
RIMS Kôkyûroku Bessatsu 4x

(2007), 000–000

Half of the Toulouse Project Part 5 is completed

— Structure theorem for instanton-type

solutions of (PJ)m (J = I, II or IV) near

a simple P -turning point of the first kind

By

Takahiro Kawai
∗ and Yoshitsugu Takei

∗∗

§ 0. Introduction

The purpose of this paper is to announce

Half of Part 5 of the Toulouse Project ([KT2]) is now completed,

that is,

near a simple P -turning point of the first kind, each instanton-type solution

of (PJ)m (J = I, II or IV;m = 1, 2, 3 · · · ) can be reduced to an appropriate

solution of (PI), the classical Painlevé-I equation with a large parameter η,

namely,

(0.1)
d2λI

dt̃2
= η2(6λ2

I + t̃).

Here the expression “Half of Part 5” is used to emphasize that only P -turning points

of the first kind are studied in this paper: probably we should have divided Part 5 into

two parts, like Part 2 and Part 3, which are concerned with 0-parameter solutions.

Let us first recall briefly the current (= as of January, 2007) status of the Toulouse

Project. Here and in what follows, we use the same notions and notations as in [KT3],

with the exception that the suffix II-2 is now denoted simply by II. In particular, a

P -turning point is, by definition, a turning point of a Painlevé equation. This notation

was introduced in [KT3] to avoid the possible confusion of a turning point of a Painlevé

equation (i.e., in t-space) and that of the underlying linear equation (i.e., in (x, t)-space).
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[1] Part 1: Stokes geometry of higher order Painlevé equations.

See [KKoNT1], [KKoNT2] and [N] for (PJ )m (J = I or II). See also [Sa1], [Sa2],

[AKSaST] and [H] for the Noumi-Yamada system.

[2] Part 2: Reduction of a 0-parameter solution of (PJ)m (J = I, II or IV) near

its turning point of the first kind.

See [KT3] for J = I or II and [KT4] for J = IV.

[3] Part 3: Study of the structure of a 0-parameter solution of (PJ)m (J =

I, II or IV) near its turning point of the second kind.

No Stokes phenomena are observed for 0-parameter solutions there. (Unpublished.)

[4] Part 4: Construction of (2m)-parameter solutions of (PJ)m (J = I, II or IV).

See [T2] for J = I. As the reasoning there relies only on the existence of the

Hamiltonian structure for (PI)m, the recent result of Koike ([Ko]) has enabled us to

claim that the construction of such solutions can be done also for J = II or IV. The

(2m)-parameter solution constructed in [T2] contains, in parallel with the case of the

traditional Painlevé equations ([AKT], [KT1]), terms of the form

(0.2) αk exp(η

∫ t

νkdt)

and hence it is called an instanton-type solution ([T2], [T3]).

Now we announce the result that generalizes the reduction theorem for a 0-parameter

solution (Part 2) to that for an instanton-type solution near a P -turning point of the

first kind (Main Theorem below). As (PII)1 (resp., (PIV)1) is the traditional (i.e., sec-

ond order) Painlevé-II (resp., Painlevé-IV) equation, and as every P -turning point of

traditional Painlevé equations is of the first kind, our result may also be regarded as a

partial generalization of [KT1]. (“A partial generalization” just because it covers only

the cases J = II or IV.)

To clarify and simplify the presentation we consider the case J = I. Let (PI)m (m =

1, 2, 3 · · · ) denote the following system of non-linear differential equations with a large

parameter η:

(0.3)























duj

dt
= 2ηvj

dvj

dt
= 2η(uj+1 + u1uj + wj) (j = 1, 2, . . . ,m)

vm+1 = 0,
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where wj is a polynomial of ul and vl (1 ≤ l ≤ j) that is determined by the following

recursive relation:

wj =
1

2
(

j
∑

k=1

ukuj+1−k) +

j−1
∑

k=1

ukwj−k(0.4)

− 1

2
(

j−1
∑

k=1

vkvj−k) + cj + δjmt (j = 1, 2, . . . ,m).

Here cj is a constant and δjm stands for Kronecker’s delta. Then we know ([T2]) the

existence of the following instanton-type formal solution of (PI)m:

(0.5)















uj(t, η;α) = uj,0(t) + η−1/2
∑

1≤k≤2m

αk exp(η
∫ t
νkdt)ujk,1/2(t) + · · · ,

vj(t, η;α) = vj,0(t) + η−1/2
∑

1≤k≤2m

αk exp(η
∫ t
νkdt)vjk,1/2(t) + · · · .

Here α = (α1, . . . , α2m) is a set of free parameters, and νk stands for a solution of the

characteristic equation of the Fréchet derivative of (PI)m at a 0-parameter solution. We

know ([KKoNT1]) that we can choose νj so that

(0.6) νl + νl+m = 0

holds for l = 1, . . . ,m. In parallel with the reasoning of [KT3] we define another

set {bj(t, η;α)} of instanton-type solutions by considering the solutions {bj}mj=1 of the

following equation:

(0.7) xm − u1(t, η;α)xm−1 − · · · − um(t, η, α) = 0.

The function bj is actually the restriction of a solution of some Garnier system, a multi-

dimensional generalization of the Painlevé equation, to an appropriate complex line.

This fact is essentially well-known for J = I, and the recent result ([Ko]) of Koike

asserts that a similar fact is observed also for J = II, IV. We will make full use of this

fact in our proof to be expounded in our full paper ([KT5]).

Main Theorem. Let τ be a simple P -turning point of the first kind of (PI)m

that does not coincide with any other P -turning point of (PI)m, and let t∗ be a point

sufficiently close to τ that lies in a P -Stokes curve emanating from τ . Then there exist

an index j0, formal series

x̃(x, t, η) =
∑

l≥0

η−l/2x̃l/2(x, t, η)(0.8)
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and

t̃(x, t, η) =
∑

l≥0

η−l/2 t̃l/2(x, t, η),(0.9)

and a 2-parameter solution λI(t̃, η; β) (β = (β1, β2)) of (0.1) for which the following

relations are satisfied on a neighborhood of t∗ for an instanton-type solution bj0
(t, η;α)

with αj0,0αj0+m,0 different from 0 where αj0
and αj0+m are coefficients of the instanton

terms directly related to the P -turning point τ in the sense specified in the course of our

discussion:

(0.10) x̃(bj0
(t, η;α), t, η) = λI(t̃(t, η), η; β),

(0.11) αj0,0 = 2cβ1,0 and αj0+m,0 = 2c−1β2,0 hold for a constant c that depends

only on the product αj0,0αj0+m,0,

(0.12) x̃1/2 and t̃1/2 vanish identically,

(0.13) the η-dependence of x̃l/2 and t̃l/2 is only through instanton terms that they

contain, and x̃0, x̃1, t̃0 and t̃1 are free from instanton terms.

In §1 we describe in outline how the proof of Main Theorem goes. In §2 we give

a proof of its core part, namely Theorem 1.3 which shows that the principal part (i.e.,

the top order part) of the Fréchet derivative of (PJ )m splits into a direct sum of 2× 2

systems at the point in question. The final section gives a heuristic description of the

relevance of our Main Theorem to the connection formula for solutions of (PJ)m; our

argument is only heuristic, as we have not yet found an appropriate method to endow

instanton-type formal solutions with their analytic meaning.

The details of this article shall be given in our forthcoming paper ([KT5]).

§ 1. Basic ingredients of the proof of Main Theorem

The flow diagram of our reasoning is basically the same as the reasoning of [KT1] for

proving the reduction theorem for 2-parameter solutions of the traditional (i.e., second

order) Painlevé equations. As the underlying Lax pair for (PJ)m (J = I, II or IV) is

given in a matrix form, we first rewrite it as a system of scalar equations. This part

is done by [KT3] for J = I, II and by [KT4] for J = IV. The system consists of

a Schrödinger equation (SLJ)m and its deformation equation (DJ)m. For example,

(SLI)m is the following second order equation with a large parameter η:

(1.1)
∂2ψ

∂x2
= η2Q(I,m)ψ,
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where the potential Q(I,m) is expressed as in (1.2) below in terms of polynomials

U(x), V (x) and W (x) given below:

Q(I,m) =
1

4
(2xm+1 − xU + 2W )U +

1

4
V 2(1.2)

− η−1UxV

2U
+
η−1Vx

2
+

3η−2U2
x

4U2
− η−2Uxx

2U
,

with

U(x) = xm −
m
∑

j=1

ujx
m−j ,(1.3)

V (x) =

m
∑

j=1

vjx
m−j ,(1.4)

W (x) =
m
∑

j=0

wjx
m−j ,(1.5)

where (uj, vj) (1 ≤ j ≤ m) is a solution of (PI)m and wj (1 ≤ j ≤ m) is a polynomial

of (ul, vl) (1 ≤ l ≤ j) that is given by (0.4). Note that

(1.6) U(bj) = 0 (1 ≤ j ≤ m)

holds by the definition of {bj}. The deformation equation (DI)m of (SLI)m is also

described in terms of U as follows:

∂ψ

∂t
= a(I,m)

∂ψ

∂x
− 1

2

∂aI,m

∂x
ψ,(1.7)

where

a(I,m) =
2

U(x)
.(1.8)

Now, a result of [KKoNT1] asserts that a simple turning point and a double turning

point coalesce at t = τ in the Stokes geometry of (SLJ)m. The latter one is given by

x = bj0,0(t) for some j0. This index j0 is the one used in the statement of Main Theorem.

Then we can prove the following results in the setting of Main Theorem:

Theorem 1.1. Let V be a sufficiently small neighborhood of t∗. Then there exist

a neighborhood U of x = bj0,0(t), a formal series

(1.9) z(x, t, η) = z0(x, t, η) + η−1/2z1/2(x, t, η) + η−1z1(x, t, η) + · · ·

whose coefficients zj/2(x, t, η) are holomorphic on U × V , and formal series

E(j0)(t, η) = E
(j0)
0 (t, η) + E

(j0)
1/2 (t, η)η−1/2 +E

(j0)
1 (t, η)η−1 + · · ·(1.10)
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and

ρ(j0)(t, η) = ρ
(j0)
0 (t, η) + ρ

(j0)
1/2 (t, η)η−1/2 + ρ

(j0)
1 (t, η)η−1 + · · ·(1.11)

whose coefficients are holomorphic on V , so that the following five conditions are satis-

fied:

z0 is free from η,(1.12)

∂z0
∂x

never vanishes on U × V,(1.13)

z0(bj0,0(t), t) = 0,(1.14)

z1/2 identically vanishes,(1.15)

Q(J,m) (x, t, η) =

(

∂z

∂x

)2
[

4z(x, t, η)2 + η−1E(j0)(t, η)(1.16)

+
η−3/2ρ(j0)(t, η)

z(x, t, η)− z(bj0
(t, η), t, η)

+
3η−2

4(z(x, t, η)− z(bj0
(t, η), t, η))2

]

− 1

2
η−2{z(x, t, η);x}

holds on U × V . Here {z;x} denotes the Schwarzian derivative

∂3z/∂x3

∂z/∂x
− 3

2

(

∂2z/∂x2

∂z/∂x

)2

.

Furthermore the η-dependence of zj/2 (x, t, η), E
(j0)
j/2 (t, η) and ρ

(j0)
j/2 (t, η) is through the

instanton terms that bj0
(t, η) contains.

The series E(j0)(t, η) and ρ(j0)(t, η) are explicitly given in terms of {bj}mj=1 and

z(x, t, η) in (1.9):

Theorem 1.2.

(i)

ρ(j0)(t, η) = η−1/2

(

∂z

∂x
(bj0

(t, η), t, η)

)−1

×
[

1

2

∂

∂t
(bj0

(t, η))

(

1

(x− bj0
(t, η))a(J,m)

)

∣

∣

∣

∣

∣

x=bj0
(t,η)

+

(

1

2

(

∂
∂x

(a(J,m))

a(J,m)
+

1

(x− bj0
(t, η))

)

+
3

4

(

∂2z/∂x2

∂z/∂x

)

)
∣

∣

∣

∣

∣

x=bj0
(t,η)

]

.

(ii) E(j0)(t, η) = (ρ(j0))2 − 4(σ(j0))2 holds for

(1.17) σ(j0) = η1/2z(bj0
(t, η), t, η).
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The proof of Theorems 1.1 and 1.2 can be given in a similar way to the proof of

Theorem 3.1 of [AKT]. As is well-known, Theorem 1.1 entails that a WKB solution

ψ(x, t, η) of (SLJ)m is expressed as

(1.18) ψ(x, t, η) =

(

∂z

∂x

)−1/2

ϕ(z(x, t, η), t, η),

where ϕ is a WKB solution of the following Schrödinger equation:

(1.19)

(

− ∂2

∂z2
+ η2Qcan(z, t, η)

)

ϕ = 0,

where

(1.20) Qcan = 4z2 + η−1E(τ, η) +
η−3/2ρ(t, η)

x− η−1/2σ(t, η)
+

3η−2

4(x− η−1/2σ(t, η))2
.

Once we obtain Theorems 1.1 and 1.2, the next thing to do would be to try to

extend the domain of definition of the series z(x, t, η) so that it may be related to the

simple turning point of (SLJ)m that merges with bj0,0(t) at t = τ .

However, in order to proceed in that way, we have to confirm that the top order

part ρ
(j0)
0 and σ

(j0)
0 of ρ(j0) and σ(j0) contain instanton terms whose phase functions are

related to the P -turning point in question. To be more concrete, we have to confirm

Theorem 1.3 below. Before stating it we make a notational preparation: it follows from

the definition of a P -turning point of the first kind (cf. [KKoNT1], Section 2) that there

exist characteristic roots νj0
and νj0+m of the Fréchet derivative of (PJ)m such that

νj0+m = −νj0
and νj0

(τ) = νj0+m(τ) = 0 hold. (Note that in [KKoNT1] νj0
and νj0+m

are denoted by νj0,+ and νj0,−, respectively.) The functions
∫ t

τ
νj0
dt and

∫ t

τ
νj0+mdt

are phase functions which appear in the instanton-type solutions. As one might readily

surmise, these phase functions are tied up with the P -turning point τ and they are what

we really need.

Theorem 1.3. The top order part ρ
(j0)
0 and σ

(j0)
0 of ρ(j0) and σ(j0) contain only

instanton terms exp(η
∫ t

τ
νj0
dt) and exp(η

∫ t

τ
νj0+mdt).

The proof of Theorem 1.3 will be given in §2, where we will use the explicit form

of (PJ)m. Another proof which makes use of its Hamiltonian form will be given in

our forthcoming paper ([KT5]). We also note that, although ρ
(j0)
j/2 and σ

(j0)
j/2 (j ≥ 1)

may contain instanton terms with phase functions other than
∫ t

τ
νj0
dt and

∫ t

τ
νj0+mdt,

they always contain exp(η
∫ t

τ
νj0
dt) and exp(η

∫ t

τ
νj0+mdt) as their factor. This fact

is important in proving our Main Theorem. Theorem 1.1 fortified with Theorem 1.3

enables us to follow the line of the reasoning in the proof of Theorem 4.1 of [KT1]. A



8 Takahiro Kawai and Yoshitsugu Takei

crucially important step in our reasoning is to establish Theorem 1.4 below. Here, and

in what follows, (Can) designates the following Schrödinger equation

(

− ∂2

∂z2
+ η2

(

4z2 + η−1Ecan +
η−3/2ρcan(s, η)

x− η−1/2σcan(s, η)
(1.21)

+
3η−2

4(x− η−1/2σcan(s, η))2

)

)

ϕ = 0

with

(1.22) Ecan = ρ2
can − 4σ2

can,

and (Dcan) designates the following equation

∂ψ

∂s
=Acan

∂ψ

∂z
− 1

2

∂Acan

∂z
ψ(1.23)

with

Acan =
1

2(z − η−1/2σcan)
.(1.24)

We note that (Can) and (Dcan) are in involution if ρcan and σcan satisfy the following

(simplest!) Hamiltonian system (Hcan):

(1.25)















dρcan

ds
= −4ησcan

dσcan

ds
= −ηρcan.

The function ψ given by (1.18) satisfies (SLJ) if ϕ(z, s, η) satisfies (Can) (with (ρcan, σcan) =

(ρ(j0), σ(j0))), but we cannot expect that ψ also solves (DJ )m even if ϕ solves both (Can)

and (Dcan); in order to attain such a harmonious situation we need to relate t and s

appropriately. The required relation can be obtained by solving

ρcan(s(t;α,A,B; η), η) = ρ(j0)(t, η)(1.26)

and

σcan(s(t;α,A,B; η), η) = σ(j0)(t, η)(1.27)

under the condition

Ecan = E(j0),(1.28)
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where

ρcan = −2A(η) exp(2ηs) + 2B(η) exp(−2ηs),(1.29)

σcan = A(η) exp(2ηs) + B(η) exp(−2ηs),(1.30)

with A(η) =
∑

j≥0

Aj/2η
−j/2 and B(η) =

∑

j≥0

Bj/2η
−j/2. The relation (1.28) entails

(1.31) αj0,0αj0+m,0 = 8A0B0,

but there remains some freedom in the choice of A0 and B0; this arbitrariness is got rid

of in Main Theorem by considering the problem semi-globally (versus locally near the

double turning point x = bj0,0(t) as in Theorem 1.4 below).

Theorem 1.4. Let us consider the situation described in Theorem 1.1. In ad-

dition to the transformation (1.9), we can construct a transformation

(1.32) s(t, η) = s0(t) + η−1s1(t, η) + η−3/2s3/2(t, η) + · · ·

so that for a WKB solution ϕ(z, s, η) of (Can) that satisfies (Dcan)

(1.33) ψ(x, t, η) =

(

∂z

∂x

)−1/2

ϕ(z(x, t, η), s(t, η), η)

satisfies both (SLJ)m and (DJ )m.

§ 2. Proof of Theorem 1.3

In this section we give the proof of Theorem 1.3 for (PI)m. The cases J = II and

J = IV can be proved in a similar manner.

We first write down the top order part ρ
(j0)
0 and σ

(j0)
0 of ρ(j0) and σ

(j0)
0 in terms

of vj,1/2, uj,1/2, uj,0 and bj0,0. Here, and in what follows, vj,k/2 (k = 0, 1, . . .) etc.

designate the coefficient of η−k/2 in the expansion (0.5) of an instanton-type solution

vj(t, η;α) etc. (with instanton terms being considered to be order 0 with respect to η).

Since a(I,m) is given by (1.8) in the case of (PI)m, it follows from Theorem 1.2 (i) that

(2.1) ρ
(j0)
0 =

1

4

(

∂z0
∂x

(bj0,0(t), t)

)−1

∆j0

[

η−1 d

dt
bj0,1/2

]

0

,

where ∆j0
denotes

(2.2) ∆j0
=

∏

1≤j′≤m

j′ 6=j0

(bj0,0(t)− bj′,0(t))
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and [η−1(dbj0,1/2/dt)]0 designates the top order part of η−1(dbj0,1/2/dt). Note that

[η−1(dbj0,1/2/dt)]0 does not vanish as bj0,1/2(t) contains some instanton terms. In view

of (1.14) and (1.17) we have also

(2.3) σ
(j0)
0 =

∂z0
∂x

(bj0,0(t), t)bj0,1/2.

To seek for more explicit description of ρ
(j0)
0 and σ

(j0)
0 we use the following lemmas.

Lemma 2.1.

(2.4) bj,1/2 = (∆j)
−1(bm−1

j,0 u1,1/2 + · · ·+ um,1/2).

Proof. By the definition of bk

(2.5) xm − u1(t, η;α)xm−1 − · · · − um(t, η;α) =
∏

1≤k≤m

(x− bk(t, η;α))

holds. Taking the order −1/2 part of both sides of (2.5), we obtain

(2.6) u1,1/2x
m−1 + · · ·+ um,1/2 =

∏

1≤k≤m

bk,1/2

∏

1≤k′≤m

k′ 6=k

(x− bk′,0).

Evaluation of (2.6) at x = bj0,0 immediately implies (2.4).

Lemma 2.2.

(2.7)
∂z0
∂x

(bj0,0, t) =
1

2
(bj0,0 + 2u1,0)

1/4(∆j0
)1/2.

Proof. It follows from (1.16) that z0(x, t) satisfies

(2.8) Q(I,m),0 = 4

(

∂z0
∂x

)2

z2
0 .

As is observed in [KT3, (1.1.34)], Q(I,m),0 is factorized as

(2.9) Q(I,m),0 =
1

4
(x+ 2u1,0)U

2
0 =

1

4
(x+ 2u1,0)

∏

1≤k≤m

(x− bk,0)
2.

Hence, considering the Taylor expansion of both sides of (2.8) at x = bj0,0 and taking

(1.14) into account, we obtain

(2.10)
1

4
(bj0,0 + 2u1,0)(∆j0

)2 = 4

(

∂z0
∂x

(bj0,0, t)

)4

.

Relation (2.7) is an immediate consequence of (2.10).
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Lemma 2.3.

(2.11)

[

η−1 d

dt
uj,1/2

]

0

= 2vj,1/2.

This lemma readily follows from the first equation of (PI)m (see (0.3)). In particular,

combining Lemma 2.1 and Lemma 2.3, we obtain

(2.12)

[

η−1 d

dt
bj0,1/2

]

0

= 2(∆j0
)−1(bm−1

j0,0 v1,1/2 + · · ·+ vm,1/2).

Using these lemmas together with (2.12), we can deduce the following explicit

description of ρ
(j0)
0 and σ

(j0)
0 from (2.1) and (2.3):

ρ
(j0)
0 = (bj0,0 + 2u1,0)

−1/4(∆j0
)−1/2(bm−1

j0,0 v1,1/2 + · · ·+ vm,1/2),(2.13)

σ
(j0)
0 =

1

2
(bj0,0 + 2u1,0)

1/4(∆j0
)−1/2(bm−1

j0,0 u1,1/2 + · · ·+ um,1/2).(2.14)

Making use of the expressions (2.13) and (2.14), we now compute [η−1(d/dt)ρ
(j0)
0 ]0

and [η−1(d/dt)σ
(j0)
0 ]0, that is, the differentiation with respect to t of ρ

(j0)
0 and σ

(j0)
0

applied only to their instanton terms.

It follows from the second equation of (PI)m that

(2.15)

[

η−1 d

dt
vj,1/2

]

0

= 2(uj+1,1/2 + u1,0uj,1/2 + uj,0u1,1/2 + wj,1/2).

Here, as is verified in [KKoNT1, Lemma 2.1.1], wj,1/2 = u1,0uj,1/2 holds. Hence we

have

(2.16)

[

η−1 d

dt
vj,1/2

]

0

= 2(uj+1,1/2 + 2u1,0uj,1/2 + uj,0u1,1/2).

Using (2.13) and (2.16), we can compute [η−1(d/dt)ρ
(j0)
0 ]0 as follows:

[

η−1 d

dt
ρ
(j0)
0

]

0

(2.17)

= (bj0,0 + 2u1,0)
−1/4(∆j0

)−1/2
∑

1≤k≤m

bm−k
j0,0

[

η−1 d

dt
vk,1/2

]

0

= 2(bj0,0 + 2u1,0)
−1/4(∆j0

)−1/2

×
∑

1≤k≤m

bm−k
j0,0 (uk+1,1/2 + 2u1,0uk,1/2 + uk,0u1,1/2)

= 2(bj0,0 + 2u1,0)
−1/4(∆j0

)−1/2
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×







2u1,0

∑

1≤k≤m

bm−k
j0,0 uk,1/2 + bj0,0

∑

2≤k≤m

bm−k
j0,0 uk,1/2

+u1,1/2

∑

1≤k≤m

bm−k
j0,0 uk,1/2







= 2(bj0,0 + 2u1,0)
3/4(∆j0

)−1/2
∑

1≤k≤m

bm−k
j0,0 uk,1/2.

Here we have used the relation

(2.18) bmj0,0 =
∑

1≤k≤m

bm−k
j0,0 uk,1/2

to obtain the last equality of (2.17). On the other hand, Lemma 2.3 immediately entails

[

η−1 d

dt
σ

(j0)
0

]

0

(2.19)

=
1

2
(bj0,0 + 2u1,0)

1/4(∆j0
)−1/2

∑

1≤k≤m

bm−k
j0,0

[

η−1 d

dt
uk,1/2

]

0

= (bj0,0 + 2u1,0)
1/4(∆j0

)−1/2
∑

1≤k≤m

bm−k
j0,0 vk,1/2.

We thus obtain
[

η−1 d

dt
ρ
(j0)
0

]

0

= 4(bj0,0 + 2u1,0)
1/2σ

(j0)
0 ,(2.20)

[

η−1 d

dt
σ

(j0)
0

]

0

= (bj0,0 + 2u1,0)
1/2ρ

(j0)
0 .(2.21)

Recalling the relations νj0
= 2(bj0,0 + 2u1,0)

1/2 and νj0+m = −2(bj0,0 + 2u1,0)
1/2,

which were verified in [KKoNT1, Prop. 2.1.3], we conclude that ρ
(j0)
0 and σ

(j0)
0 contain

only instanton terms exp(η
∫ t

τ
νj0
dt) and exp(η

∫ t

τ
νj0+mdt) thanks to (2.20) and (2.21).

This completes the proof of Theorem 1.3.

§ 3. The relation between structure theorem for

instanton-type solutions and the connection problem

for higher order Painlevé transcendents

Our Main Theorem asserts that the instanton-type solution bj0
(t, η;α) of (PJ)m is

related to λI(t̃, η; β) by (0.10) near a point t∗ on a P -Stokes curve of (PJ)m. In this

section we discuss its implication for the analytic structure of solutions of (PJ )m, which
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we call “higher order Painlevé transcendents”. The vital clue to such a study is the fact

that several transformations of underlying Schrödinger equations simultaneously exist

in addition to the relation (0.10).

To begin with, let us summarize the geometric situation of our study. In t-plane we

find Figure 3.1, where t(i) (resp., t(ii)) is a point close to t∗ satisfying Imφj0
(t(i)) > 0

(resp., Imφj0
(t(ii)) < 0) with

(3.1) φj0
(t) =

∫ t

τ

νj0
dt.

t

.
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τ

t∗

t(i)

t(ii)

Im φj0(t) = 0

Figure 3.1: P -Stokes curve in question emanating from τ .

As is now well-known ([KKoNT1]), the Stokes geometry of (SLJ)m is degenerate for

t = t∗; see Figure 3.2. This degeneration, i.e., the appearance of two turning points

x
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Figure 3.2: Stokes geometry of (SLJ )m for t = t∗, where bj0,0(t∗)

(resp., a(t∗)) is a double (resp., simple) turning point.

connected by a Stokes segment, is resolved if the parameter t is away from the P -Stokes

curve; the configurations of Stokes curves of (SLJ)m for t = t(i) and t = t(ii) are

respectively shown in Figure 3.3 (i) and (ii). We observe that a topological change

of the configuration of Stokes curves is observed only in a neighborhood of the Stokes

segment connecting a(t∗) and bj0,0(t∗): the double turning point bl,0(t) (l 6= j0) is not

accompanied by such a topological change at t = t(i) or t(ii). Note that Theorem 1.1 is

applicable to each bl,0(t), regardless of such topological changes. This fact will play an

important role in our later discussions.
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Figure 3.3: Stokes geometry of (SLJ)m for (i) t = t(i), and (ii) t = t(ii).

Now let us explain the following important implication of our Main Theorem:

(αj0,0, αj0+m,0) inherits the relation that (β1, β2) satisfies. In fact, the series x̃(x, t, η)

used in (0.10) transforms (SLJ)m into (SLI) where the Stokes geometry of (SLI) at

t̃ = t̃(t(i)) and t̃ = t̃(t(ii)) are respectively given in Figure 3.4 (i) and (ii). The Stokes

(i)

-

�

Region I

Region II

Region III

MI,II(i)

MII,III(i)

λ0(t̃(t(i)))

−2λ0(t̃(t(i)))

(ii)

-

�

Region I

Region II

Region III

MI,II(ii)

MII,III(ii)

λ0(t̃(t(ii)))

−2λ0(t̃(t(ii)))

Figure 3.4: Stokes geometry of (SLI) at (i) t̃ = t̃(i), and (ii) t̃ = t̃(ii).

multipliers MI,II(j) and MII,III(j) (j = i, ii) corresponding respectively to the transfer

from Region I to Region II and to that from Region II to Region III for appropriately

normalized WKB solutions of (SLI) can be computed in terms of ρI and σI (cf. [T3, §4
and §5]). Furthermore they are preserved by the deformation, that is, we have

(3.2) MI,II(i) = MI,II(ii), MII,III(i) = MII,III(ii),

though they have different expressions. Then (3.2) gives relations between λI(t̃, η; β)

near t̃ = t̃(t(i)) and its analytic continuation to t̃ = t̃(t(ii)). The latter one may have a

different instanton-type expansion, i.e., λI(t̃, η; β̃). The relation (3.2) thus describes the

relation between β and β̃. Since x̃(x, t, η) defines an invertible transformation between

(SLJ)m and (SLI), the relation between β and β̃ is transferred through (0.11) to the top

order parts (αj0,0, αj0+m,0) and (α̃j0,0, α̃j0+m,0), i.e., the top order parts of the coeffi-

cients of exp(ηφj0
) and exp(ηφj0+m) in the instanton-type expansion of the higher order
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Painlevé transcendents (uj(t, η;α), vj(t, η;α)) near t = t(i) and its analytic continuation

(uj(t, η; α̃), vj(t, η; α̃)) to t = t(ii). Note that we have restricted our consideration to

the top order parts in view of Theorem 1.3. It is also true that the explicit calculation

of the connection formula for (Can) is available only for the top order parts.

On the other hand, as was already mentioned, (SLJ)m can be transformed into

(Can) near each bl,0(t) (l 6= j0). To discuss the Stokes phenomena for solutions of (Can)

we prepare Figure 3.5. It is readily found from Figure 3.5 that the Stokes geometry of

(i)

-

Region I Region II

0

(ii)

-

Region I Region II

0

Figure 3.5: Stokes geometry of (Can) at (i) s = s(t(i)), and (ii) s = s(t(ii)).

(Can) is the same for s = s(t(i)) and s = s(t(ii)). Since (Can) can be isomonodromically

deformed by (Dcan), the Stokes multipliers for appropriately normalized WKB solutions

of (Can) corresponding to the transfer, say from Region I to Region II remain invariant

as we move from t(i) to t(ii). As the Stokes multipliers are computed in terms of ρcan

and σcan (cf. [T1]), the invariance of the Stokes multipliers entails the invariance of the

coefficients A(η) and B(η) of ρcan and σcan (cf. (1.29) and (1.30)) and, in particular, the

invariance of their top terms A0 and B0. Now Theorem 1.3 together with the reasoning

in [KT1, §3] again implies, with appropriate labelling of αj’s, that

(3.3) αl,0 = 2
√

2clA0 and αl+m,0 = 2
√

2c−1
l B0

hold with some constant cl in a neighborhood of t = t∗. Hence the top order part

(αl,0, αl+m,0) of (αl, αl+m) for l 6= j0 in the instanton-type expansion of solutions of

(PJ)m remains invariant as t moves from t(i) to t(ii).

Summing up, we can conclude that the relation of (αj0,0, αj0+m,0) inherited from

that of (β1, β2) together with the invariance of (αl,0, αl+m,0) (l 6= j0) provides the

connection formula for instanton-type solutions of (PJ)m near t = t∗. Although the

discussion in this section is only heuristic, we hope it will give the reader some insight

into the problem how our Main Theorem is related to the connection problem for the

higher order Painlevé transcendents.

Remark 3.1. It is better in the context of this article to replace ψ̃± in [T1, (2.31)]

by exp(±ηt̃)ψ̃± so that they satisfy (Dcan) (cf. [T1, p.285, l.2]).
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Remark 3.2. We take this opportunity to correct one typographical error in

[KT0]: In the second formula of (4.110) (p.102) the exponent of e is iπ(EI + 1)/2,

not −iπ(EI + 1)/2.
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