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ABSTRACT. This paper is concerned with M. Kontsevich’s universal characteristic classes
of smooth bundles with fiber a ‘singularly’ framed odd-dimensional homology sphere.
The main object of the present paper is to show that Kontsevich classes for fiber dimen-
sions greater than 3 are highly non-trivial even after beingmade framing independent. We
have two approaches: (i) explicit framing correction with relative characteristic classes of
the vertical tangent bundle, (ii) ‘clasper surgery’ construction and evaluation on them. By
the first approach, an invariant of bundles over spheres thatis an ‘integral lift’ of Milnor’s�0-invariant for exotic spheres is obtained and thus the non-triviality follows. By the
second approach, non-triviality of higher classes and new estimates for unstable rational
higher homotopy groups of the relative diffeomorphism groups are obtained.

1. INTRODUCTION

In [Kon], M. Kontsevich introduced the notion of graph homology and found impor-
tant relationships between the graph homology and the cohomologies of various infinite
dimensional objects such as the moduli space of Riemann surfaces, certain infinite di-
mensional Lie algebras and the classifying space for some smooth bundles and so on. In
this paper, we focus on his work on the cohomology of the classifying space for smooth
bundles. Kontsevich developed the method of configuration space integral to construct
cohomology classes of the classifying space of smooth bundles, that will be denoted byB̂Di�M , with fiber diffeomorphic to a “singularly framed” odd-dimensional homology
sphereM (see [Kon] orx2 for the definition). Here, a singularly framed homology sphere
bundle denotes a homology sphere bundle with its fiber framednon singularly outside a
fixed point1 for which both structures of smooth bundle and fiber tangent bundle are
standardly trivialized near1.

For bundles with 3-dimensional fibers, all the 3-valent Kontsevich classes are 0-forms,
i.e., diffeomorphism invariants of homology 3-spheres. Inthis case, it has been shown by
G. Kuperberg and D. Thurston in [KT] in a purely topological argument that the space of
all the 3-valent real valued Kontsevich classes and a certain space of linear functionals on
3-valent graphs are isomorphic in a graded sense. (See also C. Lescop’s generalization
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[Les2] in a de Rham theoretic approach.) Hence there are verymany linearly independent
Kontsevich classes in 3-dimension.

For fiber dimensions greater than 3, it has not been understood how finely the Kont-

sevich classes explain the cohomology of̂BDi�M . In this paper, we study the non-
triviality of the 3-valent Kontsevich classes after makingthem framing independent, by
two approaches.

The first one is for the simplest class corresponding to the�-graph, that is based on
the same spirit of Kuperberg–Thurston or of S. Morita’s formula for the Casson invari-
ant [Mo]. We will get an invariant̂�2 of unframed higher-dimensional homology sphere
bundles over a sphere by adding to the simplest class some multiple of Hirzebruch’s sig-
nature defect (Theorem 3.2). Moreover, in the case when the fiber is diffeomorphic to
a sphere, the total space of a bundle as a smooth manifold is diffeomorphic to a con-
nected sum of the trivial bundle and an exotic sphere. So Milnor’s �0-invariant for exotic
spheres [Mil2] gives rise to a bundle invariant. By Novikov in [Nov], and after that by
Antonelli-Burghelea-Kahn in [ABK], some higher dimensional sphere-bundles for which
the�0-invariant is non-trivial have been constructed. The�0-invariant, defined by using
the signature of a bounded manifold, is in some sense a higherdimensional analogue of
the Rokhlin invariant. We will show that in some cases�̂2 is an “integral lift” of the�0-invariant and hence conclude that Antonelli–Burghelea–Kahn’s constructions give in-
finite order elements of homotopy groups of the classifying space in that cases, which
is unexplainable by traditional approaches, and that thoseelements are detected by the�̂2-invariant. This is a similar situation as in 3-dimension where the Casson invariant is
an integral lift of the Rokhlin invariant. So it is expected that the�̂2-invariant has similar
features as for the Casson invariant. We also relate the non-triviality problem of �̂2 to an
elementary number theory problem involving numerator of Bernoulli numbers.

Another approach is to construct some framed bundles by using higher-dimensional
“graph clasper-bundle surgery” and to show the non-triviality of the Kontsevich classes
corresponding to graphs with higher number of vertices (Theorem 4.1). Higher dimen-
sional claspers in a single manifold are introduced in [W, W2] as higher dimensional
generalizations of Habiro’s claspers in 3-dimension [Hab]. With the idea of Kuperberg–
Thurston and Cattaneo–Cotta-Ramusino–Longoni [CCL] in mind, we will prove that the
space of all theR-valued Kontsevich classes corresponding to 3-valent graphs with2n-
vertices is linearly isomorphic to the dual of some space of 3-valent graphs with2n-
vertices, by computing the configuration space integrals explicitly as “counting the shapes
of graphs living in a bundle”. Further, when the fiber isD8m�1, each of our construction
of bundles is bordant to a bundle over a sphere and consequently, we obtain new non-
trivial estimates for the rational homotopy groups of the infinite dimensional Lie groupDi�(D8m�1 rel �).

Let us give some historical remarks for homotopy type ofDi�(Dn rel �) from the
viewpoint of the present paper. A famous result of S. Smale says thatDi�(D2 rel �)
is contractible [Sm], which implies that any smooth(D2 rel �)-bundle must be trivial.
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Smale further conjectured that the same is true forDi�(D3 rel �) and A. Hatcher has
proved Smale’s conjecture [Hat]. However, as remarked above, it has been observed after
Milnor’s discovery of exotic spheres that the same is no longer true for largern (see
[Nov, ABK] etc.). Further, the rational homotopy classification has been completed in a
stable range. Namely, by usingK-theory, F. Farrell and W. Hsiang [FH] have obtained
the stable isomorphism

(1.1) �iBDi�(D2k�1 rel �)
 Q �= � Q if i = 4p0 otherwise

for 2k � 1 � i. On the other hand, the estimates obtained in the present paper by using
Kontsevich classes are rather unstable informations that are disjoint from Farrell–Hsiang’s
stable range. However, it might be interesting to ask whether there is some relationship
between̂�2 and higher FR torsion class. Higher FR torsion class has beendeeply studied
by K. Igusa [Igu] and the fact that the generator of�4pBDi�(D2k�1 rel �)
 Q for 2k�1� 4p can be detected by higher FR torsion class has been proved by him.

The present paper is organized as follows. Inx2, some notations and the definition of
the Kontsevich class are given.x3 andx4 correspond to the two approaches above respec-
tively. Some open problems are discussed inx5. In the appendix, proof of a proposition
used inx4 is given.

2. KONTSEVICH’ S UNIVERSAL CHARACTERISTIC CLASSES

We shall review the definition of Kontsevich’s universal characteristic classes.

2.1. Feynman diagrams. First we define the spaceA2n of trivalent graphs. Anorien-
tation on a trivalent graph� is a choice of an ordering of three edges incident to each
trivalent vertex, considered modulo even number of swappings of the orders. We present
the orientation in plane diagrams by assuming that the orderof three edges incident to
each trivalent vertex is always given by anti-clockwise order.

Let G2n be the vector space overQ spanned by all connected trivalent graphs with
oriented2n vertices. LetA2n be the quotient space ofG2n 
 R by the subspace spanned
by the vectors of the following form:

(2.1)

�+ +
We call the vectors in (2.1)IHX andAS relationsrespectively. We will write as[�℄ the
element ofA2n represented by� 
 1 for � 2 G2n. Thedegreeof a trivalent graph is
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defined as the number of vertices. For example,A2 = spanRf[�℄g, where[�℄ is the�-graph.

2.2. Fulton-MacPherson-Kontsevich compactification of the configuration space. LetM be ad-dimensional homology sphere with a fixed point1 2 M . LetCn(M) be the
Fulton-MacPherson-Kontsevich compactification ([FM]) ofthe configuration spaceM�n n (diagonals):
Here we include in the diagonals the set of configurations with some points go infinity.
For example,C2(M) is obtained fromM �M by blowing up first along(1;1) and
then along the disjoint diagonals

(the diagonal)[ ((M n1)� f1g) [ (f1g � (M n1)):
Neighborhood of the face of�C2(M) corresponding to(1;1) 2 M �M in C2(M)
has the same behavior as a neighborhood of the face of�C2(Sd�1) corresponding to(1;1) 2 Sd�1 � Sd�1, and one has the Gauss mappSd�1 from the (1;1)-face
of �C2(Sd�1) to Sd�1, associating unit relative vectors inRd . So the Gauss mappM
from the(1;1)-face of�C2(M) to Sd�1 is defined aspSd�1 . Moreover, the union of
the faces corresponding to the above three diagonals is naturally a trivial Sd�1-bundle,
which is identified with a productSd�1-bundle by the framing. Then one obtains a mappM : �C2(M) n ((1;1)-face) ! Sd�1 given by the composition of the trivializa-
tion and the projection onto theSd�1-factor. Thus we have defined a continuous mappM : �C2(M) ! Sd�1. It is known thatp�M!Sd�1 , where!Sd�1 is theSOd-invariant
unit volume form onSd�1, extends to a closed(d� 1)-form�M onC2(M) and it gener-
atesHd�1(C2(M);R) (see e.g., [Coh, Les]).

2.3. Universal smoothM -bundle. LetM� denoteM with a puncture at1 2M . By a
smooth(M� rel �)-bundle, we mean a smooth bundle with fiberM� such that the bundle
is trivialized on�M�. We will say that a smooth(M� rel �)-bundle has avertical framing
if there is a trivialization of its vertical tangent bundle,namely, tangent bundle along theM�-fibers, that is also standard near�M�.

Let ℄Emb(M n f1g;R1 ) be the space of smooth tangentially framed embeddingsM n f1g ! R1 that are standard near1, i.e., coincide with the natural inclusionRd � R1 near1. HereR1 denotes the Hilbert space of square summable sequences.
We equip℄Emb(M n f1g;R1) with the FD-topology in [Mic]. Then the principalDi�(M� rel �)-bundle�Di�M :℄Emb(M n f1g;R1)!℄Emb(M n f1g;R1 )=Di�(M� rel �)
is a disjoint union of copies of the universal framedDi�(M� rel �)-bundles, each asso-
ciated to a homotopy class of framings onM� (in the caseM� is a punctured homology
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sphere, there are at mostZ�finite-copies)�. We denote the bundle�Di�M simply byÊDi�M ! B̂Di�M . We fix a base point of each component of̂BDi�M and fix a
standard framing on the fiber of it.Di�(M� rel �) acts on℄Emb(M n f1g;R1) from
the right by((�; ~�M ) � g)(x) = (�(gx); ~�M (gx)) for � 2 Emb(M n f1g;R1) and
for ~�M : (M�; �M�) ! (GL+(Rd ); 1) being a difference from the standard framing.B̂Di�M is also considered as the base of the universal smooth framed(M� rel �)-bundle�M :M n ÊDi�M ! B̂Di�M;
associated to�Di�M y. Here the expressionF n ÊDi�M means the Borel constructionF �Di�(M� rel �) ÊDi�M . From general theory of bundles, an isomorphism class of a
smooth framed(M� rel �)-bundleE ! B is determined by the homotopy class of a

classifying mapf : B ! B̂Di�M (see e.g. [Mo2]). We will often identify a classifying
mapf with the induced bundlef��Di�M and in the light of this identification we will

identify each fiber of a bundle with a point of̂BDi�M .
From the result of Appendix A, there exists a closed(d � 1)-form �Di�M on the

universalC2(M)-bundle�C2(M) : C2(M)n ÊDi�M ! B̂Di�M
associated to�M , whose restriction on each fiber represents[�M ℄.
2.4. Kontsevich’s characteristic classes.Let� be a connected trivalent graph of degree2n up to automorphism without a part like( and let!(�) be the3n(d � 1)-form onC2n(M)n ÊDi�M defined by!(�) def= ^e: edge of���e�Di�M
where we fix a bijective correspondence between the set of vertices of� and the set of2n
points in a configuration, and�e : C2n(M)n ÊDi�M ! C2(M)n ÊDi�M
is the projection corresponding to picking of the two endpoints ofe. Note that the choice
of the form�Di�M and therefore of!(�) depends on the framing onM�. Then the
pushforward(�C2n(M))�!(�) along the fiber of�C2n(M) yields ann(d � 3)-form onB̂Di�M . See Appendix B for the definition of the pushforward. Note that the choice
of the orientation onC2n(M)-fiber has ambiguity which is canonically definable by the
orientation of�.�Here we say universal framed bundle in the sense that it is contractible into the space of framings onM
that are standard near1 and that there is a bijection between the set of isomorphism classes of vertically framed(M� rel �)-bundles overB and the homotopy set[B; B̂Di�M ℄.yIn fact, B̂Di�M is a kind of an infinite dimensional smooth manifold for whichthe de Rham theorem
holds. See [Mic, Mic2] for details about it.
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According to [Kon], the form�2n def= X� (�C2n(M))�!(�)[�℄jAut �j 2 
n(d�3)(B̂Di�M ;A2n);
where the sum is over all connected trivalent graphs without( and wherejAut�j is the
order of the group of automorphisms of�, is closed and thus descends to anA2n-valued
universal characteristic class of framed smoothM -bundles. Here the ambiguity of the
orientation onC2n(M) is canceled by taking the product with[�℄ and hence the resulting
class is independent of the choice of the orientations of�. Further,R-valued Kontsevich
classes are also defined by composing�2n with any linear functional onA2n.

That�2n is closed may be seen as follows. By a similar argument as in [KT, Les] by
means of the generalized Stokes theorem (B.1), we have

(2.2) d�2n =X� [�℄jAut �j ZS2n(TM)b !(�) (b 2 B̂Di�M);
which vanishes on̂BDi�M . HereS2n(TM)b ! M�b = C1(Mb) � �C2(M) denotes
the face diffeomorphic to the bundle associated toTM�b with fiber the space of configu-
rations of2n points in ad-dimensional plane considered modulo overall translations and
dilations. Indeed,d�2n evaluated on anyn(d� 3)-chain� can be expressed as an integral
of a pulled back form from the fiber of a point of�. Then the integral vanishes by a
dimensional reason.

In the caseM is a 3-dimensional homology sphere, the set of all�2n’s gives rise to a
universalR-valued finite type invariants, according to Kuperberg–Thurston [KT].

2.5. Alternative definition of the Kontsevich classes.The above definition of�2n re-
lies on the de Rham theorem for infinite dimensional manifolds. Of course it is the most
universal way of construction, but since we consider only bundles over finite dimensional
compact manifolds, we could avoid the de Rham theorem in infinite dimension just by re-
placing the universal bundle�M with a given vertically framed bundle(� : E ! B; �E)
over a finite dimensional compact manifoldB. This time one has a cohomology class�2n(�; �E) 2 Hn(d�3)(B;A2n) that can be defined completely in finite dimensional man-
ifolds. The naturality of the pushforward with respect to bundle morphisms implies that�2n(�; �E) is a characteristic class of framed(M� rel �)-bundles. Then the evaluation on
bundles overn(d� 3)-dimensional manifolds gives rise to a framed bordism invarianth�2n(�; �E); �i 2 Hom(
n(d�3)(B̂Di�M);A2n):
Bordism invariance can also be proved in finite dimension. This is indeed enough for the
arguments of the present paper.
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3. AN INVARIANT OF UNFRAMED S2k�1-BUNDLES AND M ILNOR’ S �0-INVARIANT

In this section, we restrict our study mainly to smooth(D2k�1 rel �)-bundles overS2k�4. The dimension(2k � 4) of the sphere coincide with the degree of�2. We will
show that the simplest Kontsevich class�2 after an addition of a certain rational multiple
of the signature defect invariant becomes an invariant ofunframed(D2k�1 rel �)-bundles
and that it may be considered as an “integral lift” of Milnor’s �0-invariant of homotopy
spheres.

For a (D2k�1 rel �)-bundle� : E ! S2k�4, let �E denote a vertical framing, if
exists. In the following, we assume that all vertically framed bundle� has a base point
on its base space and that a diffeomorphism between the fiber of the base point of� and
that of �M = �S2k�1 is fixed so that� represents an element of the homotopy group�2k�4B̂Di� S2k�1. So integer multiplication to a bundle is defined.

Each element of�2k�4B̂Di� S2k�1 may also be represented by a(D2k�1 rel �)-
bundle�D : ED ! D2k�4 overD2k�4 that is standardly trivialized on��1D (�D2k�4).
Then�ED is canonically diffeomorphic toS4k�6 after a smoothing and�D4k�5 can be
glued along�ED in a natural way to obtain a closed(4k � 5)-manifold and denote it by
l(ED).

Now we shall choose a framing on
l(ED). Note that if the vertical framing�ED
on �D that is standard on��1D (�D2k�4) exists, then together with the standard fram-
ing onD2k�1 one has a trivialization ofTED. Then one can show thatT 
l(ED) � ",
where" denotes the trivial 1-dimensional outward normal bundle, is trivial and that the
trivialization ofTED together with the canonical trivialization of" extends to whole ofT 
l(ED) � " since�4k�6SO4k�4 = �4k�6SO = 0. We denote the extended trivializa-
tion by � 0ED : T 
l(ED) � " �! 
l(ED) � R4k�4 . Also, one obtains an extension� 00ED of
the partial(2k�1)-frame�ED over
l(ED) as the partial(2k�1)-frame of� 0ED . Here we
assume thatthe choice of extension� 00ED is always equal to some standardly fixed one (in-

dependent of the class of�2k�4B̂Di� S2k�1), that is possible since the behavior of�ED
on the boundary is standard. Moreover, we assume that� 0ED is fixed so that when�D rep-

resents0 2 �2k�4B̂Di� S2k�1 and hence
l(ED) = S4k�5, � 0ED is homotopic to the one
induced from the standard (Euclidean) trivialization ofD4k�4 where�D4k�4 = 
l(ED).

Since
l(ED) is a homology(4k � 5)-sphere, it bounds a compact oriented(4k � 4)-
manifoldW . Then the relativeL-class is defined by Hirzebruch’sL-polynomial:Lj(TW ; � 0ED) def= Lj(p1; : : : ; pj)
wherepj = pj(TW ; � 0ED) is thej-th relative Pontrjagin class. It is known that the relativepk�1-class can be interpreted as the obstruction class inH4k�4(W;�W ;�4k�5U4k�4=U2k�3)
to extend the partial(2k�1)-framing� 00ED on�W to the partial(2k�1)-framing over the
complexified tangent bundleTW
C . Then the(k�1)-st signature defect�k�1(E; �ED )
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is defined by �k�1(E; �ED ) def= Lk�1(TW ; � 0ED)[W ℄� signW:
Proposition 3.1. �k�1(E; �ED ) is well-defined, i.e., independent of the choices of the
manifoldW and of the extended framing� 0ED . Further, it is a group homomorphism�2k�4B̂Di� S2k�1 ! Q.

Proof. Proof that�k�1(E; �ED ) does not depend onW is the same as [Mo, Proposi-
tion 7.3]. By the assumptions for the choice of� 0ED above, the ambiguity of the choice can
be given by an overall twisting of the ‘horizontal’ framing by an element ofGL+(R2k�4 ),
that does not affect�k�1(E; �ED ) since the two can be connected by a path.

By the additivity of the relativeLk�1 numbers, it is enough to show that�k�1 at the

unit of�2k�4B̂Di� S2k�1 vanishes. But by the second assumption for the choice of� 0ED ,
all the relative Pontrjagin numbers and the signature vanish when�D represents 0. �

The main theorem of this section is the following

Theorem 3.2. Letk � 3 and let� : E ! S2k�4 be a(D2k�1 rel �)-bundle overS2k�4.
Then there exists a positive integerqk such thatqk� : qkE ! S2k�4 can be vertically
framed for all�. Further, if �E is a vertical framing onqk�, then the number�̂2(E) def= 12 �2(qkE; �E)j[�℄=1 + (�1)k�1(2k � 2)!22k(22k�3 � 1)Bk�1�k�1(qkE; �ED ) 2 Q;
whereBk�1 is the(k � 1)-st Bernoulli number and where�2(qkE; �E) is �2(qk�; �E)
evaluated on[S2k�4℄, does not depend on the choice of�E , and is a group homomor-
phism�2k�4BDi�(D2k�1 rel �) 
 Q ! Q that is a homotopy invariant of unframed(D2k�1 rel �)-bundles.

Remark3.3. Since� can be chosen inZ coefficient, one may definejAut�j �2j[�℄=1 =12 �2j[�℄=1 = (�C2(S2k�1))�!(�) completely in the singular cochain complex inZ co-
efficients by replacing the pushforward(�C2(S2k�1))� with the Gysin homomorphism(�C2(S2k�1))!. So one has12 �2(qkE; �E)j[�℄=1 2 Z.

The formula for�̂2 is similar to Morita’s splitting formula for the Casson invariant (for
homology 3-spheres) in terms of the signature defect [Mo]:�(M) = 16 ZC2(M) �3M � 18�1(M ; �M ):
(This is the version described in [KT, Les2]). So the existence of analogous properties
and constructions for the Casson invariant may be expected for �̂2. From this formula,
it seems likely that the Casson invariant is an integral liftof the Rokhlin invariant and in
fact it actually is, as is well known.

Now we shall discuss about a similar correspondence in higher dimensions. Since the
closure of the total spaceED of a (D2k�1 rel �)-bundle may be obtained by gluing a
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theoretic argument). Hence diffeomorphism invariants of exotic spheres can be applied to(D2k�1 rel �)-bundles.

Let�d denote the group ofh-cobordism classes (equivalently, diffeomorphism classes,
by theh-cobordism theorem) ofd-dimensional homotopy spheres. In [Mil], Milnor con-
structed homotopy spheres by introducing the bilinear pairings:M(�; �) : �pSOq+1 
 �qSOp+1 ! �p+q+1
defined by surgery along a(p; q)-dimensional Hopf link inSp+q+1 with a normal framing
given by an element of�pSOq+1 � �qSOp+1.

Let �d(��) denote the subgroup of�d consisting of elements which are boundaries
of parallelizable manifolds (i.e., manifolds with trivialtangent bundle). It is known that
both�d=�d(��) and�d(��) are finite abelian groups (see [KM]) and computations in
[KM] shows that ford = 4k� 1 � 15, �4k�1(��) occupies most of�4k�1. As a higher
dimensional analogue of the Rokhlin invariant, Milnor defined in [Mil2] a homomorphism�0 : �4k�1(��)! Zbk (�0-invariant) by�0(�W 4k) � signW 4k8 (modbk)
whereW 4k parallelizable andbk def= 22k�2 (22k�1 � 1) numerator

�4Bkk �, that has been

proved to be an isomorphism by Kervaire and Milnor in [KM]. The following theorem
has been proved in [ABK] by means of the�0-invariant.

Theorem 3.4(Antonelli–Burghelea–Kahn). For any0 � a � q, 0 � b � p, there is a
homomorphismsa;b : �pSOq�a+1 
 �qSOp�b+1 ! �a+b+2BDi�(Dp+q�a�b�1 rel �)
that makes the following diagram commutative:�pSOq�a+1 
 �qSOp�b+1in
l�
in
l��� sa;b // �a+b+2BDi�(Dp+q�a�b�1 rel �)
l ���pSOq+1 
 �qSOp+1 M // �p+q+1
Moreover, for allt � 13, image (
l Æ sa;b)\�4t�1(��)\ imageM (a+ b+2 = 2t� 2)
contains an element of non zero order.

As a corollary to Theorem 3.2, it turns out that�̂2 gives a refinement of some integer
multiple of�0 applied to bundles. For each finite abelian groupG, we defineo(G) def= minfd 2 Z>0 j dx = 0 for all x 2 Gg
and let�S̀ denote the stable homotopy group�n+`Sn (n > `+ 1).
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Corollary 3.5. Let k � 3 and let � : E ! S2k�4 be a (D2k�1 rel �)-bundle. If
l(qkE) 2 �4k�5(��), then

(3.1) 
k�1 �0(
l(qkE)) � (�1)k bk�1 �̂2(E) (modbk�1)
where
k�1 = 4(2k � 3)! denom�4Bk�1k�1 �.

If moreover14 � k � 31, then there exists a(D2k�1 rel �)-bundle� : E ! S2k�4
for which
l(qkE) 2 �4k�5(��) and
k�1�0(
l(qkE))�= 0. Therefore(�1)k bk�1 �̂2(E)
is an integral lift of a non-trivial invariant
k�1�0(
l(qkE)) 2 Zbk�1 if 14 � k � 31.
More generally, if the number
(3.2)2(4m)!(22m�1 � 1)2num� 4Bmm �2Q4m�2`=1 o(�S̀)(24m�1 � 1)B2m k = 2m+ 12(4m� 2)!(22m�1 � 1)(22m�3 � 1)num� 4Bmm �num� 4Bm�1m�1 �Q4m�4`=1 o(�S̀)(24m�3 � 1)B2m�1 k = 2m
for m � 7 is not integral, then the same is true for suchk. Hence it turns out that the
element constructed in[ABK] has infinite order anddim �2k�4BDi�(D2k�1 rel �)
 Q � 1
in those cases.

Note that12 �2(qkE; �E)j[�℄=1 2 Z impliesbk�1 �̂2(E) 2 Z. The restriction14 � k
is equivalent tot � 13 of Theorem 3.4. The rangek � 31 is such that our PC replies
immediately.

Corollary 3.6. If m � 7 is such that� 4m� 1 is a prime and� 24m�1 � 1 has a prime factorp with p - num(Bm),
then(�1)kbk�1�̂2 for k = 2m+ 1 is an integral lift of a non-trivial invariant
k�1�0(
l(qkE)) 2 Zbk�1.

In particular,m for which24m�1�1 itself is a prime satisfies the first condition. For ex-
ample, the first 6 examplesm = 8; 27; 32; 152; 320; 551 (, k = 17; 55; 65; 305; 641; 1103),
for which24m�1�1 is prime, all satisfy both conditions of Corollary 3.6. Proofs of Corol-
lary 3.5 and 3.6 will be given after the proof of Theorem 3.2.

3.1. Obstructions for vertical framings on (D2k�1 rel �)-bundles. We shall discuss
about the obstructions for the existence of vertical framings on(D2k�1 rel �)-bundles
overS2k�4 and we prove the first part of Theorem 3.2 here so that the Kontsevich classes
can be defined. In the rest of this section, we will denoteD2k�1 simply byS�.
Proposition 3.7. There exists a positive integerqk so that any(S� rel �)-bundle overS2k�4 can be vertically framed after multiplied byqk.
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Proof. Let � : E ! S2k�4 be an(S� rel �)-bundle overS2k�4 and choose the obvious
cell decomposition ofS2k�1 with one 0-celle0 and one(2k � 4)-cell e2k�4. We choose
the standard vertical framing on��1(e0).

To see that the vertical framing extends over the whole ofS2k�4, we consider a triv-
ial (S� rel �)-bundle�e2k�4 : E(�e2k�4 ) = E(��(��1e2k�4)) ! D2k�4 overD2k�4
pulled back by the characteristic map� : D2k�4 ! S2k�4. Since�e2k�4 is trivial, one
may choose a vertical framing�1 : T �bE(�e2k�4 ) �! R2k�1 � S� �D2k�4
such that� it is standard on��1e2k�4 (q) whereq is the base point fixed on�D2k�4,� it is also standard on the sub�S�-bundle.

Since the bundle� is assumed standard on��1(e0), the pullback bundle�e2k�4 restricted
to �D2k�4 is also standard. But�1 may not be standard there.

Now let�0 : T �bE(�e2k�4 )j�D2k�4 �! R2k�1�S���D2k�4 be the vertical framing
on ��1e2k�4 (�D2k�4) that is everywhere standard, and consider the difference ofthe two
vertical framings�0 and�1:g = �1 Æ ��10 : S� � �D2k�4 ! GL+(R2k�1 )
which is trivial on(S��fqg)[(�S���D2k�4). Moreover, this map can be transformed
into a map�g : S� � �D2k�4 ! SO2k�1 � GL+(R2k�1 ) by the deformation retraction
given by the Gram-Schmidt orthonormalization. So it suffices to prove the vanishing of
the obstruction for homotoping�g into the constant map.

Choose a cell decomposition ofS� � �D2k�4 with respect to(S� � fqg) [ (�S� ��D2k�4) naturally determined by a cell decomposition ofS� with respect to the bound-
ary. By Lemma 3.8 below, we haveHj(S� � �D2k�4; (S� � fqg) [ (�S� � �D2k�4);�jSO2k�1) = 0
for j � 4k � 7, which implies that the homotopy extends over the(4k � 7)-skeleton
of S� � �D2k�4. By using Lemma 3.8 again, we see that the first obstruction for the
homotopy may lie in the groupH4k�6(S� � �D2k�4; (S� � fqg) [ (�S� � �D2k�4); �4k�6SO2k�1)�= �4k�6SO2k�1:
It is known that the group�4k�6SO2k�1 is finite and hence one can chooseqk that kills
this obstruction so thatqk� can be vertically framed. �
Lemma 3.8. Let � : E ! B be a(S� rel �)-bundle over a closed(2k � 6)-connected
oriented manifoldB of dimension� 2k � 4. ThenH i(E; �E [Eq ;Z)�= � 0 if 0 � i � 4k � 7H4k�5(B;Z) if i = 4k � 6



12 T. WATANABE

whereEq = ��1(q). �
3.2. Framing dependence of�2. To prove Theorem 3.2 one needs to compare the fram-
ing dependences of both�2 and�k�1 and to see that they differ by some non zero con-
stant. In this subsection we shall study the difference of�2 for two different vertical
framings.

Lemma 3.9. Let (� : E ! B; �E) be a vertically framed null bordant(S� rel �)-
bundle over a closed(2k � 4)-manifoldB not necessarily connected where we say that
a (S� rel �)-bundle is framed null bordant if it represents the null element of the bordism

group
2k�4(B̂Di� S2k�1). Then�2(E; �E) = 0.

Proof. Since�2 is a cocycle on̂BDi� S2k�1, it is a framed bordism invariant. Thus the
result follows. �
Lemma 3.10. �2(E; �E) depends only on the homotopy class of�E .

Proof. Let �E and �E be two mutually homotopic vertical framings. We prove that�2(E; �E) = �2(E;�E).
The homotopy gives rise to a cylinderE � I with a vertical framing~�E(t) (t 2 I)

such that~�E(0) = �E and ~�E(1) = � 0E . This framed cylinderE � I is a vertically
framed bordism between the two vertically framed bundles(E; �E) and(E;�E). Hence
Lemma 3.9 concludes the proof. �
Lemma 3.11. Let� : E ! S2k�4 denote a(S� rel �)-bundle overS2k�4. Then there is
a homotopy deforming any continuous mapg : E ! SO2k�1 that is trivial on�E [ Eq
into a map that is trivial outside a(4k � 5)-ball embedded inE.

Proof. Lemma 3.8 implies that the homotopy extends from�E [ Eq over the(4k � 6)-
skeleton ofE sinceH2k�5(S2k�4;Z) = 0. �

For any mapG : (E; �E[Eq)! (SO2k�1; id), let (G) : R2k�1�E ! R2k�1�E
be the continuous map defined by (G)(v; x) def= (G(x)v; x).
Lemma 3.12. Let � : E ! S2k�4 be a(S� rel �)-bundle overS2k�4 and let�E be a
vertical framing. Then�2(E; (G) Æ �E)� �2(E; �E) does not depend on�E . Namely, it
depends only on the homotopy class of (G).
Proof. Let ~� : eE = E � I ! Ŝ2k�4 = S2k�4 � I be the(S� rel �)-bundle over the
cylinder pulled back from� by the projection onto the first factorS2k�4 � I ! S2k�4
where we identifyE � f0g with E. Suppose thateE is partially vertically framed onE � f1g andE � f0g by the framings (G) Æ �E and�E respectively.

By Lemma 3.11, we may assume after a homotopy that (G) Æ �E and�E coincide
outside��1(B2k�4) whereB2k�4 � S2k�4 is an embedded(2k � 4)-disk. In other

words, the vertical framing over�Ŝ2k�4 = S2k�4�f1gt�S2k�4�f0g extends tôS2k�4
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minus an embedded(2k � 3)-ball B2k�3 � Ŝ2k�4. Further we may considereEÆ def=~��1(Ŝ2k�4 n Int(B2k�3)) as a(S� rel �)-bundle bordism betweenE t (S� � S2k�4)
and�E with some vertical framing� eEÆ extending( (G) Æ �E)t �E , whereS��S2k�4
is a trivial bundle. We denote by�G the induced vertical framing on the trivial(S� rel �)-
bundleS� � S2k�4 over�B2k�3 = S2k�4. Note that�G is homotopically canonical.

By Lemma 3.9, we have�2(E; (G) Æ �E) + �2(S� � S2k�4; �G) � �2(E; �E) = 0.
Namely, by Lemma 3.10,�2(E; (G) Æ �E) � �2(E; �E) = ��2(S� � S2k�4; �G) does
not depend on�E . �

The last proposition allows us to define� 02(E;G) def= �2(E; (G) Æ �E)� �2(E; �E):
For a(S� rel �)-bundle� : E ! B, we denote by[E; SO2k�1℄� the set of homotopy
classes of continuous mapsG : (E; �E [ Eq)! (SO2k�1; id):
It is known that�4k�5SO2k�1=torsion�= Z. We fix a map� : (S4k�5; �)! (SO2k�1; id)
representing an infinite order generator of�4k�5SO2k�1 such that its image under the
natural map�4k�5SO2k�1 ! �4k�5U4k�4=U2k�3 �= Z represents positive multiple of
the usual choice of generator to define the relative Pontrjagin class as in [MS]. Then
let GE(�) : (E; �E [ Eq) ! (SO2k�1; id) be a map that coincides withid outside an
embedded(4k � 5)-ballB4k�5 in Int(E) and that the image ofB4k�5 underGE(�) is
homotopic to�.

The following proposition is a key to prove Theorem 3.2, describing the structure of
the set of homotopy classes of vertical framings.

Proposition 3.13. Let � : E ! S2k�4 be a vertically framed(S� rel �)-bundle overS2k�4. Then[E; SO2k�1℄�=torsion = h[GE(�)℄i, the free abelian group generated byGE(�). Thus the degree[E; SO2k�1℄� ! Z is defined with respect to[GE(�)℄.
Proof. By Lemma 3.11, the obstruction to homotopingG into the constant map over
whole ofE is described by a homotopy class of a map�(B4k�5 � I) �= S4k�5 !SO2k�1, which can be considered as an element of�4k�5SO2k�1. �
Lemma 3.14. LetG 2 [E; SO2k�1℄�. Then we have� 02(E;G) = � 02(E;GE(�)) degG:
Proof. By Lemma 3.12, we have� 02(g) + � 02(h) = (�2(E; (g) Æ  (h) Æ �E)� �2(E; (h) Æ �E))+ (�2(E; (h) Æ �E)� �2(E; �E)) = � 02(E; gh):
Therefore� 02 : [E; SO2k�1℄� ! A2 is a group homomorphism into a torsion free abelian
group. Then Proposition 3.13 implies that it must bedegG times the image of the infinite
order generatorGE(�). �
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3.3. Framing dependence of relative Pontrjagin numbers.As for �2, we compute the
difference between�k�1’s for two different vertical framings. We only need to see the
framing dependence of the(k�1)-st relative Pontrjagin number, the only indecomposable
term inLk�1, becauseH4p(E � I; �(E � I);Z)
H4(k�1�p)(E � I; �(E � I);Z) = 0
unlessp = 0 or k � 1.

Lemma 3.15. Let� : E ! S2k�4 be a(S� rel �)-bundle overS2k�4 that can be verti-
cally framed by�E . Thenpk�1(E; (G) Æ �E)� pk�1(E; �E) does not depend on�E . It
depends only on the homotopy class of (G).
Proof. The difference computes the(k � 1)-st relative Pontrjagin number ofE � I with
respect to the vertical framings (G)Æ�E and�E onE�f0; 1g together with the standard
vertical framing on�E � I . Then the proof is similar as Lemma 3.12 by the fact that the(k � 1)-st relative Pontrjagin number vanishes on vertically framed cobordisms. �

Lemma 3.15 allows us to definep0k�1(E;G) def= pk�1(E; (G) Æ �E)� pk�1(E; �E):
Lemma 3.16. Let� : E ! S2k�4 be a vertically framed(S� rel �)-bundle overS2k�4.
Then

(3.3) p0k�1(E;G) = �2�kak�1(2k � 3)! degG
wherean = 1 if n � 0 (mod 2) andan = 2 if n � 1 (mod 2), and�k = 8<: 3 if k = 31 if k = 50 otherwise

Proof. Sincep0k�1(E;G) : [E; SO2k�1℄� ! Z is a group homomorphism, it follows
from Proposition 3.13 thatp0k�1(E;G) = p0k�1(E;GE(�))degG:
So it suffices to prove thatp0k�1(E;GE(�)) = �2�kak�1(2k � 3)!.

Recall that the(k�1)-st relative Pontrjagin classp0k�1 is considered as the obstruction
to extend the vertical framing on�(E � I) to the complexified vertical tangent bundle
of E � I . (Note that now the orientation induced onE � f1g is opposite to the one
induced from that ofW appeared in the definition of�k�1. Hence the minus sign appears
in the above equation.) This obstruction lies inH4k�5(E; �E;�4k�5U4k�4=U2k�3) =H4k�5(E; �E;Z). In the caseG = GE(�), the obstruction corresponds to the image of[�℄ 2 �4k�5SO2k�1 under the map�4k�5SO2k�1 ! �4k�5U4k�4=U2k�3. This map
factors through�4k�5U2k�1 �= Z and the following two lemmas conclude the proof.�
Lemma 3.17. The inclusioni : U2k�1 ! U4k�4=U2k�3 sends the generator of�4k�5U2k�1 �= Z to�(2k � 3)! times the generator of�4k�5U4k�4=U2k�3 �= Z.
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Proof. This is a direct consequence of the following homotopy sequence of the bundle:�4k�5U2k�1 i�! �4k�5U4k�4U2k�3 ! �4k�5 U4k�4U2k�1 � U2k�3 ! 0� = � = � =Z Z Z(2k�3)!
The last isomorphism follows from Bott–Milnor [BM]. �

The following lemma is a special case of a result in [Lun].

Lemma 3.18(Lundell). The natural inclusion
 : SO2k�1 ! U2k�1 sends the generator[�℄ 2 �4k�5SO2k�1 to�2�kak�1 times the generator of�4k�5U2k�1 �= Z.

3.4. Computation of � 02(E;GE(�)) and framing correction. Let p : E� ! S4k�4 be
the real(2k � 1)-dimensional vector bundle overS4k�4 = B4k�4 [�=S4k�5 (�B4k�4)
defined by E� def= (R2k�1 �B4k�4) [h (R2k�1 ��B4k�4)
where the gluing diffeomorphismh : R2k�1 � �B4k�4 = R2k�1 � S4k�5 ! R2k�1 �S4k�5 is given by the twist(v; x) 7! (�(x)�1v; x).

For anR2k�1 vector bundlep : E ! B, we denote byS2(p) : S2(E) ! B theS2k�2-bundle associated toE. Let �T be the Thom class of theS2k�2-bundleS2(E�)
whose restriction to a fiber is the generator ofH2k�2(S2k�2;Z). LetÆ2(E�) def= �3T [S2(E�)℄ � [�℄=12:

To compute this number, we use the following lemma proved in [BC].

Lemma 3.19(Bott–Cattaneo). Let� : E ! B be anR2k�1 -vector bundle over a closed
manifoldB and letS(E) be its associated sphere bundle with the canonical Euler classe 2 H2k�2(S(E);Z) of fiber tangent bundle. Then�!e3 = (�1)k�12pk�1(E);
twice of the(k � 1)-st Pontrjagin class.

Since the Euler number ofS2k�2 is 2,e restricts to twice the generator ofH2k�2(S2k�2;Z).
Hence we have the following

Corollary 3.20. Æ2(E�) = (�1)k�1pk�1(E�)[S4k�4℄ � [�℄=48.

Lemma 3.21. � 02(E;GE(�)) = Æ2(E�).
Proof. Throughout this proof we work with de Rham complexes although the resulting
value is in [�℄12 Z. We shall prove that the RHS can be reduced to the LHS. Consider the
decomposition E� ! S4k�4 = B4k�4 [� (S4k�5 � I) [� (�B4k�4)
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whereS4k�5 � I is the mapping cylinder corresponding toh. SinceB4k�4 and�B4k�4
are obviously parallelizable and also the trivialization extends to the partial gluingB0 def=B4k�4 [�jD4k�5 (D4k�5 � I) [�jD4k�5 (�B4k�4) whereD4k�5 � S4k�5 = �B4k�4
is an embedded disk near the base point ofS4k�5, �T can be chosen so that it is an
extension of the fiber volume form onB0 determined via the trivialization. Hence overS2(p)�1(B0), the integral of�3T vanishes because the corresponding triple product onS2k�2 vanishes, and one hasÆ2(E�) = [�℄12 ZS2(E�jD4k�51 �I) �3T
whereD4k�51 def= S4k�5 n IntD4k�5.

On the other hand, recall that the two different vertical framings (GE(�)) Æ �E and�E may be assumed coincide outside some embedded diskB4k�5 � Int(E) after a ho-
motopy. By Stokes’ theorem and by (2.2), we have� 02(E;GE(�)) = �2(E; (GE(�)) Æ �E)� �2(E; �E)= [�℄12 ZS2(R2k�1�I�B4k�5) �T (R2k�1 � I �B4k�1)3
whereR2k�1�I�B4k�5 denotes a trivialR2k�1 -vector bundle overI�B4k�5 and where�T (R2k�1�I�B4k�5) denotes a(2k�2)-form onS2(R2k�1�I�B4k�5) representing
the Thom class of the associated trivialS2k�2-bundleS2k�2 � I � B4k�5 extending( (GE(�)) Æ �E)�!S2k�2 and(�E)�!S2k�2 onS2k�2 � �I �B4k�5. Existence of such
a (2k� 2)-form is because the restriction induces an isomorphism fromH2k�2(S2k�2�I �B4k�5;R) toH2k�2(�(S2k�2 � I �B4k�5);R).

Since we can choose anS2k�2-bundle isomorphism betweenS2(E�jD4k�51 � I) andS2(R2k�1 � I � B4k�5) sending the trivialization ofS2(E�j�(D4k�51 � I)) to that ofS2(R2k�1 � �(I �B4k�5)), the result follows. �
Lemma 3.22. � 02(E;GE(�)) = (�1)k�12�kak�1(2k � 3)! � [�℄=48:
Proof. We use the notations appeared in the proof of Lemma 3.12. LetS2( eE) denote the
associatedS2k�2-bundle to the vertical tangent bundleT �b eE extending the trivial vertical
bundles onE � (f1g t f0g) with framings (GE(�)) Æ �E and�E respectively.

By a similar argument as in the proof of Lemma 3.21, one can seethatpk�1(E�)[S4k�4℄ = �p0k�1(E;GE(�)):
Then by Lemma 3.21, Corollary 3.20 and Lemma 3.16,� 02(E;GE(�)) = Æ2(E�) = (�1)k�1pk�1(E�)[S4k�4℄ � [�℄=48= (�1)k�12�kak�1(2k � 3)! � [�℄=48: �
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Proof of Theorem 3.2.By Lemma 3.16 and byLk�1(p1; : : : ; pk�1) = 22k�2(22k�3 � 1)Bk�1(2k � 2)! pk�1 + (terms ofpk�2; : : : ; p1);
one has (�1)k�1(2k � 2)!22k(22k�3 � 1)Bk�1 ��k�1(qkE; (G) Æ �ED )��k�1(qkE; �ED )�= (�1)k2�kak�1(2k � 3)! degG=4(3.4)

On the other hand, we know from Lemma 3.14 and Lemma 3.22 that(�1)k2�kak�1(2k � 3)! degG=4 = �12 � 02(qkE;G)j[�℄=1
This completes the proof. �
3.5. Integral lift of Milnor’s �0-invariant. In this subsection, we give a proof of Corol-
lary 3.5 and 3.6. First we need some computations to estimateqk. The following elemen-
tary fact is fundamental in the computation below.

Lemma 3.23. Suppose we have an exact sequence of finite abelian groups:0! H ! G! K ! 0:
Theno(G)jo(H)o(K).

From the proof of Proposition 3.7, we need to estimate the order of�4k�6SO2k�1. We
shall now estimate more generallyo of �pSOj for p even and forp+32 � j � p+1, for the

next section. It is known that�pSOj for p even is finite for allj. Let ojp def= o(�pSOj).
Lemma 3.24. Letp be an even integer. Thenop+1p j4 if p � 0 (mod 8); op+1p j2 if p � 2; 4; 6 (mod 8)

Proof. First the following exact sequence of a principalSOp+1-bundle implies that�pSOp+1
is isomorphic to�p+1SOn+p+1=(SOn � SOp+1) for sufficiently largen� p+ 1:0 = �p+1SOn+p+1SOn ! �p+1 SOn+p+1SOn � SOp+1 �! �pSOp+1 ! �pSOn+p+1SOn = 0
So it suffices to determine theo of the latter group. Consider another exact sequence:Z2 = �p+1SOn+p+1SOp+1 ! �p+1 SOn+p+1SOn � SOp+1 ! �pSOn = � Z2 if p � 0 (8)0 if p � 2; 4; 6 (8)

Then by Lemma 3.23 we have the desired result. �
Lemma 3.25. Letp be an integer of the form4p0 + 1. Thenoppj4 if p � 1 (mod 8); oppj2 if p � 5 (mod 8)
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Proof. Proof is similar to the proof of Lemma 3.24. This time we use the exact sequences
of the following principal bundles for sufficiently largen:SOp ! SOn+p=SOn ! SOn+p=(SOn � SOp)SOn ! SOn+p=SOp ! SOn+p=(SOn � SOp) �
Lemma 3.26. Letp be an integer not of the form4p0 � 1. Then forp+32 � j � p+ 1,ojpj4Qp�j+1`=1 o(�S̀) if p � 0 (mod 8); ojpj2Qp�j+1`=1 o(�S̀) if p � 2; 4; 6 (mod 8)ojpj4Qp�j+1`=2 o(�S̀) if p � 1 (mod 8); ojpj2Qp�j+1`=2 o(�S̀) if p � 5 (mod 8)

Proof. For p+32 � j � p + 1, the exact sequence of the bundleSOj ! SOj+1 ! Sj
partially looks as follows:�Sp�j+1 = �p+1Sj ! �pSOj ! �pSOj+1
Note that the stability condition of the leftmost term is given byp�j+3 � j , p+32 � j.
Applying Lemma 3.23, we haveojpjoj+1p o(�Sp�j+1). Then starting from the result of
Lemma 3.24 or 3.25 and proceeding inductively in this manner, we obtain the desired
result. �

By Lemma 3.26, we obtain the following

Lemma 3.27. qkj2Q2k�4`=1 o(�S̀).
To estimateo(�S̀), we will need the following theorem due to H. Toda.

Theorem 3.28(H. Toda [To]). Let p be an odd prime. Thep-primary component (the
subgroup of all elements of order power ofp) of �Sk is isomorphic to� Zp for k = 2i(p� 1)� 1, i = 1; 2; : : : ; p� 10 otherwise fork < 2p(p� 1)� 2
Proof of Corollary 3.5.First we prove (3.1). Namely, we prove that the RHS reduced
modulobk�1 is equal to the LHS. SinceX = 
l(qkE) bounds a parallelizable manifoldW , the relativeLk�1-number in�k�1 vanishes for the induced framing��W onTX � "
from that ofTW . The difference of the�k�1 terms for��W and for� 0ED may be given
by the relative(k � 1)-st Pontrjagin class on the cylinderX � I , that is integral. Indeed,
by stabilizingT (X � I) if necessary, the difference equals�(�1)k�1(2k � 2)!22k(22k�3 � 1)Bk�1 22k�2(22k�3 � 1)Bk�1(2k � 2)! pk�1(T (X � I); ��W � � 0ED)[X � I; �℄= � (�1)k�14 pk�1(T (X � I); ��W � � 0ED )[X � I; �℄= �ak�1(2k � 3)!4 o(T (X � I); ��W � � 0ED )[X � I; �℄ 2 Z
(3.5)
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where��W �� 0ED denotes the framing on(X�f0; 1g)[(f�g�I)naturally extended from��W t � 0ED and whereo(T (X � I); ��W � � 0ED ) is the obstruction class to extending the
stable framing��W � � 0ED overX � I with values in�4k�5SO = Z. The second equality
follows from a similar argument as in Lemma 3.16, or from [MK,Lemma 2]. Hence it
can be ignored when considered modulobk�1 after multiplied by(�1)kbk�1. Also the
term of�2 can be ignored because it is integral. Then we may only need toconsider the
term �(�1)k22k�4(22k�3 � 1) num�4Bk�1k � 1 �� (�1)k�1(2k � 2)!22k(22k�3 � 1)Bk�1 signW= 4(2k � 3)! denom�4Bk�1k � 1 � signW8
that is congruent to the LHS and hence (3.1) is proved.

In [ABK, Theorem 1.5.1], the�0-invariant of the non-trivial elements inimage (
l Æsa;b) \ �4k�5(��) \ imageM (see Theorem 3.4) are explicitly computed by means of
[Mil, Lemma 3]. Namely, one has a(D2k�1 rel �)-bundle� : Ek ! S2k�4 such that�0(
l(Ek)) � ( I2m8 (mod I2m8 ) k = 2m+ 1ImIm�18 (mod I2m�18 ) k = 2m
whereIt = 8bt.

Let q0k def= 2Q2k�4`=1 o(�S̀). Then by Lemma 3.27, if
k�1�0(
l(qkEk)) were trivial,
then
k�1�0(
l(q0kEk)) must be trivial too. But if we could prove that the latter value is
not integral, we would have a contradiction. We have
2m�0(
l(q02m+1Ek))� 4(4m)! denom� 4B2m2m � � 2Q4m�2`=1 o(�S̀) � I2m8 (mod I2m8 )
2m�1�0(
l(q02mEk))� 4(4m� 2)! denom� 4B2m�12m�1 � � 2Q4m�4`=1 o(�S̀) � ImIm�18 (mod I2m�18 )
This is non-zero if

(3.6)

8<: 8(4m)! denom�4B2m2m � �Q4m�2`=1 o(�S̀) � I2mI2m =2 Z k = 2m+ 18(4m� 2)! denom�4B2m�12m�1 � �Q4m�4`=1 o(�S̀) � ImIm�1I2m�1 =2 Z k = 2m
These numbers are precisely the numbers of the statement.

The claim for14 � k � 31 is by direct computation. For example, fork = 14,denomn8(26)! denom�4B1313 �� I7I6I13 o = 31 � 601 � 1801 � 657931
Theorem 3.28 forp = 31 implies that the31-primary component of�S̀ for ` < 1858 is
zero unless̀ = 59; 119; 179; : : : ; 1799. Henceo(�S1 ) � � � o(�S24) does not have a prime
divisor 31 and the number (3.6) must not be integral. For15 � k � 31, we can compute
similarly. �
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Proof of Corollary 3.6.Suppose thatm satisfies the required properties and letp be a
prime factor of24m�1 � 1 with p - num(Bm). We prove thatp - 2(4m)!(22m�1 � 1)2num�4Bmm �2denom (B2m) Q4m�2`=1 o(�S̀):
First by hypothesis we havep - num� 4Bmm �2

. Sincep is prime and sincep = 1 +a(4m� 1) > 4m by Fact 3.29(1) below,p - 2(4m)!. Further, by the von Staudt–Clausen
theorem (e.g., [MS]), which implies thatdenom(B2m) = Q q�1j4mq:prime q, any prime factor

of denom (B2m) is less than4m. Hencep - denom (B2m).
By Fact 3.29(2), one hasg
d(24m�1�1; 22m�1�1) = 1 fromg
d(4m�1; 2m�1) =1. Hencep - (22m�1 � 1)2.
So it is enough to prove that

Q4m�2`=1 o(�S̀) does not have a prime divisorp. This
follows from Theorem 3.28 since the first` for which �S̀ has non zerop-primary com-
ponent is` = 2(p � 1) � 1 = 2p � 3 and all ` involved in the product is at most4m� 2(< p� 2 < 2p� 3). Hence the proof is completed. �

The following facts may be well known.

Fact 3.29. (1) If q is an odd prime and an odd primep divides2q�1, thenp = 1+aq
for some positive integera.

(2) g
d(p; q) = 1) g
d(2p � 1; 2q � 1) = 1.

Proof. (1) is a consequence of a special case of Fermat’s theorem:2p�1 � 1 (modp) for
any odd primep. Namely, ifp; q are odd primes andp j 2q � 1, then2q � 1 (p). Sinceq
is prime,q j p� 1.

(2) If g
d(p; q) = 1 andg
d(2p � 1; 2q � 1) has an odd prime factorr, then2p � 1 �2q � 1 � 0 (r) , 2p � 2q � 1 (r). If s > 1 is the minimum positive integer for which2s � 1 (r), thens divides bothp andq. This is a contradiction. �
Remark3.30. In [ABK], non-integrality of�0(
l(Ek))=(Ik�1=8) has been proved by nu-
merical estimations of the value. But similar argument doesnot work for non-integrality
of 
k�1q0k�0(
l(Ek))=(Ik�1=8) since the value may be too large.

4. GRAPH CLASPER-BUNDLES

For a (4m � 1)-dimensional homology sphereM , we shall construct many smooth
framed(M� rel �)-bundles associated to trivalent graphs, what we will call graph clasper-
bundles. We will show that they are in some sense dual to the Kontsevich classes, which
implies the non-triviality of the classes.

More precisely, we shall construct a linear map 2n : G2n ! 
4n(m�1)(B̂Di�M)
 Q
by using families of higher-dimensional claspers surgery,and will prove the following
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Theorem 4.1. Letm � 2 and letM be a(4m� 1)-dimensional homology sphere, then

(1) There exists a non-zero integerrm that makes the diagramG2n  2n //proj:
1 �� 
4n(m�1)(B̂Di�M)
 Qh�2n;�i��A2n �r2nm // A2n
commutative.

(2) If moreoverm is even, thenIm 2n is included in the image of the Hurewicz

homomorphism�4n(m�1)B̂Di�M 
 Q ! 
4n(m�1)(B̂Di�M)
 Q.

Composed with any linear functional on the space of disjointunion of graphs satisfying
the AS and the IHX relations, any monomial of the form�p12n1 � � � �pr2nr yieldsR-valued
characteristic classes. Recall that the degree of a trivalent graph is the number of vertices.

Corollary 4.2. Suppose thatm � 2 and thatM is a (4m � 1)-dimensional homology
sphere.

(1) There existdimR[A�2 ;A�4; : : : ;A�2n℄(deg 2n) linearly independentR-valued char-
acteristic classes of degree4n(m� 1) whereR[A�2 ;A�4; : : : ;A�2n℄ is the polyno-
mial ring generated by elements of the dual spacesA�2;A�4; : : : ;A�2n.

(2) dim Im 2n � dimA2n.

Remark4.3. The dimensions of the spacesA2n for degrees up to 22 are computed in
[BN] as follows:

degree (2n) 2 4 6 8 10 12 14 16 18 20 22dimA2n 1 1 1 2 2 3 4 5 6 8 9dimR[A2 ;A4; : : :℄(deg 2n) 1 2 3 6 9 16 25 42 50 90 146

Corollary 4.4. For n � 2 andm � 2 even, we havedim �4n(m�1)�1Di�(D4m�1 rel �)
 Q = dim�4n(m�1)BDi�(D4m�1 rel �)
 Q� dimA2n:
Proof. Theorem 4.1(2) and Corollary 4.2 imply thatdim�4n(m�1)B̂Di� S4m�1 
 Q �dimA2n if m is even. Further, one can show thatif n � 2 and if � and � 0 are two
different vertical framings onE that coincide on�E [ Eq , then[(E; �)℄ = [(E; � 0)℄ in�4n(m�1)B̂Di� S4m�1 
 Q. Indeed, similarly as Lemma 3.8, we haveHi(E; �E [ Eq ;Z)�= � Z if i = 4n(m� 1) + 4m� 10 if 0 � i � 4n(m� 1) + 4m� 2
Thus we have[E; SO4m�1℄�
Q �= �4n(m�1)+4m�1SO4m�1
Q where[E; SO4m�1℄�
denotes the set of homotopy classes of continuous maps(E; �E [ Eq)! (SO4m�1; 1).
Further, we have[E; SO4m�1℄�
Q = 0 because it is known that�4n(m�1)+4m�1SO4m�1



22 T. WATANABE

is finite if n � 2 andm � 2. So there exists a positive integerp such thatp[(E; �)℄ is

equivalent top[(E; � 0)℄. Therefore[(E; �)℄ = [(E; � 0)℄ in �4n(m�1)B̂Di� S4m�1 
 Q.
Then it follows that�4n(m�1)B̂Di� S4m�1 
 Q = �4n(m�1)BDi�(D4m�1 rel �)
 Q

for n � 2 andm � 2 even, thus we also havedim �4n(m�1)BDi�(D4m�1 rel �)
 Q � dimA2n: �
Forn = 1, we have a partial result (compare Corollary 3.5 and 3.6).

Corollary 4.5. Suppose thatm � 2 is even. If the number

(4.1)
3 � 24m+5(24m�3 � 1)B2m�1o(�S8m�5)o(�S2m�1)2Q2m�2`=1 o(�S̀)4(4m� 2)!

is not integral, then̂�2 for k = 2m is non-trivial. Hence the estimate of Corollary 4.4
holds also forn = 1 for k = 2m and ��1;1 : E�1;1 ! (S4m�2)�2 corresponds to a
generator of the 1-dimensional subspace.

Corollary 4.6. If an even integerm � 2 is such that� 4m� 3 is prime and� 4m� 3 - num (B2m�1),
then�̂2 for k = 2m is non-trivial.

The proofs of Corollary 4.5 and 4.6 will be given after the proof of Theorem 4.1. We
have checked by a computer test (by using Maxima) that the first 71 examplesm = 2; 4; 8; 10; 14; 16; 26; 28; 38; 40; 44; 46; 50; 58; 68; 70; 74; 80; 88; 94; 98; 100; 106; 116;128; 136; 140; 154; 164; 166; 170; 176; 178; 184; 190; 194; 206; 208; 214; 220; 236; 250; 254;256; 266; 268; 274; 278; 280; 296; 304; 308; 310; 320; 326; 344; 346; 358; 364; 374; 388; 400;403; 404; 406; 410; 418; 424; 428; 434; 436
for which4m� 3 is prime all have the required properties of Corollary 4.6.

4.1. Claspers and family of claspers.From now on we construct the homomorphism 2n. First we give a definition of higher dimensional claspers, which are generalizations
of Habiro’s clasper defined in [Hab, Hab2]. They will be used as elementary pieces in the
constructions below. For the details about higher dimensional claspers, see [W], though
we will describe here self-contained definitions of them.
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FIGURE 1. Ip;q-clasper and the associated Hopf link

4.1.1. I-claspers.An Ip;q-clasperis a normally framed null-homotopic embeddings of
two disjoint spheresSp t Sq � Mp+q+1 with p; q � 1 connected by an arc, equipped
with a trivialization of the normalSOp+q-bundle over the arc for which the firstp-frame
is parallel to theSp near the intersection of the arc withSp, and the lastq-frame is parallel
to theSq near the intersection of the arc withSq . We call each of the two spheres aleaf
and call the arc anedge. With the given normal framing, we can canonically associate
to anIp;q-clasper a normally framed two component link by replacing with an embedded
Hopf link as in Figure 1 so that theSp lies in the(p+1)-plane spanned by the firstp-frame
in the normal frame together with the vector parallel to the direction of the edge, and theSq lies in the(q+1)-plane spanned by the lastq-frame in the normal frame together with
the vector parallel to the direction of the edge. We orient the two leaves so that the linking
numberLk(Sp; Sq) of the associated Hopf link is 1 if bothp andq are odd. By a surgery
along anIp;q-clasper, we mean a surgery along its associated framed link.

4.1.2. Family of claspers.Consider the trivial(M� rel �)-bundleE ! B in which a
trivial subIp;q-bundle with a structure of a family ofB-parametrized embeddings ofIp;q-
claspers intoInt(M�) given.

Further we extend the notion of surgery to family of claspers. Simultaneous surgery
along a family of claspers, i.e., attaching of (handles)� B followed by smoothing of
corners so that the two trivial bundle structures are correctly glued together, yields a pos-
sibly non-trivial smooth(M� rel �)-bundle. Aclasper-bundleis an(M� rel �)-bundle
obtained by a sequence of surgeries along families of claspers.

4.2. Graph claspers. Now we briefly review the definition of a higher dimensional graph
clasper. The notion of graph clasper in 3-dimension was firstintroduced by Habiro in
[Hab]. Details about higher dimensional graph clasper willbe described in [W]z. Graph
clasper itself is not necessary to define graph clasper-bundles below. But it motivates the
definition of the graph clasper-bundle. Also, we aim to explain that naive generalization
of 3-valent graph claspers in 3-dimension to higher dimensions does not work.

In [Hab, Hab2], the Borromean rings in 3-dimension plays an important role. In higher
dimensions, the higher dimensional Borromean rings play a similar role. When threezAs mentioned in [W], the definition of the higher dimensional(unsuspended) graph clasper was suggested
to the author by Kazuo Habiro, after the author’s [W2].
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FIGURE 2

integers0 < p; q; r < d satisfy the identity:

(4.2) p+ q + r = 2d� 3;
one can form higher dimensional Borromean ringsSp t Sq t Sr ! Rd as follows. Letp0; q0; r0 be integers such thatp + p0 = d � 1; q + q0 = d � 1; r + r0 = d � 1. Thenp0 + q0 + r0 = d. IdentifyRd with Rp0 � Rq0 � Rr0 . Then the union of the subsets

(4.3)

8><>: Sp def= f(x; y; z) 2 Rd j jyj2=4 + jzj2 = 1; x = 0g �= SpSq def= f(x; y; z) 2 Rd j jzj2=4 + jxj2 = 1; y = 0g �= SqSr def= f(x; y; z) 2 Rd j jxj2=4 + jyj2 = 1; z = 0g �= Sr
of Rd forms a non-trivial 3 component link (see Figure 2(a)). Non-triviality of this link
can be proved by computing the Massey product of its complement. We shall fix an
orientation on the Borromean rings. The three componentsSp; Sq; Sr lie on the planesPyz def= Rq0 � Rr0 , Pzx def= Rr0 � Rp0 , Pxy def= Rp0 � Rq0 respectively. Then considerRp0 , Rq0 , Rr0 are equipped with the induced orientations from that ofRd and introduce
orientations onSp, Sq , Sr determined from those ofPyz , Pzx, Pxy by the outward normal
first convention.

The following property of Borromean rings will be used laterin the proof of Theo-
rem 4.1.

Proposition 4.7. LetX def= Rd n (N(Sp) [N(Sq) [N(Sr)) whereN denotes a tubular
neighborhood, and let1; �; �; 
 2 
�(X) be differential forms representing the integral
generators ofH�(X) such that the supports of�; �; 
 are disjoint from�X n �N(Sp),�X n �N(Sq), �X n �N(Sr) respectively, and restrictions of�; �; 
 to �X are "-Thom
forms about parallels ofSp; Sq; Sr on�N(Sp); �N(Sq); �N(Sr). Then the triple productHp0(X)�Hq0(X)�Hr0(X)! Hd(X; �X) is defined in terms of such representatives,
and one has(� ^ � ^ 
)[X; �X ℄ = �1.
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Proof. By the hypotheses of�; � on�X , one has a well-defined productHp0(X)�Hq0(X)! Hp0+q0(X; �X)
given by a wedge. This is shown as follows: We see the change ofthe product� ^ �
when� is replaced with�0 = �+d� where� is a(p0�1)-form onX such thatd�j�X is
supported on a subset of�N(Sp). Take a smooth function� supported on a thin cylinder[0; "℄� �N(Sp) disjoint fromSupp(�) such that� = 0 on [0; "=2℄� �N(Sp) and� = 1
onf"g��N(Sp), and let�00 = �+d(��). Then the product[d(��)^�℄ is equal to[d�^�℄
and is in the image of the usual productHp0(X; �X)�Hq0(X)! Hp0+q0(X; �X) that
is obviously zero. Hence[�0 ^ �℄ = [� ^ �℄ + [d(��) ^ �℄ = [�^ �℄ in Hp0+q0(X; �X).
The case� is replaced is similar. Thus one has a well-defined productHp0(X)�Hq0(X)�Hr0(X)! Hp0+q0+r0(X; �X) = Hd(X; �X):

We shall take Poincaré-duals to�; �; 
 and calculate the triple product by means of the
intersection theory. Let8><>: D1 def= f(x; y; z) 2 Rd j jyj2=4 + jzj2 � 1; x = 0g �= Dp+1D2 def= f(x; y; z) 2 Rd j jzj2=4 + jxj2 � 1; y = 0g �= Dq+1D3 def= f(x; y; z) 2 Rd j jxj2=4 + jyj2 � 1; z = 0g �= Dr+1
so that�D1 = Sp; �D2 = Sq ; �D3 = Sr. One may see thatD1\D2\D3 = pt. But their"-Thom forms restricted toX do not satisfy the hypotheses for�; �; 
 since, for example,D1 intersects not onlySp but alsoSr transversely. To rid the superfluous intersections,
attach handles parallel to the components to the disks (see Figure 2(b)). Then we obtain
three cyclesD01; D02; D03 fromD1; D2; D3 respectively and"-Thom forms of them satisfy
the required hypotheses. Thus the triple product evaluatedon the fundamental class is
given by the triple intersectionD01 \D02 \D03. One may check that there are only double
intersections over the side-faces of the attached handles.HenceD01 \ D02 \D03 = D1 \D2 \D3 = pt. �

We define amodeled graph clasperas a connected uni-trivalent graph with

(1) vertex orientation on each trivalent vertex, namely, choice of an order of three
incident edges to the trivalent vertex,

(2) decomposition of each edge into a pair of half edges,
(3) a positive integerp(h) on each half edgeh so that ife = (h0; h1) is a decomposi-

tion of an edgee, p(h0)+p(h1) = d�1 and ifp = p(h1); q = p(h2); r = p(h3)
are numbers of three incident half edges of a trivalent vertex, then they satisfy the
condition (4.2),

(4) a p(hv)-sphere attached to each univalent vertexv wherehv is the half edge
containingv.

A graph clasperis a framed embedding of a modeled graph clasper into ad-dimensional
manifold together with structures (vertex orientations,p(�)). A framed link associated
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with a graph clasperG is a normally framed link in a regular neighborhood ofG obtained
by replacing each edge labeled(p; p0) with a Hopf link associated to anIp;p0 -clasper so
that the three spheres grouped together at a trivalent vertex form a Borromean rings.

Example4.8. An obvious example is a graph clasper without trivalent vertices. This is
just anIp;q-clasper. Another example of a graph clasper ford = 7 is depicted in Figure 3.

One may check that graph clasper with cycles exist only if thelabel p(h) = 1 is
allowed. This condition is always satisfied whend = 3 or 4 (see [W2] for related results
in this case). In the cased � 5, it may happen thatp(h) > 1 for all h. So in that case,
graph claspers with cycles do not exist, that is, only the tree shaped graph claspers exist.

In the cased = 3, there are many graph claspers so that any trivalent graph gives
rise to a graph clasper. However, in the cased � 4, no trivalent graph gives rise to a
graph clasper! For example, assume that the�-shaped graph clasper with labels(p1; p2),(q1; q2), (r1; r2) on the three edges does exist. Then the set of linear equations in those
numbersp1+p2 = q1+q2 = r1+r2 = d�1, p1+q1+r1 = 2d�3, p2+q2+r2 = 2d�3,0 < pi; qi; ri < d has the unique solution(p1; q1; r1; p2; q2; r2; d) = (1; 1; 1; 1; 1; 1; 3).
In order to construct ‘dual’ objects to the Kontsevich classes for trivalent graphs in high
dimensions though, we need to consider family of claspers asin the next subsection.

4.3. Graph clasper-bundles. We shall define graph clasper-bundles here. More pre-
cisely, the object of this subsection is to define the announced homomorphism 2n at the
beginning of this section. Letd = 4m� 1 � 3. In the following, we restrict only to theI2m�1;2m�1-claspers ind-dimensional manifolds for simplicity.

4.3.1. Certain family of three component links.The following claim is the key observa-
tion motivating the definition of the graph clasper-bundle.By analmostB-parametrized
embedding, we mean aB-parametrized family of smooth maps that are embeddings onB n fthe base pointg.
Observation 4.9. There exists an almostS2m�2-parametrized embedding of an isotopi-
cally trivial 3 component link into anm-ballBd(2) with radius 2:�t : S2m�1 t S2m�1 t S2m�1 ! Bd(2) � Rd ; t 2 S2m�2;
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such that the locus of their images, projected into a singleBd(2), is isotopic to a Bor-
romean rings of dimensions(2m� 2; 2m� 2; 4m� 3) with the fixed orientation so that
the three components lie onPyz; Pzx; Pxy respectively.

Proof. For a 3-component link embedding�, let �(i); i = 1; 2; 3, denote� restricted toi-th single component. Since the triple(2m � 1; 2m � 1; 4m � 3) for d = 4m � 1
satisfies the condition (4.2), we can form a Borromean rings�L in Bd(2) of dimensions(2m�1; 2m�1; 4m�3) as in the previous subsection. The(4m�3)-sphereL3 in Im�L
can be considered as a(2m� 2)-fold loop suspension of a(2m� 1)-sphere. Namely, by
composing with (S2m�2 � S2m�1; S2m�2 _ S2m�1)! (S4m�3; �);
we may represent�(3)L as anS2m�2-parametrized maps~�t : S2m�1 ! Bd(2). Therefore,�(i)t = �(i)L (constant overt) for i = 1; 2, and�(3)t = ~�t (t 2 S2m�2) gives the desired
family. �

We will consider a family of embeddingsft : Sp ! F parametrized byB as a trivial
sub bundle embedded in a trivial bundleF �B ! B so that the restriction toFt (t 2 B)
is the embeddingft. For usual graph claspers in [Hab, W] and in the previous subsection,
the Borromean rings may be inserted at trivalent vertices. For the definition of the graph
clasper-bundles, we will use the sub bundle representationof the Borromean ringsf�tgt
(with a little modification) at trivalent vertices.

4.3.2. Surgery along the family of three component links.Now we want to define cor-
rectly a surgery along such a three component parametrized link embeddings. In order for
such surgery to be well-defined, we need to overcome the following matter:� The image of the almost parametrized embedding~�t defined above degenerates

into a point in the fiber of the base pointt0 of S2m�2.
To overcome this, we define a parametrized embedding~'t : S2m�1 ! Bd(2) by modi-
fying ~�t so that it is non-degenerate everywhere overS2m�2.

LetQd � Bd(2) be a small neighborhood of the base point ofL3 whereL3 is the third
component of the image of�L appeared in Observation 4.9. First we make an embedding
of S2m�2�S2m�1 intoBd(2) by attaching a small(2m�1)-handle to the(4m�2)-disk
bounded byL3 along the trivially embedded(2m� 2)-sphere onL3 (see Figure 4). Then
we collapse the(2m� 1)-handle into its core(2m� 1)-disk so that� the (limiting) boundary of the resulting object is a smooth embedding outside the

part collapsed, and� after the collapsing, the image fromftg � S2m�1 � S2m�2 � S2m�1 for eacht 2 S2m�2 is a smooth embedding.

Such a family indeed exists and one may describe a tangentialstructure of it explicitly.
Here we assume that all the changes are included inInt(Qd). Then the resulting family
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of embeddings by the above construction is the desired one and we will denote it by~'t.
See Figure 4 for an explanation of this construction.

Proposition 4.10. The parametrized embedding(�(1)L ; �(2)L ; ~'t) can be obtained (up to
isotopy) by surgery along a (unsuspended)Y -graph clasper embedded inBd(2) from the

trivial one (�(1)L ; �(2)L ; �(3)0 ) where� theY -graph clasper is associated with the Borromean rings of dimensions(4m�3; 4m� 3; 4m� 3),� �(3)0 : S2m�1 ! Bd(2) is a parameter-independent embedding disjoint from�(1)L and�(2)L .

Proof. After a suitable isotopy, one can push most ofIm ~'t � Bd(2) � S2m�2 into the
fiberBd(2)t0 of the base pointt0 2 S2m�2. Then the image of(�(1)L ; �(2)L ; ~'t) restricts inBd(2)t0 to a Borromean rings of dimensions(2m� 1; 2m� 1; 4m� 3), with something
small change near the base point of the third component, thatis disjoint from all other
components. Then the first two components trivially arranged overS2m�2 together with
the modified(4m� 3)-sphere inBd(2)t0 , may be seen as a part of the Borromean rings
of dimensions(4m� 3; 4m� 3; 4m� 3) in (6m� 3)-dimension. Since the Borromean
rings can be obtained by aY -surgery, the result follows. �
Remark4.11. Of course the isotopy used in the proof of Proposition 4.10 may break the
bundle structure. Proposition 4.10 is just a claim about a manifold structure of the total
space.

4.3.3. Graph clasper-bundle.We denote by�Yt the parametrized embedding(�(1)L ; �(2)L ; ~'t) : S2m�1 t S2m�1 t S2m�1 ! IntBd(2); t 2 S2m�2
defined above with the fixed orientation that yields the orientation of Observation 4.9.
Note that�Yt can be chosen so that the base point of eachS2m�1 component is fixed. By
using this parametrized embedding, we shall construct graph clasper-bundles.

LetV be ad-dimensional handlebody obtained from ad-disk by attaching three(2m�1)-handles along 3-component isotopically trivial framed link embedded in the boundary
of thed-disk. Here we fix an order of the three(2m� 1)-handles.
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'1' varies

'2' varies

(i)                                        (ii)

1 2

MMG(�) Bd(2)Bd(2)V1 V2
H11
H12H13 H21H22H23

FIGURE 5

First we shall define the(V rel �)-bundle�Y : V Y ! S2m�2. Let us assume
thatBd(2) is embedded in the interior ofV . Then we make a direct product bundle(V;Bd(2)) � S2m�2 ! S2m�2 to obtain a trivial subBd(2)-bundle bBd(2)(�= Bd(2) �S2m�2) embedded in the trivialV -bundlebV �= V � S2m�2 ! S2m�2. Now let�I : (I2m�1;2m�1 t I2m�1;2m�1 t I2m�1;2m�1)� S2m�2 ! V
be the three disjoint union of families of claspers parametrized byS2m�2 such that

(1) For eacht 2 S2m�2, one of the two leaves of thei-th component (i = 1; 2; 3) ofIm (�I )t is standardly embedded parallel to the core of thei-th (2m� 1)-handle
of Bd(2), and the other leaf is embedded inV isotopically trivially. We consider
the latter leaf as an embedding(Si)t : S2m�1 ! Bd(2).

(2) bBd(2)\Im �I is precisely a graph (of a function ont) of anS2m�2-parametrized
embedding of the three leaves intoBd(2). Thus� bBd(2) \ Im�I �= (pt t pt tpt)� S2m�2, the intersection points of edges and leaves of claspers.

(3) (�I )t is standard, i.e., independent oft, onV nBd(2).
(4) (�I )t restricted to the leavesS1 t S2 t S3 coincides with�Yt . Also assume

that the orientations of the three components coincide withthat of �Yt . Then
the orientations on the three leaves embedded in the cores ofthe handles are
automatically determined.

There is a picture for�I in Figure 5(ii). Then simultaneous surgeries onbV along the
family of claspers�I yield another(V rel �)-bundle. We denote the resulting bundle by�Y : V Y ! S2m�2.
Definition 4.12 (V Y -surgery). For a given(M� rel �)-bundle� : E ! B, we assume
that a trivialV -bundlebV �= V �B is embedded inE as a trivial subV -bundle of�. Then



30 T. WATANABE

theV Y -surgery on� along bV , denoted by�Y (bV ;') : EY (bV ;') ! B, is defined with a
choice of aC1-map' : B ! S2m�2 as follows:�Y (bV ;') def= �j(E n Int(bV )) [� '��YEY (bV ;') def= E n Int(bV ) [� ('�V Y )
where'��Y denotes the pullback bundle structure (not to be seen as a pullback of a map)
and where the trivial bundle structures on the boundaries are glued together correctly.�
Definition 4.13 (Graph clasper-bundle). Let � 2 G2n be a trivalent graph with2n ver-
tices and3n edges not having the part like( and letG(�) � M be a fixedirregular
graph clasper for� trivially embedded in ad-dimensional manifoldM with all labels
equal to2m� 1. Here ‘irregular’ means that only the condition (4.2) for the three labels
at trivalent vertices fails to be a graph clasper. Then replaceG(�) with 2n disjointly em-
bedded handlebodiesV1t� � �tV2n each diffeomorphic toV and satisfying the following
conditions.

(1) Decompose each handlebodyVi into a0-handleBi and three(2m � 1)-handlesH i1 t H i2 t H i3 so that the order corresponds to the order of the three handles
of V and so thatBi includes thei-th vertex ofG(�). ThenH ij andH i0k are
included insideNii0 nBi, wherej andk are determined by the vertex orientation
ofG(�), and whereNii0 denotes a thin tubular neighborhood of the edge ofG(�)
connecting thei-th and thei0-th vertices (if exists). The cores of the handlesH ij andH i0k link with the linking number1, and their positions are canonically
determined by the framing of the edge similarly as the associated Hopf link to anIp;q-clasper. Here the orientation of the cores are assumed to bethose induced
from V .

(2) Each edge ofG(�) has just one associated pair of handles(H ij ; H i0k ) as above.

Then the(M� rel �)-bundle��d1;d2;:::;d2n : E�d1;d2;:::;d2n ! (S2m�2)�2n is defined as
follows. First by taking a direct product(M�; V1t� � �tV2n)�(S2m�2)�2n, we obtain2n
disjointly embedded trivial subV -bundles in the trivial(M� rel �)-bundle�triv : Etriv(�=M� � (S2m�2)�2n) proj:! (S2m�2)�2n. Then we define��d1;d2;:::;d2n def= �Y (V1�S2m�2;'1)���Y (V2n�S2m�2;'2n)trivE�d1;d2;:::;d2n def= EY (V1�S2m�2;'1)���Y (V2n�S2m�2;'2n)triv
where'i : (Sm�2)�2n ! S2m�2 is theC1-map for theV Y -sugery alongVi, that is
the i-th projection followed by a degreedi mapS2m�2 ! S2m�2. We will call such
constructed�� a graph clasper-bundleassociated to�. (See Figure 5.) �
Remark4.14. 1. The above definition of graph clasper-bundles is also valid form = 1,
i.e., for graph clasper-bundles consisting ofI1;1-claspers in a 3-manifold. In this case, the
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bundle is overS0 � � � � � S0, namely an alternating sum ofY -clasper surgeries, which
appeared in the context of finite type theory of 3-manifolds [Hab2].

2. One may generalize the notion of the graph clasper-bundles to arbitrary baseB
with general choices for'i. In fact there are possibly non isomorphicV Y -surgeries as

many as[B;S2m�2℄ 1�1$ 
frdimB�(2m�2)(B), the set of bordism classes of normally
framed(dimB � (2m � 2))-dimensional submanifolds ofB, by the Pontrjagin–Thom
construction.

4.3.4. Existence of vertical framings.To complete the definition of 2n, we give each
graph clasper-bundle a certain vertical framing.

Proposition 4.15. For m � 2 and for any� 2 G2n, there is a positive integerrm for
which the graph clasper-bundle��rm;:::;rm : E�rm;:::;rm ! (S2m�2)�2n can be vertically
framed and it is standard outsideV1 t � � � t V2n.

The statement given here is stronger than just for saying theexistence of the vertical
framing because it is needed in the proof of Proposition 4.16.

Proof. Considerrm as a degreerm mapS2m�2 ! S2m�2. Then it is enough to prove
the claim for the(V rel �)-bundler�m�Y : r�mV Y ! S2m�2 since then��rm;:::;rm can be
obtained from it byV Y -surgeries for framed bundles.

Consider the trivial(V rel �)-bundle���Y : bV ! D2m�2 pulled back from�Y by the
characteristic map� : D2m�2 ! S2m�2 of the(2m� 2)-cell of the cell decompositionS2m�2 = e0 [ e2m�2. Then after a homotopy, we may assume that the pullback bundle���Y is standard on(���Y )�1(D2m�2 n B) for a small(2m� 2)-diskB embedded inInt(D2m�2), i.e., the holonomy group is reducible tofidg there.

Now we fix a deformation retractionH : D2m�2 � I ! D2m�2 so thatH(D2m�2 �f0g) = D2m�2 andH(D2m�2 � f1g) = fqg 2 �D2m�2. Then for each pointx 2 �D2m�2 n fqg, 
x def= H(x; �) : I ! D2m�2 defines a path fromx to q. Along the
path
�1x , diffeomorphisms relative-� between fibers'x;t : bV
�1x (t) �! bVq are induced as

the results of the deformation. Then by the pullback'�x;t�Eq a vertical framing onbV is de-
fined. In particular, a possibly non standard vertical framing�� is defined on the standard
product bundle(���Y )�1(�D2m�2) as the result. Since the bundle���Y is standard out-
sideB in an unframed sense,�� is non standard only inside(���Y )�1(D2m�3) whereD2m�3 � �D2m�2 is an embedded disk.

Thus the problem is reduced to the vanishing of the obstruction to homotoping the
framing�� to the standard one�std for some choice of positive integerrm. To see that,
we shall fix a relative CW cochain complexC�(V �D2m�3; �(V �D2m�3);Z)where
the obstruction cocycle may lie, as follows. We can choose a relative cell decomposition
of (V �D2m�3; �(V �D2m�3)) with three(4m� 3)-cells and one(6m� 4)-cell, the
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corresponding chain complex isC�(V �D2m�3; �(V �D2m�3);Z) =8<: Z�Z�Z if � = 4m� 3Z if � = 6m� 40 if otherwise

The obstruction cocycle
4m�3(�� ; �std) to homotoping the framings�� and�std up to
the(4m� 3)-skeleton lies in the group:Hom(Z�3; �4m�3SO4m�1) �= (�4m�3SO)�3 �= � 0 if m: evenZ�32 if m: odd

Hence
4m�3(�� ; �std) vanishes ifrm is even.
Similarly, the obstruction cocycle
6m�4(�� ; �std) lies in the groupHom(Z; �6m�4SO4m�1) �= �6m�4SO4m�1

that is finite. Thus we may takerm > 0 with rmj2o(�6m�4SO4m�1) so thatr�m�Y and
thus��rm;:::;rm have vertical framings with the required property. �
4.4. Duality between graph clasper-bundles and characteristicclasses.Let m � 2
and letM be a(4m� 1)-dimensional homology sphere. Let 2n : G2n ! 
4n(m�1)(B̂Di�M)
 Q
be the linear map defined for each connected trivalent graph� as follows:

if � does not have(:  2n is defined as the bordism class of the classifying map
for ��rm;:::;rm with choices of an orientation on� and of a vertical framing�(�)
which is standard outsideV1t� � �tV2n �M . (Such a choice of�(�) is possible
by Proposition 4.15.)

if � has(:  2n is defined as0.

We will write [E℄ for the bordism class of the classifying map intôBDi�M for a bundleE ! B. Here 2n may depend on choices made. But the final claim is the same.

4.4.1. A choice of the fundamental form in graph clasper-bundles.The choice of the
framing made in Proposition 4.15 allows one to make the fundamental(4m � 2)-form
onC2(M)-bundles more accessible. LetC(��) : C(E�) ! B be theC2(M)-bundle

associated to the(M� rel �)-bundle��rm;:::;rm and let�M def= f��Di�M wheref : C(E�)! C2(M)n ÊDi�M
is a bundle morphism whose pullback is isomorphic toC(��). To simplify the proof of
Theorem 4.1, we replace�M with another one within a cohomology class.

One may check that the valueh�2n; [E�rm;:::;rm ℄i does not change if the form�M is
replaced with another one�0M satisfying� [(�M )t℄ = [(�0M )t℄ in H4m�2(C2(M)t;R) for everyt 2 B,� ���0M = ��0M and
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So we shall replace�M with such a�0M satisfying some more conditions so that we can
compute the integral explicitly.

For anyi 2 f1; : : : ; 2ng, fix disjoint simpleS2m�1-cycles(aij)j=1;2;3 and simpleS2m�1-cycles(bij)j=1;2;3 on�Vi �= (S2m�1 � S2m�1)#3 such that� aij bounds a2m-disk inVi andbij bounds a2m-disk inM n Int(Vi).� haij ; biki�Vi = Æjk .

Let �(aij ; t) be a closed(2m� 1)-form on[t(Vi)t, the subVi-bundle ofE�rm;:::;rm , such
that its support intersects the thin collarI � (�Vi)t inside I � (aij � D2m�1) whereaij � D2m�1 is a fixed tubular neighborhood ofaij in (�Vi)t, and where the restriction

of �(aij ; t) here is the"-Thom form onI � aji . We can show that�(aij ; t) can indeed be
chosen to be smooth with respect tot (See Appendix C).

In [Les2], a useful proposition has been proved, that allowsto compute 3-dimensional
configuration space integrals explicitly in some cases and that is implicit in [KT]. We
prove and use the following proposition, a higher dimensional version of Lescop’s propo-
sition in some restricted cases, which is enough for graph clasper-bundles.

Proposition 4.16. Suppose thatm � 2 and that the vertical framing ofE�rm;:::;rm is
chosen as�(�) (as in Proposition 4.15). The form�M onC(E�) can be replaced without
affecting the resulting valueh�2n; [E�rm;:::;rm ℄i satisfying the following conditions:� Let I(t) � f1; : : : ; 2ng be the subset of labels such thati 2 I(t) if and only ifti 6= t0i . Then for anyt = (t1; : : : ; t2n); t0 = (t01; : : : ; t02n) 2 (S2m�2)�2n withti = t0i (8i 2 I(t) \ I(t0)), we have�M (t1; : : : ; t2n) = �M (t01; : : : ; t02n) where

it makes sense, namely onC2�(M nSi2I(t)[I(t0) Int(Vi)) [Sj2I(t)\I(t0)(Vj)t�:� On (Vi)t � (Vk)t,�M (t) = Xj;l2f1;2;3gLk(bij ; bkl ) p�1�(aij ; t) ^ p�2�(akl ; t):
wherep1; p2 : C2(M) ! C1(M) denote the first and the second projection,
respectively.

Proposition 4.16 follows from the observation above and from an analogous argument
as in [Les2, Proposition 3.3]. Proof will be given in Appendix C.

Remark4.17. In Proposition 4.16, we can choose�(aij ; t) so that it depends only onti
(see Appendix C).

Proof of Theorem 4.1.First we assume that the form�M onC(E�) has been chosen as
in Proposition 4.16.
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(1) The commutativity of the diagram is a consequence of the following identity:h�2n; [E�rm;:::;rm ℄i = r2nm [�℄
for any choice of the vertical framing�(�) that is standard outsideV1 t � � � t V2n. So we
shall prove this identity.

Let (t1; : : : ; t2n) denote the coordinate of(S2m�2)�2n and let!(�0)(t1; : : : ; t2n) be
the integrand form for the integral associated to�0, restricted to the configuration space
fiber of (t1; : : : ; t2n).

First we see that the computation can be simplified to the one for a bundle with fiber a
direct product of some simple manifolds. LetUi � C2n(M) be the subset consisting of
configurations such that no points are included inVi. We show that the fiber integration
restricted toUi-fiber degenerates. We consider the casei = 1 for simplicity. Let�1 : S2m�1�S2m�2�� � ��S2m�2 ! ft01g�S2m�2�� � ��S2m�2; (t01 : base point)
be the projection defined by(t1; t2; : : : ; t2n) 7! (t01; t2; : : : ; t2n). Then�1 can be ex-
tended to a bundle morphism̂�1 between the subU1-bundles of��rm;:::;rm and of its re-
striction toft01g�(S2m�2)�2n�1. Since!(�0)(t1; t2; � � � ; t2n) = �̂�1!(�0)(t01; t2; � � � ; t2n)
overU1 by Proposition 4.16, we haveZ(t1;:::;t2n)2(S2m�2)�2n Z fU1 !(�0)(t1; t2; � � � ; t2n)= Z(S2m�2)�2n Z fU1 �̂�1!(�0)(t01; t2; � � � ; t2n)= Zft01g�(S2m�2)�2n�1 Z fU1 !(�0)(t01; t2; � � � ; t2n) = 0
by a dimensional reason, where

R f is an integral along the fibers. So it suffices to compute

the integral overeC def= C2n(M)nSi Ui-fibers. Since at least one point is included in eachVi for any configuration ineC, eC is a disjoint union of the spaces of the formV1�� � ��V2n.
We show that the integration domain can be reduced further into a direct product

of some closed manifolds. LeteVi ! S2m�2 be the(Vi rel �)-bundle induced from��rm;:::;rm by the inclusion�i : S2m�2 ,! (S2m�2)�2n given byti 7! (t01; : : : ; ti; : : : ; t02n),
followed by restriction to theVi-fiber (this is precisely isomorphic tor�m�Y ). Recall from
Remark 4.17 that in Proposition 4.16, we can choose�(aij ; t) so that it depends only onti. Hence the integral can be rewritten as

(4.4)
Z(S2m�2)�2n Z fV1�����V2n !(�0) = ZeV1�:::�eV2n !(�0):

It would be best to explain this identity for the simplest case �0 = � as the other cases
are completely analogous. By Proposition 4.16, one has on(V1 � V2)t=(t1;t2),�M (t) = p�1�(a11; t1)^p�2�(a21; t2)+p�1�(a12; t1)^p�2�(a22; t2)+p�1�(a13; t1)^p�2�(a23; t2):
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Hence on(V1 � V2)t=(t1;t2),!(�) = �M (t)^3= 3! p�1(�(a11; t1) ^ �(a12; t1) ^ �(a13; t1)) ^ p�2(�(a21; t2) ^ �(a22; t2) ^ �(a23; t2)):
Write!(�)j(V1�V2)t=(t1;t2) = A(t1)^B(t2). Then the LHS of (4.4) can be written asZ(t1;t2)2(S2m�2)�2 Z fV1�V2 A(t1) ^ B(t2) = Z(S2m�2)�2 Z fV1 A(t1) ^ Z fV2 B(t2)= Zt12S2m�2 Z fV1 A(t1) Zt22S2m�2 Z fV2 B(t2) = ZeV1 A(t1) ZeV2 B(t2) = (RHS):

In Proposition 4.16, all the�-forms are standard near� eVi and hence the integral of
(4.4) is equal to the integral overeV 01 � � � � � eV 02n, whereeV 0i denotes the closed manifold
obtained fromeVi by collapsing� eVi �= �Vi � S2m�2 into �Vi � ft0i g. Thus the integral
can be given by a homological evaluation with the fundamental class.

Now triple cup product evaluated on the fundamental homology class of the closed
manifold eV 0i H2m�1(eV 0i ;Z)^H2m�1(eV 0i ;Z)^H2m�1(eV 0i ;Z)! Z
considered up to a sign, coincide with triple intersection among the Poincaré duals inH4m�2(eV 0i ;Z). In particular, if�i; �i; 
i are the integral homology classes representing
the cores of the three(2m� 1)-handles of a fiber ofeV 0i and if��i ; ��i ; 
�i are the duals of�i; �i; 
i with respect to the evaluation, thenh��i [ ��i [ 
�i ; [eV 0i ℄i = PD(��i ) � PD(��i ) � PD(
�i ) = rm
since the suspendedY -clasper over anS2m�2 component can be replaced with an unsus-
pendedY -clasper by Proposition 4.10, and by Proposition 4.7 with the spheres replaced
by the family of(2m� 1)-handles ineV 0i . Note thatH6m�3(eV 0i ;Z) �= H2m�1(eV 0i ;Z)^3
is one dimensional and spanned by��i [ ��i [ 
�i .

On the other hand, the(4m�2)-form �e=(i;j) def= ��e�M 2 
4m�2(C(E�)) is consid-

ered as an element ofH2m�1(eV 0i ;R)
H2m�1 (eV 0j ;R) corresponding to the linking form

and thus is in the image fromH2m�1(eV 0i ;Z)
H2m�1(eV 0j ;Z). Here�e is defined as inx2.4.
Therefore, the integral is obtained by contractions of the tensors and we getZeV 01�����eV 02n e!(�0) = hYe �e; [eV 01 � � � � � eV 02n℄i = � jAute�j � r2nm if �0 = �0 otherwise

wherejAute�j denotes the order of the automorphisms of� fixing all vertices. See Fig-
ure 6 for an explanation of this for the�-graph. Here,��12 = ��1
��2+��1
��2+
�1

�2
and thush�312; [eV 01 � eV 02 ℄i = 3! (PD(��1) � PD(��1 ) � PD(
�1 )) � (PD(��2) � PD(��2) �PD(
�2 )) = 3! r2m.



36 T. WATANABE

contraction
+ + + + + +

+ + + + + +

1 2 1 2 1 2

�1 �2
��12��12��12

R
R(H2m�1(eV 01 )
H2m�1(eV 02 ))^3H2m�1(eV 01 )^3
H2m�1(eV 02 )^3

FIGURE 6

More generally, exactlyjAutv�j def= jAut�j=jAute�j connected components ineC
contribute to the term of� asr2nm and the other parts do not contribute. Therefore,h�2n; [E�rm;:::;rm ; �(�)℄i = jAutv�j �2n(eV 01 � � � � � eV 02n)= jAutv�jX�0 [�0℄jAut �0j ZeV 01�����eV 02n e!(�0) = jAutv�j jAute�j � r2nm [�℄jAut�j = r2nm [�℄:

(2) Let eEi def= ��iE�rm;:::;rm . One may check by a property of clasper thateEi is
a trivial (M� rel �)-bundle as an unframed one. Thus the image of(S2m�2)�2n inBDi�(M� rel �) can be made into the one homotopy equivalent toS4n(m�1) by attaching2n (2m�1)-cells along eachS2m�2-component of�1_� � �_�2n : S2m�2_� � �_S2m�2 �(S2m�2)�2n and that the unframed(M� rel �)-bundle structure extends over the result-
ing complexX ' S4n(m�1). So we need to consider the obstruction to extend the vertical
framing onE�rm;:::;rm overX . To do this, we consider the standardly vertically framed

trivial (M� rel �)-bundleE
elli def= M� � D2m�1 over a(2m � 1)-disk. Here we may
assume that the vertical framing restricted to the boundaryof eEi, i.e., sub�M�-bundle ofeEi, coincides with that of�E
elli restricted to�D2m�1. We consider the obstruction for
the existence of the homotopy between the vertical framingsof eEi and ofE
elli j�D2m�1.

By the Poincaré-Lefschetz duality, we can show thatHj(M� �D2m�2; �(M� �D2m�2);Z)�= � Z if j = 6m� 30 otherwise

whereD2m�2 � �D2m�1 is an embedded disk where the obstruction may be included.
So the only obstruction may lie inH6m�3(M� �D2m�2; �(M� �D2m�2);�6m�3SO4m�1) �= �6m�3SO4m�1
that is finite ifm is even. So if we replaceE�rm;:::;rm withE�rm;:::;pmrm;:::;rm , wherepm =o(�6m�3SO4m�1), the vertical framing extends toE�rm;:::;pmrm;:::;rm[E
elli j�D2m�1(M��D2m�1). Therefore, the vertical framing onE�pmrm;:::;pmrm can be extended overX .
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Finally, by collapsing the attached(2m � 1)-cells into the base point by a homo-

topy, we obtain a vertically framed bundle associated to a class in�4n(m�1)B̂Di�M .

Since[E�pmrm;:::;pmrm ℄ = p2nm [E�rm;:::;rm ℄ in 
4n(m�1)(B̂Di�M) and the attaching of a(2m� 1)-cell followed by the collapsing corresponds to a bordism in̂BDi�M , the result
follows. �
Proof of Corollary 4.5. In the light of Theorem 4.1(2), we can choose a framed(D4m�1 rel �)-bundleHu�m ! S4m�4 for which[Hu�m℄ = [E�pmrm;pmrm ℄ in 
4m�4(B̂Di� S4m�1):
Now we shall compute the valuê�2(o(�8m�5)Hu�m). Note that the closure of the total
space ofo(�8m�5)Hu�m is diffeomorphic to the standard(8m � 5)-sphere. So the sig-
nature defect term vanishes for a choice of framing by means of the assumption for the
choice of� 0ED that we have made inx3, and thus the framing correction term contributes
just by an integer multiple of the jump (3.5).

By making use of Theorem 4.1 and (3.5), we obtain:�̂2(o(�8m�5)Hu�m) = 12 r2mp2mo(�8m�5) + a2m�1(4m� 3)!4 Nm
for someNm 2 Z. (Here we ignore the numberqk in Theorem 3.2 (nowk = 2m) becauseHu�m is already vertically framed. The result differs only by overall multiple of qk. So

it causes no problem.) The last row is non-zero if48r2mp2mo(�8m�5)a2m�1(4m�3)! =2 Z. This number
is precisely the number of the statement for the following data: By Lemma 3.26, we can
chooserm = 4Q2m�2j=1 o(�Sj ) andpm = o4m�16m�3 = 4Q2m�1j=2 o(�Sj ) = 2Q2m�1j=1 o(�Sj )
for evenm. Further, it is known thatj�8m�5j = j�S8m�5j 24m�6 (24m�3 � 1)B2m�1a2m�12m� 1
(see Kervaire–Milnor [KM]). �
Proof of Corollary 4.6.We prove that the number (4.1) is not integral whenm satisfies
the required properties. Since4m � 3 is prime,(4m � 2)! has a prime factor4m � 3.
SinceB2m�1 does not have a divisor4m � 3 by the hypothesis, it is enough to prove
that 4m � 3 - (24m�3 � 1)o(�S8m�5)o(�S2m�1)2Q2m�2`=1 o(�Si )4. As in the proof of
Corollary 3.6, one may see that Fact 3.29(1) implies4m � 3 - 24m�3 � 1. Further,
by Theorem 3.28,o(�S8m�5)o(�S2m�1)2Q2m�2`=1 o(�Si )4 does not have the prime divisorp = 4m� 3 because2i(p� 1)� 1 = 8m� 9; 16m� 17; : : : and2m� 1 < 8m� 9 <8m� 5 < 16m� 7 for m > 1. This completes the proof. �
Remark4.18. Though we have proved the non-triviality of�̂2 for somem, we can not
still say that it gives an integral lift of�0-invariant as in Corollary 3.5 because�0-invariant
of 
l(o(�8m�5)Hu�m) is trivial.
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5. FURTHER DIRECTIONS

Now we shall briefly remark some directions expected to be studied after the present
paper.

Conjecture 5.1. For eachk � 3, (�1)kbk�1�̂2(E) is an integral lift of a non-trivial
invariant
k�1�0(
l(qkE)) 2 Zbk�1 where the notations are those of Corollary 3.5.

If this conjecture is true, then some of the Antonelli–Burghelea–Kahn constructions
turn out to have infinite order. The following conjecture implies Conjecture 5.1.

Conjecture 5.2. For all m � 2, the numbers (3.2) are not integral.

The following conjecture may be a slightly different direction (see Corollary 4.5), but
seems easier.

Conjecture 5.3. For all m � 2 even, the number (4.1) is not integral.

Problem 5.4. Determine the subgroupIm (
l) � �d.
Fine partial results are obtained in [ABK, ABK2], but it still seems open. By Corol-

lary 4.6, our bundle��1;1 : E�1;1 ! (S4m�2)�2 gives a non-trivial element of the group�8m�4BDi�(D8m�1 rel �). On the other hand, in 3-dimension, Habiro’s graph clasper
construction for the�-graph gives 2 times the boundary of theE8-plumbing manifold. If
a similar statement is also true in higher dimensional situations, then it may give a finer
estimate of the order ofIm (
l) since the boundary of theE8-plumbing manifold gives
a generator of the cyclic group�4t�1(��) (see [KM]). Of course,̂�2-invariant of the
two differ by some rational multiple. For this one might needto calculate�0-invariant of
l(E�1;1).
Conjecture 5.5. The images of the IHX and the AS relations under 2n vanish.

If this conjecture is true, then it suggests that the equivalence relation “bordant” corre-
sponds to “equivalent modulo higher order elements” in 3-dimension.

In 3-dimension, there is an explicitly computable theory that is called the LMO invari-
ant [LMO]. It is known that the LMO invariant is also a universal Ohtsuki finite type
invariant [Le] and conjectured that the LMO invariant ‘coincides’ with the Kontsevich–
Kuperberg–Thurston’s configuration space invariant. To get an analogous computable
theory as the LMO, one might need the following problem.

Problem 5.6. Give a smooth bundle analogue of the Kirby theorem [Kir].

In [MY], T. Moriyama developed some cobordism theory and obtained aQ-valued
invariant of rational homology 3-spheres, that is an integral lift of the Rokhlin invari-
ant for integral homology spheres. It would be interesting to ask whether his theory is
generalizable to higher dimensional sphere bundles considered in this paper.
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APPENDIX A. THE CLOSED FORM� ON C2(M)-BUNDLE

Let � : E ! B be a vertically framed(M� rel �)-bundle with the base spaceB a
smooth manifold for which the de Rham theorem holds. The construction of the Kont-
sevich classes requires a ‘fundamental’ closed form� on the associatedC2(M)-bundleC(�) : C(E)! B to�. We shall give a proof that there exists such a well-defined closed
form�, which is omitted in [Kon].

The Serre spectral sequence of the fibration(C2(M); �C2(M))! (C(E); C� (E))! B;
whereC�(�) : C�(E)! B be the sub�C2(M)-bundle ofC(�), gives the following

Lemma A.1. There exists a spectral sequence withEp;q2 �= Hp(B; fHq(C2(M)b; �C2(M)b;Z)gb2B)V Hp+q(C(E); C� (E);Z):
The following lemma can be proved by exactly the same way as [Les, Lemma 2.1].

Lemma A.2. H�(C2(M);Z)�= H�(Sd�1;Z):
Lemma A.3. For anyb 2 B and for0 � q � d,Hq(C2(M)b; �C2(M)b;Z)�= 0.

Proof. In this proof, all the (co)homology coefficients are assumedinZ. By the Poincaré-
Lefschetz duality and Lemma A.2, we haveHq(C2(M)b; �C2(M)b) �= H2d�q(C2(M)) �= H2d�q(Sd�1) �= 0 (0 � q � d): �
Lemma A.4. For 0 � q � d,Hq(C(E); C�(E);Z)�= 0.

Proof. This follows immediately from Lemma A.1 and Lemma A.3. �
Lemma A.5. The inclusion induces an isomorphismHd�1(C(E);Z)�= Hd�1(C�(E);Z):
Proof. This follows from the cohomology exact sequence of the pair(C(E); C� (E)) and
from Lemma A.4. �

Since we have a closed(d� 1)-form ��E!Sd�1 onC�(E) uniquely determined by the
framing, there exists a well-defined closed(d � 1)-form � onC(E) extending��E!Sd�1
by Lemma A.5 and by the de Rham theorem. Note that the verticalframing onC(E)
determines a trivialSd�1-bundle structure onC�(E) and thus the closed(d� 1)-form onC(E) is non-trivial in cohomology.
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APPENDIX B. PUSHFORWARD

Let � : E ! B be a bundle withd-dimensional fiberF . Then thepush-forward(or
integral along the fiber) ��! of an(d+ p)-form! onE is ap-form onB defined byZ
 ��! = Z��1(
) !;
where
 is ap-dimensional chain inB.

Let �� : �FE ! B be the restriction of� to �F -bundle with the orientation induced
from Int(F ), i.e.,O�F = i(n)OF wheren is the in-going normal vector field over�F .
Then the generalized Stokes theorem for the pushforward is

(B.1) d��! = ��d! + (�1)deg���!���!:
APPENDIX C. SIMULTANEOUS NORMALIZATION OF THE �M -FORMS

Here we normalize the closed(4m�2)-form�M onC2(M) for (4m�1)-dimensional
homology spheres, based on the line of a part of [Les2, Proposition 3.3]. The proof below
seems quite simpler than Lescop’s one in 3-dimension, due tothe fact that the involved
surgery is restricted and that for higher dimension, some homology classes involved be-
come different dimensional while for 3-dimension they are not (and the proof is surpris-
ingly difficult). In this section, we denote the fiber of the base pointt0 2 (S2m�2)�2n
of E�rm;:::;rm simply by M . We identify a regular neighborhood of�Vi � M with[�4; 4℄� �Vi and fors 2 [�4; 4℄, setVi[s℄ def= � Vi [ ([0; s℄� �Vi) if s � 0Vi n ((s; 0℄� �Vi) if s � 0
Let S(aij) � Vi[4℄ andS(bik) � M n Int (Vi) be the2m-disks bounded by4 � aij andbik respectively, such that ifLk(aij ; ai0j0) = 1 for i 6= i0, thenS(bij) \ Vi0 = S(ai0j0), and ifLk(aij ; ai0j0 ) = 0, thenS(bij) \ Vi0 = ;.

Let�(bij) be the closed(2m�1)-form supported in an"-tubular neighborhoodN"S(bij)
ofS(bij)which is restricted to the Thom class inH2m�1(N"S(bij)x; �(N"S(bij)x);R); x 2S(bij), and�(aij) is defined by the pullback by the inclusionN"S(aij) ! N"S(bi0j0) for
somei0; j0.

Fix a base pointpi on �Vi and let!(pi) be a closed(4m � 2)-form supported in a
tubular neighborhood of the union of the path[pi;1℄ and�C1(M) such that it restricts as
the usual volume form on�C1(M) = S4m�2 and such that the support is disjoint from
all Vi[4℄ and from all the supports of the above forms. First we shall normalize�M on the
subsetVi � (C1(M) n Vi[3℄) � C2(M).
Proposition C.1. For any subsetN � f1; : : : ; 2ng, we can choose�M on C2(M) so
that:



ON KONTSEVICH’S CHARACTERISTIC CLASSES 41

(1) For everyi 2 N , the restriction of�M toVi� (C1(M)nVi[3℄) � C2(M) equalsX(j;k)2f1;2;3g2 Lk(bij ; aik[4℄) p�1�(aij) ^ p�2�(bik) + p�2!(pi)
wherep1; p2 : C2(M) ! C1(M) denote the first and the second projection,
respectively.

(2) �M is antisymmetric with respect to� and fundamental, that is closed and�M j�C2(M) = p�M!S4m�2 wherepM : �C2(M) ! S4m�2 is the projection
onto theS4m�2 factor determined by the framing.

Assume Proposition C.1 for the moment. LetE�(i) be the pullback bundle fromE�rm;:::;rm by the inclusionS2m�2 ,! (S2m�2)�2n and leteVi[s℄ be the sub(Vi[s℄ rel �)-
bundle ofE�(i). We extend the forms�(aij) and �(bik) to the globally defined ones�(aij ; t) and�(bik; t) on eVi[4℄ andE�(i) n Int(eVi) respectively, as follows.

Observe that there exists a(2m + 2m � 2 = 4m � 2)-manifold eS(aij) included ineVi[4℄, bounded by(4� aij)� S2m�2 � � eVi[4℄, such that it restricts toS(aij) in the fiber
of t0. Indeed, the third component of the locus of the parametrized link of Observation 4.9
bounds a(4m� 2)-disk if we ignore the other two components. This(4m� 2)-disk can
be considered as a collection of bounded2m-disks parametrized byt 2 S2m�2. So this
collection can be suspended overS2m�2 with some intersections with the other compo-
nents. Those intersections can be removed by suitable attachings of handles parallel to
the other two components. The resulting(4m� 2)-manifold is as required. Then�(aij ; t)
is defined as the restriction of the"-Thom form overeS(aij) to the fiber oft . �(bik; t) may
be naturally extended from�(aij ; t)’s by using�(bik)’s.

For I � f1; : : : ; 2ng and fort 2 (S2m�2)�2n such thatI(t) � I , define�0Mt onDI(�0Mt) def= �C2(Mt) n[i2I(Vi[�1℄t � Vi[3℄t) [ (Vi[3℄t � Vi[�1℄t)� [ p�112 �Mtnf1g
wherep12 : C2(Mt)!Mt �Mt be the projection, so that� �0Mt = �M onC2(Mt n [i2IVi[�1℄t) = C2(M n [i2IVi[�1℄),� �0Mt = X(j;k)2f1;2;3g2 Lk(bij ; aik[4℄) p�1�(aij ; t) ^ p�2�(bik; t) + p�2!(pi)

onp�112 ((Vi)t � (Mt n Vi[3℄t)) wheni 2 I .� �0Mt = ����0Mt onp�112 ((Mt n Vi[3℄t)� (Vi)t) wheni 2 I .� �0Mt = p�Mt!S4m�2 on�C2(Mt).
Note that this condition is consistent. In particular, by Proposition 4.15, the first and the

fourth conditions are compatible. LetC(E�(i)) def= [t=(t01;:::;ti;:::;t02n)C2(Mt) denote theC2(M)-bundle overS2m�2 associated withE�(i). In the following we shall see that the

form �0Mt defined over the bundleD(E�(i)) def= [t=(t01;:::;ti;:::;t02n)Dfig(�0Mt) extends to
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FIGURE 7. Area ofC2(M) where�M is normalized

a fundamental(4m�2)-form onC(E�(i)). The homology ofD(E�(i)) up to dimension(4m� 2) is given by the following lemmas.

Lemma C.2. There exists a homology spectral sequence withE2p;q �= Hp(S2m�2;Hq(Dfig(�0M );R)) V Hp+q(D(E�(i));R)
such thatE2p;q = E1p;q if p + q � 4m � 2 and such thatE1p;q = 0 if moreoverp =2f0; 2m�2g or q =2 f0; 2m; 4m�2g. In particular,H4m�2(D(E�(i));R) = E10;4m�2�E12m�2;2m = E20;4m�2 �E22m�2;2m.

Lemma C.3. (1) E12m�2;2m coincides with the kernel of the map induced by the
inclusion H4m�2(D(E�(i));R) ! H4m�2(C(E�(i));R):

(2) �0Mt evaluated onE12m�2;2m vanishes.

Proofs of Lemma C.2 and C.3 will be given later. It follows from these lemmas that

the form�0(i)t def= �0Mt (t = (t01; : : : ; ti; : : : ; t02n)) onD(E�(i)) is in the image of the
map H4m�2(C(E�(i));R) ! H4m�2(D(E�(i));R):
Namely,�0(i) extends to a closed form�1(i) onC(E�(i)) by the de Rham theorem, and�(i) def= �1(i)� ���1(i)2
is a fundamental form.
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For anyt 2 (S2m�2)�2n, we define�Mt = � �0Mt onC2(Mt) nSi2I(t)(Vi[�1℄t � Vi[3℄t) [ (Vi[3℄t � Vi[�1℄t)�(i)t onC2(Vi[4℄t) for i 2 I(t)
Then�Mt is the required form of Proposition 4.16.

Proof of Proposition C.1.We first prove the proposition forN = f1g. Let �0 be a fun-
damental(4m � 2)-form onC2(M) and let� be the closed(4m � 2)-form onV1[1℄ �(C1(M) n IntV1[2℄) defined by the statement. Since integrals for both�0 and� co-
incide onH4m�2(V1[1℄ � (C1(M) n IntV1[2℄);R), there exists a(4m � 3)-form � onV1[1℄� (C1(M) n IntV1[2℄) such that� = �0 + d�:
Here we may assume that� = 0 on V1[1℄ � �C1(M) because� is closed onV1[1℄ ��C1(M) and hence exact there.

We further modify� so to coincide with�0 outsideV1[1℄� (C1(M)n IntV1[2℄). Let�
be a smooth function onC2(M) supported inV1[1℄� (C1(M) n IntV1[2℄), and constant
equal to 1 onV1 � (C1(M) n V1[3℄). Then set�a def= �0 + d(��):�a is as required onV1 � (C1(M) n V1[3℄) and coincides with�0 on �C2(M) becaused(��) = 0 there.

Similar modification to�a for (C1(M) n V1[3℄)� V1, that can be done disjointly from
the previous ones, yields another(4m� 2)-form �b that is as required on�C2(M) [ (V1 � (C1(M) n V1[3℄)) [ ((C1(M) n V1[3℄)� V1):
Thus�M def= (�b � ���b)=2 is the required form forN = f1g.

Now we prove the proposition for generalN by induction onjN j = i. Let �0 be
the (4m � 2)-form satisfying all the hypotheses forN = f1; : : : ; i � 1g, and let� be
the (4m � 2)-form satisfying the hypotheses onfig obtained by the first step from�0,
replacingVi with Vi[1℄. Then there exists a(4m�3)-form� such that� = �0+d� where� may be assumed to vanish on�C2(M) becauseH4m�3(�C2(M);R) = 0.

Let� be a smooth function� supported inVi[1℄� (C1(M)n IntVi[2℄), that is constant

equal to 1 onVi � (C1(M) n Vi[3℄), and let�a def= �0 + d(��). Then�a is as required on�C2(M) [ [k2N(Vk � (C1(M) n Vk[3℄)) [ [k2Nnfig((C1(M) n Vk[3℄)� Vk):
Still we need to prove that�a is as required inVi[1℄ � (�C1(M) [ Si�1k=1 Vk), where
the support of� intersects the previous changes for�0. By the assumptions,� may be
assumed to vanish onVi[1℄� �C1(M) and is closed onVi[1℄� Vk for i 6= k. Further byH4m�3(Vi[1℄� Vk;R) = 0, we may assume that� vanishes onVi[1℄� Vk .
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Finally, by similar modifications as in the first step, we can modify �a so that it inte-
grates correctly as required, and antisymmetric with respect to ��. �
Proof of Lemma C.2.First we compute the homology ofDfig(�0M ). For any subman-
ifold X of M , we denote bySTX the face of�C2(X) corresponding to the blow up
along the main diagonal�X � X�2. Since the inclusion fromDfig(�0M ) to (C2(M) nC2(Vi[�1℄)) [ STVi is a homotopy equivalence, it suffices to compute the homology of
the latter space.

Let M = C1(M) andV = Vi. We compute the homology ofC2(M) n C2(V ) '�C2(M) n �C2(V ) where �C2(X) def= X�2 n fdiagonalg.
Now we shall first compute the homology ofM�2 n V �2. Observe thatH�(M n V ) =8>><>>: R[�M ℄ if � = 4m� 2R[ai1 [4℄℄� R[ai2 [4℄℄� R[ai3 [4℄℄ if � = 2m� 1R[pt℄ if � = 00 otherwise

Then the Mayer-Vietoris sequence involving the homology ofM�2 nV �2 = (M � (M nV )) [ ((M n V )�M) is as follows.(MnV )�2 M�(MnV )+(MnV )�M M�2nV �2H4m�2 ! R[�M
1℄+R[1
�M℄+Pj;k R[�aij
�aik℄ � R[�M
1℄+R[1
�M℄ 0! ?H4m�3�2m ! 0 ! 0 ! ?H2m�1 ! Pj(R[1
�aij℄+R[�aij
1℄) ,! Pj(R[1
�aij℄+R[�aij
1℄) 0! ?H2m�2�1 ! 0 ! 0 ! ?H0 ! R ! R + R ! R
Here�aij def= aij [4℄. Therefore the homology ofM�2nV �2 of dimensions at most(4m�2)
is H�(M�2 n V �2) = � 0 if 1 � � � 4m� 2R if � = 0
The homology ofC2(M) n C2(V ) is computed by the exact sequence:! H�( �C2(M)n �C2(V ))! H�(M�2nV �2)! H�(M�2nV �2; �C2(M)n �C2(V ))! � � �
By excision, we haveH�(M�2 n V �2; �C2(M) n �C2(V ))�= H�((M n V )� R4m�1 ; (M n V )� (R4m�1 n f0g))�= H��(4m�1)(M n V )
H4m�2(S4m�2):
In particular,H�(M�2 n V �2; �C2(M) n �C2(V )) = 0 for 0 � � � 4m � 2. Thus the
above exact sequence turns out to be as follows and the homology of �C2(M) n �C2(V ) is
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determined up to dimension(4m� 3).�C2(M)n �C2(V ) M�2nV �2 (M�2nV �2; �C2(M)n �C2(V ))H4m�2 ! ? ! 0 ! 0H4m�3�1 ! 0 ! 0 ! 0H0 ! R ! R ! 0
Then the homology ofC2(M) n C2(V ) [ STV is computed as follows. Note that

this space can be obtained by gluingSTM �= M � S4m�2 andC2(M) n C2(V ) alongST (M n V ) �= (M n V )� S4m�2. The Mayer-Vietoris sequence is as follows.(MnV )�S4m�2 M�S4m�2+C2(M)nC2(V ) C2(M)nC2(V )[STVH4m�3�2m+1 ! 0 ! 0 ! 0H2m ! 0 ! 0 ! ?H2m�1 ! Pj R[�aij
1℄ ! 0 ! 0H2m�2�1 ! 0 ! 0 ! 0H0 ! R ! R + R ! R
HenceH�(Dfig(�0M )) vanishes at� = 1 � 2m� 1; 2m� 2 � 4m� 3. This shows thatE2p;q = 0 if p+ q � 4m� 2 and (p =2 f0; 2m� 2g or q =2 f0; 2m; 4m� 2g). Moreover,
all differentialsEr�;� ! Er��r;�+r�1, r � 2 involvingErp;q (p + q � 4m � 2) are zero
and henceE2p;q = E1p;q there. �
Lescop’s cyclesF (a). In order to prove Lemma C.3, we shall give a higher dimensional
analogue of Lescop’s cycles, which were constructed by Lescop in 3-dimension [Les2],
to get the generator ofE12m�2;4m�2(D(E�(i))). Namely, for eacha = aij , we consider a(4m� 2)-cycleF (a) on the configuration space bundleD(E�(i)) of the form:F (a) def=(C(a)� S2m�2)[ �(eS(a)e�(4� p(a))) [ �((4� p(a))e�eS(a))[ diag(n)(eS(a)) (p(a): base point ofa)

whereeS(a)e�(4 � p(a)) def= [tfxt � (4� p(a)t) jxt 2 eS(a)tg and(4� p(a))e�eS(a) is
its symmetric. The other chainsC(a); diag(n)(eS(a)) involved are defined below.

First we choose a vector fieldn that is a section of the trivialS4m�2-bundle℄STV [4℄
(the subSTV [4℄-bundle ofeV [4℄) restricted toeS(a) such that near� eS(a) it is normal toeS(a) and tangent to� eV [4℄. Moreover we assume that the map

(C.1) (eS(a); � eS(a))! (S4m�2; �)
which is a composition of the trivialization and the projection given byn to theS4m�2-
factor, has mapping degree 0 so thatF (a) represents a class inE12m�2;4m�2. Then we
introduce a local coordinatea� [0; 1℄ � �V where the second coordinate determined by
the direction ofn.
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FIGURE 8. Lescop’s cycleF (a)C(a): TheC(a) is a2m-chain onC2([0; 4℄�a� [0; 1℄) � C2(Mt)nC2(V [�1℄t)[STVt defined as a sum of the following chains:� T (0� a� 0; 0� a� 1)� A(0; 1)� (0� a� 0)� ��([0; 4℄� p(a)� 1) [ (4� p(a)� [0; 1℄)�� �(4� p(a)� 0)� (0� a� [0; 1℄)� [ �([0; 4℄� p(a)� 0)� (0� a� 1)�
To describeT (0� a� 0; 0� a� 1) andA(0; 1), we identifyS2m�1 with the

reduced suspension�S2m�2 = (S2m�2 � I)=(S2m�2 � f0; 1g [ f1g � I),I = [�1; 1℄ and introduce a corresponding coordinate(x; z) 2 S2m�2� I . Then
we consider the2m-dimensional submanifoldT of (S2m�2� I)� (S2m�2� I)
defined byT def= f(x; z)� (x; z0) jx 2 S2m�2; z; z0 2 I; z � z0g � (S2m�2 � I)� (S2m�2 � I)



ON KONTSEVICH’S CHARACTERISTIC CLASSES 47

with�T = f(x; z)� (x; z)g [ f(x; 1)� (x; z)g [ f(x; z)� (x;�1)g:
Consider a pair of parallel cycles0� a� 0 and0� a� 1 and identify(0� a�0)� (0� a� 1) by the base point preserving (p(a)$ f1g) diffeomorphism' : (0� a� 0)� (0� a� 1) �! S2m�1 � S2m�1 pr (S2m�2 � I)� (S2m�2 � I):
Then we setT (0� a� 0; 0� a� 1) def= '�1pr(T )A(0; 1) def= f(x� 0)� (x� s) jx 2 a; s 2 (0; 1℄g� C2(Mt)
Note thatpr(T ) has the boundary of the form�S2m�1 [ (f1g� S2m�1) [ (S2m�1 � f1g) � S2m�1 � S2m�1:diag(n)(eS(a)): The chaindiag(n)(eS(a)) denotes the image ofeS(a) in the trivialS4m�2-bundle℄STV [4℄ under the sectionn.

See Figure 8 for the form ofF (a). Lemma C.3 follows from Lemma C.4 and C.5
described in the following.

Lemma C.4. (1) [F (a)℄ spansE12m�2;2m(D(E�(i))).
(2) F (a) is null inH4m�2(C(E�(i));R).

Proof. According to the proof of Lemma C.2 and from the definition ofF (a), the image
of [F (a)t℄ under the Mayer-Vietoris boundary homomorphism is[�a 
 1℄ in ST (M nVi) and moreover the collection of this element over theS2m�2 is [�a 
 S2m�2℄ inH2m�2(S2m�2;H2m�1(ST (M n Vi))). Hence[F (a)℄ spansE12m�2;2m(D(E�(i))).

The second assertion follows from the naturality of the Serre spactral sequences (see
e.g., [HatSS]). Namely, together with Lemma C.2, it impliesthat there are homomor-
phisms betweenE1�;�’s induced by the inclusionE10;4m�2(D(E�(i)))! E10;4m�2(C(E�(i)))E12m�2;2m(D(E�(i)))! E12m�2;2m(C(E�(i))) = 0
which is isomorphism onE10;4m�2 and is zero map onE12m�2;2m. �
Lemma C.5. The(4m� 2)-form�0Mt onD(E�(i)) evaluated on any cycle ofE12m�2;2m(D(E�(i))) vanishes.

Proof. We prove that ZF (a) �0Mt = 0:
First extend the form�M onC2(M) obviously to a fundamental(2m�2)-form on the

trivial bundleC2(M) � S2m�2 and denote it also by�M . We have
RC(a)�S2m�2 �0Mt =
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The normalization of Proposition C.1 and the partial extension followed imply that the

integrals vanish on�(eS(a)e�(4� p(a))) [ �((4� p(a))e�eS(a)):
SinceF (a) is null homologous inC(E�(i)) by Lemma C.4, it is enough to prove thatZdiag(n0)(eS0(a)) �M = Zdiag(n)(eS(a)) �0Mt

whereeS0(a) is any embedding of a(4m � 2)-manifold diffeomorphic toeS(a) into the
trivial sub bundleV [4℄ � S2m�2 of M � S2m�2 with the same behavior aseS(a) near�V � S2m�2, andn0 is any vector field oneS0(a) tangent to the fibers ofV [4℄� S2m�2
which coincides withn near the boundary and which satisfies the same constraint asn on
mapping degree of the map (C.1). Then the relative-� homology classes of the images of
the sectionsn andn0 coincide and hence the integrals also coincide. �
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