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8§1. Introduction

The present paper consists of two parts.

In the first part §1-10, we introduce and study certain Hopf algebra, called
the configuration algebra, generated by all isomorphism classes, called configu-
rations, of finite graphs equipped with colors on edges. The algebra is complete
with respect to an adic topology. We construct a space Lg o called the Lie-like
space at infinity, complementary to the finite part of the algebra. The goal of
the first part is to introduce the set of limit elements log(EDP)_ in Lg .

In the second part §11, we apply the first part to the Cayley graph of any
group I' with a given finite generator system G, and obtain the set Q(T,G)
of limit elements for (I',G) inside log(EDP)_ . It turns out that Q(T',G) is
non-empty if and only if T" is infinite, and consists of a single element if I" is of
polynomial growth Conjecturally, Q(T', G) is finite if T' is a hyperbolic group.

The construction of the limit elements Q(T', G) is inspired by correlation
functions (or partition functions) in statistical mechanics ([Gi][I][O][Ba]) where
I' is an abelian lattice and the colors in G are specialized to Boltzmann’s weights
so that the configurations take on certain values, and then limit elements give
rise to partition functions. Owur original attempt is to use limit elements in
Q(T', G) for the construction of certain “modular functions” on the moduli of
anabelian discrete groups I' ([Sal,3]). Since the construction of limit elements
log(EDP)__ is independent of each individual group I', we separate the general
study of the configuration algebra as in the first part of the present paper.

The organization of the first part §1-10 is as follows.

The configuration algebra A [Conf], as a topological Hopf algebra over an
associative algebra A, is introduced in §2,3 and 4. The basis of the space L, of
its Lie-like elements (and also its group-like elements) are studied in §5,7 and
8. The subspace L4 o of £, at infinity is introduced at the end of §8 by the use
of kabi-coeflicients introduced in §7. Finally, we introduce the set log(EDP)_
of limits of logarithmic equal division pointsin Lr ~ in §10, where A is the real
number field R and we use the classical topology of R in an essential way.
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Let us explain the above in more detail. The isomorphism class of a colored
oriented finite graph is called a configuration (§2). The set of all configurations
with a fixed bound of valency and colors, denoted by Conf, has the structure of a
monoid (with the disjoint union as the product) and of a partial ordering. In §2,
the most basic invariant (51";9"5’") € L for Si,...,5, and S € Conf, called
a covering coefficient, is introduced and studied. The completion A [Conf] of
the semigroup ring of Conf with respect to a certain adic topology is called
the configuration algebra in §3. Using the covering coefficients as structure
constants, we introduce a topological Hopf algebra structure on A [Conf] in §4.

For a configuration S, let 14+.A(S) be the element of A[Conf] given by the
sum of all subgraphs of S. Put M(S):=log(1+A(S)) (§5 and 6). 1+.A(S) and
M(S) form a basis of the group-like or Lie-likespace of the noncomplete algebra
A[Conf], respectively. However, they are not a topological basis of the Lie-like
space Ly (resp. group-like space ,) of the completed algebra A [Conf]. There-
fore, we introduce a topological basis, denoted by {¢(S)}seccont,, for the com-
pleted module £,. The transformation matrix between the basis {M(S)}seccont,
and {¢(S) }secont, is described by certain constants, called kabi-coefficients, in-
troduced in §7. The base-change induces a map, called the kabi-map, from Ly
to another module, whose kernel L4 o is called the space at infinity (§8).

Inside the infinite dimensional group g, the subgroup &z forms a lattice,
i.e. it is discrete but dense with respect to the adic topology (§8 and 9). The
lattice has a natural positive cone generated by 1+ .A(S) for all configurations
S. We are interested in the equal division points (1 + A(S))"/#S of the lattice
points in the positive cone (§9), and study the set of their accumulation points
with respect to the classical topology by specializing the coefficient A to R. In
§10, by taking their logarithms, we describe the accumulation set log(EDP) in
Lr. We show that the set decomposes into a joint of the “finite part” and the
“infinite part” log(EDP)_ contained in Lg ; this is the object of the first part.

The second part (§11) describes the application of the first part to a group
I" with a fixed finite generator system G. We consider the increasing sequence
T, of balls of radius n € Z>¢ in the Cayley graph (I', G). The set of accumulation
points in Lr  of the sequence of logarithmic equal division points % in
Lg is denoted by Q(T', G). If the group I is of polynomial growth, then due to
a result of Gromov [Grl] and Pansu [P], Q(T', G) consists of a single element.
In order to treat finite accumulating cases, we introduce the concept of a finite
rational accumulation (11.3). As the goal of the paper, if #Q(T,G)<oo, we
express the traces of (T, G) by residues of the growth series > >/ #I',t™ and
oo o M(Ty,)t™. We conjecture that hyperbolic groups belong to such a class;
however, at present, no examples other than free groups, have been worked out.
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82. Colored graphs and covering coefficients

An isomorphism class of finite graphs with a fixed color-set and a bounded
number of edges (valency) at each vertex is called a configuration. The set
of all configurations carries the structure of an abelian monoid with a partial
ordering. The goal of the present section is to introduce a numerical invariant,
called the covering coefficient, and to show some of its basic properties.

2.1 Colored Graphs.

We first give a definition of colored graph which is used in the present paper.

Definition. 1. A pair (T, B) is called a graph, if T" is a set and B is a
subset of I' x '\ A with o(B) = B, where o is the involution o(«, ) := (8, @)
and A is the diagonal subset. An element of I' is called a vertez and a o-orbit
in B is called an edge. A graph is called finite if fI'< co. We sometimes denote
a graph by I" and the set of its vertices by |T'|.

2. Two graphs are isomorphic if there is a bijection of vertices inducing
a bijection of edges. Any subset S of |T'| carries a graph structure by taking
BN(SxS) as the set of edges for S. The set S equipped with this graph structure
is called a subgraph (or a full subgraph) of I" and is denoted by the same S. In
the present paper, the word “subgraph” shall be used only in this sense, and
the notation S C I' shall mean also that S is a subgraph of T" associated to the
subset. Hence, we have the bijection: {subgraphs of I'} ~ {subsets of |T'|}.

3. A pair (G,0q) of a set G and an involution og on G (i.e. a map
oG : G — G with 0% =idg) is called a color set. For a graph (T, B), a map
¢: B—G is called a (G, o0g)-coloring , or G-coloring, if ¢ is equivariant with
respect to involutions: co o = ogg o ¢. The pair consisting of a graph and
a G-coloring is called a G-colored graph. Two G-colored graphs are called
G-isomorphic if there is an isomorphism of the graphs compatible with the
colorings. Subgraphs of a G-colored graph are naturally G-colored.

If all points of G are fixed by o¢, then the graph is called un-oriented. If
G consists of one orbit of o, then the graph is called un-colored.

The isomorphism class of a G-colored graph S is denoted by [S]. Sometimes
we will write S instead of [S] (for instance, we put §[S] := £S, and call [S]
connected if S is topologically connected as a simplicial complex).

Example. (Colored Cayley graph). Let I' be a group and let G be a
generator system of I' with G = G~! and e ¢ G. Then, I' carries a graph
structure by taking B := {(a, 8) € [ x I': =!8 € G} as the set of edges. It is
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G-colored by taking (G, o¢) with og(g) := g~! as the color set and c(a, 3) :=
a1 as the coloring. Let us call the graph, denoted by (T',G), the colored
Cayley graph of the group I' with respect to G. The left action of g € ' on T’
is a G-isomorphism of the colored Cayley graph (T, G).

2.2 Configuration.

For the remainder of the paper, we fiz a finite color set (G,oq) (i.e. #G < )
and a non-negative integer q € Z>q, and consider only the G-colored graphs
such that the number of edges ending at a vertex (called valency) is at most q.
The isomorphism class [S] of such a graph S is called a (G, q)-configuration (or,
a configuration). The set of all (connected) configurations is defined by

(2.2.1) Conf := {G-isomorphism classes of G-colored graphs such that the
number of edges ending at any given vertex is at most ¢}
(2.2.2) Confy:={S € Conf | S is connected}.

The isomorphism class [¢] of an empty graph is contained in Conf but not in
Confy. Sometimes it is convenient to exclude [¢] from Conf. So put:

(2.2.3) Conf; : = Conf\{[¢]}.

Remark.  To be exact, the set of configurations (2.2.1) should have been
denoted by Conf®9. If there is a map G — G’ between two color sets com-
patible with their involutions and an inequality ¢ < ¢, then there is a natural
£G4 — Conf%

map Con . Thus, for any inductive system (G, qn)nez., (i-e.

G, — Gpi1 and g, <@n41 for n), we get the inductive limit lim Conf% 9 In
n—oo

[S2], we used such limit set. However, in this paper, we fix G and ¢, since the
key limit processes (3.2.2) and (10.1.1) can be carried out for fixed G and q.

2.3 Semigroup structure and partial ordering structure on Conf.

We introduce the following two structures 1. and 2. on Conf.
1. The set Conf naturally has an abelian semigroup structure by putting
[S]-[T] := [SUT] for [S], [T] € Conf,
where SIIT is the disjoint union of graphs S and T representing the isomorphism
classes [S] and [T]. The empty class [¢] plays the role of the unit and is denoted
by 1. It is clear that Conf is freely generated by Confy. The power S* (k > 0)
denotes the class of a disjoint union SII---II'S of k-copies of S.

2. The set Conf is partially ordered, where we define for S and T' € Conf
by : S <T " there exist graphs S and T with § = [S],T = [T] and S  T.
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The unit 1 = [@] is the unique minimal element in Conf by this ordering.

2.4 Covering coefficients.

For Si,...,5, and S € Conf, we introduce a non-negative integer:

(2.4.1) <Sl"'s"sm) D= ﬁ(sl"s”Sm) € Zxo

and call it the covering coefficient, where (S 1"'S"Sm ) is defined by the following;:
i) Fix any G-graph S with [S] = S.
ii) Define a set:
S1y...,Sm
( S ) := {(S1,...,Sm) | S; C S such that [S;] = 5;
(t=1,...,m)and U2, [S;| =IS|.}

(2.4.2)

iii) Show: an isomorphism S ~ §' induces a bijection (Sl"é’s’" )~ (Sl’é‘,’s’“ )
Remark.  In the definition (2.4.2), one should notice that

i) Each S; in (2.4.2) should be a full subgraph of S (see (2.1) Def. 2.).

ii) The union of the edges of S; (i = 1,...,k) may not cover all edges of S.

iii) The set of vertices |S;| (i =1,...,k) may overlap the set [S|.

Example. Let X, X5 be elements of Confy with $X; = ¢ for i = 1,2.

Then (X}(fl) =0 and (Xﬁ(f1> = 2.

The covering coefficients are the most basic tool in the present paper.

We shall give their elementary properties in 2.5 and their two basic rules: the
composition rule in 2.6 and the decomposition rule in 2.7.

2.5 Elementary properties for covering coefficients.

Some elementary properties of covering coefficients, as immediate consequences
of the definition, are listed below. They are used in the study of the Hopf
algebra structure on the configuration algebra in §4.

i) (51";9"5"‘) =0 unless S; < S fori=1,...,m and > §5; > 4S.

ii) (Sl"'s"s*") 1s invariant by the permutation of S; 's.

iii) For 1 <Y i < m, one has an elimination rule:

(25.1) <sl,...,si1,[2},5“1,...,5,,1) _ (Sl""’SiligSi“""’Sm)

iv) For the case m = 0, the covering coefficients are given by

(2.5.2) <S) - {(1) ZS“Z:M’
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v) For the case m =1, the covering coefficients are given by

T 1 if S="T,
2.5.3 =
( ) (5> {0 else,

vi) For the case S = [¢], the covering coefficients are given by
Sl...Sm 1 1fUSz:'d}7

2.5.4 B =

( ) ( (4] ) {O else.

2.6 Composition rule.
Assertion.  For Si,...,S,,,Th,...,T,, S€Conf (m,n€Z>¢), one has

(2.6.1) T <Sl,..U.7Sm) (U7T1,é..,Tn> _ (Sl,...7SméT1,...,Tn>.

UeConf

Proof. If m = 0, then the formula reduces to 2.5 iii) and iv). Assume
m > 1 and consider the map

ST A T A ] UT,..., T,
S S

UeConf
(Sl,. . ,Sm,Tl, e 7Tn) [— (UﬁlSi,Tl,. . ,Tn)

Here, U™, S; means the subgraph of S whose vertices are the union of the
vertices of the S; (i = 1,...,m) (cf. (2.1) Def. 2.) and the class [U2; S;] is
denoted by U. The fiber over a point (U, Ty,...,T,) is bijective to the set

(Sl’ "U" Sm , so that one has the bijection

Styees S Th o T ] S1,. S\ (UT,.... Tn
S - U S ’
U eConf

Note.  The LHS of (2.6.1) is a finite sum, since U < S due to 2.5 i).

2.7 Decomposition rule.
Assertion. Let m € Z>g. For Si,...,5,,U and V € Conf, one has

(2.7.1) (SI’U'.'{/S’”>: DY (Rl,..U.,Rm> (Tl,,,v,,Tm)

R1,T7 €Conf Ry, Ty €Conf
S1=R1-T1 Sm=Rm Tm

Here R; and T; € Conf run over all possible decompositions of S; in Conf.

Proof. If m =0, this is (2.5.2). Consider the map
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<S1,[[.J..</Sm) N U U <R17.tj7Rm> y <Tl,..V,Tm)7
Sim=Rpm - Tm

Slle-Tl
(S1,-++,Sm) — ($1NU,....SpNU) x (S1NV,...,S,NV).

One checks easily that the map is bijective. O
Note.  The RHS of (2.7.1) is a finite sum, since R; < U and T; < V.

83. Configuration algebra.

We complete the semigroup ring A - Conf, where A is a commutative asso-
ciative unitary algebra, by use of the adic topology with respect to the grading
deg(S):=+#15, and call the completion the configuration algebra. It is a formal
power series ring of infinitely many variables S € Confy. We discuss several
basic properties of the algebra, including topological tensor products.

3.1 The polynomial type configuration algebra Z - Conf.
The free abelian group generated by Conf:
(3.1.1) Z - Conf

naturally carries the structure of an algebra by the use of the semigroup struc-
ture on Conf (recall 2.3), where [¢] = 1 plays the role of the unit element. It
is isomorphic to the free polynomial algebra generated by Confy, and hence,
is called the polynomial type configuration algebra. The algebra is graded by
taking deg(S) := #(S) for S € Conf, since one has additivity:

(3.1.2) §S-T) = §(S)+4(T).

3.2 The completed configuration algebra Z [Conf].

The polynomial type algebra (3.1.1) is not sufficiently large for our purpose,
since it does not contain certain limit elements which we want to investigate
(cf 4.6 Remark 3 and 6.4 Remark 2). Therefore, we localize the algebra by the
completion with respect to the grading given in 3.1.

For n > 0, let us define an ideal in Z - Conf

(3.2.1) Jn = the ideal generated by {S € Conf | §(S) > n}.

Taking 7, as a fundamental system of neighborhoods of 0 € Z- Conf, we define
the adic topology on Z - Conf (see Remark below). The completion

(3.2.2) Z[Conf] : = UmZ- Conf/J,

n
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will be called the completed configuration algebra, or, simply, the configuration
algebra. More generally, for any commutative algebra A with unit, we put

(3.2.3) AfConf] : = lim A-Conf/AJ,,

and call it the configuration algebra over A, or, simply, the configuration alge-
bra. The augmentation ideal of the algebra is defined as

A[Conf], : = the closed ideal generated by Conf
= the closure of [J; with respect to the adic topology.

Let us give an explicit expression of an element of the configuration algebra
by an infinite series. The quotient A[Conf ] /AT, is naturally bijective to the

free module H A - S of finite rank. Taking the inverse limit of the bijection,

SeConf
gS<n

we obtain AlConf] ~ J] A-s.

SeConf
In the other words, any element f of the configuration algebra is expressed
uniquely by an infinite series

(3.2.4) [ =2 sccont S [s

for some constants fs € A for all S € Conf. The coefficient fig of the unit
element is called the constant term of f. The augmentation ideal is nothing
but the collection of f having vanishing constant term.

Remark.  The above defined topology on A [Conf] (except for the case
q = 0) is not equal to the topology defined by taking the powers of the augmen-
tation ideal as the fundamental system of neighborhoods of 0. More precisely,
for n > 1 and g # 0, the image of the product map:

(3.2.5) (A[Conf],)" — AT,

(c.f. (3.5.4) and (3.5.5)) does not generate (topologically) the target ideal on
the RHS (= the closure in A [Conf] of the ideal A7, = {f € A[Conf] | deg S >
n for fg # 0}), since there exists a connected configuration S with deg S = n,
but S, as an element in 7,,, cannot be expressed as a function of elements of
Im for m < n. In this sense, the name “adic topology” is misused here.

The notation A [Conf] should not be mistaken for the algebra of formal
power series in Conf. In fact, it is the set of formal series in Confy.
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3.3 Finite type element in the configuration algebra.

The support for the series f (3.2.4) is defined as

(3.3.1) Supp(f) : = {5 € Conf | fs # 0}.

Definition.  An element f of a configuration algebra is said to be of
finite type if Supp(f) is contained in a finitely generated semigroup in Conf.

Note that f being of finite type does not mean that f is a finite sum, but
means that it is expressed only by a finite number of “variables”.

3.4 Saturated subalgebras of the configuration algebra.

The configuration algebra is sometimes a bit too large. For later applications,
we introduce a class of its subalgebras, called the saturated subalgebras.

A subset P C Conf is called saturated if for S € P, any T' € Confy with
T < S belongs to P. For a saturated set P, let us define a subalgebra

(3.4.1) A[P]:= {f € A[Conf] | Supp(f) C the semigroup generated by P}.

We shall call a subalgebra of the configuration algebra of the form (3.4.1) for
some saturated P a saturated subalgebra. A saturated algebra R is character-
ized by the properties: i) R is a closed subalgebra under the adic topology of
the configuration algebra, and ii) if S € Supp(f) for f € R then any connected
component of S (as a monomial) belongs to R. We call the set

(3.4.2) Supp(R) : = Ujscgr Supp(f)

the support of R. Obviously, Supp(R) is the saturated subsemigroup of Conf
generated by P. The algebra R is determined from Supp(R).

It is clear that if R is a saturated subalgebra of A [Conf] then RN (A-Conf)
is a dense subalgebra of R and that R is naturally isomorphic to the completion
of RN (A - Conf) with respect to the induced adic topology.

Example. We give two typical examples of saturated sets.
1. For any any element S € Conf, we define its saturation by

(3.4.3) (S) := {T'eConf:T <S5}

2. Let (I',G) be a Cayley graph of an infinite group I' with respect to a
finite generator system G. Then, by choosing G as the color set and ¢ := #G,
we define a saturated subset of Conf by

(3.4.4) (I'G) : = {isomorphism classes of finite subgraphs of (I, G)}.
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Apparently, the saturated subalgebra A [(S)] consists only of finite type el-
ements, whereas the algebra A [(T', G)] contains non-finite type elements. This
makes the latter algebra interesting when we study limit elements in §11.

3.5 Completed tensor product of the configuration algebra.

The tensor product over A of m-copies of A - Conf for m € Zx( is denoted
by ®™(A - Conf). In this section, we describe the completed tensor product
&" (A [Conf]) of the completed configuration algebra,

Definition. Let A be a commutative algebra with unit. For m €
Z>0, the completed m-tensor product Q™A [Conf] of the configuration algebra
A[Conf] is defined by the inverse limit

(3.5.1) ®"A[Conf] : = lim ®™ (A - Conf)/(®"AT ),

where (®™AJ),, is the ideal in ®™ (A - Conf) given by

(3.5.2) @"AT)n = Y. AT @ ®AT,,

ni4-4nm>n
where & A [Conf] = A and &' A [Conf] = A [Conf].

We list up some basic properties of @ A [Conf] (proofs are left to the
reader). i) Since N2 (AJ®™),, = {0}, we have the natural embedding map

(3.5.3) @™(A-Conf) c &"(A[Conf])

whose image (identified with itself) is a dense subalgebra with respect to the
(3.5.2)-adic topology. ii) There is a natural algebra homomorphism

(3.5.4) @™ (A [Conf]) — &™(A[Conf])

with a suitable universal property. The image of an element f; ® -+ ® f, is
denoted by fi®---®f,. We denote it also by f1 @ -+ ® f, if fi € A - Conf
(¢ = 1,---,m) because of i). iii) If ¥; : @i (A - Conf) — ®"i(A - Conf)

(i = 1,---,1) are continuous homomorphisms. Then, one has the completed
homomorphism

~1 AZ{:I m; ’\Zl-zl n;
(3.5.5) ®;=1V; 1 @7 (A[Cont]) — & (A [Cont])

with some natural characterizing properties. In particular, the completed prod-
uct map: A [Conf] ®A [Conf] — A [Conf] is sometimes denoted by M.
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3.6 Exponential and logarithmic maps.

Let ¢(t) = Zcpnt” € A[t] be a formal power series in the indeterminate ¢.
Then the substitution of ¢ by an element f of A [Conf],: ¢(f) := Zcpnf" €

A[Conf] defines a map ¢ : A[Conf] , — A [Conf] (c.f. (3.2.5)). The defined
map is equivariant with respect to any continuous endomorphism of the config-
uration algebra. The map ¢ can be restricted to any closed subalgebra of the
configuration algebra. If f is of finite type, then ¢(f) is also of finite type.

Assume that A contains Q. Then we can define the exponential, logarith-
mic and power (with an exponent ¢ € A) maps as follows:

(3.6.1) exp(M) = Z

i' M for M € A[Conf]
— nl
= (_1)n—1 n
(3.6.2) log(1+A) : = Z — A for A € A[Conf]

(3.6.3)  (1+A)F° := ic(c_l)"'(c_”+1) A" for A € A[Conf], .

n!

They satisfy the following standard functional relations:
exp(M+N) = exp(M)-expN),
log((1+.A)(1+ B)) log(1 4 A) +log(1 + B),
1+ A" 1+A4)2 = (1+A)7=,
log((14+A4)°) = c-log(1+.A).

Formulae.  Suppose A and M € A [Conf], are related by
(3.6.4) 1+ A=exp(M) < M=log(l+A).

Then the coefficients of A =3 gccone, S As and M =3 g oy, 5 Mg are
related by

- 1 k K
(3.6.5) As = Z Z mMsi“'Ms”g
m=05y,---,S, €Conf )
S=5¥1. . .gkm
and
) (k_l 4. +km_1)!(_1)k1+”'+k;l & -
(3.6.6) Ms = Y > T ] A Al

m=0 Sy, ,Sy €Conf .
S:Sfl ..“.Skm
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Here the summation index runs over the set of all decompositions of S:
(3.6.7) S = Sh. .Gk

for pairwise distinct S; € Conf; (¢ =1,...,m) (which may not necessarily be
connected) and for positive integers k; € Z~q. Two decompositions Sfl w Sk
and Tll1 -...-T' are regarded as the same if m = n and there is a permutation
o € Gy such that k; = l,;) and S; = T, for i = 1,...,m. The RHS’s of
(3.6.5) and (3.6.6) are finite sums, since the S;’s and k;’s are bounded by S.

Proof. We omit the proof since it is a straightforward calculation of formal
power series in the infinite generator system Confy. O

Example. Let T € Confy and let us denote S, := T* € Conf for
k € Zso. It S := S, for some n > 0, then the decomposition (3.6.7) is
S = Sfl -...-S,’ﬁ{" for m > 1 and k; > 0 such that n = Zzlzkzz Thus the
summation index for S runs over the set {(k;); € (ZZO)ZZ1 =g, 0-ki}.

In particular, for n = 1, we have the following important fact, which we
shall use repeatedly: Fact. let A and M € A[Conf], be related by (3.6.4).
For any T € Confy, one has the equality: ~ Ap = Mry.

8§4. The Hopf algebra structure

We construct a topological commutative Hopf algebra structure on the
configuration algebra A [Conf]. More precisely, we construct in 4.1 a sequence
of coproducts ®,, (n € Z>) by the use of the covering coefficients and, in 4.4,
the antipode ¢, which together satisfy the axioms of a topological Hopf algebra.

4.1 Coproduct &, for m € Z>.
For a non-negative integer m € Z>o and U € Conf, define an element

(4.1.1) Op(U) i= Y > (Sl"'U"S’”> 51 ®...9 8,

S1€Conf S €Conf

in the tensor product ®™(Z - Conf) of m-copies of the polynomial type config-
uration algebra. Due to 2.5 v), one has,

(4.1.2) On([e]) = [¢] (=1).
The map ®,,, is multiplicative. That is: for U,V € Conf, one has

(4'1'3) q)m(U ’ V) = (I)m(U) : q)m(v)'
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Proof. The decomposition rule (2.7.1) implies the formula. O

Thus, the linear extension of ®,, induces an algebra homomorphism from
Z - Conf to its m-tensor product ®™(Z - Conf), which we denote by the same
®,,, and call the mth coproduct. The coproduct ®,, can be further extended to
a coproduct on the completed configuration algebra.

Assertion. 1. The mth coproduct ®,,, (m € Z>o) on the polynomial
type configuration algebra is continuous with respect to the adic topology. The
induced homomorphism is denoted again by ®,, and called the mth coproduct:

(414) @, : AJConf] — &"A[Conf] := A[Conf] & ---®A [Conf]
2. The completed homomorphism ®,, has the mulitiplicativity
(4.1.5) Dp(f-9) = Pulf) - Pimlyg)
for any f,g € A[Conf],
3. Any saturated subalgebra R of A [Conf] is preserved by ®,,:
(4.1.6) ®,,(R) ¢ &"R.

Proof. 1. Recall the fundamental system (™AJ), (3.5.2) of neighbor-
hoods of the m-tensor algebra ®"(Z - Conf). Let us show the inclusion

(4.1.7) D, (AT,) C (@MAT)n

for any m,n € Z>o. The ideal J, is generated by U € Conf with deg(U) :=
#U > n, and then ®,,(U) is a sum of monomials S; ® - - ® S,, for S; € Conf
such that (Sl"aSm) # 0. Then #S1 + -+ + S > #(U) > n because of (2.5) i),
implying ®,,(U) € (™J )n-

2. The multiplicativity of the monomials (4.1.3) implies the multiplicativ-
ity of the configuration algebra of polynomial type. Then it extends to mul-
tiplicativity on infinite series (3.2.4) because of the continuity of the product
with respect to the adic topology.

3. Let f be an element of R and f = ) ¢ Sfs be its expansion. Then
®,,(f) is aseries of the form ) ¢ S1®- - @5, ( Sl"'é;’s”‘ )fs. Thus, (Sl"é’s’” )fs #
0 implies each factor S; satisfies S; < S and S € Supp(f) C Supp(R). Then,
by the definition of saturatedness, S; € Supp(R) and ®,,(f) € &"R. O

Co-commutativity of the coproduct ®,,.
The symmetric group &,,, acts naturally on the m-tensors (3.5.1) by permuting
the tensor factors. The image of ®,, lies in the subalgebra consisting of &,,-
invariant elements, because of 2.5 ii): ®,,(A [Conf]) C (8" A [Conf])®™. We
shall call this property the co-commutativity of the coproduct ®,,.
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4.2 Co-associativity

Assertion.  For m,n € Z>, one has the formula:

(4.2.1) (1801 @Pp) o Ppi1 = Prgn

Proof. This follows immediately from the composition rule (2.6.1). O
Using the co-commutativity of ®5, @3 can be expressed in two different ways:
(@2@1) (e} @2 = (1(/8\)(1)2) o (I)Q.

This equality is the co-associativity of the coproduct ®5. More generally, ®,,
is expressed by a composition of m — 1 copies of ®5’s in any order.

4.3 The augmentation map &.

The augmentation map for the algebra is defined by ®¢ (recall (2.5.2)):

(4.3.1) aug := ®p: A[Conf] — A, SeConfy—0, [¢]—1
Assertion.  The map aug is the co-unit with respect to the coproduct

Ds.

(4.3.2) (aug ®id) o By = idZ[[Conf]].

Proof. This is the case m = 0 and n = 1 of the formula (4.2.1). Alterna-
tively, for any S € Conf ., using (2.5) iii) and iv), one calculates: (aug®id) o

T,U T,
y(5) = ZT7UEConf ( S )T ~aug(U) = Y recont ( 5£¢]> =S5 O
4.4 The antipodal map ¢

The coproduct ®5 and the co-unit ®( exist both on the polynomial type and
the completed configuration algebras. The co-inverse ¢, which we construct in
the present section, exists only on the localized configuration algebra.

Assertion.  There exists an algebra automorphism
(4.4.1) ¢+ AfConf] — A[Conf],

satisfying following properties i)-iv). It is characterized uniquely by ii) and iii).
i) ¢ is an involutive automorphism. That is: 1> = id, [[Conf]} .
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ii) ¢ is the co-inverse map with respect to the coproduct ®s, that is:
(4.4.2) Mo (1®id)o®y = aug.

where M is the product defined on the completed tensor product (recall 4.5).
iii) ¢ is continuous with respect to the adic topology. More precisely,

(4.4.3) (Tn) C Tn

for n € Z>q, where J, is the closure of the ideal J,, (3.2.1).
iv) ¢ leaves any saturated subalgebras of A [Conf] invariant.

Proof. First, let us construct the map ¢ with the properties ii), iii) and
iv). The property i) and the uniqueness of ¢ are shown afterward.

Let us fix a numbering ¢ € Z>; ~ 5; € Conf, such that if ¢ < j then
#5; < #S; for all 4, j € Z>;. Note that this condition implies that if S; < §;
and S; # S; then #S5; < #5; and therefore i < j. This means that the
set {[¢], S1, -+ ,Si} is saturated in the sense of 3.4. Counsider the increasing
sequence Ry := A, R; := A[Sy,---,S5;] (i=1,2,---) of saturated subalgebras
of A[Conf]. We want to construct a sequence of continuous endomorphisms
to =1da, t; : Ry — R; (i =1,2,---) satisfying the following relations:

a) 1} = idg,.
b) Li|Ri—1 = li-1.
C) (I,i'id)o(b2|R1, = aUg|Ri'

d) u(JnNR;) C JnNR;.
e) 1;(S;) € Z[(Si)] (recall (3.4.1) and (3.4.3) for the notation Z [(S)]).

For i € Z>1, suppose that ¢;_1 : R;_1 — R;_1 satisfying a)-e) is given. In
order to extend ¢;_1 to ¢;, we first look for ¢;(.S;) as a solution of the equation:

M o (LZ®1) o @Q(SZ) = 0.
For notational simplicity, put S := S;, ¢ := ¢;_1 and ¢/ := 1;. Let us write down

the equation explicitly by using (4.1.1).

Mo (/®id) 0 ®n(S) : = Spryecont <U§V>L/(U)-V =0,

where, in fact, the summation index (U, V') runs only over the finite index set
(S)? due to 2.5 i). We decompose the index set into three pieces: {S} x (S),
({SY\{S}) x ({(S)\ {S}) and ({S) \ {S}) x {S}. Accordingly, we decompose

the equation into three parts:

(4.4.4) J(S) - (1+A(S)) +B(S)+ (1+¢(A(S)—S8))-S =0,
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where
(4.4.5) %
A(S) == Zve<s>\{[¢1}< s >V7
and
§ uv
(4.4.5) B(S) : = ZU,VG(S)\{S}( s )L(U>'V'

We have the following facts concerning the equation (4.4.4).

i) By definition (4.4.5), one has the inclusion Supp(A(S) — S) C (S)\ {S}
and each term of A(S) — S is a monomial of S;’s such that j < ¢ and S; € (5).
Therefore, by the induction hypothesis e), Supp(¢(A(S) — S)) C (S).

ii) By the induction hypothesis d), ¢(U) belongs to m NZ[{U)] for
YU # S with U < S, and hence, (4.5.5)* implies B(S) € Jys) N Z[(S)].

On the other hand, by definition (4.4.5), A(S) belongs to the augmentation
ideal. Hence, in view of the inclusion (3.2.5), the inverse (1 + A(S))™! =
> (—A(S))™ converges in Z[(S)]. Therefore the equation (4.4.4) for /(S)

m>0
has a unique solution in Z [(S)]:

(4.4.6) /(8) = %j(S)(B(S) + (14 (A(S) = 5)) - S).

As a consequence of the above Facts i) and ii), we have
x) The right hand side of (4.4.6) belongs to Jys) N Z[(S)].

By using (4.4.6), one can define a homomorphism ¢’ from R;_1[S] to R; by
extending ¢ on R;_;. Due to %), one has //(J, N R;_1[S] C T, "n € Z,,. Hence
it is continuous in the adic topology and is extended to an endomorphism of
R; = R;_1[S]. We denote the extended homomorphism again by ¢'.

Let us show that ¢/ satisfies a)-e), where b) follows from the construction
and e) follows from x).

c¢) and d) : if we restrict the domain to R;_1[S], then the result follows.
Then by the continuity of ¢/, the result extends to the closure R; = R;_1 [S].

a) : It is enough to show: (/)?(S) = S. Let us apply ¢/ to the equality
(4.4.4). Using the induction hypothesis a) and b), one gets

k) (U)?(S) (14 (A(S) = 9) +(8)) +B(S) + (L+ A(S) — 9)/(S) =0

Here, we have (B(S) = B(S), by applying the symmetry (2.5) ii) and the
induction hypothesis a) to the expression (4.4.5)*.
Taking the difference: xx)- (4.4.4), we obtain an equality:

(()2(S) = S) (1 + (A(S) — §) + (S)) = 0.
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Since A(S) € J1 and (A(S) — S) 4+ /(S) € T, 1+ (A(S) — S) + /(9) is
invertible in the algebra R;. This implies (:/)%(S) — S = 0.

Thus the proof of a)-e) for ¢; is completed, and hence, the sequence ¢;
of endomorphisms on R; are constructed. We define the endomorphism ¢ of
the subalgebra R := U, R; by ¢|R; = ¢;. Here, we note that R consists of
exactly finite type elements, and is a dense subalgebra of the completed con-
figuration algebra, since it contains the polynomial type configuration algebra.
Then d) implies homeomorphicity of ¢ on R, and therefore ¢ extends to the
completed configuration algebra. The extended homomorphism, denoted by ¢
again, satisfies 1), ii) and iii) due to the continuity of ¢.

iv) Let R be any saturated subalgebra of the configuration algebra. We
first consider any element S € Conf. Then by applying e) to each connected
component of S, one has «(S) € Z[(S)]. Next, for any f = > ¢Sfs € R, by
applying the above considerations, one has Supp(¢(f)) C Usgz0 Supp(L(S)) C
Ufg=0 semigroup generated by (S) C Supp(R). That is, ¢(f) € R.

For the uniqueness of ¢ Let ¢ be the map constructed above, and let ¢/
be any other endomorphism of the configuration algebra satisfying ii) and iii)
of the Lemma. Let us show that +/(S;) = ¢(S;) by induction on i € Z>1. Let
i € Z>1, and assume ¢(S;) = J/(j) for 1 < j < i ( there is no assumption if
i =1). Byii), //(S;) should satisfy the same equation as (4.4.4). The uniqueness
of the solution (4.4.6) implies ¢/(S;) = ¢(S;). This implies the coincidence of ¢
and ¢/ on Z - Conf. Then, by the continuity iii), we have the coincidence of ¢
and ¢/ on the completed configuration algebra. O

Equation (4.4.4) for n = 1 implies that ¢ preserves the augmentation ideal
of A[Conf]. Hence, we have

(4.4.7) aug or = aug.
Let us state an important consequence of our construction.

Assertion.  Any saturated subalgebra of the configuration algebra is a
topological Hopf algebra. In particular, for any group I' with a finite generator
system G and commutative ring A with a unit, A [(T', G)] is a Hopf algebra.

Proof. We need only to remember that ®,, (m > 0) and ¢ preserves any
saturated subalgebra (4.1 Assertion 3. and 4.4 Assertion iv)). O
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4.5 Some remarks on ..

Remark. 1. In section 5., the functions A(S) (S € Conf) will be re-
introduced and investigated. Particularly we shall show the equality:

(4.5.1) (1+(A(S) - (1+A(S) = 1

for S € Conf (5.4.1). This can be also directly shown by use of (2.7.1) and

(4.2.1). This relation gives a more natural definition of «.
2. The polynomial ring A - Conf for any A is not closed under the map ¢.
For example, let X (resp. Y) be a graph of one (resp. two) vertices. Then,

-Y +2X° + XY
“X) = 1% A+ X)1+2X+Y)
3. Because of above Remark 1., the localization: (Z-Conf) . = {f/g :
f €Z-Conf,g € M} for the multiplicative set M := {1 + A(S) : S € Conf} is
the smallest necessary extension of the algebra Z-Conf to define «. However, the

and (Y) =

space (Z - Conf )sm is still too small for our later applications (see 6.3 Remark).
4. There is another coalgebra structure studied in combinatorics ([R]).
85. Growth functions for configurations

For any S € Conf, the sum of isomorphism classes of all subgraphs of a
graph representing S is denoted by 1 4 A(S). It is a group-like element in the
Hopf algebra A [Conf] and shall play a fundamental role in the sequel. We shall
call it a growth function (the name is confusing with the terminology [Mi]).

5.1 Growth functions
For S and T € Conf, we introduce a numerical invariant
(5.1.1) A(S,T) = tA(S,T),

by the following steps i)-iii).
i) Fix a graph T, with [T] =T.
ii) Put
(5.1.2) A(S,T) := #{S | Sisasubgraph of T such that [S] = S}.
iii) Show that A(S, T) ~ A(S,T’) if [T] = [T’]. (The proof is omitted.)
We shall call A(S,T) the growth coefficient of T at S € Conf.

(5.1.3) A9, T) = 1 for T € Conf,
(5.1.4) A(S,T) # 0 if and only if S € (T).
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Let us introduce the generating polynomial of the growth coefficients:
(5.1.5) AT) := ZSEConf+ S-A(S,T),

and call it the growth function of T. In fact, this is a finite sum and A(T) €
Z - Conf. The definition of A(T) can be reformulated as:

(5.1.6) 1+ AT) = YeerlS),

where 2T denote the set of all subgraphs of T (cf. 2.1 Definition 2.).
The following multiplicativity follows immediately from the expression
(5.1.6). For Ty and T, € Conf

(5.1.7) 1+AT - Ty) = (1+AT))(1+ A(T)).

Remark. 1. By comparing the definition (5.1.1) with (2.4.1), we see

immediately A(S,T) = Tj’ﬂS

(4.4.5) and (5.1.5) for A(T) coincide.
2. By definition (5.1.1), we have additivity:

for S and T € Conf. Hence the two definitions

(5.1.8) AS, Ty -T) = A(S,T1)+ A(S, T»)

for S € Confy and T; € Conf.

5.2 A numerical approximation of the growth coefficients

In our later study on the existence of limit elements in §10, the following esti-
mates of the growth rates of growth coeflicients play a crucial role.

Lemma. For S, T € Conf, we have

1

<« L ) (S -S)
< FAwE) 1T (¢q—1)

(5.2.1) A(S,T)
Here n(S) := 4 of connected components of S, q is the upper-bound of the num-
ber of edges at each vertex of T' (recall 2.2), and Aut(S) means the isomorphism
class of Aut(S) for a representative S of S and we put # Aut(S) := # Aut(S).

Note. In the original version [S2], the factor ¢ — 1 in (5.2.1) q. The
author is grateful to the readers who pointed out this improvement.

Proof. Let S and T be representatives by G-colored graphs of S and T
respectively. We divide the proof into three steps.
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i) Assume S is connected. Let us show:

1
5.2.2 A(S,T) < ———MT-(g—1)¥"L.
Proof. Let S1,...,S, be an increasing sequence of connected subgraphs

of S such that §S; =i (i = 1,...,a = §S). Put Emb(S;,T) :={¢:S; = T |
embeddings as a G-colored graph}. Then, for ¢ > 2, the natural restriction
map Emb(S;, T) — Emb(S;_1,T) has at most ¢ — 1 points in its fiber. Hence
FEmMb(S;, T) < (¢—1) - Emb(S;_1,T) (¢ = 2,...,a). On the other hand, since
A(S,T) = $Emb(S,T)/4 Aut(S),
one has an approximation:
A(S,T) =t Emb(S,, T)/t Aut(S,)
< (¢=1)*" "4 Emb(S1, T)/§ Aut(S,) = (¢— 1)~ 4T/§ Aut(S). O

ii) Assume that S decomposes as: S = ST [[..[] S¥m for pairwise distinct
S; € Confy (i =1,---,m) so that .. k; = n(S). Let us show

1 i _
(5.2.3) A(S,T) < mHA(SuT)'“,

i=1

Proof. For 1 <14 < m, the subgraph of S € A(S,T) corresponding to the
factor S, denoted by S|g#: , defines an off-diagonal element of (1" A(S;, T)) /S,
where Gy, is the symmetric group of k; elements acting freely on the set of
off-diagonal elements. Then, the association: S — (S| Skl)?;l defines an embed-

ding: A(S,T) — [, (( 1" A(S;, ’JT)) /Gk) into the off-diagonal part. O
iit) Let S be as in ii). Then, Aut(S) = []I", Aut(SF*) and each factor
Aut(SF) is a semi-direct product of Aut(S;) and &y,. Then (5.2.1) is a conse-

quence of a combination of (5.2.2) and (5.2.3).
This completes the proof of the Lemma O

5.3 Product-expansion formula for growth coefficients
The coefficients of a growth function of T are not algebraically independent.

Lemma. Let Sy1,...,5, (m >0) and T € Conf be given. Then,

m

(5.3.1) [TAGs,T) = > (Sl"'s"sm)A(S,T).

i=1 SeConf
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Proof. Let T be a graph representing 7'. For m € Z>(, consider a map

(St,---,Sm) € [TAS:,T) — S:=]s; €2,
i=1 i=1

whose fiber over S is (

ﬁA@ﬂ)g U(&éﬁﬂ.

i=1 Se2T

Slvé’sm ) so that one has the decomposition

By counting the cardinality of the both sides, one obtains the formula. O

Remark.  The formula (5.3.1) is trivial for m = 0,1, and can be reduced
to the case m = 2 for m > 2 by an induction on m as follows.
Multiply A(Sp+1,T) to (5.3.1) and apply the formula for m = 2.

m S1,..0,8m
Hi:tl A(SiT) =X secont ' S A(S,T)A(Sm41,T)

S1,...,5m S, Sm+1

= ZSGConf . S ZUGConf ( U )A(U’ T)

Using the composition rule (2.6.1), this is equal to
Si,...,Sm
= ZUGConf ( ' U +1)A(Ua T)

5.4 Group-like property of the growth function

An element g € A [Conf] is called group-like if it satisfies

~

(5.4.1) D) = g& - By
—_—

for Ym € Zsq. This in particular implies the conditions ®o(g) = 1 and ¢(g) =
gt (cf. (4.3.1) and (4.4.2)). For any group-like elements g and h, the power
product g®h® for a,b € A (c.f. (3.6.3)) is also group-like. We put

(5.4.2) &, = {the set of all group-like elements in A [Conf]}

(5.4.3) Safinite = {9 € G4 | g is of finite type.}

Lemma. The generating polynomial 1 + A(T) for any T € Conf is
group-like. That is: for any m € Z>¢ and T € Conf, we have

(5.4.4) A+ AT @ @ (1+AT) = &1+ AT)).
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Proof. By the definition of A(T") (5.1.3), the tensor product of m-copies
*) 1+AT)®- @1+ .AT))
can be expanded into a sum of m variables Sy, ..., Sp:

) oo Y S1®-~-®Sm(ﬁA(Si7T)).
i=1

S1€Conf Sm €Conf
By use of the product-expansion formula (5.3.1), this is equal to

DS Sl®-~-®5m( > (Sl’“s"sm)A(S’T))

S1€Conf S €Conf SeConf
Recalling the definition of the map ®,,, (4.1.4), this is equal to

£x4) D Bu(S) AST) = O Y S AST)) = (1 +AT)).

SeConf SeConf

O
5.5 A characterization of the antipode.

Equation (5.4.4) provides formulae,
(5.5.1) (1+(AD))) 1+ AT) = 1 for T' € Conf,
(5.5.2) P01 = (1®---®)od,, for m € Z>o.
Proof of (5.5.1). Apply (5.4.1) to (¢-1) 0 Do(T') = aug(T) (4.4.2). O

Proof of (5.5.2). It is enough to show the case m = 2 due to (4.2.1).
Apply @5 to (5.5.1). Recalling (5.4.1), one obtains a relation.

(@21 + ¢(AM)))) (1 + AT)) ® (1 + AT))) = 1,
Multiply (1+:(A(T)))(14¢(A(T))) and apply again (5.5.1) so that one obtains
o1+ (A(T))) = (14 (A(T)) © (1 +(A(T)))
t®
t®

D1+ AT) @ (1+ A(T))
)®2(1 + A(T)).

Thus (5.5.2) is true for A(T") (T € Conf). Since A(T) (T € Conf) span A-Conf,
which is dense in the whole algebra, (5.5.2) holds on A [Conf]. O

86. The logarithmic growth function

The growth coefficients A(S,T") in S € (T) was approximated in (5.2.1).
However in the sequel, we need to approximate lower terms too. This is achieved
by introducing a logarithmic growth coefficients M (S,T) € Q in S € (T'), and
showing linear relations (6.2.2) on it.
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6.1 The logarithmic growth coefficient

For T' € Conf, define the logarithm of the growth function:
(6.1.1) M(T) = log(1+ A(T)),
in Q[(T)] (cf (5.1.5) and (3.6.2)). Expand M(T) in a series

(6.1.2) MT) = > §-M(S.T).
SeConf

The coefficient M (S,T) is the logarithmic growth coefficient at S € (T).
By definition, M(T') does not have a constant term, i.e.

(6.1.3) M([9],T) := 0 for T € Conf.

For later applications, we write the explicit relations among growth-functions
and logarithmic growth-functions (cf. (3.6.5) and (3.6.6)).

1
(6.1.4)  A(S,T) = > WM(S17T)k1"'A(5m7T)k"‘
s=sP 118k
— 1\ (=11t thkm—1
(6.1.5) M(S,T) = > (ky o o o = DI(=1) X

) Fnl k!
S=8}" 1 11 S

x A(Sy, T)" -+ A(Sp, T)*m.
Remark. 1. From the formula, we see that for a connected S € Confy,
(6.1.6) A(S,T) = M(ST).

That is; the logarithmic growth coefficients coincide with the growth coefficients
at connected configurations. This elementary fact shall be used repeatedly.

2. The multiplicativity of A(T) (5.1.7) implies the additivity
(6.1.7) M- Ty) = M(Th) + M(T3)
for T; € Conf and hence the additivity:
(6.1.7)* M(S, Ty -Ty) = M(S,Th)+ M(S,Tz) for S € Conf.
3. The invertibility (5.5.1) implies

(6.1.8) UM(T)) = — M(T).
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6.2 The linear dependence relations on the coefficients

Lemma.  The polynomial relation (5.4.4) implies the linear relation:

ith

m
(6.2.1) D16 BIBMINEIE 81 = n(M(D)),
on the logarithmic growth-function for T' € Conf and m € Z>y.

ith
Proof. Put M(T) := 1@ - @1OM(T)®1& - - - @1 so that exp(M;(T)) =
1191+ AT)®1®---®1. Then (5.4.4) can be rewritten as:
*) exp(M1(T)) - ... exp(Mp(T)) = Py (exp(M(T)))

where the left hand side is equal to exp(M;(T)+- - -4+ M,,,(T")) due to the com-
mutativity of M; ’s and the addition rule for exp The right hand side of %) can

be rewritten as ®,, (exp(M Z ./\/l Z <I>

exp(®,, (M(T))). By taking the logarlthm of both sides, we obtaln (6.2.1). O
Corollary.  Let m > 2. For Sy,...,Sp € Confy and T € Conf,

6.2.2 51"“’5’”)1\4 S.T) =
(6:2:2) Py (%55 ) mes.m)

Proof. Expand both sides of (6.2.1) in a series of the variables S; :=
1®..01858®1®...01 (i=1,...,m). Since the left hand side of (6.2.1)
does not have a mixed term S; ® --- ® S, for S; € Confy and m > 2, the
corresponding coefficients in the right hand side should vanish. By (4.1.1) and
(6.1.2), this implies the formula (6.2.2). O

Remark. 1. The formula (6.2.2) is reduced to the case m = 2 with
Si; # ¢ (i = 1,2) by induction on m. Recalling the composition rule (2.6)

S (s = Y (X () () ) anes

S S UeConf

-5, () ()

UeConf 4
() (Z (om)msm) =0 vo=o

2. The linear dependence relations (6.2.2) among M (S,T)’s for S € Conf
are the key facts of the present paper. The Hopf algebra structure was intro-
duced only to deduce this relation. We shall solve this relation in (8.3.2) by
use of kabi coefficients, which we introduce in the next paragraph § 7.
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6.3 Lie-like elements
An element M satisfying (6.2.1) has a name in Hopf algebra theory [9].

Definition. Let A be a commutative algebra with a unit. An element
M of A [Conf] is called Lie-like if it satisfies the relation:

m ith
(6.3.1) D (M) = 21@5...@1@/\4@1@...@1
i=1
for Ym € Zso. This, in particular, implies the conditions ®5(M) = 0 and

(M) + M =0 (ctf. (4.3.1) and (4.4.2)). The linear combinations (over A) of
Lie-like elements are also Lie-like. We put

(6.3.2) Ly = {all Lie-like elements in A [Conf] .},
and
(6.3.3) La finite = {M € Ly | M is of finite type}.

In this terminology, (6.2) Lemma can be rewritten as: suppose Q C A,
then one has M(T') € L finite for T € Conf.

Remark.  We shall see in 8.4 that L is essentially an extension of Lr, finite
by a space Lr,c, Which is the main objective of the present paper. On the other
hand, one has £, N (A . Conf)m C La, finite (actually equality holds, see §8),
since (A - Conf )sm consists only of finite type elements.

87. Kabi coefficients

We describe the inverse matrix of the infinite matrix: A : = (A(S,T))s,reCont,
explicitly in terms of kabi coefficients introduced in (7.2). The construction
shows that the inverse matrix has only bounded nonzero entries (7.5). This
fact leads to the comparison of the two topologies on Ly finite, Which plays a
key role in the sequel in construction of the infinite space L .

7.1 The unipotency of A

The matrix A is unipotent in the sense that i) A(S,S) =1 and ii) A(S,T) =0
for S £ T (5.1.5). Then a matrix A~' := B+ A* + A*? + A*3 + ... where
E:=(0(U,V))uvecont, and A* :== E — A, is well defined. Precisely,

0 for S ¢ T,

ATNS,T) = 1 . for S =1T,
> (=K > ( 1A(sy_l,&))) for S < T.

k>0 S=8S0<--<Sp=T i=
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Then the matrix A~! is unipotent in the same sense as A, and, hence, the
products A~ - A and A- A" are well defined and are equal to E.
7.2 Kabi coefficients

Definition. 1. A graph U is called a kabi over its subgraph S if for all
x € U\S, there exists y € S such that (z,y) is an edge.
2. Let U € Confy and let U be a graph with [U] = U. For S € Confy, put

(7.2.1) K(S,U) : = {S|ScU such that [S] =S and U is kabi over S},
(7.2.2) K(S,U) : = #K(S,0U).

We call K(S,U) a kabi-coefficient. The definition of the coefficient does not
depend on the choice of U. If K(S,U) # 0, we say that U has a kabi structure
over S or simply U is kabi over S.

Directly from definition, we have

(7.2.3) K(S,U) = 0 forS£U,
(7.2.4) K(S,8) = 1 for S € Confy.

Note.  The word “kabi” means “mold” in Japanese.

7.3 Kabi inversion formula

Lemma. For S € Confy and T € Conf, one has the formula:

(7.3.1) > (-)FUHSK(S,U) - A(ULT) = §(S,T),
UeConfy

where 6(S,T) means the # of connected components of T isomorphic to S.

Proof. The summation index U on the left hand side runs over the range
S < U < T (otherwise K(S,U) - A(U,T) = 0). Hence if S £ T, then the sum
equals 0. If S=T, the only term in the sum is K (S, 5)A(S,.S) which equals 1.
Let S € Confy and T € Conf. Assume S < T and S # T. Let T be a
G-colored graph with T' = [T]. Applying the definition of K(S,U) and A(U,T)
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(cf. (5.1.1)), the left hand side of (7.3.1) can be rewritten as

> ()FUTHESK(S,U) - #A(U,T)

UecConfy
= Z (-1)#V=#SK(S,U)-#{U | UCT such that [U = U}
UeConfy
ScUCT such that
= _1)#U-#S
Ueczf 1) #1 &0 [S] = S,[U] =U and U is kabi over S
onfg

Now we make a resummation of this by fixing the subgraph S in T.
ScUCT such that
= —N)#FU-#S4 U
Z ( Z (=1) # | [U] ~ U and S is a kabi over S.
SEA(S,T) \U€Confg

For a fixed subgraph S of T, let Uyax be the biggest subgraph of T such that
Unax is a kabi over S, i.e. Uyay consists of vertexes of T, which is either in S
or connected to S by an edge. Then a subgraph U of T becomes a kabi over S,
if and only if it is a subgraph of Uy containing S. Hence the sum is equal to

= X (X o) = 3 (X o)

SEA(S,T)  SCUCUmax SCA(S,T)  WCUmax\S

where the last summation index W runs over all subsets of Upax\S. Hence
the summation in the parenthesis becomes 1 or 0 according to whether Upax\S
is ¢ or not. It is clear that Una.x\S = ¢ is equivalent to the fact that S is a
connected component of T. Hence the sum is equal to 6(S,T). O

7.4 Corollaries to the inversion formula.

The left inverse matrix of A := (A(S,T))s recont, is given by
(7.4.1) A7 = ((9)#T#5K(S,T)) s recont,-
Since the left inverse matrices of A coincides with the right inverse, one has

(7.4.2) > (—D)FTTHUASU) - K(U,T) = §(S.T)
UeConfy

for S € Confy. Specializing S in (7.4.2) to pt := [one point graph], one gets,

(7.4.3) S (-0)*HU - KUT) = (-)*Ts(pt, T).

UeConfy
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7.5 Boundedness of non-zero entries of K

One of the most important consequences of (7.4.1) is the boundedness of the
non-zero entries of the matrix A=1, as follows.

Suppose K(S,T) # 0. Then, by definition, 7" must have at least one
structure of kabi over S. This implies that for each fixed S and ¢ > 0, there
are only a finite number of T' € Confy with K(S,T) # 0. Precisely,

Assertion.  For S € Confy, K(S,T) =0 unless #T < #S-(¢—1) + 2.

Proof. Let T be kabi over S. Every vertex of S is connected to at most ¢
number of points of T. Since S is connected, it has at least #5 — 1 number of
edges. Hence, #T—#5S < # {edges connecting S and T\S} < ¢-#S—2-(#5-1).
This implies the Assertion. O

Remark.  The above boundedness implies that K induces a continuous
map between the two differently completed modules of La finite (cf. 8.4).

88. Lie-like elements L,

Under the assumption Q C A, we introduce two basis systems { M(T') }recont,
and {¢(S)}seccont, for the module of Lie-like elements Ly finite, Where the base
change between them is given by the kabi-coefficients. The basis {¢(S) }secont,
is compatible with the adic topology and gives a topological basis of L.

8.1 The splitting map 0

First, we introduce a useful but somewhat technical map 0. One reason for its
usefulness can be seen from the formula (9.3.6). For S € Confy, let us define
an A-linear map Js : A [Conf] — A by associating to a series f its coefficient
at S, i.e. Jdsf:= fs € A for f given by (3.2.4). By the use of this, we define

0: A[Conf] — II A-eg.
(811) SeConfy

f L ZSGConfo (asf) T €s
Here, the right hand side is an abstract direct product module of rank one
modules A - eg with the base eg for S € Confy. Let us verify that the map
is well-defined. First, define the map O from the polynomial ring A - Conf to
® A-eg. Since 9(J,) C @ A-eg, the map is continuous with respect

SeConfy Sgggnfo
=N

to the adic topology (3.2) on the LHS and the direct product topology on the
RHS. Then, 9 (8.1.1) is obtained by completing this polynomial map.
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We note that the restriction of the map 9 (8.1.1) induces a map
0: A [[COHf]]finite — @SECoan +€s,

even though the domain of this map is not a polynomial ring but the ring of
elements of finite type (recall the definition in 3.3).

8.2 Bases {¢(S)}secont, Of La, finite and Ly

Lemma. Let A be a commutative algebra containing Q. Then,
i) The system (M(T))reccont, give a A-free basis for L, finite.

(8.2.1) La,finite = DseConfeA - M(S).
il) The map O (8.1.1) induces a bijection of A-modules:
(8.2.2) Ola simive * Lafinite =~ @scConfoh - e

Put ¢(S) := 8|Zi,ﬁm€(es) for S € Confy so that {©(S)}secont, form another
A-free basis of La finite-

i) The two basis systems {M(S)}scconty and {9(S)}scconto for La,ginite
are transformed by the following formula.

(8.2.3) M(T) = > o(S)-A(S,T)
SeConfy

(8.2.4) p(S) = > M(T)- (-1)*TFIK(T, S).
TeConfy

iv) LA finite 15 dense in Ly with respect to the adic topology on the config-
uration algebra (cf. (3.2)).

v) The map 0 induces an isomorphism of topological A-modules:

8.2.5 Ly ~ T A-e,
( ) A SeConfy ¢

This means that any M € Ly is expressed uniquely as an infinite sum
(8.2.6) M = Z ©(S) - as
SeConfy
foras € A (S € Confy). That is: (¢(S))secont, S a topological basis of Ly.
We shall, sometimes, call ag the coefficient of M at S € Confy.

Proof. That M(T) € La finite for T € Conf is shown in (6.2) Lemma.
In the following a), b) and ¢), we prove i), ii) and iii) simultaneously.
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a) The restriction of the map 0 (8.1.1) on Ly 1is injective.

Proof. It M= ; %: fS - Mg € A[Conf] is Lie-like (6.3), then one has
€Con

(8.2.7) 3 (Sl"'s"s’“">Ms — 0
SeConf

for any Si,...,Smn # ¢ and m > 2 (the proof is the same as that for (6.2.2)).
We have to prove that OM = 0 implies Mg = 0 for all S € Conf. This will
be done by induction on n(S) = #{connected components of S} as follows.
The case n(S) = 1 follows from the assumption OM = 0. Let n(S) > 1
and S = S I1--- 115" be an irreducible decomposition of S (so S; € Confy
(¢=1,---,1) are pairwise distinct). Apply (8.2.7) for m = k1 +-- -+ ki (= n(S5))
and take S1,...,51 (k1 times), ..., S, ...,S; (k; times) for Sy,...Sy,.

St,...,Sm
k) kil k!Ms + " Tecont ( ! . >MT =0
n(T)<n(S)

By the induction hypothesis, the second term in #x) is 0, and hence Mg = 0. [
b) For T € Conf, one has the formula:

(8.2.8) AM(T) = Y es-A(ST).

SeConfy

(Proof. Recall that M(T) = log(1 + A(T)) and the coeflicients of M(T)
and A(T) at a connected S € Confy coincide (6.1.6). That is: d(M(T)) =
O(A(T)). By definition, 9(A(T)) = the right hand side of (8.2.8) O.

¢) The map (8.2.2) is surjective, and hence, is bijective.

Proof. It was shown in §7 that the infinite matrix (A(S,T))s,TeCont, 1S
invertible as a unipotent matrix (7.1). Then (8.2.8) implies surjectivity.

Using again (8.2.8), we have that the system {M(T)}reccont, is A-linearly
independent and span the Ly finite, i.e. i) holds. The formula (8.2.8) can be
rewritten as (8.2.3). Then (8.2.4) follows from (8.2.3) and (7.4.2) O.

Proof of iv) and v) is done in the following a), b) and c).

a) Ly is closed in A[Conf] with respect to the adic topology, since the
co-product ®,, is continuous (4.1 Assertion). Thus: (EA’fmite)Closure C La.

b) The map (8.2.2) is homeomorphic with respect to the topologies: the in-
duced adic topology on the LHS and the restriction of the direct product topology
on the RHS. (To show this, it is enough to show the bijection:

(8.2.9) 0: (‘CA,finite) N7z, =~ ® A-eg,

SeConfy
#S>n
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since the sets on the RHS for n € Zx>( can be chosen as a system of fundamental

neighborhoods for the direct product topology on @& A -eg.)
SeConfy

Proof of (8.2.9). Due to the definition of the ideal Z,, (3.2.1), the 0-image
of the left hand side is contained in the right hand side of (8.2.9). Thus, one has
only to show surjectivity. For S € Confy, let ¢(S) be the base of L4 finite Such
that 9(¢(S)) = eg as introduced in ii). It is enough to show that if #S > n and
S € Confy, then ¢(S) belongs to Z,,. Expand ¢(S) = > U - ¢y. We show that
wu # 0 implies that U is contained in the semi-group generated by (S) such
that #U > n. More precisely, we show (Ul"‘é;’Um ) # 0, where U = U, 1I- - - 11U,
is an irreducible decomposition of U (cf. (2.5) i)). The proof is achieved by
induction on m = n(U). For the case n(U)=1 ¢y #0 if and only if U= by
the definition of ¢(S), and hence this is trivial. If n(U) > 1, then apply (8.2.7)
similarly to #x) for the irreducible decomposition of U. We get:

U

Ui, ..
* ok k) kil k! oo+ Y. Tecont (1 T )QDTZO
n(T)<n(U)

The fact that @y # 0 implies o7 - (Ul"%’Um) = 0 for some T. Since pr # 0

for an irreducible decomposition T' =T IT... II T,. Since (Ul"f’U"") # 0, by
composing the maps U — T — S, we conclude (Ul"é’U’" ) # 0. In particular,
U, €(S) and #U =>_ #U; >#T >+#S5. This completes the proof of b). O)

¢) By completing the map (8.2.2), one sees that the composition of the

two injective maps (L4 fim-te)dos’”e CLy—lim II A-egis bijective. This
’ ﬁSGConfg

shows that all the maps are bijective. Hence, L4 finite is dense in £, and (8.2.5)
holds. The formula (8.2.6) is another expression of (8.2.5).
This completes the proof of the Lemma. O

Remark. 1. It was shown in the above proof that for S € Confy
(8.2.10) e(S) € Z[(S)] N Txs.

In particular, (U, S) = §(U, S) for U € Conf.

2. It was shown that (8.2.2) is a homeomorphism. But one should note
that (8.2.1) is not a homeomorphism.

3. In general, an element of £4 cannot be expressed by an infinite sum of
M(T) (T € Confy) (cf. (9.4)).

4. The set of Lie-like elements of the localization A[Confloy (cf. (4.6)
Remark 4.) is equal to L4 finite- This is insufficient for our later application
in §10, so we employed the other localization (3.2.2).
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8.3 An explicit formula for ¢(S5)

Let us expand ¢(S) for S € Confy in the series:

(8.3.1) p(S) = Y. U-9(U,S)

U eConf

for (U, S) € Q. The formula (8.2.3) can be rewritten as a matrix relation

(8.3.2) MUT) = > @U,S)- A(S,T).

SeConfg
We remark that (8.2.3) and (8.3.2) are valid not only for T' € Conf, but for all
T € Conf, since both sides are additive with respect to T

Formula. An explicit formula for the coefficients ¢(U, S).
(8.3.3)

kl — 1)I(=1)kl-1+HW+S| N e
) (I&| )k(l'--)-k ' (P"Ul,...vl,...,Um,...Um A(V,W)K(W, S).
Lo k! v

U=UPIL...TIU*m
V eConf, WeConfy

Here the summation index runs over all decompositions U = UF' ... U, lkl
of U in the same manner explained at (3.6.7), where |k| = k1 + - - + ky.

Proof. By use of (6.1.5), rewrite the left hand side of (8.2.3)* into a
polynomial of A(U;,T). Then apply the product expansion formula (5.3.1) to
each monomial so that the left hand side is expressed linearly by A(S,T)’s.
Using the invertibility of {A(S,T)}s.recont (7.4.2), one deduces (8.3.3). O

Remark.  As an application of (8.3.3), we can explicitly determine the

coefficients { My }uecons of any Lie-like element M = > U - My from the
UecConf
subsystem {Ms}secont, by the relation My = 3 gcaons, (U, S) - Ms. Here,

the summation index S runs only over the finite set with #5 < #U.

8.4 Lie-like elements L, o at infinity

We introduce the space £ o of Lie-like elements at infinity for a use after §10.
Recall that the kabi coefficients relate the two basis systems of L4 finite :
{©(S)}secont, and {M(T)}recont, (cf.(8.2) lemma). The map:

EA,finite = EA,finite
K: Y oS)as — Y MT) Y (D" K(T,S)as
SeConfg TeConfg SeConfg

is the identity homomorphism between the same modules. We define topologies
on the modules of both sides: the fundamental system of neighborhoods of 0 are
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the linear subspaces spanned by the all bases except for finite ones. Actually,
the topology on the LHS coincides with the adic topology, which we have been
studying (8.2 Lemma). The map K is continuous with respect to the topologies,
since for any base M(T'), there are only a finite number of bases ¢(S) whose
image K(¢(5)) contains the term M(T), namely K(T,S) # 0 only for such
S satisfying {71 > ﬁ(ﬁS —2), 7.5 Assertion. Let us denote by K the map
between the completed modules and call it the kabi map.

(8.4.1) K: Ly — ] A-M®D).
TeConfg

We consider the set of Lie-like elements which are annihilated by the kabi map:

(8.4.2) Laoco = ker(K),

and call it the space of Lie-like elements at infinity. In fact, L4 o does not
contain a non-trivial finite type element, i.e. L4 finite N La,00 = {0}. However,
the direct sum L4 finite ® L4 00 is @ small submodule of L4, and one looks for a
submodule, say L', of La containing La finite, with a splitting Ly = L' &Ly .
However, there is some difficulty in finding such £’ for general A: an infinite sum
Y recont, arM(T) € Im(K) never converges in L' (~ Im(K)) with respect to
the adic topology. We shall come back to this problem in (10.2) for the case
A =R, where the classical topology plays the crucial role.

89. Group-like elements &,

We determine the groups &, and &4 finste of group-like elements in £, and
LA, finite, respectively, if A is Z-torsion free. In particular, if A = Z, the group
&7, finite 18, by the correspondence 1+ A(S) < S, isomorphic to (Conf) =the
abelian group associated to the semi-group Conf, and it forms a “lattice in
the continuous group” ®&gr. Then, we introduce the set EDP of equal division
points inside the positive cone in &g spanned by the basis {M(S)}.

9.1 &, finite and &, for the case Q C A

We start with a general fact: Assume Q C A. Then one has isomorphisms:

B,
exXp : EA,finite = ®A,finite~

12

(9.1.1) exp i La

Proof. Since aug(g) = 1, log(g) (3.6.2) is well defined for Q C A. That g
is group-like (5.4.1) implies that log(g) is Lie-like and belongs to La (cf. proof
of (6.2) Lemma). Then g is of finite type, if and only if log(g) is so (cf. (3.6)).
Thus (9.1.1) is shown. The homeomorphism follows from that of exp (3.6). O
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9.2 Generators of &, tinite and &, for a Z-torsion free A.

Lemma. Let A be a commutative Z-torsion-free algebra with unit.
i) Any element g of B pinite is uniquely expressed as

(9.2.1) g = H(1+A(S’i))c'i

iel
for S;€Confy and c; €A (i) with #I <oo. That is, one has an isomorphism:

(922) (Conf> Rz A ~ QSA,finz’te , Se 1+ .A(S) s

where (Conf) is the group associated to the semi-group Conf.
ii) &4, finite 15 dense in &, with respect to the adic topology.
ili) We have the natural inclusion:

(9.2.3) {exp(¢(S)) | S € Confy} C &z finite

The set {exp(¢(S))}seccont, s a topological free generator system of ®p. This
means that any element g of G, is uniquely expressed as an infinite product:

(9.2.4) [T ewp(s) as) = lim (J[sccont, exp(#(S) - as))

n—oo
SeConfy #S<n

for some ag € A (S € Confy).

Proof. If Q C A, then due to the isomorphisms (9.1.1) and (6.1.1), the
Lemma is reduced to the corresponding statements for L4 and L4 finite in (8.2)
Lemma, where, due to (8.2.4), (8.2.10) and the integrality of kabi K, we have

exp(p(s) = [ 1+ A@)TTTEES € g piniee 0 {1+ Tps),
TeConfy
where we note 1 + A(T) € &z finite (c.f. (5.1.6) and (5.4.4)).

Assume Q ¢ A and let A be the localization of A with respect to Z\{0}.
Since A is torsion free, one has an inclusion A C A, which induces inclusions
BAC8; and Gy riniteC Qﬁ&ﬁmte, and the Lemma is true for Q5A,ﬁm.te and &;.

i) Let us express an element g € B4 rinite as ile'II(l + A(S;))¢, where ¢; € A
for i € I and #I <. We need to show that ¢; € A for ¢ € I. Suppose not.
Put I :={i € I : ¢; ¢ A} and let S; be a maximal element of {S; : i € I}
with respect to the partial ordering <. Put ¢ := iEIll_{{l}(l + A(S;))% and

g2 == EF\I (14 A(S:)). Then gi(14+ A(S1))" =g-g5" € B finite- In the
K3 1

left hand side, g1 does not contain the term Sy, whereas (1 +.4(S7))°* contains
the term ¢1.57. Hence, the left hand side contains the term c1.S.
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ii) Let any g € &, be given. For a fixed integer n € Z>¢, we calculate

log(g) = Z ©(S) - ag for ag € A (c.f. (8.2.6))

SeConfg
= Z M(T) - erpn + Ry, where
TeConfy
*)  ern = Zsigonfo(—l)#T_#SK(T, S)-as €A, (c.f (8.2.4))
<n

**) R’I‘L = Zsiggnfogo(s) - as.

Here we notice that
%) cpn # 0 implies #T < n, since K(T,5) # 0 implies T' < S (7.2.3).
xx) Ry, € Jy, since #S5 > n implies ¢(S5) € J,, (8.2.10).

Therefore

g = ZTGConfo(l + A(T))“" - exp(Ry)
#T<n

= ZTGConfo(l + A(T))cmm mod J,,.

#T<n
Let us show that cr, € A for all T' € Conf,. Suppose not, and let 77 be a
maximal element of {T" € Confy : #T < n and ¢y, & A}. Then similar to the
proof of i), the coeflicient of g at T3 = ¢p,, mod A # 0 mod A. This is a
contradiction. Therefore, cr, € A for all 7" and hence, g € &4 finite mod J,,.
iii) Applying (7.4.2) to the relation ) in the proof of ii), one gets

as = ZTeConfoA(Sa T)-crp
#T<n

for #5 < n. Here the right hand side belongs to A due to the proof ii). On the
other hand, the left hand side (= ag) does not depend on n. Hence, by moving
n € Z>q, one has proven that ag € A for all S € Confy. O
9.3 Additive characters on &4

Definition.  An additive character on &, is an additive homomorphism
(9.3.1) X By — A
which is continuous with respect to the adic topology on &4 such that

X(g") = X(g)-a

for all g € &4 and a € A. The continuity of X (9.3.1) is equivalent to the
statement that there exists n > 0 such that X (exp(¢(S5))) = X(1) =0 for S €
Jn N Confy. Hence it is equivalent to #{S € Confy : X (exp(¢(S))) # 0} < oo.
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The set of all additive characters will be denoted by
(9.3.2) Homy (&4, A).
Assertion. 1. For any fized U € Confy, the correspondence
(9.3.3) Xy @ 1+ A(S) € 8z pinite — AU,S) €Z
extends uniquely to an additive A-character on By, denoted by Xy. Then
(9.34) Xu(exp(e(S))) = 6(U,S5) for U, S € Conf.
2. There is a natural isomorphism

HOIHA(QSA,A) ~ ® A-Ay
(935) UeConfy
X = > UeCont, XU (exp(p(9))) - Au.

3. If Q C A, then for any M € L, and U € Confy one has

(9.3.6) Xu(exp(M)) = IyM.

Proof. 1. First we note that A(U,S) for fixed U € Conf is additive
in S (5.1.8), so that Xy naturally extends to an additive homomorphism on
&4, finite- For continuity (i.e. the finiteness of S with Xy (exp(¢(S))) # 0), it
is enough to show (9.3.4). Recalling (8.2.4) and (7.4.2), this proceeds as:

Xu (exp(p(9)) = XU(eXp(ZTeconfo
=D rccons, X (EDM(D)) - (~)FTFIK(T, )
=D o, XL+ AD) - (~)FTFIK(T, 5)
=Y AUT) - (CUFTHSK(TS) = 6(U, ).

M(T)(-)#T#K(T, 9)))

2. The continuity of Z implies the sum in the target space is finite.
3. Both sides of (9.3.6) take the same values for the basis (¢(5))secont,-
O

9.4 Equal division points of &z finite

Recalling (Conf) ~ Gz finie (9.2.2), we regard (Conf) as a “lattice” in Br finite-
In the positive rational cone &g finite N (HSEConfo (1+ A(S))RZO), we consider
a particular point, which we call the equal division point for S € Conf:

(9.4.1) (14 A(S)) /).
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Here, the exponent 1/4#(S) is chosen so that we get the normalization:
(9.4.2) Xpt((l +A(S))1/”(S)) - 1L

The set of all equal division points is denoted by

(9.4.3) EDP := {(1+ A(S))"*?| S € Conf}.

The formulation of (9.4.1) is inspired from the free energy of Helmholtz
in statistical mechanics. Instead of treating equal division points in the form
(9.4.1) in &g, we shall treat their logarithms in Lg in the next paragraphs.

9.5 A digression to £, with Q Z A

We have determined the generators of &4 finite and &, without assuming Q C
A but assuming only Z-torsion freeness of A. The following Assertion seems to
suggest that the Lie-like elements L5 behaves differently than the group-like
case. However we do not pursue this subject any further in the present paper.

Assertion.  Let A be a commutative algebra with unit. If there exists a
prime number p such that A is p-torsion free and 1/p ¢ A, then Ly is divisible
by p (i.e. Lo =pLy). In particular, if A is noetherian, Ly = {0}.

A sketch of the proof. Consider an element M =3 ;.U My € Ly.

As an element of L3, it can be expressed as > ¢(S)-ag where ag=0sM =
SeConfy
Mg € A for S € Confy. Recall the expression (8.3.3) for ¢(U,S) (U € Conf)

and the remark following it. Then we see that My is expressed as:

ky km
—1 |k|—1+|W|[+]S| kl — 1) [ —~— P— .
(-1 Ut -V o= o A(V,W)K(W, S)as.
> Tl - o]
U=UP L. TTUEm " v
V eConf, WeConfy

SeConfg

Apply this formula for U = TP for a fixed T' € Confy. The summation
index set is {(k1,k2,...) € (Z>0)?z' | p= >i>11 - ki}, as explained in 3.6
Ezample. Except for the case k; = p and k; = 0 (i > 1), the denomina-

tor ki!...kn! is a product of prime numbers smaller than p. The coefficient
k1 km

Ur... Urro. U .. U | for this case (i.e. k1 =p, ki =0 (i > 1) and for V = [V]
%

is equal to the cardinality of the set {(Uy,...,U,) | U; is a subgraph of V such



40 Kyou1 Sarro

that [U;] = T and U?_, U; = V}. Since the cyclic permutation of Uy, ..., U, acts
on the set, and the action has no fixed points except for V' = T', we see that the
covering coefficient is divisible by p except for the case V' =T € Confy. In that
€ase D cConfo (—1)WIHISIA(T, WK (W, S) = §(T,S) Therefore %(LT =
0 mod A, where A is the localization of the algebra A with respect to the

prime numbers smaller than p. Hence ar € pAj,c N A = pA. O

§10. Accumulation set of logarithmic equal division points

We consider the space of Lie-like elements L over the real number field R
which is equipped with the classical topology. The set in Ly of accumulation
points of the logarithm of EDP (9.4), denoted by log(EDP), becomes a com-
pact convex set. We decompose log(EDP) into a joint of the finite (absolutely

convergent) part log(EDP),_, . and the infinite part log(EDP) _.

abs

10.1 The classical topology on Lp

We equip the R-vector space

(10.1.1) Lr = @LR/TnmLR

n
with the classical topology defined by the projective limit of the classical topol-
ogy on the finite quotient R-vector spaces. Since the quotient spaces are

Lr/Tn NLr >~ Dscconfo,#5<nR - 0(S) = Lr finite/Tn N LR, finites

we see that 1) Lg is homeomorphic to the direct product [[gccont, R - ¢(S)
(recall (8.2.5)), and 2) Lr_ finite =~ P ScCont,R-¢(S) is dense in Lg with respect
to the classical topology. That is, the classical topology on Lr is the topology
of the coefficient-wise convergence with respect to the basis {p(S)}secont,- It
is weaker than the adic topology.

Similarly, we equip R [Conf] with the classical topology defined by

(10.1.2) R[Conf] = lim R-Conf/7, = [[ R-S.
n SeConf

So, the classical topology on R [Conf] is the same as the topology of coefficient-
wise convergence with respect to the basis {S}seccont. The next relation ii)
between the two topologies (10.1.1) and (10.1.2) is a consequence of (8.3.3).

Assertion. i) The product and coproduct on R [Conf] are continuous
with respect to the classical topology.
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ii) The classical topology on Ly is homeomorphic to the topology induced
from that on R [Conf].

iil) Let us equip &g with the classical topology induced from that on R [Conf].
Then exp : Lr — Bg is a homeomorphism.

Proof. 1) The product and coproduct are continuous with respect to the
adic topology (cf. (3.2) and (4.2)), which implies the statement.

ii) For a sequence in Lg, we need show the equivalence of convergence in
Lr and in R [Conf]. This is true due to (8.3.3).

iii) The maps exp and log are bijective (cf. (9.2) Assertion) and homeo-
morphic with respect to the adic topology, which implies the statement. O

10.2 Absolutely convergent sum in Ly

Recall the problem posed in 8.4: find a subspace of L4 containing L4 finite
which is complementary to the subspace at infinity £a o (8.4.2). In the present
paragraph, we answer this problem for the case A = R by introducing a suffi-
ciently large submodule Lg 455, which contains Lg finize but does not intersect
with L o so that we obtain a splitting submodule Lg 4ps @ LR, o0 of Lr.

Definition. ~ We say a formal sum ) ;cconr, a7 M(T) € [Irecont, R -
M(T) is absolutely convergentif, for any S € Conf, the sum ) S ;e oong, arM (S, T)
of its coefficients at S is absolutely convergent, i.e. > rcqong, lar|M (S, T) < oo
for VS € Conf. Then, any series Y .-, ar;MT;) defined by any linear ordering
Ty <Ty <--- of the index set Confj converges in Lg to the same element with
respect to the classical topology. We denote the limit by ZaTbGSCOnfO arM(T).
Define the space of absolutely convergent elements:

(10.2.1) Lraps = { all absolutely convergent sums ZaTbesconfo arM(T) }.

By definition, L qps is an R-linear subspace of Lg such that Lg 45sNLR 00 = {0}
and Lr abs O LR, finite- Hence, the restriction K|, ,,. of the kabi-map (8.4.1)
is injective. We give a criterion for the absolute convergence, which guarantee
later that L 4ps is large enough for our purpose (10.4.3).

Assertion. A formal sum ZTGCOMO apM(T) is absolutely convergent if
and only if the sum 3 e cong, lar|#(T) is convergent. The Lg qps is a Banach

space with respect to the norm | ZaTbeSconfo ar M(T)| := Y pecont, lar|#(T).

Proof. The coefficient of M(T) at [a point] is equal to #(T"). So absolute
convergence implies, in particular, the convergence of ) oy, lar|#(T).
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Conversely, under this assumption, let us show the absolute convergence
of the sum > 7 conp, arM(S,T) for any S € Conf. We prove this by in-
duction on n(S) = the number of connected components of S. If S is con-
nected (i.e. n(S) = 1), then A(S,T) = M(S,T) and by the use of (5.2.1), we
have 3 rcoon, [T M (S, T) < (X rccont, \aﬂ#T)% which converges
absolutely. If S is not connected, decompose it into connected components
as S = [[*;S; and apply (6.2.2). Since (Sl"'s',’sm) # 0 implies either
n(S") < n(S) or 8" = S, M(S,T) is expressed as a finite linear combina-
tion of M(S",T) for n(S’") < n(S) (independent of T'). Then we are done by
the induction hypothesis. O

10.3 Accumulating set log(EDP)

Recall that an equal dividing point in Bg (9.4.1) is, by definition, an element
of the form (1+ A(S))l/ﬁ(s) for a S € Conf. Let us consider the set in Lg of
their logarithms (by use of the homeomorphism in 10.1 Assertion iii):

(10.3.1) log(EDP) : = {M(T)/4T | T € Conf,}

and its closure log(EDP) in Lg with respect to the classical topology. So, any
element w € log(EDP) has an expression:

T,
(10.3.2) w = nlLrI;sl Né;ﬂ )
for a sequence {T,}nez., in Conf, where we denote by lim® the limit with
respect to the classical topology. Recalling that the topology on Ly is defined
by the coefficient-wise convergence with respect to the basis {©(S)} secont, and

using (8.2.3), one has w=7 g cu, P(5) - as where ag = limA;ST’ =,
Assertion. 1. The set log(EDP) is compact and conver.
2. Expand any element w € log(EDP) as ZSEConfg ©(S) - as. Then

i) 0 < as < (¢g—1)F"1/gAut(S) for S e Confy,

i) (¢q—1)"%"ag >ag for ' <S. In particular, if as# 0 then as # 0.

Proof. 1. Compactness: it is enough to show that the range of coefficients
ag for w €log(EDP) is bounded for each S € Confy. Recalling the expansion
formula (8.2.3), this is equivalent to the statement that {A(S,T)/84T | T €
Confy} is bounded for any S € Conf(. Applying the inequality (5.2.2), we have

0 < A(S,T)AT < (¢—1)*~" /g Aut(S),
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which clearly gives a universal bound for A(S,T')/4T" independent of T
Convexity: since for any T, T'(# [¢]) and r € Q with 0 < r < 1, one can
find positive integers p and ¢ such that for T” := TP - T'9 one has

MTYHT" = (p- M(T) +q- M(T")/(p- 4T + q - 4T")
= r M(T)/AT + (1 —r) - M(T') J4T".

2. 1) This is shown already in 1.

ii) If 8" < S and S € Confy, then for any T € Conf one has an inequality
(q—1)85-45" A(S",T) > A(S,T). (This can be easily seen by fixing representa-
tives of S and S as in proof of (5.2.2)). Therefore (¢ — 1)¥~%5'ag > ag. O

Remark.  The condition (9.4.2) on EDP implies a,; = 1 for any element
w € log(EDP). In particular, this implies 0 ¢ log(EDP).

10.4 Joint decomposition log(EDP) ;. *log(EDP)_

We show that log(EDP) is embedded in Lg 455 @ Lr 00, and, accordingly, de-
compose log(EDP) into the joint of a finite part and an infinite part, where the
finite part is an infinite simplex with the vertex set {%}Teconfu.

Definition.  Define the finite part and the infinite part of log(EDP) by

(10.4.1) log(EDP),,, = log(EDP) N L, abs,
(10.4.2) log(EDP) _ := log(EDP) N LR oo-

Lemma. 1. log(EDP) is a joint of the finite part and the infinite part:

(10.4.3) log(EDP) = log(EDP),,, * log(EDP)_.

Here, the joint of subsets A and B in real vector spaces V. and W is defined by

AxB:={p+(1-XNgeVaeW|peAqeB,el0,1]}.

2. The finite part is the infinite simplex of the vertex set {/\;(5) }seconto -

1~ TN D\ abs M(S
IOg(EDP)abs = {ZSECO"fg:u’S #(S) ‘ Us € RZO and ZSECOnfON’S = 1} .

Proof. We prove 1. and 2. simultaneously in two steps A. and B. We
show only the inclusion LHS C RHS since the opposite inclusion LHS D RHS is
trivial due to the closed compact convexity of log(EDP) (10.3 Assertion 1.).

A. Finite part. Let us consider an element w € log(EDP) of the ex-
pression (10.3.2). For S € Confy, recall that §(5,T,,) is the # of connected
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components of T;, isomorphic to S. Let us show that the limit

(10.4.4) s = #S 1im(%m

converges to a finite real number pg such that

(10.4.5) 0 < ZsEconfo“S < 1.

Note that the kabi-map K (8.4.1) is also continuous with respect to the
classical topology. So, it commutes with the classical limiting process im® ML)

n— oo n

Recalling the kabi-inversion formula (7.3.1), we calculate

Rw) = R Jim 550 =l = lim oo, G M)

Here, the convergence on the RHS is the coefficient-wise convergence with re-
spect to the basis M(S) for S € Confy. This implies the convergence of (10.4.4).
Let C be any finite subset of Confy. For any n € Z>(, one has

D ST T) AT < AT,

since the LHS is equal to the cardinality of the vertices of the union of connected
components of T;, which is isomorphic to an element of C. Dividing both sides
by #7,, and taking the limit n — oo, one has (10.4.5).

Define the finite part of w by the absolutely convergent sum

abs M(S)
(10.4.6) Whinite : = ZSGConfousﬁT
(apply 10.2 Assertion to (10.4.5)). We remark that the coefficients pug are

uniquely determined from w and is independent of the sequence {Tn}nezzo,
due to the formula:

— M(S
(1047) K(OJ) = ZSEConfo Hs ﬁg )

B. Infinite part. Put p, :=1— ZSEConfo s Let us show that

1) if ftoo = 0, then we have w = Wyinite, and ii) if poo > 0, then there
exist a unique element woo € LR oo 50 that w = oo Woo + Weinite

For any S € Confy, let us denote by T),(S) the isomorphism class of the
union of the connected components of T, isomorphic to S € Confy. Thus,
87,(S) = 6(S,T,)8S and #7T,,(S)/#T,, — s as n — oco. For any finite subset
C of Confy, put T;(C°) :=T,\ U Tn(S) so that one has

SeC
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M(T,) _ M(TF(C)) (S5, Tn)tS  M(S)
K i D Dl T

For the given C and for € > 0, there exists n(C, ) such that

a) Sgc s = 8T0(9)/ETn| < €

for n > n(C,¢e). This implies |poo — {15 (C) /1T | < e+ >,  pus.

SeConfy \C
Let {Em}mezzo be any sequence of positive real numbers with ¢, | 0.

Choose an increasing sequence {Cp, }rmez., of finite subsets of Confy satisfying

b) U Cn = Confy and > s < Em.

mEZLx>q SeConfo \Chp,
Put n(m) := n(Cp,m). Then, by definition of p and by a) and b), one has
c) oo = 4T () (Cr) /ET ()| < 28

Substituting n and C in *) by n(m) and C,,, respectively, we obtain a
sequence of equalities indexed by m € Z>g. Let us prove:

i) the second term of ) absolutely converges to wyinite.

il) if poo = 0, then the first term of %) converges to 0.

iii) if poo # 0, then T, := T (CY,) # ¢ for large m and M(T7,) /4T,
converges to an element weo € log(EDP) N L, oo -

Proof of 1). For m € Zxq, the difference of wy;pnie and the second term of

: M S 5(S7T7Z m )ﬁS
%) 18 3 geConto csﬁ where cg := pug — W for S € C,, and cg := ug

for S € Confy \C,,. Therefore, using a) and the latter half of b), one sees that
the sum ) gcconf, [cs| is bounded by 2¢,,. Then, due to a criterion in 10.2
Assertion, the difference tends to 0 absolutely as m T co. O

Proof of ii). Recall ¢) |41}, (C7,) /8T (m)| < 2&m. The first term of x)

M(T> Cm A(S,T* Cm )
% = 2 @(5)(115}5%(”)())), where the coefficient of

SeConfy . .
(Crm) = or equal to 2 (Cn) 22 Taen P
which is bounded by 2e,,¢*~1/f Aut(S). So it converges to 0 as m | co. O
Proof of iii). The sequence of the first term of the RHS of ) converges
t0 W — Wyinite, since the LHS of *) and the second term of the RHS of )
converges to w and wyinite, respectively. On the other hand, due to c), one has

is given by

©(S) is either 0if T

n(m)

otherwise,

ﬁT;(m)(Cﬁl)/ﬁTn(m) > oo — 2¢,, for sufficiently large m, and hence one has
T;(m)(Cﬁl) # ¢. Then the first term is decomposed as:

M(T5 0y (CR)) Ty (C) M(T5,,(CF))

whose first factor converges to pis # 0 due to ¢). Therefore, the second factor
converges to some weo = (W — Winite)/ oo, Which belongs to log(EDP) by
definition. Since K(w) = K(ws), woo belongs to ker(K). O
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These complete a proof of the Lemma. O

10.5 Extremal points in log(EDP)_.

A point w in a subset A in a real vector space is called an extremal point of A
if an interval I contained in A contains w then w is a terminal point of I.

Assertion.  The extremal point of log(EDP) is one of the following:
i) % for an element S € Confy,

ii) nh};sl% for a sequence T,, € Confy with #T,, — oo (n — ).

Proof. For w € log(EDP), if s # 0, 1, then w cannot be extremal. If
oo = 0, due to Corollary 1, the only possibility for w to be extremal is when

it is of the form A/é(ss) for an element S € Confy. In fact, using the uniqueness

of the expression (Lemma 3.), A/é(ss) can be shown to be extremal.
Suppose oo = 1. For any fixed S € Confy and real € > 0, let 7,7 (S, ¢)
(resp. T, (S, €) be the subgraph of T;, consisting of the components T" such that

A(S,T)/4T > as+e¢ (resp. < as—e). Let us show that lim {75 (S, ) /4T, = 0.
If not, then there exists a subsequence {n} such that lim ﬁTﬁi (S,e)/tTH = A > 0.

Due to the compactness of log(EDP) ((10.3) Assertion 1.), we can choose a sub-
sequence such that M (T (S, €))/tT (S, €) and M(T\T5 (S, €)) /8(Ta\T5 (S, €))
converges to some Y rcconr, P(T) - br and Y e cong, (1) - cr, respectively, so

that

w=A- ZT@ConfOSD(T) b+ (1—=A)- ZTECOnfOSO(T) Cr-
In particular, the coefficient of ¢(S) has the relation ag = A -bg + (1 — A) - ¢s.
Since |bg — ag| > €, A cannot be 1. This contradicts the extremity of w.

For any finite subset C of Confy, put T;:(C,e) := T,,\ Ugec (T (S,e) U
T-(S, 6)) Then T} (C, €) # ¢ for sufficiently large n, since ILm 8T (Cye) /8T,
1 due to the above fact. Let {Cy,}mez., be an increasigg §<e>quence of finite
subsets of Confy such that UmEZ>U C’m_: Confy and let{em }mez., be a se-
quence of real numbers with €, | 0. For each m € Z>(, choose any connected
component of T¥(Cy,, em), say Ty, for large n, and put w,, := M(T}) /8T, =
> seConty PS) ~agm). By definition |ag —agm)| < &y for S € C,,, which implies
w=lim® w,,. There are two cases to consider. i) Suppose 3 a subsequence

{m} such that 7% is bounded. Since §{T" € Conf [fT" < c} for any constant
c is finite, there exists T' € Confy which appears in {T% },, infinitely often. So
w = M(T)/T and K (w) = M(T)/4T # 0. ii) Suppose §T7;, — oo. Then the

formula (10.4.4) and (10.4.7) imply K(w) = 0. O
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10.6 Function value representation of elements of log(EDP)__

The coefficients as at S € Confj of the sequential limit w = nlinéi 'M(T,) /4T,
(10.3.2) are usually hard to calculate. However, in certain good cases, we
represent the coefficient as a special value of a function in one variable t.

Given an expression of the form (10.3.2) of w € log(EDP)_ and an in-
creasing sequence of integers {n,, 5 ,, we consider the following two formal
power series in t.

(10.6.1) P(t)

> AT, -t € Z[t,
m=0

(10.6.2) PM(t) = > M(Tw)-t™ € Lolt] = Loy
m=0

where, using the basis expansion (8.2.3), the series PM(t) can be expanded as
PM(t) = ZSGCOan SO(S)PM(S7 t)?
whose coefficients at S € Conf( are given by

(10.6.3) PM(S,t) := 0sPM(t) = > A(S,Ty)-t"" € Q[t].
m=0
Since T;, € Conf, one has P(t) # 0 and its radius of convergence is at most 1.

Lemma.  Suppose that the series P(t) has a positive radius of conver-
gence r. Then, for any S € Confy (c.f. Remark), we have

i) The series PM(S,t) converges at least in the radius v for P(t). The
radius of convergence of PM(S,t) coincides with r, if ag := lim % #0.

ii) The following two limits in LHS and RHS give the same value:

. PM(S,t) . M(S,T,)

10.6.4 lim —= = lim ————=.
(10.6.4) TP nooo #T,
Here by the notation tTr we mean that the real variable t tends to r from below.

iii) The proportion PM(t)/P(t) fort 1 r converges to w (10.3.2):

oaPM(t) . PM(S,t)
(10.6.5) w = ltlTr? NN SE%):nfO(p(S) ltlgliP(t) .

Proof. Before proceeding to the proof, we recall two general properties of

power series:
A) The radius of convergence of P(t) is 7:=1/limsup "%/§T,,, (Hadamard).

m—0o0

B) Since the coefficients §7T,,, of P(t) are non-negative real numbers, P(t) is an
increasing positive real function on the interval (0,r) and ltle P(t) = +oo.
T
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We now turn to the proof. Due to the linear relations among M (S, T,,) for
S e Conf (8.3.2), it is sufficient to show the lemma only for the cases S € Conf.

i) Let us show that PM (S, t) for S € Confy has the radius r of convergence.
Since we have M (S,T,,) = A(S,Ty) (6.1 Remark 1), using (5.2.1), we have

limsup "%/M (S, T,) < limsup "/FT,, ""/q#5~1/# Aut(S) = 1/r.

m—0o0 m— 00

This proves the first half of i). The latter half is shown in the next ii).

ii) We show that the convergence of the sequence A(S,T,,)/#T,, to some
as € R implies the convergence of the values of the function PM(S,t)/P(t) to
as as t T r. The assumption implies that for any € > 0, there exists N > 0
such that |A(S, T,,)/§Tm — as| < € for all m > N. Therefore,

sy w0+ Yoy (A(S,Ton) = as - £T,0 )" |

P(t) as ‘ = P

N—-1
- E Tt
| Qn(t)—e gl(?)o #1m | +e

<

where Qn(t) == >, -~ (A(S, Tm) —as - ]ij)t"’" is a polynomial in ¢. Due
to the above B), the first term of the last line tends to 0 as ¢ 7 r. Hence,
|[PM(S,t)/P(t) — ag| < 2e for ¢ sufficiently close to r. This proves (10.6.4).

If ag # 0, then ltig} PM(S,t) = oo since ltlTIE P(t) = co. Thus, the radius of

convergence of PM (S,t) is less or equal than r. This proves the latter half of
i).

iii) We have only to recall that the classical topology on Lg is the same as
coefficient-wise convergence with respect to the basis {¢(S)}secont, - O

Corollary.  If P(t) and PM(S,t) (S € Confy) extend to meromorphic
functions at t=r, then PM(S,t)/P(t) is reqular at t=r and one has

B PM(S,t)

(10.6.6) w= > 9O R

t= ’
S€Conf "

Proof. 'We have to show that PM(S,t)/P(t) becomes holomorphic at ¢t =
r under the assumption. If it were not holomorphic, it would have a pole at t = r
and hence 1t1Tm PM(S,t)/P(t) diverges. On the other hand, in view of (5.2.2),

one has the inequality 0 < PM(S,t) < P(t) - ¢*~1/ Aut(S) for t € (0,7).
Then the positivity of P(t) implies the boundedness: 0 < PM(S,t)/P(t) <
¢*5=1/ Aut(S) for t € (0,7). This is a contradiction. O

We sometimes call (10.6.6) a residual expression of w, since the coefficients
are given by the proportions of residues of meromorphic functions.
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Remark. 1. The equality (10.6.4) gives the following important replace-
ment. Namely, the RHS, which is a sequential limit of rational numbers and
is hard to determine in general, is replaced by the LHS, which is the limit of
value of a function in a variable ¢ at the special point ¢ = r where r is often a
real algebraic number whose defining equation is easily calculable.

el M(S,Ty)
#Tn

2. The convergence of the sequence lim does not imply the
n—oo

convergence of the series PM(S,t) and P(t) in a positive radius. Conversely,
the convergence of the series PM(S,t) and P(t) in a positive radius does not
imply the convergence of the sequence lim® M Tn)

n—oo n

8§11. Limit elements for a finitely generated group.

We apply the space Lg o to the study of finitely generated groups.

For any pair (I', G) consisting of a group I" and its finite generator system
G, we introduce the limit set Q(T', G) as a subset of Lg . We introduce also
another limit set Q(Ppr ) associated to the Poincare series Pr ¢(t) of (I', G),
and a natural proper surjective map = : Q(I', G) — Q(Pr,g). Then, the main
goal of this section is the trace formula in 11.4, where the trace of a fiber of the
map 7 is represented by residues of the Poincare series Pr ¢(t) and Pr ¢ M(t).

11.1 The limit set Q(T',G) for a finitely generated group

Let (', G) be a pair consisting of a group I' and its finite generator system G

such that G=G~! and e¢ G. We denote also by (I', G) the associated colored

oriented Cayley graph (2.1 Example 1). In fact, I’ has the bound #(G) of the

valency (c.f. 2.2). In this section, we use this coloring system G and the valency

#(G@) as for the definition of Conf in (2.2.1). The set of all isomorphism classes

of finite subgraphs of (T', G) is denoted by (I', G). Put (', G)¢ := (I', G)NConf.
The length of v € T" with respect to G is defined (as usual [M]) by

(11.1.1) la(y):= inf {n€Z>o|y=¢1- gy for some g; € G (i=1,...,n)}
o = the distance between v and the unit e in Cayley graph T.
For n € Z>q, consider the “balls” of radius n of (I', G) defined by

(11.1.2) I, := {~ve€Tl|{lg(y)<n}.

We shall denote I, := 'y \I'y—y for n € Z>g. So far there is no confusions, we
shall denote by T'), its isomorphism class [I',,] € Confy also.

Definition.  The set of limit elements for (', G) is defined by
M(Ly)
r

n

(1113) Q(P,G) L= AC]R,oo N { ‘ n e Z>0} R
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where A is the closure of a subset A C Ly with respect to the classical topology.
Fact.  The limit set T, G) is non-empty if and only if T' is infinite.

Proof. Since N;g") | n€Z>0} Clog(EDP) and log(EDP) is compact (10.3),
the sequence {Né(FP”) | ne Zzo} always has accumulation points. Due to

(10.4.4) and (10.4.7), an accumulation point w belongs to Lg o, i.€. it satisfies
the kabi-condition K(w) = 0, if and only if #I',, — o0o. O

Since log(EDP) is metrizable, any element w in Q(I", G) can be expressed
as a sequential limit. That is, there exists a subsequence n,, oo of nToo such

that
T, . A(S T,
(11.1.4) w= nlin_lio'/\/w = E ©(S) nhgoo(jjl“M)
m o s T m -

where the coefficient of ¢(S) is convergent for all S.

Definition. We call a finitely generated group (I', G) simple (resp. finite)
accumulating if Q(T', G) consists of a single (resp. finite number of) element(s).

In the following Examples 1. and 2., we show that any polynomial growth
group and any free group is simple accumulating. We first state some general
properties of the set I';,, which are immediate consequences of the definition.

Fact. 1. For m,n € Zx>(, one has a natural surjection:
(11.1.5) Iy x Ty — Togn, Y X0 40
2. For any S € Confy with S <T'j (k € Z>¢) and for any n€Zx, one has:

(11.1.6) #T_p < #(Aut(S)) - A(S,T,) < #I,.

Proof. 1. Obvious by definition.

2. By the assumption on S, there exists a subgraph S CT'y, such that S=[S].
Note that Aut(S)~ Aut(S)={g € ' | gS=S} and is finite. Consider a map p
from T" to the set of subgraphs of (I', G) defined by p(g) := ¢S, and define an
equivalence relation ~ on I' by “g ~ h < ¢S = hS < g~ 'h € Aut(S)”. Then,
one has A(S,T) > #(Image(plr., ,)) = #(Tn_x/ ~) = #(Tn_)/#(Aut(S)).
This implies the first inequality.

Suppose further that e € S, by replacing S and k if necessary. Consider
aset P:={gel, | ¢gScTl,}. Then, by the assumption e € S, the map
plp : P—A(S,T,,) is surjective and P is closed under the right multiplication
of Aut(S). Then, one has A(S,T,,) = #(P)/#(Aut(S)) < #(Ty)/#(Aut(S)).
This implies the second inequality. O
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Example. 1. Let (I',G) be a group of polynomial growth. This is the
case when I' contains a finitely generated nilpotent group of finite index (Wolf
and Gromov [Grl]). There exist ¢,d € Zsq such that #I', = cn? + o(n?)
(Pansu [P]). Then, for any S € (I', G)o, applying (11.1.6), one obtains

A(S,Ty) 1
11.1.7 lim = .
(1L.L7) AT, T FAw(S)

Corollary. IfT" is of polynomial growth, then it is simple accumulating

for any generator system G and the limit element is given by

(11.1.8) wra =Y mw(sy

SE(T,G)o
2. Let Fy be a free group with the generator system G:{gfl,- . -,gfl} for
f€Z>y. Then (Fy,G) is simple accumulating. The limit element is given by

(11.1.9) wrpa=y =D > w@)+t D w9 |,
k=0 Se(',G)o Se(I',G)o

d(S)=2k d(S)=2k+1
where d(S) := max{d(x,y) | x,y € S} is the diameter of S for S€(I',G)o.

Proof. The induction relation: #I'y,11—(2f— D)#I',, =2 with the initial
condition #I'g =1 implies #I',, = % for n€Zx>¢. Then, for n>[d(S)/2],

F2f—1)nld8)/2] 4 i d(S) i
A(S,T) o 7Lf[E(s>/2] 1 if d(.S) is even,
B =1 it d(S) is odd.
i A5 Tn) (2f —1)7ld)7/2 if d(S) is even,
m ——- =
n—oo  #I'n FHEf =172 g(8) is odd.

We have only to prove the first formula. Depending on whether d(S) is even or
odd, S has either one or two central points. Then it is easy to see the following
one to one correspondence: an embedding of S in ', < an embedding of the
central point(s) of S in T, such that the distance from the point to the boundary
of T'y, is at least half of the diameter [d(S)/2]. Taking this into account, we can
calculate directly the formula. O

11.2 The space Q(Pr ) of opposite sequences

We introduce another accumulation set Q(P), called the space of opposite se-
quences, associated to certain real power series P(t). Under a suitable assump-
tion on (I',G), we have a fibration 7 : Q(T',G) — Q(Pr ) for the Poincare
series Pr ¢ of (', G), which is equivariant with some actions 7o and 1.
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We start with a general definition. Consider a power series in ¢

(11.2.1) Pt) = >0 ot
whose coefficients are real numbers. We assume that there exist positive real

numbers u, v (depending on P) such that u <+, _1/7, <v for all n€Z>;. This,
in particular, implies that P is convergent of radius r with u<r <w.

Example. If the sequence {’Yn}nezzo is increasing and semi-multiplicative
Vmtn < YmYn, we may choose u = 1/v; and v = 1. For example, let v, :=#I",
(n€Zsp) in the setting of 11.1, then (11.1.5) implies semi-multiplicativity.

Associated to P, consider a sequence {X,,(P)}nez., of polynomials:
(11.2.2) Xu(P) = Xp_o 2t sf, n=0,1,2,---,
in the space R[s] of formal power series, where R [s] is equipped with the
formal classical topology, i.e. the product topology of convergence of every
coefficient in classical topology. Since each coefficients of X,,(P) are bounded,
e uf< 'ny—*’“ gvk, the sequence accumulates to a non-empty compact set:

(11.2.3) (P) := the set of accumulation points of the sequence (11.2.2).

An element a(s) = X2 jaxs® of Q(P) is called an opposite series. The coeffi-
cients {ay}$2, satisfies u¥ < ar <vF. We call a; the initial of the opposite
series a, denoted by ¢(a). Let us introduce the space of the initials:

(11.2.4) Qq(P) := the set of accumulation points of the sequence {Ln*l} ,
Tn /nEZ>o

which is a compact subset of the positive interval [u,v]. The projection map
a€Q(P) — t(a) €y (P) is a surjective map.

Assertion. 1. If a sequence { Xy, (P)}mez., converges to an opposite
sequence a, then the sequence { X, —1(P)}mez., converges also to an opposite
sequence, denoted by To(a). We have

(11.2.5) Tala) = (a—1)/ua)s.
2. Consider a map
(11.2.5)* 7:Q(P) — RQ(P), a +~ (a)ra(a)

where RQ(P) is a closed R-linear subspace of R [s] generated by Q(P). Then,
the map T naturally extends to an endomorphism of RQ(P).

Proof. 1. By definition, the sequence {7y, —1/7Vn,,}m converges to the non-
zero initial ¢(a) #0. Then, for any fixed k>0, the k — 1th coefficient of q(a)
is given by the limit of sequence {7y, —/Vn,,—1}m converging to ay/a;.
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2. Let Y. ciai(s) =0 be a linear relation among opposite sequences a;(s)
(iel) with #I <oo, then we also have a linear relation ), ; c;a; 170(a:(s)) =
0, since, using the expression (11.2.5), this follows from the original relation
Yooy ciai(s)=0 and another one Y .7, ¢; =0, which is obtained by substituting
s =0 in the first relation. This implies that 7 is extended to a linear map:
RQ(P) — RQ(P). On the other hand, a(s) € R[s] — (a(s) — a(0))/s € R[s]

is a well-defined continuous map, so that it induces a map Endg(RQ(P)). O

We return to the setting in 11.1 and consider a Cayley graph (I, G). For
the sequence {I'y, }nez., (11.1.2), we consider two series (10.6.1) and (10.6.2):

(11.2.6) Prg(t) == > 00 0, - ",

(11.2.7) Png./\/l(t) = ZZO:O M(T,) - ™.

Here (11.2.6) is well known [M] as the growth (or Poincare) series for
(T',G), and (11.2.7) is the series which we study in the present paper. Due to
(11.1.5), it is well known that the growth series converges with positive radius:

(11.2.8) rrg = 1/ lim 3/#T, > 1/ #T.
n—oo

Due to 10.6 Lemma i), the series Pr gM(t) converges in the same radius as
Pr ¢ (t). This fact can be directly confirmed by using (11.1.6) for S < [I';] as

lim ("/#,_5)" % < lim 3/#(Aut(S)A(S,T,) < lim {/#T,.

Let us consider the continuous linear projection map:

(11.2.9) 7 : Le(D,G) — R[sl, Y gccons, £(5) - as — > o an,s*.

In order that the 7 induces the map 7 (11.2.12), we consider the next two
conditions S and I on the graph (T, G). First, recall that an element g € T is
called dead with respect to G if £g(gz) < la(g) Vo € G (Bogopolski [Bo], c.f.
dead states [E2]).} We denote by D(T', G) the set of dead elements in T

e S: The portion W tends to 0 as n — oc.

e I: For any connected subgraph S of (', G) and any element g € T', the
equality ST'y = gSI'; implies S = ¢S, where SI'; :=U,esal'y.

Assumption. From now on, we assume the conditions S and I hold for (T, G).

IThe author is grateful to Takefumi Kondo, who informed him the concept “dead element”
and the recent works on it.
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Remark. 1. Bogopolski ([Bo] Question(2)) asked whether S holds for
arbitrary finite generator system G of a group I' automatically.

2. Since Aut(S) is a finite group for any S € (I', G)o, it is trivial if ' is
torsion free. Then, I holds automatically for arbitrary finite generator system.

3. If T has a torsion element g of order d > 1, then for any generator
system G, define a new generator system G’ := U; j—o.... a—1(¢'T1¢”) \ {e}.
Then, the new unit ball T} :=G’ U {e} satisfies I'; =¢I'}. That is, the condition
I fails for S := {e}. It is an open question whether, for any finitely generated
infinite group I', there always exists a generator system G satisfying I, or not.

Notation. For any S € (I', G)g, we denote by STy the isomorphism class [ST'q]
for any representative S of S. We regard Lg(I', G) as an R [s]-module by letting
s act on the basis by ¢(5)+— ¢(ST';) and extending the action formally to R [s].
However, the map 7 (11.2.9) is not an R [s]-homomorphism.

Let us state some consequences of the assumptions S and I. Recall the
notation (5.1.1) and (5.1.2)).

Assertion.  For any S€(T',G)o, one has the inequalities:
(11.2.10) 0 < A(STy,T,) — A(S,Tp_1) < #S - #(I,, n DT, G)).

Proof. Consider a map S € A(S,T,,_1) — SI'1y € A(ST4,T;,). Then the
condition I implies the injectivity of the map. This implies the first inequality.
Next, consider an element ST’y € A(ST,T',) for SCT,, with [S]=S5. It can not
be an image of the map (i.e. S ¢ T',_;) if and only if SNT,, N D(T',G) # 0.
Such S is of the form ds~!Sy for d € T',, N D(T,G) and s € Sy for a fixed Sy
with [So]=S. Thus the number of such ST'; is at most #(S) - #(I',, N D(T, G)).
This implies the second inequality. O

Corollary.  Forn,k € Z>o withn —k > 0, one has the inequalities:
(11211)  0< ATk L) — #(Ta ) < #(T%1)#(T0 0 DT, G)).
Proof. We show by induction on k, where k = 0 is trivial (put #I'_; :=0).
Assume for kK — 1. Let n be an integer with n > k. Applying (11.2.10) for
S =Ty 1, one has 0 < ATy, Ty) = Ay 1, Tp1) <#p_1 - #(0, N D(T, G)).
This together with the induction hypothesis implies (11.2.11). O

We state about the comparison of Q(T',G) and Q(Pr ) by the map ,
which is the main result of the present section.

Lemma. 1. If lim“ N;gi"m) converges to an element w € Q(T,G),
Ny, —> 00 nm

then 1lim® X, (Pr.g) converges, too, to the m-image of w. We denote by

Ny — 00

(11.2.12) o« QT,G) — Q(Prg)



LiMITS IN THE CONFIGURATION ALGEBRA 55

the induced map. wq is a continuous map, which is surjective.
#

2. If a sequence { }
nm ) meZs,

converges to an element w € Q(T',G),

M(an—l)}
Prm—1 Jnezs,
To(w). For an element w =} gc r gy, asp(S) € AL, G), one has

(11.2.13) 7o (w) = m ng<ng>0 .asr, ¢(S).

Using the notation dg and Ogr, for S € (T',G)o in §8.1, this is equivalent to

then the sequence { converges also to an element, denoted by

(11.2.13)* 9s(faw) = ma@yOsri (W)-

(o (w
Then, mq (11.2.12) is equivariant with respect to the actions 7o and Tq.

3. Let us denote by RQ(T, Q) the closed R-linear subspace of Lg ~ gener-
ated by Q(I',G). Define a map 7 from Q(I',G) to RQ(T,G) by

(11.2.14) T(w) = (ra(w)) Ta(w).

Then, 7 naturally extends to an R-linear endomorphism of RQ(T, G).
4. The restriction of m (11.2.9) (= the R-linear extension of mq ):

(11.2.15) 7 : RQT,G) — RQPr ).

is equivariant with respect to the endomorphisms 7 and T, i.e. Tomw =moT.

Proof. 1. Using (8.2.3), (11.2.2) and (11.2.6), we see that the difference
%)7Xn(vag) is a polynomial in s of degree < n whose kth coefficient is
(A(Ty,Ty) —#T k) /#T. Put n = n,, and take the limit by tending m — oc.
Applying (11.2.11) and the assumption S, we see that this tends to 0. That is,
kth coefficient of X, (Pr ) tends to the coefficient ar, at I'y of w. That is,
Xn,, (Pr.g) converges to the m-image of w. Thus (11.2.12) is established.

To show the surjectivity, use the compactness of log(EDP) (10.3).
2. For Se€(I",G) and n€Z>1, one has

*) A(S7Fn71) _ A(SFI,Fn) _ A(Srlyrn)_A(S;anl) #Fn—l
#anl - #Fn #Fn #Fn '

MTrp,)

Let the sequence associated to a subsequence {n,, }mez., of Z>¢ con-

verges to an element 0 = Y oser.ay @s@(S) € QI G). Put n=ny, in *)
and let the index m run to co. The first (resp. second) term in the bracket in
the RHS of %) converges to agr, (resp. 0 due to (11.2.10) and the assumption
S). The denominator of the RHS of x) converges to the initial ¢(7(w)). Con-

sequently, the LHS of %) converges to maspl for all S. This implies the

convergence of limd% and the formula (11.2.13) and (11.2.13)*.

m—oo nm—1
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Let a = mo(w) (:=Y peyar,s”). Then, comparing the formulae (11.2.5)
and (11.2.13), one calculates: mo (7o (w))= Wlw))zzozo ar,r,s* = ng;o ary,, s*

= ngl ar,s' ' =1q(a) =1q(mq(w)). This implies the equivariance of 7.

3. Let (r): > ;c;ciwi =0 be a linear relation for w; € Q(I',G) and ¢; €R
(i € I) with #(I) <oo. Let us show the linear relation (s): »_;.; ¢i7(w;) = 0.
Let us expand w; =) g as;¢(S). Then, the relation (r) is expressed as the
relations ) ;. ¢ias,; =0 of coefficients for all S€(I",G)o. Then the relation (s)
is expressed as )., ciasr,; = 0 for all S € (I',G)o, which are a part of the
former relations of the coefficients and are automatically satisfied.

This implies that 7 extends to a linear map RQ(T, G) — RQ(T, G). On
the other hand, the correspondence } qc o) as@(S) — D oger gy asr,(S)
defines a redefined continuous linear map from a closed subspace of Lr to
itself, which induces the endomorphism 7 € Endg (RQ(T, G)).

4. Let the notation be as in 1. Comparing (11.2.5)* and (11.2.14), one cal-
culates: 7(7(w)) = 7(1(r(w))Ta(w)) = t(r(W))ma(Ta(w)) = v(r(w))ma(Ta(w)) =
t(m(w))ta(a) = 7(a) = 7(7(w)). This implies the equivariance of . O

The map mq (11.2.12) is conjecturally a finite map. We shall see in 11.4
that the “traces” of fibers of 7 are represented by suitable “residue values” of
the functions (11.2.6) and (11.2.7). The key to understand this is the “duality”
between the limit space Q(Pr,¢) and the space of singularities Sing(Pr ) of the
series Pr q(t) on the circle of the convergent radius rr . In next section 11.3,
we study the “duality” in case Q(Pr ) is finite (see Theorem and (11.3.14)
and (11.3.15)). However, for general Q(Pr ), the “duality” is yet undefined.

In the following, we give an example of (I',G), where Q(Pr ) consists
of two elements al% and am, and T acts on (Ppr ) as their transposition.
However, we note that 72 # id and det(t - id —7) = t? — 1/2.

Example. (Machi) Let I':=Z/2ZxZ/37 and G := {a,b*'} where a,b
are the generators of Z/27 and 7Z/37Z, respectively. Then, Machi has shown

oo (2t
Pra(t) = 21«;0 #I)th = ((17222()(172)’

so that #T9,=7-2¥—6 and #9241 =10 - 2k _¢ for k€Z>¢o. Then, one has

0 (Pre) ={ua):= lim Ege=t =2 e o(all) o= lim L = 1,

and, hence hr ¢ =2. Q(Pr ) consists of two opposite sequences:

2
alf)(s):= T2 224 20 1020 27592 = (14-39) /(1 ) = i+

1 ) ko2k T ) k o2k 7 2 1047v2  10-7V2
altl(s):=30702 g 27 Rk 455 3000 g 27 R s = (14758) /(1— 5 ) = 25—+
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11.3 Finite rational accumulation

We introduce the concept of a finite rational accumulation, and study the series
P(t) (11.2.1) from that view point. First, we start with preliminary definitions.

Definition. 1. A subset U of Zx¢ is called a rational subset if the sum
U(t) :== >, cyt" is the Taylor expansion at 0 of a rational function in ¢.

2. A finite rational partition of Zx>g is a finite collection {U, }qeq of rational
subsets U, C Z>( indexed by a finite set 2 such that there is a finite subset D
of Z>¢ so that one has the disjoint decomposition Z>¢ \ D = lyeq (U, \ D).

Assertion. For any rational subset U of Z>g, there exist a positive in-
teger h, a subset w C Z/hZ and a finite subset D C Z>o such that U\ D =
U euUN\D, where [¢] denotes the element of Z/hZ corresponding to e € Z and
ylel.= {n€Z>p | n=emod h}. We call U[e]@U[e] the standard expression of U.

Proof. The fact that U(t) is rational implies that the function x : Z>¢ —
{0,1} (x(n) =1 <> ne€U) is recursive, i.e. there exist N € Z>; and numbers
a1, -+, an such that one has the recursive relation x(n)+x(n—1)a;+- - -+x(n—
N)ay =0 for sufficiently large n > 0. Since the range of y is finite, there exists
two large numbers n >m such that x(n—i)=x(m—i) for i=0,---, N. Due to
the recursive relation, this means that y is h:=n — m-periodic after m. O

Corollary.  Any finite rational partition of Z>o has a subdivision of the
form Uy, := {U[e]}[e]ez/hz for some h € Z~y, called a period of the partition. If
h is the minimal period, Uy, is called the standard subdivision of the partition.

Definition. A sequence {X,, }nez., in a Hausdorff space is finite ratio-
nally accumulating if the sequence accumulates to a finite set, say €, such that
for a system of open neighborhoods V, for a € Q with V,NV, =0 if a #b, the
system {Uy,}oeq for Uy :={n€Z>¢ | X, € V,} is a finite rational partition of
Z>o. We say also that 2 is a finite rationally accumulation set of period h.

The next and 11.4 Lemmas are key facts, which justify the introduction of
the concept “rational accumulation”. They are also the starting point of the
concept of periodicity which is the thorough bass of the whole study in sequel.

Lemma. Let P(t) be a power series int as given in (11.2.1). If Q(P) is
finite, then it is a finite rationally accumulation set with respect to the standard
partition Uy, of Lo for some h>0, and Tq acts transitively on Q(P) of period h.
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Proof. Recall the tg-action on the set (P) in 11.2. Since 2(P) is finite,
there exists a non-empty 7g-invariant subset of Q(P). More explicitly, there
exists an element a € Q(P) and a positive integer h € Z~¢ such that (mq)"a=
a# (mq)"a for 0<h/ <h. Put U,:={n € Z>o| Xn(P) € V,} where WVatacaip)
is a system of open neighborhoods of points of Q(P) such that V,NV, =0 for
any a # beQ(P). By the definition of 7, the relation (1q)"a=a implies that
the sequence {X,,—n(P)}nev, converges to a. That is; there exists a positive
number N such that for any n € U, with n > N, n—~h is contained in U,.
Consider the set A:={[e] € Z/hZ | there are infinitely many elements of U,
which are congruent to [e] modulo h }. Then, U, is, up to a finite number
of elements, equal to the rational set U[E]EAU[E]. This implies A # (). Further
more, Ur,yi, is also, up to a finite number of elements, equal to the rational
set Ulele AU, Then, the union U?:_Ol Urg)ia already covers Z>o up to finite
elements. Since there should not be an overlapping, #A4 =1, say A = {[0]}.
If a subsequence {X,,, (P)} converges to an element in Q(P), then there is at
liest one [e] € Z/hZ such that #({n,,}>°_,NU) =00 so that it converges to
(q)"~€a. That is; Q(P) is equal to the set {a,Tqa,--- ,(1q)" ta}, which is a
finite rationally accumulating set with the h-periodic action of q. O

In the sequel, we analyze the finite accumulation set 2(P) in detail.

Assertion.  Let P(t) be a power series in t as given in (11.2.1).

1. Q(P) is a finite rationally accumulation set of period h € Z>1 if and
only if Q1(P) is. We say P is finite rationally accumulating of period h.

2. Let P be finite rationally accumulating of period h € Z>1. Then the
opposite series all =377 aE:]sk' in Q(P) associated to the rational subset U]
for [e] € Z/hZ of the h-partition of Z>o converges to a rational function

¢ All(s)
where the numerator A[e](s) is a polynomial in s of degree h—1 given by
(11.3.2) All(s) == Yo ( i a[f‘””) s &
(11.3.3) b= Il

The hth positive root >0 of (11.3.3) is the radius of convergence of P(t).

3. If the period h is minimal, then the opposite sequences all(s) for [e] €
Z/WZ are mutually distinct. That is, Q(P) ~ Z/hZ, all(s) < [e] and the
standard partition Uy, is the exact partition of Z>o for the opposite series Q(P).

Proof. 1. The necessity is obvious. To show sufficiency, assume that
{Yn-1 /’Yn}nezzo accumulate finite rationally of period h. Let the subsequence

{¥n-1/vn}nev,, for [e] € Z/hZ accumulate to a unique value a[f] =.
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For any k € Z>(, one has the obvious relation:
Yn—k _ In-17Tn-2  “In—k

Vn Vo Vn—1  Yn—k+l
For n € U ={n € Zxo | n=emod h} for [e] € Z/hZ, we see that the RHS
converges to a[le]a[le_l] . a[f_k+l]. Then, for [e] €Z/hZ and k € Z>¢, by putting
(11.3.4) agf] = a[le]a[le_l] e a[le_k+1],

the sequence {X,,(P)}ner,, converges to all .= OLE]SIc with a[le] = 1(ale]).
2. Define r" by the relation (11.3.3). Then, the formula (11.3.4) implies
the “periodicity” ai}h+k :rmhagf] for meZs>¢. This implies (11.3.1).
To show that 7 is the radius of convergence of P(t), it is sufficient to show:

Fact. Let P(t) be finite rationally accumulating of period h. Define r > 0 by
the relation (11.3.3). There exist positive real constants ¢y and ¢y such that for

any k € Zxq there exists n(k) € Z>o and for any integer n > n(k), one has
erk < d=t < cor®.

fe]
Proof. Choose c1, ¢z € Rsg satisfying ¢;<min{ 4| [e] € Z/hZ,i€ ZN [0, h—
[
1]} and ¢ >max{ % | [e] € Z/hZ,i€Z N[0, h—1]}. O
3. Suppose al’l(s) = alfl(s) for some [e], [f] € Z/hZ. Then, by comparing
the coefficients of All(s) and Af)(s), we get a™" = al/ ™ for i=0, -, h—1.
This means e— f is a period. The minimality of h implies [e— f] = 0. O

el

Even if, as in the Assertion, the opposite series al’l(s) for [¢] € Z/hZ
are mutually distinct for the minimal period h of P(t), they may be linearly
dependent. This phenomenon occurs at the zero-loci of the determinant

h— e—1i
(1185)  Dalal- ") = det (T ol ™ e reqo nony)
Regarding a[lo], e 7@[11171] as indeterminates, Dy, is an irreducible homoge-

neous polynomial of degree h(h — 1)/2, which is neither symmetric nor anti-
symmetric, but (anti) invariant under a cyclic permutation (depending on the
parity of h). Let us formulate more precise statements for an arbitrary field K.

Assertion.  Let h € Zwy. For an h-tuple a = (a[10}7 RN a[lh_l]) € (K*)h,

define polynomials A (s) ([e] €Z/hZ) and r" €K* by (11.3.2) and (11.3.3).

i) In the ring K|s|, the greatest common divisors ged(Al€l(s), 1—r"s") and
ged(Alel(s), AetU(s)) for all [e] €Z/MZ are the same up to factors in K*. Let
0a(s) be the common divisor whose constant term is normalized to 1. Put

(11.3.6) AP(s) = (1 —7r"s")/5a(s).
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ii) For [e] € Z/hZ, let al®l(s) = blel(s)/AZ(s) be the reduced expression
(i.e. bll(s) is a polynomml of degree < deg(AP) and ged(bl(s), AP (s)) = 1).
Then, the polynomials blel(s) for [e] € Z/WZ span the space K|s 8] <deg(acry of
polynomials of degree less than deg(AY). One has the equality:

(11.3.7) vank ([T af ™ e seqor,nony) = deg(A2).

iii) Let K=R and a € (R>0)h, Then, A% is divisible by 1—rs. Conversely,
let AP be a factor of 1—r"s" which is divisible by 1—rs for r € Rsq with
the constant term 1. Then there exists a smooth non-empty semialgebraic set
Caor C(Rx0)? of dimension deg(A°P)—1 such that AP =AZ for Va € Cpop.

Proof. 1) By the definitions (11.3.3) and (11.3.4), we have the relations:
(11.3.8) CL[16+1]SA[E](5) F(1—rhshy = Al

for [e] € Z/hZ. This implies ged(All(s), 1 —rPsh) | ged(Alet1(s), 1 —rPsh) for
[e] € Z/hZ so that one concludes that all the elements ged(Alfl(s), 1 — rPsh)
= ged(Aldl(s), Alett(s)) for [e] € Z/hZ are the same up to a constant factor.

ii) Let us show that the images in K[s]/(AZ) of the polynomials Al (s) /84 (s)
for [e] € Z/hZ span the entire space over K. Let V be the space spanned by the
images. The relation (11.3. 8) implies that V is closed under the multiplication
of s. On the other hand, All(s)/5;(s) and A2 are relatively prime so that they
generate 1 as a K[s]-module. That is, V contains the class [1] of 1, and, hence,
V contains the whole K[ ]-[1]. Since deg(Alcl(s)/da(s)) < deg(AZP), this means
that the polynomials Al°l(s)/d5(s) for [e] € Z/hZ span the space of polynomials
of degree less than deg(AZF). In particular, one has ranky V = deg(AZF).

By definition, rank(((]_[f 1 ale i ])ech{O’L,H ,h—1}>) is equal to the rank
of the space spanned by Al€l(s) for [e] € Z/hZ, which is equal to the rank of
the space spanned by Al°l(s)/d4(s) for [e] € Z/hZ and is equal to deg(AZF).

iii) If (1—rs) J AP, then 1—rs | d5 | Al°l(s) and Al°l(1/r) =0. This is
impossible since all coefficients of Al¢l and 1 /7 are positive. Conversely, let AP
be a factor of 1—r"s" which is divisible by 1 — rh, whose degree is d>0. Put
Ris]a—1:={c(s) € R[s] | deg(c(s))=d—1, ¢(0)=1}. Consider the set

Cpor:={c(s)ER[s]q—1 | all coefficients of ¢/(s):=c(s) 1‘£Z§h are positive }.

Since C'aop is defined by the strict innequalities, it is an open set of R[s]g_1.
Furhter, it is non-empty since it contains A°P/(1—rs). For any c¢(s) € Cpo,
we note that deg(c/(s)) = h—1, and hence one can find a unique @ € (Rsq)"
satisfying ¢/(s) = Al%l(s) (11.3.2) and (11.3.3). By this correspondence c(s) —
@, we embedd Caor smoothly to a smooth semialgebraic subset of (Ro)" of
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dimension d—1. If @ is the image of ¢(s) € Caop, then §z:=ged{c'(s), 1—r"s"} is
divisible by (1-r"s")/A°. That is, A := (1—r"s") /65 is a factor of A°P. This
implies that the ¢(s) is a point of the embedded image Caor — Caor (defined by
the multiplication of ﬁ—;). Define the semialgebraic set C'aop :zéAop\UAléA/,
where the index A’ runs over all factors of AP (over R) which are not equal to
A°P and are divisible by 1—7s. Since dimg(Ca) = d—1 > dimg(Ca/) so that
the difference C'a is non-empty. O

Let K be the splitting field of A% with the decomposition A% :Hle(lfxis)

in K for d := deg(A%). Then, one has the partial fraction decomposition:
(11.3.9) All(s) 5 pl]

1—rhsh i=1 1—x;s

for [e] € Z/hZ, where u:[f] is a constant in K given by the residue:

e le] (s —;s e —
(11.3.10) phl = AZEome) = LAF(z7h).

s=(wz;)" 1

[e]

o(xs)

o € Gal(K, K). The matrix (ugf})[e]@i is of maximal rank d=deg(AZ).

[e]

Here, one has the equivariance o(uz,) = p with respect to the action of

Remark. The index z; in (11.3.10) may run over all roots z of the equation
x—rh=0. However, if z is not a root of A (i.e. A (z~1)#0), then pl =o.

We return to the series P(t) (11.2.1) with positive radius r >0 of conver-
gence. If P(t) is finite rationally accumulating of period h and a[le] = 1(al®)
for [e] €Z/hZ (recall (11.3.1)), then AZ”(s) depends only on P but not on the
choice of the period h. Therefore, we shall denote it by A% (s). The previous
Assertion ii) says that we have the R-isomorphism:

(11.3.11) RQ(P) =~ R[s]/(A%(s)), a — A% alT mod AY.

Define an endomorphism o on RQ(P) by letting o (al):=7"1(al) = a[elﬂ] alet1l,
Then, the action of o on the LHS and the multiplication of s on the1 RHS are
equivariant with respect to the isomorphism (11.3.11). Hence, the linear de-
pendence relations among the generators al®! (le] € Z/WZ) are obtained by the
relations A% (o)al®l = 0 for [e] € Z/hZ. However, one should note that the

o-action is not the same as the multiplication of s as an element of R [s].

Finally, in this subsection, we introduce some more concepts and notation.
A) For a positive real number 7, let us denote by C{t}, the space con-
sisting of complex powers series P(t) such that i) P(¢) converges (at least)
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on the disc centered at 0 of radius =, and ii) P(¢) analytically continues to a
meromorphic function on a disc centered at 0 of radius > r. Let Ap(t) be the
monic polynomial in ¢ of minimal degree such that Ap(t)P(t) is holomorphic
in a neighborhood of the circle [t|=7. Put Ap(t) = vazl
(i=1---,N, N€Z¢) are mutually distinct complex numbers with |z;|=r and
di€Z<o (i=1, -+, N). Define the equation for the set of poles of highest order:

(t — ;)% where z;

(11.3.12) ASP(t) =[Tig,—q,(t —x:) where dy,:=max{d;}Y,.
B) For a rational set U of Z>(, we define an action Ty on C[¢] by letting

(11.3.13) P=3 ez, mt" = TyP:=3 cyvmt"

One may regard Ty P as a product of P with the function U(t) in the sense of
Hadamard [H]. The radius of convergence of Ty P is not less than that of P.

Fact 1. The action of Ty preserves the space C{t}, for any r € Rsg.

Proof. Let us expand the meromorphic function P(t) into partial fractions
N d; i
*) P(t) =321 Zj:o (tiTi)J + Q(1),

where the coefficients ¢; ; of the principal part Zivzl Z;i;o { tf;,)j of P(t) are

constants with ¢; 4, #0 for Vi, and Q(t) is a holomorphic function on a disc of
radius >r. Then, TyP =3, ; TU(thJL)] + Ty @ where Ty Q is a holomorphic
function on a disc of radius > r. It is sufficient to show that, for any standard
rational set Ul :={n€Z>q | n=e] mod h} of period h € Z~q and [e] € Z/hZ,
oy
this explicitly as follows. For the purpose, we claim a “semi-commutativity”

on has Ty e (t_;i)j = where B; ;(t) is a polynomial in ¢. We calculate

Tiriel -% = % “Tirier (proof is trivial and is omitted). Then,

1 D7 edyi-1_ 1 (1T d i 1
Tyt (t—w;)7 = Tyt G-1! (G )’ 1t—x1; = G- (%)’ 1TU[€+j_1]t—xi
_qyi-1 . f . .
= GHor($) 5y where f=e+j—1-h[(e+j—1)/h].

This gives the required result.  O.

The following is the last and the main result of the present subsection.

Theorem. (Duality)  Suppose P(t) (11.2.1) belongs in C{t}, for r =
the radius of convergence of P, and is finite accumulating. Then, we have
(11.3.14) tdes(AEIA® (=) = AleP(p),

(11.3.15) rank(RQ(P)) = deg(A%®) = deg(A%P).
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Proof. We first show some special case followed by the general case.

Fact 2. If P(t), above, is simple accumulating (i.e. #Q(P)=1), then AP =t—r.
Proof. According to the partial fractional expansion *) for P, let us split

the Taylor coeflicients of P into the principal part and that of Q. Since that of
Q has the lower order, we may assume that the prinicipal part say P’ is simply
accumulating. That is, X, (P )=, Zis ci"jwfinil(”_k;j)/(j_l)ls’“ converges
& > 4n k=03 ciyer i)/ G-1)! &

to ﬁ =Y 1o, r"s". Then, we want to show that if ¢; 4,, #0 then z;=r. For

a convenience of the proof, we may assume r=1 and hence |z;|=1 for all i.

. N —n— . .
Consider the sequence vy, := > o ¢;a, z; " '. Since the range of v, is

bounded, the sequence accumulates to a compact set. Let us, first, show that
if it has a unique accumulating value, say vy then the result is already true.
(Proof. Consider the mean sequence: {(Zi\gl Un)/M }riez.,- On one side, it
converges to vg by the assumption. On the other side, Z@]L ci’dmw
converges to c¢14,,, where we assume x; = 1. That is, the sequence v}, :=
Zgz Ci.dpm x;"71 converges to 0. For a fixed ng € Z~g, consider the relations:
Unotk = Z;(ci’dmx;””)x;kﬂ for k=1,---,N—1. Regarding ¢; 4,,z; "° (i=
2,---,N) as the unknown, we can solve the linear equation by a use of the van
del Mond determinant for the matrix (xi_k—‘rl)3'2274..’]\[,](:1,...,]\]_1. So, we obtain
a linear approximation: |¢;q,,x; °| < c- max{|v;lﬁk|}k1\;1 (i=2,-+,N) for a
constant ¢ > 0 which is independent of nyg. The RHS tend to zero as ng— oo,
whereas the LHS are unchanged. This implies |¢; 4,,|=0 (i=2,---,N).

Next, consider the case that the sequence v,, has more than two accumu-
lating values. Suppose the subsequence {v,,, }mez., converges to a non-zero
value, say c¢. Recall the assumption that the sequence v,_1 /7y, converges to

. Y —1 __ Ung,, —1+lower terms .
1. So, the subsequence = = S Tower terms should converges also to 1

nm

as m — oo. In the denominator, the first term tends to ¢ # 0 and the sec-

ond term tends to zero. Samely, in the numerator, the second term tends to
zero. These implies that the first term in the numerator converges also to c.
Repeating the same argument, we see that for any k € Zx, the subsequence

{Vn,,—k }mez-., converges to the same c. Then, for each fixed M € Z-q, the
M-1
average sequence {(>°,_o Vn,,—k)/M}mez.., converges to ¢, whereas, for suf-

ficiently large M, the values is close to cj q4,,. This implies ¢ = ¢; 4,,. In the

m m

other words, the sequences {v;, _}mez.., for any k& > 0 converge to 0. Then,
=0 (i=2,--,N).

the similar argument as in the previous case implies |¢; 4
This is the end of the proof of Fact 2. O

m

We return to the general case, where P is finite rational accumulating of
period h. For the standard partition {Ul¢ | [e] € Z/hZ}, put T = Ty..
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They decompose the unity: Z[e] €z/hz T'el = 1. By the assumption, for each
0 < f<h, the series TVIP = t/3°°°_ A;1,n7™, considered as a series in 7=t",
is simple accumulating. Then Fact 2. implies that the highest order poles of
TU1P are only at solutions x of the equation t"—r"=0. In view of the fact that
the highest order of poles of TP cannot exceed that of P (recall the explicit

expression in Fact 1.) and the fact P:Z[e]eZ/hZ T'el P, the highest order poles
of P are also only at solutions z of the equation t" —r"=0. That is; A% (t) is
a factor of t" — ", For 0<e, f <h and a root x of the equation t" — ", we

evaluate ((10.6.4) for {n,, =e+mh}S_, and {n,=f+mh}3_,)

— lim ftmh
> 0MetmhT™ lr=gh=rh m-—oo Yetmh

Tl p _ —e Zﬁ:o/\f—%—thm _ —e
e B,y = 27 > x!

Then, a similar argument to that for (11.3.4) shows the formula

af=¢ a1 gl e < f

t=x
af=ealale U pe s f

(11.3.16)

This implies that the order of poles of T[e]P(t) at a solution x of the equation
t" — r" is independent of [e] € Z/hZ. On the other hand, (11.3.16) implies

Tl p
P

_ 1

(11.3.17) e - m.

(recall the Al°l(s) (11.3.2)). Let = be a solution of t"—r"=0 but A% (z~1) #£0.
Then 0, (z~1)=0 (see (11.3.6)) and Al¢l(z=1)=0 for [e] € Z/hZ (see Assertion
i)). That is; T[;]P(t) has a pole at ¢t =x. This implies that the pole of P(t) at
t=x is order <d,, (otherwise, the pole at t=x of TP is at most of order d,,
and can be canceled by dividing by P). That is; AP (¢) | t?A% (t~1).

Fact 3. Let P(t) (11.2.1) belong to C{t}, and finitely accumulating. Then
i) There exists a positive constant ¢ such that vy, > cr~"nm forn >> 0.

i) AL (1) | AP () .
Proof. i) Consider the Taylor expansion of the function x). Using notation v,, in
—n—1 .
Fact 2., we have v, = —vnri(”’d"”)—ﬁ—terms coming from poles of order < d,,+

—1)!
terms coming from Q(t), Wh(ed;é 1)173.: >, ¢ia,, (xi/r) """ depends only on n mod
h since z; is the root of the equation t" — " = 0. Not all of them are zero
(otherwise ¢; 4,, = 0 for all i). Let us show that non of v, is zero. Suppose the
contrary and v, =0%#vs. Then, one observes easily lim,, .o % = 0. This
contradicts to the assumption Q;(P) C [u,v] (positivity of initials).

ii) By definition, the fractional expansion of A% (t)P(t) has poles of order
at most d,, —1. This means that its n—kth Taylor coefficient:
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%) Ynek QL Ynke1 - Qo1+ Ynokr 1~ o((n— k)P (0 7R)

asn—k — oo (k,n € Zsg) (here, AP (t) =t'+art' "1+ +ay). Let 3, apsh €
Q(P) be the limit of a subsequence {X,,,, (P)}mez-o (11.2.2). Divide *x) by
Yn- Then, using the part i), one has

apay + approy—1 + -+ agy = 0

for any k> 0. Thus s'!A%SP(1/s)a(s) is a polynomial in s of degree < I. Thus
the denominator A% (s) of a(s) divides s!A%SP(s~1). So, ii) is shown. O
We showed (11.3.14). (11.3.15) follows from (11.3.11) and (11.3.14). O

Ezample. Recall Machi’s example 11.2 for the modular group I'. We have
2 2

Then the transformation matrix is given by

T.P(t) 2 T,P(t) _  2t(2+t2

PF,G((t))*(1+1)—§?§+2t) |t:% PF,G((t))*(1+t()2(142-)2t) ‘t:% _L7(5ﬁ—7) 5(10—7v/2)
T.P(t 2 T, P(t 2t(2+t -

PFYG(@)):(H%;?L%) ez PFWG((g):(Ht()Z(H)Qt) ezt 7(5v/2+7) 5(1047v/2)

whose determinant is equal to 5—\/; #0.

11.4 The residual representation of the trace element

As the goal of this section, under the assumption that the limit set Q(T', G) is
finite as well as a few other assumptions, we show a trace formula, which states
that the traces of the limit elements are represented by the residues of the series
Pr o M(t) (11.2.7) at the singular points of the Poincare series Pr c(t).

Let us first show the following basic fact.

Lemma. Let (I',G) be the pair consisting of a group and its finite gen-
erator system. If the limit set Q(T',G) is finite, then it is finite rationally
accumulating with respect to the standard partition U; of Zxq for some h >0,
and Tq acts transitively on Q(T, G) of period h.

Proof. Recall the action 7o on (', G) (Lemma in 11.2). Then, finiteness
of Q(I', &) implies that there exists an element w € Q(I',G) and an integer
h € Zq such that (7o)"w = w and (7q)" w # w for 0 < b’ < h. Consider the

set Uy :={n € Z> | A;(IF:)

€ V., } (here, V, is an open neighborhood of w in
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LR~ such that V, NQ(T, G) = {w}). Then, the periodicity of the action of 7q
on w implies (use the similar argument as in proof of 11.2 Lemma, replacing
a € Q(P) by w e QI,G) and h by h, respectively) that U, is, up to a finite
number of elements, equal to a rational set Ul for some [¢] € Z/ hZ, and the
following equality holds:

QT,G) = {w, Faw, -, (7)) 'w ).
This implies the finite rationality of Q(T', G) and the periodicity of 7q. O
Let (T, G) be finite rationally accumulating of period h, which consists of

(11.4.1) W, = i 20 emi)

’ ™m— 00 é+mh
for [¢] € Z/hZ. Then, Q(Pr ) is also finite rationally accumulating of period h
such that h|h (c.f. 11.2 Lemma), since the sequence {m( A/;(FZ") )= Xn(}ing)}ngﬂe]
for the rational set Ul :={n € Zs¢ | n modh =|[e]} for any [¢] € Z/hZ is con-

vergent to ﬂ(wlf]G). Let hr.¢ and hr ¢ be the minimal period of (T, G) and

Q(Pr.q), respectively. Then 7 is an mr g ::izng/hng—fold covering. We call
mr,q the inertia of (I', G) and Z/mrp ¢Z the inertia subgroup.

Let us introduce a -action on the module RQ(T, &), as a consequence of
periodicity. For any [¢] € Z/hr.¢Z, put [¢] = [¢] mod hr ¢ and define

~ e ée+1 ~_ e
(11.4.2) 5 (wfls) = erg =7 Hofle) -

The endomorphism & is semi-simple since one has 5/1.¢ = rl}fféG idgg(r )
(c.f. (11.3.3)). The R-linear map 7 (11.2.15) is equivariant with respect to the
endomorphisms ¢ and o. Our interest is now to investigate the subspaces fixed
by the action of 7/7-¢ (the inertia part).

For each opposite sequence alf e Q(Pr) for a [e] € Z/hr gZ, let us
introduce the trace over the fiber 7='(al)), as an element of RQ(T, ), by

&l _Zmr,c [5+ihr,c].

(11.4.3) Tracel QI G) := Ylez/ir oz, [Ick TG = 2i=l Wra

Using (11.4.2), we see that the -action induces a relation among traces:
(11.4.4) o (Trace[e] Q(I‘,G)) = ﬁTrace[eH] O, G)

for all [e] € Z/hr,gZ. In view of (11.3.3), this, in particular, implies
(11.4.5) 1 - (rr.g )" (Trace[e} Q(P,G)) = 0.

After the results of 11.3 and 11.4, the next theorem is now straightforward.
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Theorem. Let (I';G) be the pair consisting of a group and its finite
generator system with G = G™' and 1 ¢ G. Suppose i) QT,G) is finite,
and ii) Pr g € C{t},. 5. Then, for any opposite sequence all € Q(Pr.q), the
following equality holds.

hr ¢ TracelQp ¢ — (Z LFG(@) AP

m*le\/(épr,c) 1—xz6 Pr g

(5)TracelQr ¢
(11.4.6) Pro

— el (p— . (t)
= mra ZzGV(APIEog)A[ G = on

t=x

where we put dpp. (o) = (1 — ’I‘hF*GO'hF’G)/A%;G(O') (c.f- (11.3.6)).

Proof. Due to Lemma at the beginning of this paragraph, Q(T',G) is
finite rationally accumulating of a minimal period iLF’G. Let us, first, express
the residue elements by a sum of traces of limit elements. For the purpose,
consider the decomposition of unity:

%) ProM®) _ oy~ T P (t) T P o M(t)
Prc(t) = 4[fl€eZ/hr,cZ  Prc(t) T Pr g (t)

where T/ = Tyi5y (11.3.13) is the action of the rational set U of the stan-
dard subdivision for Q(I',G) so that > 775 .z Tl = 1. Let z be a root
of Atpofc(t) = 0, and consider the evaluation of both sides of *) at ¢t = z.
The LHS gives, by definition, the residue element at xz. By a slight gen-
eralization of the formula (11.3.17), the first factor in the RHS is given by
1/Am (z7Y=1/(mr c-AVl(27Y) (note that A1 (z71)5£0 since 6p. (1) #£0),

where [f]:=[f] mod hr ¢ and mp ¢="hr g/hr,g. The second factor in RHS is
> om=o M(Ff+mflp,c; )t/ +mhr.c _ Xm=o M(Ff+m71r,c)tm
Z;.::O #Ff+mﬁr,gtf+mhr’c t=x 270710:0 #Ff+m}~7,p,(;tm f=rir.G

where, in the RHS, #:=th1.G is the new variable and r1.¢ = 2.6 is the common
singular point of the two power series (the numerator and the denominator) in
t at the crossing of the positive real axis and the circle of the convergent radius
(c.f. 10.6 Lemma i)). Then, since the coefficients of the series are non-negative,
this proportion of the residue value is equal to the limit of the proportion of

M@z, 5
the coefficients of the series (c.f. (10.6.4)) lim® Cieming)

which is nothing

- #Ffﬁﬁnrhnc
but the limit element w{ﬂG (11.4.1). Put f: f+ihr g for 0 < f < hrg and
0<i<mr,. Then the RHS turns into

1 1 mr,g—1 [f+ihr gl
mra Z[ﬂeZ/hF,GZ A (1) Zi:O el
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where the second sum in the RHS gives the trace Tracelf (I‘ G). That is:

Pr.g M(1) _
(1147) ;%‘Gic(t) o - mF < Z[f]EZ/hr oZ mTrace[f]Q(F G)

For a fixed [e] € Z/hr ¢Z, we multiply Al®/(z=1) to both sides of (11.4.7), and
sum over the index x running over the set V(AZ’FP_G) of all roots of AifrpG (t)=0,
whose LHS is equal to the RHS of (11.4.6). Using (11.3.17), one observes that

% is equal to the LHS of (11.3.16). Replacing the summation index
“If1€Z/hr cZ’ in (11.4.7) by “le+i] for i =0, -, hp,g—1" for the fixed [e].
Using the first line of RHS of (11.3.16) and ith repeated applications of (11.4.4),

the sum in RHS turns out to

h 1 Alel +i
7mi,c ZweV(Atop ) Z neT AleTi (z=1) e+1((m 2)Trace[ ] QF,G

1 hr,c—1 x i [e+7] ~ le]
~ mr,c ZxEV(A””’ )Z a[18+i]a[1€+171]_“a[15+1] Hj:l(a’ ) Trace!™ Qr G

=1 hro=1 i le]
*mzxev(&‘w )Z z'c® Trace QDG,

Here, we note that the sum /7% ' 245 is expressed as (T%;U)F and that
z € V(AY Y ) is equivalent to x 1 e V(AR ) due to the duality (11.3.14).

We note further that an identity:
1-(res)'C _
foleV(l—(rrycs)thG) 1—xs - G

holds (in the polynomial ring of s). Therefore, recalling (11.3.6)
Opp.(s) - AP (s) =1~ (rp,gs)'me
we calculate further the sum as follows.

—(rp,g&)"T.G .
= miyg (E ~lev (A% )1(11*_%;) Trace!® Qra

Pr.a

5prp 6(8) Ao -
~ mrc (hr G- ZdRQ(F G) Zaflev(épnc) %APZAG(U)) Tracel Qr.g.

This gives LHS of (11.4.6), and hence Theorem is proven. O

Remark. 1. The second term of the LHS of (11.4.6) belongs to the kernel of
7, since one has W(AOP!:,YG(&)TI'&CQ[C]QF,G) = mngA%;YG(U)a[e] = 0. Therefore,
we ask whether

Agﬂ(&) TI‘aCG[e]Q]_",G =07
This is equivalent to the statement that the module spanned by the traces
Tracel'Qr ¢ is isomorphic to RQ(Pp ).

2. One can directly calculate the following formula:

ProM@®)) _
(11.4.8) ﬁ(;fic(t)) = L
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Specializing ¢ to a root x of Ap(t)=0 in the formula gives the Cauchy kernel
L Therefore, the 7 image of (11.4.6) turns out to be the formula (11.3.9).

l1—xs"’
3. If (I, G) is a group of polynomial growth, then Ap . (t) = (1—¢)"*
(where {=rank(I")>0) is never reduced. However, due to (10.6.4), one sees di-

. Pr.gM
rectly the conclusion of Theorem: %(t()t) T 2 Se(N,G)o ##f()s) (c.f. (11.1.8)).

4. Due to D. Epstein [E3], we know that there is a wide class of groups
satisfying Assumption ii). See the remarks and problems in the next paragraph.
Concluding Remarks and Problems.

We are only at the beginning of the study of limit elements for discrete
groups. Here are some problems and conjectures for further study.

1. A formula similar to (11.4.6) should be true without assuming the finiteness
of Q(T", G), where the formula should be rewritten as an integral formula.

Problem 1.1 Find measures v, on 7~ !(a) and p, on the set Sing(Pr )
of singularities of the series on the circle of radius r so that the following holds:

fﬂ-—l(a) wr,qdv, :/ Prng(t) dy
Jr1(ay Wa Sing(Pr.o) Pr.a(t) li=a "

2. Including Machl’s example, there are number of examples where Q(Pr ¢) is

(11.4.9)

finite. However, we do not know of an example such that Q(T", G) is finite except
for the simple accumulating case (e.g. (11.1.9)). We conjecture the following.

Conjecture 2.1 For any hyperbolic group I" with any finite generator
system G, the limit set Q(I', G) is finite accumulating.

Evidence in favor of the conjecture is provided by a fact due to Coornaert
[Co]: if T is hyperbolic, then there exists positive real constants cy,co such that
clri’é <#I', < 027“1?”&. This implies the Fact. in the proof of the Assertion in
(11.2) which is a consequence of the finite rational accumulation of Q(Pr ).

3. The following groups are not hyperbolic. However, because of their geomet-
ric significance, it is quite interesting to ask the following problems.

Problem 3.1 Are the limit sets Q(I", G) for the following pair of a group
and a system of generators finite?

1. Artin groups of finite type with the generator systems given in [BS|[Sa4],

2. The fundamental groups of the complement of free divisors with respect
to the generator system defining positive monoid structure [IS].

In these examples, the generator system G determines also the positive
monoid I'y such that I' = US2 (A™"I"y, where A is the fundamental element.
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Then, using the I'y ,:=I'y NI, for n€Z>(, we define

(11.4.10) Ty, G) : = Lo N {HE2) |0 € 20},

Problem 3.2 Clarify the relationship between Q(T', G) and Q(I';, G) (c.f.
Corner transfer matrices in case =72, [Ba] Chap.13.).

4. Tt is known ([E3]) that, for a wide class of groups, the assumption ii)
in the Theorem is satisfied in a stronger (global) form in the following sense.
Namely, under suitable conditions on (I', G), the Poincare series Pr () and the
growth series Pr g M(t) are rational functions, where the denominator polyno-
mial Ap ¢(¢) for the rational function Pr ¢(t) is also the universal denominator
for the rational functions Pr g M((t).

We remark that denominator polynomial Ap. . (t) for the Poincare series
Pr g(t) as an element of C{t}, ., which we have studied in the present paper,
is the factor of Ap ¢(t) consisting of the roots whose absolute value is minimal
(= rr,g). Therefore, in order to get a global understanding of limit elements
for the group (I, G), we propose to study the higher residues of Pr g M(t) at
any root of Ap (), which are defined and shown to belong to L¢ « as follows.

Definition. Let « € C be a root of Ar ¢(t)=0 of the multiplicity d, > 0.
Then, for 0<i<d,, we define the higher residue of depth i of the limit function
Pr gM(t) at z by the formula

(11.4.11) (dii%)

t=x
Assertion. The higher residues belong to the space Lc o at infinity.

Proof. By the definition (8.4.1), K(Plrycié\?t(” Yoo g M(T )Prti:;(t)’

coefficients Prti;b(t) are rational functions divisible by Ar ¢ and have zeros of

whose

order d, at the zero loci z of Ar . Since K is continuous with respect to
4 L)) ) =0 for

dtt Pr* a(t)
Using them, let us introduce the global module of limit elements for (T, G):

the classical topology, this implies the vanishing K ((
0<i<d,. O

(11412) ‘C(Fa G) = @0<r<oo @A(tz)::abrg?:t ?i‘:r@0§i<dx(c . (dil Pl;:fiéw(t()t))

)
t=x

which is doubly filtered: one filtration is given by the absolute values |z| of the
roots of Ar (t)=0, and the other by the order i of the depth of residues at z.
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Theorems in §11 state relationships between the 7"-¢-invariant part of
the module RQ(T, G) with the filter at |z| = inf{r} and the first residues part
of the module £(T', G). We ask its generalization.

Problem 4.1 What is the relationship between the modules RQ(T, G),
L(T,G) and L¢ oo(I', G)? Find generalization of Theorems in §11 and, in par-
ticular, of (11.3.14), (11.3.15) and (11.4.6) in this context.

5. A particular interest for the space of the residues at ¢ = 1 is caused by the
following example.

Example.([Sa2]) Consider the infinite cyclic group (Z, £1). Then, Py 1=
(11%32 and Py M = > o(Ily) (ﬁ—%—&—Rm) where I,,, is a linear

graph of m-vertices and R, is a polynomial in ¢t. Then, % =3 o¢(Im)
L
Py M _
and (%7?,;; ) ‘t:l =Y 2=ty(1,,) span the space Lg oo (Z, £1).

5.1 What is the meaning of the submodule £(T', G)1 = So<icd, R(C‘f; %)
at t=17

t=1
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