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Abstract
We give a model of the coinvariant algebra of the complex reflec-

tion groups as a subalgebra of a braided Hopf algebra called Nichols-
Woronowicz algebra.

Introduction

Let V be a finite dimensional complex vector space. A finite subgroup G ⊂ GL(V )
is called a complex reflection group, if G can be generated by the set of pseudo-
reflections, i.e., transformations that fix a complex hyperplane in V pointwise.
Any real reflection group becomes a complex reflection group if one extends the
scalars from R to C. In particular all Coxeter groups give examples of complex
reflection groups. We refer the reader to [3] for general background of the theory
of complex reflection groups. Below we recall a few facts about real and complex
reflection groups which appeared to be a motivation for our paper.

In 1954, G. C. Shephard and J. A. Todd [16] had obtained a complete classifi-
cation of finite irreducible complex reflection groups. They found that there exist
an infinite family of irreducible complex reflection groups G(e, p, n) depending on
three positive integer parameters (with p dividing e), and 34 exceptional groups
G4, . . . , G37. The group G(e, p, n) has the order enn!/p. It also has a normal abelian
subgroup of order en/p, and the corresponding quotient is the symmetric group on
n points. The family of groups G(e, p, n) includes the cyclic group Ce/p of order
e/p, namely, Ce/p = G(e, p, 1); the symmetric group on n points Sn = G(1, 1, n);
the Weyl groups of types Bn, Cn, and Dn, namely, WBn = WCn = G(2, 1, n) and
WDn = G(2, 2, n); and the dihedral groups I2(e) = G(e, e, 2).

The fundamental fact characterizing the finite complex reflection subgroups in
GL(V ) is the following theorem by G. C. Shephard and J. A. Todd.
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Theorem (Shephard-Todd [16]) A subgroup G ⊂ GL(V ) is a finite complex re-
flection group if and only if the subring PG of the G-invariant elements in the
symmetric algebra P = S(V ) of the space V is generated by n algebraically inde-
pendent homogeneous elements.

On the other side, in the case of Coxeter groups that form a part of the complex
reflection groups, there is a remarkable result by C. F. Dunkl which states that the
algebra generated by the truncated Dunkl operators is isomorphic to the coinvari-
ant algebra of the corresponding Coxeter group. An analogue of Dunkl operators
for finite complex reflection groups have been introduced by C. F. Dunkl and E.
M. Opdam [5]. So it seems an interesting problem to extend the result by C. F.
Dunkl mentioned above, to the case of complex reflection groups.

It is well-known that the cohomology ring of a flag variety has a presentation
as the coinvariant algebra of the corresponding Weyl group. Some combinatorial
problems on the intersection theory over flag varieties can be formulated for the
coinvariant algebra of a finite Coxeter group [7]. In view of Shephard and Todd’s
theorem, the coinvariant algebra of a finite complex reflection group gives a natu-
ral generalization of the framework where one can study problems related to the
Schubert calculus, see e.g. [17].

S. Fomin and the first author [6] have given a model of the cohomology ring
of the flag variety of type A as a commutative subalgebra in a certain noncommu-
tative quadratic algebra. Their construction has applications to Pieri’s formula,
quantization and so on [6], [13]. Similar construction for other root systems has
been given in [9]. Yu. Bazlov [2] has realized the coinvariant algebra of a finite
Coxeter group as a commutative subalgebra in a braided Hopf algebra, called the
Nichols-Woronowicz algebra, to give a new mode of thought on the construction in
[6]. The quantization operator on the Nichols-Woronowicz algebra and the model
of the quantum cohomology ring of the flag varieties are given in [10].

The Nichols-Woronowicz algebra B(M), which is called the Nichols algebra
in [1], associated to a braided vector space M is a braided graded Hopf algebra
characterized by the following condition which appeared originally in the work of
W. D. Nichols [12]:
(1) B0(M) = C,
(2) B1(M) = M = {primitive elements in B(M)},
(3) B1(M) generates B(M) as an algebra.
It is known that the algebra B(M) has an alternative definition as the braided
analogue of the symmetric (or exterior) algebras introduced by S. L. Woronowicz
[18] for the study of differential calculus on quantum groups, see [15].

In the present paper, we give a generalization of Bazlov’s construction to the
case of finite complex reflection groups. Having this aim in mind, we define the
Yetter-Drinfeld module MG corresponding to a finite complex reflection group
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G. It is similar to the case of finite Coxeter groups that a linear basis of the
Yetter-Drinfeld module MG is parametrized by the set of pseudo-reflections in the
group G. However, the G-grading and the G-module structure on MG essentially
depend on the properties of the hyperplane arrangement A = AG consisting of
the reflection hyperplanes corresponding to the group G, see Section 2 for details.
With the Yetter-Drinfeld module MG in hand, the construction of the Woronowicz
symmetrizers σn and the corresponding Nichols-Woronowicz algebra B(MG) is
done in the standard manner, see [2], [11]. In Proposition 3.2 we compute the set
of quadratic relations in the algebra B(MG) in the case G = G(e, 1, n). In Section
4 we construct a realization of the coinvariant algebra PG of a finite complex
reflection group G as a commutative subalgebra in the corresponding Nichols-
Woronowicz algebra B(MG). The basis for our construction is the definition of the
C-linear map µ, see Definition 4.1. The map µ can be treated as “a truncated
version” of the Dunkl operators for complex reflection groups introduced in [5].
Section 4 contains the main result of our paper, Theorem 4.1, which states that
the subalgebra of B(MG) generated by the image of the map µ is isomorphic to
the coinvariant algebra of a finite complex reflection group in question. Note that
there is a duality between the corresponding NilCoxeter and coinvariant algebras
in the case of finite real reflection groups, see e.g. [2]. In Section 5 we study
an analogue of such a duality for the group G(e, 1, n). Our results in Section 5
essentially depend on those obtained in [14].

1 Coinvariant algebra of complex reflection

group

Let G be a finite complex reflection group and V the reflection representation of
G. We fix a G-invariant hermitian inner product 〈 , 〉 on V. Let A be the set of
reflection hyperplanes H ⊂ V of G. The stabilizer GH ⊂ G of H ∈ A is isomorphic
to a finite cyclic group Z/eHZ, eH ∈ Z>0. Each element g ∈ GH acts on V as a
complex reflection with respect to H. We can assume that for g ∈ GH and ξ ∈ V
the action of g is of form

g(ξ) = ξ − (1 − ζ)
〈ξ, vH〉vH

‖vH‖2
,

where vH is a normal vector to H and ζ is some eH -th root of the unity. Denote
by χH the character of the cyclic group GH defined as a restriction of det(g; V )
to GH . For H ∈ A, there exists a unique element gH ∈ GH such that χH(g) =
exp(2π

√
−1/eH).
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Consider the symmetric algebra S(V ) = SymCV of V. The G-invariant sub-
algebra S(V )G is generated by algebraically independent homogeneous elements
f1, . . . , fr, r = dim V, by Shephard and Todd’s theorem [16]. The coinvariant
algebra PG is the quotient algebra of S(V ) by the ideal IG generated by the funda-
mental G-invariants f1, . . . , fr. It has been shown by Chevalley [4] that the algebra
PG is isomorphic to the regular representation C〈G〉 as a left G-module.

Let us fix a set of vectors {vH}H∈A such that vH ∈ H⊥ \ {0}. Then the
action of g ∈ G can be written as g(vH) = λ(g,H)vgH for a constant λ(g,H) ∈
C× determined by g and H. The constants λ(g,H) satisfy λ(id,H) = 1 and the
cocycle condition λ(gg′,H) = λ(g, g′H)λ(g′, H). The constants {λ(g,H)}g∈G,H∈A
determine an element in H1(G, (C×)A). The family {αH}H∈A of defining linear
forms of the reflection hyperplanes is also determined by αH(x) = 〈x, vH〉. Note
that g∗αH = λ(g−1,H)αg−1H for g ∈ G.

Definition 1.1 We define the divided difference operators ∆H,k : S(V ) → S(V )
as a C-linear map defined by the formula

∆H,k(f) =
f − gk

H(f)
vH

for H ∈ A and 1 ≤ k ≤ eH − 1.

The divided difference operators ∆H,k satisfy the twisted Leibniz rule:

∆H,k(f1f2) = ∆H,k(f1)f2 + gk
H(f1)∆H,k(f2).

It is easy to see the following.

Lemma 1.1 A polynomial f ∈ S(V ) is a G-invariant if and only if ∆H,k(f) = 0
for any H ∈ A and 1 ≤ k ≤ eH − 1.

2 Nichols-Woronowicz algebra over complex

reflection group

In this section we introduce the Nichols-Woronowicz algebra associated to a Yetter-
Drinfeld module MG over the complex reflection group G. In general, the Yetter-
Drinfeld module over a finite group Γ is defined as follows:

Definition 2.1 A vector space M is called a Yetter-Drinfeld module over Γ, if the
following conditions are satisfied:
(1) M is a Γ-module,
(2) M is Γ-graded, i.e. V =

⊕
g∈Γ Mg, where Mg is a linear subspace of M,

(3) for h ∈ Γ and v ∈ Mg, h(v) ∈ Mhgh−1 .
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Note that the category Γ
ΓY D of the Yetter-Drinfeld modules over a fixed finite

group Γ is naturally braided by the braiding

ψM1,M2 : M1 ⊗ M2 → M2 ⊗ M1

x ⊗ y 7→ g(y) ⊗ x,

where M1,M2 ∈ Γ
ΓY D and x ∈ (M1)g.

Fix a set of normal vectors vH , H ∈ A. Then we can consider the corresponding
constants λ(g,H), g ∈ G, H ∈ A. Let MG be a C-vector space generated by the
symbols [H; k], H ∈ A and 1 ≤ k ≤ eH − 1.

Definition 2.2 We define a structure of the Yetter-Drinfeld module over G on
the space MG as follows:
(i) (G-action) g([H; k]) = λ(g,H)

−1
[gH; k],

(ii) (G-grading) degG([H; k]) = gk
H .

Lemma 2.1 The G-action and G-grading defined above satisfy the condition for
the Yetter-Drinfeld module, i.e., degG(h([H; k])) = hgk

Hh−1 for h ∈ G.

Proof. Since

g(h([H; k])) = g(λ(h,H)
−1

[hH; k]) = λ(g, hH)
−1

λ(h,H)
−1

[ghH; k]

= λ(gh,H)
−1

[ghH; k] = (gh)([H; k]),

the formula in (i) defines a G-action on MG. Let us check the condition (2). From
the definition of the G-action, we have

degG(h([H; k])) = degG(λ(h,H)
−1

[hH; k]) = degG([hH; k]) = gk
hH = hgk

Hh−1.

Remark 2.1 Our definition of the Yetter-Drinfeld module MG is analogous to
the construction for the Coxeter group given in [11, Section 5]. In the case of finite
Coxeter groups, we can choose the constants λ(g,H) to take the values ±1 by the
normalization ‖vH‖ = 1 as in the construction of the Yetter-Drinfeld module VW

used in [2]. However, it is essential to specify the cocycle {λ(g,H)} in our case
because of the appearance of the multiplication by some root of the unity.

For a braided vector space M with a braiding Ψ : M ⊗M → M ⊗M, consider
the linear endomorphism Ψi on M⊗n obtained by applying the braiding Ψ : M ⊗
M → M ⊗M on the i-th and (i + 1)-st components of M⊗n. The endomorphisms
Ψi satisfy the braid relation Ψi+1ΨiΨi+1 = ΨiΨi+1Ψi. Denote by si the simple
transposition (i, i + 1) ∈ Sn. For any reduced expression w = si1 · · · sil ∈ Sn, the
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endomorphism Ψw := Ψi1 · · ·Ψil : M⊗n → M⊗n is well-defined. The Woronowicz
symmetrizer ([18]) is given by

σn :=
∑

w∈Sn

Ψw.

Definition 2.3 The Nichols-Woronowicz algebra associated to a braided vector
space M is

B(M) :=
⊕
n≥0

M⊗n/Ker(σn),

where σn : M⊗n → M⊗n is the braided symmetrizer.

The braided vector space M naturally acts on B(M∗) from the right via the
right braided derivations ←−

Dx, x ∈ M. When Ψ−1
M,T (M∗)(ψ ⊗ x) =

∑
i xi ⊗ ψi,

denote by Ψ−1
M,T (M∗)(ψ ⊗←−

Dx) the operator φ 7→
∑

i(φ
←−
Dxi)ψi. The operators ←−

Dx

are determined by the braided Leibniz rule

(φψ)←−Dx = φ(ψ←−Dx) + φΨ−1
M,T (M∗)(ψ ⊗←−

Dx),

and the condition ϕ
←−
Dx = ϕ(x), ϕ ∈ M∗, x ∈ M, see [2, 2.5]. In the subsequent

construction, we identify the Yetter-Drinfeld module MG with its dual M∗
G via the

G-invariant symmetric inner product on MG given by ([H; k], [H ′; k′]) = δH,H′δk,k′ .
In our case, we have ΨMG,T (MG)([H; k] ⊗ φ) = gk

H(φ) ⊗ [H; k]. Hence, the braided
Leibniz rule can be written as

(φψ)←−DH,k = φ(ψ←−DH,k) + (φ←−DH,k)g−k
H (ψ).

Lemma 2.2 ([2, Criterion 3.2])⋂
H∈A,1≤k≤eH−1

Ker(←−DH,k) = B0(MG)

The linear map
ν : MG → EndC(B(MG))

[H; k] 7→ ←−
DH,eH−k

extends to the algebra homomorphism from the opposite algebra B(MG)op of
B(MG) to EndC(B(MG)). The homomorphism ν : B(MG)op → EndC(B(MG))
gives a nondegenerate pairing

〈〈 , 〉〉 : B(MG) × B(MG)op → B0(MG) = C
〈〈φ, ψ〉〉 7→ CT.(ν(ψ)(φ)),

where CT. stands for the part of degree zero.
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3 Relations in the Nichols-Woronowicz alge-

bra

Denote by d(N1, N2) > 0 the greatest common divisor of integers N1 and N2.

Proposition 3.1 In the algebra B(MG),

[H; k]eH/d(eH ,k) = 0.

Proof. Take a permutation w ∈ Sn with l(w) = l. Then

Ψw([H; k]⊗n) = ζkl
H [H; k]⊗n,

where ζH = exp(2π
√
−1/eH). Hence

σn([H; k]⊗n) =

( ∑
w∈Sn

ζ
kl(w)
H

)
· [H; k]⊗n =

n−1∏
j=1

(1 + ζk
H + ζ2k

H + · · ·+ ζjk
H ) · [H; k]⊗n.

If n = eH/d(eH , k), then σn([H; k]⊗n) = 0.

Relations for G(e, 1, n), (e > 1)

Take an n-dimensional hermitian vector space V =
⊕n

i=1 Cεi with an orthonormal
basis (εi)n

i=1. Let (xi)n
i=1 be the coordinate system with respect to the basis (εi)n

i=1.
All the reflection hyperplanes for G(e, 1, n) ⊂ GL(V ) are given by

Hij(a) : xi − ζaxj = 0, Hi : xi = 0,

where 1 ≤ i < j ≤ n, a ∈ Z/eZ, ζ = exp(2π
√
−1/e). Choose the normal vectors

vHij(a) := εi−ζ−aεj and vHi := εi. The algebra B(MG) is generated by the symbols
[Hij(a)] := [Hij(a); 1], a ∈ Z/eZ, and [Hi; s], 1 ≤ s ≤ e − 1. We put [Hji(a)] :=
−ζa[Hij(−a)].

Proposition 3.2 For 1 ≤ s, t ≤ e − 1 and distinct 1 ≤ i, j, k ≤ n, we have the
following relations in B(MG).
(1) [Hij(a)][Hjk(b)] − ζa[Hik(a + b)][Hij(a)] − [Hjk(b)][Hik(a + b)] = 0,

(2)
∑eH/d(eH ,2(a−b))

p=1 ζ2p(a−b)[Hij(a + 2p(a − b))][Hij(b + 2p(a − b))] =∑eH/d(eH ,2(a−b))
q=1 ζ(2q−1)(a−b)[Hij(b + 2q(a − b))][Hij(a + 2(q − 1)(a − b))],

(3) [Hij(a)][Hi; s]− ζ−a[Hj ; s][Hij(a)] + ζ−a[Hij(a− s)][Hj ; s]− ζ−s[Hi; s][Hij(a−
s)] = 0,

(4) [Hij(a)][Hkl(b)] = [Hkl(b)][Hij(a)], if {i, j} ∩ {k, l} = ∅,
(5) [Hi; s][Hj ; t] = [Hj ; t][Hi; s],
(6) [Hij(a)][Hk; s] = [Hk; s][Hij(a)], if k 6= i, j.
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These relations follow from straightforward computation of the images of the
braided symmetrizers.

Remark 3.1 In the case of Sn = G(1, 1, n), the relations (1), (4) and [Hij(0)]2 = 0
cover all the independent quadratic relations in B(MSn), see [6] and [2, 7.1]. In
the case of the Weyl groups WBn = WCn = G(2, 1, n), the relations in Proposition
3.2 coincide with the quadratic relations given in [9].

4 Model of coinvariant algebra

Definition 4.1 Fix a set of G-invariant constants κ = (κH,i)H∈A,1≤i≤eH−1. We
define the C-linear map µ = µκ : V → MG by

µ(ξ) = −
∑
H∈A

eH−1∑
i,k=1

αH(ξ)κH,iζ
−ik
H [H; k],

where ζH = exp(2π
√
−1/eH).

Proposition 4.1 The map µ is a G-homomorphism, i.e., µ(g(ξ)) = g(µ(ξ)).

Proof. Note that egH = eH for any g ∈ G and H ∈ A. We have

µ(g(ξ)) = −
∑
H∈A

eH−1∑
i,k=1

αH(g(ξ))κH,iζ
−ik
H [H; k]

= −
∑
H∈A

eH−1∑
i,k=1

g∗αH(ξ)κH,iζ
−ik
H [H; k]

= −
∑
H∈A

eH−1∑
i,k=1

λ(g−1,H)αg−1H(ξ)κH,iζ
−ik
H [H; k]

= −
∑
H∈A

eH−1∑
i,k=1

αH(ξ)κgH,iζ
−ik
gH λ(g−1, gH)[gH; k]

= −
∑
H∈A

eH−1∑
i,k=1

αH(ξ)κH,iζ
−ik
H λ(g,H)

−1
[gH; k]

= g

−
∑
H∈A

eH−1∑
i,k=1

αH(ξ)κH,iζ
−ik
H [H; k]

 = g(µ(ξ)).

Here we have used that λ(g−1, gH) = λ(g,H)−1.
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Proposition 4.2

[µ(ξ), µ(η)] = 0 in B(MG)

Proof. Let us show (id + Ψ)(µ(ξ) ⊗ µ(η)) = (id + Ψ)(µ(η) ⊗ µ(ξ)). The left-hand
side equals

∑
H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)αH′(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ [H; k] ⊗ [H ′; l]

+
∑

H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)αH′(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ gk
H([H ′; l]) ⊗ [H; k].

Here the second term is

∑
H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)αH′(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ λ(gk
H ,H ′)

−1
[gk

H(H ′); l] ⊗ [H; k]

=
∑

H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)λ(g−k
H , gk

H(H ′))αH′(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ [gk
H(H ′); l] ⊗ [H; k]

=
∑

H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)(gk
H)∗(αgk

H(H′))(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ [gk
H(H ′); l] ⊗ [H; k]

=
∑

H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)αH′(gk
H(η))κH,iκH′,jζ

−ik
H ζ−jl

H′ [H ′; l] ⊗ [H; k].

Since
gk
H(η) = η − (1 − ζk

H)
αH(η)vH

‖vH‖2
,

we obtain the following expression of (id + Ψ)(µ(ξ)⊗ µ(η)) which is symmetric in
ξ and η :

∑
H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH(ξ)αH′(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ [H; k] ⊗ [H ′; l]

+
∑

H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH′(ξ)αH(η)κH,iκH′,jζ
−ik
H ζ−jl

H′ [H; k] ⊗ [H ′; l]
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+
∑

H,H′∈A

eH−1∑
i,k=1

eH′−1∑
j,l=1

αH′(ξ)αH′(η)
αH(vH′)
‖vH′‖2

κH,iκH′,jζ
−ik
H ζ−jl

H′ (1−ζ l
H′)[H; k]⊗ [H ′; l].

This completes the proof.

The proposition above shows that the map µ extends to an algebra homomor-
phism

µ̃ : S(V ) → B(MG).

Remark 4.1 Dunkl and Opdam [5] have introduced the Dunkl operator for the
complex reflection groups. Their operator is defined by the following formulas:

Tξ(κ) = ∂ξ +
∑
H∈A

eH−1∑
i=1

∑
g∈GH

αH(ξ)κH,iα
−1
H χi

H(g)g

= ∂ξ −
∑
H∈A

eH−1∑
i=1

eH−1∑
k=1

αH(ξ)κH,iζ
−ik
H α−1

H (1 − g−k
H ),

where χi
H is the restriction of deti to GH . Hence, our homomorphism µ can be

regarded as a truncated version of the operator Tξ(κ) that means the operator
without the differential part ∂ξ after replacing the brackets [H; k] by the divided
difference operators α−1

H (1 − g−k
H ) acting on S(V ∗).

Below we quote a lemma from [14], which is an analogue of Lemma 1.9 in [8,
Chapter IV]. The proof of this lemma given in [14] is applicable to the general finite
complex reflection groups. Let us consider the polynomial Q :=

∏
H∈A veH−1

H ∈
S(V ).

Lemma 4.1 ([14, Lemma 2.16]) If a graded ideal I ⊂ S(V ) contains IG, but does
not contain Q, then I = IG.

We define the divided difference operator ←−∆H,k acting from the right by

f
←−∆H,k :=

f − g−k
H (f)

vH
.

Proposition 4.3 For f ∈ S(V ),

CH,kµ̃(f←−∆H,k) = µ̃(f)←−DH,k,

where

CH,k =
eH−1∑
i=1

κH,i
ζ−ik
H ‖vH‖2

ζ−k
H − 1

.
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Proof. This follows from

[H ′; k′] ←−DH,k = δH,H′δk,k′ ,

µ(ξ)←−DH,k = (−
eH−1∑
i=1

κH,iζ
−ik
H )αH(ξ) =

(
eH−1∑
i=1

κH,i
ζ−ik
H ‖vH‖2

ζ−k
H − 1

)
ξ
←−∆H,k, for ξ ∈ V,

and the braided Leibniz rule

(φψ)←−DH,k = φ(ψ←−DH,k) + (ψ←−DH,k)g−k
H (φ).

The constants (κH,i) are said to be generic if CH,k 6= 0 for any H ∈ A and
1 ≤ k ≤ eH − 1. We also need the following lemma to prove the main theorem.

Lemma 4.2 Let (κH,i) be generic. There exist sequences H1, . . . ,Hp ∈ A and
k1, . . . , kp such that Q

←−∆H1,k1 · · ·
←−∆Hp,kp is a nonzero constant.

Proof. Take a nonzero homogeneous element f ∈ PG. If f
←−∆H,k = 0 for any

H and k, then f is a G-invariant element of PG by Lemma 1.1. Since PG is
isomorphic to the regular representation of G and contains only one copy of the
trivial representation at degree zero, f must be in P 0

G = C. Hence, if the degree of
f is positive, then there exist H ∈ A and k such that f

←−∆H,k 6= 0. The polynomial
Q affording the character det−1 is a generator of the part of the highest degree
in PG, so we can find the desired sequences H1, . . . ,Hp ∈ A and k1, . . . , kp by
induction on the degree.

Theorem 4.1 For any generic choice of the constants κ = (κH,i), we have the
isomorphism

Im(µ̃) ∼= PG.

Proof. If f is a G-invariant polynomial of positive degree, we get µ̃(f)←−DH,k = 0
for any H and k from Lemma 1.2 and Proposition 4.3. Hence µ̃(f) ∈ B0(MG) = C
from Lemma 2.2. Since µ̃ preserves the degree, we have µ̃(f) = 0 and Ker(µ̃) ⊃
IG. On the other hand, it follows from Lemma 4.2 that one can find sequences
H1, . . . ,Hp ∈ A and k1, . . . , kp such that Q

←−∆H1,k1 · · ·
←−∆Hp,kp is a nonzero constant.

This means, see Proposition 4.3, that

µ̃(Q)←−DH1,k1 · · ·
←−
DHp,kp = CH1,k1 · · ·CHp,kp µ̃(Q←−∆H1,k1 · · ·

←−∆Hp,kp) ∈ B0(MG)

is a nonzero constant. Hence Ker(µ̃) does not contain Q. Now we get Ker(µ̃) = IG

from Lemma 4.1.
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5 Complex reflection group of type G(e, 1, n)

We use the notation in Section 3. In the following we identify V ∗ with V via
the G-invariant hermitian form 〈 , 〉, so that the left G-action on V ∗ defined by
g(α) = (g−1)∗α, α ∈ V ∗, coincides with the left G action on V. Put κij,a = κHij(a),1

and κi,s = κHi,s. For a generic choice of the constants κ, the subalgebra Im(µ̃) ⊂
B(MG), which is generated by the elements

µ(εi) =
∑
j 6=i

∑
a∈Z/mZ

κij,a[Hij(a)] −
e−1∑

s,t=1

ζ−stκi,s[Hi; s], 1 ≤ i ≤ n,

is isomorphic to the coinvariant algebra

PG = C[x1, . . . , xn]/(E1(xe
1, . . . , x

e
n), . . . , En(xe

1, . . . , x
e
n)),

where Ei is the i-th elementary symmetric polynomial. Rampetas and Shoji
[14] introduced a family of operators ∆w, w ∈ G, acting on the polynomial
ring P = C[x1, . . . , xn] based on particular choice of the reduced expression of
w ∈ G. The pseudo-reflections sij(a) := gHij(a) and ti := gHi generate the group
G(e, 1, n). In particular, the pseudo-reflections si = si−1 i(0) and t1 play the role
of simple reflections. In the following, we use the divided difference operators
∆si := ∆Hi−1 i(0),1 and ∆ti := ∆Hi,1. Note that the braid relations among the
divided difference operators do not hold in general. Put ∆̃si := ∆e−2

ti
∆si . Let us

consider the operator

∆n(k, a) =
{

∆sk+1
· · ·∆sn−1∆sn , if a = 0,

∆̃sk
· · · ∆̃s2∆

a
t1∆s2 · · ·∆sn , if a 6= 0.

In [14], it is shown that any element w ∈ G has a unique decomposition of form

w = ωn(kn, an)ωn−1(kn−1, an−1) · · ·ω1(k1, a1),

where

ωn(k, a) =
{

sk+1 · · · sn−1sn, if a = 0,
sk · · · s2t

a
1s2 · · · sn, if a 6= 0.

The operators ∆w are defined by the following formula:

∆w := ∆n(kn, an)∆n−1(kn−1, an−1) · · ·∆1(k1, a1).

Define the evaluation map ε : P → C by ε(f) = f(0). Denote by D̄G the subspace
of P ∗ spanned by the operators ε∆w, w ∈ G.

12



Proposition 5.1 ([14, Theorem 2.18]) The coinvariant algebra PG is naturally
isomorphic to the dual space of D̄G.

Put [si] := [Hi−1 i(0)], [ti] := [Hi; e − 1] and [̃si] := [ti]e−2[si]. We also define
the elements [w] ∈ B(MG)op, w ∈ G, in a similar way:

[w] := [ωn(kn, an)][ωn−1(kn−1, an−1)] · · · [ω1(k1, a1)],

where

[ωn(k, a)] :=

{
[sk+1] · · · [sn−1][sn], if a = 0,

[̃sk] · · · [̃s2][t1]a[s2] · · · [sn], if a 6= 0.

Consider DG the subspace of B(MG)op spanned by the elements [w], w ∈ G. Now
it is easy to get the following analogue to [2, Theorem 6.1].

Theorem 5.1 Assume that κij,a = 1 and κi,s = 1 − ζ−s.

(1) The linear map

(CT.)∗ ◦ µ̃∗ ◦ ν : B(MG)op → EndC(B(MG)) → HomC(P,B(MG)) → P ∗

induces an isomorphism between DG and D̄G.
(2) The subalgebra Im(µ̃) is isomorphic to the dual space of DG via the pairing
〈〈 , 〉〉. Furthermore, the pairing 〈〈 , 〉〉 restricted to Im(µ̃) × DG coincides with the
pairing between PG and D̄G, i.e.,

〈〈µ̃(f), [w]〉〉 = ε∆w(f).

Proof. From Theorem 4.1 and Proposition 5.1, we have the factorization

(CT.)∗ ◦ µ̃∗ : EndC(B(MG)) → P ∗
G = D̄G ⊂ P ∗.

For the choice of the constants κ as assumed, we have CH,k = 1 for all H ∈ A and
1 ≤ k ≤ eH − 1. Proposition 4.3 shows that

〈〈µ̃(f), [w]〉〉 = CT.(ν([w])(µ̃(f))) = CT.(µ̃(∆w(f))) = ε∆w(f), f ∈ P,

so we obtain (CT.)∗µ̃∗(ν(DG)) = D̄G. Since DG is spanned by |G| elements, DG

is isomorphic to D̄G.
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