ON KONTSEVICH'S CHARACTERISTIC CLASSES FOR HIGHER
DIMENSIONAL HOMOLOGY SPHERE BUNDLES AND MILNOR’S
N-INVARIANT

TADAY UKI WATANABE

ABSTRACT. This paper is concerned with M. Kontsevich’s universakrabgeristic classes
of smooth bundles with fiber a ‘singularly’ framed odd-dirsmal homology sphere.
The main object of the present paper is to show that Kontseslasses for fiber dimen-
sions greater than 3 are highly non-trivial even after bewagle framing independent. We
have two approaches: (i) explicit framing correction withative characteristic classes of
the vertical tangent bundle, (ii) ‘clasper surgery’ constion and evaluation on them. By
the first approach, an invariant of bundles over spheresdiaat ‘integral lift’ of Milnor’s

M -invariant for exotic spheres is obtained and thus the niwiality follows. By the
second approach, non-triviality of higher classes and reimates for unstable rational
higher homotopy groups of the relative diffeomorphism goare obtained.

1. INTRODUCTION

In [Kon], M. Kontsevich introduced the notion of graph homgy and found impor-
tant relationships between the graph homology and the columies of various infinite
dimensional objects such as the moduli space of Riemanacasgf certain infinite di-
mensional Lie algebras and the classifying space for sono@tntbundles and so on. In
this paper, we focus on his work on the cohomology of the dlasg space for smooth
bundles. Kontsevich developed the method of configurafi@tes integral to construct
cohomology classes of the classifying space of smooth lkegnttat will be denoted by
EBEFM, with fiber diffeomorphic to a “singularly framed” odd-dimsional homology
spherel (see [Kon] org2 for the definition). Here, a singularly framed homology esgh
bundle denotes a homology sphere bundle with its fiber franoedsingularly outside a
fixed pointoco for which both structures of smooth bundle and fiber tangentke are
standardly trivialized neato.

For bundles with 3-dimensional fibers, all the 3-valent ksentch classes are 0-forms,
i.e., diffeomorphism invariants of homology 3-sphereshis case, it has been shown by
G. Kuperberg and D. Thurston in [KT] in a purely topologicedament that the space of
all the 3-valent real valued Kontsevich classes and a cesface of linear functionals on
3-valent graphs are isomorphic in a graded sense. (See alses€op’s generalization
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[Les2] in a de Rham theoretic approach.) Hence there arawany linearly independent
Kontsevich classes in 3-dimension.

For fiber dimensions greater than 3, it has not been undets$tow finely the Kont-
sevich classes explain the cohomologyE)/Tl)ﬁM. In this paper, we study the non-
triviality of the 3-valent Kontsevich classes after makihgm framing independent, by
two approaches.

The first one is for the simplest class corresponding to@kgraph, that is based on
the same spirit of Kuperberg—Thurston or of S. Morita’s fatanfor the Casson invari-
ant [Mo]. We will get an invariang, of unframed higher-dimensional homology sphere
bundles over a sphere by adding to the simplest class somplawif Hirzebruch'’s sig-
nature defect (Theorem 3.2). Moreover, in the case when biee i diffeomorphic to
a sphere, the total space of a bundle as a smooth manifoldfé®mtiorphic to a con-
nected sum of the trivial bundle and an exotic sphere. Sodv#n\’-invariant for exotic
spheres [Mil2] gives rise to a bundle invariant. By Novikav[Nov], and after that by
Antonelli-Burghelea-Kahnin [ABK], some higher dimensabsphere-bundles for which
the X'-invariant is non-trivial have been constructed. THenvariant, defined by using
the signature of a bounded manifold, is in some sense a hiiimensional analogue of
the Rokhlin invariant. We will show that in some caﬁ@sis an “integral lift" of the
M-invariant and hence conclude that Antonelli-Burgheleahiis constructions give in-
finite order elements of homotopy groups of the classifyipgce in that cases, which
is unexplainable by traditional approaches, and that tletesments are detected by the
é-invariant. This is a similar situation as in 3-dimensionermdthe Casson invariant is
an integral lift of the Rokhlin invariant. So it is expectdtht the(,-invariant has similar
features as for the Casson invariant. We also relate theiraality problem of (, to an
elementary number theory problem involving numerator afBalli numbers.

Another approach is to construct some framed bundles bygusgher-dimensional
“graph clasper-bundle surgery” and to show the non-tiiyialf the Kontsevich classes
corresponding to graphs with higher number of vertices ¢fém 4.1). Higher dimen-
sional claspers in a single manifold are introduced in [W,]\&2 higher dimensional
generalizations of Habiro's claspers in 3-dimension [Halith the idea of Kuperberg—
Thurston and Cattaneo—Cotta-Ramusino—Longoni [CCL] indnive will prove that the
space of all theR-valued Kontsevich classes corresponding to 3-valentrgrapth 2n-
vertices is linearly isomorphic to the dual of some space-gélgnt graphs with2n-
vertices, by computing the configuration space integrgti@iy as “counting the shapes
of graphs living in a bundle”. Further, when the fibed?™~!, each of our construction
of bundles is bordant to a bundle over a sphere and conségugatobtain new non-
trivial estimates for the rational homotopy groups of thinite dimensional Lie group
Diff (D3~ rel 9).

Let us give some historical remarks for homotopy typeDaff (D" rel ) from the
viewpoint of the present paper. A famous result of S. Smays #aatDiff (D? rel 9)
is contractible [Sm], which implies that any smodth? rel 9)-bundle must be trivial.
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Smale further conjectured that the same is truelidf (D? rel 9) and A. Hatcher has
proved Smale’s conjecture [Hat]. However, as remarked @libkias been observed after
Milnor's discovery of exotic spheres that the same is no értgue for largem (see
[Nov, ABK] etc.). Further, the rational homotopy classifioa has been completed in a
stable range. Namely, by usidg-theory, F. Farrell and W. Hsiang [FH] have obtained
the stable isomorphism

Q ifi=4p

] . 2k—1 ~
(1.1) ; BDiff(D mw®Q_{0 otherwise

for 2k — 1 > i. On the other hand, the estimates obtained in the preseat pgpsing
Kontsevich classes are rather unstable informations thatigjoint from Farrell-Hsiang'’s
stable range. However, it might be interesting to ask whtiere is some relationship
betweer(, and higher FR torsion class. Higher FR torsion class has teeply studied
by K. Igusa [Igu] and the fact that the generatorgf BDiff (D2~ rel 9) ® Q for 2k —
1 > 4p can be detected by higher FR torsion class has been provedby h

The present paper is organized as follows§2nsome notations and the definition of
the Kontsevich class are give§B and§4 correspond to the two approaches above respec-
tively. Some open problems are discusseflanin the appendix, proof of a proposition
used ing4 is given.

2. KONTSEVICH S UNIVERSAL CHARACTERISTIC CLASSES

We shall review the definition of Kontsevich’s universal deristic classes.

2.1. Feynman diagrams. First we define the spac4,,, of trivalent graphs. Arorien-
tation on a trivalent graph’ is a choice of an ordering of three edges incident to each
trivalent vertex, considered modulo even number of swaygpof the orders. We present
the orientation in plane diagrams by assuming that the afitiree edges incident to
each trivalent vertex is always given by anti-clockwisessrd

Let G2, be the vector space ov& spanned by all connected trivalent graphs with
oriented2n vertices. LetA,,, be the quotient space 6%, ® R by the subspace spanned
by the vectors of the following form:

(2.1)

We call the vectors in (2.1HX andAS relationsrespectively. We will write a$l'] the
element ofAs,,, represented by ® 1 for ' € G,,. Thedegreeof a trivalent graph is
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defined as the number of vertices. For example,= spany{[©]}, where[O] is the
©-graph.

2.2. Fulton-MacPherson-Kontsevich compactification of the cofiguration space. Let
M be ad-dimensional homology sphere with a fixed patate M. LetC,, (M) be the
Fulton-MacPherson-Kontsevich compactification ([FM]Xteé configuration space

M>*™\ (diagonals)

Here we include in the diagonals the set of configurationk wime points go infinity.
For example(C- (M) is obtained fromM x M by blowing up first alongco, c0) and
then along the disjoint diagonals

(the diagonal) ((M \ o) x {oc}) U ({oo} x (M \ o0)).

Neighborhood of the face @fC, (M) corresponding tdoc, o00) € M x M in Cy(M)
has the same behavior as a neighborhood of the fa¢dCefS?!) corresponding to
(00,00) € S9! x S9! and one has the Gauss mag.—: from the (cc, 0o)-face

of 8C»(S4~1) to S?~1, associating unit relative vectors &f. So the Gauss map,
from the (0o, o0)-face of0C>(M) to S¢~1 is defined apga-1. Moreover, the union of
the faces corresponding to the above three diagonals isatigita trivial S?—'-bundle,
which is identified with a produc§?—'-bundle by the framing. Then one obtains a map
py : OCo(M) \ ((00,0)-face — S¢-1 given by the composition of the trivializa-
tion and the projection onto thg§?—!-factor. Thus we have defined a continuous map
py 2 0C2 (M) — S~ It is known thatp},wga-1, wherewga-1 is the SO -invariant
unit volume form onS¢ 1, extends to a close@ — 1)-form ay; onC> (M) and it gener-
atesHe~1(Cy(M); R) (see e.g., [Coh, Les]).

2.3. Universal smoothM -bundle. Let M* denoteM with a puncture ato € M. By a
smooth(M* rel 9)-bundle we mean a smooth bundle with fib&f® such that the bundle
is trivialized ono M ®. We will say that a smootfW/* rel 9)-bundle has &ertical framing
if there is a trivialization of its vertical tangent bundieamely, tangent bundle along the
M*-fibers, that is also standard neav/®.

Let Emb(M \ {oco}, R*) be the space of smooth tangentially framed embeddings
M \ {x} — R*> that are standard neav, i.e., coincide with the natural inclusion
R? C R> nearco. HereR> denotes the Hilbert space of square summable sequences.
We equipEmb(M \ {co}, R) with the FD-topology in [Mic]. Then the principal
Diff (M* rel 9)-bundle

Toirar : BEmb(M \ {oo}, R®) = Emb(M \ {oo}, R*®)/Diff (M* rel )

is a disjoint union of copies of the universal framieif (1/* rel 9)-bundles, each asso-
ciated to a homotopy class of framings &f* (in the case\/® is a punctured homology
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sphere, there are at mastxfinite-copiesj. We denote the bundIeDlgM simply by
EDiff M — BDiffM. We fix a base point of each componentB)lefM and fix a
standard framing on the fiber of iDiff (A/* rel ) acts onEmb(M \ {o0}, R*>) from
the right by (¢, 7r) - 9)(z) = (¢(g2), Far (9)) for ¢ € Emb(M \ {oc}, R*) and
for #ar : (M*,0M*) — (GL,(R?),1) being a difference from the standard framing.
BDiff M is also considered as the base of the universal smooth frahdedel 9)-bundle

mar : M x EDiff M — BDiff M,

associated tap;gnsf. Here the expressiof’ x ﬁ)?fM means the Borel construction
F Xpig (e rel o) EﬁiﬁM. From general theory of bundles, an isomorphism class of a
smooth framed M *® rel 9)-bundle E — B is determined by the homotopy class of a
classifying mapf : B — BDiff M (see e.g. [Mo2]). We will often identify a classifying
map f with the induced bundlg¢*mpigy, and in the light of this identification we will
identify each fiber of a bundle with a point BDiff M.

From the result of Appendix A, there exists a clogdd— 1)-form apigas on the
universalCy (M )-bundle

TCs(M) - CQ(M) X E—]S_IE‘M — .E_]S_IE.M
associated ta@;, whose restriction on each fiber represdatg].

2.4. Kontsevich’s characteristic classesLet T be a connected trivalent graph of degree
2n up to automorphism without a part likee and letw(I") be the3n(d — 1)-form on

Csn(M) x EDIff M defined by
wD= N\ drapirw

e: edge ofl’
where we fix a bijective correspondence between the set b€gsfl” and the set ofn
points in a configuration, and

¢ - Con(M) x EDIffM — Oy (M) x EDiff M

is the projection corresponding to picking of the two endp®ofe. Note that the choice
of the formap;gas and therefore ofu(I") depends on the framing al/*. Then the
pushforward(mc,, (ar))«w(I') along the fiber ofre,, (ar) yields ann(d — 3)-form on

BDIff M. See Appendix B for the definition of the pushforward. Notatttihe choice
of the orientation orCs,, (M )-fiber has ambiguity which is canonically definable by the
orientation ofl".

*Here we say universal framed bundle in the sense that it isamdible into the space of framings dd
that are standard neas and that there is a bijection between the set of isomorphiasses of vertically framed
(M* rel 8)-bundles oveB and the homotopy séB, é?)i?fM].

fIn fact, BDiff M is a kind of an infinite dimensional smooth manifold for whitte de Rham theorem
holds. See [Mic, Mic2] for details about it.
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According to [Kon], the form

e TC <w(D)[T oy T
<.2n d:f Z ( CQ"YXL)th )[ ] c Qn(d 3) (BDIHM,AQn),
T

where the sum is over all connected trivalent graphs withewtnd whergAut I'| is the
order of the group of automorphismsbfis closed and thus descends to.4n,-valued
universal characteristic class of framed smodfhbundles. Here the ambiguity of the
orientation onCy,, (M) is canceled by taking the product with] and hence the resulting
class is independent of the choice of the orientatioris. dfurther,R-valued Kontsevich
classes are also defined by compogjsigwith any linear functional o, .

That(s,, is closed may be seen as follows. By a similar argument asTh [i€s] by
means of the generalized Stokes theorem (B.1), we have

_ ] ey
(2.2) dCon = ; RuiT] /5 o, w(T) (b€ BDIff M),

which vanishes oéﬁﬁM. HereS,, (T M), — My = C1(M,) C dC2(M) denotes
the face diffeomorphic to the bundle associated'fd; with fiber the space of configu-
rations of2n points in ad-dimensional plane considered modulo overall translateomd
dilations. Indeed{(,,, evaluated on any(d — 3)-chaino can be expressed as an integral
of a pulled back form from the fiber of a point ef Then the integral vanishes by a
dimensional reason.

In the caseV is a 3-dimensional homology sphere, the set of alls gives rise to a
universalR-valued finite type invariants, according to Kuperberg—Etan [KT].

2.5. Alternative definition of the Kontsevich classes.The above definition of,,, re-
lies on the de Rham theorem for infinite dimensional man#oldf course it is the most
universal way of construction, but since we consider onlyddes over finite dimensional
compact manifolds, we could avoid the de Rham theorem iniieftimension just by re-
placing the universal bundley, with a given vertically framed bundigr : £ — B; 1)
over a finite dimensional compact manifai®l This time one has a cohomology class
Con(m; 1) € H™473)(B: As,,) that can be defined completely in finite dimensional man-
ifolds. The naturality of the pushforward with respect tantlle morphisms implies that
Can(m; TE) is a characteristic class of framédi/® rel 9)-bundles. Then the evaluation on
bundles oven(d — 3)-dimensional manifolds gives rise to a framed bordism iiargr

<<2n (ﬂ-; TE)a > € Hom(ﬂn(d73) (BDIHM)a AQn)

Bordism invariance can also be proved in finite dimensioris Ehindeed enough for the
arguments of the present paper.



ON KONTSEVICH'S CHARACTERISTIC CLASSES 7

3. AN INVARIANT OF UNFRAMED S2¥~1-BUNDLES AND MILNOR’S X/ -INVARIANT

In this section, we restrict our study mainly to smo@fh?*~! rel §)-bundles over
S2k=4_ The dimensior(2k — 4) of the sphere coincide with the degreedef We will
show that the simplest Kontsevich classafter an addition of a certain rational multiple
of the signature defect invariant becomes an invariaohffamed D2*~! rel §)-bundles
and that it may be considered as an “integral lift” of Milr©A’-invariant of homotopy
spheres.

For a(D?* -1 rel9)-bundler : E — S**~* let 75 denote a vertical framing, if
exists. In the following, we assume that all vertically fresrbundler has a base point
on its base space and that a diffeomorphism between the filtlee base point ofr and
that of rpy = mg2r-1 is fixed so thatr represents an element of the homotopy group
mor_s BDIff S2=1. So integer multiplication to a bundle is defined.

Each element ofroj_, BDiff $2+~! may also be represented by(&2~! rel 9)-
bundlerp : Ep — D?*~* over D?*~* that is standardly trivialized on,' (0D?*—*).
ThendEp is canonically diffeomorphic t6**~¢ after a smoothing ang D**~° can be
glued alon@®Ep, in a natural way to obtain a closé¢dk — 5)-manifold and denote it by
CI(ED)

Now we shall choose a framing af(Ep). Note that if the vertical framingg,
on 7p that is standard om;' (9D?*—*) exists, then together with the standard fram-
ing on D?*~1 one has a trivialization of Ep. Then one can show thdtcl(Ep) @ e,
wheree denotes the trivial 1-dimensional outward normal bundidrivial and that the
trivialization of T'Ep together with the canonical trivialization efextends to whole of
Tcl(Ep) @ e sincemy,—6S04k—4 = m11.—6S50 = 0. We denote the extended trivializa-
tionbyry : Tcl(Ep) @ e = cl(Ep) x R*~*. Also, one obtains an extensiaff  of
the partial(2k — 1)-framerg,, overcl(Ep) as the partial2k — 1)-frame ofry; . Here we
assume thahe choice of extensiorf; | is always equal to some standardly fixed one (in-

dependent of the class mik_4§ﬁf S2k=1) that is possible since the behaviorrmgf,
on the boundary is standard. Moreover, we assumerfhats fixed so that whenp, rep-

resents) € moy_q BDIff $2¢~1 and hencel(Ep) = S*~5, 7, is homotopic to the one

induced from the standard (Euclidean) trivialization/ot*—* whered D**—* = cl(Ep).
Sincecl(Ep) is a homology4k — 5)-sphere, it bounds a compact orientéd — 4)-

manifoldWW. Then the relativd.-class is defined by Hirzebruchlspolynomial:

def
Li(TW;7g,) = Lij(p1,---,p))

wherep; = p;(TW; ;) is thej-th relative Pontrjagin class. Itis known that the relative
pr—1-Class can be interpreted as the obstruction claB& it (W, OW ; mag—sUsk—4/Usr—3)
to extend the partigRk — 1)-framingrz _ ondW to the partia 2k — 1)-framing over the
complexified tangent bundBW ® C. Then thek —1)-st signature defeds,_ (E; 75,)
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is defined by
A 1(By1pp) S L 1 (TW; 7, ) [W)] — sign W.

Proposition 3.1. A, (E;7g,) is well-defined, i.e., independent of the choices of the
manifold W and of the extended framingj; . Further, it is a group homomorphism

7T2k74_§_]5_i§‘ S2k-1 Q

Proof. Proof thatA,_; (E; 75, ) does not depend oW is the same as [Mo, Proposi-
tion 7.3]. By the assumptions for the choicergf above, the ambiguity of the choice can
be given by an overall twisting of the ‘horizontal’ framing &n element of7 L (R?*—*),
that does not affech ;1 (E; g, ) since the two can be connected by a path.

By the additivity of the relativd.;_; numbers, it is enough to show thay,_; at the
unit ofwzk_4§?)§f S2k=1 vanishes. But by the second assumption for the choieg of
all the relative Pontrjagin numbers and the signature vantsenrp represents 0. [

The main theorem of this section is the following

Theorem 3.2. Letk > 3 and letr : E — S?*~4 be a(D?*~! rel 9)-bundle overs?*—4.
Then there exists a positive integgr such thatg,m : ¢z E — S?*~* can be vertically
framed for allw. Further, if 75 is a vertical framing ony, 7, then the number

. def (=1)k1(2k — 2)!
G(E) = 12G(qwE; TE)|[e1=1 + 2 (22T — 1)y

where Bi_1 is the (k — 1)-st Bernoulli number and wher& (¢x E; 7r) is (2 (qem; TR)
evaluated or{S2*—4], does not depend on the choicergf, and is a group homomor-

phismmyy,_ 4 BDiff (D%~ rel 9) ® Q — Q that is a homotopy invariant of unframed
(D*~1 rel 9)-bundles.

| Akfl(QkE;TED) € Qa

Remark3.3. Sincea can be chosen i coefficient, one may defindut 0| (z|jg)=1 =
12 (olj@)=1 = (Tey(s2+-1))«w(©) completely in the singular cochain complexZnco-
efficients by replacing the pushforwatdc,s2x-1)). with the Gysin homomorphism
(W02(52k71))!. So one ha32 (Q(qu;TE)“@}:l €.

The formula for(, is similar to Morita’s splitting formula for the Casson imant (for
homology 3-spheres) in terms of the signature defect [Mo]:

)\(M):l/ aﬁ/f—lAl(M;TM).
6 Jo,(an) 8

(This is the version described in [KT, Les2]). So the existenf analogous properties
and constructions for the Casson invariant may be expeote@.f From this formula,
it seems likely that the Casson invariant is an integrablifthe Rokhlin invariant and in
fact it actually is, as is well known.

Now we shall discuss about a similar correspondence in higihgensions. Since the
closure of the total spacEp of a (D?*~! rel 3)-bundle may be obtained by gluing a
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(4k — 5)-disk to anothef4k — 5)-disk by some diffeomorphism, it is homeomorphic to
S4k=5 namely an exotic sphere (it is a well known fact that can le@ & using a Morse
theoretic argument). Hence diffeomorphism invariantsxotie spheres can be applied to
(D?**=1 rel §)-bundles.

Let©®¢ denote the group df-cobordism classes (equivalently, diffeomorphism classe
by the h-cobordism theorem) af-dimensional homotopy spheres. In [Mil], Milnor con-
structed homotopy spheres by introducing the bilineari gt

M(,-): TpSOgt1 @ mgSOpy1 — @prtatl

defined by surgery along(a, ¢)-dimensional Hopf link inS?+4+1 with a normal framing
given by an element of ,SO441 X 71,50p11.

Let ©¢(7) denote the subgroup @? consisting of elements which are boundaries
of parallelizable manifolds (i.e., manifolds with trividngent bundle). It is known that
both®?/0%(d7) andO?(dr) are finite abelian groups (see [KM]) and computations in
[KM] shows that ford = 4k — 1 < 15, ©*~1(97) occupies most 0®**—1. As a higher
dimensional analogue of the Rokhlin invariant, Milnor defirin [Mil2] a homomorphism
N O**=1(9r) — Zy, (N-invariant) by

sign W4+

N(OW) = (modby,)

whereW** parallelizable and; % 22k-2 (22k—1 _ 1) numerato(‘“fk), that has been

proved to be an isomorphism by Kervaire and Milnor in [KM]. &following theorem
has been proved in [ABK] by means of théinvariant.

Theorem 3.4(Antonelli-Burghelea—Kahn)For any0 < a < ¢, 0 < b < p, there is a
homomorphism

Sab : TpSOy—ar1 @ TySOp_pi1 — Taypro BDIff(DPFI=2=0=1 re] 9)

that makes the following diagram commutative:

15804 at1 @ 13S0y 411 — 10 p40 BDIff (DP9 re| )

linch@incl* cll

TpSO0q11 @ 7gSO0pi1 M Qrtat+l

Moreover, for allt > 13, image (clo s,,,) N O~ 1(d7) Nimage M (a+b+2 = 2t — 2)
contains an element of non zero order.

As a corollary to Theorem 3.2, it turns out trfatgives a refinement of some integer
multiple of \' applied to bundles. For each finite abelian gréiypve define

o(@) € min{d € Zso|dz = 0forallz € G}

and letr; denote the stable homotopy gromp, (S™ (n > €+ 1).
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Corollary 3.5. Letk > 3 and letr : E — S?*~* be a(D?*~! rel 9)-bundle. If
c(qrE) € ©*~5(dr), then

(3.1) ko1 X(A(grE)) = (-1)F b1 G(E)  (modby )

k—1
If moreoverl4 < k < 31, then there exists D2~ rel §)-bundler : E — S2k—4
for whichcl(qr E) € ©4%=5(87) andcx_1 N (cl(qe E)) £ 0. Therefore(—1)* bi_; (o (E)
is an integral lift of a non-trivial invarianic,_1 X' (cl(gx E)) € Zs,_, if 14 < k < 31.
More generally, if the number

wherec;, | = 4(2k — 3)! denom(wkfl )

(3.2)
2(4m)1(22m1 — 1)2num (8= ) T4 2 o(n S
(4m)( 4)ium(m) o om) k=2m+1
(29m=1 —1)By,,
2(4m — 2)1(22™~1 — 1)(22™=3 — 1)num (282 ) num (2=t T3 o(nf) I
=2m

(24771—3 _ 1)B2m—1

for m > 7 is not integral, then the same is true for suchHence it turns out that the
element constructed [ABK] has infinite order and

dim 7oy, BDiff(D**~ 1 rel 9) @ Q > 1
in those cases.

Note thatl2 (> (qx E; 7r)|[e1=1 € Z impliesby_, (>(E) € 7. The restrictionl4 < k
is equivalent tat > 13 of Theorem 3.4. The range < 31 is such that our PC replies
immediately.

Corollary 3.6. If m > 7 is such that

e 4m — 1is a prime and
e 2'm=1 _ 1 has a prime factop with p { num(B,,),

then(—l)kbk,lc} for k = 2m + 1 is an integral lift of a non-trivial invariant
Ck_l/\/(cl(qu)) S Zbkfr

In particularyn for which24™—1 —1 itself is a prime satisfies the first condition. For ex-
ample, the first 6 examples = 8,27, 32,152, 320, 551 (& k = 17,55, 65,305, 641,1103),
for which24™=1 —1 is prime, all satisfy both conditions of Corollary 3.6. Pi®of Corol-
lary 3.5 and 3.6 will be given after the proof of Theorem 3.2.

3.1. Obstructions for vertical framings on (D?*~! rel 9)-bundles. We shall discuss
about the obstructions for the existence of vertical frayaion (D2*~! rel §)-bundles
overS2*—* and we prove the first part of Theorem 3.2 here so that the Kuias classes
can be defined. In the rest of this section, we will deroté—! simply by S*.

Proposition 3.7. There exists a positive integeg so that any(S* rel 9)-bundle over
S2k=4 can be vertically framed after multiplied lgy.
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Proof. Let7 : E — S?*=* pe an(S* rel 8)-bundle overS?*~* and choose the obvious
cell decomposition 0f2¥~! with one 0-celle® and one(2k — 4)-cell e2*~%. We choose
the standard vertical framing orr* (e°).

To see that the vertical framing extends over the whol8%f*, we consider a triv-
ial (S* rel 9)-bundler,ox—1 : E(mox-a) = E(¢*(m te*~4)) — D2k~ over D24
pulled back by the characteristic map D4 — S?*=%_ Sincen 2«4 is trivial, one
may choose a vertical framing

71t TP (7 panea) 5 R2F1 x §° x D2k—4

such that

e itis standard onr; , (q) whereg is the base point fixed oRD?* 4,
e itis also standard on the suts*-bundle.

Since the bundle is assumed standard an*(e°), the pullback bundle-«—4 restricted
to D**—* is also standard. But, may not be standard there.

Now letry : THPE(m 21 -4)|0D?F—* 5 R2k—1 x §* x 9D?*~* be the vertical framing
onm_; ,(0D?*~*) that is everywhere standard, and consider the differentieeofwo
vertical framingsry andry:

g=TioTy 18 xAD** - GL(R* 1)

which is trivial on(S* x {q}) U (0S*® x D?*~*). Moreover, this map can be transformed
into amapg : S* x dD**~* — SO,y C GL,(R**~1) by the deformation retraction
given by the Gram-Schmidt orthonormalization. So it suffite prove the vanishing of
the obstruction for homotopinginto the constant map.

Choose a cell decomposition §# x dD?*~* with respect ta/S* x {q}) U (8S® x
dD*—*) naturally determined by a cell decomposition¥f with respect to the bound-
ary. By Lemma 3.8 below, we have

HI(S* x dD**=*,(S* x {q}) U (8S* x OD>**);7;S02;_1) = 0

for j < 4k — 7, which implies that the homotopy extends over tdé — 7)-skeleton
of S* x dD?*~*, By using Lemma 3.8 again, we see that the first obstructionhie
homotopy may lie in the group

H4k76(5. X 6D2k74, (S. X {q}) U (85. X 8D2k74); 7T4k—6502k—1)
= Tak—6S02k—1.
It is known that the group ;65051 is finite and hence one can choagethat kills
this obstruction so thag, = can be vertically framed. O
Lemma 3.8. Letw : E — B be a(S* rel d)-bundle over a close(®k — 6)-connected
oriented manifoldB of dimensior< 2k — 4. Then

0 if0<i<dk—7

Hi(E’aEUEq;Z)g{ H4%=5(B;Z) ifi=4k—6
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whereE, = 77! (q). O

3.2. Framing dependence of);. To prove Theorem 3.2 one needs to compare the fram-
ing dependences of both andA_; and to see that they differ by some non zero con-
stant. In this subsection we shall study the differencé-ofor two different vertical
framings.

Lemma 3.9. Let (r : E — B;7g) be a vertically framed null bordantS* rel 9)-
bundle over a close(Rk — 4)-manifold B not necessarily connected where we say that
a (S* rel 9)-bundle is framed null bordant if it represents the null eégrhof the bordism

groupQQk_4(§T)¥f S2k=1) Then(y(E; 1) = 0.

Proof. Since(s is a cocycle omBDiff S2k=1 it is a framed bordism invariant. Thus the
result follows. O

Lemma 3.10. (;(E; 7g) depends only on the homotopy class ©f

Proof. Let 7 and o be two mutually homotopic vertical framings. We prove that
G(E;TE) = G(EoR).

The homotopy gives rise to a cylindér x I with a vertical framingrg(t) (¢t € I)
such thatrg(0) = 7z and7g(1) = 1. This framed cylindel® x I is a vertically
framed bordism between the two vertically framed bundlesrz) and(E;og). Hence
Lemma 3.9 concludes the proof. O

Lemma 3.11. Letw : E — S?¢~* denote & S* rel )-bundle overS?*~4. Then there is
a homotopy deforming any continuous mapE — SOs_; that is trivial ondE U E,
into a map that is trivial outside &k — 5)-ball embedded .

Proof. Lemma 3.8 implies that the homotopy extends fremU E, over the(4k — 6)-

skeleton ofF? since H2*—5(S2k—4; 7,) = 0. O
Forany mag : (E,0EUE,) = (SOa;_1,id), lety(Q) : R2* 1 x E - R2*-1 x E

be the continuous map defined BYG) (v, ) def (G(z)v, ).

Lemma 3.12. Letr : E — S%~4 be a(S* rel 9)-bundle overS**~* and letry be a

vertical framing. Therz (E;¢(G) o ) — ((E; 7r) does not depend ary;. Namely, it
depends only on the homotopy clasg¢fr).

Proof. Let7 : E = E x I — §%k—4 = §2k=4 » [ pe the(S* rel d)-bundle over the
cylinder pulled back fromr by the projection onto the first factg?*—* x I — §2k—4
where we identifyE} x {0} with E. Suppose thafF is partially vertically framed on
E x {1} andE x {0} by the framings)(G) o 7 andry respectively.

By Lemma 3.11, we may assume after a homotopy ¢H{&t) o 7 andrg coincide
outsider—!(B?*~*) where B2*—* ¢ S§%t—* is an embedde®@k — 4)-disk. In other

words, the vertical framing OVEIS2h—1 — 52k~ {1}u—S%*~4x {0} extends tch2E—4
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minus an embedde@k — 3)-ball B2*—3 ¢ S2k—4._ Further we may conside®

771(S2k—4\ Int(B2*~3)) as a(S* rel §)-bundle bordism betweeR LI (S* x S2k—4)
and—E with some vertical framingz, extending(y)(G) o 7) U 7g, whereS® x §2k=4
is a trivial bundle. We denote by, the induced vertical framing on the trivig$® rel 9)-
bundleS® x S%*~* overdB**—3 = §2%—4 Note thatrg is homotopically canonical.
By Lemma 3.9, we havé; (E;¢(G) o Tr) + (2(S® x S*~*;15) — (2(E;7R) = 0.
Namely, by Lemma 3.1Q (E;¢(G) o i) — (2(EB;m8) = —(2(S* x S?F~*;15) does
not depend ong. O

The last proposition allows us to define
G(B; G) = (B (G) 0 8) — Go(Bs 7).
For a(S* rel9)-bundler : E — B, we denote byE, SO,;_1]°* the set of homotopy
classes of continuous maps

G: (E,BEU Eq) — (SOQk_l,id).

Itis known thatry, 5501 /torsion= Z. We fixama : (S**7°, %) — (SOa_1,id)
representing an infinite order generatormaf,_5SO-;—1 such that its image under the
natural mapryy—5502k—1 — Tak—5Usk—a/Uak—3 = Z represents positive multiple of
the usual choice of generator to define the relative Poritrjelgss as in [MS]. Then
let Ge(p) : (E,0E U E,;) — (SO2k_1,id) be a map that coincides wiili outside an
embedded4k — 5)-ball B**—5 in Int(E) and that the image dB**~> underGg(p) is
homotopic top.

The following proposition is a key to prove Theorem 3.2, digsieg the structure of
the set of homotopy classes of vertical framings.

Proposition 3.13. Let7 : E — S?*~* be a vertically framed S* rel 8)-bundle over
S2k=4 Then[E, SOq1]* /torsion = (|G (p)]), the free abelian group generated by
Gr(p). Thus the degre|?, SO2x—1]* — Z is defined with respect {67 (p)].

Proof. By Lemma 3.11, the obstruction to homotopiGginto the constant map over
whole of E is described by a homotopy class of a m3B**—° x I) = S5
SOs1_1, which can be considered as an elementQf 5502 _1. O

Lemma 3.14. LetG € [E, SO31—1]°*. Then we have
G(E;G) = G(E;GE(p)) deg G.
Proof. By Lemma 3.12, we have
Ga(9) + G (h) = (G(E;¢(g) 0 Yp(h) o TB) — G2(E3 () o 7))
+ (G(E;4(h) o 18) — G(B;78)) = G(E; gh).
Thereforel) : [E, SOar—1]* — A, is a group homomorphism into a torsion free abelian

group. Then Proposition 3.13 implies that it mustdeeg GG times the image of the infinite
order generatof g (p). O
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3.3. Framing dependence of relative Pontrjagin numbers.As for (>, we compute the
difference between\;_,’s for two different vertical framings. We only need to see th
framing dependence of tli& — 1)-st relative Pontrjagin number, the only indecomposable
terminL;_q, because

H*"(Ex I,O(E x I);Z)® H**'"=PN(E x [,8(E x I);Z) =0
unlessp =0ork — 1.

Lemma 3.15. Letw : E — S?*—* be a(S* rel d)-bundle overS?*—* that can be verti-
cally framed byrg. Thenp,_1 (E;¥(G) o 7g) — pr—1(F; 75) does not depend ory. It
depends only on the homotopy clasg¢fr).

Proof. The difference computes tli¢ — 1)-st relative Pontrjagin number @& x I with
respect to the vertical framingq G) o 7g andrg on E x {0, 1} together with the standard
vertical framing or0E x I. Then the proofis similar as Lemma 3.12 by the fact that the
(k — 1)-st relative Pontrjagin number vanishes on vertically fednsobordisms. O

Lemma 3.15 allows us to define
Pt (B5G) = pr_s (B39(G) 0 75) — pr— (B: 7).
Lemma 3.16. Let7 : E — S?¢—* be a vertically framedS® rel 8)-bundle overs?#—4,
Then
(3.3) P 1 (B;G) = —2%a;_1(2k — 3)! deg G
wherea,, = 1if n = 0 (mod 2) andw,, = 2 if n = 1 (mod 2), and

3 ifk=3
Br=< 1 ifk=5
0 otherwise

Proof. Sincep}, ,(E;G) : [E,SO2,—1]* — Z is a group homomorphism, it follows
from Proposition 3.13 that

P 1(E;G) = pr_1(E;Gp(p))deg G.

So it suffices to prove that, | (E;Gr(p)) = —2°%ax_1(2k — 3)!.

Recall that thék — 1)-st relative Pontrjagin clags, _, is considered as the obstruction
to extend the vertical framing o(E x I) to the complexified vertical tangent bundle
of E x I. (Note that now the orientation induced @& x {1} is opposite to the one
induced from that of” appeared in the definition &;_,. Hence the minus sign appears
in the above equation.) This obstruction lieshit*—°(E,0F; ma, 5Usr —4/Usp_3) =
H*=5(E,0E;7). In the cas&? = Gg(p), the obstruction corresponds to the image of
[p] € Tak—5S02,—1 under the mapryr_5S02,—1 — Tar—5Usr—a/Usk—3. This map
factors throughry, 5Usi—1 =2 Z and the following two lemmas conclude the proof]

Lemma 3.17. The inclusion : Us,—1 — Usk—4/Usai—3 Sends the generator of
Tak—s5Usk—1 =2 710 £(2k — 3)! times the generator ofy,—5Usg—a/Usp—3 = 7.
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Proof. This is a direct consequence of the following homotopy seqe®f the bundle:

i Usk—a Usk—a
_ IR _ e
Tak—5U2k—1 k-5 - T 5 Uares x Uni—s - 0
Al Al Al
7 7 Z (2131
The last isomorphism follows from Bott—Milnor [BM]. O

The following lemma is a special case of a result in [Lun].

Lemma 3.18(Lundell). The natural inclusior : SO 1 — Usi—1 sends the generator
[p] € Tar_5S09; 1 t0 £2°%q;_; times the generator ofy;, 5Usy 1 = 7Z.

3.4. Computation of ¢}(E; Gr(p)) and framing correction. Letp : E, — S*~* be
the real(2k — 1)-dimensional vector bundle ovért*~4 = B*~4 U,_gus (—B* %)
defined by

E, def (R2F=1 x BH=4), (R*~1 x —B*—%)
where the gluing diffeomorphisia : R*?*~1 x gB*—4 = R2k—1 x G4k—=5 _ R2k—1
S4k=5 is given by the twistv, z) — (p(z) " 'v, z).

For anR?*~! vector bundlep : E — B, we denote bySs(p) : S2(E) — B the
S2k=2-pundle associated t&. Letar be the Thom class of the**~2-bundleS:(E,)
whose restriction to a fiber is the generatofb¥*—2(5%+~2; 7). Let

02(E,) = af[Sa(E,)] - [0]/12.
To compute this number, we use the following lemma prove®@][

Lemma 3.19(Bott—Cattanea) Let7 : E — B be anR?*~! -vector bundle over a closed
manifold B and letS(F) be its associated sphere bundle with the canonical Eulesscla
e € H?*~2(S(E);7) of fiber tangent bundle. Then

me® = (—1)*12p_, (E),
twice of the(k — 1)-st Pontrjagin class.

Since the Euler number 8P~ 2 is 2, e restricts to twice the generator B?*~2(S2+~2: 7,).
Hence we have the following

Corollary 3.20. 85(E,) = (—=1)*"'py_1(E,)[S**] - [©]/48.
Lemma 3.21. (5 (E; Gr(p)) = 62(E,).

Proof. Throughout this proof we work with de Rham complexes althotige resulting
value is in%Z. We shall prove that the RHS can be reduced to the LHS. Cantide
decomposition

Ep N S4k74 — B4k74 UB (S4k75 % I) Ua (_B4k74)
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whereS**~5 x I is the mapping cylinder correspondingitoSinceB**—* and—B*k—*4

are obviously parallelizable and also the trivializatiotemds to the partial gluing’ '
BAk—4 Ug|pak—s (D4k75 x I) Ug|pak—s (—B4k74) whereD**=5 c §4k=5 = gptk—4

is an embedded disk near the base poinS8f—°, ar can be chosen so that it is an
extension of the fiber volume form aB’ determined via the trivialization. Hence over
Sy (p)~'(B'), the integral ofa. vanishes because the corresponding triple product on
S52k=2 yanishes, and one has

_ [9]/ 5
(5= T3 Sa(B, D85y T

whereD =5 <" g4k=5 \ Tnt pak—5

On the other hand, recall that the two different verticahfiagsy'(Gg(p)) o ¢ and
75 may be assumed coincide outside some embeddediisk® C Int(E) after a ho-
motopy. By Stokes’ theorem and by (2.2), we have

G(E;Ge(p) = G(E;¢(GE(p) o 78) = (B3 78)
(€]
12 /52(Rzk1><1><34k5)

whereR?*~1 x I x B**=5 denotes a triviak*~! -vector bundle ovef x B**~> and where
ar(R*~1 x I x B*~5) denotes &2k —2)-form on S» (R2*~1 x I x B4 ~3) representing
the Thom class of the associated trivigd* —2-bundle S?*=2 x I x B*~% extending
(W(GE(p)) o Tr)*wgek—> and(7g ) *wgek—> 0N S2k=2 x I x B4*~5 Existence of such
a(2k — 2)-form is because the restriction induces an isomorphism fi#* 2 (52k~2 x
I x B*~5:R) to H?*~2(9(S* 2 x I x B*~%); R).

Since we can choose &t*~2-bundle isomorphism betweeh (E,|D1* 5 x I) and
Sy (R?*=1 x I x B*—5) sending the trivialization 085 (E,|d(D{*~® x I)) to that of
Sy (R2k=1 x 9(I x B*~?)), the result follows. O

aT(RQk—l x I % B4k—1)3

Lemma 3.22. (4 (E; Ge(p)) = (—1)*712%q;,_, (2k — 3)! - [©]/48.

Proof. We use the notations appeared in the proof of Lemma 3.125‘21(@) denote the
associated2*~2-bundle to the vertical tangent bundié® E extending the trivial vertical
bundles orE x ({1} U {0}) with framingsy(G g (p)) o 7 andrg respectively.

By a similar argument as in the proof of Lemma 3.21, one carlsde

P (E,)[S™ 1] = —pi_1 (B; GE(p)).
Then by Lemma 3.21, Corollary 3.20 and Lemma 3.16,
G(B;Gp(p) = 62(E,) = (1) pri (E,)[S" 7] - [0]/48
= (=1)F=12Pkqy_ (2K — 3)! - [O]/48.
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Proof of Theorem 3.2By Lemma 3.16 and by

22k72(22k73 _ ].)Bk,1
(2k — 2)!

kal(pla ... ,pkfl) = Pk—1 + (terms Ofpk,Q, ... ,pl),

one has

—_1)k—1 _
(3.4) 22(k(;lk—3(ik1);c)_!1 (Ak-1(@ 5 9(G) © 7o) = Ak-1 (@1 Fs 7y )

= (—1)*2%a;_(2k — 3)! deg G /4

On the other hand, we know from Lemma 3.14 and Lemma 3.22 that
(—1)* 2% qy_y (2k — 3)! deg G/4 = —12 (y(qi E; G)|jo)=1
This completes the proof. O

3.5. Integral lift of Milnor's  M-invariant. In this subsection, we give a proof of Corol-
lary 3.5 and 3.6. First we need some computations to estigatehe following elemen-
tary fact is fundamental in the computation below.

Lemma 3.23. Suppose we have an exact sequence of finite abelian groups:
0—-H—-G—>K-—=D0.
Theno(G)|o(H)o(K).

From the proof of Proposition 3.7, we need to estimate theratiry;,_SO025—1. We
shall now estimate more generatlypf 7, SO; for p even and for%3 <j <p+1,forthe

next section. It is known that, SO; for p even is finite for allj. Leto? < o(m,50;).
Lemma 3.24. Letp be an even integer. Then
o4 if p=0(mod 8) obt2 if p=2,4,6 (mod 8)

Proof. Firstthe following exact sequence of a princig&?, .., -bundle implies that, SO, 1
is isomorphic tar, 1 SOy 4p+1/(SO, x SO,41) for sufficiently largen > p + 1:

SOnipi1 _, SOnqpt1 SOnqpt1
SO, P50, x SOyt SO,

So it suffices to determine theof the latter group. Consider another exact sequence:

0=mps1 5 1801 — =0

o SOn+p+1 SOn+p+1 _ Z2 if p= 0 (8)
L= Mg T G650, P9 T 0 i p=2,4.6(8)

Then by Lemma 3.23 we have the desired result. O
Lemma 3.25. Letp be an integer of the foratp’ + 1. Then
opl4 if p=1(mod 8) oh|2 if p=5(mod 8)
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Proof. Proof is similar to the proof of Lemma 3.24. This time we usedkact sequences
of the following principal bundles for sufficiently large

SO, = SO,45/S0, = SOy, / (SO, x SOp)
SO, = 804,45 /S0, = SO,4, /(SO x SO,)
O
Lemma 3.26. Letp be an integer not of the fordp’ — 1. Then for% <j<p+1,
ol ATIV= o(nf) ifp=0(mod8) of|2[T'2i* o(n?) if p=2,4,6 (mod 8)
ol ATT 3% o(xf) ifp=1(mod8) ol|2[]0_J"" o(x?) if p=5(mod8)
Proof. For# < j < p+ 1, the exact sequence of the bundi®; — SO;,; — S’
partially looks as follows:
Wf_j+1 = 7Tp+1Sj = mpS0; = 180,41
Note that the stability condition of the leftmost term isgmbyp—j+3 < j < pgﬁ <j.

Applying Lemma 3.23, we havel|oi™'o(x5 ;). Then starting from the result of

Lemma 3.24 or 3.25 and proceeding inductively in this manwerobtain the desired
result. O

By Lemma 3.26, we obtain the following
Lemma 3.27. |2 [125,* o(x 7).
To estimaten(r; ), we will need the following theorem due to H. Toda.

Theorem 3.28(H. Toda [To]) Letp be an odd prime. Thg-primary component (the
subgroup of all elements of order powerfof 73 is isomorphic to

Z, fork=2ip—1)—-1,i=1,2,....p—1
0 otherwise fork < 2p(p — 1) — 2

Proof of Corollary 3.5.First we prove (3.1). Namely, we prove that the RHS reduced
modulob,_; is equal to the LHS. Sinc& = cl(¢x E) bounds a parallelizable manifold
W, the relativeL;,_;-number inA;_; vanishes for the induced framingw onTX ¢ ¢
from that of 7. The difference of thé\,_; terms forrsw and forTjED may be given

by the relativg k — 1)-st Pontrjagin class on the cylind&t x I, that is integral. Indeed,
by stabilizingT (X x I) if necessary, the difference equals

(3.5)
—(-1 k—1 2k — 2)! 22k—2 22k—3 1 B._
2215(222@3 E 1)Bk)1 ((% — 2)!) S prot (T(X % 1); Tow +7p,) )[X x 1,0

(_1)k71 !
4 Pr—1(T (X x I);taw * 7, )[X x 1, 0]

ak_1(2k - 3)'
4

=+ o(T(X X I);Tow * 7, )[X x I,0] € Z
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whereraw 7, denotes the framing ofiX x {0, 1})U({*} x I) naturally extended from
Tow U7, and whereo(T (X x I); Taw * 7g, ) is the obstruction class to extending the
stable framingraw * 7, overX x I with values inmy; 5 SO = Z. The second equality
follows from a similar argument as in Lemma 3.16, or from [Mkmma 2]. Hence it
can be ignored when considered modbjo, after multiplied by(—1)*b;_;. Also the
term of (, can be ignored because it is integral. Then we may only needrtsider the
term

_1)E1(2% — 91
—(—1)’“22’“*4(22’“*3—1)num(4]f’°‘1)>< (D" @k=2)! onw

-1 22k(22k=3 —1)B;,_,
4B ) sign W
k—1 8
that is congruent to the LHS and hence (3.1) is proved.
In [ABK, Theorem 1.5.1], the\'-invariant of the non-trivial elements image (cl o
Sa.p) N ©**75(9m) Nimage M (see Theorem 3.4) are explicitly computed by means of
[Mil, Lemma 3]. Namely, one has@?*~! rel )-bundler : £, — S%*~* such that

% (modI°m) k=2m+1
—I”‘Ig”’l (modlzm 2m-l) k=2m

=4(2k — 3)! denom(

N(cl(Ey)) =

wherel; = 8b;.

Let g}, et 2]‘[3'“14 o(r7). Then by Lemma 3.27, if;_1 ) (cl(qr Fy)) were trivial,
thenci,_1 X' (cl(q}, Er)) must be trivial too. But if we could prove that the latter \ais
not integral, we would have a contradiction. We have

cam N (c1(gs,, 1 Er))

—4(4m)'denom(4B°m) 212 o(nS) - L (mod L)

cam—1A' (cl(gs,, Er.))

E4(4m—2)!den0m(4B2m 1) 2,7 o(xf) - I=2p=2 (mod 2z=2)

8

This is non-zero if
8(4m)!den0m(432m) : ;}mfg o(r?) - % ¢ 7 k=2m+1

8(4m — 2)'den0m(4B2”‘ 11)- e ro(nd) - I Im L¢7 k=2m

(3.6)

These numbers are precisely the numbers of the statement.
The claim for14 < k < 31 is by direct computation. For example, for= 14,
4Bs3 I71g
13 ) T
Theorem 3.28 fop = 31 implies that the31-primary component of-7’ for ¢ < 1858 is
zero unles¥ = 59,119,179, ...,1799. Henceo(r?) - - - o(73,) does not have a prime
divisor 31 and the number (3.6) must not be integral. FoK k£ < 31, we can compute
similarly. O

denom{8(26)! denom( } = 31-601- 1801 - 657931
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Proof of Corollary 3.6. Suppose thatn satisfies the required properties and petbe a
prime factor of2¢™~! — 1 with p { num(B,,). We prove that

2
pt2(4m)!(22m 1t — l)gnum(%) denom (Bay,) TT7 % o(n?).

First by hypothesis we have t num(%)z. Sincep is prime and since = 1 +
a(4dm — 1) > 4m by Fact 3.29(1) below t 2(4m)!. Further, by the von Staudt—Clausen
theorem (e.g., [MS]), which implies thatnom (Ba,,) = [[4-114m ¢, any prime factor
of denom (Bs,,) is less thantm. Hencep t denom (Bap).

By Fact 3.29(2), one hagd(24™ 1 —1,22m~1 1) = 1 fromged(4m—1,2m—1) =
1. Hencep t (221 —1)2.

So it is enough to prove thdf[;" > o(x5) does not have a prime divispr This
follows from Theorem 3.28 since the firéfor which 77 has non zerg-primary com-
ponentis{ = 2(p — 1) — 1 = 2p — 3 and all/ involved in the product is at most

4m — 2(< p — 2 < 2p — 3). Hence the proof is completed. O

The following facts may be well known.

Fact 3.29. (1) If gis an odd prime and an odd primedivides2? —1, thenp = 1+aq
for some positive integer.
(2) ged(p, @) =1= ged(2P - 1,29 -1) = 1.

Proof. (1) is a consequence of a special case of Fermat’s the@#&mh:= 1 (modp) for
any odd primep. Namely, ifp, ¢ are odd primes ang| 2? — 1, then2? = 1 (p). Sinceq
is prime,q |p — 1.

(2) If ged(p, q) = 1 andged(2P — 1,27 — 1) has an odd prime factet then2? — 1 =
29-1=0(r) &2° =29 =1(r). If s > 1is the minimum positive integer for which
2% = 1(r), thens divides bothp andgq. This is a contradiction. O
Remark3.30 In [ABK], non-integrality of \'(cl(E}))/(Ix—1/8) has been proved by nu-

merical estimations of the value. But similar argument duaswvork for non-integrality
of cx_1q; N (cl(Ex))/(Ix—1/8) since the value may be too large.

4. GRAPH CLASPERBUNDLES

For a(4m — 1)-dimensional homology sphetf®, we shall construct many smooth
framed(2M/* rel 9)-bundles associated to trivalent graphs, what we will aapd clasper-
bundles. We will show that they are in some sense dual to tmedéwich classes, which
implies the non-triviality of the classes.

More precisely, we shall construct a linear map

Yan : Gan = Qp(m—1)(BDIff M) ® Q

by using families of higher-dimensional claspers surgang will prove the following
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Theorem 4.1. Letm > 2 and letM be a(4m — 1)-dimensional homology sphere, then
(1) There exists a hon-zero integey, that makes the diagram

Yan
Gan —> Qg (m_1)(BDIEM) ® Q

proj-®1j l((zn")
erﬂ"

AQn AQn

commutative.
(2) If moreoverm is even, therIm oy IS included in the |mage of the Hurewicz

homomorphismy,, ,,, - 1)BD1ﬂ?M ®Q = Qup(m-— 1)(BDn‘fM) ® Q.

Composed with any linear functional on the space of disjaiibn of graphs satisfying
the AS and the IHX relations, any monomial of the fo¢#}, --- ¢, yieldsR-valued
characteristic classes. Recall that the degree of a trivglaph is the number of vertices.

Corollary 4.2. Suppose that: > 2 and that)M is a (4m — 1)-dimensional homology
sphere.

(1) There existlim R[A3, A, . . ., A3,]@°8 ") linearly independerik-valued char-
acteristic classes of degrde(m — 1) whereR[A3, A3, ..., A5 ] is the polyno-
mial ring generated by elements of the dual spadésA}, ..., A3,.

(2) dimIm 1)y, > dim As,.

Remark4.3. The dimensions of the spacek,, for degrees up to 22 are computed in
[BN] as follows:
degree In) 10 12 14 16 18 20 22
dim As,, 2 3 4 5 6 8 9
dimR[Ay, Ag,...]d€27) |1 2 3 6 9 16 25 42 50 90 146

=N
AN

6 8
1 2

Corollary 4.4. Forn > 2 andm > 2 even, we have
dim 74 (—1)—1 DIF(D*™ 7" rel 0) ® Q = dim T4y, (yn—1) BDIfF(D*™ 7" rel 0) ® Q
2 dim Azn.

Proof. Theorem 4.1(2) and Corollary 4.2 imply thditn w4n(m,1)§I\)§fS4m—1 ®Q >

dim A»,, if m is even. Further, one can show thfi:. > 2 and if - and 7 are two
different vertical framings ot that coincide oOE U E,, then[(E,7)] = [(E,7")] in

Tan(m—1)BDiff $4™~1 @ Q. Indeed, similarly as Lemma 3.8, we have

Z ifi=4n(m—1)+4m—1

0 ifo<i<4dn(m—1)+4m —2

Thus we haV¢E, SO4m_1]. RQ Tyn(m—1)+4m—1 SO4m—1®Q Where[E, SO4m_1].

denotes the set of homotopy classes of continuous fAP3E U E,;) — (SO4sm—1,1).

Further, we hav@’, SO4,,—1]*®Q = 0 because itis known that,, (,—1)4-4m—1SO4m—1

H,(E,0EUE,;7) = {
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is finite if » > 2 andm > 2. So there exists a positive integesuch thap[(E, 7)] is
equivalentte[(E, 7')]. Thereforg(E, )] = [(E,7')] IN T4y (;m—1) BDiff Sim=1 o Q.
Then it follows that

Tin(m—1)BDIff S 1 @ Q = 74y, (sm1) BDIf (D™ rel 9) ® Q
forn > 2 andm > 2 even, thus we also have

dim 74, (1) BDIF(D*™ " rel 0) ® Q > dim As,,.

Forn = 1, we have a partial result (compare Corollary 3.5 and 3.6).
Corollary 4.5. Suppose that > 2 is even. If the number

m m— 2m—2
3243243 — 1) Bom—10(mg_5)0(m5 1) (=1 O(WZS)4

(4.1) (4m — 2)!

is not integral, therfg for k = 2m is non-trivial. Hence the estimate of Corollary 4.4
holds also forn = 1 for k = 2m and#; : EP; — (5*™~2)*2 corresponds to a
generator of the 1-dimensional subspace.

Corollary 4.6. If an even integem > 2 is such that
e 4m — 3is prime and
e 4m — 3 {num (Bam-_1),

then(, for k = 2m is non-trivial.

The proofs of Corollary 4.5 and 4.6 will be given after theqfrof Theorem 4.1. We
have checked by a computer test (by using Maxima) that thter7firexamples
m = 2,4,8,10, 14, 16, 26, 28, 38,40, 44, 46, 50, 58, 68, 70, 74, 80, 88, 94, 98, 100, 106, 116,
128,136,140, 154, 164, 166, 170, 176, 178, 184, 190, 194, 206, 208, 214, 220, 236, 250, 254,
256, 266, 268, 274, 278, 280, 296, 304, 308, 310, 320, 326, 344, 346, 358, 364, 374, 388, 400,
403,404, 406,410,418, 424, 428, 434, 436

for which4m — 3 is prime all have the required properties of Corollary 4.6.

4.1. Claspers and family of claspers.From now on we construct the homomorphism
an. First we give a definition of higher dimensional clasperBioclr are generalizations
of Habiro’s clasper defined in [Hab, Hab2]. They will be use@&bkmentary pieces in the
constructions below. For the details about higher dimaradiolaspers, see [W], though
we will describe here self-contained definitions of them.
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FIGURE 1. I, ,-clasper and the associated Hopf link

4.1.1. I-claspers.An I, ,-clasperis a normally framed null-homotopic embeddings of
two disjoint spheres? LI ¢ ¢ MP*at! with p,q¢ > 1 connected by an arc, equipped
with a trivialization of the normab O, ,-bundle over the arc for which the firgtframe

is parallel to the5” near the intersection of the arc wiif, and the lasg-frame is parallel
to the S? near the intersection of the arc wiftf. We call each of the two spheredeaf
and call the arc ardge With the given normal framing, we can canonically asseciat
to anl, ,-clasper a normally framed two component link by replaciriiian embedded
Hopflink as in Figure 1 so that the” lies in the(p+1)-plane spanned by the figstframe

in the normal frame together with the vector parallel to threation of the edge, and the
S?lies in the(q + 1)-plane spanned by the lagframe in the normal frame together with
the vector parallel to the direction of the edge. We orieattto leaves so that the linking
numberLk(S?, S?) of the associated Hopf link is 1 if bofhandg are odd. By a surgery
along anl,, ,-clasper, we mean a surgery along its associated framed link

4.1.2. Family of claspers.Consider the trivia M/ * rel 9)-bundleE — B in which a
trivial subI, ,-bundle with a structure of a family d-parametrized embeddingsbf -
claspers intdnt(M/*) given.

Further we extend the notion of surgery to family of clasp&snultaneous surgery
along a family of claspers, i.e., attaching of (handlesp followed by smoothing of
corners so that the two trivial bundle structures are ctlyrgtued together, yields a pos-
sibly non-trivial smooth(M* rel 9)-bundle. Aclasper-bundlas an(M*® rel 3)-bundle
obtained by a sequence of surgeries along families of dlaspe

4.2. Graph claspers. Now we briefly review the definition of a higher dimensionaigh
clasper. The notion of graph clasper in 3-dimension was ifitsbduced by Habiro in
[Hab]. Details about higher dimensional graph clasper belldescribed in [W] Graph
clasper itself is not necessary to define graph clasperiesibeélow. But it motivates the
definition of the graph clasper-bundle. Also, we aim to eiplaat naive generalization
of 3-valent graph claspers in 3-dimension to higher dinmmsdoes not work.

In [Hab, Hab2], the Borromean rings in 3-dimension playsmapartant role. In higher
dimensions, the higher dimensional Borromean rings playrélas role. When three

#As mentioned in [W], the definition of the higher dimensio@@ahsuspended) graph clasper was suggested
to the author by Kazuo Habiro, after the author’s [W2].
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integerd) < p, q,r < d satisfy the identity:
4.2) p+q+r=2d—3,

one can form higher dimensional Borromean rigs1 S LI S — R? as follows. Let
p',q¢,r" beintegers such that+p' =d—-1,g+¢ =d—1,r+1 =d—1. Then
P + ¢ + 7' = d. Identify R with R x R? x R™ . Then the union of the subsets

Sy L {(2,9.2) €RY||y]> /4 + |2)> = 1, 2 = 0} = 57
(4.3) S, (2, 2) €RY| 2?4+ a2 =1, y = 0} = 59
S, E {(z,y,2) € RY ||z /a+|yl* =1, 2 = 0} = 5"

of R? forms a non-trivial 3 component link (see Figure 2(a)). Nawiality of this link
can be proved by computing the Massey product of its compiem®/e shall fix an

orientation on the Borromean rings. The three compongnts,, S, lie on the planes

def 7 7 def 7 i def i ! . .
P. =R xR ,P, =R xR, P, = R xRS respectively. Then consider

RP, R?, R" are equipped with the induced orientations from thakéfand introduce
orientations orf,, S,, S, determined from those d?,., P.., P,, by the outward normal
first convention.

The following property of Borromean rings will be used laberthe proof of Theo-
rem4.1.

Proposition 4.7. Let X 4ef e \ (N(S,) UN(S,) UN(S,)) whereN denotes a tubular
neighborhood, and let, o, 3, v € Q*(X) be differential forms representing the integral
generators off*(X) such that the supports of, 3,~ are disjoint fromoX \ ON(S,),
0X \ ON(S,), 0X \ ON(S,) respectively, and restrictions of, 3,y to 0X aree-Thom
forms aboutparallels o$,, S,, S, oNAN(S,),IN(S,), IN(S,). Thenthe triple product
HP (X)x H7 (X)x H" (X) — H(X,dX) is defined in terms of such representatives,
and one haga A A v)[X,0X] = 1.
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Proof. By the hypotheses af, 5 on9.X, one has a well-defined product
H? (X) x H" (X) —» H"+7(X,0X)

given by a wedge. This is shown as follows: We see the changfeegbroducta A
whena is replaced witlh' = a + dn wheren is a(p’ — 1)-form on X such thatin|0X is
supported on a subset@fV (S,,). Take a smooth functiog supported on a thin cylinder
[0,€] x IN(S,) disjoint fromSupp(S) such thaty = 0 on[0,e/2] x ON(S,) andy =1
on{e}xdN(S,), andlet’ = a+d(xn). Then the produdtl(xn)ApS] is equal tddnApj]
and is in the image of the usual produt’ (X,0X) x HY (X) — Ht7(X,dX) that
is obviously zero. Hency' A 8] = [a A 8] + [d(xn) A B] = [a A 8] in HP 9 (X, 8X).
The case’ is replaced is similar. Thus one has a well-defined product

HY (X) x H (X) x H" (X) —» H'+7+" (X 0X) = HY(X,8X).

We shall take Poincaré-dualsdg3, v and calculate the triple product by means of the
intersection theory. Let
Dy ¥ {(z,y,2) e RY||y2 /4 + |2[> < 1, z = 0} = DP+!
Dy {(z,y,2) € R |[22/4+ |a]? < 1,y = 0} = D7*!
Dy = {(z,y,2) € R |22 /4 + [yl <1, 2 = 0} = D"+

sothatvD; = S,,0D, = S;,0D3 = S,. One may see thd?; ND,ND3 = pt. Buttheir
e-Thom forms restricted t& do not satisfy the hypotheses foy 3, v since, for example,
D, intersects not onlys, but alsosS, transversely. To rid the superfluous intersections,
attach handles parallel to the components to the disks (geeeF2(b)). Then we obtain
three cycled;, D}, D’ from Dy, D2, D3 respectively and-Thom forms of them satisfy
the required hypotheses. Thus the triple product evaluatetthe fundamental class is
given by the triple intersectio®] N D, N D}. One may check that there are only double
intersections over the side-faces of the attached handiesceD| N D, N D; = D1 N

D2 N D3 = pt. O

We define anodeled graph claspexrs a connected uni-trivalent graph with

(1) vertex orientation on each trivalent vertex, namelyicé of an order of three
incident edges to the trivalent vertex,

(2) decomposition of each edge into a pair of half edges,

(3) a positive integep(h) on each half edgk so that ife = (hg, h1) is a decomposi-
tion of an edge, p(ho) + p(h1) = d—1andifp = p(h1),q = p(h2),r = p(hs3)
are numbers of three incident half edges of a trivalent xetteen they satisfy the
condition (4.2),

(4) ap(h,)-sphere attached to each univalent vertewhere h, is the half edge
containingy.

A graph claspeis a framed embedding of a modeled graph clasper idtdianensional
manifold together with structures (vertex orientatiops)). A framed link associated
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S' modelled S SY associated

graph clasper

graph clasper framed link

FIGURE 3

with a graph claspéaf is a normally framed link in a regular neighborhood®bbtained
by replacing each edge labeléd p') with a Hopf link associated to af), ,-clasper so
that the three spheres grouped together at a trivalentwfentie a Borromean rings.

Example4.8. An obvious example is a graph clasper without trivalentigegt This is
justanI, ,-clasper. Another example of a graph claspewdfer 7 is depicted in Figure 3.

One may check that graph clasper with cycles exist only ifldel p(h) = 1 is
allowed. This condition is always satisfied whée= 3 or 4 (see [W2] for related results
in this case). In the casé> 5, it may happen that(h) > 1 for all . So in that case,
graph claspers with cycles do not exist, that is, only the sfgaped graph claspers exist.

In the caseal = 3, there are many graph claspers so that any trivalent graps gi
rise to a graph clasper. However, in the cdsg 4, no trivalent graph gives rise to a
graph clasper! For example, assume thai@hshaped graph clasper with labéis, p-),
(q1,92), (r1,r2) on the three edges does exist. Then the set of linear eqaatidghose
number®; +ps = q1+q =ri+rs =d—1,p1+q+r1 = 2d—3, p2+q2+15 = 2d—3,

0 < pisqi,ri < d has the Unique SOlUtiO(’pl, q1,71,P2,q2,T2, d) = (]., 1,1,1,1,1, 3)
In order to construct ‘dual’ objects to the Kontsevich cssfor trivalent graphs in high
dimensions though, we need to consider family of claspeirs g next subsection.

4.3. Graph clasper-bundles. We shall define graph clasper-bundles here. More pre-
cisely, the object of this subsection is to define the annedthomomorphisngy.,, at the
beginning of this section. Let = 4m — 1 > 3. In the following, we restrict only to the
I5m—1,2m—1-Claspers ini-dimensional manifolds for simplicity.

4.3.1. Certain family of three component link¥he following claim is the key observa-
tion motivating the definition of the graph clasper-bundg.analmostB-parametrized
embeddingwe mean aB-parametrized family of smooth maps that are embeddings on
B\ {the base poirjt

Observation 4.9. There exists an almo$t?™~2-parametrized embedding of an isotopi-
cally trivial 3 component link into am-ball B¢(2) with radius 2:

¢ ST USSP 5 BY2) CRY, te 5P
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such that the locus of their images, projected into a singf&2), is isotopic to a Bor-
romean rings of dimensior{@m — 2,2m — 2,4m — 3) with the fixed orientation so that
the three components lie d?,., P.., P, respectively.

Proof. For a 3-component link embedding let (9, i = 1,2, 3, denoteyp restricted to
i-th single component. Since the triplém — 1,2m — 1,4m — 3) ford = 4m — 1
satisfies the condition (4.2), we can form a Borromean rifigén B%(2) of dimensions
(2m—1,2m—1,4m—3) as in the previous subsection. Ttien — 3)-spherel; in Im ¢,
can be considered agam — 2)-fold loop suspension of @m — 1)-sphere. Namely, by
composing with

(52m72 % 52m71’52m72 Vv S?mfl) — (S4m73,*)’

we may represe (L3) as anS?™—2-parametrized maps : S>™~! — B%(2). Therefore,
¢§’) = ¢>(L’) (constant ovet) fori = 1,2, and¢§3) = ¢, (t € $2™2) gives the desired
family. O

We will consider a family of embeddings : S? — F parametrized byB as a trivial
sub bundle embedded in a trivial bundfex B — B so that the restriction té; (¢ € B)
is the embedding;. For usual graph claspers in [Hab, W] and in the previousestthm,
the Borromean rings may be inserted at trivalent vertices.tite definition of the graph
clasper-bundles, we will use the sub bundle representefitire Borromean ring§¢; }+
(with a little modification) at trivalent vertices.

4.3.2. Surgery along the family of three component linkkow we want to define cor-
rectly a surgery along such a three component parametiidedbeddings. In order for
such surgery to be well-defined, we need to overcome thenipmatter:

e The image of the almost parametrized embeddindefined above degenerates
into a point in the fiber of the base poifitof S22,

To overcome this, we define a parametrized embedgdingS*™~! — B4(2) by modi-
fying ¢, so that it is non-degenerate everywhere o8t —2.

LetQ? c B?(2) be a small neighborhood of the base poinLefwhereLs is the third
component of the image @f;, appeared in Observation 4.9. First we make an embedding
of §?m—2 x §?m—1 into B%(2) by attaching a sma(m — 1)-handle to thé4m — 2)-disk
bounded byl_; along the trivially embedde@m — 2)-sphere orl; (see Figure 4). Then
we collapse thé¢2m — 1)-handle into its cor¢2m — 1)-disk so that

¢ the (limiting) boundary of the resulting object is a smoathbedding outside the
part collapsed, and

e after the collapsing, the image frofn} x S?>m~! c §?m=2 x §?m~1 for each
t € $?m~2 is a smooth embedding.

Such a family indeed exists and one may describe a tangstigiture of it explicitly.
Here we assume that all the changes are includédti@?). Then the resulting family
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of embeddings by the above construction is the desired othevarwill denote it by, .
See Figure 4 for an explanation of this construction.

Proposition 4.10. The parametrized embeddil(lg(Ll),d)(LQ),@t) can be obtained (up to
isotopy) by surgery along a (unsuspendEdyraph clasper embedded B (2) from the
trivial one (41", 62, 6{*)) where
¢ theY -graph clasper is associated with the Borromean rings ofeigiong4m —
3,4m — 3,4m — 3),
. qﬁ((]s) . §?m=1 5 B4(2) is a parameter-independent embedding disjoint from
¢} andg?.

Proof. After a suitable isotopy, one can push moshafg; ¢ B4(2) x S*™~2 into the
fiber BY(2),0 of the base poinf’ € $2™~2. Then the image af\", ¢\>, 3,) restricts in
B4(2),0 to a Borromean rings of dimensiof&n — 1,2m — 1, 4m — 3), with something
small change near the base point of the third componentjgtdisjoint from all other
components. Then the first two components trivially arrangeerS?™ 2 together with
the modified(4m — 3)-sphere inB4(2),0, may be seen as a part of the Borromean rings
of dimensiong4m — 3,4m — 3,4m — 3) in (6m — 3)-dimension. Since the Borromean
rings can be obtained byla-surgery, the result follows. O

Remarkd.11 Of course the isotopy used in the proof of Proposition 4.19 break the
bundle structure. Proposition 4.10 is just a claim about aifol structure of the total
space.

4.3.3. Graph clasper-bundleWe denote by} the parametrized embedding
( (Ll)ad)([?)a@t) . SQm—l L SQm—l Ll SQm—l — Int Bd(2), te S2m_2

defined above with the fixed orientation that yields the degon of Observation 4.9.
Note thatp} can be chosen so that the base point of &¢h~! component is fixed. By
using this parametrized embedding, we shall constructgclgsper-bundles.

LetV be ad-dimensional handlebody obtained frord-glisk by attaching thre@m —
1)-handles along 3-component isotopically trivial frametklembedded in the boundary
of thed-disk. Here we fix an order of the thré2m — 1)-handles.
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First we shall define théV rel9)-bundlerY : VY — S2m=2_ Let us assume
that B4(2) is embedded in the interior df. Then we make a direct product bundle
(V, B4(2)) x §2m~2 — §2m~2 tg obtain a trivial subB?(2)-bundleB?(2)(= B%(2) x
$2m=2) embedded in the trividl -bundleV = V x §2m~2 — §2m—2_ Now let

o1 (Iom—1,2m—1 U Iom—1,2m—1 U Tom—1,2m—-1) X Sm=2 v
be the three disjoint union of families of claspers paraipnetrby.S>™~2 such that

(1) For eacht € S2™~2, one of the two leaves of theth componenti(= 1,2, 3) of
Im (¢;), is standardly embedded parallel to the core ofittie(2m — 1)-handle
of B%(2), and the other leaf is embeddediinisotopically trivially. We consider
the latter leaf as an embeddifg;); : S~ — B4(2).

(2) B4(2)NIm ¢ is precisely a graph (of a function eyof an.S2™~2-parametrized
embedding of the three leaves inB5(2). ThusdB%(2) N Im ¢; & (pt L pt LI
pt) x S?™~2 the intersection points of edges and leaves of claspers.

(3) (¢r1): is standard, i.e., independentiobnV \ B4(2).

(4) (¢7); restricted to the leaveS; LI So LI S5 coincides withg) . Also assume
that the orientations of the three components coincide thigh of ¢} . Then
the orientations on the three leaves embedded in the coreedfandles are
automatically determined.

There is a picture fo; in Figure 5(ii). Then simultaneous surgeries ﬁnalong the
family of claspersp; yield anothe(V rel 9)-bundle. We denote the resulting bundle by
Y VY o §2m=2,

Definition 4.12 (VY -surgery) For a given(M* rel 8)-bundler : E — B, we assume
that a trivialV-bundleV 2 V' x B is embedded i¥ as a trivial sud/-bundle ofr. Then



30 T. WATANABE

the V'Y -surgery onr alongV, denoted byrY (V-#) . BY(V.¢) 5 B is defined with a
choice of aC>-mapy : B — S?™ 2 as follows:

7Y V2) & (B t(7)) Uy oY
EY (Vi) def 1 \ Int(V) Ug (*VY)

wherep* 7Y denotes the pullback bundle structure (not to be seen astapkiof a map)
and where the trivial bundle structures on the boundargglaed together correctly.C

Definition 4.13 (Graph clasper-bundle) et T" € G,,, be a trivalent graph witln ver-
tices and3n edges not having the part likec and letG(T') C M be a fixedirregular
graph clasper fof trivially embedded in al-dimensional manifold/ with all labels
equal to2m — 1. Here ‘irregular’ means that only the condition (4.2) foe three labels
at trivalent vertices fails to be a graph clasper. Then @ T") with 2n disjointly em-
bedded handlebodiés LI - - - LI V5,, each diffeomorphic t&” and satisfying the following
conditions.

(1) Decompose each handlebddyinto a0-handleB; and threg2m — 1)-handles
Hi U Hj L H: so that the order corresponds to the order of the three tandle
of V and so thatB; includes thei-th vertex of G(T'). ThenH! and H} are
included insideV;; \ B;, wherej andk are determined by the vertex orientation
of G(T'), and whereV;;» denotes a thin tubular neighborhood of the edg@ @f)
connecting the-th and thei’-th vertices (if exists). The cores of the handles
Hi andH; link with the linking numberl, and their positions are canonically
determined by the framing of the edge similarly as the assediHopf link to an
I, ,-clasper. Here the orientation of the cores are assumed tlodise induced
fromV.

(2) Each edge of#(T") has just one associated pair of hand|&3, H}') as above.

Then the(M* rel9)-bundlery , . : E} , . — (§?™ 2)**"is defined as
follows. First by taking a direct produ¢d/®, Vi U- - -UVa, ) x (S2™=2)*2" we obtair2n
disjointly embedded trivial sub’-bundles in the trivia{ M rel 9)-bundlen,iy : Ftriv (=
M*® x (§2m=2)x2n) PI3) (§2m=2)x2n_Then we define
chl‘ J 4 def EtY-(Vl XSTMT2 61) Y (Van X S2™ 72 0on )
1,024...,A2n riv

whereyp; : (S™~2)*?" — §2m=2 s the C>°-map for theV'Y -sugery along/;, that is
thei-th projection followed by a degre¢ mapS?™—2 — S$?2m~2. We will call such
constructedr’ agraph clasper-bundlassociated t@'. (See Figure 5.) O

Remark4.14 1. The above definition of graph clasper-bundles is alsalalim = 1,
i.e., for graph clasper-bundles consisting pf-claspers in a 3-manifold. In this case, the
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bundle is oveis? x --- x S° namely an alternating sum &f-clasper surgeries, which
appeared in the context of finite type theory of 3-manifoldalj2].

2. One may generalize the notion of the graph clasper-bandlarbitrary basé3
with general choices fap;. In fact there are possibly non isomorphicd -surgeries as
many as[B, 52"?] '&' Qi B—(2m—2)(B), the set of bordism classes of normally
framed(dim B — (2m — 2))-dimensional submanifolds d8, by the Pontrjagin—Thom
construction.

4.3.4. Existence of vertical framingslo complete the definition of,,, we give each
graph clasper-bundle a certain vertical framing.

Proposition 4.15. For m > 2 and for anyI' € G.,, there is a positive integer,, for
which the graph clasper-bundtg, , :EL . — (5™~2)*2" can be vertically

framed and it is standard outsidg U - - - L V5,,.

The statement given here is stronger than just for sayingtistence of the vertical
framing because it is needed in the proof of Proposition.4.16

Proof. Considerr,, as a degree,, mapS>™~2 — S$?m=2, Then it is enough to prove
the claim for thg(V' rel §)-bundler}, =¥ : r;, V¥ — S$?*™ 2 since therr; canbe
obtained from it byt Y -surgeries for framed bundles.

Consider the trivia(V’ rel §)-bundleg*zY : V — D>™=2 pulled back fromr? by the
characteristic map : D?*™~2 — $2™=2 of the (2m — 2)-cell of the cell decomposition
S§2m=2 = 0y e2m~2, Then after a homotopy, we may assume that the pullback bundl
¢*mY is standard orig* ¥ )~ (D>™~2 \ B) for a small(2m — 2)-disk B embedded in
Int(D?>™=2), i.e., the holonomy group is reducible fal} there.

Now we fix a deformation retractioH : D?™~2 x [ — D?™~2 so thatH (D?™ 2 x
{0}) = D?*™ 2 and H(D*™ 2 x {1}) = {q} € 8D?*™ 2. Then for each point
z € 0D*2\ {q}, v, ¥ H(z,") : T = D>~2 defines a path from to ¢. Along the
pathv; !, diffeomorphisms relativé-between fibers, , : 177;1@ 5 17(1 are induced as

the results of the deformation. Then by the pullbagk 7, a vertical framing oV is de-
fined. In particular, a possibly non standard vertical fragnis is defined on the standard
product bundlés* 7Y )~ (0D?*™2) as the result. Since the bundier?! is standard out-
side B in an unframed sensey is non standard only insidg* 7Y )~ (D?™~3) where
D?*m=3 c 9D*>™~2 is an embedded disk.

Thus the problem is reduced to the vanishing of the obstrmdth homotoping the
framing s to the standard oneq for some choice of positive integey,. To see that,
we shall fix a relative CW cochain compléx (V x D?>™=3 §(V x D?>™=3); 7Z) where
the obstruction cocycle may lie, as follows. We can choosdaive cell decomposition
of (V x D?™=3 9(V x D?™~3)) with three(4m — 3)-cells and ong6m — 4)-cell, the
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corresponding chain complex is

Z&ZSZ fx=4m—3
C.(V x D™ 3 9(V x D*™3),2)={ 7 if ¥ =6m —4
0 if otherwise

The obstruction cocycley,,—3(7s, 7sta) t0 homotoping the framings) and7sq up to
the (4m — 3)-skeleton lies in the group:

0 if m: even
®3 ~ D3 ~
HOII’I(Z ,7T4m,3504m71) = (7T4m7350) = { Zgag If m: Odd

Hencecy.,—3(7s, Tsta) Vanishes if,, is even.
Similarly, the obstruction cocycl&,,—4(7s, 7sta) lies in the group

Hom(Z, gm—4SO04m—1) = Tem—14504m_1

that is finite. Thus we may take,, > 0 with 7,,,|20(76m_4504m_1) SO thatr* =¥ and
thusmr,mw _ have vertical framings with the required property. O

’T’I

4.4. Duality between graph clasper-bundles and characteristiclasses.Let m > 2
and letM be a(4m — 1)-dimensional homology sphere. Let

¢2n 2 Gy — Q4n(m71) (BDIHM) &® Q
be the linear map defined for each connected trivalent gregehfollows:
if I does not have—: 1), is defined as the bordism class of the classifying map
for = . with choices of an orientation df and of a vertical framing-(T')
which is standard outsidé L - - -U V5, C M. (Such a choice of(T') is possible
by Proposition 4.15.)
if I has—o: 1)y, is defined a$.

We will write [E] for the bordism class of the classifying map i@@iff M for a bundle
E — B. Herey,,, may depend on choices made. But the final claim is the same.

4.4.1. A choice of the fundamental form in graph clasper-bundiEse choice of the
framing made in Proposition 4.15 allows one to make the forefaal(4m — 2)-form
on Cy(M)-bundles more accessible. L&(x") : C(E') — B be theCy(M)-bundle

associated to thel/* rel 9)-bundler] . andlet3y < £+ apigar where

f:C(EY) = Cy(M) x EDiff M
is a bundle morphism whose pullback is isomorphi€toer”). To simplify the proof of
Theorem 4.1, we replag®,, with another one within a cohomology class.
One may check that the valié,,, [E) . ]) does not change if the forri, is
replaced with another on#,, satisfying
o [(Bum)i] = [(B4y)e] in HA™=2(Cy(M); R) for everyt € B,
o S = —p% and
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o Br|0Cy (M), = B4,|0C2 (M), for everyt € B.
So we shall replacgas with such a3, satisfying some more conditions so that we can
compute the integral explicitly.

For anyi € {1,...,2n}, fix disjoint simple S*™~!-cycles(a});=1,2,s and simple
S2m-1l-cycles(bi)j=1,2,3 ONIV; = (™1 x §2m~1)#3 such that

e a) bounds @m-disk inV; andb’; bounds &rm-disk in M \ Int(V;).

e (a},b})ov; = 0.
Letr(al, t) be a closed2m — 1)-form onU, (V;),, the subV;-bundle ofE. ., such
that its support intersects the thin collarx (8V;), inside I x (a} x D*™~') where
a% x D*™~ ! is a fixed tubular neighborhood ef in (9V;),, and where the restriction
of n(a,t) here is the=-Thom form onI x a. We can show thag(a?, ¢) can indeed be
chosen to be smooth with respect ttSee Appendix C).

In [Les?2], a useful proposition has been proved, that allmaompute 3-dimensional
configuration space integrals explicitly in some cases &atlis implicit in [KT]. We
prove and use the following proposition, a higher dimenai@rrsion of Lescop’s propo-
sition in some restricted cases, which is enough for graaépelr-bundles.

Proposition 4.16. Suppose that: > 2 and that the vertical framing oEfT is
chosen as(T') (as in Proposition 4.15). The forpy, onC(E') can be replaced without
affecting the resulting valu&s,, [E). . ]) satisfying the following conditions:

e LetI(t) C {1,...,2n} be the subset of labels such that I(¢) if and only if
t: #t9. Thenforanyt = (t1,...,ta,),t' = (t),...,t5,) € (S?™=2)*2" with
t; =t (Vi € I(t) N I(t')), we haveBps(t1,. .., tan) = Bum(t], ..., t5,) where
it makes sense, namely on

C> ((M \ Uier@yure) mt(Vi)) U Ujez(t)m(t')(vj)t)-
e On(Vi)y x (Vi)s,

Bu(t)= > Tk(bi,bf)pin(al,t) Apin(af,t).
j,l€{1,2,3}

wherepy,ps : Co(M) — Cy(M) denote the first and the second projection,
respectively.

Proposition 4.16 follows from the observation above anchfem analogous argument
as in [Les2, Proposition 3.3]. Proof will be given in Appexndi.

Remark4.17. In Proposition 4.16, we can choosez;l,t) so that it depends only oh
(see Appendix C).

Proof of Theorem 4.1First we assume that the form,; on C(E") has been chosen as
in Proposition 4.16.
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(1) The commutativity of the diagram is a consequence of thevalig identity:
{Cons [, I) =i [r]

for any choice of the vertical framing(T") that is standard outsidg U - - - U V5,,. So we
shall prove this identity.

Let (1,...,t2,) denote the coordinate ¢6%™~2)*2" and letw(I")(t1, ..., t2,) be
the integrand form for the integral associated tprestricted to the configuration space
fiber of (tl, Ce ,tgn).

First we see that the computation can be simplified to the ona bundle with fiber a
direct product of some simple manifolds. W&t ¢ Cs,, (M) be the subset consisting of
configurations such that no points are includedjnWe show that the fiber integration
restricted toU;-fiber degenerates. We consider the casel for simplicity. Let

w0 ST S22 x S22 o (101 ) S22 x S22 (9« base point

be the projection defined bi;,ts,...,t2,) = (t9,t,...,t2,). Thenn; can be ex-
tended to a bundle morphisf between the sub-bundles ofr}. . and of its re-
striction to{#9} x (§?m=2)*2n=1_Sincew(I")(t1,ta, - ,tan) = 77w (D) (#9, t2, -+, tan)
overU, by Proposition 4.16, we have

f
/ / w(rl)(tlat%"' ,tgn)
(t1,.. tan)€(S2m—2)x2n JU;
f
:/ / Frw(@) (89, ta, -+ tan)
(§2m-2)x2n JU,

f
- [ [ @@t ) =0
{9y x(s2m-2) e Ju,

by a dimensional reason, whefé is anintegral along the fibers. So it suffices to compute
the integral ove€’ ' Cy,, (M)\ (U, U;-fibers. Since at least one pointis included in each

V; for any configurationir€, C'is a disjoint union of the spaces of the fobiix - - -x Va,,.
We show that the integration domain can be reduced furtherandirect product
of some closed manifolds. Lét; — S$2™~2 be the(V; rel 9)-bundle induced from
m. .. bytheinclusion; : $?™~2 — (§2m=2)*2n given byt; — (9,...,t;,...,19,),
followed by restriction to thé’;-fiber (this is precisely isomorphic t¢, 7*). Recall from
Remark 4.17 that in Proposition 4.16, we can choggé, t) so that it depends only on

t;. Hence the integral can be rewritten as

f
(4.4) / / o) = [ w(I").
(S2m=2)x2n J V] x---X Vo, Vi XX Vay,

It would be best to explain this identity for the simpleste®S = © as the other cases
are completely analogous. By Proposition 4.16, one hadorx V2),—(, +.),

Bu(t) = pinlat, t1) Apsn(al, ta) +pin(as, t1) Apsn(a3, t2) +pin(as, t) Apsn(as, t2).
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Hence on(Vi X Va)i—(1 1),
w(©) = Au ()"

= 3!pi(n(at, t1) An(az, t1) An(ag, t1)) A p3(n(ad, t2) An(a3, t2) An(a3, t2)).
Write w(O)[(Vi X Va)i=(¢, 1.) = A(t1) A B(t2). Then the LHS of (4.4) can be written as

f ! !
/ / A(t1) A B(t2) :/ At) A | B(t)
(tl’t2)€(s2mf2)x2 Vi x Vo (Sszz)xz Vi Vs

In Proposition 4.16, all the-forms are standard ne&; and hence the integral of
(4.4) is equal to the integral ov& x --- x V4, , whereV/ denotes the closed manifold
obtained fromV; by collapsingdV; = aV; x S>™~2 into 8V; x {t}. Thus the integral
can be given by a homological evaluation with the fundanietass.

Now triple cup product evaluated on the fundamental hompldgss of the closed
manifoldV;

H>™ YV, Z) N H>™ YV, Z) N H*™ (V] Z) - Z

considered up to a sign, coincide with triple intersectiomoag the Poincaré duals in
H4m,2(1~/i’; Z). In particular, ifa;, 8;,; are the integral homology classes representing
the cores of the thre@m — 1)-handles of a fiber of; and ifa?, 3;,~; are the duals of
a;, Bi,v: with respect to the evaluation, then

(a7 UB; U7 [V7]) = PD(ag) - PD(B]) - PD(3]) = 72

since the suspendad-clasper over ai$>™~2 component can be replaced with an unsus-
pendedy’-clasper by Proposition 4.10, and by Proposition 4.7 withghheres replaced
by the family of(2m — 1)-handles inV;. Note thatH®™=3(V/; Z) = H>™~1(V/; Z)"3

is one dimensional and spanneddiyu 3} U 7.

On the other hand, them — 2)-formé._; ; f 42 By € Q4m=2(C(ET)) is consid-
ered as an element &>~ (V/; R) @ H2™ 1 (17j’; R) corresponding to the linking form
and thus is in the image frod 2™ (V/; Z) ® Hgm*1(17j’; Z). Hereg, is defined as in
§2.4.

Therefore, the integral is obtained by contractions of émsors and we get

~(T'y — S0 oy _ f JAut T if TV =T
~/‘7’><---><\7’ Sy = ([0 [V - x V3l = { 0 otherwise
1 2n [

where|Aut.I'| denotes the order of the automorphism&'dixing all vertices. See Fig-
ure 6 for an explanation of this for tl&-graph. Heref;, = af @ a3+ 87 3 +77 @75
and thus(67,, [V{ x T3]) = 3!(PD(aj) - PD(5}) - PD(7})) x (PD(a3) - PD(53) -
PD(v3)) = 3!72,.
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(HP N (V) @H™ T (V)M

contraction
W W T e
T1 T2 R
FIGURE 6

More generally, exactlyAut,I'| = et |Aut T'|/]Aut.T'| connected components i

contribute to the term df asr2” and the other parts do not contribute. Therefore,
(Gons (B, s TO)D) = [Aut, T Gon (V- % V3,)

[T] o |Aut.T| - r27[T] 9
Aut,T ') = |[Aut, | ————2— = r2"[T"].
= |Aut, T E Rt T Joes, w(I) = |Aut, T AT T (L]
(2) Let E; ©' ;;ET . . One may check by a property of clasper tHtis

a trivial (M* rel 9)-bundle as an unframed one. Thus the imagd $f™2)*2" in
BDiff(M* rel §) can be made into the one homotopy equivalest'ts™ 1) by attaching

2n (2m—1)-cells along eacl§?™~2-componentof; V- - -Via,, : S>m=2V...v§2m=2 C
(§2m=2)>2n and that the unframed\/* rel )-bundle structure extends over the result-
ing complexX ~ $4*(™~1)_ So we need to consider the obstruction to extend the vertica
framing onE] . overX. To do this, we consider the standardly vertically framed

trivial (M* rel 8)-bundle Ege! < 1r* x D=1 over a(2m — 1)-disk. Here we may

assume that the vertical framing restricted to the boundffy, i.e., subd M *-bundle of

E;, coincides with that of E5e!! restricted tad D>™ 1. We consider the obstruction for

the existence of the homotopy between the vertical framafigg and of E¢<!'|a D21
By the Poincaré-Lefschetz duality, we can show that

Z fj=6m-—3

H;(M® x D*=2 9(M® x D*™~2).7,) { 0 otherwise

whereD?™~2 c 9D?>™~! is an embedded disk where the obstruction may be included.
So the only obstruction may lie in

HGm_S(M. X ng—g,a(M. X -D2m_2);7r6m73504m71) = Tem—390am—1

thatis finite ifn is even. Soifwereplace],  withEl ~ wherep,, =
o(Tem—3S0am—1), the vertical framing extends ], . Ugeen|gpam-1 (M®X

D*m-1). Therefore, the vertical framing off, _can be extended oveé¥.

TmyeosPmT
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Finally, by collapsing the attache@m — 1)-cells into the base point by a homo-
topy, we obtain a vertically framed bundle associated toa8scinm,, (,,—1) BDiff M.
Since[EL ] = p??[EL 1IN Q4 (m—1)(BDiff M) and the attaching of a

PmTm,--;PmTm Tmy---yTm

(2m — 1)-cell followed by the collapsing corresponds to a bordisnglﬁi?‘fM, the result
follows. 0

Proof of Corollary 4.5.1n the light of Theorem 4.1(2), we can choose a framed
(D*"=1 rel 9)-bundleHu® — S*m—* for which
[Hu®] = [E° . 1in Q4 (BDIff §4m 1),

PmTm sPm T

Now we shall compute the valug (o(©3™=5)Hu®). Note that the closure of the total
space ob (03"~ Hu? is diffeomorphic to the standai@m — 5)-sphere. So the sig-
nature defect term vanishes for a choice of framing by meé&ttseoassumption for the
choice ofry,  that we have made i$8, and thus the framing correction term contributes
just by an integer multiple of the jump (3.5).

By making use of Theorem 4.1 and (3.5), we obtain:

agm—1(4m — 3)!
4

for someN,,, € Z. (Here we ignore the numbey in Theorem 3.2 (now = 2m) because

Hu?1 is already vertically framed. The result differs only by ealemultiple of ¢,.. So

it causes no problem.) The last row is non-zerém% ¢ 7. This number
is precisely the number of the statement for the foIIowm'gadBy Lemma 3.26, we can
chooser,, = 4T[7"° o(x5) andpy, = o=} = 41177 ' o(xf) = 2T " o(x¥)

for evenm. Further it is known that

C2(0(©%™ ) Hug) = 1277,p7,0(0%" %) + N

_ _ _ Bopm—1a2m—1
®8m 5 — S 24m 6 24m 3 _ 1
| | = |785m—sl ( )727” 1

(see Kervaire—Milnor [KM]). O

Proof of Corollary 4.6.We prove that the number (4.1) is not integral whersatisfies
the required properties. Sinden — 3 is prime,(4m — 2)! has a prime factotm — 3.
Since B,,,—1 does not have a divisehm — 3 by the hypothesis, it is enough to prove
thatd4m — 3 + (243 — Vo(n5,_5)o(rs, )2 TI;7 > o(x?)*. As in the proof of
Corollary 3.6, one may see that Fact 3.29(1) implies — 3 1 2*™~3 — 1. Further,
by Theorem 3.28¢(5,, _s)o(x5,,_1)? TI;™ > o(x)* does not have the prime divisor
p=4m —3becausi(p—1) —1=8m —9,16m — 17,...and2m — 1 < 8m — 9 <
8m — 5 < 16m — 7 for m > 1. This completes the proof. O

Remark4.18 Though we have proved the non-triviality ¢f for somem, we can not
still say that it gives an integral lift of'-invariant as in Corollary 3.5 becauskinvariant
of cl(o(©¥™ 3 Hu?) is trivial.
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5. FURTHER DIRECTIONS

Now we shall briefly remark some directions expected to bdistlafter the present
paper.

Conjecture 5.1. For eachk > 3, (—=1)*b;_1((E) is an integral lift of a non-trivial
invariante,—1 X' (cl(qr E)) € Zs,_, where the notations are those of Corollary 3.5.

If this conjecture is true, then some of the Antonelli-Buetga—Kahn constructions
turn out to have infinite order. The following conjecture ifep Conjecture 5.1.

Conjecture 5.2. For all m > 2, the numbers (3.2) are not integral.

The following conjecture may be a slightly different diriect (see Corollary 4.5), but
seems easier.

Conjecture 5.3. For all m > 2 even, the number (4.1) is not integral.
Problem 5.4. Determine the subgrouim (cl) C ©¢.

Fine partial results are obtained in [ABK, ABK2], but it $tleems open. By Corol-
lary 4.6, our bundler?; : EP; — (S*™~2)*? gives a non-trivial element of the group
7em—a BDiff(D8™~1 rel §). On the other hand, in 3-dimension, Habiro’s graph clasper
construction for th&-graph gives 2 times the boundary of thg-plumbing manifold. If
a similar statement is also true in higher dimensional sitng, then it may give a finer
estimate of the order din (cl) since the boundary of thEs-plumbing manifold gives
a generator of the cyclic group*'—1(dr) (see [KM]). Of course/»-invariant of the
two differ by some rational multiple. For this one might needalculate)\’-invariant of
cl(E?l).

Conjecture 5.5. The images of the IHX and the AS relations unggy vanish.

If this conjecture is true, then it suggests that the eqeive relation “bordant” corre-
sponds to “equivalent modulo higher order elements” inrBatision.

In 3-dimension, there is an explicitly computable theomtil called the LMO invari-
ant [LMQ]. It is known that the LMO invariant is also a univat€htsuki finite type
invariant [Le] and conjectured that the LMO invariant ‘coitdes’ with the Kontsevich—
Kuperberg—Thurston’s configuration space invariant. Toageanalogous computable
theory as the LMO, one might need the following problem.

Problem 5.6. Give a smooth bundle analogue of the Kirby theorem [Kir].

In [MY], T. Moriyama developed some cobordism theory andagt#d aQ-valued
invariant of rational homology 3-spheres, that is an iraégift of the Rokhlin invari-
ant for integral homology spheres. It would be interestim@sk whether his theory is
generalizable to higher dimensional sphere bundles ceresidn this paper.
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APPENDIXA. THE CLOSED FORMa ON C3(M)-BUNDLE

Letw : E — B be a vertically framedM* rel 9)-bundle with the base spade a
smooth manifold for which the de Rham theorem holds. Thetcocit$on of the Kont-
sevich classes requires a ‘fundamental’ closed faron the associateds (M )-bundle
C(m) : C(E) — Bton. We shall give a proof that there exists such a well-defineskd
form a, which is omitted in [Kon].

The Serre spectral sequence of the fibration

(C2(M),8C5(M)) = (C(E),Cp(E)) = B,
whereCy(m) : Cs(E) — B be the suldC»(M)-bundle ofC(r), gives the following

Lemma A.1. There exists a spectral sequence with
E3? = HP(B; {H*(C2(M)y, 0C2(M); Z) }veB)
= H"(C(E),Cs(E): L).

The following lemma can be proved by exactly the same way as,[Lemma 2.1].
LemmaA.2. H,(Co(M);Z) = H, (S 7).
Lemma A.3. Foranyb € B andfor0 < ¢ < d, H1(Cy(M)y,0Co(M)p; Z) = 0.

Proof. In this proof, all the (co)homology coefficients are assumeZl. By the Poincaré-
Lefschetz duality and Lemma A.2, we have

H(Co(M)y,0C(M)s) = Haa—q(Co(M)) 2 Haq—y(S*™') 2 0(0 < ¢ < d).

LemmaA.4. For0 < ¢ <d,HY(C(FE),Cs(E);Z) = 0.
Proof. This follows immediately from Lemma A.1 and Lemma A.3. O
Lemma A.5. The inclusion induces an isomorphism

HY™Y(C(B); 7) = HY"Y(Co(E); 7).

Proof. This follows from the cohomology exact sequence of the @a(=), Cs(F)) and
from Lemma A.4. O

Since we have a closéd — 1)-form 7j,wga—1 0nCy(E) uniquely determined by the
framing, there exists a well-defined closgtl- 1)-form « on C(E) extendingrjwga—1
by Lemma A.5 and by the de Rham theorem. Note that the veftiaaling onC(E)
determines a triviab ! -bundle structure 065 (E) and thus the close@ — 1)-form on
C(E) is non-trivial in cohomology.
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APPENDIXB. PUSHFORWARD

Letw : E — B be a bundle withi-dimensional fibe#". Then thepush-forward(or
integral along the fibérr.w of an(d + p)-formw on E is ap-form on B defined by

/7‘('*0.} :/ w,
c 7—1(c)

wherec is ap-dimensional chain irB.

Letw? : Or F — B be the restriction ofr to  F-bundle with the orientation induced
fromInt(F), i.e.,Osr = i(n)Or wheren is the in-going normal vector field ovéF .
Then the generalized Stokes theorem for the pushforward is

(B.1) dr.w = medw + (—1)deg”f“7r?w.

APPENDIXC. SMULTANEOUS NORMALIZATION OF THE [j/-FORMS

Here we normalize the closédim — 2)-form s onCy(M) for (4m —1)-dimensional
homology spheres, based on the line of a part of [Les2, Piamo8.3]. The proof below
seems quite simpler than Lescop’s one in 3-dimension, dtieetact that the involved
surgery is restricted and that for higher dimension, sommediogy classes involved be-
come different dimensional while for 3-dimension they ao¢ (@nd the proof is surpris-
ingly difficult). In this section, we denote the fiber of thesegpointt® ¢ (§2m—2)*2n
of E{m,, simply by M. We identify a regular neighborhood 6f; C M with
[—4,4] x 9V; and fors € [—4, 4], set

def [ V;U([0,s] x9V;) ifs>0
W[S]_{W\((sao]xavi) ifs<0

Let S(a}) C Vi[4] andS(b;,) € M \ Int (V;) be the2m-disks bounded by x a} and
bi, respectively, such that Tik(a, a?,) = 1fori # i, thenS(bi) N Vi = S(a?,), and if
Lk(a%,ai,) = 0, thenS(b%) N Vi = 0.

Letn(b}) be the closed2m—1)-form supported in aa-tubular neighborhood’. S(b;)
of S(b) which is restricted to the Thom classiff™ ~* (N.S(b%)., d(N:S(b%).); R), z €
S(b%), andn(a}) is defined by the pullback by the inclusiov. S(a}) — NES(bj.',) for
somei’, j'.

Fix a base poinp® on dV; and letw(p’) be a closed4m — 2)-form supported in a
tubular neighborhood of the union of the pgth oc] anddC, (M) such that it restricts as
the usual volume form oAC, (M) = S*™~2 and such that the support is disjoint from
all V;[4] and from all the supports of the above forms. First we shalinadize,, on the
subsetl; x (C1 (M) \ V;[3]) € Ca2(M).

Proposition C.1. For any subsetV C {1,...,2n}, we can choosg; on C2 (M) so
that:
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(1) Foreveryi € N, the restriction of3ys to V; x (C1 (M) \ V;[3]) C C2(M) equals

> Lk, ai[4]) pin(al) A pin(bi) + piw(p’)
(7,k)e{1,2,3}2
wherepy,ps : Co(M) — Cy(M) denote the first and the second projection,
respectively.
(2) B is antisymmetric with respect tcand fundamental, that is closed and
Br|0C2 (M) = phywsem—2 Wherepy, : dCy(M) — S*™=2 is the projection
onto theS*™ =2 factor determined by the framing.

Assume Proposition C.1 for the moment. LBt (i) be the pullback bundle from
E; ... bytheinclusionS?™~2 — (§2m~2)x2n and letV;[s] be the sul{V;[s] rel 9)-

bundle of E* (i). We extend the formg(a’) and(b;) to the globally defined ones
n(a’, t) and(bi, ) onV;[4] andET (i) \ Int(V;) respectively, as follows.

Observe that there exists(am + 2m — 2 = 4m — 2)-manifold §(aj.) included in
V;i[4], bounded by(4 x a¥) x §2m-2 C dVi[4], such that it restricts t6'(a’) in the fiber
of 9. Indeed, the third component of the locus of the paramettin& of Observation 4.9
bounds g4m — 2)-disk if we ignore the other two components. Thisn — 2)-disk can
be considered as a collection of bounded-disks parametrized biyc S>™~2. So this
collection can be suspended o™ =2 with some intersections with the other compo-
nents. Those intersections can be removed by suitablehattgcof handles parallel to
the other two components. The resultiign — 2)-manifold is as required. They(a’, )
is defined as the restriction of taeThom form over§(aj.) to the fiber oft . (b, t) may
be naturally extended from(aj, ?)’s by usingn(b;)'s.

Forl c {1,...,2n} and fort € (5*™~2)*>" such that/(t) C I, defines9, on

Dr(B3,) = (Ca(Me) \ | J(Vil=1]e x Vil3]) U (Vil8le x Vi[=1]e)) Uiz Anfoo)
iel
wherep;» : Co(M;) — M; x M, be the projection, so that
o %, = B onCa(M; \ Uier Vi[—1]y) = Co(M \ Use Vi[-1]),
®
By, = Y Lk(bl,ai[4]) pin(al,t) Apsn(bi,t) + psw(p’)
(J:k)€{1,2,3}2
onpry (Vi) x (M; \ Vi[3]:)) wheni € T.
o 3%, = —v B, onpy (M \ Vi[3]) x (V;)¢) wheni € 1.
° ﬂ?\/[t :p*Mthz;mfz ondCs (M;).
Note that this condition is consistent. In particular, bpusition 4.15, the first and the

fourth conditions are compatible. LEY{ E" (4)) def Ui=(9.... 1,19, ) C2(My) denote the

19--9bis--alg

Cs(M)-bundle overS>™—2 associated with" (7). In the following we shall see that the

form 3, defined over the bundB(E" (i) = U,—e. .. 10 1Dy (8%,) extends to

19000y
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FIGURE 7. Area ofCy (M) wheref,s is normalized

a fundamentaldm — 2)-form onC(E* (i)). The homology ofD(E" (i)) up to dimension
(4m — 2) is given by the following lemmas.

Lemma C.2. There exists a homology spectral sequence with
By, = Hy(S*™ % Hy(Dyiy (B3); R)) = Hyq(D(E" (i)); R)

2 _ eI oo H
such thatk; = E7, if p+ ¢ < 4m — 2 and such thatt5, = 0 if moreoverp ¢

{0,2m —2} or g ¢ {0,2m, 4m — 2}. In particular, Hyn, »(D(E" (i)); R) = Eg%,,_o &
E20$n—272m = EgAm—Q D E%m—Q,an'

Lemma C.3. (1) ES;,_s 5., coincides with the kernel of the map induced by the
inclusion
Hum-2(D(E"(i)); R) = Ham-2(C(E" (i)); R).
(2) Y, evaluated o3y, , ,,, vanishes.

Proofs of Lemma C.2 and C.3 will be given later. It followsrfrahese lemmas that
the form°(i), < By, (t=(9,....t;,...,13,)) on D(E" (i)) is in the image of the
map

H'™ 2(C(E"(i));R) — H'™ *(D(E" (i)); R).
Namely,3°(i) extends to a closed forg (i) onC(ET (i)) by the de Rham theorem, and
B(i) B (3) —QL*ﬂl (i

is a fundamental form.
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For anyt € (S?™~2)*2" we define

5 :{ B, onCo(Me) \ Use gy (Vil=1]e x Vi[3]e) U (Vi[3]e x Vi[-1],)
M B(i) onCy(Vi[4],) fori € I(t)

Thengyy, is the required form of Proposition 4.16.

Proof of Proposition C.1 We first prove the proposition fa¥ = {1}. Let 3, be a fun-
damental4m — 2)-form onC»(M) and lets be the closed4m — 2)-form onV;[1] x

(C1(M) \ Int V1[2]) defined by the statement. Since integrals for béthand 5 co-
incide onHy,,—2(Vi[1] x (C1(M) \ Int V1[2]); R), there exists &4m — 3)-form n on
Vi[1] x (C1(M) \ Int V4]2]) such that

B = Bo + dn.

Here we may assume that= 0 on V;[1] x 9C, (M) because is closed onV;[1] x
0C1 (M) and hence exact there.

We further modify3 so to coincide with3, outsideV; [1] x (Cy (M) \ Int V;[2]). Letx
be a smooth function 0@, (M) supported i1 [1] x (C1 (M) \ Int V1[2]), and constant
equalto 1 ot x (C1(M) \ V1]3]). Then set

Ba ' By + d(xn).

Ba is as required o x (C1(M) \ V1[3]) and coincides withg, on 0C» (M) because
d(xn) = 0 there.

Similar modification tg3, for (C1 (M) \ V1[3]) x V4, that can be done disjointly from
the previous ones, yields anoth{dim — 2)-form 3, that is as required on

9C (M) U (Vi x (Co(M) \ VA[3])) U ((CL (M) \ VA[3]) x Vi).

ThusBy ' (B, — 1*Bs)/2 is the required form foiV = {1}.

Now we prove the proposition for gener&l by induction on|N| = i. Let 3, be
the (4m — 2)-form satisfying all the hypotheses fof = {1,...,i — 1}, and lets be
the (4m — 2)-form satisfying the hypotheses di} obtained by the first step frorfy,
replacingV; with V;[1]. Then there exists @m — 3)-formn such thap3 = 5, + dn where
n may be assumed to vanish 86> (M) because*™=3(8Cy(M); R) = 0.

Let x be a smooth functiog supported irV;[1] x (C1 (M) \ Int V;[2]), that is constant

equalto 1 orV; x (Cy (M) \ V;[3]), and lets, o Bo + d(xn). Thenp, is as required on

aC,(M)U | (Vi x (Cr(M\ VB U (Cr (M) \ Vi[3]) x V).
kEN keN\{i}

Still we need to prove that, is as required ifV;[1] x (8C; (M) U Ui_, Vi), where
the support ofy intersects the previous changes figr By the assumptions; may be
assumed to vanish di[1] x 9C; (M) and is closed of;[1] x V}, for i # k. Further by
HA™3(V;[1] x Vi; R) = 0, we may assume thatvanishes orV;[1] x V.
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Finally, by similar modifications as in the first step, we caodify 3, so that it inte-
grates correctly as required, and antisymmetric with retsipe *. O

Proof of Lemma C.2First we compute the homology d;;;(3,). For any subman-
ifold X of M, we denote byST X the face ofdC>(X) corresponding to the blow up
along the main diagonal x C X **. Since the inclusion fronb; (53,) to (C2(M) \
C>(Vi[—1])) U STV, is a homotopy equivalence, it suffices to compute the honyabbg
the latter space.

Let M = C;(M) andV = V;. We compute the homology @fs (M) \ Co(V) ~

Co(M) \ Co(V) whereCy (X) ' X %2\ {diagona}.

Now we shall first compute the homology &f X2 \ V*2. Observe that

R[BM] if x=4m — 2
— _ Rai [4]] ® Rla}[4]] @ Rlai[4]] if x =2m —1
H(M\V) = R[pt] if x=0
0 otherwise

Then the Mayer-Vietoris sequence involving the homologyf~ \V*2 = (M x (M)
V) U((M\V)x M) is as follows.

(M\V)*2 M x(M\V)+(M\V)x M M\ v *2
Hym—> - Rf?fﬁ?@%ﬁﬂ —  REMel+RIOM ?
H4m73~2m — 0 — 0 — ?
Hopm—1 = YiROQ&M4R[EI®]) < 3 (R[I®ai+R[ai®1]) 5 ?
H2m72~1 — 0 — 0 — ?
H, — R — R+ R — R

Hereaj. ef a%[4]. Therefore the homology o “*\ V' *2 of dimensions at mogtim — 2)

IS
0 if1<x<4m-—2
R ifx=0

The homology ofC> (M) \ C»(V') is computed by the exact sequence:

H, (T \ V™2 :{

— H(Co(AD\Co(V)) = H. (AT \V*2) o H, (AL \V*2, Co(AD\Co(V)) — - --
By excision, we have

H.(M 2\ V*2,Co(3) \ Co(V))

= H ((M\V)xR™ ! (M\V)x (R"™"\ {0}))

= H*_(4m_1)(M \ V) ® H4m72(54m72).

In particular, H, (3> \ V2, o (31) \ Co(V)) = 0for 0 < x < 4m — 2. Thus the
above exact sequence turns out to be as follows and the hgyold’s (M) \ Co (V) is
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determined up to dimensigqdm — 3).

| Gan\Cav) A\ X2 (AT \V*2,Co (M) Ca (V)
Hypo — ? — 0 — 0
Hyp 3.1 | — 0 — 0 e 0
Hy — R — R — 0

Then the homology o€ (M) \ C2(V) U STV is computed as follows. Note that
this space can be obtained by gluif@ M = M x S*™~2 andCy(M) \ C2(V) along
ST(M\ V)= (M\V) x S*™~2 The Mayer-Vietoris sequence is as follows.

(M\V) x g™ =2 +CJ‘24(7MS’)4\%2?V) Ca(M)\C2(V)USTV
H4m—3~2m+1 — 0 — 0 — 0
Hs,, — 0 — 0 — ?
Hsp o — >, Rla;®1] — 0 — 0
Hsyp_omn — 0 — 0 e 0
H, — R — R+ R — R

HenceH., (Dy;;(69,)) vanishes a¢ = 1 ~ 2m — 1,2m — 2 ~ 4m — 3. This shows that
0

Ep’q_— 0if p+4q <4m—2andp ¢ {0, 2m - 2}_0rq ¢ {0,2m,4m — 2}). Moreover,

all differentialsE} , — EI_, ,.,_q, 7 > 2involving E} , (p + ¢ < 4m — 2) are zero

2 oo
and hence‘?m = EM there. O

Lescop’s cyclesF'(a). In order to prove Lemma C.3, we shall give a higher dimensiona
analogue of Lescop’s cycles, which were constructed by dest 3-dimension [Les2],

to get the generator dfs5, _, 4,,_»(D(E" (i))). Namely, for eacla = a, we consider a
(4m — 2)-cycle F(a) on the configuration space bund ET (i)) of the form:

F(a) ®(C(a) x §272)
U —(S(a)% (4 x p(a))) U —((4 x p(a))XS(a))

U diag(n)(S(a)) (p(a): base point ofi)

whereS(a)% (4 x p(a)) © Up{z, x (4 x p(a)) |z € S(a),} and(4 x p(a))xS(a) is
its symmetric. The other chaii&(a), diag(n)(S(a)) involved are defined below.

First we choose a vector fieldthat is a section of the trivia§*™—2-bundleSTV[4]
(the subSTV[4]-bundle ofV/[4]) restricted taS(a) such that neadS(a) it is normal to

S(a) and tangent t&V [4]. Moreover we assume that the map
(C.1) (5(a),05(a)) = (5™, %)

which is a composition of the trivialization and the projentgiven byn to the S4™—2-
factor, has mapping degree 0 so ) represents a class #gy, » 4, - Then we
introduce a local coordinatex [0, 1] C 0V where the second coordinate determined by
the direction ofy.
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a 0,4 a)x1 4 a)x0 a —S(a)x a));
T(0xax0,0xax1)  A(0,1) >L<J[(4 (x[p J)Xxp[g ES} ) ><( (oxxpé x)[EJ)]) ([Oii]oxxp(g ><)1>; 0 U(t(ra)rj(si)i)s(ilt)i(or)lg
1. .

"@ F | f

=

/"/“f
/h
/f\?\
/’”\\

FIGURE 8. Lescop’s cycld(a)

C(a): TheC(a) is a2m-chain onC5([0,4] x a x [0,1]) C Ca(M;)\ C2(V[-1]4) U
STV, defined as a sum of the following chains:

T(O0Oxax0,0xax1)

A(0,1)

(0% ax0)x [—([0,4] x p(a) x 1) U (4 x p(a) x [0,1])]

((4 x p(a) x 0) x (0x a x[0,1])) U (([0,4] x p(a) x 0) x (0 X a x 1))
To describél'(0 x a x 0,0 x a x 1) andA(0, 1), we identifyS2™~! with the

reduced suspensidnS?™ 2 = (S$2m2 x I)/(S?™ 2 x {0,1} U {oo} x I),

I = [-1,1]and introduce a corresponding coordin@atez) € S>™~2 x I. Then

we consider the@m-dimensional submanifoldl of (S*>™~2 x I) x (S*>™~2 x I

defined by

T {(z,2) x (z,2") |z € S*™ 22,2/ €I, 2> 2} C (S 2 xI)x (§*™ 2 x1)
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with
OT = {(z,2) x (x,2)} U{(z,1) X (z,2)} U{(z,2) x (z,-1)}.

Consider a pair of parallel cycl@sx a x 0 and0 x a x 1 and identify(0 x a x
0) x (0 x a x 1) by the base point preserving(¢) < {co}) diffeomorphism

©:(0xax0)x(0xax1)3 821 g2m-1 2 (g2m=2 y [} x (§?™ 2 x I).
Then we set

T(O0Oxax0,0xax1) et o 'pr(T)

A0, ) @ x0) x (zx3)|z€a,s € (0,1]}

C Co(My)
Note thatpr(T") has the boundary of the form
Agem— U ({oc} x 2™ U (8™ x {oc0}) Cc 8271 x §2m—1
diag(n)(S(a)): The chaindiag(n)(S(a)) denotes the image df(a) in the trivial
S4m=2_pundleSTV[4] under the section.
See Figure 8 for the form of'(a). Lemma C.3 follows from Lemma C.4 and C.5
described in the following.
LemmaC.4. (1) [F(a)] spansEss, , ., (D(E"(i))).
(2) F(a)is nullin Hy,,_2(C(E" (i)); R).

Proof. According to the proof of Lemma C.2 and from the definitionftilz), the image
of [F(a);] under the Mayer-Vietoris boundary homomorphisnjdss 1] in ST (M \
V;) and moreover the collection of this element over 8% 2 is [a ® S?*™ 2] in
Hyp s (S°™2; Hypey (ST(M \ V2))). HencelF (a)] spansss, , o, (D(E' (i))).

The second assertion follows from the naturality of the &spactral sequences (see
e.g., [HatSS]). Namely, together with Lemma C.2, it implikat there are homomor-
phisms betweet7,'s induced by the inclusion

EgSym—2(D(E" (1)) = Egm-a(C(E" (1))
B —20m(D(E" (i) = Bgpy 52, (C(ET (i) = 0
which is isomorphism o5, _, and is zero map o&'sy, _, 5, O
Lemma C.5. The(4m — 2)-form 3}, on D(E" (i)) evaluated on any cycle of
ES5, 5 9m(D(E" (i))) vanishes.

Proof. We prove that
B, = 0.
F(a)

First extend the forn#,, onCy (M) obviously to a fundamenté2m — 2)-form on the
trivial bundleCs (M) x S?™~2 and denote it also by,,. We havefc(a)xs2m_2 B, =
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fC(a)xsZm—z Bar = 0 sinceC(a) lives insideC>([0,4] x a x [0,1]) C C2(M;) where
$%;, andfSys coincide.

The normalization of Proposition C.1 and the partial extam#ollowed imply that the
integrals vanish on

~(S(a)X (4 x p(a))) U =((4 x p(a) X 5(a)).
SinceF(a) is null homologous ifC(E" (i)) by Lemma C.4, it is enough to prove that
[ = B
diag(no)(So(a)) diag(n)(S(a))
whereSy(a) is any embedding of &4m — 2)-manifold diffeomorphic taS(a) into the

trivial sub bundleV[4] x $?™~2 of M x S?™~2 with the same behavior a(a) near
AV x §2m=2 andn, is any vector field orb,(a) tangent to the fibers df [4] x §2m—2
which coincides witln near the boundary and which satisfies the same constrainbas
mapping degree of the map (C.1). Then the relafifemology classes of the images of
the sections andng coincide and hence the integrals also coincide. O
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