a conjugate (in ∆
(σ(i))
Y(r)/Y(r−1)

) of

IY(r){σ(i),σ(j)}, together with Lemma 2.7. This completes the proof of assertion
(iii).

Finally, we prove assertion (iv). By the discussion preceding Definition 2.3,
we have commutative diagrams

1 −−−−→ IX(r){i,j} −−−−→ DX(r){i,j} −−−−→ ΠX(r−1)
−−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆
(i)
X(r)/X(r−1)

−−−−→ ΠX(r)
−−−−−−−−→
via plog

X(r−1):i

ΠX(r−1)
−−−−→ 1

and

1 −−−−→ IX(r){i,j} −−−−→ DX(r){i,j} −−−−→ ΠX(r−1)
−−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆
(j)
X(r)/X(r−1)

−−−−→ ΠX(r)
−−−−−−−−→
via plog

X(r−1):j

ΠX(r−1)
−−−−→ 1 ,

where the horizontal sequences are exact. In particular, the natural inclusion
DX(r){i,j} ↪→ ΠX(r)

induces isomorphisms

DX(r){i,j}/IX(r){i,j}
∼
−→ ΠX(r)

/∆
(i)
X(r)/X(r−1)

and
DX(r){i,j}/IX(r){i,j}

∼
−→ ΠX(r)

/∆
(j)
X(r)/X(r−1)

.

Thus, the isomorphism τX(r−1){i,j} coincides with the composite

ΠX(r)
/∆

(i)
X(r)/X(r−1)

∼
←− DX(r){i,j}/IX(r){i,j}

∼
−→ ΠX(r)

/∆
(i)
X(r)/X(r−1)

.
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Therefore, to verify the commutativity of the diagram in the statement of Propo-
sition 2.12, (iv), it is enough to show that the isomorphism α(r) maps DX(r){i,j}

(respectively, IX(r){i,j}) bijectively onto a conjugate of DY(r){σ(i),σ(j)} (respec-
tively, IY(r){σ(i),σ(j)}). On the other hand, this follows from (iii).

Definition 2.13. Let α(r) : ΠX(r)

∼
→ ΠY(r)

be an isomorphism.

(i) We shall denote by σα(r)
the element of the symmetric group on r letters

defined in Proposition 2.12, (i).

(ii) We shall say that α(r) is order-preserving if σα(r)
(defined in (i)) is the

identity morphism. Note that by reordering the coordinates of UY(r)
, one

can always assume that α(r) is order-preserving.

Let α(r) : ΠX(r)

∼
→ ΠY(r)

be a Frobenius-preserving and order-preserving
isomorphism. Now by means of the isomorphisms τX(r−1){i,j} (respectively,
τY(r−1){i,j}) defined in Proposition 2.12, (iv), we identify the quotients

ΠX(r)
/∆

(i)
X(r)/X(r−1)

(respectively, ΠY(r)
/∆

(i)
Y(r)/Y(r−1)

), where i = 1, · · · , r, of ΠX(r)

(respectively, ΠY(r)
) and denote by ΠX(r−1)

(respectively, ΠY(r−1)
) the quotient

obtained from this identification, and by α(r−1) the isomorphism of ΠX(r−1)

with ΠY(r−1)
induced by α(r) (cf. Proposition 2.12, (i)). Note that this isomor-

phism α(r−1) is independent of i. Moreover, by a similar argument to this argu-
ment, for any positive integer r′ ≤ r, we obtain a quotient ΠX(r′)

(respectively,

ΠY(r′)
) of ΠX(r)

(respectively, ΠY(r)
) and an isomorphism α(r′) : ΠX(r′)

∼
→ ΠY(r′)

.
Note that it follows immediately from the definition of the term “Frobenius-
preserving” that the isomorphism α(r′) : ΠX(r′)

∼
→ ΠY(r′)

(r′ ≤ r) is also
Frobenius-preserving.
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3 Isomorphisms that preserve the fundamental

groups of tripods

In this section, we define the notion of a tripod-preserving isomorphism (where
we refer to the discussion entitled “Curves” in Introduction concerning the term
“tripod”).

In the following, let K (respectively, L) be a finite field whose cardinality
we denote by qK (respectively, qL), K (respectively, L) an algebraic closure
of K (respectively, L), X (respectively, Y ) a proper hyperbolic curve of genus
gX ≥ 2 (respectively, gY ≥ 2) over K (respectively, L), and l a prime number

which is invertible in K and L. Let us write GK
def
= Gal(K/K) and GL

def
=

Gal(L/L). Moreover, let us denote by ΠPK (respectively, ΠPL) the geometrically

pro-l log fundamental group of the log scheme P
log
K (respectively, P

log
L ) obtained

by equipping P1
K (respectively, P1

L) with the log structure associated to the
divisor {0, 1,∞}, and by ∆PK (respectively, ∆PL) the kernel of the natural
surjection ΠPK � GK (respectively, ΠPL � GL).

Write E
def
= P1

K(K) \ UP(K) (where UP ⊆ P1
K is the interior of P

log
K , i.e.,

UP = P1
K \ {0, 1,∞}), and Ie ⊆ ∆PK for an inertia subgroup associated to

e ∈ E (well-defined, up to conjugation in ∆PK ). Then it is immediate that the
composites

Ie ↪→ ∆PK � (∆PK )ab

induce an isomorphism
Ie1 ⊕ Ie2

∼
−→ (∆PK )ab ,

where e1 6= e2. Moreover, there exists a generator ζei ∈ Iei (i = 1, 2, 3; ei 6= ej

if i 6= j) such that the image of ζe3 via the composite

Ie3 ↪→ ∆PK � (∆PK )ab
∼
←− Ie1 ⊕ Ie2

is (−ζe1 ,−ζe2) ∈ Ie1⊕Ie2 , i.e., the image of the above composite is generated by
(ζe1 , ζe2) ∈ Ie1 ⊕ Ie2 . Thus, if an automorphism φ of (∆PK )ab maps the image
of Iei in (∆PK )ab (i = 1, 2, 3) bijectively onto the image of Iσ(ei) in (∆PK )ab

(where σ is an element of the group Aut(E) of automorphisms of E), then there
exists a unique element dφ ∈ Z∗l such that

φ(ζei) = dφ · ζσ(ei) (i = 1, 2, 3) .

Let φ : ΠPK

∼
→ ΠPK be a Frobenius-preserving automorphism. Then the

automorphism φ preserves the inertia subgroups up to conjugation. (Indeed,
this follows from a similar argument to the argument used in the proof of [12],
Lemma 1.3.9.) Therefore, by the above observation, we obtain an element
dφ ∈ Z∗l , where φ is the automorphism of (∆PK )ab induced by φ.

Next, let φ : ΠPK

∼
→ ΠPL be a Frobenius-preserving isomorphism. Then it

follows from the existence of such an isomorphism that qK = qL (by considering
the action of the respective Frobenius elements on (∆PK )ab and (∆PL)ab). In
particular, the fields K and L are isomorphic. By means of some isomorphism
of fields K

∼
→ L, we obtain an isomorphism ΠPK

∼
→ ΠPL .

In summary, we obtain a composite map

IsomFrob(ΠPK , ΠPL)/Inn(∆PL)
∼
−→ AutFrob(ΠPK )/Inn(∆PK )
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−→ AutIner((∆PK )ab) −→ Z∗l
φ 7→ dφ ,

where IsomFrob(ΠPK , ΠPL) (respectively, AutFrob(ΠPK )) is the set of Frobenius-
preserving isomorphisms (respectively, automorphisms) of ΠPK with ΠPL (re-
spectively, of ΠPK ), AutIner((∆PK )ab) is the set of automorphisms of (∆PK )ab

which preserve the images of the three inertia subgroups in (∆PK )ab, and the
first arrow is the bijection induced by some isomorphism of fields K

∼
→ L. Note

that this composite depends on the choice of an isomorphism of K with L; how-
ever, the image of this composite is independent of the choice of an isomorphism
of K with L.

Definition 3.1. We shall refer to the image of this composite

IsomFrob(ΠPK , ΠPL)/Inn(∆PL)
∼
−→ AutFrob(ΠPK )/Inn(∆PK )

−→ AutIner((∆PK )ab) −→ Z∗l
φ 7→ dφ ,

as the set of tripod-degrees (over K). We shall refer to an element of the set of
tripod-degrees (over K) as a tripod-degree (over K).

Remark 3.2.

(i) The set of tripod-degrees (over K) only depends on K (' L) and l.

(ii) Since the image of the composite

Isom(Plog
K , Plog

L ) −→ IsomFrob(ΠPK , ΠPL)/Inn(∆PL) −→ Z∗l

(where Isom(Plog
K , Plog

L ) is the set of isomorphisms of P
log
K with P

log
L [as log

schemes], the first arrow is the morphism induced by the functoriality of
the functor of taking the log fundamental group, and the second arrow is
the morphism defining the set of tripod-degrees) is the set 〈qK〉 generated
by qK ∈ Z∗l , the set of tripod-degrees (over K) contains 〈qK〉 ⊆ Z∗l . In
particular, if 〈qK〉 = Z∗l , then any element of Z∗l is a tripod-degree (over
K).

(iii) By an unpublished result of Akio Tamagawa, in general, the set of tripod-
degrees (over K) is a proper subset of Z∗l .

Next, let α : ΠX
∼
→ ΠY be a Frobenius-preserving isomorphism. Then it fol-

lows from the existence of the isomorphism α that qK = qL (by considering the
actions of the respective Frobenius elements on H2(∆X , Zl) and H2(∆Y , Zl)).
In particular, the fields K and L are isomorphic. By means of some isomorphism
of fields K

∼
→ L, we obtain an isomorphism P

log
K

∼
→ P

log
L . Now by considering

the composite of mX(r+1){1,2} : MX
def
= HomZl

(H2(∆X , Zl), Zl))
∼
→ IX(r+1){1,2}

(respectively, mY(r+1){1,2} : MY
def
= HomZl

(H2(∆Y , Zl), Zl))
∼
→ IY(r+1){1,2})

(cf. Definition 4.7 below) and the isomorphism of IX(r+1){1,2} (respectively,
IY(r+1){1,2}) with an inertia subgroup of ∆PK\3 (respectively, ∆PL\3) obtained
in Lemma 2.5, we obtain a natural isomorphism of MX (respectively, MY ) with
an inertia subgroup of ∆PK\3 (respectively, ∆PL\3) (cf. the discussion following
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Definition 2.3). Thus, by means of the isomorphism P
log
K

∼
→ P

log
L , we obtain

an isomorphism MX
∼
→ MY (cf. Remark 3.3 below). Therefore, we obtain a

composite map

IsomFrob(ΠX , ΠY )/Inn(∆Y ) −→ Isom(MX , MY )
∼
−→ Aut(MX)

∼
−→ Z∗l ,

where IsomFrob(ΠX , ΠY ) is the set of Frobenius-preserving isomorphisms of ΠX

with ΠY , the second arrow is the bijection induced by some isomorphism of fields
K
∼
→ L. Note that this composite depends on the choice of an isomorphism of

K with L; however, the image of this composite is independent of the choice of
an isomorphism of K with L.

Remark 3.3.

(i) Note that the isomorphism MX
∼
→MY (obtained as above) is independent

of α (by construction); moreover, this isomorphism is “geometric”, i.e., it

arises from an isomorphism P
log
K
∼
→ P

log
L .

(ii) The morphism
Isom(MX , MY )

∼
−→ Aut(MX)

(appearing in the above composite map) may be interpreted as a certain
“automorphization” of isomorphisms of MX with MY by means of the
“geometric” isomorphism of (i), that is independent of α.

Definition 3.4. Let α : ΠX
∼
→ ΠY be a Frobenius-preserving isomorphism.

(i) We shall denote by deg(α) ∈ Z∗l the image of α via the composite

IsomFrob(ΠX , ΠY )/Inn(∆Y ) −→ Isom(MX , MY )
∼
−→ Aut(MX)

∼
−→ Z∗l .

Note that deg(α) depends on the choice of an isomorphism of K with L.

(ii) We shall say that α : ΠX
∼
→ ΠY is tripod-preserving if deg(α) is a tripod-

degree (over K). Note that this condition is independent of the choice of
an isomorphism of K with L.

Next, let α(r) : ΠX(r)

∼
→ ΠY(r)

be a Frobenius-preserving and order-preserving
isomorphism.

Definition 3.5. We shall say that α(r) is tripod-preserving if the isomorphism

α : ΠX
∼
→ ΠY induced by α(r) (cf. the discussion following Definition 2.13) is

tripod-preserving (cf. Definition 3.4).

Lemma 3.6. If r ≥ 3, then α(r) is tripod-preserving.

Proof. Now it is immediate that there exists an open subgroup GK′ ⊆ GK , and
a section GK′ → ΠX(r−2)

which arises from a K ′-rational point of UX(r−2)
. By

base-chaging this section via the composite

DX(r−1){1,2} ↪→ ΠX(r−1)

via plog
X(r−2):1

−→ ΠX(r−2)
,

we obtain a morphism

s : GK′ ×ΠX(r−2)
DX(r−1){1,2}

pr2−→ DX(r−1){1,2} ↪→ ΠX(r−1)
.
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It is immediate that this morphism arises from a “strict log K ′-rational point”
of X log

(r−1) (i.e., a K ′-rational point of X(r−1) equipped with the log structure

induced by the log structure of X log
(r−1)) for which the image of the underlying

morphism of schemes lies on the open subscheme of DX(r−1){1,2} on which the
stalk of the characteristic sheaf (cf. the discussion entitled “Log schemes” in

Introduction) of Dlog
X(r−1){1,2} is isomorphic to N. Thus, the fiber product

(GK′ ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

(where the morphism GK′ ×ΠX(r−2)
DX(r−1){1,2} → ΠX(r−1)

is s, and ΠX(r)
→

ΠX(r−1)
is the morphism induced by plog

X(r−1) :1
) is isomorphic to the geometrically

pro-l log fundamental group of the log scheme obtained as the fiber of plog
X(r−1) :1

at the “strict log K ′-rational point” of X log
(r−1) corresponding to s, and the

morphism

(GK′ ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

pr1−→ GK′ ×ΠX(r−2)
DX(r−1){1,2}

coincides with the morphism induced by the structure morphism of the log
scheme (obtained as the fiber of plog

X(r−1):1
at the “strict log K ′-rational point”

of X log
(r−1)). Now it is immediate that the underlying scheme of the log scheme

obtained as such a fiber has exactly two irreducible components of genera 0 and
gX ; moreover, if we denote by H the closed subgroup of

(GK′ ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

(well-defined, up to conjugation) obtained as the image of the morphism induced
on geometrically pro-l log fundamental groups by the strict closed immersion
from the irreducible component of genus 0, then the kernel H∆ of the composite

H ↪→ (GK′ ×ΠX(r−2)
DX(r−1){1,2})×ΠX(r−1)

ΠX(r)

pr1−→ GK′ ×ΠX(r−2)
DX(r−1){1,2}

is isomorphic to ∆PK (cf. the discussion following Definition 2.3). On the other
hand, it follows that the outer representation

GK′ ×ΠX(r−2)
DX(r−1){1,2}

ρH
−→ Out(H∆)

determined by the exact sequence

1 −→ H∆ −→ H −→ GK′ ×ΠX(r−2)
DX(r−1){1,2} −→ 1

factors through GK′ ×ΠX(r−2)
DX(r−1){1,2}

pr1→ GK′ , and the profinte group

H∆
out
o GK′

(where GK′ → Out(H∆) is the morphism induced by ρH) is isomorphic to the
geometrically pro-l fundamental group of P1

K′ \ {0, 1,∞} (cf. observations (1),
(2), and (3) in the proof of Lemma 2.5). Therefore, Lemma 3.6 follows from
Proposition 2.12, (ii), (iii); [13], Corollary 2.8.
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4 The reconstruction of the fundamental group

of the configuration space

In this section, we reconstruct the geometrically pro-l fundamental group of the
higher dimensional configuration space.

Let K be a finite field whose characteristic (respectively, cardinality) we
denote by pK (respectively, qK), and l a prime number that is invertible in K.
We shall fix an algebraic closure K of K. We shall denote by GK the Galois
group of K over K, and by FrK ∈ GK the Frobenius element of GK . Moreover,
in the following, let X be a proper hyperbolic curve of genus gX ≥ 2 over K.

Definition 4.1. Let r be a natural number.

(i) We shall denote by
{∆X(r)

(n)}

the central filtration of ∆X(r)
defined in Definition 1.12, (ii), associated to

the successive extension of hyperbolic curves of product type obtained as
the base-change of

UX(r)

pUX(r−1)
:r

−→ UX(r−1)

pUX(r−2)
:r−1

−→ · · ·
pUX(1)

:2

−→ X −→ Spec K

from K to K i.e., the central filtration with respect to the natural surjec-
tion

∆X(r)
� ∆ab

X(r)
,

and by

{∆
(i)
X(r)/X(r−1)

(n)}

the central filtration of ∆
(i)
X(r)/X(r−1)

defined in the discussion following

Lemma 1.2, associated to the family of smooth curves

UX(r)
⊗K K

via pUX(r−1)
:i

−→ UX(r−1)
⊗K K ,

i.e., the central filtration with respect to the natural surjection

∆
(i)
X(r)/X(r−1)

� ∆ab
X .

(ii) The sequence obtained as the base-change of

UX(r){i,j}

p
U

{i,j}

X(r−1)
:i

−→ UX(r−1)

pUX(r−2)
:r−1

−→ UX(r−2)

pUX(r−3)
:r−2

−→ · · ·
pUX(1)

:2

−→ X −→ Spec K

from K to K is a successive extension of hyperbolic curves of product
type. We shall denote by

{∆X(r){i,j}(n)}

the central filtration of ∆X(r){i,j} defined in Definition 1.12, (ii), associated

to this successive extension of hyperbolic curves of product type, i.e., the
central filtration with respect to the natural surjection

∆X(r){i,j} � ∆ab
X(r)

.

34



Proposition 4.2. Let r be a natural number.

(i) The sequence of graded Lie algebras

1 −→ Gr(∆
(i)
X(r)/X(r−1)

) −→ Gr(∆X(r+1)
)

via pUX(r)
:i

−→ Gr(∆X(r)
) −→ 1

induced by the exact sequence obtained in Definition 2.1, (iv), is exact. In

particular, the graded Lie algebra Gr(∆X(r)
) is center-free.

(ii) There exist 2gX elements

α
(i)
X,1; · · · ; α

(i)
X,gX

; β
(i)
X,1; · · · ; β

(i)
X,gX

∈ ∆
(i)
X(r+1)/X(r)

\∆
(i)
X(r+1)/X(r)

(2)

and r elements

ζ
(i)
X,1; · · · ; ζ

(i)
X,i−1; ζ

(i)
X,i+1; · · · ; ζ

(i)
X,r+1 ∈ ∆

(i)
X(r+1)/X(r)

(2) \∆
(i)
X(r+1)/X(r)

(3)

such that the graded Lie algebra Gr(∆
(i)
X(r+1)/X(r)

) is generated by the image

of these elements, and, moreover, ζ
(i)
X,k (where i 6= k) topologically gener-

ates the inertia subgroup (well-defined, up to conjugation) associated to the

cusp (of the geometric fiber of pUX(r)
:i : UX(r+1)

→ UX(r)
at a geometric

point of UX(r)
) determined by the divisor DX(r+1){i,k} ⊆ X(r+1). More-

over, the graded Lie algebra Gr(∆
(i)
X(r+1)/X(r)

) is isomorphic to the graded

Lie algebra generated by these elements subject to the following relation:

gX∑

j=1

[α
(i)
X,j , β

(i)

X,j ] +
∑

k 6=i

ζ
(i)

X,k = 0 .

(iii) The graded Lie algebra Gr(∆X(r+1)
) is isomorphic to the graded Lie algebra

generated by the image of

α
(i)
X,1; · · · ; α

(i)
X,gX

; β
(i)
X,1; · · · ; β

(i)
X,gX

∈ ∆
(i)
X(r+1)/X(r)

⊆ ∆X(r+1)
(1 ≤ i ≤ r+1) ,

together with

ζ
(i)
X,1; · · · ; ζ

(i)
X,i−1; ζ

(i)
X,i+1; · · · ; ζ

(i)
X,r+1 ∈ ∆

(i)
X(r+1)/X(r)

⊆ ∆X(r+1)
(1 ≤ i ≤ r+1)

in (ii) subject to the following relations:

(R1)
∑gX

j=1[α
(i)
X,j , β

(i)

X,j ] +
∑

k 6=i ζ
(i)

X,k = 0 (1 ≤ i ≤ r + 1) ;

(R2) ζ
(i)

X,k = ζ
(k)

X,i ;

(R3) [ζ
(i)

X,k, ζ
(i′)

X,k′ ] = 0 (if {i, k} ∩ {i′, k′} = ∅) ;

(R4) [ζ
(i)

X,k, α
(i′)
X,j ] = [ζ

(i)

X,k, β
(i′)

X,j ] = 0 (if i 6= i′ and k 6= i′) ;

(R5) [α
(i)
X,j , α

(i′)
X,j′ ] = [β

(i)

X,j , β
(i′)

X,j′ ] = 0 (if i 6= i′) ;

(R6) [α
(i)
X,j , β

(i′)

X,j′ ] =

{
ζ
(i′)

X,i (if j = j′ and i 6= i′)
0 (if j 6= j′ and i 6= i′)
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Proof. Assertion (i) follows from [11], Proposition 3.2, (i). Assertion (ii) follows
from [8], Proposition 1. Assertion (iii) follows from [18], (2.8.2).

Lemma 4.3. Let 1 ≤ i < j ≤ r be integers.

(i) The following diagram induced by the cartesian diagram defining U(r){i,j}

(cf. Definition 2.9, (i)) is cartesian:

Gr(∆X(r){i,j})

via p
U

{i,j}

X(r−1)
:i

−−−−−−−−−→ Gr(∆X(r−1)
)

via p
U

{i,j}

X(r−1)
:j

y
yvia pUX(r−2)

:j−1

Gr(∆X(r−1)
) −−−−−−−−−→

via pUX(r−1)
:i

Gr(∆X(r−2)
) .

(ii) The kernel of the morphism Gr(∆X(r)
)

via ιUX(r)
{i,j}

→ Gr(∆X(r){i,j}) is the

ideal generated by ζ
(j)

X,i = ζ
(i)

X,j (cf. the statement of Proposition 4.2, (iii)).
In particular, the set

{ζ
(j)

X,i}

is a base (over Ql) of the kernel of

Gr(∆X(r)
)(2/3)

via ιUX(r)
{i,j}

→ Gr(∆X(r){i,j})(2/3) .

Proof. Assertion (i) follows from Lemma 2.10, together with Corollary 1.13, (ii).
Assertion (ii) follows from the fact that the kernel of morphism

Gr(∆
(i)
X(r)/X(r−1)

)→ Gr(∆
(i)
X(r−1)/X(r−2)

) induced by the left-hand vertical arrow

in the commutative diagram

1 −−−−→ ∆
(i)
X(r)/X(r−1)

−−−−→ ∆X(r)

via pUX(r−1)
:i

−−−−−−−−−→ ∆X(r−1)
−−−−→ 1

y
y

∥∥∥

1 −−−−→ ∆
(i)
X(r−1)/X(r−2)

−−−−→ ∆X(r){i,j} −−−−−−−−−→
via p

U
{i,j}

X(r−1)
:i

∆X(r−1)
−−−−→ 1 ,

is the ideal generated by ζ
(j)

X,i = ζ
(i)

X,j . (This follows easily from an obser-

vation concerning the generators of the graded Lie algebras ∆
(i)
X(r)/X(r−1)

and

∆
(i)
X(r−1)/X(r−2)

given in [8], Proposition 1.)

Let 1 ≤ i < j ≤ r + 1 be integers. Next, let us fix choices of the inertia

subgroups

IX(r+1){i,j} ⊆ ΠX(r+1)

(among the various conjugates of IX(r+1){i,j}) for 1 ≤ i < j ≤ r +1. (Note that,
by Lemma 2.7, these choices induce choices of the subgroups

DX(r+1){i,j} ⊆ ΠX(r+1)
;
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moreover, by considering the images of these subgroups via the surjection in-
duced by plog

X(r) :k
[where 1 ≤ k ≤ r + 1], these choices induce r + 1 respective

choices of the subgroups

IX(r){i,j} ⊆ ΠX(r)

and
DX(r){i,j} ⊆ ΠX(r)

.)

Lemma 4.4. Let 1 ≤ i < j ≤ r + 1 be integers. Let

I{i,j} =





{i− 1, j − 1} (if i 6= 1)
{1, j − 1} (if i = 1 and j 6= 2)
{1, 2} (if i = 1 and j = 2)

k{i,j} =





1 (if i 6= 1)
2 (if i = 1 and j 6= 2)
3 (if i = 1 and j = 2)

l{i,j} =

{
1 (if i 6= 1)
2 (if i = 1)

m{i,j} =

{
i− 1 (if i 6= 1)
1 (if i = 1) .

Then the commutative diagram

Dlog
X(r+1){i,j}

δlog
X(r+1){i,j}

−−−−−−−−→ X log
(r+1)

plog
X(r) :i

−−−−→ X log
(r)y plog

X(r) :k{i,j}

y
yplog

X(r−1):l{i,j}

Dlog
X(r)I{i,j}

−−−−−−−→
δlog

X(r)I{i,j}

X log
(r) −−−−−−−−−→

plog
X(r−1):m{i,j}

X log
(r−1)

induces the following cartesian diagram:

DX(r+1){i,j}

via plog
X(r) :i

◦δlog
X(r+1){i,j}

−−−−−−−−−−−−−−−→ ΠX(r)

via plog
X(r) :k{i,j}

y
yvia plog

X(r−1):l{i,j}

DX(r)I{i,j}
−−−−−−−−−−−−−−−−−−−→
via plog

X(r−1):m{i,j}
◦δlog

X(r)I{i,j}

ΠX(r−1)
.

Proof. By the definitions, the commutative diagram

Dlog
X(r+1){i,j}

δlog
X(r+1){i,j}

−−−−−−−−→ X log
(r+1)

plog
X(r) :i

−−−−→ X log
(r)y plog

X(r) :k{i,j}

y
yplog

X(r−1):l{i,j}

Dlog
X(r)I{i,j}

−−−−−−−→
δlog

X(r)I{i,j}

X log
(r) −−−−−−−−−→

plog
X(r−1):m{i,j}

X log
(r−1)

induces a commutative diagram

1 −−−−→ IX(r+1){i,j} −−−−→ DX(r+1){i,j}

via plog
X(r) :i

◦δlog
X(r+1){i,j}

−−−−−−−−−−−−−−−→ ΠX(r)
−−−−→ 1

y via plog
X(r) :k{i,j}

y
yvia plog

X(r−1):l{i,j}

1 −−−−→ IX(r)I{i,j}
−−−−→ DX(r)I{i,j}

−−−−−−−−−−−−−−−−−−−→
via plog

X(r−1):m{i,j}
◦δlog

X(r)I{i,j}

ΠX(r−1)
−−−−→ 1 ,
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where the horizontal sequences are exact. Now since the restriction of the mor-
phism Dlog

X(r+1){i,j}
→ Dlog

X(r)I{i,j}
induced by plog

X(r):k{i,j}
to the generic point of

Dlog
X(r+1){i,j}

is strict, we conclude that the left-hand vertical arrow is an isomor-

phism. This completes the proof of Lemma 4.4.

Remark 4.5. Note that by Lemma 4.4, the commutative diagram

DX(r+1){i,j}

via plog
X(r) :i

◦δlog
X(r+1){i,j}

−−−−−−−−−−−−−−−→ ΠX(r)

via plog
X(r) :k{i,j}

y
yvia plog

X(r−1):l{i,j}

DX(r)I{i,j}
−−−−−−−−−−−−−−−−−−−→
via plog

X(r−1):m{i,j}
◦δX(r)I{i,j}

ΠX(r−1)
.

is cartesian; however, the commutative diagram

Dlog
X(r+1){i,j}

plog
X(r) :i

◦δlog
X(r+1){i,j}

−−−−−−−−−−−−−→ X log
(r)

plog
X(r) :k{i,j}

y
yplog

X(r−1):l{i,j}

Dlog
X(r)I{i,j}

−−−−−−−−−−−−−−−−−→
plog

X(r−1):m{i,j}
◦δX(r)I{i,j}

X log
(r−1)

which induces the above diagram is not cartesian. Indeed, this follows from the
fact that the pull-back of the invertible sheaf corresponding to the morphism of
type N (cf. [6], Theorem 4.13)

Dlog
X(r)I{i,j}

plog
X(r−1):m{i,j}

◦δX(r)I{i,j}

−→ X log
(r−1)

via plog
X(r−1) :l{i,j}

is not isomorphic to the invertible sheaf corresponding to the

morphism of type N

Dlog
X(r+1){i,j}

plog
X(r) :i

◦δlog
X(r+1){i,j}

−→ X log
(r) .

However, the restrictions to UX(r)
of these two invertible sheaves are isomorphic

(cf. [7], Lemma 1.21).

Moreover, let us fix a section s′0 : GK → ΠX(r)
of the morphism ΠX(r)

→ GK

induced by the structure morphism of UX(r)
and a lifting s0 of s′0 to GK →

DX(r+1){1,2}, i.e., a morphism GK → DX(r+1){1,2} such that the composite of

the morphism and DX(r+1){1,2} ↪→ ΠX(r+1)

via plog
X(r) :1

→ ΠX(r)
coincides with s′0.

Note that since GK is free, such a lifting always exists. Then the section s0

of the natural morphism ΠX(r+1)
→ GK determines natural actions of GK (by

conjugation) on ∆X(r+1)
, and on ∆X(r+1){i,j}, hence also on

LinX(r+1)
(a/b)

def
= Lin(∆X(r+1)

(a/b))(Ql) ;
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LinX(r+1){i,j}(a/b)
def
= Lin(∆X(r+1){i,j}(a/b))(Ql) ;

LieX(r+1)
(a/b)

def
= Lie(∆X(r+1)

(a/b)) ; LieX(r+1){i,j}(a/b)
def
= Lie(∆X(r+1){i,j}(a/b)) ;

GrQl
(∆X(r+1)

)(a/b) ; GrQl
(∆X(r+1){i,j})(a/b)

for a, b ∈ Z such that 1 ≤ a ≤ b.

Proposition 4.6. Let 1 ≤ i < j ≤ r + 1 be integers, and a, b ∈ Z such that

1 ≤ a ≤ b.

(i) The eigenvalues of the action of FrK on LieX(r+1)
(a/a + 1) (respectively,

LieX(r+1){i,j}(a/a+1)) are algebraic numbers all of whose complex absolute

values are equal to q
a/2
K .

(ii) There is a unique GK-equivariant isomorphism of Lie algebra

LieX(r+1)
(a/b)

∼
−→ GrQl

(∆X(r+1)
)(a/b)

(respectively, LieX(r+1){i,j}(a/b)
∼
−→ GrQl

(∆X(r+1){i,j})(a/b) )

which induces the identity isomorphism

LieX(r+1)
(c/c + 1)

∼
−→ GrQl

(∆X(r+1)
)(c/c + 1)

(respectively, LieX(r+1){i,j}(c/c + 1)
∼
−→ GrQl

(∆X(r+1){i,j})(c/c + 1) )

for all c ∈ Z such that a ≤ c ≤ b− 1.

Proof. Assertion (i) follows immediately from the “Riemann hypothesis for
abelian varieties over finite fields” (cf. e.g., [16], p. 206). Assertion (ii) fol-
lows formally from assertion (i) by considering the eigenspaces with respect to
the action of FrK .

Definition 4.7.

(i) We shall write

MX
def
= HomZl

(H2(∆X , Zl), Zl)

(cf. the discussion prededing [14], Remark 1.2.0). Note that MX is (non-
canonically) isomorphic to Zl(1) as a GK-module.

(ii) Let 1 ≤ i < j ≤ r+1 be integers. Then there exists a natural isomorphism
MX

∼
→ IX(r+1){i,j} (cf. the statement of [14], Proposition 2.1). We shall

denote this isomorphism by mX(r+1){i,j}.

(iii) The cup product on the group cohomology of ∆X

2∧
H1(∆X , MX) −→ H2(∆X , MX ⊗Zl

MX)

determines an isomorphism

Hom(∆ab
X , MX)

∼
−→ ∆ab

X ,
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hence a natural GK-equivariant injection

MX ↪→
2∧

∆ab
X

(cf. the disucussion preceding [14], Definition 3.2). We shall denote this
GK-equivariant injection by icup

X .

(iv) The isomorphism
Hom(∆ab

X , MX)
∼
−→ ∆ab

X ,

in (iii) determines a homomorphism

2∧
∆ab

X −→MX .

We shall denote by a ∪X a′ the image of a ∧ a′ via this homomorphism.

Proposition 4.8. Let us write

VUX(r+1)

def
=

⊕

i<j

(IX(r+1){i,j} ⊗Zl
Ql)⊕ LieX(r+1)

(1/2) .

(Note that by applying the natural isomorphisms mX(r+1){i,j} : MX{i,j}
∼
→

IX(r+1){i,j} and the identity morphism LieX(r+1)
(1/2)

∼
→ (

⊕r+1
k=1 ∆

ab (k)
X )⊗Zl

Ql,

one obtains a natural isomorphism of VUX(r+1)
with the Ql-vector space obtained

by tensoring the free Zl-module

⊕

i<j

MX{i,j} ⊕
r+1⊕

k=1

∆
ab (k)
X

[where MX{i,j} is the copy of MX indexed by {i, j}, and ∆
ab (k)
X is the copy

of ∆ab
X indexed by k] with Ql.) Then the first isomorphism in Proposition 4.6,

(ii), together with the natural inclusions IX(r+1){i,j} ↪→ ∆X(r+1)
, determine a

GK-equivariant morphism

VUX(r+1)
−→ LieX(r+1)

(1/∞)

which exhibits, in a GK-equivariant fashion, LieX(r+1)
(1/∞) as the quotient

of the completion with respect to the filtration topology of the free Lie algebra

Lie(VUX(r+1)
) generated by VUX(r+1)

equipped with a natural grading, hence also

a filtration, by taking the IX(r+1){i,j} ⊗Zl
Ql to be of weight 2, LieX(r+1)

(1/2) to

be of weight 1, by the relations determined by the images of the morphisms

(R′1) MX ⊗Zl
Ql

L

j mX(r+1){i,j}⊕icup
X

−→ (
⊕

j=1,···,r+1; j 6=i

IX(r+1){i,j} ⊕
∧2

∆
ab (i)
X )⊗Zl

Ql

incl.⊕[ , ]
−→ Lie(VUX(r+1)

)(2/3) (1 ≤ i ≤ r + 1) ;
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(R′3) (IX(r+1){i,k} ⊗Zl
IX(r+1){i′,k′})⊗Zl

Ql
[ , ]
−→ Lie(VUX(r+1)

)(4/5)

({i, k} ∩ {i′, k′} = ∅) ;

(R′4) (IX(r+1){i,k} ⊗Zl
∆

ab (i′)
X )⊗Zl

Ql
[ , ]
−→ Lie(VUX(r+1)

)(3/4)

(i 6= i′ , k 6= i′) ;

(R′5 and 6)
(
⊗2

Zl
∆ab

X )⊗Zl
Ql −→ (∆

ab (i)
X ⊗Zl

∆
ab (i′)
X ⊕ IX(r+1){i′,i})⊗Zl

Ql

a⊗ a′ 7→ (a⊗ a′, −mX(r+1){i′ ,i}
(a ∪X a′))

[ , ]⊕incl.
−→ Lie(VUX(r+1)

)(2/3) (i 6= i′)

(cf. the relations in the statement of Proposition 4.2, (iii)), where “incl” is the

natural inclusion morphism.

Proof. This follows from Propositions 4.2, (iii); 4.6, (ii).

Definition 4.9. Let 1 ≤ i < j ≤ r be integers, and a, b ∈ Z such that 1 ≤ a ≤ b.

(i) Now we have natural GK-equivariant surjections:

LinX(r+1)
(a/b) � LinX(r+1){1,2}(a/b) ; LieX(r+1)

(a/b) � LieX(r+1){1,2}(a/b) .

We shall denote by

Lininer
X(r+1)

(a/b) ; Lieiner
X(r+1)

(a/b)

the respective kernels of these surjections.

(ii) Now we have a natural GK -equivariant morphism:

∆X(r+1){1,2} −→ LinX(r+1){1,2}(1/∞)

(cf. Definition 1.1, (ii)). We shall write

∆Lie
X(r+1)

def
= ∆X(r+1){1,2} ×LinX(r+1){1,2}(1/∞) LinX(r+1)

(1/∞) .

(We regard LinX(r+1){1,2}(1/∞) and LinX(r+1)
(1/∞) as being equipped

with the topology determined by the respective natural l-adic topologies

of LinX(r+1){1,2}(1/b) and LinX(r+1)
(1/b) [where b is a positive integer];

moreover, we regard ∆Lie
X(r+1)

as being equipped with the topology de-

termined by the profinite topology of ∆X(r+1){1,2} and the topologies of

LinX(r+1){1,2}(1/∞) and LinX(r+1)
(1/∞).) Moreover, we shall denote by

Int∆X(r+1)
: ∆X(r+1)

−→ ∆Lie
X(r+1)

the GK-equivariant morphism induced by the morphism

∆X(r+1)
−→ ∆X(r+1){1,2}

induced by ιUX(r+1)
{1,2} (cf. Definition 2.9, (ii)) and the natural GK -

equivariant morphism

∆X(r+1)
−→ LinX(r+1)

(1/∞) .
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(iii) Now we have a natural GK -equivariant injection

Lininer
X(r+1)

(b + 1/∞)
∼
−→ {1} ×{1} Lininer

X(r+1)
(b + 1/∞)

−→ ∆X(r+1){1,2} ×LinX(r+1){1,2}(1/∞) LinX(r+1)
(1/∞)

∼
−→ ∆Lie

X(r+1)

whose image forms a closed normal subgroup of ∆Lie
X(r+1)

. We shall denote

by
∆Lie≤b

X(r+1)

the quotient of ∆Lie
X(r+1)

by this normal subgroup.

(iv) We shall write

ΠLie
X(r+1)

def
= ∆Lie

X(r+1)
o GK ; ΠLie≤b

X(r+1)

def
= ∆Lie≤b

X(r+1)
o GK ,

where the action of GK on ∆Lie
X(r+1)

and ∆Lie≤b
X(r+1)

is the action induced by

the section s0. Moreover, we shall denote by

IntΠX(r+1)
: ΠX(r+1)

−→ ΠLie
X(r+1)

the morphism induced by Int∆X(r+1)
.

(v) Now we have a natural morphism:

ΠX(r+1)

IntΠX(r+1)
−→ ΠLie

X(r+1)
� ΠLie≤b

X(r+1)

(respectively, DX(r+1){i,j} ↪→ ΠX(r+1)

IntΠX(r+1)
−→ ΠLie

X(r+1)
� ΠLie≤b

X(r+1)
;

respectively, IX(r+1){i,j} ↪→ ΠX(r+1)

IntΠX(r+1)
−→ ΠLie

X(r+1)
� ΠLie≤b

X(r+1)
).

We shall denote the image of this composite by

Π≤b
X(r+1)

(respectively, D
≤b
X(r+1){i,j}

; respectively, I
≤b
X(r+1){i,j}

);

moreover, we shall write

∆≤b
X(r+1)

def
= Π≤b

X(r+1)
∩∆Lie≤b

X(r+1)
;

D
∆≤b
X(r+1){i,j}

def
= D

≤b
X(r+1){i,j}

∩∆Lie≤b
X(r+1)

.

Proposition 4.10. For each α ∈ LinX(r+1)
(1/∞), there exists a unique element

β ∈ LinX(r+1)
(1/∞) such that

FrK ◦ Inn(α) = Inn(β) ◦ FrK ◦ Inn(β−1)

(where “Inn(−)” denotes the inner automorphism of LinX(r+1)
(1/∞) defined

by conjugation by the element “−”). Moreover, when α lies in the subgroup

obtained by tensoring the image of IX(r+1){1,2} via IntΠX(r+1)
with Ql, β also lies

in the subgroup obtained by tensoring the image of IX(r+1){1,2} via IntΠX(r+1)
with

Ql.
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Proof. The assertion follows from Proposition 4.6, (i), and successive approxi-
mation of β with respect to the natural filtration LinX(r)

(a/∞) ⊆ LinX(r)
(1/∞).

Remark 4.11. Observe that changing the choice of a lifting

s0 : GK −→ DX(r+1){1,2}

of s′0 affects the image of the element FrK ∈ GK via the composite of the in-
clusion GK ↪→ ΠX(r+1)

with the morphism IntΠX(r+1)
: ΠX(r+1)

→ ΠLie
X(r+1)

by

conjugation by an element of the subgroup obtained by tensoring the image of
IX(r+1){1,2} via IntΠX(r+1)

with Ql (cf. Proposition 4.10). In particular, it follows

that changing the choice of a lifting GK → DX(r+1){1,2} of s′0 affects the Galois

invariant splitting of Proposition 4.6, (ii), by conjugation by an element of the
subgroup obtained by tensoring the image of IX(r+1){1,2} via IntΠX(r+1)

with Ql.

Put another way, if we identify the “LinX(r+1)
(1/∞)”, “LinX(r+1){1,2}(1/∞)”

portion of ∆Lie
X(r+1)

(cf. Definition 4.9, (ii)) with the topological groups formed

the Ql-valued points of the pro-algebraic groups corresponding to the (comple-
tion of the) corresponding graded objects “Gr(−)(1/∞)” via the Galois invariant
splitting of Proposition 4.6, (ii), then the following holds:

Changing the choice of a lifting s0 : GK → DX(r+1){1,2} of s′0 affects

the images of the morphism

IntΠX(r+1)
: ΠX(r+1)

−→ ΠLie
X(r+1)

by conjugation by an element of the subgroup obtained by tensoring

the image of IX(r+1){1,2} via IntΠX(r+1)
with Ql.

Lemma 4.12. Int∆X(r+1)
is an injection.

Proof. This follows from induction on r, Corollary 1.13, (ii), together with the
fact that the central filtration

{∆X/S(n)}

defined in the discussion following Lemma 1.2 satisfies that

⋂

n≥1

∆X/S(n) = 1 .

Lemma 4.13. Let r ≥ 2 be an integer. Then conjugates (in ∆≤b
X(r+1)

) of the

subgroups D
∆≤b
X(r+1){1,2} and D

∆≤b
X(r+1){2,3} of ΠLie≤b

X(r+1)
topologically generate the sub-

group ∆≤b
X(r+1)

⊆ ΠLie≤b
X(r+1)

.

Proof. This follows immediately from Proposition 2.6 and Lemma 4.12.

Lemma 4.14. Let 1 ≤ i < j ≤ r be integers, and a, b ∈ Z such that 1 ≤ a ≤ b.

(i) ∆Lie≤1
X(r+1)

is naturally isomorphic to ∆X(r+1){1,2}.
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(ii) The kernel of the natural projection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

is isomorphic to

Lininer
X(r+1)

(b + 1/b + 2) .

In particular, the kernel of the natural projection D
≤b+1
X(r+1)

� D
≤b
X(r+1)

is

isomorphic to
{

1 (if b 6= 1 or {i, j} 6= {1, 2})
IX(r+1){i,j} (if b = 1 and {i, j} = {1, 2}) .

Therefore, for 2 ≤ b, the natural projection D
≤b+1
X(r+1)

� D
≤b
X(r+1)

is an

isomorphism.

Proof. This follows immediately from Lemma 4.4; Definition 4.9.

In the following, let us consider some assumptions on the section s0 : GK →
ΠX(r+1)

fixed in the discussion preceding Proposition 4.6:

Definition 4.15. Let r ≥ 2 be an integer. Then we shall say that the section
s0 : GK → ΠX(r+1)

(fixed in the discussion preceding Proposition 4.6) satisfies
the condition (†P) (respectively, (†S) for a set S = {x1, · · · , xr} of K-rational
points of X of cardinality = r with an ordering) if the following holds:

The image of the section s0 : GK → ΠX(r+1)
is contained in

DX(r+1){1,2} ∩DX(r+1){1,2,3} ⊆ ΠX(r+1)

(respectively, the section s′0 : GK → ΠX(r)
arises from the K-rational

point of UX(r)
corresponding to (x1, · · · , xr)).

Note that since GK is free, and DX(r+1){1,2} ∩ DX(r+1){1,2,3} is non-empty, a
section which satisfies the condition (†P) always exists.

By the discussion following of Definition 2.3, we have an exact sequence

1 −→ IX(r+1){1,2,3} −→ PX(r+1){1,2,3} −→ ∆PK −→ 1 ;

moreover, we also have a section of this sequence which is refered as the section

of PX(r+1){1,2,3} � ∆PK induced by plog
X(r+1):i

(i = 1, 2, 3). Let us denote by

∆PK{i} the image of the section of PX(r+1){1,2,3} � ∆PK induced by plog
X(r+1) :i

.

Note that then the subgroup ∆PK{i} ⊆ DX(r+1){1,2,3} of DX(r+1){1,2,3} is normal

by the definition of the section of PX(r+1){1,2,3} � ∆PK induced by plog
X(r+1) :i

.

Definition 4.16. Since the subgroup

∆PK{i} ⊆ DX(r+1){1,2,3}

of DX(r+1){1,2,3} is normal, if the section s0 satisfies the condition (†P) (cf.
Definition 4.15), then the action of GK on DX(r+1){1,2,3} induced via conjugation
induces an action of GK on ∆PK{i}. Therefore, we obtain a subgroup

∆PK{i}o GK ⊆ DX(r+1){1,2,3} .

We shall write ΠPK{i}
def
= ∆PK{i}o GK .
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Lemma 4.17. The group ΠPK{i} is isomorphic to ΠPK .

Proof. This follows immediately from the fact that the subgroup IX(r+1){1,2,3} ⊆

D∆
X(r+1){1,2,3} of D∆

X(r+1){1,2,3} is contained in the center of D∆
X(r+1){1,2,3}, to-

gether with the fact that any element of the subgroup ∆X(r−1)
×{1} ⊆ ∆X(r−1)

×

∆PK ' D∆
X(r+1){1,2,3}/IX(r+1){1,2,3} of D∆

X(r+1){1,2,3}/IX(r+1){1,2,3} commutes with

any element of the subgroup {1}×∆PK ⊆ ∆X(r−1)
×∆PK ' D∆

X(r+1){1,2,3}/IX(r+1){1,2,3}

of D∆
X(r+1){1,2,3}/IX(r+1){1,2,3}.

Definition 4.18.

(i) We shall denote by
{∆PK{2}(n)}

the central filtration of ∆PK{2} with respect to the surjection

∆PK{2}� 1

(cf. Definition 1.1, (i)). Then it follows immediately from Lemma 2.5 that
Lin(∆PK{2}(2/3))(Ql) is naturally isomorphic to

(IX(r+1){1,2} ⊕ IX(r+1){2,3})⊗Zl
Ql .

Now we shall write

∆Lie
PK
{2}

def
= Lin(∆PK{2}(1/∞))(Ql)×(IX(r+1){2,3}⊗Zl

Ql) IX(r+1){2,3} ,

where the morphism Lin(∆PK{2}(1/∞))(Ql) → IX(r+1){2,3} ⊗Zl
Ql (re-

spectively, IX(r+1){2,3} → IX(r+1){2,3} ⊗Zl
Ql) is the composite

Lin(∆PK{2}(1/∞))(Ql) � Lin(∆PK{2}(2/3))(Ql)

∼
−→ (IX(r+1){1,2} ⊕ IX(r+1){2,3})⊗Zl

Ql

pr2
� IX(r+1){2,3} ⊗Zl

Ql

(respectively, the natural inclusion). Then by the definition of ∆Lie
X(r+1)

, the

natural morphism Lin(∆PK{2}(1/∞))(Ql) → LinX(r+1)
(1/∞) (induced

by ∆PK{2} ↪→ ∆X(r+1)
) and the the natural inclusion IX(r+1){2,3} ↪→

∆X(r+1){1,2} induce a natural morphism

∆Lie
PK
{2} −→ ∆Lie

X(r+1)
.

Now let us assume that the section s0 fixed in the disucussion preceding
Proposition 4.6 satisfies the condition (†P) (cf. Definition 4.15). Then we
shall write

ΠLie
PK
{2}

def
= ∆Lie

PK
{2}o GK ,

where the action of GK on ∆Lie
PK
{2} is the action obtained via conjugate.

Now it follows that the morphism ∆Lie
PK
{2} → ∆Lie

X(r+1)
induces a morphism

ΠLie
PK
{2} −→ ΠLie

X(r+1)
;
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moreover, the following diagram commutes

ΠPK{2} −−−−→ ΠX(r+1)y
yIntΠX(r+1)

ΠLie
PK
{2} −−−−→ ΠLie

X(r+1)
,

where the left-hand vertical arrow is the morphism obtained by a similar
way to the way to define IntΠX(r+1)

.

(ii) Let S = {x1, · · · , xr} ⊆ X(K) be a subset of X(K) of cardinality = r with
an ordering. Then we shall denote by US ⊆ X (respectively, US ⊆ X)
be the open subscheme obtained as the complement of S (respectively,

S
def
= S \ {x1}) in X , and by

{∆US (n)} (respectively, {∆US (n)})

the central filtration of the pro-l fundamental group ∆US (respectively,
∆US ) of US (respectively, US) with respect to the natural surjection

∆US � ∆ab
X (respectively, ∆US � ∆ab

X ) .

Now we shall write

∆Lie
US

def
= Lin(∆US (1/∞))(Ql)×Lin(∆US

(1/∞))(Ql) ∆US .

Let us denote by Dx1 the decomposition subgroup associated to x1 of
the geometrically pro-l fundamental group ΠUS of US (well-defined, up to
conjugate). Then Dx1 fits into an exact sequence

1 −→ Ix1 −→ Dx1 −→ GK −→ 1 ,

where Ix1 is the inertia subgroup associated to x1 of ΠUS (well-defined, up
to conjugate). Let us fix a section sS

0 : GK → Dx1 of this exact sequence.
Then we obtain actions of GK on ΠUS , and on the geometrically pro-l
fundamental group ΠUS of US (via conjugate), hence also on

Lin(∆US (a/b))(Ql) ; Lin(∆US (a/b))(Ql) ;

Lie(∆US (a/b)) ; Lie(∆US (a/b)) ;

GrQl
(∆US (a/b)) ; GrQl

(∆US (a/b)) ; ∆Lie
US

for a, b ∈ Z such that 1 ≤ a ≤ b. Then we shall write

ΠLie
US

def
= ∆Lie

US
o GK .

Proposition 4.19.

(i) If the section s0 satisfies the condition (†P), then there exsits a unique

GK-equivariant isomorphism of Lie algebras

Lie(∆PK{2}(a/b))
∼
−→ GrQ(∆PK{2})(a/b)
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(where a ≤ b are integers). Now let us write

VPK{2}
def
= (IX(r+1){1,2} ⊕ IX(r+1){2,3})⊗Zl

Ql .

(Note that, by applying the natural isomorphisms mX(r+1){i,j} : MX{i,j}
∼
→

IX(r+1){i,j} [cf. Definition 4.7, (ii)], one obtains a natural isomorphism of

VPK{2} with the Ql-vector space obtained by tensoring the free Zl-module

MX{1,2} ⊕MX{2,3}

[where MX{i,j} is the copy of MX indexed by {i, j}] with Ql.) Then the

natural inclusions IX(r+1){i,j} ↪→ ∆PK{2}, together with the unique GK -

equivariant isomorphism of Lie algebras

Lie(∆PK{2}(a/b))
∼
−→ GrQ(∆PK{2})(a/b)

determine a GK-equivariant morphism

VPK{2} −→ Lie(∆PK{2}(1/∞))

which exhibits, in a GK -equivariant fashion, Lie(∆PK{2}(1/∞)) as the

completion with respect to the filtration topology of the free Lie algebra

Lie(VPK{2}) generated by VPK{2} equipped with a natural grading, hence

also a filtration, by taking the IX(r+1){i,j} ⊗Zl
Ql to be of weight 2. More-

over, the morphism of Lie algebras Lie(∆PK{2}(1/∞))→ LieX(r+1)
(1/∞)

corresponding to the morphism Lin(∆PK{2}(1/∞))(Ql)→ LinX(r+1)
(1/∞)

disucussed in Definition 4.18, (i), coincides with the morphism induced by

the natural inclusion

VPK{2} ↪→ VUX(r+1)

(cf. Proposition 4.8).

(ii) Let S = {x1, · · · , xr} ⊆ X(K) be a subset of X(K) of cardinality = r
equipped with an ordering. Then there exsits a unique GK -equivariant

isomorphism of Lie algebras

Lie(∆US (a/b))
∼
−→ GrQ(∆US )(a/b)

(respectively, Lie(∆US (a/b))
∼
−→ GrQ(∆US )(a/b))

(where a ≤ b are integers). Now let us write

VUS

def
=

⊕

1≤i≤r

(MX{i} ⊗Zl
Ql)⊕ Lie(∆US )(1/2)

(respectively, VUS

def
=

⊕

2≤i≤r

(MX{i} ⊗Zl
Ql)⊕ Lie(∆US )(1/2))

where MX{i} is the copy of MX indexed by {i}. [Note that, by applying

the identity morphism Lie(∆US )(1/2)
∼
→ ∆ab

X ⊗Zl
Ql, one obtains a natural

isomorphism of VUS with the Ql-vector space obtained by tensoring the free

Zl-module

⊕

1≤i≤r

MX{i} ⊕∆ab
X (respectively,

⊕

2≤i≤r

MX{i} ⊕∆ab
X )
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with Ql.] Then the isomorphism

Lie(∆US (a/b))
∼
−→ GrQ(∆US )(a/b)

(respectively, Lie(∆US (a/b))
∼
−→ GrQ(∆US )(a/b)) ,

together with the composite of the natural isomorphism MX{i}
∼
→ Ixi [US ]

(respectively, MX{i}
∼
→ Ixi [US ]) (cf. Definition 4.7, (ii)) and the natural

inclusions Ixi [US ] ↪→ ∆US (respectively, Ixi [US ] ↪→ ∆US ) [where Ixi [US ]
(respectively, Ixi [US ]) is the inertia subgroup of ∆US (respectively, ∆US )
associated to xi ∈ S (respectively, xi ∈ S)], determine a GK -equivariant

morphism

VUS −→ Lie(∆US (1/∞))

(respectively, VUS −→ Lie(∆US (1/∞)))

which exhibits, in a GK -equivariant fashion, Lie(∆US (1/∞)) (respectively,
Lie(∆US (1/∞))) as the quotient of the completion with respect to the fil-

tration topology of the free Lie algebra Lie(VUS ) (respectively, Lie(VUS ))
generated by VUS (respectively, VUS ) equipped with a natural grading, hence

also a filtration, by taking the MX{i}⊗Zl
Ql to be of weight 2, Lie(∆US (1/2))

(respectively, Lie(∆US (1/2))) to be of weight 1, by the relations determined

by the image of the morphism:

MX⊗Zl
Ql

L

idMX
⊕icup

X→ (
r⊕

i=1

MX{i}⊕
2∧

∆ab
X )⊗Zl

Ql
incl.⊕[ , ]
→ Lie(VUS )(2/3)

(respectively, MX ⊗Zl
Ql

L

idMX
⊕icup

X→ (

r⊕

i=2

MX{i} ⊕
2∧

∆ab
X )⊗Zl

Ql

incl.⊕[ , ]
→ Lie(VUS )(2/3)).

Proof. This follows from a similar argument to the argument used in the proof
of Proposition 4.8, together with [14] Proposition 3.3, (i).

In the following, let L be a finite field whose characteristic (respectively,
cardinality) we denote by pL (respectively, qL) such that l is invertible in L

(i.e., l 6= pL), L an algebraic closure of L, GL
def
= Gal(L/L), and Y a proper

hyperbolic curve over L. Moreover, let α(r) : ΠX(r)

∼
→ ΠY(r)

be a Frobenius-
preserving and order-preserving isomorphism, and t′0 : GL → ΠY(r)

the section of
the natural morphism ΠY(r)

→ GL corresponding to s′0 under the isomorphism
α(r). Then by Lemma 4.20 below, we obtain an isomorphism

αLie
(r+1) : ΠLie

X(r+1)

∼
−→ ΠLie

Y(r+1)
.

Note that by the construction of αLie
(r+1), together with the assumption on the

section s0 which is fixed in the discussion preceding Proposition 4.6, we may
assume that

αLie
(r+1) maps the image of IX(r+1){1,2} via IntΠX(r+1)

bijectively onto

the image of IY(r+1){1,2} via IntΠY(r+1)
.
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Lemma 4.20. Let α(r) : ΠX(r)

∼
→ ΠY(r)

be a Frobenius-preserving and order-

preserving isomorphism. Then, for any integer 1 ≤ r′ ≤ r + 1, there exists a

unique isomorphism

αLie
(r′) : ΠLie

X(r′)

∼
−→ ΠLie

Y(r′)

(respectively, αLie≤b
(r′) : ΠLie≤b

X(r′)

∼
−→ ΠLie≤b

Y(r′)
for any b ≥ 1)

which, for any integer 1 ≤ i ≤ r′, fits into the following commutative diagrams:

ΠLie
X(r′)

αLie
(r′)

−−−−→ ΠLie
Y(r′)y
y

ΠLie≤b
X(r′)

−−−−→
αLie ≤b

(r′)

ΠLie≤b
Y(r′)

ΠLie
X(r′)

αLie
(r′)

−−−−→ ΠLie
Y(r′)

via pUX
(r′−1)

:i

y
yvia pUY

(r′−1)
:i

ΠLie
X(r′−1)

−−−−→
αLie

(r′−1)

ΠLie
Y(r′−1)

.

Moreover, if r′ ≤ r, then αLie
(r′) fits into the following commutative diagram:

ΠX(r′)

α(r′)
−−−−→ ΠY(r′)

IntΠX
(r′)

y
yIntΠY

(r′)

ΠLie
X(r′)

−−−−→
αLie

(r′)

ΠLie
Y(r′)

.

Proof. By the discussion following Definition 2.13, α(r) induces a Frobenius-

preserving isomorphism α : ΠX
∼
→ ΠY . Thus, the existence of an isomorphism

αLie
(r′) : ΠLie

X(r′)

∼
−→ ΠLie

Y(r′)

(respectively, αLie≤b
(r′) : ΠLie≤b

X(r′)

∼
−→ ΠLie≤b

Y(r′)
)

which satisfies the condition in the statement of Lemma 4.20 follows from Propo-
sition 4.8. Now let r′ ≤ r. Then the isomorphism α(r′) : ΠX(r′)

∼
→ ΠY(r′)

(obtained in the discussion following Definition 2.13) induces an isomorphism
ΠLie

X(r′)

∼
→ ΠLie

Y(r′)
which fits into the commutative diagram

ΠX(r′)

α(r′)
−−−−→ ΠY(r′)

IntΠX
(r′)

y
yIntΠY

(r′)

ΠLie
X(r′)

−−−−→ ΠLie
Y(r′)

,

by the definitions of ΠLie
X(r′)

and ΠLie
Y(r′)

. Thus, to prove Lemma 4.20, it is enough

to show that this isomorphism of ΠLie
X(r′)

with ΠLie
Y(r′)

coincides with the isomor-

phism αLie
(r′). On the other hand, this follows from Proposition 4.6, (ii), by

considering the eigenspaces with respect to the action of the Frobenius element
(cf. Proposition 4.6, (ii)).

Lemma 4.21. Let r ≥ 2 be an integer. Then if the section s0 satisfies the

condition (†P), then the following conditions are equivalent:
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(i) α(r) is tripod-preserving.

(ii) The isomorphism αLie
(r+1) maps the image of ΠPK{2} via IntΠX(r+1)

bijec-

tively onto the image of ΠPL{2} via IntΠY(r+1)
.

In particular, if α(r) is tripod-preserving, then αLie
(r+1) maps the image (via

IntΠX(r+1)
) of the decomposition subgroup DP

X(r+1){2,3} of ΠPK{2} such that

DP
X(r+1){2,3} ∩ ∆X(r+1)

coincides with IX(r+1){2,3} bijectively onto a ΠY(r+1)
-

conjugate of the image (via IntΠY(r+1)
) of the decomposition subgroup DP

Y(r+1){2,3}

of ΠPL{2} such that DP
Y(r+1){2,3} ∩∆Y(r+1)

coincides with IY(r+1){2,3}.

Proof. It follows immediately from the definition of the term “tripod-preserving”
that condition (ii) implies condition (i) (cf. Lemma 4.17). We prove the asser-
tion that condition (i) implies condition (ii). Since α(r) is tripod-preserving,

there exists an isomorphism αP : ΠPK{2}
∼
→ ΠPL{2} such that the composite

M⊕2
X

∼
→ M⊕2

Y of the natural isomorphism M⊕2
X

∼
→ ∆ab

PK
(cf. Definition 4.7,

(ii)), the isomorphism ∆ab
PK

∼
→ ∆ab

PL
induced by αP, and the natural isomor-

phism ∆ab
PL

∼
→ M⊕2

L coincides with the isomorphism obtained by the isomor-
phism MX →MY obtained by α(r); moreover, it follows from the definitions of

ΠLie
PK
{2} and ΠLie

PL
{2} that αP induces an isomorphism αLie

P : ΠLie
PK
{2}

∼
→ ΠLie

PL
{2}

which fits into a commutative diagram

ΠPK{2}
αP−−−−→ ΠPL{2}y

y

ΠLie
PK
{2} −−−−→

αLie
P

ΠLie
PL
{2} .

On the other hand, by Proposition 4.19, (i), the isomorphism MX
∼
→ MY in-

duced by α(r) induces an isomorphism ΠLie
PK
{2}

∼
→ ΠLie

PL
{2} which fits into a

commutative diagram
ΠLie

PK
{2} −−−−→ ΠLie

PL
{2}

y
y

ΠLie
X(r+1)

−−−−→
αLie

(r+1)

ΠLie
Y(r+1)

,

where the vertical arrows are the morphism obtained in Definition 4.18, (i).
Thus, to prove Lemma 4.21, it is enough to show that this isomorphism of
ΠLie

PK
{2} with ΠLie

PL
{2} coincides with the isomorphism αLie

P . On the other hand,
this follows from the fact that Lie(∆PK{2}(1/∞)) (respectively, Lie(∆PL{2}(1/∞)))
is generated by the image of VPK{2} (respectively, VPL{2}), by considering the
eigenspaces with respect to the action of the respective Frobenius elements (cf.
Proposition 4.19, (i)).

Lemma 4.22. Let S = {x1, · · · , xr} be a subset of X(K) of cardinality =
r with an ordering, sS : GK → ΠX(r)

the section of the natural morphism

ΠX(r)
→ GK corresponding to the K-rational point (x1, · · · , xr) ∈ UX(r)

(K),
and (y1, · · · , yr) ∈ UY(r)

(L) an L-rational point of UY(r)
to which the section
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tT obtained as the composite GL

α(0)
∼
← GK

sS→ ΠX(r)

α(r)
∼
→ ΠY(r)

of the natural

morphism ΠY(r)
→ GL corresponds (cf. Proposition 2.12, (ii)). Let us write

T
def
= {y1, · · · , yr}. Let αS,T : ΠUS

∼
→ ΠVT be an isomorphism of the geometri-

cally pro-l fundamental group ΠUS of US
def
= X \ S with the geometrically pro-l

fundamental group ΠVT of VT
def
= Y \ T such that the isomorphism ΠX

∼
→ ΠY

induced by αS,T coincides with the isomorphism α(1) : ΠX
∼
→ ΠY induced by

α(r). Let us assume that the section s′0 (respectively, t′0) of the natural mor-

phism ΠX(r)
→ GK (respectively, ΠY(r)

→ GL) (fixed in the discussion preceding

Proposition 4.6) coincides with sS (respectively, tT ). [In particular, the section

GK → ΠX(r+1)
(respectively, GL → ΠY(r+1)

) fixed in the discussion preceding

Proposition 4.6 satisfies the condition (†S) (respectively, (†T )).] Then there ex-

ist morphisms ΠUS → ΠLie
X(r+1)

and ΠVT → ΠLie
Y(r+1)

which fit into a commutative

diagram

ΠUS

αS,T
−−−−→ ΠVTy

y

ΠLie
X(r+1)

−−−−→
αLie

(r+1)

ΠLie
Y(r+1)

and satisfy the following condition: The quotient of ΠUS (respectively, ΠVT )
determined by the composite

ΠUS −→ ΠLie
X(r+1)

� ΠX(r+1){1,2}

(respectively, ΠVT −→ ΠLie
Y(r+1)

� ΠY(r+1){1,2})

coincides with the natural quotient ΠUS � ΠUS (respectively, ΠVT � ΠVT ),

where S
def
= {x2, · · · , xr} (respectively, T

def
= {y2, · · · , yr}); moreover, this com-

posite determines an isomorphism ΠUS

∼
→ ΠX(r+1){1,2}×ΠX(r)

GK (respectively,

ΠVT

∼
→ ΠY(r+1){1,2} ×ΠY(r)

GL), where the morphism ΠX(r+1){1,2} → ΠX(r)

(respectively, ΠY(r+1){1,2} → ΠY(r)
) is the morphism induced by UX(r+1){1,2}

p
U

{1,2}

X(r)
:2

→

UX(r)
(respectively, UY(r+1){1,2}

p
U

{1,2}

Y(r)
:2

→ UY(r)
), and the morphism GK → ΠX(r)

(respectively, GL → ΠY(r)
) is sS (respectively, tT ). In particular, if we denote

by DS
X(r+1){2,3} (respectively, DT

Y(r+1){2,3}) the decomposition subgroup of ΠUS

(respectively, ΠVT ) associated to x2 (respectively, y2) such that DS
X(r+1){2,3} ∩

∆X(r+1)
(respectively, DT

Y(r+1){2,3}∩∆Y(r+1)
) coincides wtih IX(r+1){2,3} (respectively,

IY(r+1){2,3}), then the isomorphism αLie
(r+1) maps the image of DS

X(r+1){2,3} via

IntΠX(r+1)
bijectively onto a ΠY(r+1)

-conjugate of the image of DT
Y(r+1){2,3} via

IntΠX(r+1)
.

Proof. By the assumption on αS,T , αS,T induces an isomorphism αS,T : ΠUS

∼
→

ΠVT . On the other hand, by the definitions of ΠX(r+1){1,2} and ΠY(r+1){1,2}, the

isomorphism α(r) : ΠX(r)

∼
→ ΠY(r)

induces an isomorphism ΠX(r+1){1,2} ×ΠX(r)

GK
∼
→ ΠY(r+1){1,2}×ΠY(r)

GL, where these fiber product is as in the statement of

51



Lemma 4.22; moreover, it follows from the assumption on sS (respectively, tT )
that the profinite group ΠX(r+1){1,2}×ΠX(r)

GK (respectively, ΠY(r+1){1,2}×ΠY(r)

GL) is naturally isomorphic to the geometrically pro-l fundamental group of US

(respectively, VT ). Let us fix isomorphisms ΠUS

∼
→ ΠX(r+1){1,2} ×ΠX(r)

GK and

ΠVT

∼
→ ΠY(r+1){1,2}×ΠY(r)

GL. Then it follows from Proposition 4.23 below that

by composition with a cuspidally inner automorphism of ΠY(r+1){1,2} ×ΠY(r)
GL

(relative to ΠY(r+1){1,2} ×ΠY(r)
GL � ΠY ) if necessary, we may assume that the

following diagram commutes:

ΠUS

αS,T
−−−−→ ΠVT

o

y
yo

ΠX(r+1){1,2} ×ΠX(r)
GK −−−−−→

via α(r)

ΠY(r+1){1,2} ×ΠY(r)
GL .

In particular, it follows from Proposition 4.19, (ii), together with the fact that
the isomorphism of ΠX

∼
→ ΠY induced by αS,T coincides with the isomorphism

α(1), that we obtain a commutative diagram

ΠLie
US

−−−−→ ΠLie
VTy
y

ΠLie
X(r+1)

−−−−→
αLie

(r+1)

ΠLie
Y(r+1)

.

On the other hand, by the definitions of ΠLie
US

and ΠLie
VT

, αS,T induces an isomor-

phism αLie
S,T : ΠLie

US

∼
→ ΠLie

VT
which fits into the following commutative diagram:

ΠUS

αS,T
−−−−→ ΠVTy

y

ΠLie
US
−−−−→

αLie
S,T

ΠLie
VT

.

Therefore, Lemma 4.22 follows from a similar argument to the argument used
in the proof of Lemma 4.21, together with Proposition 4.19, (ii).

Proposition 4.23. Let K be a finite field, S a connected scheme which is

locally of finite type over K, f : X → S a hyperbolic curve, s : S → X a

section of f , U ⊆ X the open subscheme of X obtained as the complement of

the (scheme-theoretic) image of s, and fU : U → S the restriction of f to U .

Let

α : ΠU
∼
−→ ΠU

be an automorphism of the geometrically pro-l fundamental group ΠU of U which

fits into a commutative diagram

ΠU
α

−−−−→ ΠUy
y

ΠX ΠX ,
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where ΠX is the geometrically pro-l fundamental group of X, and the vertical

arrows are the surjections induced by the natural open immersion U ↪→ X.

Then α is a cuspidally inner automorphism, i.e., there exists an element γ of

the kernel of the natural surjection ΠU � ΠX such that α = Inn(γ).

Proof. If S is isomorphic to the spectrum of a finite extension field of K, then
Proposition 4.23 follows from a similar argument to the argument used in the
proof of the uniqueness of “α∞” in [14], Theorem 3.10. Therefore, Proposition
4.23 follows from Lemma 4.24 below, together with the slimness of the kernel of
the surjection induced by fU on geometrically pro-l fundamental groups.

Lemma 4.24. Let

1 −→ ∆ −→ Π −→ G −→ 1

be an exact sequence of profinite groups, and φ an automorphism of Π which

induces the identity morphisms of ∆ and G. Assume that ∆ is slim. Then φ is

the identity morphism.

Proof. By the slimness of ∆, we have a natural isomorphism

Π
∼
−→ Aut(∆)×Out(∆) G .

Now it is easily verified that if φ is an automorphism of Π which preserves the
subgroup ∆ ⊆ Π, then the automorphism of Aut(∆) ×Out(∆) G corresponding
to φ (under the above isomorphism) is given by

Aut(∆)×Out(∆) G
∼
−→ Aut(∆)×Out(∆) G

(f, g) 7→ (φ |∆ ◦f ◦ φ−1 |∆, φ(g)) ,

where φ is the automorphism of G induced by φ. Thus, the assertion is imme-
diate.

In the following, we assume that

r ≥ 2 .

In the rest of this section, we reconstruct the geometrically pro-l fundamental
group of the higher dimensional configuration space.

Lemma 4.25. The image of the diagonal morphism

ΠX(r)
−→ ΠX(r)

×ΠX(r−1)
ΠX(r)

∼
←− ΠX(r+1){1,2}

(cf. Lemma 2.10) is a conjugate of D
≤1
X(r+1){1,2} in ΠX(r+1){1,2} ' ΠLie≤1

X(r+1)
(cf.

Lemma 4.14, (i)).

Proof. This follows from the definitions of D
≤1
X(r+1){1,2} and ΠX(r+1){1,2}.

Lemma 4.26.
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(i) The diagrams

D
≤2
X(r+1){1,2} −−−−→ D

≤1
X(r+1){1,2}y

y

D
≤2
X(r){1,2} −−−−→ D

≤1
X(r){1,2}

Π≤2
X(r+1)

−−−−→ Π≤1
X(r+1)y
y

Π≤2
X(r)

−−−−→ Π≤1
X(r)

induced by the diagram

ΠLie≤2
X(r+1)

−−−−→ ΠLie≤1
X(r+1)

via plog
X(r) :3

y
yvia plog

X(r) :3

ΠLie≤2
X(r)

−−−−→ ΠLie≤1
X(r)

are cartesian.

(ii) The subgroup of ΠLie≤2
X(r+1)

obtained as the intersection of the inverse image

of D
≤1
X(r+1){1,2} (respectively, Π≤1

X(r+1)
) via the natural projection

ΠLie≤2
X(r+1)

� ΠLie≤1
X(r+1)

and the inverse image of D
≤2
X(r){1,2} (respectively, Π≤2

X(r)
) via

ΠLie≤2
X(r+1)

via plog
X(r) :3

� ΠLie≤2
X(r)

coincides with D
≤2
X(r+1){1,2} (respectively, Π≤2

X(r+1)
).

Proof. Assertion (i) follows immediately from Lemmas 4.4; 4.14, (ii). Assertion
(ii) follows from assertion (i), Lemma 4.27 below, together with the fact that
the homomorphism

ΠLie≤2
X(r+1)

via plog
X(r) :3

−→ ΠLie≤2
X(r)

induces an isomorphism of the kernel of the natural projection

ΠLie≤2
X(r+1)

� ΠLie≤1
X(r+1)

with the kernel of the natural projection

ΠLie≤2
X(r)

� ΠLie≤1
X(r)

(cf. Lemma 4.3, (ii); Proposition 4.6).

Lemma 4.27. Let

G1
f2

−−−−→ G2

f3

y
y

G3 −−−−→ G4
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be a commutative diagram of groups, and H1 ⊆ G1 a subgroup of G1. Write

H2 (respectively, H3) for the image of H1 via f2 (respectively, f3). Then if the

morphism

H1 −→ H2 ×G4 H3

induced by f2 and f3 is an isomorphism, and the intersection

Ker f2 ∩Ker f3

is trivial, then the natural inclusion morphism

H1 ↪→ f−1
2 (H2) ∩ f−1

3 (H3)

is an isomorphism.

Proof. Observe that the morphisms f2 and f3 induce a morphism

f−1
2 (H2) ∩ f−1

3 (H3) −→ H2 ×G4 H3 .

Since the composite

H1 ↪→ f−1
2 (H2) ∩ f−1

3 (H3) −→ H2 ×G4 H3

of the natural inclusion H1 ↪→ f−1
2 (H2) ∩ f−1

3 (H3) and this morphism is an
isomorphism by our assumption, we conclude that this morphism is surjective.
Moreover, since Kerf2 ∩ Ker f3 is trivial, this morphism is an isomorphism.
Then the assertion is immediate.

Lemma 4.28. The composite

D
≤2
X(r+1){2,3} ↪→ Π≤2

X(r+1)

via plog
X(r)

:3

� Π≤2
X(r)

coincides with the composite

D
≤2
X(r+1){2,3}

via plog
X(r)

:3

� ΠX(r)
� Π≤2

X(r)
.

In particular, the morphism

D
≤2
X(r+1){2,3}

∼
−→ D

≤1
X(r+1){2,3} −→ Π≤1

X(r+1)
×

Π≤1
X(r)

Π≤2
X(r)

∼
←− Π≤2

X(r+1)

(cf. Lemmas 4.14, (ii); 4.26, (i)) determined by the natural inclusion D
≤1
X(r+1){2,3} ↪→

Π≤1
X(r+1)

and the composite D
≤1
X(r+1){2,3}

via plog
X(r)

:3

� ΠX(r)
� Π≤2

X(r)
coincides with

the natural inclusion D
≤2
X(r+1){2,3} ↪→ Π≤2

X(r+1)
.

Proof. This follows immediately from Lemma 4.14, (ii).

Lemma 4.29. Let 1 ≤ i < j ≤ r+1 and b ≥ 2 be integers. Then any two liftings

of the natural inclusion D
≤b
X(r+1){i,j}

↪→ ΠLie≤b
X(r+1)

to inclusions D
≤b
X(r+1){i,j}

↪→

ΠLie≤b+1
X(r+1)

differ by conjugation in ΠLie≤b+1
X(r+1)

by a unique element of the kernel of

the surjection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

.
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Proof. By Lemma 4.14, (ii), it is enough to show that

H i(D≤b
X(r+1){i,j}

, Lininer
X(r)

(b + 1/b + 2)) = 0

for i = 0, 1. Since the action of D
∆≤b
X(r+1){i,j}

on Lininer
X(r)

(b + 1/b + 2) is triv-

ial, it thus suffices to observe (by considering the Hochschild-Serre spectral

sequence associated to the surjection D
≤b
X(r+1){i,j}

� GK) that the action of

FrK on Lininer
X(r)

(b + 1/b + 2) is “of weight b + 1 ≥ 3”, while the action of FrK

on (D∆≤b
X(r+1){i,j}

)ab is “of weight ≤ 2” (cf. Proposition 4.6, (i)). This completes

the proof of assertion.

Lemma 4.30. Let

α(r) : ΠX(r)

∼
−→ ΠY(r)

be a Frobenius-preserving and order-preserving isomorphism which is either

tripod-preserving or the following condition (∗) holds:

(∗): There exist

(i) a subset S = {x1, · · · , xr} (respectively, T
def
= {y1, · · · , yr}) of

X(K) (respectively, Y (L)) of cardinality = r with an ordering

such that if a section sS : GK → ΠX(r)
of the natural morphism

ΠX(r)
→ GK corresponds to the K-rational point (x1, · · · , xr) ∈

UX(r)
(K), then the section tT : GL → ΠY(r)

of the natural mor-

phism ΠY(r)
→ GL corresponding to sS (under the isomorphism

α(r)) coincides with the section arising from the L-rational point

(y1, · · · , yr) ∈ UY(r)
(L) (cf. Proposition 2.12, (ii)), and

(ii) an isomorphism αS,T : ΠUS

∼
→ ΠVT of the geometrically pro-l

fundamental group ΠUS of US
def
= X \ S with the geometrically

pro-l fundamental group ΠVT of VT
def
= Y \ T such that the

isomorphism ΠX
∼
→ ΠY induced by αS,T coincides with the

isomorphism α(1) : ΠX
∼
→ ΠY induced by α(r).

Then there exists an isomorphism

α(r+1) : ΠX(r+1)

∼
−→ ΠY(r+1)

well-defined up to composition with a Ker (ΠY(r+1)
� ΠY(r+1){1,2})-inner auto-

morphism such that, for i = 1, · · · , r + 1, the following diagram commutes:

ΠX(r+1)

α(r+1)
−−−−→ ΠY(r+1)

via pUX(r)
:i

y
yvia pUY(r)

:i

ΠX(r)
−−−−→

α(r)

ΠY(r)
.

Proof. If α(r) is tripod-preserving (respectively, satisfies the condition (∗)), then
we assume that the section s0 satisfies the condition (†P) (respectively, (†S)).
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Then since α(r) is Frobenius-preserving, it follows immediately from the natu-
rality of our construction that α(r) induces, for each positive integer b, isomor-
phisms

αLie≤b
(r+1) : ΠLie≤b

X(r+1)

∼
−→ ΠLie≤b

Y(r+1)
; αLie≤b

(r) : ΠLie≤b
X(r)

∼
−→ ΠLie≤b

Y(r)

that fit into the following commutative diagrams:

ΠLie
X(r+1)

−−−−→ ΠLie≤b+1
X(r+1)

−−−−→ ΠLie≤b
X(r+1)

αLie
(r+1)

y
yαLie≤b+1

(r+1)

yαLie≤b

(r+1)

ΠLie
Y(r+1)

−−−−→ ΠLie≤b+1
Y(r+1)

−−−−→ ΠLie≤b
Y(r+1)

ΠX(r)

IntΠX(r)
−−−−→ ΠLie

X(r)
−−−−→ ΠLie≤b+1

X(r)
−−−−→ ΠLie≤b

X(r)

α(r)

y αLie
(r)

y
yαLie≤b+1

(r)

yαLie≤b

(r)

ΠY(r)
−−−−→
IntΠY(r)

ΠLie
Y(r)

−−−−→ ΠLie≤b+1
Y(r)

−−−−→ ΠLie≤b
Y(r)

ΠLie≤b
X(r+1)

via pUX(r)
:3

−−−−−−−−→ ΠLie≤b
X(r)

αLie≤b
(r+1)

y
yαLie≤b

(r)

ΠLie≤b
Y(r+1)

−−−−−−−→
via pUY(r)

:3

ΠLie≤b
Y(r)

(cf. Lemma 4.20).

Moreover, αLie≤b
(r+1) is compatible with the Frobenius elements on either side,

and (by the assumption on the section s0 fixed in the discussion preceding Propo-

sition 4.6) αLie≤b
(r+1) maps I

≤b
X(r+1){1,2} bijectively onto I

≤b
Y(r+1){1,2}. In particular,

αLie≤b
(r+1) maps

I
≤b
X(r+1){1,2} o GK

bijectively onto
I
≤b
Y(r+1){1,2} o GL

[where we note that, by the assumption on the section s0, I
≤b
X(r+1){1,2} (respec-

tively, I
≤b
Y(r+1){1,2}) is stable under the action of GK (respectively, GL) on ΠLie≤b

X(r+1)

(respectively, ΠLie≤b
Y(r+1)

)].

On the other hand, if α(r+1) is tripod-preserving (respectively, satisfies the
condition (∗)), then it follows from Lemma 4.21 (respectively, Lemma 4.22),

αLie≤b
(r+1) maps D

P≤b
X(r+1){2,3} (respectively, D

S≤b
X(r+1){2,3}) bijectively onto a ΠY(r+1)

-

conjugate of D
P≤b
Y(r+1){2,3} (respectively, DT≤b

Y(r+1){2,3}) [cf. the notation of Lemma 4.21

(respectively, Lemma 4.22)], where for “−”= P, S, or T , and “−′”= X or Y ,

D
−≤b
−′

(r+1)
{2,3} is the image of the composite

D−−′
(r+1)

{2,3} ↪→ Π−′
(r+1)

IntΠ
−′

(r+1)
−→ ΠLie

−′
(r+1)

� ΠLie≤b
−′

(r+1)
.
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First, I claim that the isomorphism αLie≤1
(r+1) of ΠX(r+1){1,2} with ΠY(r+1){1,2}

(cf. Lemma 4.14, (i)) induces a bijection between the set of ΠX(r+1){1,2}-

conjugates of D
≤1
X(r+1){1,2} (respectively, D

≤1
X(r+1){2,3}) and the set of ΠY(r+1){1,2}-

conjugates of D
≤1
Y(r+1){1,2} (respectively, D

≤1
Y(r+1){2,3}). Indeed, this follows from

Lemma 4.25 (respectively, a similar argument to the argument used in the proof
of Proposition 2.12, (iii)).

Next, I claim that the isomorphism αLie≤2
(r+1) induces a bijection between the

set of Π≤2
X(r+1)

-conjugates of D
≤2
X(r+1){1,2} (respectively, D

≤2
X(r+1){2,3}) and the set

of Π≤2
Y(r+1)

-conjugates of D
≤2
Y(r+1){1,2} (respectively, D

≤2
Y(r+1){2,3}). Indeed, this

follows from the claim just verified above, together with Lemma 4.26, (ii) (re-
spectively, Lemma 4.26, (ii), together with Lemma 4.28).

Next, I claim that the isomorphism αLie≤b
(r+1) induces a bijection between the

set of Π≤b
X(r+1)

-conjugates of D
≤b
X(r+1){1,2} (respectively, D

≤b
X(r+1){2,3}) and the set

of Π≤b
Y(r+1)

-conjugates of D
≤b
Y(r+1){1,2} (respectively, D

≤b
Y(r+1){2,3}) for each posi-

tive integer b. To verify this claim, we apply induction on b. The case where
b = 1 or 2 is verified above. Thus, we assume that b ≥ 2, and that the
claim has been verified for “b” that are ≤ the b under consideration. Now
observe that it follows from Lemma 4.29 that any two liftings of the natu-
ral inclusion D

≤b
X(r+1){1,2} ↪→ ΠLie≤b

X(r+1)
(respectively, D

≤b
X(r+1){2,3} ↪→ ΠLie≤b

X(r+1)
) to

inclusions D
≤b
X(r+1){1,2} ↪→ ΠLie≤b+1

X(r+1)
(respectively, D

≤b
X(r+1){2,3} ↪→ ΠLie≤b+1

X(r+1)
)

differ by conjugation in ΠLie≤b+1
X(r+1)

by a unique element of the kernel of the

surjection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

; moreover, it follows from the definition that

the kernel of the surjection ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

is contained in the center of

∆Lie≤b
X(r+1)

. Therefore, the restriction to D
∆≤b
X(r+1){1,2} (respectively, D

∆≤b
X(r+1){2,3})

of any lifting of the natural inclusion D
≤b
X(r+1){1,2} ↪→ ΠLie≤b

X(r+1)
(respectively,

D
≤b+1
X(r+1){2,3} ↪→ ΠLie≤b

X(r+1)
) to an inclusion D

≤b
X(r+1){1,2} ↪→ ΠLie≤b+1

X(r+1)
(respectively,

D
≤b
X(r+1){2,3} ↪→ ΠLie≤b+1

X(r+1)
) coincides with the natural inclusion D

∆≤b+1
X(r+1){1,2} ↪→

ΠLie≤b+1
X(r+1)

(respectively, D
∆≤b+1
X(r+1){2,3} ↪→ ΠLie≤b+1

X(r+1)
). Thus, it follows that the iso-

morphism αLie≤b+1
(r+1) induces a bijection between the set of ∆≤b+1

X(r+1)
-conjugates

of D
∆≤b+1
X(r+1){1,2} (respectively, D

∆≤b+1
X(r+1){2,3}) and the set of ∆≤b+1

Y(r+1)
-conjugates of

D
∆≤b+1
Y(r+1){1,2} (respectively, D

∆≤b+1
Y(r+1){2,3}); in particular, since αLie≤b+1

(r+1) is compati-

ble with the Frobenius elements on either side, it follows from Lemma 4.13 that
the isomorphism αLie≤b+1

(r+1) maps Π≤b+1
X(r+1)

bijectively onto Π≤b+1
Y(r+1)

. Moreover, ob-

serve that the subgroup D
≤b+1
X(r+1){1,2} ⊆ ΠLie≤b

X(r+1)
is a subgroup which is uniquely

determined by the condition that it be a

the image of a lifting of the natural inclusion D
≤b
X(r+1){1,2} ↪→ ΠLie≤b

X(r+1)

to an inclusion D
≤b
X(r+1){1,2} ↪→ ΠLie≤b+1

X(r+1)
whose image contains

I
≤b+1
X(r+1){1,2} o GK .

(Indeed, the assertion that this condition uniquely determines the subgroup
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D
≤b+1
X(r+1){1,2} ⊆ ΠLie≤b+1

X(r+1)
may be verified follows: First, let us observe that

the isomorphism D
≤b+1
X(r+1){1,2}

∼
→ D

≤b
X(r+1){1,2} induced by the natural projection

ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

[cf. Lemma 4.14, (ii)] induces an isomorphism I
≤b+1
X(r+1){1,2}o

GK
∼
→ I

≤b
X(r+1){1,2} o GK . Thus, any two liftings of the natural inclusion

D
≤b
X(r){1,2} ↪→ ΠLie≤b

X(r+1)
to inclusions D

≤b
X(r){1,2} ↪→ ΠLie≤b+1

X(r+1)
whose images contain

I
≤b+1
X(r+1){1,2} o GK ⊆ ΠLie≤b+1

X(r+1)

[since b ≥ 2] in fact coincide on I
≤b
X(r+1){1,2} o GK ⊆ ΠLie≤b

X(r+1)
. Therefore, by

Lemma 4.29, it is enough to verify that the submodule of FrK-invariants of

Ker (ΠLie≤b+1
X(r+1)

� ΠLie≤b
X(r+1)

) = Lininer
X(r+1)

(b + 1/b + 2)

[cf. Lemma 4.14, (ii)] is zero. However, this follows immediately from Propo-

sition 4.6, (i).) Now by considering a similar condition for D
≤b
Y(r+1){1,2} ⊆

ΠLie≤b+1
Y(r+1)

, the claim that the isomorphism αLie≤b+1
(r+1) induces a bijection be-

tween the set of Π≤b+1
X(r+1)

-conjugates of D
≤b+1
X(r+1){1,2} and the set of Π≤b+1

Y(r+1)
-

conjugates of D
≤b+1
Y(r+1){1,2} follows from the fact that the isomorphism αLie≤b+1

(r+1)

maps I
≤b+1
X(r+1){1,2}oGK bijectively onto I

≤b+1
Y(r+1){1,2}oGL, together with the fact

that the isomorphism αLie≤b+1
(r+1) maps Π≤b+1

X(r+1)
bijectively onto Π≤b+1

Y(r+1)
. On the

other hand, by replacing {1, 2} by {2, 3}, I
≤b+1
X(r+1){1,2} o GK by

{
D

P≤b+1
X(r+1){2,3} (if α(r) is tripod−preserving)

D
S≤b+1
X(r+1){2,3} (if α(r) satisfies (∗)) ,

and I
≤b+1
Y(r+1){1,2} o GL by

{
D

P≤b+1
Y(r+1){2,3} (if α(r) is tripod−preserving)

D
T≤b+1
Y(r+1){2,3} (if α(r) satisfies (∗)) ,

it follows from a similar argument to the argument used in the proof of the
assertion that the isomorphism αLie≤b+1

(r+1) induces a bijection between the set of

Π≤b+1
X(r+1)

-conjugates of D
≤b+1
X(r+1){1,2} and the set of Π≤b+1

Y(r+1)
-conjugates of D

≤b+1
Y(r+1){1,2}

that the isomorphism αLie≤b+1
(r+1) induces a bijection between the set of Π≤b+1

X(r+1)
-

conjugates of D
≤b+1
X(r+1){2,3} and the set of Π≤b+1

Y(r+1)
-conjugates of D

≤b+1
Y(r+1){2,3}.

By the various claims verified above, by taking the projective limit, we thus
conclude that the isomorphism αLie

(r+1) induces an isomorphism of ΠX(r+1)
with

ΠY(r+1)
by Lemma 4.13.

Finally, we note that the indeterminacy, referred to in the statement of
Lemma 4.30, of the isomorphism α(r+1) up to composition with a cuspidally
inner automorphism arises precisely from the indeterminacy of the choice of

the subgroups IX(r+1){i,j} ⊆ ΠX(r+1)
, IY(r+1){i′,j′} ⊆ ΠY(r+1)

(1 ≤ i < j ≤ r + 1,
1 ≤ i′ < j′ ≤ r+1) and the sections of the natural morphisms ΠX(r+1)

→ GK and
ΠY(r+1)

→ GL (cf. Remark 4.11) with respect to cuspidally inner automorphisms
of ΠX(r+1)

, ΠY(r+1)
, respectively.
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Lemma 4.31. Any Frobenius-preserving isomorphisms of ΠX with ΠY are

tripod-preserving.

Proof. Let α be a Frobenius-preserving isomorphism of ΠX with ΠY . Note that
since replacing the base field by a finite extension field of the base field does not
affect the validity of the assertion that α is tripod-preserving, we may assume
that X(K) is non-empty. Then it follows from [14], Theorem 3.10, that there
exists an isomorphism α(2) of ΠX(2)

with ΠY(2)
which fits into a commutative

diagram

ΠX(2)

α(2)
−−−−→ ΠY(2)y

y

ΠX(2)

α×GK
α

−−−−−→ ΠY(2)

via pr1

y
yvia pr1

ΠX −−−−→
α

ΠY ,

where the left-hand (respectively, right-hand) top vertical arrow is the mor-
phism induced by the natural open immersion UX(2)

↪→ X ×K X (respec-
tively, UY(2)

↪→ Y ×L Y ). By base-changing the above diagram via the section
GK → ΠX arising from a K-rational point x of X and the section of the nat-
ural morphism ΠY → GL corresponding to the section GK → ΠX (under the
isomorphism α), we obtain a commutative diagram

ΠX\{x}
α◦−−−−→ ΠY \{y}y

y

ΠX
α

−−−−→ ΠYy
y

GK −−−−→
α(0)

GL ,

where y is an L-rational point of Y such that the section arising from y coincides
with the section of the natural morphism ΠY → GL corresponding to the section
GK → ΠX arising from a K-rational point x of X (cf. Proposition 2.12, (ii)).
Let X ′ → X be a non-trivial Galois covering over X , and Y ′ → Y the Galois
covering over Y corresponding to X ′ → X (under the isomorphism α). Then
by base-changing the above diagram via the natural inclusions ΠX′ ↪→ ΠX and
ΠY ′ ↪→ ΠY , we obtain a commutative diagram

ΠX′\{x′
1,···,x′

d}

α′
◦′−−−−→ ΠY ′\{y′

1,···,y′
d}y

y

ΠX′ −−−−→
α′

ΠY ′ ,

where d is the degree of the covering X ′ → X , and {x′1, · · · , x
′
d} (respectively,

{y′1, · · · , y
′
d}) is the subset of X ′(K) (respectively, Y ′(L)) obtained as the in-

verse image of {x} (respectively, {y}) via the morphism X ′(K) → X(K) (re-
spectively, Y ′(L) → Y (L)). Now by extending the base fields, we may assume
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that {x′1, · · · , x
′
d} (respectively, {y′1, · · · , y

′
d}) is a subset of X ′(K) (respectively,

Y ′(L)). In particular, we obtain a commutative diagram:

ΠX′\{x′
1,x′

2}
α′

◦−−−−→ ΠY ′\{y′
1,y′

2}y
y

ΠX′ −−−−→
α′

ΠY ′ .

Now we assume that the decomposition subgroup Dx′
i
⊆ ΠX′\{x′

1,x′
2}

associated
to x′i (well-definied, up to conjugate) corresponds to the decomposition subgroup
Dy′

i
⊆ ΠY ′\{y′

1,y′
2}

associated to y′i (well-definied, up to conjugate) under the
isomorphism α′◦.

Now I claim that the section of the natural morphism ΠX′
(2)
→ GK arising

from (x′1, x
′
2) ∈ UX′

(2)
(K) corresponds to the section of the natural morphism

ΠY ′
(2)
→ GL arising from (y′1, y

′
2) ∈ UY ′

(2)
(L) under the isomorphism α′(2) of

ΠX′
(2)

with ΠY ′
(2)

obtained from α′ (cf. [14], Theorem 3.10). Indeed, it follows

from Proposition 4.23 that we may assume that the top horizontal arrow in the
diagram

ΠX′
(2)
×ΠX′ GK −−−−→ ΠY ′

(2)
×ΠY ′ GLy
y

GK −−−−→ GL

obtained by base-changing the diagram

ΠX′
(2)

α′
(2)

−−−−→ ΠY ′
(2)

via pU
X′

(1)
:1

y
yvia pU

Y ′
(1)

:1

ΠX′ −−−−→
α′

ΠY ′

via the morphism GK → ΠX′ induced by the composite Dx′
1

↪→ ΠX′\{x′
1,x′

2}
�

ΠX′ and the morphism GL → ΠY ′ induced by the composite Dy′
1

↪→ ΠY ′\{y′
1,y′

2}
�

ΠY ′ coincides with the isomorphism of ΠX′\{x′
1}

with ΠY ′\{y′
1}

induced by α′◦.
Thus, the claim follows from the fact that the composite Dx′

2
↪→ ΠX′\{x′

1,x′
2}

�

ΠX′\{x′
1}

is compatible with the composite Dy′
2

↪→ ΠY ′\{y′
1,y′

2}
� ΠY ′\{y′

1}
un-

der the isomorphism of ΠX′\{x′
1}

with ΠY ′\{y′
1}

induced by α′◦.
By the above claim just verified, the isomorphism α′(2) satisfies the condition

(∗) in the statement of Lemma 4.30; in particular, α′(2) extends to an isomor-

phism of ΠX′
(3)

with ΠY ′
(3)

. Thus, it follows from Lemma 3.6 that α′, hence also

α is tripod-preserving (cf. [14], Remark 1.2.0).

The main result of this paper is as follows:

Theorem 4.32. Let X (respectively, Y ) be a proper hyperbolic curve over a

finite field K (respectively, L). Let

α(1) : ΠX
∼
−→ ΠY
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be a Frobenius-preserving isomorphism. Then, for any positive integer r, there

exists a unique isomorphism

α(r) : ΠX(r)

∼
−→ ΠY(r)

,

well-defined up to composition with a cuspidally inner automorphism (i.e., a

Ker (ΠY(r)
� ΠY(r)

)-inner automorphism), which is compatible with the natural

respective actions of the symmetric group on r letters such that, for i = 1, · · · , r+
1, the following diagram commutes:

ΠX(r+1)

α(r+1)
−−−−→ ΠY(r+1)

via pUX(r)
:i

y
yvia pUY(r)

:i

ΠX(r)
−−−−→

α(r)

ΠY(r)
.

Proof. This follows immediately from Proposition 4.23; Lemmas 4.30; 4.31; [14],
Theorem 3.10.

The following Corollary follows immediately from Theorem 4.32, together
with the fact that a hyperbolic curve over a finite field is Prime-separated (cf.
[14], definition 1.18, (i); Proposition 2.3, (ii)).

Corollary 4.33. Let X (respectively, Y ) be a proper hyperbolic curve over a

finite field K (respectively, L).

(i) Let

α : ΠX
∼
−→ ΠY

be a Frobenius-preserving isomorphism of the geometrically pro-l funda-

mental group of X with the geometrically pro-l fundamental group of Y ,

and r a positive integer. Let xi (where 1 ≤ i ≤ r) be an element of the

set (X \ {x1, · · · , xi−1})(K) of K-rational points of X \ {x1, · · · , xi−1}.
Then there exist an element yi of the set (Y \ {y1, · · · , yi−1})(L) and an

isomorphism

αnew : ΠX\{x1,···,xr}
∼
−→ ΠY \{y1,···,yr}

of the geometrically pro-l fundamental group of X \ {x1, · · · , xr} with the

geometrically pro-l fundamental group of Y \{y1, · · · , yr} which is compat-

ible with α. Moreover, such an isomorphism αnew is uniquely determined

up to composition with a cuspidally inner automorphism.

(ii) Let

α : π1(X)
∼
−→ π1(Y )

be a Frobenius-preserving isomorphism of the (profinite) fundamental group

of X with the (profinite) fundamental group of Y , and r a positive inte-

ger. Let xi be an element of X(K) (where 1 ≤ i ≤ r), and yi the el-

ement of Y (L) whose decomposition subgroup of π1(Y ) (well-defined, up

to conjugate) corresponds to the decomposition subgroup associated to xi

(well-defined, up to conjugate) via α. Then there exists an isomorphism

αcp(l) : π1(X \ {x1, · · · , xr})
cp(l) ∼

−→ π1(Y \ {y1, · · · , yr})
cp(l)
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of the maximal cuspidally pro-l quotient of π1(X\{x1, · · · , xr}) (relative to

π1(X \{x1, · · · , xr}) � π1(X)) with the maximal cuspidally pro-l quotient

of π1(Y \ {y1, · · · , yr}) (relative to π1(Y \ {y1, · · · , yr}) � π1(Y )) which

is compatible with α. Moreover, such an isomorphism αcp(l) is uniquely

determined up to composition with a cuspidally inner automorphism.

Remark 4.34.

(i) Since a hyperbolic curve over a finite field is not l-separated in general (cf.
Remark 4.35 below), the “yi’s” (hence also “αnew”) in the statement of
Corollary 4.33, (i), depend, unlike the case with Corollary 4.33, (ii), on the

ordering of {x1, · · · , xr}.

(ii) In the notation of Corollary 4.33, (ii), since it follows from [14], Theorem
3.12, that there exists a unique isomorphism (of schemes) of φ : X

∼
→

Y such that the isomorphism π1(X)
∼
→ π1(Y ) induced on fundamental

groups by φ coincides with α, it follows immediately that there exists an
isomorphism π1(X \ {x1, · · · , xr})

∼
→ π1(Y \ {y1, · · · , yr}) which is com-

patible with α. On the other hand, Corollary 4.33, (ii), provides a direct

way to construct such an isomorphism between the fundamental groups,
i.e., a way to construct such an isomorphism without passing through “the

world of schemes”.

Remark 4.35. In general, a hyperbolic curve over a finite field is not l-separated.
The following example of this phenomenon was given by Akio Tamagawa:

Let X be a hyperbolic curve over a finite field K of characteristic p, and
K an algebraic closure of K. Let us denote by ΠX the geometrically pro-l
fundamental group of X (where l is a prime number such that l 6= p), by ∆X

the pro-l fundamental group of X⊗K K, and by GK the Galois group of K over
K. Then we have a commutative diagram

1 −−−−→ ∆X −−−−→ ΠX −−−−→ GK −−−−→ 1

o

y
y

y

1 −−−−→ Inn(∆X) −−−−→ Aut(∆X ) −−−−→ Out(∆X ) −−−−→ 1 ,

where the horizontal sequences are exact, and the left-hand vertical arrow is an
isomorphism; in particular, the right-hand square is cartesian. It follows from
[1], Corollary 7, that Out(∆X) is almost pro-l (i.e., there exists a non-trivial
open subgroup which is pro-l), by replacing GK by an open subgroup of GK ,
we assume that the right-hand vertical arrow GK → Out(∆X ) in the above
diagram factors through a pro-l quotient of GK . Then since the right-hand
square is cartesian, we conclude that ΠX is isomorphic to

(∆X

out
o G

(l)
K )×G

(6=l)
K ,

where G
(6=l)
K is the maximal pro-(Prime \ {l}) quotient of GK ; thus, G

(6=l)
K is

isomorphic to the product of Zl′ ’s (where l′ ∈ Prime \ {l}). Let L ⊆ K be a
finite extension field of K of degree [L : K] prime to l such that X(K) 6= X(L).
(In fact, it follows from the “Weil conjecture for curves over finite fields” [cf.
e.g., [5], Chapter V, Exercise 1.10] that such an extension field exists.) Let
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x ∈ X(L)\X(K), x′ ∈ X(L) obtained as the conjugate of x via a generator of the
Galois group of the extension L/K, and xL ∈ XL(L) (respectively, x′L ∈ XL(L))

the L-rational point of XL
def
= X⊗K L determined by x (respectively, x′). Then

it follows from the fact x /∈ X(K) that xL 6= x′L; however, it follows from the

fact that ΠX is isomorphic to (∆X

out
o G

(l)
K ) × G

(6=l)
K that the ΠXL -conjugacy

class (where ΠXL is the geometrically pro-l fundamental group of XL) of the
section of ΠXL → GL corresponding to xL coincides with the ΠXL -conjugacy
class of the section of ΠXL → GL corresponding to x′L. Therefore, XL is not

l-separated.
Moreover, it follows immediately from the existence of the isomorphism

ΠX ' (∆X

out
o G

(l)
K )×G

(6=l)
K

that there exist automorphisms of ΠX which are not Frobenius-preserving.
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